1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS, *RHS; 189 if (I->getOperand(0) == I->getOperand(1)) { 190 // Don't create an unnecessary value if the operands are repeated. 191 LHS = RHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 192 } else { 193 LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 194 RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 195 } 196 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 197 break; 198 } 199 case Instruction::Trunc: 200 case Instruction::ZExt: 201 case Instruction::SExt: 202 // If the source type of the cast is the type we're trying for then we can 203 // just return the source. There's no need to insert it because it is not 204 // new. 205 if (I->getOperand(0)->getType() == Ty) 206 return I->getOperand(0); 207 208 // Otherwise, must be the same type of cast, so just reinsert a new one. 209 // This also handles the case of zext(trunc(x)) -> zext(x). 210 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 211 Opc == Instruction::SExt); 212 break; 213 case Instruction::Select: { 214 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 215 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 216 Res = SelectInst::Create(I->getOperand(0), True, False); 217 break; 218 } 219 case Instruction::PHI: { 220 PHINode *OPN = cast<PHINode>(I); 221 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 222 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 223 Value *V = 224 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 225 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 226 } 227 Res = NPN; 228 break; 229 } 230 default: 231 // TODO: Can handle more cases here. 232 llvm_unreachable("Unreachable!"); 233 } 234 235 Res->takeName(I); 236 return InsertNewInstWith(Res, *I); 237 } 238 239 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 240 const CastInst *CI2) { 241 Type *SrcTy = CI1->getSrcTy(); 242 Type *MidTy = CI1->getDestTy(); 243 Type *DstTy = CI2->getDestTy(); 244 245 Instruction::CastOps firstOp = CI1->getOpcode(); 246 Instruction::CastOps secondOp = CI2->getOpcode(); 247 Type *SrcIntPtrTy = 248 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 249 Type *MidIntPtrTy = 250 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 251 Type *DstIntPtrTy = 252 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 253 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 254 DstTy, SrcIntPtrTy, MidIntPtrTy, 255 DstIntPtrTy); 256 257 // We don't want to form an inttoptr or ptrtoint that converts to an integer 258 // type that differs from the pointer size. 259 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 260 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 261 Res = 0; 262 263 return Instruction::CastOps(Res); 264 } 265 266 /// @brief Implement the transforms common to all CastInst visitors. 267 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 268 Value *Src = CI.getOperand(0); 269 270 // Try to eliminate a cast of a cast. 271 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 272 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 273 // The first cast (CSrc) is eliminable so we need to fix up or replace 274 // the second cast (CI). CSrc will then have a good chance of being dead. 275 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 276 277 // If the eliminable cast has debug users, insert a debug value after the 278 // cast pointing to the new Value. 279 SmallVector<DbgInfoIntrinsic *, 1> CSrcDbgInsts; 280 findDbgUsers(CSrcDbgInsts, CSrc); 281 if (CSrcDbgInsts.size()) { 282 DIBuilder DIB(*CI.getModule()); 283 for (auto *DII : CSrcDbgInsts) 284 DIB.insertDbgValueIntrinsic( 285 Res, DII->getVariable(), DII->getExpression(), 286 DII->getDebugLoc().get(), &*std::next(CI.getIterator())); 287 } 288 return Res; 289 } 290 } 291 292 // If we are casting a select, then fold the cast into the select. 293 if (auto *SI = dyn_cast<SelectInst>(Src)) 294 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 295 return NV; 296 297 // If we are casting a PHI, then fold the cast into the PHI. 298 if (auto *PN = dyn_cast<PHINode>(Src)) { 299 // Don't do this if it would create a PHI node with an illegal type from a 300 // legal type. 301 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 302 shouldChangeType(CI.getType(), Src->getType())) 303 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 304 return NV; 305 } 306 307 return nullptr; 308 } 309 310 /// Constants and extensions/truncates from the destination type are always 311 /// free to be evaluated in that type. This is a helper for canEvaluate*. 312 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 313 if (isa<Constant>(V)) 314 return true; 315 Value *X; 316 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 317 X->getType() == Ty) 318 return true; 319 320 return false; 321 } 322 323 /// Filter out values that we can not evaluate in the destination type for free. 324 /// This is a helper for canEvaluate*. 325 static bool canNotEvaluateInType(Value *V, Type *Ty) { 326 assert(!isa<Constant>(V) && "Constant should already be handled."); 327 if (!isa<Instruction>(V)) 328 return true; 329 // We can't extend or shrink something that has multiple uses -- unless those 330 // multiple uses are all in the same instruction -- doing so would require 331 // duplicating the instruction which isn't profitable. 332 if (!V->hasOneUse()) 333 if (any_of(V->users(), [&](User *U) { return U != V->user_back(); })) 334 return true; 335 336 return false; 337 } 338 339 /// Return true if we can evaluate the specified expression tree as type Ty 340 /// instead of its larger type, and arrive with the same value. 341 /// This is used by code that tries to eliminate truncates. 342 /// 343 /// Ty will always be a type smaller than V. We should return true if trunc(V) 344 /// can be computed by computing V in the smaller type. If V is an instruction, 345 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 346 /// makes sense if x and y can be efficiently truncated. 347 /// 348 /// This function works on both vectors and scalars. 349 /// 350 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 351 Instruction *CxtI) { 352 if (canAlwaysEvaluateInType(V, Ty)) 353 return true; 354 if (canNotEvaluateInType(V, Ty)) 355 return false; 356 357 auto *I = cast<Instruction>(V); 358 Type *OrigTy = V->getType(); 359 switch (I->getOpcode()) { 360 case Instruction::Add: 361 case Instruction::Sub: 362 case Instruction::Mul: 363 case Instruction::And: 364 case Instruction::Or: 365 case Instruction::Xor: 366 // These operators can all arbitrarily be extended or truncated. 367 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 368 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 369 370 case Instruction::UDiv: 371 case Instruction::URem: { 372 // UDiv and URem can be truncated if all the truncated bits are zero. 373 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 374 uint32_t BitWidth = Ty->getScalarSizeInBits(); 375 if (BitWidth < OrigBitWidth) { 376 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 377 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 378 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 379 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 380 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 381 } 382 } 383 break; 384 } 385 case Instruction::Shl: { 386 // If we are truncating the result of this SHL, and if it's a shift of a 387 // constant amount, we can always perform a SHL in a smaller type. 388 const APInt *Amt; 389 if (match(I->getOperand(1), m_APInt(Amt))) { 390 uint32_t BitWidth = Ty->getScalarSizeInBits(); 391 if (Amt->getLimitedValue(BitWidth) < BitWidth) 392 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 393 } 394 break; 395 } 396 case Instruction::LShr: { 397 // If this is a truncate of a logical shr, we can truncate it to a smaller 398 // lshr iff we know that the bits we would otherwise be shifting in are 399 // already zeros. 400 const APInt *Amt; 401 if (match(I->getOperand(1), m_APInt(Amt))) { 402 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 403 uint32_t BitWidth = Ty->getScalarSizeInBits(); 404 if (IC.MaskedValueIsZero(I->getOperand(0), 405 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 406 Amt->getLimitedValue(BitWidth) < BitWidth) { 407 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 408 } 409 } 410 break; 411 } 412 case Instruction::AShr: { 413 // If this is a truncate of an arithmetic shr, we can truncate it to a 414 // smaller ashr iff we know that all the bits from the sign bit of the 415 // original type and the sign bit of the truncate type are similar. 416 // TODO: It is enough to check that the bits we would be shifting in are 417 // similar to sign bit of the truncate type. 418 const APInt *Amt; 419 if (match(I->getOperand(1), m_APInt(Amt))) { 420 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 421 uint32_t BitWidth = Ty->getScalarSizeInBits(); 422 if (Amt->getLimitedValue(BitWidth) < BitWidth && 423 OrigBitWidth - BitWidth < 424 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 425 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 426 } 427 break; 428 } 429 case Instruction::Trunc: 430 // trunc(trunc(x)) -> trunc(x) 431 return true; 432 case Instruction::ZExt: 433 case Instruction::SExt: 434 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 435 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 436 return true; 437 case Instruction::Select: { 438 SelectInst *SI = cast<SelectInst>(I); 439 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 440 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 441 } 442 case Instruction::PHI: { 443 // We can change a phi if we can change all operands. Note that we never 444 // get into trouble with cyclic PHIs here because we only consider 445 // instructions with a single use. 446 PHINode *PN = cast<PHINode>(I); 447 for (Value *IncValue : PN->incoming_values()) 448 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 449 return false; 450 return true; 451 } 452 default: 453 // TODO: Can handle more cases here. 454 break; 455 } 456 457 return false; 458 } 459 460 /// Given a vector that is bitcast to an integer, optionally logically 461 /// right-shifted, and truncated, convert it to an extractelement. 462 /// Example (big endian): 463 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 464 /// ---> 465 /// extractelement <4 x i32> %X, 1 466 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 467 Value *TruncOp = Trunc.getOperand(0); 468 Type *DestType = Trunc.getType(); 469 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 470 return nullptr; 471 472 Value *VecInput = nullptr; 473 ConstantInt *ShiftVal = nullptr; 474 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 475 m_LShr(m_BitCast(m_Value(VecInput)), 476 m_ConstantInt(ShiftVal)))) || 477 !isa<VectorType>(VecInput->getType())) 478 return nullptr; 479 480 VectorType *VecType = cast<VectorType>(VecInput->getType()); 481 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 482 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 483 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 484 485 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 486 return nullptr; 487 488 // If the element type of the vector doesn't match the result type, 489 // bitcast it to a vector type that we can extract from. 490 unsigned NumVecElts = VecWidth / DestWidth; 491 if (VecType->getElementType() != DestType) { 492 VecType = VectorType::get(DestType, NumVecElts); 493 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 494 } 495 496 unsigned Elt = ShiftAmount / DestWidth; 497 if (IC.getDataLayout().isBigEndian()) 498 Elt = NumVecElts - 1 - Elt; 499 500 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 501 } 502 503 /// Rotate left/right may occur in a wider type than necessary because of type 504 /// promotion rules. Try to narrow all of the component instructions. 505 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 506 assert((isa<VectorType>(Trunc.getSrcTy()) || 507 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 508 "Don't narrow to an illegal scalar type"); 509 510 // First, find an or'd pair of opposite shifts with the same shifted operand: 511 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 512 Value *Or0, *Or1; 513 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 514 return nullptr; 515 516 Value *ShVal, *ShAmt0, *ShAmt1; 517 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 518 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 519 return nullptr; 520 521 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 522 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 523 if (ShiftOpcode0 == ShiftOpcode1) 524 return nullptr; 525 526 // The shift amounts must add up to the narrow bit width. 527 Value *ShAmt; 528 bool SubIsOnLHS; 529 Type *DestTy = Trunc.getType(); 530 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 531 if (match(ShAmt0, 532 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) { 533 ShAmt = ShAmt1; 534 SubIsOnLHS = true; 535 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), 536 m_Specific(ShAmt0))))) { 537 ShAmt = ShAmt0; 538 SubIsOnLHS = false; 539 } else { 540 return nullptr; 541 } 542 543 // The shifted value must have high zeros in the wide type. Typically, this 544 // will be a zext, but it could also be the result of an 'and' or 'shift'. 545 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 546 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 547 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 548 return nullptr; 549 550 // We have an unnecessarily wide rotate! 551 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 552 // Narrow it down to eliminate the zext/trunc: 553 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1') 554 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 555 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt); 556 557 // Mask both shift amounts to ensure there's no UB from oversized shifts. 558 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1); 559 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC); 560 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC); 561 562 // Truncate the original value and use narrow ops. 563 Value *X = Builder.CreateTrunc(ShVal, DestTy); 564 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt; 565 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt; 566 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0); 567 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1); 568 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1); 569 } 570 571 /// Try to narrow the width of math or bitwise logic instructions by pulling a 572 /// truncate ahead of binary operators. 573 /// TODO: Transforms for truncated shifts should be moved into here. 574 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 575 Type *SrcTy = Trunc.getSrcTy(); 576 Type *DestTy = Trunc.getType(); 577 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 578 return nullptr; 579 580 BinaryOperator *BinOp; 581 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 582 return nullptr; 583 584 Value *BinOp0 = BinOp->getOperand(0); 585 Value *BinOp1 = BinOp->getOperand(1); 586 switch (BinOp->getOpcode()) { 587 case Instruction::And: 588 case Instruction::Or: 589 case Instruction::Xor: 590 case Instruction::Add: 591 case Instruction::Sub: 592 case Instruction::Mul: { 593 Constant *C; 594 if (match(BinOp0, m_Constant(C))) { 595 // trunc (binop C, X) --> binop (trunc C', X) 596 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 597 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 598 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 599 } 600 if (match(BinOp1, m_Constant(C))) { 601 // trunc (binop X, C) --> binop (trunc X, C') 602 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 603 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 604 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 605 } 606 Value *X; 607 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 608 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 609 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 610 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 611 } 612 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 613 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 614 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 615 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 616 } 617 break; 618 } 619 620 default: break; 621 } 622 623 if (Instruction *NarrowOr = narrowRotate(Trunc)) 624 return NarrowOr; 625 626 return nullptr; 627 } 628 629 /// Try to narrow the width of a splat shuffle. This could be generalized to any 630 /// shuffle with a constant operand, but we limit the transform to avoid 631 /// creating a shuffle type that targets may not be able to lower effectively. 632 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 633 InstCombiner::BuilderTy &Builder) { 634 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 635 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 636 Shuf->getMask()->getSplatValue() && 637 Shuf->getType() == Shuf->getOperand(0)->getType()) { 638 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 639 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 640 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 641 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 642 } 643 644 return nullptr; 645 } 646 647 /// Try to narrow the width of an insert element. This could be generalized for 648 /// any vector constant, but we limit the transform to insertion into undef to 649 /// avoid potential backend problems from unsupported insertion widths. This 650 /// could also be extended to handle the case of inserting a scalar constant 651 /// into a vector variable. 652 static Instruction *shrinkInsertElt(CastInst &Trunc, 653 InstCombiner::BuilderTy &Builder) { 654 Instruction::CastOps Opcode = Trunc.getOpcode(); 655 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 656 "Unexpected instruction for shrinking"); 657 658 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 659 if (!InsElt || !InsElt->hasOneUse()) 660 return nullptr; 661 662 Type *DestTy = Trunc.getType(); 663 Type *DestScalarTy = DestTy->getScalarType(); 664 Value *VecOp = InsElt->getOperand(0); 665 Value *ScalarOp = InsElt->getOperand(1); 666 Value *Index = InsElt->getOperand(2); 667 668 if (isa<UndefValue>(VecOp)) { 669 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 670 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 671 UndefValue *NarrowUndef = UndefValue::get(DestTy); 672 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 673 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 674 } 675 676 return nullptr; 677 } 678 679 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 680 if (Instruction *Result = commonCastTransforms(CI)) 681 return Result; 682 683 // Test if the trunc is the user of a select which is part of a 684 // minimum or maximum operation. If so, don't do any more simplification. 685 // Even simplifying demanded bits can break the canonical form of a 686 // min/max. 687 Value *LHS, *RHS; 688 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 689 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 690 return nullptr; 691 692 // See if we can simplify any instructions used by the input whose sole 693 // purpose is to compute bits we don't care about. 694 if (SimplifyDemandedInstructionBits(CI)) 695 return &CI; 696 697 Value *Src = CI.getOperand(0); 698 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 699 700 // Attempt to truncate the entire input expression tree to the destination 701 // type. Only do this if the dest type is a simple type, don't convert the 702 // expression tree to something weird like i93 unless the source is also 703 // strange. 704 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 705 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 706 707 // If this cast is a truncate, evaluting in a different type always 708 // eliminates the cast, so it is always a win. 709 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 710 " to avoid cast: " << CI << '\n'); 711 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 712 assert(Res->getType() == DestTy); 713 return replaceInstUsesWith(CI, Res); 714 } 715 716 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 717 if (DestTy->getScalarSizeInBits() == 1) { 718 Constant *One = ConstantInt::get(SrcTy, 1); 719 Src = Builder.CreateAnd(Src, One); 720 Value *Zero = Constant::getNullValue(Src->getType()); 721 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 722 } 723 724 // FIXME: Maybe combine the next two transforms to handle the no cast case 725 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 726 727 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 728 Value *A = nullptr; ConstantInt *Cst = nullptr; 729 if (Src->hasOneUse() && 730 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 731 // We have three types to worry about here, the type of A, the source of 732 // the truncate (MidSize), and the destination of the truncate. We know that 733 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 734 // between ASize and ResultSize. 735 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 736 737 // If the shift amount is larger than the size of A, then the result is 738 // known to be zero because all the input bits got shifted out. 739 if (Cst->getZExtValue() >= ASize) 740 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 741 742 // Since we're doing an lshr and a zero extend, and know that the shift 743 // amount is smaller than ASize, it is always safe to do the shift in A's 744 // type, then zero extend or truncate to the result. 745 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 746 Shift->takeName(Src); 747 return CastInst::CreateIntegerCast(Shift, DestTy, false); 748 } 749 750 // FIXME: We should canonicalize to zext/trunc and remove this transform. 751 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 752 // conversion. 753 // It works because bits coming from sign extension have the same value as 754 // the sign bit of the original value; performing ashr instead of lshr 755 // generates bits of the same value as the sign bit. 756 if (Src->hasOneUse() && 757 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 758 Value *SExt = cast<Instruction>(Src)->getOperand(0); 759 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 760 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 761 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 762 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 763 unsigned ShiftAmt = Cst->getZExtValue(); 764 765 // This optimization can be only performed when zero bits generated by 766 // the original lshr aren't pulled into the value after truncation, so we 767 // can only shift by values no larger than the number of extension bits. 768 // FIXME: Instead of bailing when the shift is too large, use and to clear 769 // the extra bits. 770 if (ShiftAmt <= MaxAmt) { 771 if (CISize == ASize) 772 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 773 std::min(ShiftAmt, ASize - 1))); 774 if (SExt->hasOneUse()) { 775 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 776 Shift->takeName(Src); 777 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 778 } 779 } 780 } 781 782 if (Instruction *I = narrowBinOp(CI)) 783 return I; 784 785 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 786 return I; 787 788 if (Instruction *I = shrinkInsertElt(CI, Builder)) 789 return I; 790 791 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 792 shouldChangeType(SrcTy, DestTy)) { 793 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 794 // dest type is native and cst < dest size. 795 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 796 !match(A, m_Shr(m_Value(), m_Constant()))) { 797 // Skip shifts of shift by constants. It undoes a combine in 798 // FoldShiftByConstant and is the extend in reg pattern. 799 const unsigned DestSize = DestTy->getScalarSizeInBits(); 800 if (Cst->getValue().ult(DestSize)) { 801 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 802 803 return BinaryOperator::Create( 804 Instruction::Shl, NewTrunc, 805 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 806 } 807 } 808 } 809 810 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 811 return I; 812 813 return nullptr; 814 } 815 816 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 817 bool DoTransform) { 818 // If we are just checking for a icmp eq of a single bit and zext'ing it 819 // to an integer, then shift the bit to the appropriate place and then 820 // cast to integer to avoid the comparison. 821 const APInt *Op1CV; 822 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 823 824 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 825 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 826 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 827 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 828 if (!DoTransform) return ICI; 829 830 Value *In = ICI->getOperand(0); 831 Value *Sh = ConstantInt::get(In->getType(), 832 In->getType()->getScalarSizeInBits() - 1); 833 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 834 if (In->getType() != CI.getType()) 835 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 836 837 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 838 Constant *One = ConstantInt::get(In->getType(), 1); 839 In = Builder.CreateXor(In, One, In->getName() + ".not"); 840 } 841 842 return replaceInstUsesWith(CI, In); 843 } 844 845 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 846 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 847 // zext (X == 1) to i32 --> X iff X has only the low bit set. 848 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 849 // zext (X != 0) to i32 --> X iff X has only the low bit set. 850 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 851 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 852 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 853 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 854 // This only works for EQ and NE 855 ICI->isEquality()) { 856 // If Op1C some other power of two, convert: 857 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 858 859 APInt KnownZeroMask(~Known.Zero); 860 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 861 if (!DoTransform) return ICI; 862 863 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 864 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 865 // (X&4) == 2 --> false 866 // (X&4) != 2 --> true 867 Constant *Res = ConstantInt::get(CI.getType(), isNE); 868 return replaceInstUsesWith(CI, Res); 869 } 870 871 uint32_t ShAmt = KnownZeroMask.logBase2(); 872 Value *In = ICI->getOperand(0); 873 if (ShAmt) { 874 // Perform a logical shr by shiftamt. 875 // Insert the shift to put the result in the low bit. 876 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 877 In->getName() + ".lobit"); 878 } 879 880 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 881 Constant *One = ConstantInt::get(In->getType(), 1); 882 In = Builder.CreateXor(In, One); 883 } 884 885 if (CI.getType() == In->getType()) 886 return replaceInstUsesWith(CI, In); 887 888 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 889 return replaceInstUsesWith(CI, IntCast); 890 } 891 } 892 } 893 894 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 895 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 896 // may lead to additional simplifications. 897 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 898 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 899 Value *LHS = ICI->getOperand(0); 900 Value *RHS = ICI->getOperand(1); 901 902 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 903 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 904 905 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 906 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 907 APInt UnknownBit = ~KnownBits; 908 if (UnknownBit.countPopulation() == 1) { 909 if (!DoTransform) return ICI; 910 911 Value *Result = Builder.CreateXor(LHS, RHS); 912 913 // Mask off any bits that are set and won't be shifted away. 914 if (KnownLHS.One.uge(UnknownBit)) 915 Result = Builder.CreateAnd(Result, 916 ConstantInt::get(ITy, UnknownBit)); 917 918 // Shift the bit we're testing down to the lsb. 919 Result = Builder.CreateLShr( 920 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 921 922 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 923 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 924 Result->takeName(ICI); 925 return replaceInstUsesWith(CI, Result); 926 } 927 } 928 } 929 } 930 931 return nullptr; 932 } 933 934 /// Determine if the specified value can be computed in the specified wider type 935 /// and produce the same low bits. If not, return false. 936 /// 937 /// If this function returns true, it can also return a non-zero number of bits 938 /// (in BitsToClear) which indicates that the value it computes is correct for 939 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 940 /// out. For example, to promote something like: 941 /// 942 /// %B = trunc i64 %A to i32 943 /// %C = lshr i32 %B, 8 944 /// %E = zext i32 %C to i64 945 /// 946 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 947 /// set to 8 to indicate that the promoted value needs to have bits 24-31 948 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 949 /// clear the top bits anyway, doing this has no extra cost. 950 /// 951 /// This function works on both vectors and scalars. 952 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 953 InstCombiner &IC, Instruction *CxtI) { 954 BitsToClear = 0; 955 if (canAlwaysEvaluateInType(V, Ty)) 956 return true; 957 if (canNotEvaluateInType(V, Ty)) 958 return false; 959 960 auto *I = cast<Instruction>(V); 961 unsigned Tmp; 962 switch (I->getOpcode()) { 963 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 964 case Instruction::SExt: // zext(sext(x)) -> sext(x). 965 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 966 return true; 967 case Instruction::And: 968 case Instruction::Or: 969 case Instruction::Xor: 970 case Instruction::Add: 971 case Instruction::Sub: 972 case Instruction::Mul: 973 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 974 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 975 return false; 976 // These can all be promoted if neither operand has 'bits to clear'. 977 if (BitsToClear == 0 && Tmp == 0) 978 return true; 979 980 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 981 // other side, BitsToClear is ok. 982 if (Tmp == 0 && I->isBitwiseLogicOp()) { 983 // We use MaskedValueIsZero here for generality, but the case we care 984 // about the most is constant RHS. 985 unsigned VSize = V->getType()->getScalarSizeInBits(); 986 if (IC.MaskedValueIsZero(I->getOperand(1), 987 APInt::getHighBitsSet(VSize, BitsToClear), 988 0, CxtI)) { 989 // If this is an And instruction and all of the BitsToClear are 990 // known to be zero we can reset BitsToClear. 991 if (I->getOpcode() == Instruction::And) 992 BitsToClear = 0; 993 return true; 994 } 995 } 996 997 // Otherwise, we don't know how to analyze this BitsToClear case yet. 998 return false; 999 1000 case Instruction::Shl: { 1001 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1002 // upper bits we can reduce BitsToClear by the shift amount. 1003 const APInt *Amt; 1004 if (match(I->getOperand(1), m_APInt(Amt))) { 1005 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1006 return false; 1007 uint64_t ShiftAmt = Amt->getZExtValue(); 1008 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1009 return true; 1010 } 1011 return false; 1012 } 1013 case Instruction::LShr: { 1014 // We can promote lshr(x, cst) if we can promote x. This requires the 1015 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1016 const APInt *Amt; 1017 if (match(I->getOperand(1), m_APInt(Amt))) { 1018 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1019 return false; 1020 BitsToClear += Amt->getZExtValue(); 1021 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1022 BitsToClear = V->getType()->getScalarSizeInBits(); 1023 return true; 1024 } 1025 // Cannot promote variable LSHR. 1026 return false; 1027 } 1028 case Instruction::Select: 1029 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1030 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1031 // TODO: If important, we could handle the case when the BitsToClear are 1032 // known zero in the disagreeing side. 1033 Tmp != BitsToClear) 1034 return false; 1035 return true; 1036 1037 case Instruction::PHI: { 1038 // We can change a phi if we can change all operands. Note that we never 1039 // get into trouble with cyclic PHIs here because we only consider 1040 // instructions with a single use. 1041 PHINode *PN = cast<PHINode>(I); 1042 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1043 return false; 1044 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1045 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1046 // TODO: If important, we could handle the case when the BitsToClear 1047 // are known zero in the disagreeing input. 1048 Tmp != BitsToClear) 1049 return false; 1050 return true; 1051 } 1052 default: 1053 // TODO: Can handle more cases here. 1054 return false; 1055 } 1056 } 1057 1058 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1059 // If this zero extend is only used by a truncate, let the truncate be 1060 // eliminated before we try to optimize this zext. 1061 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1062 return nullptr; 1063 1064 // If one of the common conversion will work, do it. 1065 if (Instruction *Result = commonCastTransforms(CI)) 1066 return Result; 1067 1068 Value *Src = CI.getOperand(0); 1069 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1070 1071 // Attempt to extend the entire input expression tree to the destination 1072 // type. Only do this if the dest type is a simple type, don't convert the 1073 // expression tree to something weird like i93 unless the source is also 1074 // strange. 1075 unsigned BitsToClear; 1076 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1077 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1078 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1079 "Can't clear more bits than in SrcTy"); 1080 1081 // Okay, we can transform this! Insert the new expression now. 1082 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1083 " to avoid zero extend: " << CI << '\n'); 1084 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1085 assert(Res->getType() == DestTy); 1086 1087 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1088 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1089 1090 // If the high bits are already filled with zeros, just replace this 1091 // cast with the result. 1092 if (MaskedValueIsZero(Res, 1093 APInt::getHighBitsSet(DestBitSize, 1094 DestBitSize-SrcBitsKept), 1095 0, &CI)) 1096 return replaceInstUsesWith(CI, Res); 1097 1098 // We need to emit an AND to clear the high bits. 1099 Constant *C = ConstantInt::get(Res->getType(), 1100 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1101 return BinaryOperator::CreateAnd(Res, C); 1102 } 1103 1104 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1105 // types and if the sizes are just right we can convert this into a logical 1106 // 'and' which will be much cheaper than the pair of casts. 1107 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1108 // TODO: Subsume this into EvaluateInDifferentType. 1109 1110 // Get the sizes of the types involved. We know that the intermediate type 1111 // will be smaller than A or C, but don't know the relation between A and C. 1112 Value *A = CSrc->getOperand(0); 1113 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1114 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1115 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1116 // If we're actually extending zero bits, then if 1117 // SrcSize < DstSize: zext(a & mask) 1118 // SrcSize == DstSize: a & mask 1119 // SrcSize > DstSize: trunc(a) & mask 1120 if (SrcSize < DstSize) { 1121 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1122 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1123 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1124 return new ZExtInst(And, CI.getType()); 1125 } 1126 1127 if (SrcSize == DstSize) { 1128 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1129 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1130 AndValue)); 1131 } 1132 if (SrcSize > DstSize) { 1133 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1134 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1135 return BinaryOperator::CreateAnd(Trunc, 1136 ConstantInt::get(Trunc->getType(), 1137 AndValue)); 1138 } 1139 } 1140 1141 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1142 return transformZExtICmp(ICI, CI); 1143 1144 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1145 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1146 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1147 // of the (zext icmp) can be eliminated. If so, immediately perform the 1148 // according elimination. 1149 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1150 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1151 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1152 (transformZExtICmp(LHS, CI, false) || 1153 transformZExtICmp(RHS, CI, false))) { 1154 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1155 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1156 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1157 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1158 1159 // Perform the elimination. 1160 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1161 transformZExtICmp(LHS, *LZExt); 1162 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1163 transformZExtICmp(RHS, *RZExt); 1164 1165 return Or; 1166 } 1167 } 1168 1169 // zext(trunc(X) & C) -> (X & zext(C)). 1170 Constant *C; 1171 Value *X; 1172 if (SrcI && 1173 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1174 X->getType() == CI.getType()) 1175 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1176 1177 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1178 Value *And; 1179 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1180 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1181 X->getType() == CI.getType()) { 1182 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1183 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1184 } 1185 1186 return nullptr; 1187 } 1188 1189 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1190 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1191 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1192 ICmpInst::Predicate Pred = ICI->getPredicate(); 1193 1194 // Don't bother if Op1 isn't of vector or integer type. 1195 if (!Op1->getType()->isIntOrIntVectorTy()) 1196 return nullptr; 1197 1198 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1199 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1200 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1201 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1202 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1203 1204 Value *Sh = ConstantInt::get(Op0->getType(), 1205 Op0->getType()->getScalarSizeInBits()-1); 1206 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1207 if (In->getType() != CI.getType()) 1208 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1209 1210 if (Pred == ICmpInst::ICMP_SGT) 1211 In = Builder.CreateNot(In, In->getName() + ".not"); 1212 return replaceInstUsesWith(CI, In); 1213 } 1214 } 1215 1216 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1217 // If we know that only one bit of the LHS of the icmp can be set and we 1218 // have an equality comparison with zero or a power of 2, we can transform 1219 // the icmp and sext into bitwise/integer operations. 1220 if (ICI->hasOneUse() && 1221 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1222 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1223 1224 APInt KnownZeroMask(~Known.Zero); 1225 if (KnownZeroMask.isPowerOf2()) { 1226 Value *In = ICI->getOperand(0); 1227 1228 // If the icmp tests for a known zero bit we can constant fold it. 1229 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1230 Value *V = Pred == ICmpInst::ICMP_NE ? 1231 ConstantInt::getAllOnesValue(CI.getType()) : 1232 ConstantInt::getNullValue(CI.getType()); 1233 return replaceInstUsesWith(CI, V); 1234 } 1235 1236 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1237 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1238 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1239 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1240 // Perform a right shift to place the desired bit in the LSB. 1241 if (ShiftAmt) 1242 In = Builder.CreateLShr(In, 1243 ConstantInt::get(In->getType(), ShiftAmt)); 1244 1245 // At this point "In" is either 1 or 0. Subtract 1 to turn 1246 // {1, 0} -> {0, -1}. 1247 In = Builder.CreateAdd(In, 1248 ConstantInt::getAllOnesValue(In->getType()), 1249 "sext"); 1250 } else { 1251 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1252 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1253 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1254 // Perform a left shift to place the desired bit in the MSB. 1255 if (ShiftAmt) 1256 In = Builder.CreateShl(In, 1257 ConstantInt::get(In->getType(), ShiftAmt)); 1258 1259 // Distribute the bit over the whole bit width. 1260 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1261 KnownZeroMask.getBitWidth() - 1), "sext"); 1262 } 1263 1264 if (CI.getType() == In->getType()) 1265 return replaceInstUsesWith(CI, In); 1266 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1267 } 1268 } 1269 } 1270 1271 return nullptr; 1272 } 1273 1274 /// Return true if we can take the specified value and return it as type Ty 1275 /// without inserting any new casts and without changing the value of the common 1276 /// low bits. This is used by code that tries to promote integer operations to 1277 /// a wider types will allow us to eliminate the extension. 1278 /// 1279 /// This function works on both vectors and scalars. 1280 /// 1281 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1282 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1283 "Can't sign extend type to a smaller type"); 1284 if (canAlwaysEvaluateInType(V, Ty)) 1285 return true; 1286 if (canNotEvaluateInType(V, Ty)) 1287 return false; 1288 1289 auto *I = cast<Instruction>(V); 1290 switch (I->getOpcode()) { 1291 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1292 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1293 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1294 return true; 1295 case Instruction::And: 1296 case Instruction::Or: 1297 case Instruction::Xor: 1298 case Instruction::Add: 1299 case Instruction::Sub: 1300 case Instruction::Mul: 1301 // These operators can all arbitrarily be extended if their inputs can. 1302 return canEvaluateSExtd(I->getOperand(0), Ty) && 1303 canEvaluateSExtd(I->getOperand(1), Ty); 1304 1305 //case Instruction::Shl: TODO 1306 //case Instruction::LShr: TODO 1307 1308 case Instruction::Select: 1309 return canEvaluateSExtd(I->getOperand(1), Ty) && 1310 canEvaluateSExtd(I->getOperand(2), Ty); 1311 1312 case Instruction::PHI: { 1313 // We can change a phi if we can change all operands. Note that we never 1314 // get into trouble with cyclic PHIs here because we only consider 1315 // instructions with a single use. 1316 PHINode *PN = cast<PHINode>(I); 1317 for (Value *IncValue : PN->incoming_values()) 1318 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1319 return true; 1320 } 1321 default: 1322 // TODO: Can handle more cases here. 1323 break; 1324 } 1325 1326 return false; 1327 } 1328 1329 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1330 // If this sign extend is only used by a truncate, let the truncate be 1331 // eliminated before we try to optimize this sext. 1332 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1333 return nullptr; 1334 1335 if (Instruction *I = commonCastTransforms(CI)) 1336 return I; 1337 1338 Value *Src = CI.getOperand(0); 1339 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1340 1341 // If we know that the value being extended is positive, we can use a zext 1342 // instead. 1343 KnownBits Known = computeKnownBits(Src, 0, &CI); 1344 if (Known.isNonNegative()) { 1345 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1346 return replaceInstUsesWith(CI, ZExt); 1347 } 1348 1349 // Attempt to extend the entire input expression tree to the destination 1350 // type. Only do this if the dest type is a simple type, don't convert the 1351 // expression tree to something weird like i93 unless the source is also 1352 // strange. 1353 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1354 canEvaluateSExtd(Src, DestTy)) { 1355 // Okay, we can transform this! Insert the new expression now. 1356 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1357 " to avoid sign extend: " << CI << '\n'); 1358 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1359 assert(Res->getType() == DestTy); 1360 1361 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1362 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1363 1364 // If the high bits are already filled with sign bit, just replace this 1365 // cast with the result. 1366 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1367 return replaceInstUsesWith(CI, Res); 1368 1369 // We need to emit a shl + ashr to do the sign extend. 1370 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1371 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1372 ShAmt); 1373 } 1374 1375 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1376 // into shifts. 1377 Value *X; 1378 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1379 // sext(trunc(X)) --> ashr(shl(X, C), C) 1380 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1381 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1382 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1383 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1384 } 1385 1386 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1387 return transformSExtICmp(ICI, CI); 1388 1389 // If the input is a shl/ashr pair of a same constant, then this is a sign 1390 // extension from a smaller value. If we could trust arbitrary bitwidth 1391 // integers, we could turn this into a truncate to the smaller bit and then 1392 // use a sext for the whole extension. Since we don't, look deeper and check 1393 // for a truncate. If the source and dest are the same type, eliminate the 1394 // trunc and extend and just do shifts. For example, turn: 1395 // %a = trunc i32 %i to i8 1396 // %b = shl i8 %a, 6 1397 // %c = ashr i8 %b, 6 1398 // %d = sext i8 %c to i32 1399 // into: 1400 // %a = shl i32 %i, 30 1401 // %d = ashr i32 %a, 30 1402 Value *A = nullptr; 1403 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1404 ConstantInt *BA = nullptr, *CA = nullptr; 1405 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1406 m_ConstantInt(CA))) && 1407 BA == CA && A->getType() == CI.getType()) { 1408 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1409 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1410 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1411 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1412 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1413 return BinaryOperator::CreateAShr(A, ShAmtV); 1414 } 1415 1416 return nullptr; 1417 } 1418 1419 1420 /// Return a Constant* for the specified floating-point constant if it fits 1421 /// in the specified FP type without changing its value. 1422 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1423 bool losesInfo; 1424 APFloat F = CFP->getValueAPF(); 1425 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1426 if (!losesInfo) 1427 return ConstantFP::get(CFP->getContext(), F); 1428 return nullptr; 1429 } 1430 1431 /// Look through floating-point extensions until we get the source value. 1432 static Value *lookThroughFPExtensions(Value *V) { 1433 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1434 V = FPExt->getOperand(0); 1435 1436 // If this value is a constant, return the constant in the smallest FP type 1437 // that can accurately represent it. This allows us to turn 1438 // (float)((double)X+2.0) into x+2.0f. 1439 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1440 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1441 return V; // No constant folding of this. 1442 // See if the value can be truncated to half and then reextended. 1443 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1444 return V; 1445 // See if the value can be truncated to float and then reextended. 1446 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1447 return V; 1448 if (CFP->getType()->isDoubleTy()) 1449 return V; // Won't shrink. 1450 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1451 return V; 1452 // Don't try to shrink to various long double types. 1453 } 1454 1455 return V; 1456 } 1457 1458 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1459 if (Instruction *I = commonCastTransforms(CI)) 1460 return I; 1461 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1462 // simplify this expression to avoid one or more of the trunc/extend 1463 // operations if we can do so without changing the numerical results. 1464 // 1465 // The exact manner in which the widths of the operands interact to limit 1466 // what we can and cannot do safely varies from operation to operation, and 1467 // is explained below in the various case statements. 1468 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1469 if (OpI && OpI->hasOneUse()) { 1470 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1471 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1472 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1473 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1474 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1475 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1476 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1477 switch (OpI->getOpcode()) { 1478 default: break; 1479 case Instruction::FAdd: 1480 case Instruction::FSub: 1481 // For addition and subtraction, the infinitely precise result can 1482 // essentially be arbitrarily wide; proving that double rounding 1483 // will not occur because the result of OpI is exact (as we will for 1484 // FMul, for example) is hopeless. However, we *can* nonetheless 1485 // frequently know that double rounding cannot occur (or that it is 1486 // innocuous) by taking advantage of the specific structure of 1487 // infinitely-precise results that admit double rounding. 1488 // 1489 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1490 // to represent both sources, we can guarantee that the double 1491 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1492 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1493 // for proof of this fact). 1494 // 1495 // Note: Figueroa does not consider the case where DstFormat != 1496 // SrcFormat. It's possible (likely even!) that this analysis 1497 // could be tightened for those cases, but they are rare (the main 1498 // case of interest here is (float)((double)float + float)). 1499 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1500 if (LHSOrig->getType() != CI.getType()) 1501 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1502 if (RHSOrig->getType() != CI.getType()) 1503 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1504 Instruction *RI = 1505 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1506 RI->copyFastMathFlags(OpI); 1507 return RI; 1508 } 1509 break; 1510 case Instruction::FMul: 1511 // For multiplication, the infinitely precise result has at most 1512 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1513 // that such a value can be exactly represented, then no double 1514 // rounding can possibly occur; we can safely perform the operation 1515 // in the destination format if it can represent both sources. 1516 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1517 if (LHSOrig->getType() != CI.getType()) 1518 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1519 if (RHSOrig->getType() != CI.getType()) 1520 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1521 Instruction *RI = 1522 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1523 RI->copyFastMathFlags(OpI); 1524 return RI; 1525 } 1526 break; 1527 case Instruction::FDiv: 1528 // For division, we use again use the bound from Figueroa's 1529 // dissertation. I am entirely certain that this bound can be 1530 // tightened in the unbalanced operand case by an analysis based on 1531 // the diophantine rational approximation bound, but the well-known 1532 // condition used here is a good conservative first pass. 1533 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1534 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1535 if (LHSOrig->getType() != CI.getType()) 1536 LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType()); 1537 if (RHSOrig->getType() != CI.getType()) 1538 RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType()); 1539 Instruction *RI = 1540 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1541 RI->copyFastMathFlags(OpI); 1542 return RI; 1543 } 1544 break; 1545 case Instruction::FRem: 1546 // Remainder is straightforward. Remainder is always exact, so the 1547 // type of OpI doesn't enter into things at all. We simply evaluate 1548 // in whichever source type is larger, then convert to the 1549 // destination type. 1550 if (SrcWidth == OpWidth) 1551 break; 1552 if (LHSWidth < SrcWidth) 1553 LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType()); 1554 else if (RHSWidth <= SrcWidth) 1555 RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType()); 1556 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1557 Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig); 1558 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1559 RI->copyFastMathFlags(OpI); 1560 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1561 } 1562 } 1563 1564 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1565 if (BinaryOperator::isFNeg(OpI)) { 1566 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), 1567 CI.getType()); 1568 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1569 RI->copyFastMathFlags(OpI); 1570 return RI; 1571 } 1572 } 1573 1574 // (fptrunc (select cond, R1, Cst)) --> 1575 // (select cond, (fptrunc R1), (fptrunc Cst)) 1576 // 1577 // - but only if this isn't part of a min/max operation, else we'll 1578 // ruin min/max canonical form which is to have the select and 1579 // compare's operands be of the same type with no casts to look through. 1580 Value *LHS, *RHS; 1581 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1582 if (SI && 1583 (isa<ConstantFP>(SI->getOperand(1)) || 1584 isa<ConstantFP>(SI->getOperand(2))) && 1585 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1586 Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType()); 1587 Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType()); 1588 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1589 } 1590 1591 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1592 if (II) { 1593 switch (II->getIntrinsicID()) { 1594 default: break; 1595 case Intrinsic::fabs: 1596 case Intrinsic::ceil: 1597 case Intrinsic::floor: 1598 case Intrinsic::rint: 1599 case Intrinsic::round: 1600 case Intrinsic::nearbyint: 1601 case Intrinsic::trunc: { 1602 Value *Src = II->getArgOperand(0); 1603 if (!Src->hasOneUse()) 1604 break; 1605 1606 // Except for fabs, this transformation requires the input of the unary FP 1607 // operation to be itself an fpext from the type to which we're 1608 // truncating. 1609 if (II->getIntrinsicID() != Intrinsic::fabs) { 1610 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1611 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1612 break; 1613 } 1614 1615 // Do unary FP operation on smaller type. 1616 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1617 Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType()); 1618 Type *IntrinsicType[] = { CI.getType() }; 1619 Function *Overload = Intrinsic::getDeclaration( 1620 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1621 1622 SmallVector<OperandBundleDef, 1> OpBundles; 1623 II->getOperandBundlesAsDefs(OpBundles); 1624 1625 Value *Args[] = { InnerTrunc }; 1626 CallInst *NewCI = CallInst::Create(Overload, Args, 1627 OpBundles, II->getName()); 1628 NewCI->copyFastMathFlags(II); 1629 return NewCI; 1630 } 1631 } 1632 } 1633 1634 if (Instruction *I = shrinkInsertElt(CI, Builder)) 1635 return I; 1636 1637 return nullptr; 1638 } 1639 1640 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1641 return commonCastTransforms(CI); 1642 } 1643 1644 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1645 // This is safe if the intermediate type has enough bits in its mantissa to 1646 // accurately represent all values of X. For example, this won't work with 1647 // i64 -> float -> i64. 1648 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1649 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1650 return nullptr; 1651 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1652 1653 Value *SrcI = OpI->getOperand(0); 1654 Type *FITy = FI.getType(); 1655 Type *OpITy = OpI->getType(); 1656 Type *SrcTy = SrcI->getType(); 1657 bool IsInputSigned = isa<SIToFPInst>(OpI); 1658 bool IsOutputSigned = isa<FPToSIInst>(FI); 1659 1660 // We can safely assume the conversion won't overflow the output range, 1661 // because (for example) (uint8_t)18293.f is undefined behavior. 1662 1663 // Since we can assume the conversion won't overflow, our decision as to 1664 // whether the input will fit in the float should depend on the minimum 1665 // of the input range and output range. 1666 1667 // This means this is also safe for a signed input and unsigned output, since 1668 // a negative input would lead to undefined behavior. 1669 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1670 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1671 int ActualSize = std::min(InputSize, OutputSize); 1672 1673 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1674 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1675 if (IsInputSigned && IsOutputSigned) 1676 return new SExtInst(SrcI, FITy); 1677 return new ZExtInst(SrcI, FITy); 1678 } 1679 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1680 return new TruncInst(SrcI, FITy); 1681 if (SrcTy == FITy) 1682 return replaceInstUsesWith(FI, SrcI); 1683 return new BitCastInst(SrcI, FITy); 1684 } 1685 return nullptr; 1686 } 1687 1688 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1689 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1690 if (!OpI) 1691 return commonCastTransforms(FI); 1692 1693 if (Instruction *I = FoldItoFPtoI(FI)) 1694 return I; 1695 1696 return commonCastTransforms(FI); 1697 } 1698 1699 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1700 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1701 if (!OpI) 1702 return commonCastTransforms(FI); 1703 1704 if (Instruction *I = FoldItoFPtoI(FI)) 1705 return I; 1706 1707 return commonCastTransforms(FI); 1708 } 1709 1710 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1711 return commonCastTransforms(CI); 1712 } 1713 1714 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1715 return commonCastTransforms(CI); 1716 } 1717 1718 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1719 // If the source integer type is not the intptr_t type for this target, do a 1720 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1721 // cast to be exposed to other transforms. 1722 unsigned AS = CI.getAddressSpace(); 1723 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1724 DL.getPointerSizeInBits(AS)) { 1725 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1726 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1727 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1728 1729 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1730 return new IntToPtrInst(P, CI.getType()); 1731 } 1732 1733 if (Instruction *I = commonCastTransforms(CI)) 1734 return I; 1735 1736 return nullptr; 1737 } 1738 1739 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1740 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1741 Value *Src = CI.getOperand(0); 1742 1743 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1744 // If casting the result of a getelementptr instruction with no offset, turn 1745 // this into a cast of the original pointer! 1746 if (GEP->hasAllZeroIndices() && 1747 // If CI is an addrspacecast and GEP changes the poiner type, merging 1748 // GEP into CI would undo canonicalizing addrspacecast with different 1749 // pointer types, causing infinite loops. 1750 (!isa<AddrSpaceCastInst>(CI) || 1751 GEP->getType() == GEP->getPointerOperandType())) { 1752 // Changing the cast operand is usually not a good idea but it is safe 1753 // here because the pointer operand is being replaced with another 1754 // pointer operand so the opcode doesn't need to change. 1755 Worklist.Add(GEP); 1756 CI.setOperand(0, GEP->getOperand(0)); 1757 return &CI; 1758 } 1759 } 1760 1761 return commonCastTransforms(CI); 1762 } 1763 1764 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1765 // If the destination integer type is not the intptr_t type for this target, 1766 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1767 // to be exposed to other transforms. 1768 1769 Type *Ty = CI.getType(); 1770 unsigned AS = CI.getPointerAddressSpace(); 1771 1772 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1773 return commonPointerCastTransforms(CI); 1774 1775 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1776 if (Ty->isVectorTy()) // Handle vectors of pointers. 1777 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1778 1779 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1780 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1781 } 1782 1783 /// This input value (which is known to have vector type) is being zero extended 1784 /// or truncated to the specified vector type. 1785 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1786 /// 1787 /// The source and destination vector types may have different element types. 1788 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1789 InstCombiner &IC) { 1790 // We can only do this optimization if the output is a multiple of the input 1791 // element size, or the input is a multiple of the output element size. 1792 // Convert the input type to have the same element type as the output. 1793 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1794 1795 if (SrcTy->getElementType() != DestTy->getElementType()) { 1796 // The input types don't need to be identical, but for now they must be the 1797 // same size. There is no specific reason we couldn't handle things like 1798 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1799 // there yet. 1800 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1801 DestTy->getElementType()->getPrimitiveSizeInBits()) 1802 return nullptr; 1803 1804 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1805 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1806 } 1807 1808 // Now that the element types match, get the shuffle mask and RHS of the 1809 // shuffle to use, which depends on whether we're increasing or decreasing the 1810 // size of the input. 1811 SmallVector<uint32_t, 16> ShuffleMask; 1812 Value *V2; 1813 1814 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1815 // If we're shrinking the number of elements, just shuffle in the low 1816 // elements from the input and use undef as the second shuffle input. 1817 V2 = UndefValue::get(SrcTy); 1818 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1819 ShuffleMask.push_back(i); 1820 1821 } else { 1822 // If we're increasing the number of elements, shuffle in all of the 1823 // elements from InVal and fill the rest of the result elements with zeros 1824 // from a constant zero. 1825 V2 = Constant::getNullValue(SrcTy); 1826 unsigned SrcElts = SrcTy->getNumElements(); 1827 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1828 ShuffleMask.push_back(i); 1829 1830 // The excess elements reference the first element of the zero input. 1831 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1832 ShuffleMask.push_back(SrcElts); 1833 } 1834 1835 return new ShuffleVectorInst(InVal, V2, 1836 ConstantDataVector::get(V2->getContext(), 1837 ShuffleMask)); 1838 } 1839 1840 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1841 return Value % Ty->getPrimitiveSizeInBits() == 0; 1842 } 1843 1844 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1845 return Value / Ty->getPrimitiveSizeInBits(); 1846 } 1847 1848 /// V is a value which is inserted into a vector of VecEltTy. 1849 /// Look through the value to see if we can decompose it into 1850 /// insertions into the vector. See the example in the comment for 1851 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1852 /// The type of V is always a non-zero multiple of VecEltTy's size. 1853 /// Shift is the number of bits between the lsb of V and the lsb of 1854 /// the vector. 1855 /// 1856 /// This returns false if the pattern can't be matched or true if it can, 1857 /// filling in Elements with the elements found here. 1858 static bool collectInsertionElements(Value *V, unsigned Shift, 1859 SmallVectorImpl<Value *> &Elements, 1860 Type *VecEltTy, bool isBigEndian) { 1861 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1862 "Shift should be a multiple of the element type size"); 1863 1864 // Undef values never contribute useful bits to the result. 1865 if (isa<UndefValue>(V)) return true; 1866 1867 // If we got down to a value of the right type, we win, try inserting into the 1868 // right element. 1869 if (V->getType() == VecEltTy) { 1870 // Inserting null doesn't actually insert any elements. 1871 if (Constant *C = dyn_cast<Constant>(V)) 1872 if (C->isNullValue()) 1873 return true; 1874 1875 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1876 if (isBigEndian) 1877 ElementIndex = Elements.size() - ElementIndex - 1; 1878 1879 // Fail if multiple elements are inserted into this slot. 1880 if (Elements[ElementIndex]) 1881 return false; 1882 1883 Elements[ElementIndex] = V; 1884 return true; 1885 } 1886 1887 if (Constant *C = dyn_cast<Constant>(V)) { 1888 // Figure out the # elements this provides, and bitcast it or slice it up 1889 // as required. 1890 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1891 VecEltTy); 1892 // If the constant is the size of a vector element, we just need to bitcast 1893 // it to the right type so it gets properly inserted. 1894 if (NumElts == 1) 1895 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1896 Shift, Elements, VecEltTy, isBigEndian); 1897 1898 // Okay, this is a constant that covers multiple elements. Slice it up into 1899 // pieces and insert each element-sized piece into the vector. 1900 if (!isa<IntegerType>(C->getType())) 1901 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1902 C->getType()->getPrimitiveSizeInBits())); 1903 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1904 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1905 1906 for (unsigned i = 0; i != NumElts; ++i) { 1907 unsigned ShiftI = Shift+i*ElementSize; 1908 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1909 ShiftI)); 1910 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1911 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1912 isBigEndian)) 1913 return false; 1914 } 1915 return true; 1916 } 1917 1918 if (!V->hasOneUse()) return false; 1919 1920 Instruction *I = dyn_cast<Instruction>(V); 1921 if (!I) return false; 1922 switch (I->getOpcode()) { 1923 default: return false; // Unhandled case. 1924 case Instruction::BitCast: 1925 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1926 isBigEndian); 1927 case Instruction::ZExt: 1928 if (!isMultipleOfTypeSize( 1929 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1930 VecEltTy)) 1931 return false; 1932 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1933 isBigEndian); 1934 case Instruction::Or: 1935 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1936 isBigEndian) && 1937 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1938 isBigEndian); 1939 case Instruction::Shl: { 1940 // Must be shifting by a constant that is a multiple of the element size. 1941 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1942 if (!CI) return false; 1943 Shift += CI->getZExtValue(); 1944 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1945 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1946 isBigEndian); 1947 } 1948 1949 } 1950 } 1951 1952 1953 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1954 /// assemble the elements of the vector manually. 1955 /// Try to rip the code out and replace it with insertelements. This is to 1956 /// optimize code like this: 1957 /// 1958 /// %tmp37 = bitcast float %inc to i32 1959 /// %tmp38 = zext i32 %tmp37 to i64 1960 /// %tmp31 = bitcast float %inc5 to i32 1961 /// %tmp32 = zext i32 %tmp31 to i64 1962 /// %tmp33 = shl i64 %tmp32, 32 1963 /// %ins35 = or i64 %tmp33, %tmp38 1964 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1965 /// 1966 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1967 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1968 InstCombiner &IC) { 1969 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1970 Value *IntInput = CI.getOperand(0); 1971 1972 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1973 if (!collectInsertionElements(IntInput, 0, Elements, 1974 DestVecTy->getElementType(), 1975 IC.getDataLayout().isBigEndian())) 1976 return nullptr; 1977 1978 // If we succeeded, we know that all of the element are specified by Elements 1979 // or are zero if Elements has a null entry. Recast this as a set of 1980 // insertions. 1981 Value *Result = Constant::getNullValue(CI.getType()); 1982 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1983 if (!Elements[i]) continue; // Unset element. 1984 1985 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 1986 IC.Builder.getInt32(i)); 1987 } 1988 1989 return Result; 1990 } 1991 1992 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1993 /// vector followed by extract element. The backend tends to handle bitcasts of 1994 /// vectors better than bitcasts of scalars because vector registers are 1995 /// usually not type-specific like scalar integer or scalar floating-point. 1996 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1997 InstCombiner &IC) { 1998 // TODO: Create and use a pattern matcher for ExtractElementInst. 1999 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2000 if (!ExtElt || !ExtElt->hasOneUse()) 2001 return nullptr; 2002 2003 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2004 // type to extract from. 2005 Type *DestType = BitCast.getType(); 2006 if (!VectorType::isValidElementType(DestType)) 2007 return nullptr; 2008 2009 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2010 auto *NewVecType = VectorType::get(DestType, NumElts); 2011 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2012 NewVecType, "bc"); 2013 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2014 } 2015 2016 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2017 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2018 InstCombiner::BuilderTy &Builder) { 2019 Type *DestTy = BitCast.getType(); 2020 BinaryOperator *BO; 2021 if (!DestTy->isIntOrIntVectorTy() || 2022 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2023 !BO->isBitwiseLogicOp()) 2024 return nullptr; 2025 2026 // FIXME: This transform is restricted to vector types to avoid backend 2027 // problems caused by creating potentially illegal operations. If a fix-up is 2028 // added to handle that situation, we can remove this check. 2029 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2030 return nullptr; 2031 2032 Value *X; 2033 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2034 X->getType() == DestTy && !isa<Constant>(X)) { 2035 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2036 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2037 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2038 } 2039 2040 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2041 X->getType() == DestTy && !isa<Constant>(X)) { 2042 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2043 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2044 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2045 } 2046 2047 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2048 // constant. This eases recognition of special constants for later ops. 2049 // Example: 2050 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2051 Constant *C; 2052 if (match(BO->getOperand(1), m_Constant(C))) { 2053 // bitcast (logic X, C) --> logic (bitcast X, C') 2054 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2055 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2056 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2057 } 2058 2059 return nullptr; 2060 } 2061 2062 /// Change the type of a select if we can eliminate a bitcast. 2063 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2064 InstCombiner::BuilderTy &Builder) { 2065 Value *Cond, *TVal, *FVal; 2066 if (!match(BitCast.getOperand(0), 2067 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2068 return nullptr; 2069 2070 // A vector select must maintain the same number of elements in its operands. 2071 Type *CondTy = Cond->getType(); 2072 Type *DestTy = BitCast.getType(); 2073 if (CondTy->isVectorTy()) { 2074 if (!DestTy->isVectorTy()) 2075 return nullptr; 2076 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2077 return nullptr; 2078 } 2079 2080 // FIXME: This transform is restricted from changing the select between 2081 // scalars and vectors to avoid backend problems caused by creating 2082 // potentially illegal operations. If a fix-up is added to handle that 2083 // situation, we can remove this check. 2084 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2085 return nullptr; 2086 2087 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2088 Value *X; 2089 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2090 !isa<Constant>(X)) { 2091 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2092 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2093 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2094 } 2095 2096 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2097 !isa<Constant>(X)) { 2098 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2099 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2100 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2101 } 2102 2103 return nullptr; 2104 } 2105 2106 /// Check if all users of CI are StoreInsts. 2107 static bool hasStoreUsersOnly(CastInst &CI) { 2108 for (User *U : CI.users()) { 2109 if (!isa<StoreInst>(U)) 2110 return false; 2111 } 2112 return true; 2113 } 2114 2115 /// This function handles following case 2116 /// 2117 /// A -> B cast 2118 /// PHI 2119 /// B -> A cast 2120 /// 2121 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2122 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2123 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2124 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2125 if (hasStoreUsersOnly(CI)) 2126 return nullptr; 2127 2128 Value *Src = CI.getOperand(0); 2129 Type *SrcTy = Src->getType(); // Type B 2130 Type *DestTy = CI.getType(); // Type A 2131 2132 SmallVector<PHINode *, 4> PhiWorklist; 2133 SmallSetVector<PHINode *, 4> OldPhiNodes; 2134 2135 // Find all of the A->B casts and PHI nodes. 2136 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2137 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2138 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2139 PhiWorklist.push_back(PN); 2140 OldPhiNodes.insert(PN); 2141 while (!PhiWorklist.empty()) { 2142 auto *OldPN = PhiWorklist.pop_back_val(); 2143 for (Value *IncValue : OldPN->incoming_values()) { 2144 if (isa<Constant>(IncValue)) 2145 continue; 2146 2147 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2148 // If there is a sequence of one or more load instructions, each loaded 2149 // value is used as address of later load instruction, bitcast is 2150 // necessary to change the value type, don't optimize it. For 2151 // simplicity we give up if the load address comes from another load. 2152 Value *Addr = LI->getOperand(0); 2153 if (Addr == &CI || isa<LoadInst>(Addr)) 2154 return nullptr; 2155 if (LI->hasOneUse() && LI->isSimple()) 2156 continue; 2157 // If a LoadInst has more than one use, changing the type of loaded 2158 // value may create another bitcast. 2159 return nullptr; 2160 } 2161 2162 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2163 if (OldPhiNodes.insert(PNode)) 2164 PhiWorklist.push_back(PNode); 2165 continue; 2166 } 2167 2168 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2169 // We can't handle other instructions. 2170 if (!BCI) 2171 return nullptr; 2172 2173 // Verify it's a A->B cast. 2174 Type *TyA = BCI->getOperand(0)->getType(); 2175 Type *TyB = BCI->getType(); 2176 if (TyA != DestTy || TyB != SrcTy) 2177 return nullptr; 2178 } 2179 } 2180 2181 // For each old PHI node, create a corresponding new PHI node with a type A. 2182 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2183 for (auto *OldPN : OldPhiNodes) { 2184 Builder.SetInsertPoint(OldPN); 2185 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2186 NewPNodes[OldPN] = NewPN; 2187 } 2188 2189 // Fill in the operands of new PHI nodes. 2190 for (auto *OldPN : OldPhiNodes) { 2191 PHINode *NewPN = NewPNodes[OldPN]; 2192 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2193 Value *V = OldPN->getOperand(j); 2194 Value *NewV = nullptr; 2195 if (auto *C = dyn_cast<Constant>(V)) { 2196 NewV = ConstantExpr::getBitCast(C, DestTy); 2197 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2198 Builder.SetInsertPoint(LI->getNextNode()); 2199 NewV = Builder.CreateBitCast(LI, DestTy); 2200 Worklist.Add(LI); 2201 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2202 NewV = BCI->getOperand(0); 2203 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2204 NewV = NewPNodes[PrevPN]; 2205 } 2206 assert(NewV); 2207 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2208 } 2209 } 2210 2211 // If there is a store with type B, change it to type A. 2212 for (User *U : PN->users()) { 2213 auto *SI = dyn_cast<StoreInst>(U); 2214 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2215 Builder.SetInsertPoint(SI); 2216 auto *NewBC = 2217 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2218 SI->setOperand(0, NewBC); 2219 Worklist.Add(SI); 2220 assert(hasStoreUsersOnly(*NewBC)); 2221 } 2222 } 2223 2224 return replaceInstUsesWith(CI, NewPNodes[PN]); 2225 } 2226 2227 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2228 // If the operands are integer typed then apply the integer transforms, 2229 // otherwise just apply the common ones. 2230 Value *Src = CI.getOperand(0); 2231 Type *SrcTy = Src->getType(); 2232 Type *DestTy = CI.getType(); 2233 2234 // Get rid of casts from one type to the same type. These are useless and can 2235 // be replaced by the operand. 2236 if (DestTy == Src->getType()) 2237 return replaceInstUsesWith(CI, Src); 2238 2239 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2240 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2241 Type *DstElTy = DstPTy->getElementType(); 2242 Type *SrcElTy = SrcPTy->getElementType(); 2243 2244 // If we are casting a alloca to a pointer to a type of the same 2245 // size, rewrite the allocation instruction to allocate the "right" type. 2246 // There is no need to modify malloc calls because it is their bitcast that 2247 // needs to be cleaned up. 2248 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2249 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2250 return V; 2251 2252 // When the type pointed to is not sized the cast cannot be 2253 // turned into a gep. 2254 Type *PointeeType = 2255 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2256 if (!PointeeType->isSized()) 2257 return nullptr; 2258 2259 // If the source and destination are pointers, and this cast is equivalent 2260 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2261 // This can enhance SROA and other transforms that want type-safe pointers. 2262 unsigned NumZeros = 0; 2263 while (SrcElTy != DstElTy && 2264 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2265 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2266 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2267 ++NumZeros; 2268 } 2269 2270 // If we found a path from the src to dest, create the getelementptr now. 2271 if (SrcElTy == DstElTy) { 2272 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2273 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2274 } 2275 } 2276 2277 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2278 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2279 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2280 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2281 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2282 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2283 } 2284 2285 if (isa<IntegerType>(SrcTy)) { 2286 // If this is a cast from an integer to vector, check to see if the input 2287 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2288 // the casts with a shuffle and (potentially) a bitcast. 2289 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2290 CastInst *SrcCast = cast<CastInst>(Src); 2291 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2292 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2293 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2294 cast<VectorType>(DestTy), *this)) 2295 return I; 2296 } 2297 2298 // If the input is an 'or' instruction, we may be doing shifts and ors to 2299 // assemble the elements of the vector manually. Try to rip the code out 2300 // and replace it with insertelements. 2301 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2302 return replaceInstUsesWith(CI, V); 2303 } 2304 } 2305 2306 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2307 if (SrcVTy->getNumElements() == 1) { 2308 // If our destination is not a vector, then make this a straight 2309 // scalar-scalar cast. 2310 if (!DestTy->isVectorTy()) { 2311 Value *Elem = 2312 Builder.CreateExtractElement(Src, 2313 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2314 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2315 } 2316 2317 // Otherwise, see if our source is an insert. If so, then use the scalar 2318 // component directly. 2319 if (InsertElementInst *IEI = 2320 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2321 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2322 DestTy); 2323 } 2324 } 2325 2326 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2327 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2328 // a bitcast to a vector with the same # elts. 2329 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2330 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2331 SVI->getType()->getNumElements() == 2332 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2333 BitCastInst *Tmp; 2334 // If either of the operands is a cast from CI.getType(), then 2335 // evaluating the shuffle in the casted destination's type will allow 2336 // us to eliminate at least one cast. 2337 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2338 Tmp->getOperand(0)->getType() == DestTy) || 2339 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2340 Tmp->getOperand(0)->getType() == DestTy)) { 2341 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2342 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2343 // Return a new shuffle vector. Use the same element ID's, as we 2344 // know the vector types match #elts. 2345 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2346 } 2347 } 2348 } 2349 2350 // Handle the A->B->A cast, and there is an intervening PHI node. 2351 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2352 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2353 return I; 2354 2355 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2356 return I; 2357 2358 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2359 return I; 2360 2361 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2362 return I; 2363 2364 if (SrcTy->isPointerTy()) 2365 return commonPointerCastTransforms(CI); 2366 return commonCastTransforms(CI); 2367 } 2368 2369 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2370 // If the destination pointer element type is not the same as the source's 2371 // first do a bitcast to the destination type, and then the addrspacecast. 2372 // This allows the cast to be exposed to other transforms. 2373 Value *Src = CI.getOperand(0); 2374 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2375 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2376 2377 Type *DestElemTy = DestTy->getElementType(); 2378 if (SrcTy->getElementType() != DestElemTy) { 2379 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2380 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2381 // Handle vectors of pointers. 2382 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2383 } 2384 2385 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2386 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2387 } 2388 2389 return commonPointerCastTransforms(CI); 2390 } 2391