xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 3343fcef86cc9a04a3e56c94e458e855ca916493)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                         uint64_t &Offset) {
33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34     Offset = CI->getZExtValue();
35     Scale  = 0;
36     return ConstantInt::get(Val->getType(), 0);
37   }
38 
39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40     // Cannot look past anything that might overflow.
41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43       Scale = 1;
44       Offset = 0;
45       return Val;
46     }
47 
48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49       if (I->getOpcode() == Instruction::Shl) {
50         // This is a value scaled by '1 << the shift amt'.
51         Scale = UINT64_C(1) << RHS->getZExtValue();
52         Offset = 0;
53         return I->getOperand(0);
54       }
55 
56       if (I->getOpcode() == Instruction::Mul) {
57         // This value is scaled by 'RHS'.
58         Scale = RHS->getZExtValue();
59         Offset = 0;
60         return I->getOperand(0);
61       }
62 
63       if (I->getOpcode() == Instruction::Add) {
64         // We have X+C.  Check to see if we really have (X*C2)+C1,
65         // where C1 is divisible by C2.
66         unsigned SubScale;
67         Value *SubVal =
68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69         Offset += RHS->getZExtValue();
70         Scale = SubScale;
71         return SubVal;
72       }
73     }
74   }
75 
76   // Otherwise, we can't look past this.
77   Scale = 1;
78   Offset = 0;
79   return Val;
80 }
81 
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                    AllocaInst &AI) {
86   PointerType *PTy = cast<PointerType>(CI.getType());
87 
88   BuilderTy AllocaBuilder(Builder);
89   AllocaBuilder.SetInsertPoint(&AI);
90 
91   // Get the type really allocated and the type casted to.
92   Type *AllocElTy = AI.getAllocatedType();
93   Type *CastElTy = PTy->getElementType();
94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 
96   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 
100   // If the allocation has multiple uses, only promote it if we are strictly
101   // increasing the alignment of the resultant allocation.  If we keep it the
102   // same, we open the door to infinite loops of various kinds.
103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 
105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 
109   // If the allocation has multiple uses, only promote it if we're not
110   // shrinking the amount of memory being allocated.
111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 
115   // See if we can satisfy the modulus by pulling a scale out of the array
116   // size argument.
117   unsigned ArraySizeScale;
118   uint64_t ArrayOffset;
119   Value *NumElements = // See if the array size is a decomposable linear expr.
120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 
122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
123   // do the xform.
124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126 
127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128   Value *Amt = nullptr;
129   if (Scale == 1) {
130     Amt = NumElements;
131   } else {
132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133     // Insert before the alloca, not before the cast.
134     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135   }
136 
137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                   Offset, true);
140     Amt = AllocaBuilder.CreateAdd(Amt, Off);
141   }
142 
143   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144   New->setAlignment(AI.getAlignment());
145   New->takeName(&AI);
146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 
148   // If the allocation has multiple real uses, insert a cast and change all
149   // things that used it to use the new cast.  This will also hack on CI, but it
150   // will die soon.
151   if (!AI.hasOneUse()) {
152     // New is the allocation instruction, pointer typed. AI is the original
153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155     replaceInstUsesWith(AI, NewCast);
156   }
157   return replaceInstUsesWith(CI, New);
158 }
159 
160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161 /// true for, actually insert the code to evaluate the expression.
162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163                                              bool isSigned) {
164   if (Constant *C = dyn_cast<Constant>(V)) {
165     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166     // If we got a constantexpr back, try to simplify it with DL info.
167     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168       C = FoldedC;
169     return C;
170   }
171 
172   // Otherwise, it must be an instruction.
173   Instruction *I = cast<Instruction>(V);
174   Instruction *Res = nullptr;
175   unsigned Opc = I->getOpcode();
176   switch (Opc) {
177   case Instruction::Add:
178   case Instruction::Sub:
179   case Instruction::Mul:
180   case Instruction::And:
181   case Instruction::Or:
182   case Instruction::Xor:
183   case Instruction::AShr:
184   case Instruction::LShr:
185   case Instruction::Shl:
186   case Instruction::UDiv:
187   case Instruction::URem: {
188     Value *LHS, *RHS;
189     if (I->getOperand(0) == I->getOperand(1)) {
190       // Don't create an unnecessary value if the operands are repeated.
191       LHS = RHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
192     } else {
193       LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
194       RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
195     }
196     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
197     break;
198   }
199   case Instruction::Trunc:
200   case Instruction::ZExt:
201   case Instruction::SExt:
202     // If the source type of the cast is the type we're trying for then we can
203     // just return the source.  There's no need to insert it because it is not
204     // new.
205     if (I->getOperand(0)->getType() == Ty)
206       return I->getOperand(0);
207 
208     // Otherwise, must be the same type of cast, so just reinsert a new one.
209     // This also handles the case of zext(trunc(x)) -> zext(x).
210     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
211                                       Opc == Instruction::SExt);
212     break;
213   case Instruction::Select: {
214     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
215     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
216     Res = SelectInst::Create(I->getOperand(0), True, False);
217     break;
218   }
219   case Instruction::PHI: {
220     PHINode *OPN = cast<PHINode>(I);
221     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
222     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
223       Value *V =
224           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
225       NPN->addIncoming(V, OPN->getIncomingBlock(i));
226     }
227     Res = NPN;
228     break;
229   }
230   default:
231     // TODO: Can handle more cases here.
232     llvm_unreachable("Unreachable!");
233   }
234 
235   Res->takeName(I);
236   return InsertNewInstWith(Res, *I);
237 }
238 
239 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
240                                                         const CastInst *CI2) {
241   Type *SrcTy = CI1->getSrcTy();
242   Type *MidTy = CI1->getDestTy();
243   Type *DstTy = CI2->getDestTy();
244 
245   Instruction::CastOps firstOp = CI1->getOpcode();
246   Instruction::CastOps secondOp = CI2->getOpcode();
247   Type *SrcIntPtrTy =
248       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
249   Type *MidIntPtrTy =
250       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
251   Type *DstIntPtrTy =
252       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
253   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
254                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
255                                                 DstIntPtrTy);
256 
257   // We don't want to form an inttoptr or ptrtoint that converts to an integer
258   // type that differs from the pointer size.
259   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
260       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
261     Res = 0;
262 
263   return Instruction::CastOps(Res);
264 }
265 
266 /// @brief Implement the transforms common to all CastInst visitors.
267 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
268   Value *Src = CI.getOperand(0);
269 
270   // Try to eliminate a cast of a cast.
271   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
272     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
273       // The first cast (CSrc) is eliminable so we need to fix up or replace
274       // the second cast (CI). CSrc will then have a good chance of being dead.
275       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
276 
277       // If the eliminable cast has debug users, insert a debug value after the
278       // cast pointing to the new Value.
279       SmallVector<DbgInfoIntrinsic *, 1> CSrcDbgInsts;
280       findDbgUsers(CSrcDbgInsts, CSrc);
281       if (CSrcDbgInsts.size()) {
282         DIBuilder DIB(*CI.getModule());
283         for (auto *DII : CSrcDbgInsts)
284           DIB.insertDbgValueIntrinsic(
285               Res, DII->getVariable(), DII->getExpression(),
286               DII->getDebugLoc().get(), &*std::next(CI.getIterator()));
287       }
288       return Res;
289     }
290   }
291 
292   // If we are casting a select, then fold the cast into the select.
293   if (auto *SI = dyn_cast<SelectInst>(Src))
294     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
295       return NV;
296 
297   // If we are casting a PHI, then fold the cast into the PHI.
298   if (auto *PN = dyn_cast<PHINode>(Src)) {
299     // Don't do this if it would create a PHI node with an illegal type from a
300     // legal type.
301     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
302         shouldChangeType(CI.getType(), Src->getType()))
303       if (Instruction *NV = foldOpIntoPhi(CI, PN))
304         return NV;
305   }
306 
307   return nullptr;
308 }
309 
310 /// Constants and extensions/truncates from the destination type are always
311 /// free to be evaluated in that type. This is a helper for canEvaluate*.
312 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
313   if (isa<Constant>(V))
314     return true;
315   Value *X;
316   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
317       X->getType() == Ty)
318     return true;
319 
320   return false;
321 }
322 
323 /// Filter out values that we can not evaluate in the destination type for free.
324 /// This is a helper for canEvaluate*.
325 static bool canNotEvaluateInType(Value *V, Type *Ty) {
326   assert(!isa<Constant>(V) && "Constant should already be handled.");
327   if (!isa<Instruction>(V))
328     return true;
329   // We can't extend or shrink something that has multiple uses -- unless those
330   // multiple uses are all in the same instruction -- doing so would require
331   // duplicating the instruction which isn't profitable.
332   if (!V->hasOneUse())
333     if (any_of(V->users(), [&](User *U) { return U != V->user_back(); }))
334       return true;
335 
336   return false;
337 }
338 
339 /// Return true if we can evaluate the specified expression tree as type Ty
340 /// instead of its larger type, and arrive with the same value.
341 /// This is used by code that tries to eliminate truncates.
342 ///
343 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
344 /// can be computed by computing V in the smaller type.  If V is an instruction,
345 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
346 /// makes sense if x and y can be efficiently truncated.
347 ///
348 /// This function works on both vectors and scalars.
349 ///
350 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
351                                  Instruction *CxtI) {
352   if (canAlwaysEvaluateInType(V, Ty))
353     return true;
354   if (canNotEvaluateInType(V, Ty))
355     return false;
356 
357   auto *I = cast<Instruction>(V);
358   Type *OrigTy = V->getType();
359   switch (I->getOpcode()) {
360   case Instruction::Add:
361   case Instruction::Sub:
362   case Instruction::Mul:
363   case Instruction::And:
364   case Instruction::Or:
365   case Instruction::Xor:
366     // These operators can all arbitrarily be extended or truncated.
367     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
368            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
369 
370   case Instruction::UDiv:
371   case Instruction::URem: {
372     // UDiv and URem can be truncated if all the truncated bits are zero.
373     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
374     uint32_t BitWidth = Ty->getScalarSizeInBits();
375     if (BitWidth < OrigBitWidth) {
376       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
377       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
378           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
379         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
380                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
381       }
382     }
383     break;
384   }
385   case Instruction::Shl: {
386     // If we are truncating the result of this SHL, and if it's a shift of a
387     // constant amount, we can always perform a SHL in a smaller type.
388     const APInt *Amt;
389     if (match(I->getOperand(1), m_APInt(Amt))) {
390       uint32_t BitWidth = Ty->getScalarSizeInBits();
391       if (Amt->getLimitedValue(BitWidth) < BitWidth)
392         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
393     }
394     break;
395   }
396   case Instruction::LShr: {
397     // If this is a truncate of a logical shr, we can truncate it to a smaller
398     // lshr iff we know that the bits we would otherwise be shifting in are
399     // already zeros.
400     const APInt *Amt;
401     if (match(I->getOperand(1), m_APInt(Amt))) {
402       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
403       uint32_t BitWidth = Ty->getScalarSizeInBits();
404       if (IC.MaskedValueIsZero(I->getOperand(0),
405             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
406           Amt->getLimitedValue(BitWidth) < BitWidth) {
407         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
408       }
409     }
410     break;
411   }
412   case Instruction::AShr: {
413     // If this is a truncate of an arithmetic shr, we can truncate it to a
414     // smaller ashr iff we know that all the bits from the sign bit of the
415     // original type and the sign bit of the truncate type are similar.
416     // TODO: It is enough to check that the bits we would be shifting in are
417     //       similar to sign bit of the truncate type.
418     const APInt *Amt;
419     if (match(I->getOperand(1), m_APInt(Amt))) {
420       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
421       uint32_t BitWidth = Ty->getScalarSizeInBits();
422       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
423           OrigBitWidth - BitWidth <
424               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
425         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
426     }
427     break;
428   }
429   case Instruction::Trunc:
430     // trunc(trunc(x)) -> trunc(x)
431     return true;
432   case Instruction::ZExt:
433   case Instruction::SExt:
434     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
435     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
436     return true;
437   case Instruction::Select: {
438     SelectInst *SI = cast<SelectInst>(I);
439     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
440            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
441   }
442   case Instruction::PHI: {
443     // We can change a phi if we can change all operands.  Note that we never
444     // get into trouble with cyclic PHIs here because we only consider
445     // instructions with a single use.
446     PHINode *PN = cast<PHINode>(I);
447     for (Value *IncValue : PN->incoming_values())
448       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
449         return false;
450     return true;
451   }
452   default:
453     // TODO: Can handle more cases here.
454     break;
455   }
456 
457   return false;
458 }
459 
460 /// Given a vector that is bitcast to an integer, optionally logically
461 /// right-shifted, and truncated, convert it to an extractelement.
462 /// Example (big endian):
463 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
464 ///   --->
465 ///   extractelement <4 x i32> %X, 1
466 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
467   Value *TruncOp = Trunc.getOperand(0);
468   Type *DestType = Trunc.getType();
469   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
470     return nullptr;
471 
472   Value *VecInput = nullptr;
473   ConstantInt *ShiftVal = nullptr;
474   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
475                                   m_LShr(m_BitCast(m_Value(VecInput)),
476                                          m_ConstantInt(ShiftVal)))) ||
477       !isa<VectorType>(VecInput->getType()))
478     return nullptr;
479 
480   VectorType *VecType = cast<VectorType>(VecInput->getType());
481   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
482   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
483   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
484 
485   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
486     return nullptr;
487 
488   // If the element type of the vector doesn't match the result type,
489   // bitcast it to a vector type that we can extract from.
490   unsigned NumVecElts = VecWidth / DestWidth;
491   if (VecType->getElementType() != DestType) {
492     VecType = VectorType::get(DestType, NumVecElts);
493     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
494   }
495 
496   unsigned Elt = ShiftAmount / DestWidth;
497   if (IC.getDataLayout().isBigEndian())
498     Elt = NumVecElts - 1 - Elt;
499 
500   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
501 }
502 
503 /// Rotate left/right may occur in a wider type than necessary because of type
504 /// promotion rules. Try to narrow all of the component instructions.
505 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
506   assert((isa<VectorType>(Trunc.getSrcTy()) ||
507           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
508          "Don't narrow to an illegal scalar type");
509 
510   // First, find an or'd pair of opposite shifts with the same shifted operand:
511   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
512   Value *Or0, *Or1;
513   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
514     return nullptr;
515 
516   Value *ShVal, *ShAmt0, *ShAmt1;
517   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
518       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
519     return nullptr;
520 
521   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
522   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
523   if (ShiftOpcode0 == ShiftOpcode1)
524     return nullptr;
525 
526   // The shift amounts must add up to the narrow bit width.
527   Value *ShAmt;
528   bool SubIsOnLHS;
529   Type *DestTy = Trunc.getType();
530   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
531   if (match(ShAmt0,
532             m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
533     ShAmt = ShAmt1;
534     SubIsOnLHS = true;
535   } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
536                                           m_Specific(ShAmt0))))) {
537     ShAmt = ShAmt0;
538     SubIsOnLHS = false;
539   } else {
540     return nullptr;
541   }
542 
543   // The shifted value must have high zeros in the wide type. Typically, this
544   // will be a zext, but it could also be the result of an 'and' or 'shift'.
545   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
546   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
547   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
548     return nullptr;
549 
550   // We have an unnecessarily wide rotate!
551   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
552   // Narrow it down to eliminate the zext/trunc:
553   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
554   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
555   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
556 
557   // Mask both shift amounts to ensure there's no UB from oversized shifts.
558   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
559   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
560   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
561 
562   // Truncate the original value and use narrow ops.
563   Value *X = Builder.CreateTrunc(ShVal, DestTy);
564   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
565   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
566   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
567   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
568   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
569 }
570 
571 /// Try to narrow the width of math or bitwise logic instructions by pulling a
572 /// truncate ahead of binary operators.
573 /// TODO: Transforms for truncated shifts should be moved into here.
574 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
575   Type *SrcTy = Trunc.getSrcTy();
576   Type *DestTy = Trunc.getType();
577   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
578     return nullptr;
579 
580   BinaryOperator *BinOp;
581   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
582     return nullptr;
583 
584   Value *BinOp0 = BinOp->getOperand(0);
585   Value *BinOp1 = BinOp->getOperand(1);
586   switch (BinOp->getOpcode()) {
587   case Instruction::And:
588   case Instruction::Or:
589   case Instruction::Xor:
590   case Instruction::Add:
591   case Instruction::Sub:
592   case Instruction::Mul: {
593     Constant *C;
594     if (match(BinOp0, m_Constant(C))) {
595       // trunc (binop C, X) --> binop (trunc C', X)
596       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
597       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
598       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
599     }
600     if (match(BinOp1, m_Constant(C))) {
601       // trunc (binop X, C) --> binop (trunc X, C')
602       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
603       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
604       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
605     }
606     Value *X;
607     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
608       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
609       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
610       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
611     }
612     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
613       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
614       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
615       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
616     }
617     break;
618   }
619 
620   default: break;
621   }
622 
623   if (Instruction *NarrowOr = narrowRotate(Trunc))
624     return NarrowOr;
625 
626   return nullptr;
627 }
628 
629 /// Try to narrow the width of a splat shuffle. This could be generalized to any
630 /// shuffle with a constant operand, but we limit the transform to avoid
631 /// creating a shuffle type that targets may not be able to lower effectively.
632 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
633                                        InstCombiner::BuilderTy &Builder) {
634   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
635   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
636       Shuf->getMask()->getSplatValue() &&
637       Shuf->getType() == Shuf->getOperand(0)->getType()) {
638     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
639     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
640     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
641     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
642   }
643 
644   return nullptr;
645 }
646 
647 /// Try to narrow the width of an insert element. This could be generalized for
648 /// any vector constant, but we limit the transform to insertion into undef to
649 /// avoid potential backend problems from unsupported insertion widths. This
650 /// could also be extended to handle the case of inserting a scalar constant
651 /// into a vector variable.
652 static Instruction *shrinkInsertElt(CastInst &Trunc,
653                                     InstCombiner::BuilderTy &Builder) {
654   Instruction::CastOps Opcode = Trunc.getOpcode();
655   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
656          "Unexpected instruction for shrinking");
657 
658   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
659   if (!InsElt || !InsElt->hasOneUse())
660     return nullptr;
661 
662   Type *DestTy = Trunc.getType();
663   Type *DestScalarTy = DestTy->getScalarType();
664   Value *VecOp = InsElt->getOperand(0);
665   Value *ScalarOp = InsElt->getOperand(1);
666   Value *Index = InsElt->getOperand(2);
667 
668   if (isa<UndefValue>(VecOp)) {
669     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
670     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
671     UndefValue *NarrowUndef = UndefValue::get(DestTy);
672     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
673     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
674   }
675 
676   return nullptr;
677 }
678 
679 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
680   if (Instruction *Result = commonCastTransforms(CI))
681     return Result;
682 
683   // Test if the trunc is the user of a select which is part of a
684   // minimum or maximum operation. If so, don't do any more simplification.
685   // Even simplifying demanded bits can break the canonical form of a
686   // min/max.
687   Value *LHS, *RHS;
688   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
689     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
690       return nullptr;
691 
692   // See if we can simplify any instructions used by the input whose sole
693   // purpose is to compute bits we don't care about.
694   if (SimplifyDemandedInstructionBits(CI))
695     return &CI;
696 
697   Value *Src = CI.getOperand(0);
698   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
699 
700   // Attempt to truncate the entire input expression tree to the destination
701   // type.   Only do this if the dest type is a simple type, don't convert the
702   // expression tree to something weird like i93 unless the source is also
703   // strange.
704   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
705       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
706 
707     // If this cast is a truncate, evaluting in a different type always
708     // eliminates the cast, so it is always a win.
709     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
710           " to avoid cast: " << CI << '\n');
711     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
712     assert(Res->getType() == DestTy);
713     return replaceInstUsesWith(CI, Res);
714   }
715 
716   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
717   if (DestTy->getScalarSizeInBits() == 1) {
718     Constant *One = ConstantInt::get(SrcTy, 1);
719     Src = Builder.CreateAnd(Src, One);
720     Value *Zero = Constant::getNullValue(Src->getType());
721     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
722   }
723 
724   // FIXME: Maybe combine the next two transforms to handle the no cast case
725   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
726 
727   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
728   Value *A = nullptr; ConstantInt *Cst = nullptr;
729   if (Src->hasOneUse() &&
730       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
731     // We have three types to worry about here, the type of A, the source of
732     // the truncate (MidSize), and the destination of the truncate. We know that
733     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
734     // between ASize and ResultSize.
735     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
736 
737     // If the shift amount is larger than the size of A, then the result is
738     // known to be zero because all the input bits got shifted out.
739     if (Cst->getZExtValue() >= ASize)
740       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
741 
742     // Since we're doing an lshr and a zero extend, and know that the shift
743     // amount is smaller than ASize, it is always safe to do the shift in A's
744     // type, then zero extend or truncate to the result.
745     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
746     Shift->takeName(Src);
747     return CastInst::CreateIntegerCast(Shift, DestTy, false);
748   }
749 
750   // FIXME: We should canonicalize to zext/trunc and remove this transform.
751   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
752   // conversion.
753   // It works because bits coming from sign extension have the same value as
754   // the sign bit of the original value; performing ashr instead of lshr
755   // generates bits of the same value as the sign bit.
756   if (Src->hasOneUse() &&
757       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
758     Value *SExt = cast<Instruction>(Src)->getOperand(0);
759     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
760     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
761     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
762     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
763     unsigned ShiftAmt = Cst->getZExtValue();
764 
765     // This optimization can be only performed when zero bits generated by
766     // the original lshr aren't pulled into the value after truncation, so we
767     // can only shift by values no larger than the number of extension bits.
768     // FIXME: Instead of bailing when the shift is too large, use and to clear
769     // the extra bits.
770     if (ShiftAmt <= MaxAmt) {
771       if (CISize == ASize)
772         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
773                                           std::min(ShiftAmt, ASize - 1)));
774       if (SExt->hasOneUse()) {
775         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
776         Shift->takeName(Src);
777         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
778       }
779     }
780   }
781 
782   if (Instruction *I = narrowBinOp(CI))
783     return I;
784 
785   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
786     return I;
787 
788   if (Instruction *I = shrinkInsertElt(CI, Builder))
789     return I;
790 
791   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
792       shouldChangeType(SrcTy, DestTy)) {
793     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
794     // dest type is native and cst < dest size.
795     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
796         !match(A, m_Shr(m_Value(), m_Constant()))) {
797       // Skip shifts of shift by constants. It undoes a combine in
798       // FoldShiftByConstant and is the extend in reg pattern.
799       const unsigned DestSize = DestTy->getScalarSizeInBits();
800       if (Cst->getValue().ult(DestSize)) {
801         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
802 
803         return BinaryOperator::Create(
804           Instruction::Shl, NewTrunc,
805           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
806       }
807     }
808   }
809 
810   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
811     return I;
812 
813   return nullptr;
814 }
815 
816 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
817                                              bool DoTransform) {
818   // If we are just checking for a icmp eq of a single bit and zext'ing it
819   // to an integer, then shift the bit to the appropriate place and then
820   // cast to integer to avoid the comparison.
821   const APInt *Op1CV;
822   if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
823 
824     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
825     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
826     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
827         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
828       if (!DoTransform) return ICI;
829 
830       Value *In = ICI->getOperand(0);
831       Value *Sh = ConstantInt::get(In->getType(),
832                                    In->getType()->getScalarSizeInBits() - 1);
833       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
834       if (In->getType() != CI.getType())
835         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
836 
837       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
838         Constant *One = ConstantInt::get(In->getType(), 1);
839         In = Builder.CreateXor(In, One, In->getName() + ".not");
840       }
841 
842       return replaceInstUsesWith(CI, In);
843     }
844 
845     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
846     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
847     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
848     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
849     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
850     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
851     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
852     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
853     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
854         // This only works for EQ and NE
855         ICI->isEquality()) {
856       // If Op1C some other power of two, convert:
857       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
858 
859       APInt KnownZeroMask(~Known.Zero);
860       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
861         if (!DoTransform) return ICI;
862 
863         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
864         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
865           // (X&4) == 2 --> false
866           // (X&4) != 2 --> true
867           Constant *Res = ConstantInt::get(CI.getType(), isNE);
868           return replaceInstUsesWith(CI, Res);
869         }
870 
871         uint32_t ShAmt = KnownZeroMask.logBase2();
872         Value *In = ICI->getOperand(0);
873         if (ShAmt) {
874           // Perform a logical shr by shiftamt.
875           // Insert the shift to put the result in the low bit.
876           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
877                                   In->getName() + ".lobit");
878         }
879 
880         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
881           Constant *One = ConstantInt::get(In->getType(), 1);
882           In = Builder.CreateXor(In, One);
883         }
884 
885         if (CI.getType() == In->getType())
886           return replaceInstUsesWith(CI, In);
887 
888         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
889         return replaceInstUsesWith(CI, IntCast);
890       }
891     }
892   }
893 
894   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
895   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
896   // may lead to additional simplifications.
897   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
898     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
899       Value *LHS = ICI->getOperand(0);
900       Value *RHS = ICI->getOperand(1);
901 
902       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
903       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
904 
905       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
906         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
907         APInt UnknownBit = ~KnownBits;
908         if (UnknownBit.countPopulation() == 1) {
909           if (!DoTransform) return ICI;
910 
911           Value *Result = Builder.CreateXor(LHS, RHS);
912 
913           // Mask off any bits that are set and won't be shifted away.
914           if (KnownLHS.One.uge(UnknownBit))
915             Result = Builder.CreateAnd(Result,
916                                         ConstantInt::get(ITy, UnknownBit));
917 
918           // Shift the bit we're testing down to the lsb.
919           Result = Builder.CreateLShr(
920                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
921 
922           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
923             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
924           Result->takeName(ICI);
925           return replaceInstUsesWith(CI, Result);
926         }
927       }
928     }
929   }
930 
931   return nullptr;
932 }
933 
934 /// Determine if the specified value can be computed in the specified wider type
935 /// and produce the same low bits. If not, return false.
936 ///
937 /// If this function returns true, it can also return a non-zero number of bits
938 /// (in BitsToClear) which indicates that the value it computes is correct for
939 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
940 /// out.  For example, to promote something like:
941 ///
942 ///   %B = trunc i64 %A to i32
943 ///   %C = lshr i32 %B, 8
944 ///   %E = zext i32 %C to i64
945 ///
946 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
947 /// set to 8 to indicate that the promoted value needs to have bits 24-31
948 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
949 /// clear the top bits anyway, doing this has no extra cost.
950 ///
951 /// This function works on both vectors and scalars.
952 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
953                              InstCombiner &IC, Instruction *CxtI) {
954   BitsToClear = 0;
955   if (canAlwaysEvaluateInType(V, Ty))
956     return true;
957   if (canNotEvaluateInType(V, Ty))
958     return false;
959 
960   auto *I = cast<Instruction>(V);
961   unsigned Tmp;
962   switch (I->getOpcode()) {
963   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
964   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
965   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
966     return true;
967   case Instruction::And:
968   case Instruction::Or:
969   case Instruction::Xor:
970   case Instruction::Add:
971   case Instruction::Sub:
972   case Instruction::Mul:
973     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
974         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
975       return false;
976     // These can all be promoted if neither operand has 'bits to clear'.
977     if (BitsToClear == 0 && Tmp == 0)
978       return true;
979 
980     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
981     // other side, BitsToClear is ok.
982     if (Tmp == 0 && I->isBitwiseLogicOp()) {
983       // We use MaskedValueIsZero here for generality, but the case we care
984       // about the most is constant RHS.
985       unsigned VSize = V->getType()->getScalarSizeInBits();
986       if (IC.MaskedValueIsZero(I->getOperand(1),
987                                APInt::getHighBitsSet(VSize, BitsToClear),
988                                0, CxtI)) {
989         // If this is an And instruction and all of the BitsToClear are
990         // known to be zero we can reset BitsToClear.
991         if (I->getOpcode() == Instruction::And)
992           BitsToClear = 0;
993         return true;
994       }
995     }
996 
997     // Otherwise, we don't know how to analyze this BitsToClear case yet.
998     return false;
999 
1000   case Instruction::Shl: {
1001     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1002     // upper bits we can reduce BitsToClear by the shift amount.
1003     const APInt *Amt;
1004     if (match(I->getOperand(1), m_APInt(Amt))) {
1005       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1006         return false;
1007       uint64_t ShiftAmt = Amt->getZExtValue();
1008       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1009       return true;
1010     }
1011     return false;
1012   }
1013   case Instruction::LShr: {
1014     // We can promote lshr(x, cst) if we can promote x.  This requires the
1015     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1016     const APInt *Amt;
1017     if (match(I->getOperand(1), m_APInt(Amt))) {
1018       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1019         return false;
1020       BitsToClear += Amt->getZExtValue();
1021       if (BitsToClear > V->getType()->getScalarSizeInBits())
1022         BitsToClear = V->getType()->getScalarSizeInBits();
1023       return true;
1024     }
1025     // Cannot promote variable LSHR.
1026     return false;
1027   }
1028   case Instruction::Select:
1029     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1030         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1031         // TODO: If important, we could handle the case when the BitsToClear are
1032         // known zero in the disagreeing side.
1033         Tmp != BitsToClear)
1034       return false;
1035     return true;
1036 
1037   case Instruction::PHI: {
1038     // We can change a phi if we can change all operands.  Note that we never
1039     // get into trouble with cyclic PHIs here because we only consider
1040     // instructions with a single use.
1041     PHINode *PN = cast<PHINode>(I);
1042     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1043       return false;
1044     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1045       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1046           // TODO: If important, we could handle the case when the BitsToClear
1047           // are known zero in the disagreeing input.
1048           Tmp != BitsToClear)
1049         return false;
1050     return true;
1051   }
1052   default:
1053     // TODO: Can handle more cases here.
1054     return false;
1055   }
1056 }
1057 
1058 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1059   // If this zero extend is only used by a truncate, let the truncate be
1060   // eliminated before we try to optimize this zext.
1061   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1062     return nullptr;
1063 
1064   // If one of the common conversion will work, do it.
1065   if (Instruction *Result = commonCastTransforms(CI))
1066     return Result;
1067 
1068   Value *Src = CI.getOperand(0);
1069   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1070 
1071   // Attempt to extend the entire input expression tree to the destination
1072   // type.   Only do this if the dest type is a simple type, don't convert the
1073   // expression tree to something weird like i93 unless the source is also
1074   // strange.
1075   unsigned BitsToClear;
1076   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1077       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1078     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1079            "Can't clear more bits than in SrcTy");
1080 
1081     // Okay, we can transform this!  Insert the new expression now.
1082     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1083           " to avoid zero extend: " << CI << '\n');
1084     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1085     assert(Res->getType() == DestTy);
1086 
1087     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1088     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1089 
1090     // If the high bits are already filled with zeros, just replace this
1091     // cast with the result.
1092     if (MaskedValueIsZero(Res,
1093                           APInt::getHighBitsSet(DestBitSize,
1094                                                 DestBitSize-SrcBitsKept),
1095                              0, &CI))
1096       return replaceInstUsesWith(CI, Res);
1097 
1098     // We need to emit an AND to clear the high bits.
1099     Constant *C = ConstantInt::get(Res->getType(),
1100                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1101     return BinaryOperator::CreateAnd(Res, C);
1102   }
1103 
1104   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1105   // types and if the sizes are just right we can convert this into a logical
1106   // 'and' which will be much cheaper than the pair of casts.
1107   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1108     // TODO: Subsume this into EvaluateInDifferentType.
1109 
1110     // Get the sizes of the types involved.  We know that the intermediate type
1111     // will be smaller than A or C, but don't know the relation between A and C.
1112     Value *A = CSrc->getOperand(0);
1113     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1114     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1115     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1116     // If we're actually extending zero bits, then if
1117     // SrcSize <  DstSize: zext(a & mask)
1118     // SrcSize == DstSize: a & mask
1119     // SrcSize  > DstSize: trunc(a) & mask
1120     if (SrcSize < DstSize) {
1121       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1122       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1123       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1124       return new ZExtInst(And, CI.getType());
1125     }
1126 
1127     if (SrcSize == DstSize) {
1128       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1129       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1130                                                            AndValue));
1131     }
1132     if (SrcSize > DstSize) {
1133       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1134       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1135       return BinaryOperator::CreateAnd(Trunc,
1136                                        ConstantInt::get(Trunc->getType(),
1137                                                         AndValue));
1138     }
1139   }
1140 
1141   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1142     return transformZExtICmp(ICI, CI);
1143 
1144   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1145   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1146     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1147     // of the (zext icmp) can be eliminated. If so, immediately perform the
1148     // according elimination.
1149     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1150     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1151     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1152         (transformZExtICmp(LHS, CI, false) ||
1153          transformZExtICmp(RHS, CI, false))) {
1154       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1155       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1156       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1157       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1158 
1159       // Perform the elimination.
1160       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1161         transformZExtICmp(LHS, *LZExt);
1162       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1163         transformZExtICmp(RHS, *RZExt);
1164 
1165       return Or;
1166     }
1167   }
1168 
1169   // zext(trunc(X) & C) -> (X & zext(C)).
1170   Constant *C;
1171   Value *X;
1172   if (SrcI &&
1173       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1174       X->getType() == CI.getType())
1175     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1176 
1177   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1178   Value *And;
1179   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1180       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1181       X->getType() == CI.getType()) {
1182     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1183     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1184   }
1185 
1186   return nullptr;
1187 }
1188 
1189 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1190 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1191   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1192   ICmpInst::Predicate Pred = ICI->getPredicate();
1193 
1194   // Don't bother if Op1 isn't of vector or integer type.
1195   if (!Op1->getType()->isIntOrIntVectorTy())
1196     return nullptr;
1197 
1198   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1199     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1200     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1201     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
1202         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
1203 
1204       Value *Sh = ConstantInt::get(Op0->getType(),
1205                                    Op0->getType()->getScalarSizeInBits()-1);
1206       Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1207       if (In->getType() != CI.getType())
1208         In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1209 
1210       if (Pred == ICmpInst::ICMP_SGT)
1211         In = Builder.CreateNot(In, In->getName() + ".not");
1212       return replaceInstUsesWith(CI, In);
1213     }
1214   }
1215 
1216   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1217     // If we know that only one bit of the LHS of the icmp can be set and we
1218     // have an equality comparison with zero or a power of 2, we can transform
1219     // the icmp and sext into bitwise/integer operations.
1220     if (ICI->hasOneUse() &&
1221         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1222       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1223 
1224       APInt KnownZeroMask(~Known.Zero);
1225       if (KnownZeroMask.isPowerOf2()) {
1226         Value *In = ICI->getOperand(0);
1227 
1228         // If the icmp tests for a known zero bit we can constant fold it.
1229         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1230           Value *V = Pred == ICmpInst::ICMP_NE ?
1231                        ConstantInt::getAllOnesValue(CI.getType()) :
1232                        ConstantInt::getNullValue(CI.getType());
1233           return replaceInstUsesWith(CI, V);
1234         }
1235 
1236         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1237           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1238           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1239           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1240           // Perform a right shift to place the desired bit in the LSB.
1241           if (ShiftAmt)
1242             In = Builder.CreateLShr(In,
1243                                     ConstantInt::get(In->getType(), ShiftAmt));
1244 
1245           // At this point "In" is either 1 or 0. Subtract 1 to turn
1246           // {1, 0} -> {0, -1}.
1247           In = Builder.CreateAdd(In,
1248                                  ConstantInt::getAllOnesValue(In->getType()),
1249                                  "sext");
1250         } else {
1251           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1252           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1253           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1254           // Perform a left shift to place the desired bit in the MSB.
1255           if (ShiftAmt)
1256             In = Builder.CreateShl(In,
1257                                    ConstantInt::get(In->getType(), ShiftAmt));
1258 
1259           // Distribute the bit over the whole bit width.
1260           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1261                                   KnownZeroMask.getBitWidth() - 1), "sext");
1262         }
1263 
1264         if (CI.getType() == In->getType())
1265           return replaceInstUsesWith(CI, In);
1266         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1267       }
1268     }
1269   }
1270 
1271   return nullptr;
1272 }
1273 
1274 /// Return true if we can take the specified value and return it as type Ty
1275 /// without inserting any new casts and without changing the value of the common
1276 /// low bits.  This is used by code that tries to promote integer operations to
1277 /// a wider types will allow us to eliminate the extension.
1278 ///
1279 /// This function works on both vectors and scalars.
1280 ///
1281 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1282   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1283          "Can't sign extend type to a smaller type");
1284   if (canAlwaysEvaluateInType(V, Ty))
1285     return true;
1286   if (canNotEvaluateInType(V, Ty))
1287     return false;
1288 
1289   auto *I = cast<Instruction>(V);
1290   switch (I->getOpcode()) {
1291   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1292   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1293   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1294     return true;
1295   case Instruction::And:
1296   case Instruction::Or:
1297   case Instruction::Xor:
1298   case Instruction::Add:
1299   case Instruction::Sub:
1300   case Instruction::Mul:
1301     // These operators can all arbitrarily be extended if their inputs can.
1302     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1303            canEvaluateSExtd(I->getOperand(1), Ty);
1304 
1305   //case Instruction::Shl:   TODO
1306   //case Instruction::LShr:  TODO
1307 
1308   case Instruction::Select:
1309     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1310            canEvaluateSExtd(I->getOperand(2), Ty);
1311 
1312   case Instruction::PHI: {
1313     // We can change a phi if we can change all operands.  Note that we never
1314     // get into trouble with cyclic PHIs here because we only consider
1315     // instructions with a single use.
1316     PHINode *PN = cast<PHINode>(I);
1317     for (Value *IncValue : PN->incoming_values())
1318       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1319     return true;
1320   }
1321   default:
1322     // TODO: Can handle more cases here.
1323     break;
1324   }
1325 
1326   return false;
1327 }
1328 
1329 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1330   // If this sign extend is only used by a truncate, let the truncate be
1331   // eliminated before we try to optimize this sext.
1332   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1333     return nullptr;
1334 
1335   if (Instruction *I = commonCastTransforms(CI))
1336     return I;
1337 
1338   Value *Src = CI.getOperand(0);
1339   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1340 
1341   // If we know that the value being extended is positive, we can use a zext
1342   // instead.
1343   KnownBits Known = computeKnownBits(Src, 0, &CI);
1344   if (Known.isNonNegative()) {
1345     Value *ZExt = Builder.CreateZExt(Src, DestTy);
1346     return replaceInstUsesWith(CI, ZExt);
1347   }
1348 
1349   // Attempt to extend the entire input expression tree to the destination
1350   // type.   Only do this if the dest type is a simple type, don't convert the
1351   // expression tree to something weird like i93 unless the source is also
1352   // strange.
1353   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1354       canEvaluateSExtd(Src, DestTy)) {
1355     // Okay, we can transform this!  Insert the new expression now.
1356     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1357           " to avoid sign extend: " << CI << '\n');
1358     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1359     assert(Res->getType() == DestTy);
1360 
1361     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1362     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1363 
1364     // If the high bits are already filled with sign bit, just replace this
1365     // cast with the result.
1366     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1367       return replaceInstUsesWith(CI, Res);
1368 
1369     // We need to emit a shl + ashr to do the sign extend.
1370     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1371     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1372                                       ShAmt);
1373   }
1374 
1375   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1376   // into shifts.
1377   Value *X;
1378   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1379     // sext(trunc(X)) --> ashr(shl(X, C), C)
1380     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1381     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1382     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1383     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1384   }
1385 
1386   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1387     return transformSExtICmp(ICI, CI);
1388 
1389   // If the input is a shl/ashr pair of a same constant, then this is a sign
1390   // extension from a smaller value.  If we could trust arbitrary bitwidth
1391   // integers, we could turn this into a truncate to the smaller bit and then
1392   // use a sext for the whole extension.  Since we don't, look deeper and check
1393   // for a truncate.  If the source and dest are the same type, eliminate the
1394   // trunc and extend and just do shifts.  For example, turn:
1395   //   %a = trunc i32 %i to i8
1396   //   %b = shl i8 %a, 6
1397   //   %c = ashr i8 %b, 6
1398   //   %d = sext i8 %c to i32
1399   // into:
1400   //   %a = shl i32 %i, 30
1401   //   %d = ashr i32 %a, 30
1402   Value *A = nullptr;
1403   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1404   ConstantInt *BA = nullptr, *CA = nullptr;
1405   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1406                         m_ConstantInt(CA))) &&
1407       BA == CA && A->getType() == CI.getType()) {
1408     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1409     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1410     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1411     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1412     A = Builder.CreateShl(A, ShAmtV, CI.getName());
1413     return BinaryOperator::CreateAShr(A, ShAmtV);
1414   }
1415 
1416   return nullptr;
1417 }
1418 
1419 
1420 /// Return a Constant* for the specified floating-point constant if it fits
1421 /// in the specified FP type without changing its value.
1422 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1423   bool losesInfo;
1424   APFloat F = CFP->getValueAPF();
1425   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1426   if (!losesInfo)
1427     return ConstantFP::get(CFP->getContext(), F);
1428   return nullptr;
1429 }
1430 
1431 /// Look through floating-point extensions until we get the source value.
1432 static Value *lookThroughFPExtensions(Value *V) {
1433   while (auto *FPExt = dyn_cast<FPExtInst>(V))
1434     V = FPExt->getOperand(0);
1435 
1436   // If this value is a constant, return the constant in the smallest FP type
1437   // that can accurately represent it.  This allows us to turn
1438   // (float)((double)X+2.0) into x+2.0f.
1439   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
1440     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1441       return V;  // No constant folding of this.
1442     // See if the value can be truncated to half and then reextended.
1443     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
1444       return V;
1445     // See if the value can be truncated to float and then reextended.
1446     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
1447       return V;
1448     if (CFP->getType()->isDoubleTy())
1449       return V;  // Won't shrink.
1450     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
1451       return V;
1452     // Don't try to shrink to various long double types.
1453   }
1454 
1455   return V;
1456 }
1457 
1458 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1459   if (Instruction *I = commonCastTransforms(CI))
1460     return I;
1461   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1462   // simplify this expression to avoid one or more of the trunc/extend
1463   // operations if we can do so without changing the numerical results.
1464   //
1465   // The exact manner in which the widths of the operands interact to limit
1466   // what we can and cannot do safely varies from operation to operation, and
1467   // is explained below in the various case statements.
1468   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1469   if (OpI && OpI->hasOneUse()) {
1470     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1471     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1472     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1473     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1474     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1475     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1476     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1477     switch (OpI->getOpcode()) {
1478       default: break;
1479       case Instruction::FAdd:
1480       case Instruction::FSub:
1481         // For addition and subtraction, the infinitely precise result can
1482         // essentially be arbitrarily wide; proving that double rounding
1483         // will not occur because the result of OpI is exact (as we will for
1484         // FMul, for example) is hopeless.  However, we *can* nonetheless
1485         // frequently know that double rounding cannot occur (or that it is
1486         // innocuous) by taking advantage of the specific structure of
1487         // infinitely-precise results that admit double rounding.
1488         //
1489         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1490         // to represent both sources, we can guarantee that the double
1491         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1492         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1493         // for proof of this fact).
1494         //
1495         // Note: Figueroa does not consider the case where DstFormat !=
1496         // SrcFormat.  It's possible (likely even!) that this analysis
1497         // could be tightened for those cases, but they are rare (the main
1498         // case of interest here is (float)((double)float + float)).
1499         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1500           if (LHSOrig->getType() != CI.getType())
1501             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1502           if (RHSOrig->getType() != CI.getType())
1503             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1504           Instruction *RI =
1505             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1506           RI->copyFastMathFlags(OpI);
1507           return RI;
1508         }
1509         break;
1510       case Instruction::FMul:
1511         // For multiplication, the infinitely precise result has at most
1512         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1513         // that such a value can be exactly represented, then no double
1514         // rounding can possibly occur; we can safely perform the operation
1515         // in the destination format if it can represent both sources.
1516         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1517           if (LHSOrig->getType() != CI.getType())
1518             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1519           if (RHSOrig->getType() != CI.getType())
1520             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1521           Instruction *RI =
1522             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1523           RI->copyFastMathFlags(OpI);
1524           return RI;
1525         }
1526         break;
1527       case Instruction::FDiv:
1528         // For division, we use again use the bound from Figueroa's
1529         // dissertation.  I am entirely certain that this bound can be
1530         // tightened in the unbalanced operand case by an analysis based on
1531         // the diophantine rational approximation bound, but the well-known
1532         // condition used here is a good conservative first pass.
1533         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1534         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1535           if (LHSOrig->getType() != CI.getType())
1536             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
1537           if (RHSOrig->getType() != CI.getType())
1538             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
1539           Instruction *RI =
1540             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1541           RI->copyFastMathFlags(OpI);
1542           return RI;
1543         }
1544         break;
1545       case Instruction::FRem:
1546         // Remainder is straightforward.  Remainder is always exact, so the
1547         // type of OpI doesn't enter into things at all.  We simply evaluate
1548         // in whichever source type is larger, then convert to the
1549         // destination type.
1550         if (SrcWidth == OpWidth)
1551           break;
1552         if (LHSWidth < SrcWidth)
1553           LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
1554         else if (RHSWidth <= SrcWidth)
1555           RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
1556         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1557           Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
1558           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1559             RI->copyFastMathFlags(OpI);
1560           return CastInst::CreateFPCast(ExactResult, CI.getType());
1561         }
1562     }
1563 
1564     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1565     if (BinaryOperator::isFNeg(OpI)) {
1566       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
1567                                                 CI.getType());
1568       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1569       RI->copyFastMathFlags(OpI);
1570       return RI;
1571     }
1572   }
1573 
1574   // (fptrunc (select cond, R1, Cst)) -->
1575   // (select cond, (fptrunc R1), (fptrunc Cst))
1576   //
1577   //  - but only if this isn't part of a min/max operation, else we'll
1578   // ruin min/max canonical form which is to have the select and
1579   // compare's operands be of the same type with no casts to look through.
1580   Value *LHS, *RHS;
1581   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1582   if (SI &&
1583       (isa<ConstantFP>(SI->getOperand(1)) ||
1584        isa<ConstantFP>(SI->getOperand(2))) &&
1585       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1586     Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
1587     Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
1588     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1589   }
1590 
1591   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1592   if (II) {
1593     switch (II->getIntrinsicID()) {
1594     default: break;
1595     case Intrinsic::fabs:
1596     case Intrinsic::ceil:
1597     case Intrinsic::floor:
1598     case Intrinsic::rint:
1599     case Intrinsic::round:
1600     case Intrinsic::nearbyint:
1601     case Intrinsic::trunc: {
1602       Value *Src = II->getArgOperand(0);
1603       if (!Src->hasOneUse())
1604         break;
1605 
1606       // Except for fabs, this transformation requires the input of the unary FP
1607       // operation to be itself an fpext from the type to which we're
1608       // truncating.
1609       if (II->getIntrinsicID() != Intrinsic::fabs) {
1610         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1611         if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
1612           break;
1613       }
1614 
1615       // Do unary FP operation on smaller type.
1616       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1617       Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
1618       Type *IntrinsicType[] = { CI.getType() };
1619       Function *Overload = Intrinsic::getDeclaration(
1620         CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1621 
1622       SmallVector<OperandBundleDef, 1> OpBundles;
1623       II->getOperandBundlesAsDefs(OpBundles);
1624 
1625       Value *Args[] = { InnerTrunc };
1626       CallInst *NewCI =  CallInst::Create(Overload, Args,
1627                                           OpBundles, II->getName());
1628       NewCI->copyFastMathFlags(II);
1629       return NewCI;
1630     }
1631     }
1632   }
1633 
1634   if (Instruction *I = shrinkInsertElt(CI, Builder))
1635     return I;
1636 
1637   return nullptr;
1638 }
1639 
1640 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1641   return commonCastTransforms(CI);
1642 }
1643 
1644 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1645 // This is safe if the intermediate type has enough bits in its mantissa to
1646 // accurately represent all values of X.  For example, this won't work with
1647 // i64 -> float -> i64.
1648 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1649   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1650     return nullptr;
1651   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1652 
1653   Value *SrcI = OpI->getOperand(0);
1654   Type *FITy = FI.getType();
1655   Type *OpITy = OpI->getType();
1656   Type *SrcTy = SrcI->getType();
1657   bool IsInputSigned = isa<SIToFPInst>(OpI);
1658   bool IsOutputSigned = isa<FPToSIInst>(FI);
1659 
1660   // We can safely assume the conversion won't overflow the output range,
1661   // because (for example) (uint8_t)18293.f is undefined behavior.
1662 
1663   // Since we can assume the conversion won't overflow, our decision as to
1664   // whether the input will fit in the float should depend on the minimum
1665   // of the input range and output range.
1666 
1667   // This means this is also safe for a signed input and unsigned output, since
1668   // a negative input would lead to undefined behavior.
1669   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1670   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1671   int ActualSize = std::min(InputSize, OutputSize);
1672 
1673   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1674     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1675       if (IsInputSigned && IsOutputSigned)
1676         return new SExtInst(SrcI, FITy);
1677       return new ZExtInst(SrcI, FITy);
1678     }
1679     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1680       return new TruncInst(SrcI, FITy);
1681     if (SrcTy == FITy)
1682       return replaceInstUsesWith(FI, SrcI);
1683     return new BitCastInst(SrcI, FITy);
1684   }
1685   return nullptr;
1686 }
1687 
1688 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1689   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1690   if (!OpI)
1691     return commonCastTransforms(FI);
1692 
1693   if (Instruction *I = FoldItoFPtoI(FI))
1694     return I;
1695 
1696   return commonCastTransforms(FI);
1697 }
1698 
1699 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1700   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1701   if (!OpI)
1702     return commonCastTransforms(FI);
1703 
1704   if (Instruction *I = FoldItoFPtoI(FI))
1705     return I;
1706 
1707   return commonCastTransforms(FI);
1708 }
1709 
1710 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1711   return commonCastTransforms(CI);
1712 }
1713 
1714 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1715   return commonCastTransforms(CI);
1716 }
1717 
1718 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1719   // If the source integer type is not the intptr_t type for this target, do a
1720   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1721   // cast to be exposed to other transforms.
1722   unsigned AS = CI.getAddressSpace();
1723   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1724       DL.getPointerSizeInBits(AS)) {
1725     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1726     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1727       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1728 
1729     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1730     return new IntToPtrInst(P, CI.getType());
1731   }
1732 
1733   if (Instruction *I = commonCastTransforms(CI))
1734     return I;
1735 
1736   return nullptr;
1737 }
1738 
1739 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1740 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1741   Value *Src = CI.getOperand(0);
1742 
1743   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1744     // If casting the result of a getelementptr instruction with no offset, turn
1745     // this into a cast of the original pointer!
1746     if (GEP->hasAllZeroIndices() &&
1747         // If CI is an addrspacecast and GEP changes the poiner type, merging
1748         // GEP into CI would undo canonicalizing addrspacecast with different
1749         // pointer types, causing infinite loops.
1750         (!isa<AddrSpaceCastInst>(CI) ||
1751          GEP->getType() == GEP->getPointerOperandType())) {
1752       // Changing the cast operand is usually not a good idea but it is safe
1753       // here because the pointer operand is being replaced with another
1754       // pointer operand so the opcode doesn't need to change.
1755       Worklist.Add(GEP);
1756       CI.setOperand(0, GEP->getOperand(0));
1757       return &CI;
1758     }
1759   }
1760 
1761   return commonCastTransforms(CI);
1762 }
1763 
1764 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1765   // If the destination integer type is not the intptr_t type for this target,
1766   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1767   // to be exposed to other transforms.
1768 
1769   Type *Ty = CI.getType();
1770   unsigned AS = CI.getPointerAddressSpace();
1771 
1772   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1773     return commonPointerCastTransforms(CI);
1774 
1775   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1776   if (Ty->isVectorTy()) // Handle vectors of pointers.
1777     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1778 
1779   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1780   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1781 }
1782 
1783 /// This input value (which is known to have vector type) is being zero extended
1784 /// or truncated to the specified vector type.
1785 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1786 ///
1787 /// The source and destination vector types may have different element types.
1788 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1789                                          InstCombiner &IC) {
1790   // We can only do this optimization if the output is a multiple of the input
1791   // element size, or the input is a multiple of the output element size.
1792   // Convert the input type to have the same element type as the output.
1793   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1794 
1795   if (SrcTy->getElementType() != DestTy->getElementType()) {
1796     // The input types don't need to be identical, but for now they must be the
1797     // same size.  There is no specific reason we couldn't handle things like
1798     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1799     // there yet.
1800     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1801         DestTy->getElementType()->getPrimitiveSizeInBits())
1802       return nullptr;
1803 
1804     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1805     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1806   }
1807 
1808   // Now that the element types match, get the shuffle mask and RHS of the
1809   // shuffle to use, which depends on whether we're increasing or decreasing the
1810   // size of the input.
1811   SmallVector<uint32_t, 16> ShuffleMask;
1812   Value *V2;
1813 
1814   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1815     // If we're shrinking the number of elements, just shuffle in the low
1816     // elements from the input and use undef as the second shuffle input.
1817     V2 = UndefValue::get(SrcTy);
1818     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1819       ShuffleMask.push_back(i);
1820 
1821   } else {
1822     // If we're increasing the number of elements, shuffle in all of the
1823     // elements from InVal and fill the rest of the result elements with zeros
1824     // from a constant zero.
1825     V2 = Constant::getNullValue(SrcTy);
1826     unsigned SrcElts = SrcTy->getNumElements();
1827     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1828       ShuffleMask.push_back(i);
1829 
1830     // The excess elements reference the first element of the zero input.
1831     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1832       ShuffleMask.push_back(SrcElts);
1833   }
1834 
1835   return new ShuffleVectorInst(InVal, V2,
1836                                ConstantDataVector::get(V2->getContext(),
1837                                                        ShuffleMask));
1838 }
1839 
1840 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1841   return Value % Ty->getPrimitiveSizeInBits() == 0;
1842 }
1843 
1844 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1845   return Value / Ty->getPrimitiveSizeInBits();
1846 }
1847 
1848 /// V is a value which is inserted into a vector of VecEltTy.
1849 /// Look through the value to see if we can decompose it into
1850 /// insertions into the vector.  See the example in the comment for
1851 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1852 /// The type of V is always a non-zero multiple of VecEltTy's size.
1853 /// Shift is the number of bits between the lsb of V and the lsb of
1854 /// the vector.
1855 ///
1856 /// This returns false if the pattern can't be matched or true if it can,
1857 /// filling in Elements with the elements found here.
1858 static bool collectInsertionElements(Value *V, unsigned Shift,
1859                                      SmallVectorImpl<Value *> &Elements,
1860                                      Type *VecEltTy, bool isBigEndian) {
1861   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1862          "Shift should be a multiple of the element type size");
1863 
1864   // Undef values never contribute useful bits to the result.
1865   if (isa<UndefValue>(V)) return true;
1866 
1867   // If we got down to a value of the right type, we win, try inserting into the
1868   // right element.
1869   if (V->getType() == VecEltTy) {
1870     // Inserting null doesn't actually insert any elements.
1871     if (Constant *C = dyn_cast<Constant>(V))
1872       if (C->isNullValue())
1873         return true;
1874 
1875     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1876     if (isBigEndian)
1877       ElementIndex = Elements.size() - ElementIndex - 1;
1878 
1879     // Fail if multiple elements are inserted into this slot.
1880     if (Elements[ElementIndex])
1881       return false;
1882 
1883     Elements[ElementIndex] = V;
1884     return true;
1885   }
1886 
1887   if (Constant *C = dyn_cast<Constant>(V)) {
1888     // Figure out the # elements this provides, and bitcast it or slice it up
1889     // as required.
1890     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1891                                         VecEltTy);
1892     // If the constant is the size of a vector element, we just need to bitcast
1893     // it to the right type so it gets properly inserted.
1894     if (NumElts == 1)
1895       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1896                                       Shift, Elements, VecEltTy, isBigEndian);
1897 
1898     // Okay, this is a constant that covers multiple elements.  Slice it up into
1899     // pieces and insert each element-sized piece into the vector.
1900     if (!isa<IntegerType>(C->getType()))
1901       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1902                                        C->getType()->getPrimitiveSizeInBits()));
1903     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1904     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1905 
1906     for (unsigned i = 0; i != NumElts; ++i) {
1907       unsigned ShiftI = Shift+i*ElementSize;
1908       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1909                                                                   ShiftI));
1910       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1911       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1912                                     isBigEndian))
1913         return false;
1914     }
1915     return true;
1916   }
1917 
1918   if (!V->hasOneUse()) return false;
1919 
1920   Instruction *I = dyn_cast<Instruction>(V);
1921   if (!I) return false;
1922   switch (I->getOpcode()) {
1923   default: return false; // Unhandled case.
1924   case Instruction::BitCast:
1925     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1926                                     isBigEndian);
1927   case Instruction::ZExt:
1928     if (!isMultipleOfTypeSize(
1929                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1930                               VecEltTy))
1931       return false;
1932     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1933                                     isBigEndian);
1934   case Instruction::Or:
1935     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1936                                     isBigEndian) &&
1937            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1938                                     isBigEndian);
1939   case Instruction::Shl: {
1940     // Must be shifting by a constant that is a multiple of the element size.
1941     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1942     if (!CI) return false;
1943     Shift += CI->getZExtValue();
1944     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1945     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1946                                     isBigEndian);
1947   }
1948 
1949   }
1950 }
1951 
1952 
1953 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1954 /// assemble the elements of the vector manually.
1955 /// Try to rip the code out and replace it with insertelements.  This is to
1956 /// optimize code like this:
1957 ///
1958 ///    %tmp37 = bitcast float %inc to i32
1959 ///    %tmp38 = zext i32 %tmp37 to i64
1960 ///    %tmp31 = bitcast float %inc5 to i32
1961 ///    %tmp32 = zext i32 %tmp31 to i64
1962 ///    %tmp33 = shl i64 %tmp32, 32
1963 ///    %ins35 = or i64 %tmp33, %tmp38
1964 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1965 ///
1966 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1967 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1968                                                 InstCombiner &IC) {
1969   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1970   Value *IntInput = CI.getOperand(0);
1971 
1972   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1973   if (!collectInsertionElements(IntInput, 0, Elements,
1974                                 DestVecTy->getElementType(),
1975                                 IC.getDataLayout().isBigEndian()))
1976     return nullptr;
1977 
1978   // If we succeeded, we know that all of the element are specified by Elements
1979   // or are zero if Elements has a null entry.  Recast this as a set of
1980   // insertions.
1981   Value *Result = Constant::getNullValue(CI.getType());
1982   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1983     if (!Elements[i]) continue;  // Unset element.
1984 
1985     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
1986                                             IC.Builder.getInt32(i));
1987   }
1988 
1989   return Result;
1990 }
1991 
1992 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1993 /// vector followed by extract element. The backend tends to handle bitcasts of
1994 /// vectors better than bitcasts of scalars because vector registers are
1995 /// usually not type-specific like scalar integer or scalar floating-point.
1996 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1997                                               InstCombiner &IC) {
1998   // TODO: Create and use a pattern matcher for ExtractElementInst.
1999   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2000   if (!ExtElt || !ExtElt->hasOneUse())
2001     return nullptr;
2002 
2003   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2004   // type to extract from.
2005   Type *DestType = BitCast.getType();
2006   if (!VectorType::isValidElementType(DestType))
2007     return nullptr;
2008 
2009   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2010   auto *NewVecType = VectorType::get(DestType, NumElts);
2011   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2012                                          NewVecType, "bc");
2013   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2014 }
2015 
2016 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2017 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2018                                             InstCombiner::BuilderTy &Builder) {
2019   Type *DestTy = BitCast.getType();
2020   BinaryOperator *BO;
2021   if (!DestTy->isIntOrIntVectorTy() ||
2022       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2023       !BO->isBitwiseLogicOp())
2024     return nullptr;
2025 
2026   // FIXME: This transform is restricted to vector types to avoid backend
2027   // problems caused by creating potentially illegal operations. If a fix-up is
2028   // added to handle that situation, we can remove this check.
2029   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2030     return nullptr;
2031 
2032   Value *X;
2033   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2034       X->getType() == DestTy && !isa<Constant>(X)) {
2035     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2036     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2037     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2038   }
2039 
2040   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2041       X->getType() == DestTy && !isa<Constant>(X)) {
2042     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2043     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2044     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2045   }
2046 
2047   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2048   // constant. This eases recognition of special constants for later ops.
2049   // Example:
2050   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2051   Constant *C;
2052   if (match(BO->getOperand(1), m_Constant(C))) {
2053     // bitcast (logic X, C) --> logic (bitcast X, C')
2054     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2055     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2056     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2057   }
2058 
2059   return nullptr;
2060 }
2061 
2062 /// Change the type of a select if we can eliminate a bitcast.
2063 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2064                                       InstCombiner::BuilderTy &Builder) {
2065   Value *Cond, *TVal, *FVal;
2066   if (!match(BitCast.getOperand(0),
2067              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2068     return nullptr;
2069 
2070   // A vector select must maintain the same number of elements in its operands.
2071   Type *CondTy = Cond->getType();
2072   Type *DestTy = BitCast.getType();
2073   if (CondTy->isVectorTy()) {
2074     if (!DestTy->isVectorTy())
2075       return nullptr;
2076     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2077       return nullptr;
2078   }
2079 
2080   // FIXME: This transform is restricted from changing the select between
2081   // scalars and vectors to avoid backend problems caused by creating
2082   // potentially illegal operations. If a fix-up is added to handle that
2083   // situation, we can remove this check.
2084   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2085     return nullptr;
2086 
2087   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2088   Value *X;
2089   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2090       !isa<Constant>(X)) {
2091     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2092     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2093     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2094   }
2095 
2096   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2097       !isa<Constant>(X)) {
2098     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2099     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2100     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2101   }
2102 
2103   return nullptr;
2104 }
2105 
2106 /// Check if all users of CI are StoreInsts.
2107 static bool hasStoreUsersOnly(CastInst &CI) {
2108   for (User *U : CI.users()) {
2109     if (!isa<StoreInst>(U))
2110       return false;
2111   }
2112   return true;
2113 }
2114 
2115 /// This function handles following case
2116 ///
2117 ///     A  ->  B    cast
2118 ///     PHI
2119 ///     B  ->  A    cast
2120 ///
2121 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2122 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2123 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2124   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2125   if (hasStoreUsersOnly(CI))
2126     return nullptr;
2127 
2128   Value *Src = CI.getOperand(0);
2129   Type *SrcTy = Src->getType();         // Type B
2130   Type *DestTy = CI.getType();          // Type A
2131 
2132   SmallVector<PHINode *, 4> PhiWorklist;
2133   SmallSetVector<PHINode *, 4> OldPhiNodes;
2134 
2135   // Find all of the A->B casts and PHI nodes.
2136   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2137   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2138   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2139   PhiWorklist.push_back(PN);
2140   OldPhiNodes.insert(PN);
2141   while (!PhiWorklist.empty()) {
2142     auto *OldPN = PhiWorklist.pop_back_val();
2143     for (Value *IncValue : OldPN->incoming_values()) {
2144       if (isa<Constant>(IncValue))
2145         continue;
2146 
2147       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2148         // If there is a sequence of one or more load instructions, each loaded
2149         // value is used as address of later load instruction, bitcast is
2150         // necessary to change the value type, don't optimize it. For
2151         // simplicity we give up if the load address comes from another load.
2152         Value *Addr = LI->getOperand(0);
2153         if (Addr == &CI || isa<LoadInst>(Addr))
2154           return nullptr;
2155         if (LI->hasOneUse() && LI->isSimple())
2156           continue;
2157         // If a LoadInst has more than one use, changing the type of loaded
2158         // value may create another bitcast.
2159         return nullptr;
2160       }
2161 
2162       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2163         if (OldPhiNodes.insert(PNode))
2164           PhiWorklist.push_back(PNode);
2165         continue;
2166       }
2167 
2168       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2169       // We can't handle other instructions.
2170       if (!BCI)
2171         return nullptr;
2172 
2173       // Verify it's a A->B cast.
2174       Type *TyA = BCI->getOperand(0)->getType();
2175       Type *TyB = BCI->getType();
2176       if (TyA != DestTy || TyB != SrcTy)
2177         return nullptr;
2178     }
2179   }
2180 
2181   // For each old PHI node, create a corresponding new PHI node with a type A.
2182   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2183   for (auto *OldPN : OldPhiNodes) {
2184     Builder.SetInsertPoint(OldPN);
2185     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2186     NewPNodes[OldPN] = NewPN;
2187   }
2188 
2189   // Fill in the operands of new PHI nodes.
2190   for (auto *OldPN : OldPhiNodes) {
2191     PHINode *NewPN = NewPNodes[OldPN];
2192     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2193       Value *V = OldPN->getOperand(j);
2194       Value *NewV = nullptr;
2195       if (auto *C = dyn_cast<Constant>(V)) {
2196         NewV = ConstantExpr::getBitCast(C, DestTy);
2197       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2198         Builder.SetInsertPoint(LI->getNextNode());
2199         NewV = Builder.CreateBitCast(LI, DestTy);
2200         Worklist.Add(LI);
2201       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2202         NewV = BCI->getOperand(0);
2203       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2204         NewV = NewPNodes[PrevPN];
2205       }
2206       assert(NewV);
2207       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2208     }
2209   }
2210 
2211   // If there is a store with type B, change it to type A.
2212   for (User *U : PN->users()) {
2213     auto *SI = dyn_cast<StoreInst>(U);
2214     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2215       Builder.SetInsertPoint(SI);
2216       auto *NewBC =
2217           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2218       SI->setOperand(0, NewBC);
2219       Worklist.Add(SI);
2220       assert(hasStoreUsersOnly(*NewBC));
2221     }
2222   }
2223 
2224   return replaceInstUsesWith(CI, NewPNodes[PN]);
2225 }
2226 
2227 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2228   // If the operands are integer typed then apply the integer transforms,
2229   // otherwise just apply the common ones.
2230   Value *Src = CI.getOperand(0);
2231   Type *SrcTy = Src->getType();
2232   Type *DestTy = CI.getType();
2233 
2234   // Get rid of casts from one type to the same type. These are useless and can
2235   // be replaced by the operand.
2236   if (DestTy == Src->getType())
2237     return replaceInstUsesWith(CI, Src);
2238 
2239   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2240     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2241     Type *DstElTy = DstPTy->getElementType();
2242     Type *SrcElTy = SrcPTy->getElementType();
2243 
2244     // If we are casting a alloca to a pointer to a type of the same
2245     // size, rewrite the allocation instruction to allocate the "right" type.
2246     // There is no need to modify malloc calls because it is their bitcast that
2247     // needs to be cleaned up.
2248     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2249       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2250         return V;
2251 
2252     // When the type pointed to is not sized the cast cannot be
2253     // turned into a gep.
2254     Type *PointeeType =
2255         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2256     if (!PointeeType->isSized())
2257       return nullptr;
2258 
2259     // If the source and destination are pointers, and this cast is equivalent
2260     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2261     // This can enhance SROA and other transforms that want type-safe pointers.
2262     unsigned NumZeros = 0;
2263     while (SrcElTy != DstElTy &&
2264            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2265            SrcElTy->getNumContainedTypes() /* not "{}" */) {
2266       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2267       ++NumZeros;
2268     }
2269 
2270     // If we found a path from the src to dest, create the getelementptr now.
2271     if (SrcElTy == DstElTy) {
2272       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2273       return GetElementPtrInst::CreateInBounds(Src, Idxs);
2274     }
2275   }
2276 
2277   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2278     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2279       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2280       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2281                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2282       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2283     }
2284 
2285     if (isa<IntegerType>(SrcTy)) {
2286       // If this is a cast from an integer to vector, check to see if the input
2287       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2288       // the casts with a shuffle and (potentially) a bitcast.
2289       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2290         CastInst *SrcCast = cast<CastInst>(Src);
2291         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2292           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2293             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2294                                                cast<VectorType>(DestTy), *this))
2295               return I;
2296       }
2297 
2298       // If the input is an 'or' instruction, we may be doing shifts and ors to
2299       // assemble the elements of the vector manually.  Try to rip the code out
2300       // and replace it with insertelements.
2301       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2302         return replaceInstUsesWith(CI, V);
2303     }
2304   }
2305 
2306   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2307     if (SrcVTy->getNumElements() == 1) {
2308       // If our destination is not a vector, then make this a straight
2309       // scalar-scalar cast.
2310       if (!DestTy->isVectorTy()) {
2311         Value *Elem =
2312           Builder.CreateExtractElement(Src,
2313                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2314         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2315       }
2316 
2317       // Otherwise, see if our source is an insert. If so, then use the scalar
2318       // component directly.
2319       if (InsertElementInst *IEI =
2320             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2321         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2322                                 DestTy);
2323     }
2324   }
2325 
2326   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2327     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2328     // a bitcast to a vector with the same # elts.
2329     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2330         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2331         SVI->getType()->getNumElements() ==
2332         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2333       BitCastInst *Tmp;
2334       // If either of the operands is a cast from CI.getType(), then
2335       // evaluating the shuffle in the casted destination's type will allow
2336       // us to eliminate at least one cast.
2337       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2338            Tmp->getOperand(0)->getType() == DestTy) ||
2339           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2340            Tmp->getOperand(0)->getType() == DestTy)) {
2341         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2342         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2343         // Return a new shuffle vector.  Use the same element ID's, as we
2344         // know the vector types match #elts.
2345         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2346       }
2347     }
2348   }
2349 
2350   // Handle the A->B->A cast, and there is an intervening PHI node.
2351   if (PHINode *PN = dyn_cast<PHINode>(Src))
2352     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2353       return I;
2354 
2355   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2356     return I;
2357 
2358   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2359     return I;
2360 
2361   if (Instruction *I = foldBitCastSelect(CI, Builder))
2362     return I;
2363 
2364   if (SrcTy->isPointerTy())
2365     return commonPointerCastTransforms(CI);
2366   return commonCastTransforms(CI);
2367 }
2368 
2369 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2370   // If the destination pointer element type is not the same as the source's
2371   // first do a bitcast to the destination type, and then the addrspacecast.
2372   // This allows the cast to be exposed to other transforms.
2373   Value *Src = CI.getOperand(0);
2374   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2375   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2376 
2377   Type *DestElemTy = DestTy->getElementType();
2378   if (SrcTy->getElementType() != DestElemTy) {
2379     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2380     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2381       // Handle vectors of pointers.
2382       MidTy = VectorType::get(MidTy, VT->getNumElements());
2383     }
2384 
2385     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2386     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2387   }
2388 
2389   return commonPointerCastTransforms(CI);
2390 }
2391