1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 #include <optional> 22 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Analyze 'Val', seeing if it is a simple linear expression. 29 /// If so, decompose it, returning some value X, such that Val is 30 /// X*Scale+Offset. 31 /// 32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 33 uint64_t &Offset) { 34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 35 Offset = CI->getZExtValue(); 36 Scale = 0; 37 return ConstantInt::get(Val->getType(), 0); 38 } 39 40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 41 // Cannot look past anything that might overflow. 42 // We specifically require nuw because we store the Scale in an unsigned 43 // and perform an unsigned divide on it. 44 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 45 if (OBI && !OBI->hasNoUnsignedWrap()) { 46 Scale = 1; 47 Offset = 0; 48 return Val; 49 } 50 51 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 52 if (I->getOpcode() == Instruction::Shl) { 53 // This is a value scaled by '1 << the shift amt'. 54 Scale = UINT64_C(1) << RHS->getZExtValue(); 55 Offset = 0; 56 return I->getOperand(0); 57 } 58 59 if (I->getOpcode() == Instruction::Mul) { 60 // This value is scaled by 'RHS'. 61 Scale = RHS->getZExtValue(); 62 Offset = 0; 63 return I->getOperand(0); 64 } 65 66 if (I->getOpcode() == Instruction::Add) { 67 // We have X+C. Check to see if we really have (X*C2)+C1, 68 // where C1 is divisible by C2. 69 unsigned SubScale; 70 Value *SubVal = 71 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 72 Offset += RHS->getZExtValue(); 73 Scale = SubScale; 74 return SubVal; 75 } 76 } 77 } 78 79 // Otherwise, we can't look past this. 80 Scale = 1; 81 Offset = 0; 82 return Val; 83 } 84 85 /// If we find a cast of an allocation instruction, try to eliminate the cast by 86 /// moving the type information into the alloc. 87 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 88 AllocaInst &AI) { 89 PointerType *PTy = cast<PointerType>(CI.getType()); 90 // Opaque pointers don't have an element type we could replace with. 91 if (PTy->isOpaque()) 92 return nullptr; 93 94 IRBuilderBase::InsertPointGuard Guard(Builder); 95 Builder.SetInsertPoint(&AI); 96 97 // Get the type really allocated and the type casted to. 98 Type *AllocElTy = AI.getAllocatedType(); 99 Type *CastElTy = PTy->getNonOpaquePointerElementType(); 100 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 101 102 // This optimisation does not work for cases where the cast type 103 // is scalable and the allocated type is not. This because we need to 104 // know how many times the casted type fits into the allocated type. 105 // For the opposite case where the allocated type is scalable and the 106 // cast type is not this leads to poor code quality due to the 107 // introduction of 'vscale' into the calculations. It seems better to 108 // bail out for this case too until we've done a proper cost-benefit 109 // analysis. 110 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 111 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 112 if (AllocIsScalable != CastIsScalable) return nullptr; 113 114 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 115 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 116 if (CastElTyAlign < AllocElTyAlign) return nullptr; 117 118 // If the allocation has multiple uses, only promote it if we are strictly 119 // increasing the alignment of the resultant allocation. If we keep it the 120 // same, we open the door to infinite loops of various kinds. 121 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 122 123 // The alloc and cast types should be either both fixed or both scalable. 124 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 125 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 126 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 127 128 // If the allocation has multiple uses, only promote it if we're not 129 // shrinking the amount of memory being allocated. 130 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 131 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 132 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 133 134 // See if we can satisfy the modulus by pulling a scale out of the array 135 // size argument. 136 unsigned ArraySizeScale; 137 uint64_t ArrayOffset; 138 Value *NumElements = // See if the array size is a decomposable linear expr. 139 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 140 141 // If we can now satisfy the modulus, by using a non-1 scale, we really can 142 // do the xform. 143 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 144 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 145 146 // We don't currently support arrays of scalable types. 147 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 148 149 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 150 Value *Amt = nullptr; 151 if (Scale == 1) { 152 Amt = NumElements; 153 } else { 154 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 155 // Insert before the alloca, not before the cast. 156 Amt = Builder.CreateMul(Amt, NumElements); 157 } 158 159 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 160 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 161 Offset, true); 162 Amt = Builder.CreateAdd(Amt, Off); 163 } 164 165 AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt); 166 New->setAlignment(AI.getAlign()); 167 New->takeName(&AI); 168 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 169 New->setMetadata(LLVMContext::MD_DIAssignID, 170 AI.getMetadata(LLVMContext::MD_DIAssignID)); 171 172 replaceAllDbgUsesWith(AI, *New, *New, DT); 173 174 // If the allocation has multiple real uses, insert a cast and change all 175 // things that used it to use the new cast. This will also hack on CI, but it 176 // will die soon. 177 if (!AI.hasOneUse()) { 178 // New is the allocation instruction, pointer typed. AI is the original 179 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 180 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 181 replaceInstUsesWith(AI, NewCast); 182 eraseInstFromFunction(AI); 183 } 184 return replaceInstUsesWith(CI, New); 185 } 186 187 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 188 /// true for, actually insert the code to evaluate the expression. 189 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 190 bool isSigned) { 191 if (Constant *C = dyn_cast<Constant>(V)) { 192 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 193 // If we got a constantexpr back, try to simplify it with DL info. 194 return ConstantFoldConstant(C, DL, &TLI); 195 } 196 197 // Otherwise, it must be an instruction. 198 Instruction *I = cast<Instruction>(V); 199 Instruction *Res = nullptr; 200 unsigned Opc = I->getOpcode(); 201 switch (Opc) { 202 case Instruction::Add: 203 case Instruction::Sub: 204 case Instruction::Mul: 205 case Instruction::And: 206 case Instruction::Or: 207 case Instruction::Xor: 208 case Instruction::AShr: 209 case Instruction::LShr: 210 case Instruction::Shl: 211 case Instruction::UDiv: 212 case Instruction::URem: { 213 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 214 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 215 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 216 break; 217 } 218 case Instruction::Trunc: 219 case Instruction::ZExt: 220 case Instruction::SExt: 221 // If the source type of the cast is the type we're trying for then we can 222 // just return the source. There's no need to insert it because it is not 223 // new. 224 if (I->getOperand(0)->getType() == Ty) 225 return I->getOperand(0); 226 227 // Otherwise, must be the same type of cast, so just reinsert a new one. 228 // This also handles the case of zext(trunc(x)) -> zext(x). 229 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 230 Opc == Instruction::SExt); 231 break; 232 case Instruction::Select: { 233 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 234 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 235 Res = SelectInst::Create(I->getOperand(0), True, False); 236 break; 237 } 238 case Instruction::PHI: { 239 PHINode *OPN = cast<PHINode>(I); 240 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 241 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 242 Value *V = 243 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 244 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 245 } 246 Res = NPN; 247 break; 248 } 249 default: 250 // TODO: Can handle more cases here. 251 llvm_unreachable("Unreachable!"); 252 } 253 254 Res->takeName(I); 255 return InsertNewInstWith(Res, *I); 256 } 257 258 Instruction::CastOps 259 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 260 const CastInst *CI2) { 261 Type *SrcTy = CI1->getSrcTy(); 262 Type *MidTy = CI1->getDestTy(); 263 Type *DstTy = CI2->getDestTy(); 264 265 Instruction::CastOps firstOp = CI1->getOpcode(); 266 Instruction::CastOps secondOp = CI2->getOpcode(); 267 Type *SrcIntPtrTy = 268 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 269 Type *MidIntPtrTy = 270 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 271 Type *DstIntPtrTy = 272 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 273 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 274 DstTy, SrcIntPtrTy, MidIntPtrTy, 275 DstIntPtrTy); 276 277 // We don't want to form an inttoptr or ptrtoint that converts to an integer 278 // type that differs from the pointer size. 279 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 280 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 281 Res = 0; 282 283 return Instruction::CastOps(Res); 284 } 285 286 /// Implement the transforms common to all CastInst visitors. 287 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 288 Value *Src = CI.getOperand(0); 289 Type *Ty = CI.getType(); 290 291 // Try to eliminate a cast of a cast. 292 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 293 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 294 // The first cast (CSrc) is eliminable so we need to fix up or replace 295 // the second cast (CI). CSrc will then have a good chance of being dead. 296 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 297 // Point debug users of the dying cast to the new one. 298 if (CSrc->hasOneUse()) 299 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 300 return Res; 301 } 302 } 303 304 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 305 // We are casting a select. Try to fold the cast into the select if the 306 // select does not have a compare instruction with matching operand types 307 // or the select is likely better done in a narrow type. 308 // Creating a select with operands that are different sizes than its 309 // condition may inhibit other folds and lead to worse codegen. 310 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 311 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 312 (CI.getOpcode() == Instruction::Trunc && 313 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 314 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 315 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 316 return NV; 317 } 318 } 319 } 320 321 // If we are casting a PHI, then fold the cast into the PHI. 322 if (auto *PN = dyn_cast<PHINode>(Src)) { 323 // Don't do this if it would create a PHI node with an illegal type from a 324 // legal type. 325 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 326 shouldChangeType(CI.getSrcTy(), CI.getType())) 327 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 328 return NV; 329 } 330 331 // Canonicalize a unary shuffle after the cast if neither operation changes 332 // the size or element size of the input vector. 333 // TODO: We could allow size-changing ops if that doesn't harm codegen. 334 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 335 Value *X; 336 ArrayRef<int> Mask; 337 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 338 // TODO: Allow scalable vectors? 339 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 340 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 341 if (SrcTy && DestTy && 342 SrcTy->getNumElements() == DestTy->getNumElements() && 343 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 344 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 345 return new ShuffleVectorInst(CastX, Mask); 346 } 347 } 348 349 return nullptr; 350 } 351 352 /// Constants and extensions/truncates from the destination type are always 353 /// free to be evaluated in that type. This is a helper for canEvaluate*. 354 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 355 if (isa<Constant>(V)) 356 return true; 357 Value *X; 358 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 359 X->getType() == Ty) 360 return true; 361 362 return false; 363 } 364 365 /// Filter out values that we can not evaluate in the destination type for free. 366 /// This is a helper for canEvaluate*. 367 static bool canNotEvaluateInType(Value *V, Type *Ty) { 368 assert(!isa<Constant>(V) && "Constant should already be handled."); 369 if (!isa<Instruction>(V)) 370 return true; 371 // We don't extend or shrink something that has multiple uses -- doing so 372 // would require duplicating the instruction which isn't profitable. 373 if (!V->hasOneUse()) 374 return true; 375 376 return false; 377 } 378 379 /// Return true if we can evaluate the specified expression tree as type Ty 380 /// instead of its larger type, and arrive with the same value. 381 /// This is used by code that tries to eliminate truncates. 382 /// 383 /// Ty will always be a type smaller than V. We should return true if trunc(V) 384 /// can be computed by computing V in the smaller type. If V is an instruction, 385 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 386 /// makes sense if x and y can be efficiently truncated. 387 /// 388 /// This function works on both vectors and scalars. 389 /// 390 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 391 Instruction *CxtI) { 392 if (canAlwaysEvaluateInType(V, Ty)) 393 return true; 394 if (canNotEvaluateInType(V, Ty)) 395 return false; 396 397 auto *I = cast<Instruction>(V); 398 Type *OrigTy = V->getType(); 399 switch (I->getOpcode()) { 400 case Instruction::Add: 401 case Instruction::Sub: 402 case Instruction::Mul: 403 case Instruction::And: 404 case Instruction::Or: 405 case Instruction::Xor: 406 // These operators can all arbitrarily be extended or truncated. 407 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 408 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 409 410 case Instruction::UDiv: 411 case Instruction::URem: { 412 // UDiv and URem can be truncated if all the truncated bits are zero. 413 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 414 uint32_t BitWidth = Ty->getScalarSizeInBits(); 415 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 416 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 417 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 418 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 419 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 420 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 421 } 422 break; 423 } 424 case Instruction::Shl: { 425 // If we are truncating the result of this SHL, and if it's a shift of an 426 // inrange amount, we can always perform a SHL in a smaller type. 427 uint32_t BitWidth = Ty->getScalarSizeInBits(); 428 KnownBits AmtKnownBits = 429 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 430 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 431 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 432 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 433 break; 434 } 435 case Instruction::LShr: { 436 // If this is a truncate of a logical shr, we can truncate it to a smaller 437 // lshr iff we know that the bits we would otherwise be shifting in are 438 // already zeros. 439 // TODO: It is enough to check that the bits we would be shifting in are 440 // zero - use AmtKnownBits.getMaxValue(). 441 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 442 uint32_t BitWidth = Ty->getScalarSizeInBits(); 443 KnownBits AmtKnownBits = 444 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 445 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 446 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 447 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 448 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 449 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 450 } 451 break; 452 } 453 case Instruction::AShr: { 454 // If this is a truncate of an arithmetic shr, we can truncate it to a 455 // smaller ashr iff we know that all the bits from the sign bit of the 456 // original type and the sign bit of the truncate type are similar. 457 // TODO: It is enough to check that the bits we would be shifting in are 458 // similar to sign bit of the truncate type. 459 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 460 uint32_t BitWidth = Ty->getScalarSizeInBits(); 461 KnownBits AmtKnownBits = 462 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 463 unsigned ShiftedBits = OrigBitWidth - BitWidth; 464 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 465 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 466 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 467 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 468 break; 469 } 470 case Instruction::Trunc: 471 // trunc(trunc(x)) -> trunc(x) 472 return true; 473 case Instruction::ZExt: 474 case Instruction::SExt: 475 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 476 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 477 return true; 478 case Instruction::Select: { 479 SelectInst *SI = cast<SelectInst>(I); 480 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 481 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 482 } 483 case Instruction::PHI: { 484 // We can change a phi if we can change all operands. Note that we never 485 // get into trouble with cyclic PHIs here because we only consider 486 // instructions with a single use. 487 PHINode *PN = cast<PHINode>(I); 488 for (Value *IncValue : PN->incoming_values()) 489 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 490 return false; 491 return true; 492 } 493 default: 494 // TODO: Can handle more cases here. 495 break; 496 } 497 498 return false; 499 } 500 501 /// Given a vector that is bitcast to an integer, optionally logically 502 /// right-shifted, and truncated, convert it to an extractelement. 503 /// Example (big endian): 504 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 505 /// ---> 506 /// extractelement <4 x i32> %X, 1 507 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 508 InstCombinerImpl &IC) { 509 Value *TruncOp = Trunc.getOperand(0); 510 Type *DestType = Trunc.getType(); 511 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 512 return nullptr; 513 514 Value *VecInput = nullptr; 515 ConstantInt *ShiftVal = nullptr; 516 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 517 m_LShr(m_BitCast(m_Value(VecInput)), 518 m_ConstantInt(ShiftVal)))) || 519 !isa<VectorType>(VecInput->getType())) 520 return nullptr; 521 522 VectorType *VecType = cast<VectorType>(VecInput->getType()); 523 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 524 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 525 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 526 527 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 528 return nullptr; 529 530 // If the element type of the vector doesn't match the result type, 531 // bitcast it to a vector type that we can extract from. 532 unsigned NumVecElts = VecWidth / DestWidth; 533 if (VecType->getElementType() != DestType) { 534 VecType = FixedVectorType::get(DestType, NumVecElts); 535 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 536 } 537 538 unsigned Elt = ShiftAmount / DestWidth; 539 if (IC.getDataLayout().isBigEndian()) 540 Elt = NumVecElts - 1 - Elt; 541 542 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 543 } 544 545 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 546 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 547 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 548 assert((isa<VectorType>(Trunc.getSrcTy()) || 549 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 550 "Don't narrow to an illegal scalar type"); 551 552 // Bail out on strange types. It is possible to handle some of these patterns 553 // even with non-power-of-2 sizes, but it is not a likely scenario. 554 Type *DestTy = Trunc.getType(); 555 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 556 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 557 if (!isPowerOf2_32(NarrowWidth)) 558 return nullptr; 559 560 // First, find an or'd pair of opposite shifts: 561 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 562 BinaryOperator *Or0, *Or1; 563 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 564 return nullptr; 565 566 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 567 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 568 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 569 Or0->getOpcode() == Or1->getOpcode()) 570 return nullptr; 571 572 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 573 if (Or0->getOpcode() == BinaryOperator::LShr) { 574 std::swap(Or0, Or1); 575 std::swap(ShVal0, ShVal1); 576 std::swap(ShAmt0, ShAmt1); 577 } 578 assert(Or0->getOpcode() == BinaryOperator::Shl && 579 Or1->getOpcode() == BinaryOperator::LShr && 580 "Illegal or(shift,shift) pair"); 581 582 // Match the shift amount operands for a funnel/rotate pattern. This always 583 // matches a subtraction on the R operand. 584 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 585 // The shift amounts may add up to the narrow bit width: 586 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 587 // If this is a funnel shift (different operands are shifted), then the 588 // shift amount can not over-shift (create poison) in the narrow type. 589 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 590 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 591 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 592 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 593 return L; 594 595 // The following patterns currently only work for rotation patterns. 596 // TODO: Add more general funnel-shift compatible patterns. 597 if (ShVal0 != ShVal1) 598 return nullptr; 599 600 // The shift amount may be masked with negation: 601 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 602 Value *X; 603 unsigned Mask = Width - 1; 604 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 605 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 606 return X; 607 608 // Same as above, but the shift amount may be extended after masking: 609 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 610 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 611 return X; 612 613 return nullptr; 614 }; 615 616 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 617 bool IsFshl = true; // Sub on LSHR. 618 if (!ShAmt) { 619 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 620 IsFshl = false; // Sub on SHL. 621 } 622 if (!ShAmt) 623 return nullptr; 624 625 // The right-shifted value must have high zeros in the wide type (for example 626 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 627 // truncated, so those do not matter. 628 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 629 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 630 return nullptr; 631 632 // We have an unnecessarily wide rotate! 633 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 634 // Narrow the inputs and convert to funnel shift intrinsic: 635 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 636 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 637 Value *X, *Y; 638 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 639 if (ShVal0 != ShVal1) 640 Y = Builder.CreateTrunc(ShVal1, DestTy); 641 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 642 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 643 return CallInst::Create(F, {X, Y, NarrowShAmt}); 644 } 645 646 /// Try to narrow the width of math or bitwise logic instructions by pulling a 647 /// truncate ahead of binary operators. 648 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 649 Type *SrcTy = Trunc.getSrcTy(); 650 Type *DestTy = Trunc.getType(); 651 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 652 unsigned DestWidth = DestTy->getScalarSizeInBits(); 653 654 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 655 return nullptr; 656 657 BinaryOperator *BinOp; 658 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 659 return nullptr; 660 661 Value *BinOp0 = BinOp->getOperand(0); 662 Value *BinOp1 = BinOp->getOperand(1); 663 switch (BinOp->getOpcode()) { 664 case Instruction::And: 665 case Instruction::Or: 666 case Instruction::Xor: 667 case Instruction::Add: 668 case Instruction::Sub: 669 case Instruction::Mul: { 670 Constant *C; 671 if (match(BinOp0, m_Constant(C))) { 672 // trunc (binop C, X) --> binop (trunc C', X) 673 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 674 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 675 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 676 } 677 if (match(BinOp1, m_Constant(C))) { 678 // trunc (binop X, C) --> binop (trunc X, C') 679 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 680 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 681 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 682 } 683 Value *X; 684 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 685 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 686 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 687 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 688 } 689 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 690 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 691 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 692 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 693 } 694 break; 695 } 696 case Instruction::LShr: 697 case Instruction::AShr: { 698 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 699 Value *A; 700 Constant *C; 701 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { 702 unsigned MaxShiftAmt = SrcWidth - DestWidth; 703 // If the shift is small enough, all zero/sign bits created by the shift 704 // are removed by the trunc. 705 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 706 APInt(SrcWidth, MaxShiftAmt)))) { 707 auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); 708 bool IsExact = OldShift->isExact(); 709 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 710 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 711 Value *Shift = 712 OldShift->getOpcode() == Instruction::AShr 713 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 714 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 715 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 716 } 717 } 718 break; 719 } 720 default: break; 721 } 722 723 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 724 return NarrowOr; 725 726 return nullptr; 727 } 728 729 /// Try to narrow the width of a splat shuffle. This could be generalized to any 730 /// shuffle with a constant operand, but we limit the transform to avoid 731 /// creating a shuffle type that targets may not be able to lower effectively. 732 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 733 InstCombiner::BuilderTy &Builder) { 734 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 735 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 736 all_equal(Shuf->getShuffleMask()) && 737 Shuf->getType() == Shuf->getOperand(0)->getType()) { 738 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 739 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 740 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 741 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 742 } 743 744 return nullptr; 745 } 746 747 /// Try to narrow the width of an insert element. This could be generalized for 748 /// any vector constant, but we limit the transform to insertion into undef to 749 /// avoid potential backend problems from unsupported insertion widths. This 750 /// could also be extended to handle the case of inserting a scalar constant 751 /// into a vector variable. 752 static Instruction *shrinkInsertElt(CastInst &Trunc, 753 InstCombiner::BuilderTy &Builder) { 754 Instruction::CastOps Opcode = Trunc.getOpcode(); 755 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 756 "Unexpected instruction for shrinking"); 757 758 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 759 if (!InsElt || !InsElt->hasOneUse()) 760 return nullptr; 761 762 Type *DestTy = Trunc.getType(); 763 Type *DestScalarTy = DestTy->getScalarType(); 764 Value *VecOp = InsElt->getOperand(0); 765 Value *ScalarOp = InsElt->getOperand(1); 766 Value *Index = InsElt->getOperand(2); 767 768 if (match(VecOp, m_Undef())) { 769 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 770 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 771 UndefValue *NarrowUndef = UndefValue::get(DestTy); 772 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 773 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 774 } 775 776 return nullptr; 777 } 778 779 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 780 if (Instruction *Result = commonCastTransforms(Trunc)) 781 return Result; 782 783 Value *Src = Trunc.getOperand(0); 784 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 785 unsigned DestWidth = DestTy->getScalarSizeInBits(); 786 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 787 788 // Attempt to truncate the entire input expression tree to the destination 789 // type. Only do this if the dest type is a simple type, don't convert the 790 // expression tree to something weird like i93 unless the source is also 791 // strange. 792 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 793 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 794 795 // If this cast is a truncate, evaluting in a different type always 796 // eliminates the cast, so it is always a win. 797 LLVM_DEBUG( 798 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 799 " to avoid cast: " 800 << Trunc << '\n'); 801 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 802 assert(Res->getType() == DestTy); 803 return replaceInstUsesWith(Trunc, Res); 804 } 805 806 // For integer types, check if we can shorten the entire input expression to 807 // DestWidth * 2, which won't allow removing the truncate, but reducing the 808 // width may enable further optimizations, e.g. allowing for larger 809 // vectorization factors. 810 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 811 if (DestWidth * 2 < SrcWidth) { 812 auto *NewDestTy = DestITy->getExtendedType(); 813 if (shouldChangeType(SrcTy, NewDestTy) && 814 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 815 LLVM_DEBUG( 816 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 817 " to reduce the width of operand of" 818 << Trunc << '\n'); 819 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 820 return new TruncInst(Res, DestTy); 821 } 822 } 823 } 824 825 // Test if the trunc is the user of a select which is part of a 826 // minimum or maximum operation. If so, don't do any more simplification. 827 // Even simplifying demanded bits can break the canonical form of a 828 // min/max. 829 Value *LHS, *RHS; 830 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 831 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 832 return nullptr; 833 834 // See if we can simplify any instructions used by the input whose sole 835 // purpose is to compute bits we don't care about. 836 if (SimplifyDemandedInstructionBits(Trunc)) 837 return &Trunc; 838 839 if (DestWidth == 1) { 840 Value *Zero = Constant::getNullValue(SrcTy); 841 if (DestTy->isIntegerTy()) { 842 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 843 // TODO: We canonicalize to more instructions here because we are probably 844 // lacking equivalent analysis for trunc relative to icmp. There may also 845 // be codegen concerns. If those trunc limitations were removed, we could 846 // remove this transform. 847 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 848 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 849 } 850 851 // For vectors, we do not canonicalize all truncs to icmp, so optimize 852 // patterns that would be covered within visitICmpInst. 853 Value *X; 854 Constant *C; 855 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 856 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 857 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 858 Constant *MaskC = ConstantExpr::getShl(One, C); 859 Value *And = Builder.CreateAnd(X, MaskC); 860 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 861 } 862 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 863 m_Deferred(X))))) { 864 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 865 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 866 Constant *MaskC = ConstantExpr::getShl(One, C); 867 MaskC = ConstantExpr::getOr(MaskC, One); 868 Value *And = Builder.CreateAnd(X, MaskC); 869 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 870 } 871 } 872 873 Value *A, *B; 874 Constant *C; 875 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 876 unsigned AWidth = A->getType()->getScalarSizeInBits(); 877 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 878 auto *OldSh = cast<Instruction>(Src); 879 bool IsExact = OldSh->isExact(); 880 881 // If the shift is small enough, all zero bits created by the shift are 882 // removed by the trunc. 883 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 884 APInt(SrcWidth, MaxShiftAmt)))) { 885 // trunc (lshr (sext A), C) --> ashr A, C 886 if (A->getType() == DestTy) { 887 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 888 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 889 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 890 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 891 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 892 : BinaryOperator::CreateAShr(A, ShAmt); 893 } 894 // The types are mismatched, so create a cast after shifting: 895 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 896 if (Src->hasOneUse()) { 897 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 898 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 899 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 900 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 901 return CastInst::CreateIntegerCast(Shift, DestTy, true); 902 } 903 } 904 // TODO: Mask high bits with 'and'. 905 } 906 907 if (Instruction *I = narrowBinOp(Trunc)) 908 return I; 909 910 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 911 return I; 912 913 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 914 return I; 915 916 if (Src->hasOneUse() && 917 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 918 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 919 // dest type is native and cst < dest size. 920 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 921 !match(A, m_Shr(m_Value(), m_Constant()))) { 922 // Skip shifts of shift by constants. It undoes a combine in 923 // FoldShiftByConstant and is the extend in reg pattern. 924 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 925 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 926 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 927 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 928 ConstantExpr::getTrunc(C, DestTy)); 929 } 930 } 931 } 932 933 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 934 return I; 935 936 // Whenever an element is extracted from a vector, and then truncated, 937 // canonicalize by converting it to a bitcast followed by an 938 // extractelement. 939 // 940 // Example (little endian): 941 // trunc (extractelement <4 x i64> %X, 0) to i32 942 // ---> 943 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 944 Value *VecOp; 945 ConstantInt *Cst; 946 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 947 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 948 auto VecElts = VecOpTy->getElementCount(); 949 950 // A badly fit destination size would result in an invalid cast. 951 if (SrcWidth % DestWidth == 0) { 952 uint64_t TruncRatio = SrcWidth / DestWidth; 953 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 954 uint64_t VecOpIdx = Cst->getZExtValue(); 955 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 956 : VecOpIdx * TruncRatio; 957 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 958 "overflow 32-bits"); 959 960 auto *BitCastTo = 961 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 962 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 963 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 964 } 965 } 966 967 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 968 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 969 m_Value(B))))) { 970 unsigned AWidth = A->getType()->getScalarSizeInBits(); 971 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 972 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 973 Value *NarrowCtlz = 974 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 975 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 976 } 977 } 978 979 if (match(Src, m_VScale(DL))) { 980 if (Trunc.getFunction() && 981 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 982 Attribute Attr = 983 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 984 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 985 if (Log2_32(*MaxVScale) < DestWidth) { 986 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 987 return replaceInstUsesWith(Trunc, VScale); 988 } 989 } 990 } 991 } 992 993 return nullptr; 994 } 995 996 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext) { 997 // If we are just checking for a icmp eq of a single bit and zext'ing it 998 // to an integer, then shift the bit to the appropriate place and then 999 // cast to integer to avoid the comparison. 1000 1001 // FIXME: This set of transforms does not check for extra uses and/or creates 1002 // an extra instruction (an optional final cast is not included 1003 // in the transform comments). We may also want to favor icmp over 1004 // shifts in cases of equal instructions because icmp has better 1005 // analysis in general (invert the transform). 1006 1007 const APInt *Op1CV; 1008 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 1009 1010 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 1011 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { 1012 Value *In = Cmp->getOperand(0); 1013 Value *Sh = ConstantInt::get(In->getType(), 1014 In->getType()->getScalarSizeInBits() - 1); 1015 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 1016 if (In->getType() != Zext.getType()) 1017 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 1018 1019 return replaceInstUsesWith(Zext, In); 1020 } 1021 1022 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 1023 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1024 // zext (X != 0) to i32 --> X iff X has only the low bit set. 1025 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 1026 if (Op1CV->isZero() && Cmp->isEquality()) { 1027 // If Op1C some other power of two, convert: 1028 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 1029 1030 APInt KnownZeroMask(~Known.Zero); 1031 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 1032 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1033 uint32_t ShAmt = KnownZeroMask.logBase2(); 1034 Value *In = Cmp->getOperand(0); 1035 if (ShAmt) { 1036 // Perform a logical shr by shiftamt. 1037 // Insert the shift to put the result in the low bit. 1038 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1039 In->getName() + ".lobit"); 1040 } 1041 1042 if (!isNE) { // Toggle the low bit. 1043 Constant *One = ConstantInt::get(In->getType(), 1); 1044 In = Builder.CreateXor(In, One); 1045 } 1046 1047 if (Zext.getType() == In->getType()) 1048 return replaceInstUsesWith(Zext, In); 1049 1050 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1051 return replaceInstUsesWith(Zext, IntCast); 1052 } 1053 } 1054 } 1055 1056 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1057 // Test if a bit is clear/set using a shifted-one mask: 1058 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 1059 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 1060 Value *X, *ShAmt; 1061 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 1062 match(Cmp->getOperand(0), 1063 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 1064 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1065 X = Builder.CreateNot(X); 1066 Value *Lshr = Builder.CreateLShr(X, ShAmt); 1067 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1068 return replaceInstUsesWith(Zext, And1); 1069 } 1070 1071 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1072 // It is also profitable to transform icmp eq into not(xor(A, B)) because 1073 // that may lead to additional simplifications. 1074 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1075 Value *LHS = Cmp->getOperand(0); 1076 Value *RHS = Cmp->getOperand(1); 1077 1078 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1079 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1080 1081 if (KnownLHS == KnownRHS) { 1082 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1083 APInt UnknownBit = ~KnownBits; 1084 if (UnknownBit.countPopulation() == 1) { 1085 Value *Result = Builder.CreateXor(LHS, RHS); 1086 1087 // Mask off any bits that are set and won't be shifted away. 1088 if (KnownLHS.One.uge(UnknownBit)) 1089 Result = Builder.CreateAnd(Result, 1090 ConstantInt::get(ITy, UnknownBit)); 1091 1092 // Shift the bit we're testing down to the lsb. 1093 Result = Builder.CreateLShr( 1094 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1095 1096 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1097 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1098 Result->takeName(Cmp); 1099 return replaceInstUsesWith(Zext, Result); 1100 } 1101 } 1102 } 1103 } 1104 1105 return nullptr; 1106 } 1107 1108 /// Determine if the specified value can be computed in the specified wider type 1109 /// and produce the same low bits. If not, return false. 1110 /// 1111 /// If this function returns true, it can also return a non-zero number of bits 1112 /// (in BitsToClear) which indicates that the value it computes is correct for 1113 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1114 /// out. For example, to promote something like: 1115 /// 1116 /// %B = trunc i64 %A to i32 1117 /// %C = lshr i32 %B, 8 1118 /// %E = zext i32 %C to i64 1119 /// 1120 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1121 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1122 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1123 /// clear the top bits anyway, doing this has no extra cost. 1124 /// 1125 /// This function works on both vectors and scalars. 1126 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1127 InstCombinerImpl &IC, Instruction *CxtI) { 1128 BitsToClear = 0; 1129 if (canAlwaysEvaluateInType(V, Ty)) 1130 return true; 1131 if (canNotEvaluateInType(V, Ty)) 1132 return false; 1133 1134 auto *I = cast<Instruction>(V); 1135 unsigned Tmp; 1136 switch (I->getOpcode()) { 1137 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1138 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1139 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1140 return true; 1141 case Instruction::And: 1142 case Instruction::Or: 1143 case Instruction::Xor: 1144 case Instruction::Add: 1145 case Instruction::Sub: 1146 case Instruction::Mul: 1147 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1148 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1149 return false; 1150 // These can all be promoted if neither operand has 'bits to clear'. 1151 if (BitsToClear == 0 && Tmp == 0) 1152 return true; 1153 1154 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1155 // other side, BitsToClear is ok. 1156 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1157 // We use MaskedValueIsZero here for generality, but the case we care 1158 // about the most is constant RHS. 1159 unsigned VSize = V->getType()->getScalarSizeInBits(); 1160 if (IC.MaskedValueIsZero(I->getOperand(1), 1161 APInt::getHighBitsSet(VSize, BitsToClear), 1162 0, CxtI)) { 1163 // If this is an And instruction and all of the BitsToClear are 1164 // known to be zero we can reset BitsToClear. 1165 if (I->getOpcode() == Instruction::And) 1166 BitsToClear = 0; 1167 return true; 1168 } 1169 } 1170 1171 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1172 return false; 1173 1174 case Instruction::Shl: { 1175 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1176 // upper bits we can reduce BitsToClear by the shift amount. 1177 const APInt *Amt; 1178 if (match(I->getOperand(1), m_APInt(Amt))) { 1179 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1180 return false; 1181 uint64_t ShiftAmt = Amt->getZExtValue(); 1182 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1183 return true; 1184 } 1185 return false; 1186 } 1187 case Instruction::LShr: { 1188 // We can promote lshr(x, cst) if we can promote x. This requires the 1189 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1190 const APInt *Amt; 1191 if (match(I->getOperand(1), m_APInt(Amt))) { 1192 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1193 return false; 1194 BitsToClear += Amt->getZExtValue(); 1195 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1196 BitsToClear = V->getType()->getScalarSizeInBits(); 1197 return true; 1198 } 1199 // Cannot promote variable LSHR. 1200 return false; 1201 } 1202 case Instruction::Select: 1203 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1204 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1205 // TODO: If important, we could handle the case when the BitsToClear are 1206 // known zero in the disagreeing side. 1207 Tmp != BitsToClear) 1208 return false; 1209 return true; 1210 1211 case Instruction::PHI: { 1212 // We can change a phi if we can change all operands. Note that we never 1213 // get into trouble with cyclic PHIs here because we only consider 1214 // instructions with a single use. 1215 PHINode *PN = cast<PHINode>(I); 1216 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1217 return false; 1218 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1219 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1220 // TODO: If important, we could handle the case when the BitsToClear 1221 // are known zero in the disagreeing input. 1222 Tmp != BitsToClear) 1223 return false; 1224 return true; 1225 } 1226 default: 1227 // TODO: Can handle more cases here. 1228 return false; 1229 } 1230 } 1231 1232 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1233 // If this zero extend is only used by a truncate, let the truncate be 1234 // eliminated before we try to optimize this zext. 1235 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1236 return nullptr; 1237 1238 // If one of the common conversion will work, do it. 1239 if (Instruction *Result = commonCastTransforms(CI)) 1240 return Result; 1241 1242 Value *Src = CI.getOperand(0); 1243 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1244 1245 // Try to extend the entire expression tree to the wide destination type. 1246 unsigned BitsToClear; 1247 if (shouldChangeType(SrcTy, DestTy) && 1248 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1249 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1250 "Can't clear more bits than in SrcTy"); 1251 1252 // Okay, we can transform this! Insert the new expression now. 1253 LLVM_DEBUG( 1254 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1255 " to avoid zero extend: " 1256 << CI << '\n'); 1257 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1258 assert(Res->getType() == DestTy); 1259 1260 // Preserve debug values referring to Src if the zext is its last use. 1261 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1262 if (SrcOp->hasOneUse()) 1263 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1264 1265 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1266 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1267 1268 // If the high bits are already filled with zeros, just replace this 1269 // cast with the result. 1270 if (MaskedValueIsZero(Res, 1271 APInt::getHighBitsSet(DestBitSize, 1272 DestBitSize-SrcBitsKept), 1273 0, &CI)) 1274 return replaceInstUsesWith(CI, Res); 1275 1276 // We need to emit an AND to clear the high bits. 1277 Constant *C = ConstantInt::get(Res->getType(), 1278 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1279 return BinaryOperator::CreateAnd(Res, C); 1280 } 1281 1282 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1283 // types and if the sizes are just right we can convert this into a logical 1284 // 'and' which will be much cheaper than the pair of casts. 1285 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1286 // TODO: Subsume this into EvaluateInDifferentType. 1287 1288 // Get the sizes of the types involved. We know that the intermediate type 1289 // will be smaller than A or C, but don't know the relation between A and C. 1290 Value *A = CSrc->getOperand(0); 1291 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1292 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1293 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1294 // If we're actually extending zero bits, then if 1295 // SrcSize < DstSize: zext(a & mask) 1296 // SrcSize == DstSize: a & mask 1297 // SrcSize > DstSize: trunc(a) & mask 1298 if (SrcSize < DstSize) { 1299 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1300 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1301 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1302 return new ZExtInst(And, CI.getType()); 1303 } 1304 1305 if (SrcSize == DstSize) { 1306 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1307 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1308 AndValue)); 1309 } 1310 if (SrcSize > DstSize) { 1311 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1312 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1313 return BinaryOperator::CreateAnd(Trunc, 1314 ConstantInt::get(Trunc->getType(), 1315 AndValue)); 1316 } 1317 } 1318 1319 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1320 return transformZExtICmp(Cmp, CI); 1321 1322 // zext(trunc(X) & C) -> (X & zext(C)). 1323 Constant *C; 1324 Value *X; 1325 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1326 X->getType() == CI.getType()) 1327 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1328 1329 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1330 Value *And; 1331 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1332 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1333 X->getType() == CI.getType()) { 1334 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1335 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1336 } 1337 1338 // If we are truncating, masking, and then zexting back to the original type, 1339 // that's just a mask. This is not handled by canEvaluateZextd if the 1340 // intermediate values have extra uses. This could be generalized further for 1341 // a non-constant mask operand. 1342 // zext (and (trunc X), C) --> and X, (zext C) 1343 if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) && 1344 X->getType() == DestTy) { 1345 Constant *ZextC = ConstantExpr::getZExt(C, DestTy); 1346 return BinaryOperator::CreateAnd(X, ZextC); 1347 } 1348 1349 if (match(Src, m_VScale(DL))) { 1350 if (CI.getFunction() && 1351 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1352 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1353 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1354 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1355 if (Log2_32(*MaxVScale) < TypeWidth) { 1356 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1357 return replaceInstUsesWith(CI, VScale); 1358 } 1359 } 1360 } 1361 } 1362 1363 return nullptr; 1364 } 1365 1366 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1367 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1368 Instruction &CI) { 1369 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1370 ICmpInst::Predicate Pred = ICI->getPredicate(); 1371 1372 // Don't bother if Op1 isn't of vector or integer type. 1373 if (!Op1->getType()->isIntOrIntVectorTy()) 1374 return nullptr; 1375 1376 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1377 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1378 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1379 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1380 Value *Sh = ConstantInt::get(Op0->getType(), 1381 Op0->getType()->getScalarSizeInBits() - 1); 1382 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1383 if (In->getType() != CI.getType()) 1384 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1385 1386 if (Pred == ICmpInst::ICMP_SGT) 1387 In = Builder.CreateNot(In, In->getName() + ".not"); 1388 return replaceInstUsesWith(CI, In); 1389 } 1390 1391 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1392 // If we know that only one bit of the LHS of the icmp can be set and we 1393 // have an equality comparison with zero or a power of 2, we can transform 1394 // the icmp and sext into bitwise/integer operations. 1395 if (ICI->hasOneUse() && 1396 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1397 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1398 1399 APInt KnownZeroMask(~Known.Zero); 1400 if (KnownZeroMask.isPowerOf2()) { 1401 Value *In = ICI->getOperand(0); 1402 1403 // If the icmp tests for a known zero bit we can constant fold it. 1404 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1405 Value *V = Pred == ICmpInst::ICMP_NE ? 1406 ConstantInt::getAllOnesValue(CI.getType()) : 1407 ConstantInt::getNullValue(CI.getType()); 1408 return replaceInstUsesWith(CI, V); 1409 } 1410 1411 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1412 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1413 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1414 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1415 // Perform a right shift to place the desired bit in the LSB. 1416 if (ShiftAmt) 1417 In = Builder.CreateLShr(In, 1418 ConstantInt::get(In->getType(), ShiftAmt)); 1419 1420 // At this point "In" is either 1 or 0. Subtract 1 to turn 1421 // {1, 0} -> {0, -1}. 1422 In = Builder.CreateAdd(In, 1423 ConstantInt::getAllOnesValue(In->getType()), 1424 "sext"); 1425 } else { 1426 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1427 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1428 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1429 // Perform a left shift to place the desired bit in the MSB. 1430 if (ShiftAmt) 1431 In = Builder.CreateShl(In, 1432 ConstantInt::get(In->getType(), ShiftAmt)); 1433 1434 // Distribute the bit over the whole bit width. 1435 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1436 KnownZeroMask.getBitWidth() - 1), "sext"); 1437 } 1438 1439 if (CI.getType() == In->getType()) 1440 return replaceInstUsesWith(CI, In); 1441 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1442 } 1443 } 1444 } 1445 1446 return nullptr; 1447 } 1448 1449 /// Return true if we can take the specified value and return it as type Ty 1450 /// without inserting any new casts and without changing the value of the common 1451 /// low bits. This is used by code that tries to promote integer operations to 1452 /// a wider types will allow us to eliminate the extension. 1453 /// 1454 /// This function works on both vectors and scalars. 1455 /// 1456 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1457 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1458 "Can't sign extend type to a smaller type"); 1459 if (canAlwaysEvaluateInType(V, Ty)) 1460 return true; 1461 if (canNotEvaluateInType(V, Ty)) 1462 return false; 1463 1464 auto *I = cast<Instruction>(V); 1465 switch (I->getOpcode()) { 1466 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1467 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1468 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1469 return true; 1470 case Instruction::And: 1471 case Instruction::Or: 1472 case Instruction::Xor: 1473 case Instruction::Add: 1474 case Instruction::Sub: 1475 case Instruction::Mul: 1476 // These operators can all arbitrarily be extended if their inputs can. 1477 return canEvaluateSExtd(I->getOperand(0), Ty) && 1478 canEvaluateSExtd(I->getOperand(1), Ty); 1479 1480 //case Instruction::Shl: TODO 1481 //case Instruction::LShr: TODO 1482 1483 case Instruction::Select: 1484 return canEvaluateSExtd(I->getOperand(1), Ty) && 1485 canEvaluateSExtd(I->getOperand(2), Ty); 1486 1487 case Instruction::PHI: { 1488 // We can change a phi if we can change all operands. Note that we never 1489 // get into trouble with cyclic PHIs here because we only consider 1490 // instructions with a single use. 1491 PHINode *PN = cast<PHINode>(I); 1492 for (Value *IncValue : PN->incoming_values()) 1493 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1494 return true; 1495 } 1496 default: 1497 // TODO: Can handle more cases here. 1498 break; 1499 } 1500 1501 return false; 1502 } 1503 1504 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1505 // If this sign extend is only used by a truncate, let the truncate be 1506 // eliminated before we try to optimize this sext. 1507 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1508 return nullptr; 1509 1510 if (Instruction *I = commonCastTransforms(CI)) 1511 return I; 1512 1513 Value *Src = CI.getOperand(0); 1514 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1515 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1516 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1517 1518 // If the value being extended is zero or positive, use a zext instead. 1519 if (isKnownNonNegative(Src, DL, 0, &AC, &CI, &DT)) 1520 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1521 1522 // Try to extend the entire expression tree to the wide destination type. 1523 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1524 // Okay, we can transform this! Insert the new expression now. 1525 LLVM_DEBUG( 1526 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1527 " to avoid sign extend: " 1528 << CI << '\n'); 1529 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1530 assert(Res->getType() == DestTy); 1531 1532 // If the high bits are already filled with sign bit, just replace this 1533 // cast with the result. 1534 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1535 return replaceInstUsesWith(CI, Res); 1536 1537 // We need to emit a shl + ashr to do the sign extend. 1538 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1539 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1540 ShAmt); 1541 } 1542 1543 Value *X; 1544 if (match(Src, m_Trunc(m_Value(X)))) { 1545 // If the input has more sign bits than bits truncated, then convert 1546 // directly to final type. 1547 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1548 if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize) 1549 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1550 1551 // If input is a trunc from the destination type, then convert into shifts. 1552 if (Src->hasOneUse() && X->getType() == DestTy) { 1553 // sext (trunc X) --> ashr (shl X, C), C 1554 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1555 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1556 } 1557 1558 // If we are replacing shifted-in high zero bits with sign bits, convert 1559 // the logic shift to arithmetic shift and eliminate the cast to 1560 // intermediate type: 1561 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1562 Value *Y; 1563 if (Src->hasOneUse() && 1564 match(X, m_LShr(m_Value(Y), 1565 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1566 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1567 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1568 } 1569 } 1570 1571 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1572 return transformSExtICmp(ICI, CI); 1573 1574 // If the input is a shl/ashr pair of a same constant, then this is a sign 1575 // extension from a smaller value. If we could trust arbitrary bitwidth 1576 // integers, we could turn this into a truncate to the smaller bit and then 1577 // use a sext for the whole extension. Since we don't, look deeper and check 1578 // for a truncate. If the source and dest are the same type, eliminate the 1579 // trunc and extend and just do shifts. For example, turn: 1580 // %a = trunc i32 %i to i8 1581 // %b = shl i8 %a, C 1582 // %c = ashr i8 %b, C 1583 // %d = sext i8 %c to i32 1584 // into: 1585 // %a = shl i32 %i, 32-(8-C) 1586 // %d = ashr i32 %a, 32-(8-C) 1587 Value *A = nullptr; 1588 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1589 Constant *BA = nullptr, *CA = nullptr; 1590 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1591 m_Constant(CA))) && 1592 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1593 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1594 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1595 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1596 Constant *NewShAmt = ConstantExpr::getSub( 1597 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1598 NumLowbitsLeft); 1599 NewShAmt = 1600 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1601 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1602 return BinaryOperator::CreateAShr(A, NewShAmt); 1603 } 1604 1605 // Splatting a bit of constant-index across a value: 1606 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1607 // If the dest type is different, use a cast (adjust use check). 1608 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1609 m_SpecificInt(SrcBitSize - 1))))) { 1610 Type *XTy = X->getType(); 1611 unsigned XBitSize = XTy->getScalarSizeInBits(); 1612 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); 1613 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); 1614 if (XTy == DestTy) 1615 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), 1616 AshrAmtC); 1617 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { 1618 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); 1619 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1620 } 1621 } 1622 1623 if (match(Src, m_VScale(DL))) { 1624 if (CI.getFunction() && 1625 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1626 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1627 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1628 if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) { 1629 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1630 return replaceInstUsesWith(CI, VScale); 1631 } 1632 } 1633 } 1634 } 1635 1636 return nullptr; 1637 } 1638 1639 /// Return a Constant* for the specified floating-point constant if it fits 1640 /// in the specified FP type without changing its value. 1641 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1642 bool losesInfo; 1643 APFloat F = CFP->getValueAPF(); 1644 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1645 return !losesInfo; 1646 } 1647 1648 static Type *shrinkFPConstant(ConstantFP *CFP) { 1649 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1650 return nullptr; // No constant folding of this. 1651 // See if the value can be truncated to half and then reextended. 1652 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1653 return Type::getHalfTy(CFP->getContext()); 1654 // See if the value can be truncated to float and then reextended. 1655 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1656 return Type::getFloatTy(CFP->getContext()); 1657 if (CFP->getType()->isDoubleTy()) 1658 return nullptr; // Won't shrink. 1659 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1660 return Type::getDoubleTy(CFP->getContext()); 1661 // Don't try to shrink to various long double types. 1662 return nullptr; 1663 } 1664 1665 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1666 // type we can safely truncate all elements to. 1667 static Type *shrinkFPConstantVector(Value *V) { 1668 auto *CV = dyn_cast<Constant>(V); 1669 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1670 if (!CV || !CVVTy) 1671 return nullptr; 1672 1673 Type *MinType = nullptr; 1674 1675 unsigned NumElts = CVVTy->getNumElements(); 1676 1677 // For fixed-width vectors we find the minimal type by looking 1678 // through the constant values of the vector. 1679 for (unsigned i = 0; i != NumElts; ++i) { 1680 if (isa<UndefValue>(CV->getAggregateElement(i))) 1681 continue; 1682 1683 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1684 if (!CFP) 1685 return nullptr; 1686 1687 Type *T = shrinkFPConstant(CFP); 1688 if (!T) 1689 return nullptr; 1690 1691 // If we haven't found a type yet or this type has a larger mantissa than 1692 // our previous type, this is our new minimal type. 1693 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1694 MinType = T; 1695 } 1696 1697 // Make a vector type from the minimal type. 1698 return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr; 1699 } 1700 1701 /// Find the minimum FP type we can safely truncate to. 1702 static Type *getMinimumFPType(Value *V) { 1703 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1704 return FPExt->getOperand(0)->getType(); 1705 1706 // If this value is a constant, return the constant in the smallest FP type 1707 // that can accurately represent it. This allows us to turn 1708 // (float)((double)X+2.0) into x+2.0f. 1709 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1710 if (Type *T = shrinkFPConstant(CFP)) 1711 return T; 1712 1713 // We can only correctly find a minimum type for a scalable vector when it is 1714 // a splat. For splats of constant values the fpext is wrapped up as a 1715 // ConstantExpr. 1716 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1717 if (FPCExt->getOpcode() == Instruction::FPExt) 1718 return FPCExt->getOperand(0)->getType(); 1719 1720 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1721 // vectors 1722 if (Type *T = shrinkFPConstantVector(V)) 1723 return T; 1724 1725 return V->getType(); 1726 } 1727 1728 /// Return true if the cast from integer to FP can be proven to be exact for all 1729 /// possible inputs (the conversion does not lose any precision). 1730 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { 1731 CastInst::CastOps Opcode = I.getOpcode(); 1732 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1733 "Unexpected cast"); 1734 Value *Src = I.getOperand(0); 1735 Type *SrcTy = Src->getType(); 1736 Type *FPTy = I.getType(); 1737 bool IsSigned = Opcode == Instruction::SIToFP; 1738 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1739 1740 // Easy case - if the source integer type has less bits than the FP mantissa, 1741 // then the cast must be exact. 1742 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1743 if (SrcSize <= DestNumSigBits) 1744 return true; 1745 1746 // Cast from FP to integer and back to FP is independent of the intermediate 1747 // integer width because of poison on overflow. 1748 Value *F; 1749 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1750 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1751 // potential rounding of negative FP input values. 1752 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1753 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1754 SrcNumSigBits++; 1755 1756 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1757 // significant bits than the destination (and make sure neither type is 1758 // weird -- ppc_fp128). 1759 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1760 SrcNumSigBits <= DestNumSigBits) 1761 return true; 1762 } 1763 1764 // TODO: 1765 // Try harder to find if the source integer type has less significant bits. 1766 // For example, compute number of sign bits. 1767 KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I); 1768 int SigBits = (int)SrcTy->getScalarSizeInBits() - 1769 SrcKnown.countMinLeadingZeros() - 1770 SrcKnown.countMinTrailingZeros(); 1771 if (SigBits <= DestNumSigBits) 1772 return true; 1773 1774 return false; 1775 } 1776 1777 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1778 if (Instruction *I = commonCastTransforms(FPT)) 1779 return I; 1780 1781 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1782 // simplify this expression to avoid one or more of the trunc/extend 1783 // operations if we can do so without changing the numerical results. 1784 // 1785 // The exact manner in which the widths of the operands interact to limit 1786 // what we can and cannot do safely varies from operation to operation, and 1787 // is explained below in the various case statements. 1788 Type *Ty = FPT.getType(); 1789 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1790 if (BO && BO->hasOneUse()) { 1791 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1792 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1793 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1794 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1795 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1796 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1797 unsigned DstWidth = Ty->getFPMantissaWidth(); 1798 switch (BO->getOpcode()) { 1799 default: break; 1800 case Instruction::FAdd: 1801 case Instruction::FSub: 1802 // For addition and subtraction, the infinitely precise result can 1803 // essentially be arbitrarily wide; proving that double rounding 1804 // will not occur because the result of OpI is exact (as we will for 1805 // FMul, for example) is hopeless. However, we *can* nonetheless 1806 // frequently know that double rounding cannot occur (or that it is 1807 // innocuous) by taking advantage of the specific structure of 1808 // infinitely-precise results that admit double rounding. 1809 // 1810 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1811 // to represent both sources, we can guarantee that the double 1812 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1813 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1814 // for proof of this fact). 1815 // 1816 // Note: Figueroa does not consider the case where DstFormat != 1817 // SrcFormat. It's possible (likely even!) that this analysis 1818 // could be tightened for those cases, but they are rare (the main 1819 // case of interest here is (float)((double)float + float)). 1820 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1821 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1822 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1823 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1824 RI->copyFastMathFlags(BO); 1825 return RI; 1826 } 1827 break; 1828 case Instruction::FMul: 1829 // For multiplication, the infinitely precise result has at most 1830 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1831 // that such a value can be exactly represented, then no double 1832 // rounding can possibly occur; we can safely perform the operation 1833 // in the destination format if it can represent both sources. 1834 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1835 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1836 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1837 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1838 } 1839 break; 1840 case Instruction::FDiv: 1841 // For division, we use again use the bound from Figueroa's 1842 // dissertation. I am entirely certain that this bound can be 1843 // tightened in the unbalanced operand case by an analysis based on 1844 // the diophantine rational approximation bound, but the well-known 1845 // condition used here is a good conservative first pass. 1846 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1847 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1848 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1849 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1850 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1851 } 1852 break; 1853 case Instruction::FRem: { 1854 // Remainder is straightforward. Remainder is always exact, so the 1855 // type of OpI doesn't enter into things at all. We simply evaluate 1856 // in whichever source type is larger, then convert to the 1857 // destination type. 1858 if (SrcWidth == OpWidth) 1859 break; 1860 Value *LHS, *RHS; 1861 if (LHSWidth == SrcWidth) { 1862 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1863 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1864 } else { 1865 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1866 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1867 } 1868 1869 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1870 return CastInst::CreateFPCast(ExactResult, Ty); 1871 } 1872 } 1873 } 1874 1875 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1876 Value *X; 1877 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1878 if (Op && Op->hasOneUse()) { 1879 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1880 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1881 if (isa<FPMathOperator>(Op)) 1882 Builder.setFastMathFlags(Op->getFastMathFlags()); 1883 1884 if (match(Op, m_FNeg(m_Value(X)))) { 1885 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1886 1887 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1888 } 1889 1890 // If we are truncating a select that has an extended operand, we can 1891 // narrow the other operand and do the select as a narrow op. 1892 Value *Cond, *X, *Y; 1893 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1894 X->getType() == Ty) { 1895 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1896 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1897 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1898 return replaceInstUsesWith(FPT, Sel); 1899 } 1900 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1901 X->getType() == Ty) { 1902 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1903 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1904 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1905 return replaceInstUsesWith(FPT, Sel); 1906 } 1907 } 1908 1909 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1910 switch (II->getIntrinsicID()) { 1911 default: break; 1912 case Intrinsic::ceil: 1913 case Intrinsic::fabs: 1914 case Intrinsic::floor: 1915 case Intrinsic::nearbyint: 1916 case Intrinsic::rint: 1917 case Intrinsic::round: 1918 case Intrinsic::roundeven: 1919 case Intrinsic::trunc: { 1920 Value *Src = II->getArgOperand(0); 1921 if (!Src->hasOneUse()) 1922 break; 1923 1924 // Except for fabs, this transformation requires the input of the unary FP 1925 // operation to be itself an fpext from the type to which we're 1926 // truncating. 1927 if (II->getIntrinsicID() != Intrinsic::fabs) { 1928 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1929 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1930 break; 1931 } 1932 1933 // Do unary FP operation on smaller type. 1934 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1935 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1936 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1937 II->getIntrinsicID(), Ty); 1938 SmallVector<OperandBundleDef, 1> OpBundles; 1939 II->getOperandBundlesAsDefs(OpBundles); 1940 CallInst *NewCI = 1941 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1942 NewCI->copyFastMathFlags(II); 1943 return NewCI; 1944 } 1945 } 1946 } 1947 1948 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1949 return I; 1950 1951 Value *Src = FPT.getOperand(0); 1952 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1953 auto *FPCast = cast<CastInst>(Src); 1954 if (isKnownExactCastIntToFP(*FPCast, *this)) 1955 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1956 } 1957 1958 return nullptr; 1959 } 1960 1961 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1962 // If the source operand is a cast from integer to FP and known exact, then 1963 // cast the integer operand directly to the destination type. 1964 Type *Ty = FPExt.getType(); 1965 Value *Src = FPExt.getOperand(0); 1966 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1967 auto *FPCast = cast<CastInst>(Src); 1968 if (isKnownExactCastIntToFP(*FPCast, *this)) 1969 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1970 } 1971 1972 return commonCastTransforms(FPExt); 1973 } 1974 1975 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1976 /// This is safe if the intermediate type has enough bits in its mantissa to 1977 /// accurately represent all values of X. For example, this won't work with 1978 /// i64 -> float -> i64. 1979 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1980 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1981 return nullptr; 1982 1983 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1984 Value *X = OpI->getOperand(0); 1985 Type *XType = X->getType(); 1986 Type *DestType = FI.getType(); 1987 bool IsOutputSigned = isa<FPToSIInst>(FI); 1988 1989 // Since we can assume the conversion won't overflow, our decision as to 1990 // whether the input will fit in the float should depend on the minimum 1991 // of the input range and output range. 1992 1993 // This means this is also safe for a signed input and unsigned output, since 1994 // a negative input would lead to undefined behavior. 1995 if (!isKnownExactCastIntToFP(*OpI, *this)) { 1996 // The first cast may not round exactly based on the source integer width 1997 // and FP width, but the overflow UB rules can still allow this to fold. 1998 // If the destination type is narrow, that means the intermediate FP value 1999 // must be large enough to hold the source value exactly. 2000 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 2001 int OutputSize = (int)DestType->getScalarSizeInBits(); 2002 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 2003 return nullptr; 2004 } 2005 2006 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 2007 bool IsInputSigned = isa<SIToFPInst>(OpI); 2008 if (IsInputSigned && IsOutputSigned) 2009 return new SExtInst(X, DestType); 2010 return new ZExtInst(X, DestType); 2011 } 2012 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 2013 return new TruncInst(X, DestType); 2014 2015 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 2016 return replaceInstUsesWith(FI, X); 2017 } 2018 2019 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 2020 if (Instruction *I = foldItoFPtoI(FI)) 2021 return I; 2022 2023 return commonCastTransforms(FI); 2024 } 2025 2026 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 2027 if (Instruction *I = foldItoFPtoI(FI)) 2028 return I; 2029 2030 return commonCastTransforms(FI); 2031 } 2032 2033 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 2034 return commonCastTransforms(CI); 2035 } 2036 2037 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 2038 return commonCastTransforms(CI); 2039 } 2040 2041 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 2042 // If the source integer type is not the intptr_t type for this target, do a 2043 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 2044 // cast to be exposed to other transforms. 2045 unsigned AS = CI.getAddressSpace(); 2046 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 2047 DL.getPointerSizeInBits(AS)) { 2048 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2049 DL.getIntPtrType(CI.getContext(), AS)); 2050 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2051 return new IntToPtrInst(P, CI.getType()); 2052 } 2053 2054 if (Instruction *I = commonCastTransforms(CI)) 2055 return I; 2056 2057 return nullptr; 2058 } 2059 2060 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 2061 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 2062 Value *Src = CI.getOperand(0); 2063 2064 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 2065 // If casting the result of a getelementptr instruction with no offset, turn 2066 // this into a cast of the original pointer! 2067 if (GEP->hasAllZeroIndices() && 2068 // If CI is an addrspacecast and GEP changes the poiner type, merging 2069 // GEP into CI would undo canonicalizing addrspacecast with different 2070 // pointer types, causing infinite loops. 2071 (!isa<AddrSpaceCastInst>(CI) || 2072 GEP->getType() == GEP->getPointerOperandType())) { 2073 // Changing the cast operand is usually not a good idea but it is safe 2074 // here because the pointer operand is being replaced with another 2075 // pointer operand so the opcode doesn't need to change. 2076 return replaceOperand(CI, 0, GEP->getOperand(0)); 2077 } 2078 } 2079 2080 return commonCastTransforms(CI); 2081 } 2082 2083 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2084 // If the destination integer type is not the intptr_t type for this target, 2085 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2086 // to be exposed to other transforms. 2087 Value *SrcOp = CI.getPointerOperand(); 2088 Type *SrcTy = SrcOp->getType(); 2089 Type *Ty = CI.getType(); 2090 unsigned AS = CI.getPointerAddressSpace(); 2091 unsigned TySize = Ty->getScalarSizeInBits(); 2092 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2093 if (TySize != PtrSize) { 2094 Type *IntPtrTy = 2095 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2096 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2097 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2098 } 2099 2100 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { 2101 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 2102 // While this can increase the number of instructions it doesn't actually 2103 // increase the overall complexity since the arithmetic is just part of 2104 // the GEP otherwise. 2105 if (GEP->hasOneUse() && 2106 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 2107 return replaceInstUsesWith(CI, 2108 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 2109 /*isSigned=*/false)); 2110 } 2111 } 2112 2113 Value *Vec, *Scalar, *Index; 2114 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2115 m_Value(Scalar), m_Value(Index)))) && 2116 Vec->getType() == Ty) { 2117 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2118 // Convert the scalar to int followed by insert to eliminate one cast: 2119 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2120 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2121 return InsertElementInst::Create(Vec, NewCast, Index); 2122 } 2123 2124 return commonPointerCastTransforms(CI); 2125 } 2126 2127 /// This input value (which is known to have vector type) is being zero extended 2128 /// or truncated to the specified vector type. Since the zext/trunc is done 2129 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2130 /// endianness will impact which end of the vector that is extended or 2131 /// truncated. 2132 /// 2133 /// A vector is always stored with index 0 at the lowest address, which 2134 /// corresponds to the most significant bits for a big endian stored integer and 2135 /// the least significant bits for little endian. A trunc/zext of an integer 2136 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2137 /// the front of the vector for big endian targets, and the back of the vector 2138 /// for little endian targets. 2139 /// 2140 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2141 /// 2142 /// The source and destination vector types may have different element types. 2143 static Instruction * 2144 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2145 InstCombinerImpl &IC) { 2146 // We can only do this optimization if the output is a multiple of the input 2147 // element size, or the input is a multiple of the output element size. 2148 // Convert the input type to have the same element type as the output. 2149 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2150 2151 if (SrcTy->getElementType() != DestTy->getElementType()) { 2152 // The input types don't need to be identical, but for now they must be the 2153 // same size. There is no specific reason we couldn't handle things like 2154 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2155 // there yet. 2156 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2157 DestTy->getElementType()->getPrimitiveSizeInBits()) 2158 return nullptr; 2159 2160 SrcTy = 2161 FixedVectorType::get(DestTy->getElementType(), 2162 cast<FixedVectorType>(SrcTy)->getNumElements()); 2163 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2164 } 2165 2166 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2167 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2168 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2169 2170 assert(SrcElts != DestElts && "Element counts should be different."); 2171 2172 // Now that the element types match, get the shuffle mask and RHS of the 2173 // shuffle to use, which depends on whether we're increasing or decreasing the 2174 // size of the input. 2175 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); 2176 ArrayRef<int> ShuffleMask; 2177 Value *V2; 2178 2179 if (SrcElts > DestElts) { 2180 // If we're shrinking the number of elements (rewriting an integer 2181 // truncate), just shuffle in the elements corresponding to the least 2182 // significant bits from the input and use poison as the second shuffle 2183 // input. 2184 V2 = PoisonValue::get(SrcTy); 2185 // Make sure the shuffle mask selects the "least significant bits" by 2186 // keeping elements from back of the src vector for big endian, and from the 2187 // front for little endian. 2188 ShuffleMask = ShuffleMaskStorage; 2189 if (IsBigEndian) 2190 ShuffleMask = ShuffleMask.take_back(DestElts); 2191 else 2192 ShuffleMask = ShuffleMask.take_front(DestElts); 2193 } else { 2194 // If we're increasing the number of elements (rewriting an integer zext), 2195 // shuffle in all of the elements from InVal. Fill the rest of the result 2196 // elements with zeros from a constant zero. 2197 V2 = Constant::getNullValue(SrcTy); 2198 // Use first elt from V2 when indicating zero in the shuffle mask. 2199 uint32_t NullElt = SrcElts; 2200 // Extend with null values in the "most significant bits" by adding elements 2201 // in front of the src vector for big endian, and at the back for little 2202 // endian. 2203 unsigned DeltaElts = DestElts - SrcElts; 2204 if (IsBigEndian) 2205 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2206 else 2207 ShuffleMaskStorage.append(DeltaElts, NullElt); 2208 ShuffleMask = ShuffleMaskStorage; 2209 } 2210 2211 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2212 } 2213 2214 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2215 return Value % Ty->getPrimitiveSizeInBits() == 0; 2216 } 2217 2218 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2219 return Value / Ty->getPrimitiveSizeInBits(); 2220 } 2221 2222 /// V is a value which is inserted into a vector of VecEltTy. 2223 /// Look through the value to see if we can decompose it into 2224 /// insertions into the vector. See the example in the comment for 2225 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2226 /// The type of V is always a non-zero multiple of VecEltTy's size. 2227 /// Shift is the number of bits between the lsb of V and the lsb of 2228 /// the vector. 2229 /// 2230 /// This returns false if the pattern can't be matched or true if it can, 2231 /// filling in Elements with the elements found here. 2232 static bool collectInsertionElements(Value *V, unsigned Shift, 2233 SmallVectorImpl<Value *> &Elements, 2234 Type *VecEltTy, bool isBigEndian) { 2235 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2236 "Shift should be a multiple of the element type size"); 2237 2238 // Undef values never contribute useful bits to the result. 2239 if (isa<UndefValue>(V)) return true; 2240 2241 // If we got down to a value of the right type, we win, try inserting into the 2242 // right element. 2243 if (V->getType() == VecEltTy) { 2244 // Inserting null doesn't actually insert any elements. 2245 if (Constant *C = dyn_cast<Constant>(V)) 2246 if (C->isNullValue()) 2247 return true; 2248 2249 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2250 if (isBigEndian) 2251 ElementIndex = Elements.size() - ElementIndex - 1; 2252 2253 // Fail if multiple elements are inserted into this slot. 2254 if (Elements[ElementIndex]) 2255 return false; 2256 2257 Elements[ElementIndex] = V; 2258 return true; 2259 } 2260 2261 if (Constant *C = dyn_cast<Constant>(V)) { 2262 // Figure out the # elements this provides, and bitcast it or slice it up 2263 // as required. 2264 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2265 VecEltTy); 2266 // If the constant is the size of a vector element, we just need to bitcast 2267 // it to the right type so it gets properly inserted. 2268 if (NumElts == 1) 2269 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2270 Shift, Elements, VecEltTy, isBigEndian); 2271 2272 // Okay, this is a constant that covers multiple elements. Slice it up into 2273 // pieces and insert each element-sized piece into the vector. 2274 if (!isa<IntegerType>(C->getType())) 2275 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2276 C->getType()->getPrimitiveSizeInBits())); 2277 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2278 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2279 2280 for (unsigned i = 0; i != NumElts; ++i) { 2281 unsigned ShiftI = Shift+i*ElementSize; 2282 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2283 ShiftI)); 2284 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2285 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2286 isBigEndian)) 2287 return false; 2288 } 2289 return true; 2290 } 2291 2292 if (!V->hasOneUse()) return false; 2293 2294 Instruction *I = dyn_cast<Instruction>(V); 2295 if (!I) return false; 2296 switch (I->getOpcode()) { 2297 default: return false; // Unhandled case. 2298 case Instruction::BitCast: 2299 if (I->getOperand(0)->getType()->isVectorTy()) 2300 return false; 2301 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2302 isBigEndian); 2303 case Instruction::ZExt: 2304 if (!isMultipleOfTypeSize( 2305 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2306 VecEltTy)) 2307 return false; 2308 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2309 isBigEndian); 2310 case Instruction::Or: 2311 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2312 isBigEndian) && 2313 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2314 isBigEndian); 2315 case Instruction::Shl: { 2316 // Must be shifting by a constant that is a multiple of the element size. 2317 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2318 if (!CI) return false; 2319 Shift += CI->getZExtValue(); 2320 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2321 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2322 isBigEndian); 2323 } 2324 2325 } 2326 } 2327 2328 2329 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2330 /// assemble the elements of the vector manually. 2331 /// Try to rip the code out and replace it with insertelements. This is to 2332 /// optimize code like this: 2333 /// 2334 /// %tmp37 = bitcast float %inc to i32 2335 /// %tmp38 = zext i32 %tmp37 to i64 2336 /// %tmp31 = bitcast float %inc5 to i32 2337 /// %tmp32 = zext i32 %tmp31 to i64 2338 /// %tmp33 = shl i64 %tmp32, 32 2339 /// %ins35 = or i64 %tmp33, %tmp38 2340 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2341 /// 2342 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2343 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2344 InstCombinerImpl &IC) { 2345 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2346 Value *IntInput = CI.getOperand(0); 2347 2348 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2349 if (!collectInsertionElements(IntInput, 0, Elements, 2350 DestVecTy->getElementType(), 2351 IC.getDataLayout().isBigEndian())) 2352 return nullptr; 2353 2354 // If we succeeded, we know that all of the element are specified by Elements 2355 // or are zero if Elements has a null entry. Recast this as a set of 2356 // insertions. 2357 Value *Result = Constant::getNullValue(CI.getType()); 2358 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2359 if (!Elements[i]) continue; // Unset element. 2360 2361 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2362 IC.Builder.getInt32(i)); 2363 } 2364 2365 return Result; 2366 } 2367 2368 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2369 /// vector followed by extract element. The backend tends to handle bitcasts of 2370 /// vectors better than bitcasts of scalars because vector registers are 2371 /// usually not type-specific like scalar integer or scalar floating-point. 2372 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2373 InstCombinerImpl &IC) { 2374 Value *VecOp, *Index; 2375 if (!match(BitCast.getOperand(0), 2376 m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) 2377 return nullptr; 2378 2379 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2380 // type to extract from. 2381 Type *DestType = BitCast.getType(); 2382 VectorType *VecType = cast<VectorType>(VecOp->getType()); 2383 if (VectorType::isValidElementType(DestType)) { 2384 auto *NewVecType = VectorType::get(DestType, VecType); 2385 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); 2386 return ExtractElementInst::Create(NewBC, Index); 2387 } 2388 2389 // Only solve DestType is vector to avoid inverse transform in visitBitCast. 2390 // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) 2391 auto *FixedVType = dyn_cast<FixedVectorType>(VecType); 2392 if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) 2393 return CastInst::Create(Instruction::BitCast, VecOp, DestType); 2394 2395 return nullptr; 2396 } 2397 2398 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2399 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2400 InstCombiner::BuilderTy &Builder) { 2401 Type *DestTy = BitCast.getType(); 2402 BinaryOperator *BO; 2403 2404 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2405 !BO->isBitwiseLogicOp()) 2406 return nullptr; 2407 2408 // FIXME: This transform is restricted to vector types to avoid backend 2409 // problems caused by creating potentially illegal operations. If a fix-up is 2410 // added to handle that situation, we can remove this check. 2411 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2412 return nullptr; 2413 2414 if (DestTy->isFPOrFPVectorTy()) { 2415 Value *X, *Y; 2416 // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) 2417 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2418 match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) { 2419 if (X->getType()->isFPOrFPVectorTy() && 2420 Y->getType()->isIntOrIntVectorTy()) { 2421 Value *CastedOp = 2422 Builder.CreateBitCast(BO->getOperand(0), Y->getType()); 2423 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y); 2424 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2425 } 2426 if (X->getType()->isIntOrIntVectorTy() && 2427 Y->getType()->isFPOrFPVectorTy()) { 2428 Value *CastedOp = 2429 Builder.CreateBitCast(BO->getOperand(1), X->getType()); 2430 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X); 2431 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2432 } 2433 } 2434 return nullptr; 2435 } 2436 2437 if (!DestTy->isIntOrIntVectorTy()) 2438 return nullptr; 2439 2440 Value *X; 2441 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2442 X->getType() == DestTy && !isa<Constant>(X)) { 2443 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2444 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2445 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2446 } 2447 2448 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2449 X->getType() == DestTy && !isa<Constant>(X)) { 2450 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2451 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2452 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2453 } 2454 2455 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2456 // constant. This eases recognition of special constants for later ops. 2457 // Example: 2458 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2459 Constant *C; 2460 if (match(BO->getOperand(1), m_Constant(C))) { 2461 // bitcast (logic X, C) --> logic (bitcast X, C') 2462 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2463 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2464 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2465 } 2466 2467 return nullptr; 2468 } 2469 2470 /// Change the type of a select if we can eliminate a bitcast. 2471 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2472 InstCombiner::BuilderTy &Builder) { 2473 Value *Cond, *TVal, *FVal; 2474 if (!match(BitCast.getOperand(0), 2475 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2476 return nullptr; 2477 2478 // A vector select must maintain the same number of elements in its operands. 2479 Type *CondTy = Cond->getType(); 2480 Type *DestTy = BitCast.getType(); 2481 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2482 if (!DestTy->isVectorTy() || 2483 CondVTy->getElementCount() != 2484 cast<VectorType>(DestTy)->getElementCount()) 2485 return nullptr; 2486 2487 // FIXME: This transform is restricted from changing the select between 2488 // scalars and vectors to avoid backend problems caused by creating 2489 // potentially illegal operations. If a fix-up is added to handle that 2490 // situation, we can remove this check. 2491 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2492 return nullptr; 2493 2494 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2495 Value *X; 2496 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2497 !isa<Constant>(X)) { 2498 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2499 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2500 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2501 } 2502 2503 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2504 !isa<Constant>(X)) { 2505 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2506 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2507 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2508 } 2509 2510 return nullptr; 2511 } 2512 2513 /// Check if all users of CI are StoreInsts. 2514 static bool hasStoreUsersOnly(CastInst &CI) { 2515 for (User *U : CI.users()) { 2516 if (!isa<StoreInst>(U)) 2517 return false; 2518 } 2519 return true; 2520 } 2521 2522 /// This function handles following case 2523 /// 2524 /// A -> B cast 2525 /// PHI 2526 /// B -> A cast 2527 /// 2528 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2529 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2530 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2531 PHINode *PN) { 2532 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2533 if (hasStoreUsersOnly(CI)) 2534 return nullptr; 2535 2536 Value *Src = CI.getOperand(0); 2537 Type *SrcTy = Src->getType(); // Type B 2538 Type *DestTy = CI.getType(); // Type A 2539 2540 SmallVector<PHINode *, 4> PhiWorklist; 2541 SmallSetVector<PHINode *, 4> OldPhiNodes; 2542 2543 // Find all of the A->B casts and PHI nodes. 2544 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2545 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2546 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2547 PhiWorklist.push_back(PN); 2548 OldPhiNodes.insert(PN); 2549 while (!PhiWorklist.empty()) { 2550 auto *OldPN = PhiWorklist.pop_back_val(); 2551 for (Value *IncValue : OldPN->incoming_values()) { 2552 if (isa<Constant>(IncValue)) 2553 continue; 2554 2555 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2556 // If there is a sequence of one or more load instructions, each loaded 2557 // value is used as address of later load instruction, bitcast is 2558 // necessary to change the value type, don't optimize it. For 2559 // simplicity we give up if the load address comes from another load. 2560 Value *Addr = LI->getOperand(0); 2561 if (Addr == &CI || isa<LoadInst>(Addr)) 2562 return nullptr; 2563 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2564 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2565 // TODO: Remove this check when bitcast between vector and x86_amx 2566 // is replaced with a specific intrinsic. 2567 if (DestTy->isX86_AMXTy()) 2568 return nullptr; 2569 if (LI->hasOneUse() && LI->isSimple()) 2570 continue; 2571 // If a LoadInst has more than one use, changing the type of loaded 2572 // value may create another bitcast. 2573 return nullptr; 2574 } 2575 2576 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2577 if (OldPhiNodes.insert(PNode)) 2578 PhiWorklist.push_back(PNode); 2579 continue; 2580 } 2581 2582 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2583 // We can't handle other instructions. 2584 if (!BCI) 2585 return nullptr; 2586 2587 // Verify it's a A->B cast. 2588 Type *TyA = BCI->getOperand(0)->getType(); 2589 Type *TyB = BCI->getType(); 2590 if (TyA != DestTy || TyB != SrcTy) 2591 return nullptr; 2592 } 2593 } 2594 2595 // Check that each user of each old PHI node is something that we can 2596 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2597 for (auto *OldPN : OldPhiNodes) { 2598 for (User *V : OldPN->users()) { 2599 if (auto *SI = dyn_cast<StoreInst>(V)) { 2600 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2601 return nullptr; 2602 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2603 // Verify it's a B->A cast. 2604 Type *TyB = BCI->getOperand(0)->getType(); 2605 Type *TyA = BCI->getType(); 2606 if (TyA != DestTy || TyB != SrcTy) 2607 return nullptr; 2608 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2609 // As long as the user is another old PHI node, then even if we don't 2610 // rewrite it, the PHI web we're considering won't have any users 2611 // outside itself, so it'll be dead. 2612 if (!OldPhiNodes.contains(PHI)) 2613 return nullptr; 2614 } else { 2615 return nullptr; 2616 } 2617 } 2618 } 2619 2620 // For each old PHI node, create a corresponding new PHI node with a type A. 2621 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2622 for (auto *OldPN : OldPhiNodes) { 2623 Builder.SetInsertPoint(OldPN); 2624 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2625 NewPNodes[OldPN] = NewPN; 2626 } 2627 2628 // Fill in the operands of new PHI nodes. 2629 for (auto *OldPN : OldPhiNodes) { 2630 PHINode *NewPN = NewPNodes[OldPN]; 2631 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2632 Value *V = OldPN->getOperand(j); 2633 Value *NewV = nullptr; 2634 if (auto *C = dyn_cast<Constant>(V)) { 2635 NewV = ConstantExpr::getBitCast(C, DestTy); 2636 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2637 // Explicitly perform load combine to make sure no opposing transform 2638 // can remove the bitcast in the meantime and trigger an infinite loop. 2639 Builder.SetInsertPoint(LI); 2640 NewV = combineLoadToNewType(*LI, DestTy); 2641 // Remove the old load and its use in the old phi, which itself becomes 2642 // dead once the whole transform finishes. 2643 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2644 eraseInstFromFunction(*LI); 2645 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2646 NewV = BCI->getOperand(0); 2647 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2648 NewV = NewPNodes[PrevPN]; 2649 } 2650 assert(NewV); 2651 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2652 } 2653 } 2654 2655 // Traverse all accumulated PHI nodes and process its users, 2656 // which are Stores and BitcCasts. Without this processing 2657 // NewPHI nodes could be replicated and could lead to extra 2658 // moves generated after DeSSA. 2659 // If there is a store with type B, change it to type A. 2660 2661 2662 // Replace users of BitCast B->A with NewPHI. These will help 2663 // later to get rid off a closure formed by OldPHI nodes. 2664 Instruction *RetVal = nullptr; 2665 for (auto *OldPN : OldPhiNodes) { 2666 PHINode *NewPN = NewPNodes[OldPN]; 2667 for (User *V : make_early_inc_range(OldPN->users())) { 2668 if (auto *SI = dyn_cast<StoreInst>(V)) { 2669 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2670 Builder.SetInsertPoint(SI); 2671 auto *NewBC = 2672 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2673 SI->setOperand(0, NewBC); 2674 Worklist.push(SI); 2675 assert(hasStoreUsersOnly(*NewBC)); 2676 } 2677 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2678 Type *TyB = BCI->getOperand(0)->getType(); 2679 Type *TyA = BCI->getType(); 2680 assert(TyA == DestTy && TyB == SrcTy); 2681 (void) TyA; 2682 (void) TyB; 2683 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2684 if (BCI == &CI) 2685 RetVal = I; 2686 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2687 assert(OldPhiNodes.contains(PHI)); 2688 (void) PHI; 2689 } else { 2690 llvm_unreachable("all uses should be handled"); 2691 } 2692 } 2693 } 2694 2695 return RetVal; 2696 } 2697 2698 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder, 2699 const DataLayout &DL) { 2700 Value *Src = CI.getOperand(0); 2701 PointerType *SrcPTy = cast<PointerType>(Src->getType()); 2702 PointerType *DstPTy = cast<PointerType>(CI.getType()); 2703 2704 // Bitcasts involving opaque pointers cannot be converted into a GEP. 2705 if (SrcPTy->isOpaque() || DstPTy->isOpaque()) 2706 return nullptr; 2707 2708 Type *DstElTy = DstPTy->getNonOpaquePointerElementType(); 2709 Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType(); 2710 2711 // When the type pointed to is not sized the cast cannot be 2712 // turned into a gep. 2713 if (!SrcElTy->isSized()) 2714 return nullptr; 2715 2716 // If the source and destination are pointers, and this cast is equivalent 2717 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2718 // This can enhance SROA and other transforms that want type-safe pointers. 2719 unsigned NumZeros = 0; 2720 while (SrcElTy && SrcElTy != DstElTy) { 2721 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2722 ++NumZeros; 2723 } 2724 2725 // If we found a path from the src to dest, create the getelementptr now. 2726 if (SrcElTy == DstElTy) { 2727 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2728 GetElementPtrInst *GEP = GetElementPtrInst::Create( 2729 SrcPTy->getNonOpaquePointerElementType(), Src, Idxs); 2730 2731 // If the source pointer is dereferenceable, then assume it points to an 2732 // allocated object and apply "inbounds" to the GEP. 2733 bool CanBeNull, CanBeFreed; 2734 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2735 // In a non-default address space (not 0), a null pointer can not be 2736 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2737 // The reason is that 'null' is not treated differently in these address 2738 // spaces, and we consequently ignore the 'gep inbounds' special case 2739 // for 'null' which allows 'inbounds' on 'null' if the indices are 2740 // zeros. 2741 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2742 GEP->setIsInBounds(); 2743 } 2744 return GEP; 2745 } 2746 return nullptr; 2747 } 2748 2749 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2750 // If the operands are integer typed then apply the integer transforms, 2751 // otherwise just apply the common ones. 2752 Value *Src = CI.getOperand(0); 2753 Type *SrcTy = Src->getType(); 2754 Type *DestTy = CI.getType(); 2755 2756 // Get rid of casts from one type to the same type. These are useless and can 2757 // be replaced by the operand. 2758 if (DestTy == Src->getType()) 2759 return replaceInstUsesWith(CI, Src); 2760 2761 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2762 // If we are casting a alloca to a pointer to a type of the same 2763 // size, rewrite the allocation instruction to allocate the "right" type. 2764 // There is no need to modify malloc calls because it is their bitcast that 2765 // needs to be cleaned up. 2766 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2767 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2768 return V; 2769 2770 if (Instruction *I = convertBitCastToGEP(CI, Builder, DL)) 2771 return I; 2772 } 2773 2774 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2775 // Beware: messing with this target-specific oddity may cause trouble. 2776 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2777 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2778 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2779 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2780 } 2781 2782 if (isa<IntegerType>(SrcTy)) { 2783 // If this is a cast from an integer to vector, check to see if the input 2784 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2785 // the casts with a shuffle and (potentially) a bitcast. 2786 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2787 CastInst *SrcCast = cast<CastInst>(Src); 2788 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2789 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2790 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2791 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2792 return I; 2793 } 2794 2795 // If the input is an 'or' instruction, we may be doing shifts and ors to 2796 // assemble the elements of the vector manually. Try to rip the code out 2797 // and replace it with insertelements. 2798 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2799 return replaceInstUsesWith(CI, V); 2800 } 2801 } 2802 2803 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2804 if (SrcVTy->getNumElements() == 1) { 2805 // If our destination is not a vector, then make this a straight 2806 // scalar-scalar cast. 2807 if (!DestTy->isVectorTy()) { 2808 Value *Elem = 2809 Builder.CreateExtractElement(Src, 2810 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2811 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2812 } 2813 2814 // Otherwise, see if our source is an insert. If so, then use the scalar 2815 // component directly: 2816 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2817 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2818 return new BitCastInst(InsElt->getOperand(1), DestTy); 2819 } 2820 2821 // Convert an artificial vector insert into more analyzable bitwise logic. 2822 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2823 Value *X, *Y; 2824 uint64_t IndexC; 2825 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2826 m_Value(Y), m_ConstantInt(IndexC)))) && 2827 DestTy->isIntegerTy() && X->getType() == DestTy && 2828 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2829 // Adjust for big endian - the LSBs are at the high index. 2830 if (DL.isBigEndian()) 2831 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2832 2833 // We only handle (endian-normalized) insert to index 0. Any other insert 2834 // would require a left-shift, so that is an extra instruction. 2835 if (IndexC == 0) { 2836 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2837 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2838 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2839 Value *AndX = Builder.CreateAnd(X, MaskC); 2840 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2841 return BinaryOperator::CreateOr(AndX, ZextY); 2842 } 2843 } 2844 } 2845 2846 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2847 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2848 // a bitcast to a vector with the same # elts. 2849 Value *ShufOp0 = Shuf->getOperand(0); 2850 Value *ShufOp1 = Shuf->getOperand(1); 2851 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2852 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2853 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2854 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2855 ShufElts == SrcVecElts) { 2856 BitCastInst *Tmp; 2857 // If either of the operands is a cast from CI.getType(), then 2858 // evaluating the shuffle in the casted destination's type will allow 2859 // us to eliminate at least one cast. 2860 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2861 Tmp->getOperand(0)->getType() == DestTy) || 2862 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2863 Tmp->getOperand(0)->getType() == DestTy)) { 2864 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2865 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2866 // Return a new shuffle vector. Use the same element ID's, as we 2867 // know the vector types match #elts. 2868 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2869 } 2870 } 2871 2872 // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized 2873 // as a byte/bit swap: 2874 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) 2875 // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) 2876 if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && 2877 Shuf->hasOneUse() && Shuf->isReverse()) { 2878 unsigned IntrinsicNum = 0; 2879 if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2880 SrcTy->getScalarSizeInBits() == 8) { 2881 IntrinsicNum = Intrinsic::bswap; 2882 } else if (SrcTy->getScalarSizeInBits() == 1) { 2883 IntrinsicNum = Intrinsic::bitreverse; 2884 } 2885 if (IntrinsicNum != 0) { 2886 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2887 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2888 Function *BswapOrBitreverse = 2889 Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy); 2890 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2891 return CallInst::Create(BswapOrBitreverse, {ScalarX}); 2892 } 2893 } 2894 } 2895 2896 // Handle the A->B->A cast, and there is an intervening PHI node. 2897 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2898 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2899 return I; 2900 2901 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2902 return I; 2903 2904 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2905 return I; 2906 2907 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2908 return I; 2909 2910 if (SrcTy->isPointerTy()) 2911 return commonPointerCastTransforms(CI); 2912 return commonCastTransforms(CI); 2913 } 2914 2915 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2916 // If the destination pointer element type is not the same as the source's 2917 // first do a bitcast to the destination type, and then the addrspacecast. 2918 // This allows the cast to be exposed to other transforms. 2919 Value *Src = CI.getOperand(0); 2920 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2921 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2922 2923 if (!SrcTy->hasSameElementTypeAs(DestTy)) { 2924 Type *MidTy = 2925 PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace()); 2926 // Handle vectors of pointers. 2927 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2928 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2929 2930 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2931 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2932 } 2933 2934 return commonPointerCastTransforms(CI); 2935 } 2936