1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Support/KnownBits.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Analyze 'Val', seeing if it is a simple linear expression. 26 /// If so, decompose it, returning some value X, such that Val is 27 /// X*Scale+Offset. 28 /// 29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 30 uint64_t &Offset) { 31 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 32 Offset = CI->getZExtValue(); 33 Scale = 0; 34 return ConstantInt::get(Val->getType(), 0); 35 } 36 37 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 38 // Cannot look past anything that might overflow. 39 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 40 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 41 Scale = 1; 42 Offset = 0; 43 return Val; 44 } 45 46 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 47 if (I->getOpcode() == Instruction::Shl) { 48 // This is a value scaled by '1 << the shift amt'. 49 Scale = UINT64_C(1) << RHS->getZExtValue(); 50 Offset = 0; 51 return I->getOperand(0); 52 } 53 54 if (I->getOpcode() == Instruction::Mul) { 55 // This value is scaled by 'RHS'. 56 Scale = RHS->getZExtValue(); 57 Offset = 0; 58 return I->getOperand(0); 59 } 60 61 if (I->getOpcode() == Instruction::Add) { 62 // We have X+C. Check to see if we really have (X*C2)+C1, 63 // where C1 is divisible by C2. 64 unsigned SubScale; 65 Value *SubVal = 66 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 67 Offset += RHS->getZExtValue(); 68 Scale = SubScale; 69 return SubVal; 70 } 71 } 72 } 73 74 // Otherwise, we can't look past this. 75 Scale = 1; 76 Offset = 0; 77 return Val; 78 } 79 80 /// If we find a cast of an allocation instruction, try to eliminate the cast by 81 /// moving the type information into the alloc. 82 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 83 AllocaInst &AI) { 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 // Opaque pointers don't have an element type we could replace with. 86 if (PTy->isOpaque()) 87 return nullptr; 88 89 IRBuilderBase::InsertPointGuard Guard(Builder); 90 Builder.SetInsertPoint(&AI); 91 92 // Get the type really allocated and the type casted to. 93 Type *AllocElTy = AI.getAllocatedType(); 94 Type *CastElTy = PTy->getNonOpaquePointerElementType(); 95 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 96 97 // This optimisation does not work for cases where the cast type 98 // is scalable and the allocated type is not. This because we need to 99 // know how many times the casted type fits into the allocated type. 100 // For the opposite case where the allocated type is scalable and the 101 // cast type is not this leads to poor code quality due to the 102 // introduction of 'vscale' into the calculations. It seems better to 103 // bail out for this case too until we've done a proper cost-benefit 104 // analysis. 105 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 106 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 107 if (AllocIsScalable != CastIsScalable) return nullptr; 108 109 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 110 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 111 if (CastElTyAlign < AllocElTyAlign) return nullptr; 112 113 // If the allocation has multiple uses, only promote it if we are strictly 114 // increasing the alignment of the resultant allocation. If we keep it the 115 // same, we open the door to infinite loops of various kinds. 116 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 117 118 // The alloc and cast types should be either both fixed or both scalable. 119 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 120 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 121 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 122 123 // If the allocation has multiple uses, only promote it if we're not 124 // shrinking the amount of memory being allocated. 125 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 126 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 127 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 128 129 // See if we can satisfy the modulus by pulling a scale out of the array 130 // size argument. 131 unsigned ArraySizeScale; 132 uint64_t ArrayOffset; 133 Value *NumElements = // See if the array size is a decomposable linear expr. 134 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 135 136 // If we can now satisfy the modulus, by using a non-1 scale, we really can 137 // do the xform. 138 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 139 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 140 141 // We don't currently support arrays of scalable types. 142 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 143 144 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 145 Value *Amt = nullptr; 146 if (Scale == 1) { 147 Amt = NumElements; 148 } else { 149 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 150 // Insert before the alloca, not before the cast. 151 Amt = Builder.CreateMul(Amt, NumElements); 152 } 153 154 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 155 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 156 Offset, true); 157 Amt = Builder.CreateAdd(Amt, Off); 158 } 159 160 AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt); 161 New->setAlignment(AI.getAlign()); 162 New->takeName(&AI); 163 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 164 165 // If the allocation has multiple real uses, insert a cast and change all 166 // things that used it to use the new cast. This will also hack on CI, but it 167 // will die soon. 168 if (!AI.hasOneUse()) { 169 // New is the allocation instruction, pointer typed. AI is the original 170 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 171 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 172 replaceInstUsesWith(AI, NewCast); 173 eraseInstFromFunction(AI); 174 } 175 return replaceInstUsesWith(CI, New); 176 } 177 178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 179 /// true for, actually insert the code to evaluate the expression. 180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 181 bool isSigned) { 182 if (Constant *C = dyn_cast<Constant>(V)) { 183 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 184 // If we got a constantexpr back, try to simplify it with DL info. 185 return ConstantFoldConstant(C, DL, &TLI); 186 } 187 188 // Otherwise, it must be an instruction. 189 Instruction *I = cast<Instruction>(V); 190 Instruction *Res = nullptr; 191 unsigned Opc = I->getOpcode(); 192 switch (Opc) { 193 case Instruction::Add: 194 case Instruction::Sub: 195 case Instruction::Mul: 196 case Instruction::And: 197 case Instruction::Or: 198 case Instruction::Xor: 199 case Instruction::AShr: 200 case Instruction::LShr: 201 case Instruction::Shl: 202 case Instruction::UDiv: 203 case Instruction::URem: { 204 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 205 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 206 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 207 break; 208 } 209 case Instruction::Trunc: 210 case Instruction::ZExt: 211 case Instruction::SExt: 212 // If the source type of the cast is the type we're trying for then we can 213 // just return the source. There's no need to insert it because it is not 214 // new. 215 if (I->getOperand(0)->getType() == Ty) 216 return I->getOperand(0); 217 218 // Otherwise, must be the same type of cast, so just reinsert a new one. 219 // This also handles the case of zext(trunc(x)) -> zext(x). 220 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 221 Opc == Instruction::SExt); 222 break; 223 case Instruction::Select: { 224 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 225 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 226 Res = SelectInst::Create(I->getOperand(0), True, False); 227 break; 228 } 229 case Instruction::PHI: { 230 PHINode *OPN = cast<PHINode>(I); 231 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 232 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 233 Value *V = 234 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 235 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 236 } 237 Res = NPN; 238 break; 239 } 240 default: 241 // TODO: Can handle more cases here. 242 llvm_unreachable("Unreachable!"); 243 } 244 245 Res->takeName(I); 246 return InsertNewInstWith(Res, *I); 247 } 248 249 Instruction::CastOps 250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 251 const CastInst *CI2) { 252 Type *SrcTy = CI1->getSrcTy(); 253 Type *MidTy = CI1->getDestTy(); 254 Type *DstTy = CI2->getDestTy(); 255 256 Instruction::CastOps firstOp = CI1->getOpcode(); 257 Instruction::CastOps secondOp = CI2->getOpcode(); 258 Type *SrcIntPtrTy = 259 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 260 Type *MidIntPtrTy = 261 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 262 Type *DstIntPtrTy = 263 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 264 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 265 DstTy, SrcIntPtrTy, MidIntPtrTy, 266 DstIntPtrTy); 267 268 // We don't want to form an inttoptr or ptrtoint that converts to an integer 269 // type that differs from the pointer size. 270 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 271 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 272 Res = 0; 273 274 return Instruction::CastOps(Res); 275 } 276 277 /// Implement the transforms common to all CastInst visitors. 278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 279 Value *Src = CI.getOperand(0); 280 Type *Ty = CI.getType(); 281 282 // Try to eliminate a cast of a cast. 283 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 284 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 285 // The first cast (CSrc) is eliminable so we need to fix up or replace 286 // the second cast (CI). CSrc will then have a good chance of being dead. 287 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 288 // Point debug users of the dying cast to the new one. 289 if (CSrc->hasOneUse()) 290 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 291 return Res; 292 } 293 } 294 295 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 296 // We are casting a select. Try to fold the cast into the select if the 297 // select does not have a compare instruction with matching operand types 298 // or the select is likely better done in a narrow type. 299 // Creating a select with operands that are different sizes than its 300 // condition may inhibit other folds and lead to worse codegen. 301 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 302 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 303 (CI.getOpcode() == Instruction::Trunc && 304 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 305 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 306 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 307 return NV; 308 } 309 } 310 } 311 312 // If we are casting a PHI, then fold the cast into the PHI. 313 if (auto *PN = dyn_cast<PHINode>(Src)) { 314 // Don't do this if it would create a PHI node with an illegal type from a 315 // legal type. 316 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 317 shouldChangeType(CI.getSrcTy(), CI.getType())) 318 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 319 return NV; 320 } 321 322 // Canonicalize a unary shuffle after the cast if neither operation changes 323 // the size or element size of the input vector. 324 // TODO: We could allow size-changing ops if that doesn't harm codegen. 325 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 326 Value *X; 327 ArrayRef<int> Mask; 328 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 329 // TODO: Allow scalable vectors? 330 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 331 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 332 if (SrcTy && DestTy && 333 SrcTy->getNumElements() == DestTy->getNumElements() && 334 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 335 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 336 return new ShuffleVectorInst(CastX, Mask); 337 } 338 } 339 340 return nullptr; 341 } 342 343 /// Constants and extensions/truncates from the destination type are always 344 /// free to be evaluated in that type. This is a helper for canEvaluate*. 345 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 346 if (isa<Constant>(V)) 347 return true; 348 Value *X; 349 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 350 X->getType() == Ty) 351 return true; 352 353 return false; 354 } 355 356 /// Filter out values that we can not evaluate in the destination type for free. 357 /// This is a helper for canEvaluate*. 358 static bool canNotEvaluateInType(Value *V, Type *Ty) { 359 assert(!isa<Constant>(V) && "Constant should already be handled."); 360 if (!isa<Instruction>(V)) 361 return true; 362 // We don't extend or shrink something that has multiple uses -- doing so 363 // would require duplicating the instruction which isn't profitable. 364 if (!V->hasOneUse()) 365 return true; 366 367 return false; 368 } 369 370 /// Return true if we can evaluate the specified expression tree as type Ty 371 /// instead of its larger type, and arrive with the same value. 372 /// This is used by code that tries to eliminate truncates. 373 /// 374 /// Ty will always be a type smaller than V. We should return true if trunc(V) 375 /// can be computed by computing V in the smaller type. If V is an instruction, 376 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 377 /// makes sense if x and y can be efficiently truncated. 378 /// 379 /// This function works on both vectors and scalars. 380 /// 381 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 382 Instruction *CxtI) { 383 if (canAlwaysEvaluateInType(V, Ty)) 384 return true; 385 if (canNotEvaluateInType(V, Ty)) 386 return false; 387 388 auto *I = cast<Instruction>(V); 389 Type *OrigTy = V->getType(); 390 switch (I->getOpcode()) { 391 case Instruction::Add: 392 case Instruction::Sub: 393 case Instruction::Mul: 394 case Instruction::And: 395 case Instruction::Or: 396 case Instruction::Xor: 397 // These operators can all arbitrarily be extended or truncated. 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 399 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 400 401 case Instruction::UDiv: 402 case Instruction::URem: { 403 // UDiv and URem can be truncated if all the truncated bits are zero. 404 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 405 uint32_t BitWidth = Ty->getScalarSizeInBits(); 406 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 407 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 408 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 409 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 410 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 411 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 412 } 413 break; 414 } 415 case Instruction::Shl: { 416 // If we are truncating the result of this SHL, and if it's a shift of an 417 // inrange amount, we can always perform a SHL in a smaller type. 418 uint32_t BitWidth = Ty->getScalarSizeInBits(); 419 KnownBits AmtKnownBits = 420 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 421 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 422 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 423 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 424 break; 425 } 426 case Instruction::LShr: { 427 // If this is a truncate of a logical shr, we can truncate it to a smaller 428 // lshr iff we know that the bits we would otherwise be shifting in are 429 // already zeros. 430 // TODO: It is enough to check that the bits we would be shifting in are 431 // zero - use AmtKnownBits.getMaxValue(). 432 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 433 uint32_t BitWidth = Ty->getScalarSizeInBits(); 434 KnownBits AmtKnownBits = 435 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 436 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 437 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 438 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 439 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 440 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 441 } 442 break; 443 } 444 case Instruction::AShr: { 445 // If this is a truncate of an arithmetic shr, we can truncate it to a 446 // smaller ashr iff we know that all the bits from the sign bit of the 447 // original type and the sign bit of the truncate type are similar. 448 // TODO: It is enough to check that the bits we would be shifting in are 449 // similar to sign bit of the truncate type. 450 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 451 uint32_t BitWidth = Ty->getScalarSizeInBits(); 452 KnownBits AmtKnownBits = 453 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 454 unsigned ShiftedBits = OrigBitWidth - BitWidth; 455 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 456 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 457 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 458 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 459 break; 460 } 461 case Instruction::Trunc: 462 // trunc(trunc(x)) -> trunc(x) 463 return true; 464 case Instruction::ZExt: 465 case Instruction::SExt: 466 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 467 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 468 return true; 469 case Instruction::Select: { 470 SelectInst *SI = cast<SelectInst>(I); 471 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 472 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 473 } 474 case Instruction::PHI: { 475 // We can change a phi if we can change all operands. Note that we never 476 // get into trouble with cyclic PHIs here because we only consider 477 // instructions with a single use. 478 PHINode *PN = cast<PHINode>(I); 479 for (Value *IncValue : PN->incoming_values()) 480 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 481 return false; 482 return true; 483 } 484 default: 485 // TODO: Can handle more cases here. 486 break; 487 } 488 489 return false; 490 } 491 492 /// Given a vector that is bitcast to an integer, optionally logically 493 /// right-shifted, and truncated, convert it to an extractelement. 494 /// Example (big endian): 495 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 496 /// ---> 497 /// extractelement <4 x i32> %X, 1 498 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 499 InstCombinerImpl &IC) { 500 Value *TruncOp = Trunc.getOperand(0); 501 Type *DestType = Trunc.getType(); 502 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 503 return nullptr; 504 505 Value *VecInput = nullptr; 506 ConstantInt *ShiftVal = nullptr; 507 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 508 m_LShr(m_BitCast(m_Value(VecInput)), 509 m_ConstantInt(ShiftVal)))) || 510 !isa<VectorType>(VecInput->getType())) 511 return nullptr; 512 513 VectorType *VecType = cast<VectorType>(VecInput->getType()); 514 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 515 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 516 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 517 518 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 519 return nullptr; 520 521 // If the element type of the vector doesn't match the result type, 522 // bitcast it to a vector type that we can extract from. 523 unsigned NumVecElts = VecWidth / DestWidth; 524 if (VecType->getElementType() != DestType) { 525 VecType = FixedVectorType::get(DestType, NumVecElts); 526 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 527 } 528 529 unsigned Elt = ShiftAmount / DestWidth; 530 if (IC.getDataLayout().isBigEndian()) 531 Elt = NumVecElts - 1 - Elt; 532 533 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 534 } 535 536 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 537 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 538 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 539 assert((isa<VectorType>(Trunc.getSrcTy()) || 540 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 541 "Don't narrow to an illegal scalar type"); 542 543 // Bail out on strange types. It is possible to handle some of these patterns 544 // even with non-power-of-2 sizes, but it is not a likely scenario. 545 Type *DestTy = Trunc.getType(); 546 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 547 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 548 if (!isPowerOf2_32(NarrowWidth)) 549 return nullptr; 550 551 // First, find an or'd pair of opposite shifts: 552 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 553 BinaryOperator *Or0, *Or1; 554 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 555 return nullptr; 556 557 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 558 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 559 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 560 Or0->getOpcode() == Or1->getOpcode()) 561 return nullptr; 562 563 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 564 if (Or0->getOpcode() == BinaryOperator::LShr) { 565 std::swap(Or0, Or1); 566 std::swap(ShVal0, ShVal1); 567 std::swap(ShAmt0, ShAmt1); 568 } 569 assert(Or0->getOpcode() == BinaryOperator::Shl && 570 Or1->getOpcode() == BinaryOperator::LShr && 571 "Illegal or(shift,shift) pair"); 572 573 // Match the shift amount operands for a funnel/rotate pattern. This always 574 // matches a subtraction on the R operand. 575 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 576 // The shift amounts may add up to the narrow bit width: 577 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 578 // If this is a funnel shift (different operands are shifted), then the 579 // shift amount can not over-shift (create poison) in the narrow type. 580 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 581 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 582 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 583 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 584 return L; 585 586 // The following patterns currently only work for rotation patterns. 587 // TODO: Add more general funnel-shift compatible patterns. 588 if (ShVal0 != ShVal1) 589 return nullptr; 590 591 // The shift amount may be masked with negation: 592 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 593 Value *X; 594 unsigned Mask = Width - 1; 595 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 596 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 597 return X; 598 599 // Same as above, but the shift amount may be extended after masking: 600 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 601 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 602 return X; 603 604 return nullptr; 605 }; 606 607 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 608 bool IsFshl = true; // Sub on LSHR. 609 if (!ShAmt) { 610 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 611 IsFshl = false; // Sub on SHL. 612 } 613 if (!ShAmt) 614 return nullptr; 615 616 // The right-shifted value must have high zeros in the wide type (for example 617 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 618 // truncated, so those do not matter. 619 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 620 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 621 return nullptr; 622 623 // We have an unnecessarily wide rotate! 624 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 625 // Narrow the inputs and convert to funnel shift intrinsic: 626 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 627 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 628 Value *X, *Y; 629 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 630 if (ShVal0 != ShVal1) 631 Y = Builder.CreateTrunc(ShVal1, DestTy); 632 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 633 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 634 return CallInst::Create(F, {X, Y, NarrowShAmt}); 635 } 636 637 /// Try to narrow the width of math or bitwise logic instructions by pulling a 638 /// truncate ahead of binary operators. 639 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 640 Type *SrcTy = Trunc.getSrcTy(); 641 Type *DestTy = Trunc.getType(); 642 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 643 unsigned DestWidth = DestTy->getScalarSizeInBits(); 644 645 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 646 return nullptr; 647 648 BinaryOperator *BinOp; 649 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 650 return nullptr; 651 652 Value *BinOp0 = BinOp->getOperand(0); 653 Value *BinOp1 = BinOp->getOperand(1); 654 switch (BinOp->getOpcode()) { 655 case Instruction::And: 656 case Instruction::Or: 657 case Instruction::Xor: 658 case Instruction::Add: 659 case Instruction::Sub: 660 case Instruction::Mul: { 661 Constant *C; 662 if (match(BinOp0, m_Constant(C))) { 663 // trunc (binop C, X) --> binop (trunc C', X) 664 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 665 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 666 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 667 } 668 if (match(BinOp1, m_Constant(C))) { 669 // trunc (binop X, C) --> binop (trunc X, C') 670 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 671 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 672 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 673 } 674 Value *X; 675 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 676 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 677 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 678 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 679 } 680 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 681 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 682 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 683 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 684 } 685 break; 686 } 687 case Instruction::LShr: 688 case Instruction::AShr: { 689 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 690 Value *A; 691 Constant *C; 692 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { 693 unsigned MaxShiftAmt = SrcWidth - DestWidth; 694 // If the shift is small enough, all zero/sign bits created by the shift 695 // are removed by the trunc. 696 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 697 APInt(SrcWidth, MaxShiftAmt)))) { 698 auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); 699 bool IsExact = OldShift->isExact(); 700 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 701 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 702 Value *Shift = 703 OldShift->getOpcode() == Instruction::AShr 704 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 705 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 706 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 707 } 708 } 709 break; 710 } 711 default: break; 712 } 713 714 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 715 return NarrowOr; 716 717 return nullptr; 718 } 719 720 /// Try to narrow the width of a splat shuffle. This could be generalized to any 721 /// shuffle with a constant operand, but we limit the transform to avoid 722 /// creating a shuffle type that targets may not be able to lower effectively. 723 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 724 InstCombiner::BuilderTy &Builder) { 725 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 726 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 727 is_splat(Shuf->getShuffleMask()) && 728 Shuf->getType() == Shuf->getOperand(0)->getType()) { 729 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 730 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 731 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 732 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 733 } 734 735 return nullptr; 736 } 737 738 /// Try to narrow the width of an insert element. This could be generalized for 739 /// any vector constant, but we limit the transform to insertion into undef to 740 /// avoid potential backend problems from unsupported insertion widths. This 741 /// could also be extended to handle the case of inserting a scalar constant 742 /// into a vector variable. 743 static Instruction *shrinkInsertElt(CastInst &Trunc, 744 InstCombiner::BuilderTy &Builder) { 745 Instruction::CastOps Opcode = Trunc.getOpcode(); 746 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 747 "Unexpected instruction for shrinking"); 748 749 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 750 if (!InsElt || !InsElt->hasOneUse()) 751 return nullptr; 752 753 Type *DestTy = Trunc.getType(); 754 Type *DestScalarTy = DestTy->getScalarType(); 755 Value *VecOp = InsElt->getOperand(0); 756 Value *ScalarOp = InsElt->getOperand(1); 757 Value *Index = InsElt->getOperand(2); 758 759 if (match(VecOp, m_Undef())) { 760 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 761 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 762 UndefValue *NarrowUndef = UndefValue::get(DestTy); 763 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 764 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 765 } 766 767 return nullptr; 768 } 769 770 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 771 if (Instruction *Result = commonCastTransforms(Trunc)) 772 return Result; 773 774 Value *Src = Trunc.getOperand(0); 775 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 776 unsigned DestWidth = DestTy->getScalarSizeInBits(); 777 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 778 779 // Attempt to truncate the entire input expression tree to the destination 780 // type. Only do this if the dest type is a simple type, don't convert the 781 // expression tree to something weird like i93 unless the source is also 782 // strange. 783 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 784 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 785 786 // If this cast is a truncate, evaluting in a different type always 787 // eliminates the cast, so it is always a win. 788 LLVM_DEBUG( 789 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 790 " to avoid cast: " 791 << Trunc << '\n'); 792 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 793 assert(Res->getType() == DestTy); 794 return replaceInstUsesWith(Trunc, Res); 795 } 796 797 // For integer types, check if we can shorten the entire input expression to 798 // DestWidth * 2, which won't allow removing the truncate, but reducing the 799 // width may enable further optimizations, e.g. allowing for larger 800 // vectorization factors. 801 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 802 if (DestWidth * 2 < SrcWidth) { 803 auto *NewDestTy = DestITy->getExtendedType(); 804 if (shouldChangeType(SrcTy, NewDestTy) && 805 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 806 LLVM_DEBUG( 807 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 808 " to reduce the width of operand of" 809 << Trunc << '\n'); 810 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 811 return new TruncInst(Res, DestTy); 812 } 813 } 814 } 815 816 // Test if the trunc is the user of a select which is part of a 817 // minimum or maximum operation. If so, don't do any more simplification. 818 // Even simplifying demanded bits can break the canonical form of a 819 // min/max. 820 Value *LHS, *RHS; 821 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 822 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 823 return nullptr; 824 825 // See if we can simplify any instructions used by the input whose sole 826 // purpose is to compute bits we don't care about. 827 if (SimplifyDemandedInstructionBits(Trunc)) 828 return &Trunc; 829 830 if (DestWidth == 1) { 831 Value *Zero = Constant::getNullValue(SrcTy); 832 if (DestTy->isIntegerTy()) { 833 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 834 // TODO: We canonicalize to more instructions here because we are probably 835 // lacking equivalent analysis for trunc relative to icmp. There may also 836 // be codegen concerns. If those trunc limitations were removed, we could 837 // remove this transform. 838 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 839 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 840 } 841 842 // For vectors, we do not canonicalize all truncs to icmp, so optimize 843 // patterns that would be covered within visitICmpInst. 844 Value *X; 845 Constant *C; 846 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 847 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 848 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 849 Constant *MaskC = ConstantExpr::getShl(One, C); 850 Value *And = Builder.CreateAnd(X, MaskC); 851 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 852 } 853 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 854 m_Deferred(X))))) { 855 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 856 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 857 Constant *MaskC = ConstantExpr::getShl(One, C); 858 MaskC = ConstantExpr::getOr(MaskC, One); 859 Value *And = Builder.CreateAnd(X, MaskC); 860 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 861 } 862 } 863 864 Value *A, *B; 865 Constant *C; 866 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 867 unsigned AWidth = A->getType()->getScalarSizeInBits(); 868 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 869 auto *OldSh = cast<Instruction>(Src); 870 bool IsExact = OldSh->isExact(); 871 872 // If the shift is small enough, all zero bits created by the shift are 873 // removed by the trunc. 874 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 875 APInt(SrcWidth, MaxShiftAmt)))) { 876 // trunc (lshr (sext A), C) --> ashr A, C 877 if (A->getType() == DestTy) { 878 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 879 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 880 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 881 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 882 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 883 : BinaryOperator::CreateAShr(A, ShAmt); 884 } 885 // The types are mismatched, so create a cast after shifting: 886 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 887 if (Src->hasOneUse()) { 888 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 889 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 890 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 891 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 892 return CastInst::CreateIntegerCast(Shift, DestTy, true); 893 } 894 } 895 // TODO: Mask high bits with 'and'. 896 } 897 898 if (Instruction *I = narrowBinOp(Trunc)) 899 return I; 900 901 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 902 return I; 903 904 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 905 return I; 906 907 if (Src->hasOneUse() && 908 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 909 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 910 // dest type is native and cst < dest size. 911 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 912 !match(A, m_Shr(m_Value(), m_Constant()))) { 913 // Skip shifts of shift by constants. It undoes a combine in 914 // FoldShiftByConstant and is the extend in reg pattern. 915 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 916 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 917 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 918 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 919 ConstantExpr::getTrunc(C, DestTy)); 920 } 921 } 922 } 923 924 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 925 return I; 926 927 // Whenever an element is extracted from a vector, and then truncated, 928 // canonicalize by converting it to a bitcast followed by an 929 // extractelement. 930 // 931 // Example (little endian): 932 // trunc (extractelement <4 x i64> %X, 0) to i32 933 // ---> 934 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 935 Value *VecOp; 936 ConstantInt *Cst; 937 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 938 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 939 auto VecElts = VecOpTy->getElementCount(); 940 941 // A badly fit destination size would result in an invalid cast. 942 if (SrcWidth % DestWidth == 0) { 943 uint64_t TruncRatio = SrcWidth / DestWidth; 944 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 945 uint64_t VecOpIdx = Cst->getZExtValue(); 946 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 947 : VecOpIdx * TruncRatio; 948 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 949 "overflow 32-bits"); 950 951 auto *BitCastTo = 952 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 953 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 954 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 955 } 956 } 957 958 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 959 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 960 m_Value(B))))) { 961 unsigned AWidth = A->getType()->getScalarSizeInBits(); 962 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 963 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 964 Value *NarrowCtlz = 965 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 966 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 967 } 968 } 969 970 if (match(Src, m_VScale(DL))) { 971 if (Trunc.getFunction() && 972 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 973 Attribute Attr = 974 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 975 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 976 if (Log2_32(MaxVScale.getValue()) < DestWidth) { 977 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 978 return replaceInstUsesWith(Trunc, VScale); 979 } 980 } 981 } 982 } 983 984 return nullptr; 985 } 986 987 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext) { 988 // If we are just checking for a icmp eq of a single bit and zext'ing it 989 // to an integer, then shift the bit to the appropriate place and then 990 // cast to integer to avoid the comparison. 991 992 // FIXME: This set of transforms does not check for extra uses and/or creates 993 // an extra instruction (an optional final cast is not included 994 // in the transform comments). We may also want to favor icmp over 995 // shifts in cases of equal instructions because icmp has better 996 // analysis in general (invert the transform). 997 998 const APInt *Op1CV; 999 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 1000 1001 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 1002 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { 1003 Value *In = Cmp->getOperand(0); 1004 Value *Sh = ConstantInt::get(In->getType(), 1005 In->getType()->getScalarSizeInBits() - 1); 1006 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 1007 if (In->getType() != Zext.getType()) 1008 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 1009 1010 return replaceInstUsesWith(Zext, In); 1011 } 1012 1013 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 1014 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1015 // zext (X == 1) to i32 --> X iff X has only the low bit set. 1016 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 1017 // zext (X != 0) to i32 --> X iff X has only the low bit set. 1018 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 1019 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 1020 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1021 if ((Op1CV->isZero() || Op1CV->isPowerOf2()) && 1022 // This only works for EQ and NE 1023 Cmp->isEquality()) { 1024 // If Op1C some other power of two, convert: 1025 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 1026 1027 APInt KnownZeroMask(~Known.Zero); 1028 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 1029 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1030 if (!Op1CV->isZero() && (*Op1CV != KnownZeroMask)) { 1031 // (X&4) == 2 --> false 1032 // (X&4) != 2 --> true 1033 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 1034 return replaceInstUsesWith(Zext, Res); 1035 } 1036 1037 uint32_t ShAmt = KnownZeroMask.logBase2(); 1038 Value *In = Cmp->getOperand(0); 1039 if (ShAmt) { 1040 // Perform a logical shr by shiftamt. 1041 // Insert the shift to put the result in the low bit. 1042 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1043 In->getName() + ".lobit"); 1044 } 1045 1046 if (!Op1CV->isZero() == isNE) { // Toggle the low bit. 1047 Constant *One = ConstantInt::get(In->getType(), 1); 1048 In = Builder.CreateXor(In, One); 1049 } 1050 1051 if (Zext.getType() == In->getType()) 1052 return replaceInstUsesWith(Zext, In); 1053 1054 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1055 return replaceInstUsesWith(Zext, IntCast); 1056 } 1057 } 1058 } 1059 1060 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1061 // Test if a bit is clear/set using a shifted-one mask: 1062 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 1063 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 1064 Value *X, *ShAmt; 1065 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 1066 match(Cmp->getOperand(0), 1067 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 1068 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1069 X = Builder.CreateNot(X); 1070 Value *Lshr = Builder.CreateLShr(X, ShAmt); 1071 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1072 return replaceInstUsesWith(Zext, And1); 1073 } 1074 1075 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1076 // It is also profitable to transform icmp eq into not(xor(A, B)) because 1077 // that may lead to additional simplifications. 1078 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1079 Value *LHS = Cmp->getOperand(0); 1080 Value *RHS = Cmp->getOperand(1); 1081 1082 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1083 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1084 1085 if (KnownLHS == KnownRHS) { 1086 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1087 APInt UnknownBit = ~KnownBits; 1088 if (UnknownBit.countPopulation() == 1) { 1089 Value *Result = Builder.CreateXor(LHS, RHS); 1090 1091 // Mask off any bits that are set and won't be shifted away. 1092 if (KnownLHS.One.uge(UnknownBit)) 1093 Result = Builder.CreateAnd(Result, 1094 ConstantInt::get(ITy, UnknownBit)); 1095 1096 // Shift the bit we're testing down to the lsb. 1097 Result = Builder.CreateLShr( 1098 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1099 1100 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1101 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1102 Result->takeName(Cmp); 1103 return replaceInstUsesWith(Zext, Result); 1104 } 1105 } 1106 } 1107 } 1108 1109 return nullptr; 1110 } 1111 1112 /// Determine if the specified value can be computed in the specified wider type 1113 /// and produce the same low bits. If not, return false. 1114 /// 1115 /// If this function returns true, it can also return a non-zero number of bits 1116 /// (in BitsToClear) which indicates that the value it computes is correct for 1117 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1118 /// out. For example, to promote something like: 1119 /// 1120 /// %B = trunc i64 %A to i32 1121 /// %C = lshr i32 %B, 8 1122 /// %E = zext i32 %C to i64 1123 /// 1124 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1125 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1126 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1127 /// clear the top bits anyway, doing this has no extra cost. 1128 /// 1129 /// This function works on both vectors and scalars. 1130 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1131 InstCombinerImpl &IC, Instruction *CxtI) { 1132 BitsToClear = 0; 1133 if (canAlwaysEvaluateInType(V, Ty)) 1134 return true; 1135 if (canNotEvaluateInType(V, Ty)) 1136 return false; 1137 1138 auto *I = cast<Instruction>(V); 1139 unsigned Tmp; 1140 switch (I->getOpcode()) { 1141 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1142 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1143 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1144 return true; 1145 case Instruction::And: 1146 case Instruction::Or: 1147 case Instruction::Xor: 1148 case Instruction::Add: 1149 case Instruction::Sub: 1150 case Instruction::Mul: 1151 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1152 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1153 return false; 1154 // These can all be promoted if neither operand has 'bits to clear'. 1155 if (BitsToClear == 0 && Tmp == 0) 1156 return true; 1157 1158 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1159 // other side, BitsToClear is ok. 1160 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1161 // We use MaskedValueIsZero here for generality, but the case we care 1162 // about the most is constant RHS. 1163 unsigned VSize = V->getType()->getScalarSizeInBits(); 1164 if (IC.MaskedValueIsZero(I->getOperand(1), 1165 APInt::getHighBitsSet(VSize, BitsToClear), 1166 0, CxtI)) { 1167 // If this is an And instruction and all of the BitsToClear are 1168 // known to be zero we can reset BitsToClear. 1169 if (I->getOpcode() == Instruction::And) 1170 BitsToClear = 0; 1171 return true; 1172 } 1173 } 1174 1175 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1176 return false; 1177 1178 case Instruction::Shl: { 1179 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1180 // upper bits we can reduce BitsToClear by the shift amount. 1181 const APInt *Amt; 1182 if (match(I->getOperand(1), m_APInt(Amt))) { 1183 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1184 return false; 1185 uint64_t ShiftAmt = Amt->getZExtValue(); 1186 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1187 return true; 1188 } 1189 return false; 1190 } 1191 case Instruction::LShr: { 1192 // We can promote lshr(x, cst) if we can promote x. This requires the 1193 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1194 const APInt *Amt; 1195 if (match(I->getOperand(1), m_APInt(Amt))) { 1196 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1197 return false; 1198 BitsToClear += Amt->getZExtValue(); 1199 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1200 BitsToClear = V->getType()->getScalarSizeInBits(); 1201 return true; 1202 } 1203 // Cannot promote variable LSHR. 1204 return false; 1205 } 1206 case Instruction::Select: 1207 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1208 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1209 // TODO: If important, we could handle the case when the BitsToClear are 1210 // known zero in the disagreeing side. 1211 Tmp != BitsToClear) 1212 return false; 1213 return true; 1214 1215 case Instruction::PHI: { 1216 // We can change a phi if we can change all operands. Note that we never 1217 // get into trouble with cyclic PHIs here because we only consider 1218 // instructions with a single use. 1219 PHINode *PN = cast<PHINode>(I); 1220 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1221 return false; 1222 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1223 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1224 // TODO: If important, we could handle the case when the BitsToClear 1225 // are known zero in the disagreeing input. 1226 Tmp != BitsToClear) 1227 return false; 1228 return true; 1229 } 1230 default: 1231 // TODO: Can handle more cases here. 1232 return false; 1233 } 1234 } 1235 1236 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1237 // If this zero extend is only used by a truncate, let the truncate be 1238 // eliminated before we try to optimize this zext. 1239 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1240 return nullptr; 1241 1242 // If one of the common conversion will work, do it. 1243 if (Instruction *Result = commonCastTransforms(CI)) 1244 return Result; 1245 1246 Value *Src = CI.getOperand(0); 1247 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1248 1249 // Try to extend the entire expression tree to the wide destination type. 1250 unsigned BitsToClear; 1251 if (shouldChangeType(SrcTy, DestTy) && 1252 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1253 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1254 "Can't clear more bits than in SrcTy"); 1255 1256 // Okay, we can transform this! Insert the new expression now. 1257 LLVM_DEBUG( 1258 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1259 " to avoid zero extend: " 1260 << CI << '\n'); 1261 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1262 assert(Res->getType() == DestTy); 1263 1264 // Preserve debug values referring to Src if the zext is its last use. 1265 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1266 if (SrcOp->hasOneUse()) 1267 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1268 1269 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1270 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1271 1272 // If the high bits are already filled with zeros, just replace this 1273 // cast with the result. 1274 if (MaskedValueIsZero(Res, 1275 APInt::getHighBitsSet(DestBitSize, 1276 DestBitSize-SrcBitsKept), 1277 0, &CI)) 1278 return replaceInstUsesWith(CI, Res); 1279 1280 // We need to emit an AND to clear the high bits. 1281 Constant *C = ConstantInt::get(Res->getType(), 1282 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1283 return BinaryOperator::CreateAnd(Res, C); 1284 } 1285 1286 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1287 // types and if the sizes are just right we can convert this into a logical 1288 // 'and' which will be much cheaper than the pair of casts. 1289 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1290 // TODO: Subsume this into EvaluateInDifferentType. 1291 1292 // Get the sizes of the types involved. We know that the intermediate type 1293 // will be smaller than A or C, but don't know the relation between A and C. 1294 Value *A = CSrc->getOperand(0); 1295 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1296 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1297 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1298 // If we're actually extending zero bits, then if 1299 // SrcSize < DstSize: zext(a & mask) 1300 // SrcSize == DstSize: a & mask 1301 // SrcSize > DstSize: trunc(a) & mask 1302 if (SrcSize < DstSize) { 1303 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1304 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1305 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1306 return new ZExtInst(And, CI.getType()); 1307 } 1308 1309 if (SrcSize == DstSize) { 1310 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1311 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1312 AndValue)); 1313 } 1314 if (SrcSize > DstSize) { 1315 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1316 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1317 return BinaryOperator::CreateAnd(Trunc, 1318 ConstantInt::get(Trunc->getType(), 1319 AndValue)); 1320 } 1321 } 1322 1323 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1324 return transformZExtICmp(Cmp, CI); 1325 1326 // zext(trunc(X) & C) -> (X & zext(C)). 1327 Constant *C; 1328 Value *X; 1329 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1330 X->getType() == CI.getType()) 1331 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1332 1333 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1334 Value *And; 1335 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1336 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1337 X->getType() == CI.getType()) { 1338 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1339 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1340 } 1341 1342 if (match(Src, m_VScale(DL))) { 1343 if (CI.getFunction() && 1344 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1345 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1346 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1347 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1348 if (Log2_32(MaxVScale.getValue()) < TypeWidth) { 1349 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1350 return replaceInstUsesWith(CI, VScale); 1351 } 1352 } 1353 } 1354 } 1355 1356 return nullptr; 1357 } 1358 1359 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1360 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1361 Instruction &CI) { 1362 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1363 ICmpInst::Predicate Pred = ICI->getPredicate(); 1364 1365 // Don't bother if Op1 isn't of vector or integer type. 1366 if (!Op1->getType()->isIntOrIntVectorTy()) 1367 return nullptr; 1368 1369 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1370 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1371 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1372 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1373 Value *Sh = ConstantInt::get(Op0->getType(), 1374 Op0->getType()->getScalarSizeInBits() - 1); 1375 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1376 if (In->getType() != CI.getType()) 1377 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1378 1379 if (Pred == ICmpInst::ICMP_SGT) 1380 In = Builder.CreateNot(In, In->getName() + ".not"); 1381 return replaceInstUsesWith(CI, In); 1382 } 1383 1384 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1385 // If we know that only one bit of the LHS of the icmp can be set and we 1386 // have an equality comparison with zero or a power of 2, we can transform 1387 // the icmp and sext into bitwise/integer operations. 1388 if (ICI->hasOneUse() && 1389 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1390 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1391 1392 APInt KnownZeroMask(~Known.Zero); 1393 if (KnownZeroMask.isPowerOf2()) { 1394 Value *In = ICI->getOperand(0); 1395 1396 // If the icmp tests for a known zero bit we can constant fold it. 1397 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1398 Value *V = Pred == ICmpInst::ICMP_NE ? 1399 ConstantInt::getAllOnesValue(CI.getType()) : 1400 ConstantInt::getNullValue(CI.getType()); 1401 return replaceInstUsesWith(CI, V); 1402 } 1403 1404 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1405 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1406 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1407 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1408 // Perform a right shift to place the desired bit in the LSB. 1409 if (ShiftAmt) 1410 In = Builder.CreateLShr(In, 1411 ConstantInt::get(In->getType(), ShiftAmt)); 1412 1413 // At this point "In" is either 1 or 0. Subtract 1 to turn 1414 // {1, 0} -> {0, -1}. 1415 In = Builder.CreateAdd(In, 1416 ConstantInt::getAllOnesValue(In->getType()), 1417 "sext"); 1418 } else { 1419 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1420 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1421 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1422 // Perform a left shift to place the desired bit in the MSB. 1423 if (ShiftAmt) 1424 In = Builder.CreateShl(In, 1425 ConstantInt::get(In->getType(), ShiftAmt)); 1426 1427 // Distribute the bit over the whole bit width. 1428 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1429 KnownZeroMask.getBitWidth() - 1), "sext"); 1430 } 1431 1432 if (CI.getType() == In->getType()) 1433 return replaceInstUsesWith(CI, In); 1434 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1435 } 1436 } 1437 } 1438 1439 return nullptr; 1440 } 1441 1442 /// Return true if we can take the specified value and return it as type Ty 1443 /// without inserting any new casts and without changing the value of the common 1444 /// low bits. This is used by code that tries to promote integer operations to 1445 /// a wider types will allow us to eliminate the extension. 1446 /// 1447 /// This function works on both vectors and scalars. 1448 /// 1449 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1450 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1451 "Can't sign extend type to a smaller type"); 1452 if (canAlwaysEvaluateInType(V, Ty)) 1453 return true; 1454 if (canNotEvaluateInType(V, Ty)) 1455 return false; 1456 1457 auto *I = cast<Instruction>(V); 1458 switch (I->getOpcode()) { 1459 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1460 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1461 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1462 return true; 1463 case Instruction::And: 1464 case Instruction::Or: 1465 case Instruction::Xor: 1466 case Instruction::Add: 1467 case Instruction::Sub: 1468 case Instruction::Mul: 1469 // These operators can all arbitrarily be extended if their inputs can. 1470 return canEvaluateSExtd(I->getOperand(0), Ty) && 1471 canEvaluateSExtd(I->getOperand(1), Ty); 1472 1473 //case Instruction::Shl: TODO 1474 //case Instruction::LShr: TODO 1475 1476 case Instruction::Select: 1477 return canEvaluateSExtd(I->getOperand(1), Ty) && 1478 canEvaluateSExtd(I->getOperand(2), Ty); 1479 1480 case Instruction::PHI: { 1481 // We can change a phi if we can change all operands. Note that we never 1482 // get into trouble with cyclic PHIs here because we only consider 1483 // instructions with a single use. 1484 PHINode *PN = cast<PHINode>(I); 1485 for (Value *IncValue : PN->incoming_values()) 1486 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1487 return true; 1488 } 1489 default: 1490 // TODO: Can handle more cases here. 1491 break; 1492 } 1493 1494 return false; 1495 } 1496 1497 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1498 // If this sign extend is only used by a truncate, let the truncate be 1499 // eliminated before we try to optimize this sext. 1500 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1501 return nullptr; 1502 1503 if (Instruction *I = commonCastTransforms(CI)) 1504 return I; 1505 1506 Value *Src = CI.getOperand(0); 1507 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1508 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1509 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1510 1511 // If the value being extended is zero or positive, use a zext instead. 1512 if (isKnownNonNegative(Src, DL, 0, &AC, &CI, &DT)) 1513 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1514 1515 // Try to extend the entire expression tree to the wide destination type. 1516 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1517 // Okay, we can transform this! Insert the new expression now. 1518 LLVM_DEBUG( 1519 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1520 " to avoid sign extend: " 1521 << CI << '\n'); 1522 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1523 assert(Res->getType() == DestTy); 1524 1525 // If the high bits are already filled with sign bit, just replace this 1526 // cast with the result. 1527 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1528 return replaceInstUsesWith(CI, Res); 1529 1530 // We need to emit a shl + ashr to do the sign extend. 1531 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1532 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1533 ShAmt); 1534 } 1535 1536 Value *X; 1537 if (match(Src, m_Trunc(m_Value(X)))) { 1538 // If the input has more sign bits than bits truncated, then convert 1539 // directly to final type. 1540 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1541 if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize) 1542 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1543 1544 // If input is a trunc from the destination type, then convert into shifts. 1545 if (Src->hasOneUse() && X->getType() == DestTy) { 1546 // sext (trunc X) --> ashr (shl X, C), C 1547 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1548 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1549 } 1550 1551 // If we are replacing shifted-in high zero bits with sign bits, convert 1552 // the logic shift to arithmetic shift and eliminate the cast to 1553 // intermediate type: 1554 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1555 Value *Y; 1556 if (Src->hasOneUse() && 1557 match(X, m_LShr(m_Value(Y), 1558 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1559 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1560 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1561 } 1562 } 1563 1564 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1565 return transformSExtICmp(ICI, CI); 1566 1567 // If the input is a shl/ashr pair of a same constant, then this is a sign 1568 // extension from a smaller value. If we could trust arbitrary bitwidth 1569 // integers, we could turn this into a truncate to the smaller bit and then 1570 // use a sext for the whole extension. Since we don't, look deeper and check 1571 // for a truncate. If the source and dest are the same type, eliminate the 1572 // trunc and extend and just do shifts. For example, turn: 1573 // %a = trunc i32 %i to i8 1574 // %b = shl i8 %a, C 1575 // %c = ashr i8 %b, C 1576 // %d = sext i8 %c to i32 1577 // into: 1578 // %a = shl i32 %i, 32-(8-C) 1579 // %d = ashr i32 %a, 32-(8-C) 1580 Value *A = nullptr; 1581 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1582 Constant *BA = nullptr, *CA = nullptr; 1583 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1584 m_Constant(CA))) && 1585 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1586 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1587 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1588 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1589 Constant *NewShAmt = ConstantExpr::getSub( 1590 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1591 NumLowbitsLeft); 1592 NewShAmt = 1593 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1594 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1595 return BinaryOperator::CreateAShr(A, NewShAmt); 1596 } 1597 1598 // Splatting a bit of constant-index across a value: 1599 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1600 // If the dest type is different, use a cast (adjust use check). 1601 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1602 m_SpecificInt(SrcBitSize - 1))))) { 1603 Type *XTy = X->getType(); 1604 unsigned XBitSize = XTy->getScalarSizeInBits(); 1605 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); 1606 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); 1607 if (XTy == DestTy) 1608 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), 1609 AshrAmtC); 1610 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { 1611 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); 1612 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1613 } 1614 } 1615 1616 if (match(Src, m_VScale(DL))) { 1617 if (CI.getFunction() && 1618 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1619 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1620 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1621 if (Log2_32(MaxVScale.getValue()) < (SrcBitSize - 1)) { 1622 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1623 return replaceInstUsesWith(CI, VScale); 1624 } 1625 } 1626 } 1627 } 1628 1629 return nullptr; 1630 } 1631 1632 /// Return a Constant* for the specified floating-point constant if it fits 1633 /// in the specified FP type without changing its value. 1634 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1635 bool losesInfo; 1636 APFloat F = CFP->getValueAPF(); 1637 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1638 return !losesInfo; 1639 } 1640 1641 static Type *shrinkFPConstant(ConstantFP *CFP) { 1642 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1643 return nullptr; // No constant folding of this. 1644 // See if the value can be truncated to half and then reextended. 1645 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1646 return Type::getHalfTy(CFP->getContext()); 1647 // See if the value can be truncated to float and then reextended. 1648 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1649 return Type::getFloatTy(CFP->getContext()); 1650 if (CFP->getType()->isDoubleTy()) 1651 return nullptr; // Won't shrink. 1652 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1653 return Type::getDoubleTy(CFP->getContext()); 1654 // Don't try to shrink to various long double types. 1655 return nullptr; 1656 } 1657 1658 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1659 // type we can safely truncate all elements to. 1660 // TODO: Make these support undef elements. 1661 static Type *shrinkFPConstantVector(Value *V) { 1662 auto *CV = dyn_cast<Constant>(V); 1663 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1664 if (!CV || !CVVTy) 1665 return nullptr; 1666 1667 Type *MinType = nullptr; 1668 1669 unsigned NumElts = CVVTy->getNumElements(); 1670 1671 // For fixed-width vectors we find the minimal type by looking 1672 // through the constant values of the vector. 1673 for (unsigned i = 0; i != NumElts; ++i) { 1674 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1675 if (!CFP) 1676 return nullptr; 1677 1678 Type *T = shrinkFPConstant(CFP); 1679 if (!T) 1680 return nullptr; 1681 1682 // If we haven't found a type yet or this type has a larger mantissa than 1683 // our previous type, this is our new minimal type. 1684 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1685 MinType = T; 1686 } 1687 1688 // Make a vector type from the minimal type. 1689 return FixedVectorType::get(MinType, NumElts); 1690 } 1691 1692 /// Find the minimum FP type we can safely truncate to. 1693 static Type *getMinimumFPType(Value *V) { 1694 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1695 return FPExt->getOperand(0)->getType(); 1696 1697 // If this value is a constant, return the constant in the smallest FP type 1698 // that can accurately represent it. This allows us to turn 1699 // (float)((double)X+2.0) into x+2.0f. 1700 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1701 if (Type *T = shrinkFPConstant(CFP)) 1702 return T; 1703 1704 // We can only correctly find a minimum type for a scalable vector when it is 1705 // a splat. For splats of constant values the fpext is wrapped up as a 1706 // ConstantExpr. 1707 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1708 if (FPCExt->getOpcode() == Instruction::FPExt) 1709 return FPCExt->getOperand(0)->getType(); 1710 1711 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1712 // vectors 1713 if (Type *T = shrinkFPConstantVector(V)) 1714 return T; 1715 1716 return V->getType(); 1717 } 1718 1719 /// Return true if the cast from integer to FP can be proven to be exact for all 1720 /// possible inputs (the conversion does not lose any precision). 1721 static bool isKnownExactCastIntToFP(CastInst &I) { 1722 CastInst::CastOps Opcode = I.getOpcode(); 1723 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1724 "Unexpected cast"); 1725 Value *Src = I.getOperand(0); 1726 Type *SrcTy = Src->getType(); 1727 Type *FPTy = I.getType(); 1728 bool IsSigned = Opcode == Instruction::SIToFP; 1729 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1730 1731 // Easy case - if the source integer type has less bits than the FP mantissa, 1732 // then the cast must be exact. 1733 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1734 if (SrcSize <= DestNumSigBits) 1735 return true; 1736 1737 // Cast from FP to integer and back to FP is independent of the intermediate 1738 // integer width because of poison on overflow. 1739 Value *F; 1740 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1741 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1742 // potential rounding of negative FP input values. 1743 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1744 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1745 SrcNumSigBits++; 1746 1747 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1748 // significant bits than the destination (and make sure neither type is 1749 // weird -- ppc_fp128). 1750 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1751 SrcNumSigBits <= DestNumSigBits) 1752 return true; 1753 } 1754 1755 // TODO: 1756 // Try harder to find if the source integer type has less significant bits. 1757 // For example, compute number of sign bits or compute low bit mask. 1758 return false; 1759 } 1760 1761 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1762 if (Instruction *I = commonCastTransforms(FPT)) 1763 return I; 1764 1765 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1766 // simplify this expression to avoid one or more of the trunc/extend 1767 // operations if we can do so without changing the numerical results. 1768 // 1769 // The exact manner in which the widths of the operands interact to limit 1770 // what we can and cannot do safely varies from operation to operation, and 1771 // is explained below in the various case statements. 1772 Type *Ty = FPT.getType(); 1773 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1774 if (BO && BO->hasOneUse()) { 1775 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1776 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1777 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1778 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1779 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1780 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1781 unsigned DstWidth = Ty->getFPMantissaWidth(); 1782 switch (BO->getOpcode()) { 1783 default: break; 1784 case Instruction::FAdd: 1785 case Instruction::FSub: 1786 // For addition and subtraction, the infinitely precise result can 1787 // essentially be arbitrarily wide; proving that double rounding 1788 // will not occur because the result of OpI is exact (as we will for 1789 // FMul, for example) is hopeless. However, we *can* nonetheless 1790 // frequently know that double rounding cannot occur (or that it is 1791 // innocuous) by taking advantage of the specific structure of 1792 // infinitely-precise results that admit double rounding. 1793 // 1794 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1795 // to represent both sources, we can guarantee that the double 1796 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1797 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1798 // for proof of this fact). 1799 // 1800 // Note: Figueroa does not consider the case where DstFormat != 1801 // SrcFormat. It's possible (likely even!) that this analysis 1802 // could be tightened for those cases, but they are rare (the main 1803 // case of interest here is (float)((double)float + float)). 1804 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1805 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1806 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1807 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1808 RI->copyFastMathFlags(BO); 1809 return RI; 1810 } 1811 break; 1812 case Instruction::FMul: 1813 // For multiplication, the infinitely precise result has at most 1814 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1815 // that such a value can be exactly represented, then no double 1816 // rounding can possibly occur; we can safely perform the operation 1817 // in the destination format if it can represent both sources. 1818 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1819 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1820 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1821 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1822 } 1823 break; 1824 case Instruction::FDiv: 1825 // For division, we use again use the bound from Figueroa's 1826 // dissertation. I am entirely certain that this bound can be 1827 // tightened in the unbalanced operand case by an analysis based on 1828 // the diophantine rational approximation bound, but the well-known 1829 // condition used here is a good conservative first pass. 1830 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1831 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1832 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1833 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1834 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1835 } 1836 break; 1837 case Instruction::FRem: { 1838 // Remainder is straightforward. Remainder is always exact, so the 1839 // type of OpI doesn't enter into things at all. We simply evaluate 1840 // in whichever source type is larger, then convert to the 1841 // destination type. 1842 if (SrcWidth == OpWidth) 1843 break; 1844 Value *LHS, *RHS; 1845 if (LHSWidth == SrcWidth) { 1846 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1847 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1848 } else { 1849 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1850 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1851 } 1852 1853 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1854 return CastInst::CreateFPCast(ExactResult, Ty); 1855 } 1856 } 1857 } 1858 1859 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1860 Value *X; 1861 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1862 if (Op && Op->hasOneUse()) { 1863 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1864 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1865 if (isa<FPMathOperator>(Op)) 1866 Builder.setFastMathFlags(Op->getFastMathFlags()); 1867 1868 if (match(Op, m_FNeg(m_Value(X)))) { 1869 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1870 1871 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1872 } 1873 1874 // If we are truncating a select that has an extended operand, we can 1875 // narrow the other operand and do the select as a narrow op. 1876 Value *Cond, *X, *Y; 1877 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1878 X->getType() == Ty) { 1879 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1880 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1881 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1882 return replaceInstUsesWith(FPT, Sel); 1883 } 1884 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1885 X->getType() == Ty) { 1886 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1887 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1888 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1889 return replaceInstUsesWith(FPT, Sel); 1890 } 1891 } 1892 1893 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1894 switch (II->getIntrinsicID()) { 1895 default: break; 1896 case Intrinsic::ceil: 1897 case Intrinsic::fabs: 1898 case Intrinsic::floor: 1899 case Intrinsic::nearbyint: 1900 case Intrinsic::rint: 1901 case Intrinsic::round: 1902 case Intrinsic::roundeven: 1903 case Intrinsic::trunc: { 1904 Value *Src = II->getArgOperand(0); 1905 if (!Src->hasOneUse()) 1906 break; 1907 1908 // Except for fabs, this transformation requires the input of the unary FP 1909 // operation to be itself an fpext from the type to which we're 1910 // truncating. 1911 if (II->getIntrinsicID() != Intrinsic::fabs) { 1912 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1913 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1914 break; 1915 } 1916 1917 // Do unary FP operation on smaller type. 1918 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1919 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1920 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1921 II->getIntrinsicID(), Ty); 1922 SmallVector<OperandBundleDef, 1> OpBundles; 1923 II->getOperandBundlesAsDefs(OpBundles); 1924 CallInst *NewCI = 1925 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1926 NewCI->copyFastMathFlags(II); 1927 return NewCI; 1928 } 1929 } 1930 } 1931 1932 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1933 return I; 1934 1935 Value *Src = FPT.getOperand(0); 1936 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1937 auto *FPCast = cast<CastInst>(Src); 1938 if (isKnownExactCastIntToFP(*FPCast)) 1939 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1940 } 1941 1942 return nullptr; 1943 } 1944 1945 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1946 // If the source operand is a cast from integer to FP and known exact, then 1947 // cast the integer operand directly to the destination type. 1948 Type *Ty = FPExt.getType(); 1949 Value *Src = FPExt.getOperand(0); 1950 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1951 auto *FPCast = cast<CastInst>(Src); 1952 if (isKnownExactCastIntToFP(*FPCast)) 1953 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1954 } 1955 1956 return commonCastTransforms(FPExt); 1957 } 1958 1959 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1960 /// This is safe if the intermediate type has enough bits in its mantissa to 1961 /// accurately represent all values of X. For example, this won't work with 1962 /// i64 -> float -> i64. 1963 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1964 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1965 return nullptr; 1966 1967 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1968 Value *X = OpI->getOperand(0); 1969 Type *XType = X->getType(); 1970 Type *DestType = FI.getType(); 1971 bool IsOutputSigned = isa<FPToSIInst>(FI); 1972 1973 // Since we can assume the conversion won't overflow, our decision as to 1974 // whether the input will fit in the float should depend on the minimum 1975 // of the input range and output range. 1976 1977 // This means this is also safe for a signed input and unsigned output, since 1978 // a negative input would lead to undefined behavior. 1979 if (!isKnownExactCastIntToFP(*OpI)) { 1980 // The first cast may not round exactly based on the source integer width 1981 // and FP width, but the overflow UB rules can still allow this to fold. 1982 // If the destination type is narrow, that means the intermediate FP value 1983 // must be large enough to hold the source value exactly. 1984 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1985 int OutputSize = (int)DestType->getScalarSizeInBits(); 1986 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1987 return nullptr; 1988 } 1989 1990 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1991 bool IsInputSigned = isa<SIToFPInst>(OpI); 1992 if (IsInputSigned && IsOutputSigned) 1993 return new SExtInst(X, DestType); 1994 return new ZExtInst(X, DestType); 1995 } 1996 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1997 return new TruncInst(X, DestType); 1998 1999 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 2000 return replaceInstUsesWith(FI, X); 2001 } 2002 2003 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 2004 if (Instruction *I = foldItoFPtoI(FI)) 2005 return I; 2006 2007 return commonCastTransforms(FI); 2008 } 2009 2010 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 2011 if (Instruction *I = foldItoFPtoI(FI)) 2012 return I; 2013 2014 return commonCastTransforms(FI); 2015 } 2016 2017 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 2018 return commonCastTransforms(CI); 2019 } 2020 2021 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 2022 return commonCastTransforms(CI); 2023 } 2024 2025 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 2026 // If the source integer type is not the intptr_t type for this target, do a 2027 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 2028 // cast to be exposed to other transforms. 2029 unsigned AS = CI.getAddressSpace(); 2030 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 2031 DL.getPointerSizeInBits(AS)) { 2032 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2033 DL.getIntPtrType(CI.getContext(), AS)); 2034 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2035 return new IntToPtrInst(P, CI.getType()); 2036 } 2037 2038 if (Instruction *I = commonCastTransforms(CI)) 2039 return I; 2040 2041 return nullptr; 2042 } 2043 2044 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 2045 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 2046 Value *Src = CI.getOperand(0); 2047 2048 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 2049 // If casting the result of a getelementptr instruction with no offset, turn 2050 // this into a cast of the original pointer! 2051 if (GEP->hasAllZeroIndices() && 2052 // If CI is an addrspacecast and GEP changes the poiner type, merging 2053 // GEP into CI would undo canonicalizing addrspacecast with different 2054 // pointer types, causing infinite loops. 2055 (!isa<AddrSpaceCastInst>(CI) || 2056 GEP->getType() == GEP->getPointerOperandType())) { 2057 // Changing the cast operand is usually not a good idea but it is safe 2058 // here because the pointer operand is being replaced with another 2059 // pointer operand so the opcode doesn't need to change. 2060 return replaceOperand(CI, 0, GEP->getOperand(0)); 2061 } 2062 } 2063 2064 return commonCastTransforms(CI); 2065 } 2066 2067 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2068 // If the destination integer type is not the intptr_t type for this target, 2069 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2070 // to be exposed to other transforms. 2071 Value *SrcOp = CI.getPointerOperand(); 2072 Type *SrcTy = SrcOp->getType(); 2073 Type *Ty = CI.getType(); 2074 unsigned AS = CI.getPointerAddressSpace(); 2075 unsigned TySize = Ty->getScalarSizeInBits(); 2076 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2077 if (TySize != PtrSize) { 2078 Type *IntPtrTy = 2079 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2080 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2081 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2082 } 2083 2084 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { 2085 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 2086 // While this can increase the number of instructions it doesn't actually 2087 // increase the overall complexity since the arithmetic is just part of 2088 // the GEP otherwise. 2089 if (GEP->hasOneUse() && 2090 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 2091 return replaceInstUsesWith(CI, 2092 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 2093 /*isSigned=*/false)); 2094 } 2095 } 2096 2097 Value *Vec, *Scalar, *Index; 2098 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2099 m_Value(Scalar), m_Value(Index)))) && 2100 Vec->getType() == Ty) { 2101 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2102 // Convert the scalar to int followed by insert to eliminate one cast: 2103 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2104 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2105 return InsertElementInst::Create(Vec, NewCast, Index); 2106 } 2107 2108 return commonPointerCastTransforms(CI); 2109 } 2110 2111 /// This input value (which is known to have vector type) is being zero extended 2112 /// or truncated to the specified vector type. Since the zext/trunc is done 2113 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2114 /// endianness will impact which end of the vector that is extended or 2115 /// truncated. 2116 /// 2117 /// A vector is always stored with index 0 at the lowest address, which 2118 /// corresponds to the most significant bits for a big endian stored integer and 2119 /// the least significant bits for little endian. A trunc/zext of an integer 2120 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2121 /// the front of the vector for big endian targets, and the back of the vector 2122 /// for little endian targets. 2123 /// 2124 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2125 /// 2126 /// The source and destination vector types may have different element types. 2127 static Instruction * 2128 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2129 InstCombinerImpl &IC) { 2130 // We can only do this optimization if the output is a multiple of the input 2131 // element size, or the input is a multiple of the output element size. 2132 // Convert the input type to have the same element type as the output. 2133 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2134 2135 if (SrcTy->getElementType() != DestTy->getElementType()) { 2136 // The input types don't need to be identical, but for now they must be the 2137 // same size. There is no specific reason we couldn't handle things like 2138 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2139 // there yet. 2140 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2141 DestTy->getElementType()->getPrimitiveSizeInBits()) 2142 return nullptr; 2143 2144 SrcTy = 2145 FixedVectorType::get(DestTy->getElementType(), 2146 cast<FixedVectorType>(SrcTy)->getNumElements()); 2147 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2148 } 2149 2150 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2151 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2152 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2153 2154 assert(SrcElts != DestElts && "Element counts should be different."); 2155 2156 // Now that the element types match, get the shuffle mask and RHS of the 2157 // shuffle to use, which depends on whether we're increasing or decreasing the 2158 // size of the input. 2159 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); 2160 ArrayRef<int> ShuffleMask; 2161 Value *V2; 2162 2163 if (SrcElts > DestElts) { 2164 // If we're shrinking the number of elements (rewriting an integer 2165 // truncate), just shuffle in the elements corresponding to the least 2166 // significant bits from the input and use poison as the second shuffle 2167 // input. 2168 V2 = PoisonValue::get(SrcTy); 2169 // Make sure the shuffle mask selects the "least significant bits" by 2170 // keeping elements from back of the src vector for big endian, and from the 2171 // front for little endian. 2172 ShuffleMask = ShuffleMaskStorage; 2173 if (IsBigEndian) 2174 ShuffleMask = ShuffleMask.take_back(DestElts); 2175 else 2176 ShuffleMask = ShuffleMask.take_front(DestElts); 2177 } else { 2178 // If we're increasing the number of elements (rewriting an integer zext), 2179 // shuffle in all of the elements from InVal. Fill the rest of the result 2180 // elements with zeros from a constant zero. 2181 V2 = Constant::getNullValue(SrcTy); 2182 // Use first elt from V2 when indicating zero in the shuffle mask. 2183 uint32_t NullElt = SrcElts; 2184 // Extend with null values in the "most significant bits" by adding elements 2185 // in front of the src vector for big endian, and at the back for little 2186 // endian. 2187 unsigned DeltaElts = DestElts - SrcElts; 2188 if (IsBigEndian) 2189 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2190 else 2191 ShuffleMaskStorage.append(DeltaElts, NullElt); 2192 ShuffleMask = ShuffleMaskStorage; 2193 } 2194 2195 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2196 } 2197 2198 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2199 return Value % Ty->getPrimitiveSizeInBits() == 0; 2200 } 2201 2202 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2203 return Value / Ty->getPrimitiveSizeInBits(); 2204 } 2205 2206 /// V is a value which is inserted into a vector of VecEltTy. 2207 /// Look through the value to see if we can decompose it into 2208 /// insertions into the vector. See the example in the comment for 2209 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2210 /// The type of V is always a non-zero multiple of VecEltTy's size. 2211 /// Shift is the number of bits between the lsb of V and the lsb of 2212 /// the vector. 2213 /// 2214 /// This returns false if the pattern can't be matched or true if it can, 2215 /// filling in Elements with the elements found here. 2216 static bool collectInsertionElements(Value *V, unsigned Shift, 2217 SmallVectorImpl<Value *> &Elements, 2218 Type *VecEltTy, bool isBigEndian) { 2219 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2220 "Shift should be a multiple of the element type size"); 2221 2222 // Undef values never contribute useful bits to the result. 2223 if (isa<UndefValue>(V)) return true; 2224 2225 // If we got down to a value of the right type, we win, try inserting into the 2226 // right element. 2227 if (V->getType() == VecEltTy) { 2228 // Inserting null doesn't actually insert any elements. 2229 if (Constant *C = dyn_cast<Constant>(V)) 2230 if (C->isNullValue()) 2231 return true; 2232 2233 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2234 if (isBigEndian) 2235 ElementIndex = Elements.size() - ElementIndex - 1; 2236 2237 // Fail if multiple elements are inserted into this slot. 2238 if (Elements[ElementIndex]) 2239 return false; 2240 2241 Elements[ElementIndex] = V; 2242 return true; 2243 } 2244 2245 if (Constant *C = dyn_cast<Constant>(V)) { 2246 // Figure out the # elements this provides, and bitcast it or slice it up 2247 // as required. 2248 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2249 VecEltTy); 2250 // If the constant is the size of a vector element, we just need to bitcast 2251 // it to the right type so it gets properly inserted. 2252 if (NumElts == 1) 2253 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2254 Shift, Elements, VecEltTy, isBigEndian); 2255 2256 // Okay, this is a constant that covers multiple elements. Slice it up into 2257 // pieces and insert each element-sized piece into the vector. 2258 if (!isa<IntegerType>(C->getType())) 2259 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2260 C->getType()->getPrimitiveSizeInBits())); 2261 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2262 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2263 2264 for (unsigned i = 0; i != NumElts; ++i) { 2265 unsigned ShiftI = Shift+i*ElementSize; 2266 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2267 ShiftI)); 2268 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2269 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2270 isBigEndian)) 2271 return false; 2272 } 2273 return true; 2274 } 2275 2276 if (!V->hasOneUse()) return false; 2277 2278 Instruction *I = dyn_cast<Instruction>(V); 2279 if (!I) return false; 2280 switch (I->getOpcode()) { 2281 default: return false; // Unhandled case. 2282 case Instruction::BitCast: 2283 if (I->getOperand(0)->getType()->isVectorTy()) 2284 return false; 2285 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2286 isBigEndian); 2287 case Instruction::ZExt: 2288 if (!isMultipleOfTypeSize( 2289 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2290 VecEltTy)) 2291 return false; 2292 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2293 isBigEndian); 2294 case Instruction::Or: 2295 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2296 isBigEndian) && 2297 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2298 isBigEndian); 2299 case Instruction::Shl: { 2300 // Must be shifting by a constant that is a multiple of the element size. 2301 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2302 if (!CI) return false; 2303 Shift += CI->getZExtValue(); 2304 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2305 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2306 isBigEndian); 2307 } 2308 2309 } 2310 } 2311 2312 2313 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2314 /// assemble the elements of the vector manually. 2315 /// Try to rip the code out and replace it with insertelements. This is to 2316 /// optimize code like this: 2317 /// 2318 /// %tmp37 = bitcast float %inc to i32 2319 /// %tmp38 = zext i32 %tmp37 to i64 2320 /// %tmp31 = bitcast float %inc5 to i32 2321 /// %tmp32 = zext i32 %tmp31 to i64 2322 /// %tmp33 = shl i64 %tmp32, 32 2323 /// %ins35 = or i64 %tmp33, %tmp38 2324 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2325 /// 2326 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2327 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2328 InstCombinerImpl &IC) { 2329 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2330 Value *IntInput = CI.getOperand(0); 2331 2332 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2333 if (!collectInsertionElements(IntInput, 0, Elements, 2334 DestVecTy->getElementType(), 2335 IC.getDataLayout().isBigEndian())) 2336 return nullptr; 2337 2338 // If we succeeded, we know that all of the element are specified by Elements 2339 // or are zero if Elements has a null entry. Recast this as a set of 2340 // insertions. 2341 Value *Result = Constant::getNullValue(CI.getType()); 2342 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2343 if (!Elements[i]) continue; // Unset element. 2344 2345 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2346 IC.Builder.getInt32(i)); 2347 } 2348 2349 return Result; 2350 } 2351 2352 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2353 /// vector followed by extract element. The backend tends to handle bitcasts of 2354 /// vectors better than bitcasts of scalars because vector registers are 2355 /// usually not type-specific like scalar integer or scalar floating-point. 2356 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2357 InstCombinerImpl &IC) { 2358 Value *VecOp, *Index; 2359 if (!match(BitCast.getOperand(0), 2360 m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) 2361 return nullptr; 2362 2363 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2364 // type to extract from. 2365 Type *DestType = BitCast.getType(); 2366 if (!VectorType::isValidElementType(DestType)) 2367 return nullptr; 2368 2369 auto *NewVecType = 2370 VectorType::get(DestType, cast<VectorType>(VecOp->getType())); 2371 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); 2372 return ExtractElementInst::Create(NewBC, Index); 2373 } 2374 2375 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2376 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2377 InstCombiner::BuilderTy &Builder) { 2378 Type *DestTy = BitCast.getType(); 2379 BinaryOperator *BO; 2380 if (!DestTy->isIntOrIntVectorTy() || 2381 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2382 !BO->isBitwiseLogicOp()) 2383 return nullptr; 2384 2385 // FIXME: This transform is restricted to vector types to avoid backend 2386 // problems caused by creating potentially illegal operations. If a fix-up is 2387 // added to handle that situation, we can remove this check. 2388 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2389 return nullptr; 2390 2391 Value *X; 2392 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2393 X->getType() == DestTy && !isa<Constant>(X)) { 2394 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2395 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2396 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2397 } 2398 2399 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2400 X->getType() == DestTy && !isa<Constant>(X)) { 2401 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2402 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2403 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2404 } 2405 2406 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2407 // constant. This eases recognition of special constants for later ops. 2408 // Example: 2409 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2410 Constant *C; 2411 if (match(BO->getOperand(1), m_Constant(C))) { 2412 // bitcast (logic X, C) --> logic (bitcast X, C') 2413 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2414 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2415 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2416 } 2417 2418 return nullptr; 2419 } 2420 2421 /// Change the type of a select if we can eliminate a bitcast. 2422 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2423 InstCombiner::BuilderTy &Builder) { 2424 Value *Cond, *TVal, *FVal; 2425 if (!match(BitCast.getOperand(0), 2426 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2427 return nullptr; 2428 2429 // A vector select must maintain the same number of elements in its operands. 2430 Type *CondTy = Cond->getType(); 2431 Type *DestTy = BitCast.getType(); 2432 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2433 if (!DestTy->isVectorTy() || 2434 CondVTy->getElementCount() != 2435 cast<VectorType>(DestTy)->getElementCount()) 2436 return nullptr; 2437 2438 // FIXME: This transform is restricted from changing the select between 2439 // scalars and vectors to avoid backend problems caused by creating 2440 // potentially illegal operations. If a fix-up is added to handle that 2441 // situation, we can remove this check. 2442 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2443 return nullptr; 2444 2445 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2446 Value *X; 2447 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2448 !isa<Constant>(X)) { 2449 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2450 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2451 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2452 } 2453 2454 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2455 !isa<Constant>(X)) { 2456 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2457 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2458 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2459 } 2460 2461 return nullptr; 2462 } 2463 2464 /// Check if all users of CI are StoreInsts. 2465 static bool hasStoreUsersOnly(CastInst &CI) { 2466 for (User *U : CI.users()) { 2467 if (!isa<StoreInst>(U)) 2468 return false; 2469 } 2470 return true; 2471 } 2472 2473 /// This function handles following case 2474 /// 2475 /// A -> B cast 2476 /// PHI 2477 /// B -> A cast 2478 /// 2479 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2480 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2481 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2482 PHINode *PN) { 2483 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2484 if (hasStoreUsersOnly(CI)) 2485 return nullptr; 2486 2487 Value *Src = CI.getOperand(0); 2488 Type *SrcTy = Src->getType(); // Type B 2489 Type *DestTy = CI.getType(); // Type A 2490 2491 SmallVector<PHINode *, 4> PhiWorklist; 2492 SmallSetVector<PHINode *, 4> OldPhiNodes; 2493 2494 // Find all of the A->B casts and PHI nodes. 2495 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2496 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2497 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2498 PhiWorklist.push_back(PN); 2499 OldPhiNodes.insert(PN); 2500 while (!PhiWorklist.empty()) { 2501 auto *OldPN = PhiWorklist.pop_back_val(); 2502 for (Value *IncValue : OldPN->incoming_values()) { 2503 if (isa<Constant>(IncValue)) 2504 continue; 2505 2506 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2507 // If there is a sequence of one or more load instructions, each loaded 2508 // value is used as address of later load instruction, bitcast is 2509 // necessary to change the value type, don't optimize it. For 2510 // simplicity we give up if the load address comes from another load. 2511 Value *Addr = LI->getOperand(0); 2512 if (Addr == &CI || isa<LoadInst>(Addr)) 2513 return nullptr; 2514 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2515 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2516 // TODO: Remove this check when bitcast between vector and x86_amx 2517 // is replaced with a specific intrinsic. 2518 if (DestTy->isX86_AMXTy()) 2519 return nullptr; 2520 if (LI->hasOneUse() && LI->isSimple()) 2521 continue; 2522 // If a LoadInst has more than one use, changing the type of loaded 2523 // value may create another bitcast. 2524 return nullptr; 2525 } 2526 2527 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2528 if (OldPhiNodes.insert(PNode)) 2529 PhiWorklist.push_back(PNode); 2530 continue; 2531 } 2532 2533 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2534 // We can't handle other instructions. 2535 if (!BCI) 2536 return nullptr; 2537 2538 // Verify it's a A->B cast. 2539 Type *TyA = BCI->getOperand(0)->getType(); 2540 Type *TyB = BCI->getType(); 2541 if (TyA != DestTy || TyB != SrcTy) 2542 return nullptr; 2543 } 2544 } 2545 2546 // Check that each user of each old PHI node is something that we can 2547 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2548 for (auto *OldPN : OldPhiNodes) { 2549 for (User *V : OldPN->users()) { 2550 if (auto *SI = dyn_cast<StoreInst>(V)) { 2551 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2552 return nullptr; 2553 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2554 // Verify it's a B->A cast. 2555 Type *TyB = BCI->getOperand(0)->getType(); 2556 Type *TyA = BCI->getType(); 2557 if (TyA != DestTy || TyB != SrcTy) 2558 return nullptr; 2559 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2560 // As long as the user is another old PHI node, then even if we don't 2561 // rewrite it, the PHI web we're considering won't have any users 2562 // outside itself, so it'll be dead. 2563 if (!OldPhiNodes.contains(PHI)) 2564 return nullptr; 2565 } else { 2566 return nullptr; 2567 } 2568 } 2569 } 2570 2571 // For each old PHI node, create a corresponding new PHI node with a type A. 2572 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2573 for (auto *OldPN : OldPhiNodes) { 2574 Builder.SetInsertPoint(OldPN); 2575 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2576 NewPNodes[OldPN] = NewPN; 2577 } 2578 2579 // Fill in the operands of new PHI nodes. 2580 for (auto *OldPN : OldPhiNodes) { 2581 PHINode *NewPN = NewPNodes[OldPN]; 2582 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2583 Value *V = OldPN->getOperand(j); 2584 Value *NewV = nullptr; 2585 if (auto *C = dyn_cast<Constant>(V)) { 2586 NewV = ConstantExpr::getBitCast(C, DestTy); 2587 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2588 // Explicitly perform load combine to make sure no opposing transform 2589 // can remove the bitcast in the meantime and trigger an infinite loop. 2590 Builder.SetInsertPoint(LI); 2591 NewV = combineLoadToNewType(*LI, DestTy); 2592 // Remove the old load and its use in the old phi, which itself becomes 2593 // dead once the whole transform finishes. 2594 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2595 eraseInstFromFunction(*LI); 2596 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2597 NewV = BCI->getOperand(0); 2598 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2599 NewV = NewPNodes[PrevPN]; 2600 } 2601 assert(NewV); 2602 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2603 } 2604 } 2605 2606 // Traverse all accumulated PHI nodes and process its users, 2607 // which are Stores and BitcCasts. Without this processing 2608 // NewPHI nodes could be replicated and could lead to extra 2609 // moves generated after DeSSA. 2610 // If there is a store with type B, change it to type A. 2611 2612 2613 // Replace users of BitCast B->A with NewPHI. These will help 2614 // later to get rid off a closure formed by OldPHI nodes. 2615 Instruction *RetVal = nullptr; 2616 for (auto *OldPN : OldPhiNodes) { 2617 PHINode *NewPN = NewPNodes[OldPN]; 2618 for (User *V : make_early_inc_range(OldPN->users())) { 2619 if (auto *SI = dyn_cast<StoreInst>(V)) { 2620 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2621 Builder.SetInsertPoint(SI); 2622 auto *NewBC = 2623 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2624 SI->setOperand(0, NewBC); 2625 Worklist.push(SI); 2626 assert(hasStoreUsersOnly(*NewBC)); 2627 } 2628 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2629 Type *TyB = BCI->getOperand(0)->getType(); 2630 Type *TyA = BCI->getType(); 2631 assert(TyA == DestTy && TyB == SrcTy); 2632 (void) TyA; 2633 (void) TyB; 2634 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2635 if (BCI == &CI) 2636 RetVal = I; 2637 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2638 assert(OldPhiNodes.contains(PHI)); 2639 (void) PHI; 2640 } else { 2641 llvm_unreachable("all uses should be handled"); 2642 } 2643 } 2644 } 2645 2646 return RetVal; 2647 } 2648 2649 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder, 2650 const DataLayout &DL) { 2651 Value *Src = CI.getOperand(0); 2652 PointerType *SrcPTy = cast<PointerType>(Src->getType()); 2653 PointerType *DstPTy = cast<PointerType>(CI.getType()); 2654 2655 // Bitcasts involving opaque pointers cannot be converted into a GEP. 2656 if (SrcPTy->isOpaque() || DstPTy->isOpaque()) 2657 return nullptr; 2658 2659 Type *DstElTy = DstPTy->getNonOpaquePointerElementType(); 2660 Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType(); 2661 2662 // When the type pointed to is not sized the cast cannot be 2663 // turned into a gep. 2664 if (!SrcElTy->isSized()) 2665 return nullptr; 2666 2667 // If the source and destination are pointers, and this cast is equivalent 2668 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2669 // This can enhance SROA and other transforms that want type-safe pointers. 2670 unsigned NumZeros = 0; 2671 while (SrcElTy && SrcElTy != DstElTy) { 2672 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2673 ++NumZeros; 2674 } 2675 2676 // If we found a path from the src to dest, create the getelementptr now. 2677 if (SrcElTy == DstElTy) { 2678 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2679 GetElementPtrInst *GEP = GetElementPtrInst::Create( 2680 SrcPTy->getNonOpaquePointerElementType(), Src, Idxs); 2681 2682 // If the source pointer is dereferenceable, then assume it points to an 2683 // allocated object and apply "inbounds" to the GEP. 2684 bool CanBeNull, CanBeFreed; 2685 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2686 // In a non-default address space (not 0), a null pointer can not be 2687 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2688 // The reason is that 'null' is not treated differently in these address 2689 // spaces, and we consequently ignore the 'gep inbounds' special case 2690 // for 'null' which allows 'inbounds' on 'null' if the indices are 2691 // zeros. 2692 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2693 GEP->setIsInBounds(); 2694 } 2695 return GEP; 2696 } 2697 return nullptr; 2698 } 2699 2700 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2701 // If the operands are integer typed then apply the integer transforms, 2702 // otherwise just apply the common ones. 2703 Value *Src = CI.getOperand(0); 2704 Type *SrcTy = Src->getType(); 2705 Type *DestTy = CI.getType(); 2706 2707 // Get rid of casts from one type to the same type. These are useless and can 2708 // be replaced by the operand. 2709 if (DestTy == Src->getType()) 2710 return replaceInstUsesWith(CI, Src); 2711 2712 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2713 // If we are casting a alloca to a pointer to a type of the same 2714 // size, rewrite the allocation instruction to allocate the "right" type. 2715 // There is no need to modify malloc calls because it is their bitcast that 2716 // needs to be cleaned up. 2717 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2718 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2719 return V; 2720 2721 if (Instruction *I = convertBitCastToGEP(CI, Builder, DL)) 2722 return I; 2723 } 2724 2725 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2726 // Beware: messing with this target-specific oddity may cause trouble. 2727 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2728 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2729 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2730 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2731 } 2732 2733 if (isa<IntegerType>(SrcTy)) { 2734 // If this is a cast from an integer to vector, check to see if the input 2735 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2736 // the casts with a shuffle and (potentially) a bitcast. 2737 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2738 CastInst *SrcCast = cast<CastInst>(Src); 2739 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2740 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2741 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2742 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2743 return I; 2744 } 2745 2746 // If the input is an 'or' instruction, we may be doing shifts and ors to 2747 // assemble the elements of the vector manually. Try to rip the code out 2748 // and replace it with insertelements. 2749 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2750 return replaceInstUsesWith(CI, V); 2751 } 2752 } 2753 2754 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2755 if (SrcVTy->getNumElements() == 1) { 2756 // If our destination is not a vector, then make this a straight 2757 // scalar-scalar cast. 2758 if (!DestTy->isVectorTy()) { 2759 Value *Elem = 2760 Builder.CreateExtractElement(Src, 2761 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2762 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2763 } 2764 2765 // Otherwise, see if our source is an insert. If so, then use the scalar 2766 // component directly: 2767 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2768 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2769 return new BitCastInst(InsElt->getOperand(1), DestTy); 2770 } 2771 2772 // Convert an artificial vector insert into more analyzable bitwise logic. 2773 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2774 Value *X, *Y; 2775 uint64_t IndexC; 2776 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2777 m_Value(Y), m_ConstantInt(IndexC)))) && 2778 DestTy->isIntegerTy() && X->getType() == DestTy && 2779 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2780 // Adjust for big endian - the LSBs are at the high index. 2781 if (DL.isBigEndian()) 2782 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2783 2784 // We only handle (endian-normalized) insert to index 0. Any other insert 2785 // would require a left-shift, so that is an extra instruction. 2786 if (IndexC == 0) { 2787 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2788 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2789 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2790 Value *AndX = Builder.CreateAnd(X, MaskC); 2791 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2792 return BinaryOperator::CreateOr(AndX, ZextY); 2793 } 2794 } 2795 } 2796 2797 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2798 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2799 // a bitcast to a vector with the same # elts. 2800 Value *ShufOp0 = Shuf->getOperand(0); 2801 Value *ShufOp1 = Shuf->getOperand(1); 2802 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2803 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2804 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2805 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2806 ShufElts == SrcVecElts) { 2807 BitCastInst *Tmp; 2808 // If either of the operands is a cast from CI.getType(), then 2809 // evaluating the shuffle in the casted destination's type will allow 2810 // us to eliminate at least one cast. 2811 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2812 Tmp->getOperand(0)->getType() == DestTy) || 2813 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2814 Tmp->getOperand(0)->getType() == DestTy)) { 2815 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2816 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2817 // Return a new shuffle vector. Use the same element ID's, as we 2818 // know the vector types match #elts. 2819 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2820 } 2821 } 2822 2823 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2824 // a byte-swap: 2825 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2826 // TODO: We should match the related pattern for bitreverse. 2827 if (DestTy->isIntegerTy() && 2828 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2829 SrcTy->getScalarSizeInBits() == 8 && 2830 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 2831 Shuf->isReverse()) { 2832 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2833 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2834 Function *Bswap = 2835 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2836 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2837 return CallInst::Create(Bswap, { ScalarX }); 2838 } 2839 } 2840 2841 // Handle the A->B->A cast, and there is an intervening PHI node. 2842 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2843 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2844 return I; 2845 2846 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2847 return I; 2848 2849 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2850 return I; 2851 2852 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2853 return I; 2854 2855 if (SrcTy->isPointerTy()) 2856 return commonPointerCastTransforms(CI); 2857 return commonCastTransforms(CI); 2858 } 2859 2860 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2861 // If the destination pointer element type is not the same as the source's 2862 // first do a bitcast to the destination type, and then the addrspacecast. 2863 // This allows the cast to be exposed to other transforms. 2864 Value *Src = CI.getOperand(0); 2865 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2866 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2867 2868 if (!SrcTy->hasSameElementTypeAs(DestTy)) { 2869 Type *MidTy = 2870 PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace()); 2871 // Handle vectors of pointers. 2872 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2873 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2874 2875 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2876 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2877 } 2878 2879 return commonPointerCastTransforms(CI); 2880 } 2881