1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 #include <optional> 22 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Analyze 'Val', seeing if it is a simple linear expression. 29 /// If so, decompose it, returning some value X, such that Val is 30 /// X*Scale+Offset. 31 /// 32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 33 uint64_t &Offset) { 34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 35 Offset = CI->getZExtValue(); 36 Scale = 0; 37 return ConstantInt::get(Val->getType(), 0); 38 } 39 40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 41 // Cannot look past anything that might overflow. 42 // We specifically require nuw because we store the Scale in an unsigned 43 // and perform an unsigned divide on it. 44 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 45 if (OBI && !OBI->hasNoUnsignedWrap()) { 46 Scale = 1; 47 Offset = 0; 48 return Val; 49 } 50 51 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 52 if (I->getOpcode() == Instruction::Shl) { 53 // This is a value scaled by '1 << the shift amt'. 54 Scale = UINT64_C(1) << RHS->getZExtValue(); 55 Offset = 0; 56 return I->getOperand(0); 57 } 58 59 if (I->getOpcode() == Instruction::Mul) { 60 // This value is scaled by 'RHS'. 61 Scale = RHS->getZExtValue(); 62 Offset = 0; 63 return I->getOperand(0); 64 } 65 66 if (I->getOpcode() == Instruction::Add) { 67 // We have X+C. Check to see if we really have (X*C2)+C1, 68 // where C1 is divisible by C2. 69 unsigned SubScale; 70 Value *SubVal = 71 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 72 Offset += RHS->getZExtValue(); 73 Scale = SubScale; 74 return SubVal; 75 } 76 } 77 } 78 79 // Otherwise, we can't look past this. 80 Scale = 1; 81 Offset = 0; 82 return Val; 83 } 84 85 /// If we find a cast of an allocation instruction, try to eliminate the cast by 86 /// moving the type information into the alloc. 87 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 88 AllocaInst &AI) { 89 PointerType *PTy = cast<PointerType>(CI.getType()); 90 // Opaque pointers don't have an element type we could replace with. 91 if (PTy->isOpaque()) 92 return nullptr; 93 94 IRBuilderBase::InsertPointGuard Guard(Builder); 95 Builder.SetInsertPoint(&AI); 96 97 // Get the type really allocated and the type casted to. 98 Type *AllocElTy = AI.getAllocatedType(); 99 Type *CastElTy = PTy->getNonOpaquePointerElementType(); 100 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 101 102 // This optimisation does not work for cases where the cast type 103 // is scalable and the allocated type is not. This because we need to 104 // know how many times the casted type fits into the allocated type. 105 // For the opposite case where the allocated type is scalable and the 106 // cast type is not this leads to poor code quality due to the 107 // introduction of 'vscale' into the calculations. It seems better to 108 // bail out for this case too until we've done a proper cost-benefit 109 // analysis. 110 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 111 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 112 if (AllocIsScalable != CastIsScalable) return nullptr; 113 114 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 115 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 116 if (CastElTyAlign < AllocElTyAlign) return nullptr; 117 118 // If the allocation has multiple uses, only promote it if we are strictly 119 // increasing the alignment of the resultant allocation. If we keep it the 120 // same, we open the door to infinite loops of various kinds. 121 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 122 123 // The alloc and cast types should be either both fixed or both scalable. 124 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 125 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 126 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 127 128 // If the allocation has multiple uses, only promote it if we're not 129 // shrinking the amount of memory being allocated. 130 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 131 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 132 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 133 134 // See if we can satisfy the modulus by pulling a scale out of the array 135 // size argument. 136 unsigned ArraySizeScale; 137 uint64_t ArrayOffset; 138 Value *NumElements = // See if the array size is a decomposable linear expr. 139 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 140 141 // If we can now satisfy the modulus, by using a non-1 scale, we really can 142 // do the xform. 143 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 144 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 145 146 // We don't currently support arrays of scalable types. 147 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 148 149 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 150 Value *Amt = nullptr; 151 if (Scale == 1) { 152 Amt = NumElements; 153 } else { 154 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 155 // Insert before the alloca, not before the cast. 156 Amt = Builder.CreateMul(Amt, NumElements); 157 } 158 159 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 160 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 161 Offset, true); 162 Amt = Builder.CreateAdd(Amt, Off); 163 } 164 165 AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt); 166 New->setAlignment(AI.getAlign()); 167 New->takeName(&AI); 168 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 169 New->setMetadata(LLVMContext::MD_DIAssignID, 170 AI.getMetadata(LLVMContext::MD_DIAssignID)); 171 172 replaceAllDbgUsesWith(AI, *New, *New, DT); 173 174 // If the allocation has multiple real uses, insert a cast and change all 175 // things that used it to use the new cast. This will also hack on CI, but it 176 // will die soon. 177 if (!AI.hasOneUse()) { 178 // New is the allocation instruction, pointer typed. AI is the original 179 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 180 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 181 replaceInstUsesWith(AI, NewCast); 182 eraseInstFromFunction(AI); 183 } 184 return replaceInstUsesWith(CI, New); 185 } 186 187 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 188 /// true for, actually insert the code to evaluate the expression. 189 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 190 bool isSigned) { 191 if (Constant *C = dyn_cast<Constant>(V)) { 192 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 193 // If we got a constantexpr back, try to simplify it with DL info. 194 return ConstantFoldConstant(C, DL, &TLI); 195 } 196 197 // Otherwise, it must be an instruction. 198 Instruction *I = cast<Instruction>(V); 199 Instruction *Res = nullptr; 200 unsigned Opc = I->getOpcode(); 201 switch (Opc) { 202 case Instruction::Add: 203 case Instruction::Sub: 204 case Instruction::Mul: 205 case Instruction::And: 206 case Instruction::Or: 207 case Instruction::Xor: 208 case Instruction::AShr: 209 case Instruction::LShr: 210 case Instruction::Shl: 211 case Instruction::UDiv: 212 case Instruction::URem: { 213 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 214 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 215 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 216 break; 217 } 218 case Instruction::Trunc: 219 case Instruction::ZExt: 220 case Instruction::SExt: 221 // If the source type of the cast is the type we're trying for then we can 222 // just return the source. There's no need to insert it because it is not 223 // new. 224 if (I->getOperand(0)->getType() == Ty) 225 return I->getOperand(0); 226 227 // Otherwise, must be the same type of cast, so just reinsert a new one. 228 // This also handles the case of zext(trunc(x)) -> zext(x). 229 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 230 Opc == Instruction::SExt); 231 break; 232 case Instruction::Select: { 233 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 234 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 235 Res = SelectInst::Create(I->getOperand(0), True, False); 236 break; 237 } 238 case Instruction::PHI: { 239 PHINode *OPN = cast<PHINode>(I); 240 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 241 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 242 Value *V = 243 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 244 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 245 } 246 Res = NPN; 247 break; 248 } 249 default: 250 // TODO: Can handle more cases here. 251 llvm_unreachable("Unreachable!"); 252 } 253 254 Res->takeName(I); 255 return InsertNewInstWith(Res, *I); 256 } 257 258 Instruction::CastOps 259 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 260 const CastInst *CI2) { 261 Type *SrcTy = CI1->getSrcTy(); 262 Type *MidTy = CI1->getDestTy(); 263 Type *DstTy = CI2->getDestTy(); 264 265 Instruction::CastOps firstOp = CI1->getOpcode(); 266 Instruction::CastOps secondOp = CI2->getOpcode(); 267 Type *SrcIntPtrTy = 268 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 269 Type *MidIntPtrTy = 270 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 271 Type *DstIntPtrTy = 272 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 273 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 274 DstTy, SrcIntPtrTy, MidIntPtrTy, 275 DstIntPtrTy); 276 277 // We don't want to form an inttoptr or ptrtoint that converts to an integer 278 // type that differs from the pointer size. 279 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 280 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 281 Res = 0; 282 283 return Instruction::CastOps(Res); 284 } 285 286 /// Implement the transforms common to all CastInst visitors. 287 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 288 Value *Src = CI.getOperand(0); 289 Type *Ty = CI.getType(); 290 291 // Try to eliminate a cast of a cast. 292 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 293 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 294 // The first cast (CSrc) is eliminable so we need to fix up or replace 295 // the second cast (CI). CSrc will then have a good chance of being dead. 296 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 297 // Point debug users of the dying cast to the new one. 298 if (CSrc->hasOneUse()) 299 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 300 return Res; 301 } 302 } 303 304 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 305 // We are casting a select. Try to fold the cast into the select if the 306 // select does not have a compare instruction with matching operand types 307 // or the select is likely better done in a narrow type. 308 // Creating a select with operands that are different sizes than its 309 // condition may inhibit other folds and lead to worse codegen. 310 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 311 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 312 (CI.getOpcode() == Instruction::Trunc && 313 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 314 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 315 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 316 return NV; 317 } 318 } 319 } 320 321 // If we are casting a PHI, then fold the cast into the PHI. 322 if (auto *PN = dyn_cast<PHINode>(Src)) { 323 // Don't do this if it would create a PHI node with an illegal type from a 324 // legal type. 325 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 326 shouldChangeType(CI.getSrcTy(), CI.getType())) 327 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 328 return NV; 329 } 330 331 // Canonicalize a unary shuffle after the cast if neither operation changes 332 // the size or element size of the input vector. 333 // TODO: We could allow size-changing ops if that doesn't harm codegen. 334 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 335 Value *X; 336 ArrayRef<int> Mask; 337 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 338 // TODO: Allow scalable vectors? 339 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 340 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 341 if (SrcTy && DestTy && 342 SrcTy->getNumElements() == DestTy->getNumElements() && 343 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 344 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 345 return new ShuffleVectorInst(CastX, Mask); 346 } 347 } 348 349 return nullptr; 350 } 351 352 /// Constants and extensions/truncates from the destination type are always 353 /// free to be evaluated in that type. This is a helper for canEvaluate*. 354 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 355 if (isa<Constant>(V)) 356 return true; 357 Value *X; 358 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 359 X->getType() == Ty) 360 return true; 361 362 return false; 363 } 364 365 /// Filter out values that we can not evaluate in the destination type for free. 366 /// This is a helper for canEvaluate*. 367 static bool canNotEvaluateInType(Value *V, Type *Ty) { 368 assert(!isa<Constant>(V) && "Constant should already be handled."); 369 if (!isa<Instruction>(V)) 370 return true; 371 // We don't extend or shrink something that has multiple uses -- doing so 372 // would require duplicating the instruction which isn't profitable. 373 if (!V->hasOneUse()) 374 return true; 375 376 return false; 377 } 378 379 /// Return true if we can evaluate the specified expression tree as type Ty 380 /// instead of its larger type, and arrive with the same value. 381 /// This is used by code that tries to eliminate truncates. 382 /// 383 /// Ty will always be a type smaller than V. We should return true if trunc(V) 384 /// can be computed by computing V in the smaller type. If V is an instruction, 385 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 386 /// makes sense if x and y can be efficiently truncated. 387 /// 388 /// This function works on both vectors and scalars. 389 /// 390 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 391 Instruction *CxtI) { 392 if (canAlwaysEvaluateInType(V, Ty)) 393 return true; 394 if (canNotEvaluateInType(V, Ty)) 395 return false; 396 397 auto *I = cast<Instruction>(V); 398 Type *OrigTy = V->getType(); 399 switch (I->getOpcode()) { 400 case Instruction::Add: 401 case Instruction::Sub: 402 case Instruction::Mul: 403 case Instruction::And: 404 case Instruction::Or: 405 case Instruction::Xor: 406 // These operators can all arbitrarily be extended or truncated. 407 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 408 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 409 410 case Instruction::UDiv: 411 case Instruction::URem: { 412 // UDiv and URem can be truncated if all the truncated bits are zero. 413 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 414 uint32_t BitWidth = Ty->getScalarSizeInBits(); 415 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 416 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 417 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 418 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 419 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 420 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 421 } 422 break; 423 } 424 case Instruction::Shl: { 425 // If we are truncating the result of this SHL, and if it's a shift of an 426 // inrange amount, we can always perform a SHL in a smaller type. 427 uint32_t BitWidth = Ty->getScalarSizeInBits(); 428 KnownBits AmtKnownBits = 429 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 430 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 431 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 432 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 433 break; 434 } 435 case Instruction::LShr: { 436 // If this is a truncate of a logical shr, we can truncate it to a smaller 437 // lshr iff we know that the bits we would otherwise be shifting in are 438 // already zeros. 439 // TODO: It is enough to check that the bits we would be shifting in are 440 // zero - use AmtKnownBits.getMaxValue(). 441 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 442 uint32_t BitWidth = Ty->getScalarSizeInBits(); 443 KnownBits AmtKnownBits = 444 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 445 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 446 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 447 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 448 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 449 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 450 } 451 break; 452 } 453 case Instruction::AShr: { 454 // If this is a truncate of an arithmetic shr, we can truncate it to a 455 // smaller ashr iff we know that all the bits from the sign bit of the 456 // original type and the sign bit of the truncate type are similar. 457 // TODO: It is enough to check that the bits we would be shifting in are 458 // similar to sign bit of the truncate type. 459 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 460 uint32_t BitWidth = Ty->getScalarSizeInBits(); 461 KnownBits AmtKnownBits = 462 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 463 unsigned ShiftedBits = OrigBitWidth - BitWidth; 464 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 465 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 466 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 467 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 468 break; 469 } 470 case Instruction::Trunc: 471 // trunc(trunc(x)) -> trunc(x) 472 return true; 473 case Instruction::ZExt: 474 case Instruction::SExt: 475 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 476 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 477 return true; 478 case Instruction::Select: { 479 SelectInst *SI = cast<SelectInst>(I); 480 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 481 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 482 } 483 case Instruction::PHI: { 484 // We can change a phi if we can change all operands. Note that we never 485 // get into trouble with cyclic PHIs here because we only consider 486 // instructions with a single use. 487 PHINode *PN = cast<PHINode>(I); 488 for (Value *IncValue : PN->incoming_values()) 489 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 490 return false; 491 return true; 492 } 493 default: 494 // TODO: Can handle more cases here. 495 break; 496 } 497 498 return false; 499 } 500 501 /// Given a vector that is bitcast to an integer, optionally logically 502 /// right-shifted, and truncated, convert it to an extractelement. 503 /// Example (big endian): 504 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 505 /// ---> 506 /// extractelement <4 x i32> %X, 1 507 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 508 InstCombinerImpl &IC) { 509 Value *TruncOp = Trunc.getOperand(0); 510 Type *DestType = Trunc.getType(); 511 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 512 return nullptr; 513 514 Value *VecInput = nullptr; 515 ConstantInt *ShiftVal = nullptr; 516 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 517 m_LShr(m_BitCast(m_Value(VecInput)), 518 m_ConstantInt(ShiftVal)))) || 519 !isa<VectorType>(VecInput->getType())) 520 return nullptr; 521 522 VectorType *VecType = cast<VectorType>(VecInput->getType()); 523 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 524 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 525 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 526 527 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 528 return nullptr; 529 530 // If the element type of the vector doesn't match the result type, 531 // bitcast it to a vector type that we can extract from. 532 unsigned NumVecElts = VecWidth / DestWidth; 533 if (VecType->getElementType() != DestType) { 534 VecType = FixedVectorType::get(DestType, NumVecElts); 535 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 536 } 537 538 unsigned Elt = ShiftAmount / DestWidth; 539 if (IC.getDataLayout().isBigEndian()) 540 Elt = NumVecElts - 1 - Elt; 541 542 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 543 } 544 545 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 546 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 547 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 548 assert((isa<VectorType>(Trunc.getSrcTy()) || 549 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 550 "Don't narrow to an illegal scalar type"); 551 552 // Bail out on strange types. It is possible to handle some of these patterns 553 // even with non-power-of-2 sizes, but it is not a likely scenario. 554 Type *DestTy = Trunc.getType(); 555 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 556 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 557 if (!isPowerOf2_32(NarrowWidth)) 558 return nullptr; 559 560 // First, find an or'd pair of opposite shifts: 561 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 562 BinaryOperator *Or0, *Or1; 563 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 564 return nullptr; 565 566 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 567 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 568 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 569 Or0->getOpcode() == Or1->getOpcode()) 570 return nullptr; 571 572 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 573 if (Or0->getOpcode() == BinaryOperator::LShr) { 574 std::swap(Or0, Or1); 575 std::swap(ShVal0, ShVal1); 576 std::swap(ShAmt0, ShAmt1); 577 } 578 assert(Or0->getOpcode() == BinaryOperator::Shl && 579 Or1->getOpcode() == BinaryOperator::LShr && 580 "Illegal or(shift,shift) pair"); 581 582 // Match the shift amount operands for a funnel/rotate pattern. This always 583 // matches a subtraction on the R operand. 584 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 585 // The shift amounts may add up to the narrow bit width: 586 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 587 // If this is a funnel shift (different operands are shifted), then the 588 // shift amount can not over-shift (create poison) in the narrow type. 589 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 590 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 591 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 592 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 593 return L; 594 595 // The following patterns currently only work for rotation patterns. 596 // TODO: Add more general funnel-shift compatible patterns. 597 if (ShVal0 != ShVal1) 598 return nullptr; 599 600 // The shift amount may be masked with negation: 601 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 602 Value *X; 603 unsigned Mask = Width - 1; 604 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 605 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 606 return X; 607 608 // Same as above, but the shift amount may be extended after masking: 609 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 610 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 611 return X; 612 613 return nullptr; 614 }; 615 616 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 617 bool IsFshl = true; // Sub on LSHR. 618 if (!ShAmt) { 619 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 620 IsFshl = false; // Sub on SHL. 621 } 622 if (!ShAmt) 623 return nullptr; 624 625 // The right-shifted value must have high zeros in the wide type (for example 626 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 627 // truncated, so those do not matter. 628 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 629 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 630 return nullptr; 631 632 // We have an unnecessarily wide rotate! 633 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 634 // Narrow the inputs and convert to funnel shift intrinsic: 635 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 636 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 637 Value *X, *Y; 638 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 639 if (ShVal0 != ShVal1) 640 Y = Builder.CreateTrunc(ShVal1, DestTy); 641 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 642 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 643 return CallInst::Create(F, {X, Y, NarrowShAmt}); 644 } 645 646 /// Try to narrow the width of math or bitwise logic instructions by pulling a 647 /// truncate ahead of binary operators. 648 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 649 Type *SrcTy = Trunc.getSrcTy(); 650 Type *DestTy = Trunc.getType(); 651 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 652 unsigned DestWidth = DestTy->getScalarSizeInBits(); 653 654 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 655 return nullptr; 656 657 BinaryOperator *BinOp; 658 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 659 return nullptr; 660 661 Value *BinOp0 = BinOp->getOperand(0); 662 Value *BinOp1 = BinOp->getOperand(1); 663 switch (BinOp->getOpcode()) { 664 case Instruction::And: 665 case Instruction::Or: 666 case Instruction::Xor: 667 case Instruction::Add: 668 case Instruction::Sub: 669 case Instruction::Mul: { 670 Constant *C; 671 if (match(BinOp0, m_Constant(C))) { 672 // trunc (binop C, X) --> binop (trunc C', X) 673 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 674 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 675 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 676 } 677 if (match(BinOp1, m_Constant(C))) { 678 // trunc (binop X, C) --> binop (trunc X, C') 679 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 680 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 681 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 682 } 683 Value *X; 684 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 685 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 686 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 687 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 688 } 689 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 690 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 691 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 692 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 693 } 694 break; 695 } 696 case Instruction::LShr: 697 case Instruction::AShr: { 698 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 699 Value *A; 700 Constant *C; 701 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { 702 unsigned MaxShiftAmt = SrcWidth - DestWidth; 703 // If the shift is small enough, all zero/sign bits created by the shift 704 // are removed by the trunc. 705 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 706 APInt(SrcWidth, MaxShiftAmt)))) { 707 auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); 708 bool IsExact = OldShift->isExact(); 709 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 710 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 711 Value *Shift = 712 OldShift->getOpcode() == Instruction::AShr 713 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 714 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 715 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 716 } 717 } 718 break; 719 } 720 default: break; 721 } 722 723 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 724 return NarrowOr; 725 726 return nullptr; 727 } 728 729 /// Try to narrow the width of a splat shuffle. This could be generalized to any 730 /// shuffle with a constant operand, but we limit the transform to avoid 731 /// creating a shuffle type that targets may not be able to lower effectively. 732 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 733 InstCombiner::BuilderTy &Builder) { 734 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 735 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 736 all_equal(Shuf->getShuffleMask()) && 737 Shuf->getType() == Shuf->getOperand(0)->getType()) { 738 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 739 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 740 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 741 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 742 } 743 744 return nullptr; 745 } 746 747 /// Try to narrow the width of an insert element. This could be generalized for 748 /// any vector constant, but we limit the transform to insertion into undef to 749 /// avoid potential backend problems from unsupported insertion widths. This 750 /// could also be extended to handle the case of inserting a scalar constant 751 /// into a vector variable. 752 static Instruction *shrinkInsertElt(CastInst &Trunc, 753 InstCombiner::BuilderTy &Builder) { 754 Instruction::CastOps Opcode = Trunc.getOpcode(); 755 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 756 "Unexpected instruction for shrinking"); 757 758 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 759 if (!InsElt || !InsElt->hasOneUse()) 760 return nullptr; 761 762 Type *DestTy = Trunc.getType(); 763 Type *DestScalarTy = DestTy->getScalarType(); 764 Value *VecOp = InsElt->getOperand(0); 765 Value *ScalarOp = InsElt->getOperand(1); 766 Value *Index = InsElt->getOperand(2); 767 768 if (match(VecOp, m_Undef())) { 769 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 770 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 771 UndefValue *NarrowUndef = UndefValue::get(DestTy); 772 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 773 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 774 } 775 776 return nullptr; 777 } 778 779 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 780 if (Instruction *Result = commonCastTransforms(Trunc)) 781 return Result; 782 783 Value *Src = Trunc.getOperand(0); 784 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 785 unsigned DestWidth = DestTy->getScalarSizeInBits(); 786 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 787 788 // Attempt to truncate the entire input expression tree to the destination 789 // type. Only do this if the dest type is a simple type, don't convert the 790 // expression tree to something weird like i93 unless the source is also 791 // strange. 792 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 793 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 794 795 // If this cast is a truncate, evaluting in a different type always 796 // eliminates the cast, so it is always a win. 797 LLVM_DEBUG( 798 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 799 " to avoid cast: " 800 << Trunc << '\n'); 801 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 802 assert(Res->getType() == DestTy); 803 return replaceInstUsesWith(Trunc, Res); 804 } 805 806 // For integer types, check if we can shorten the entire input expression to 807 // DestWidth * 2, which won't allow removing the truncate, but reducing the 808 // width may enable further optimizations, e.g. allowing for larger 809 // vectorization factors. 810 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 811 if (DestWidth * 2 < SrcWidth) { 812 auto *NewDestTy = DestITy->getExtendedType(); 813 if (shouldChangeType(SrcTy, NewDestTy) && 814 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 815 LLVM_DEBUG( 816 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 817 " to reduce the width of operand of" 818 << Trunc << '\n'); 819 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 820 return new TruncInst(Res, DestTy); 821 } 822 } 823 } 824 825 // Test if the trunc is the user of a select which is part of a 826 // minimum or maximum operation. If so, don't do any more simplification. 827 // Even simplifying demanded bits can break the canonical form of a 828 // min/max. 829 Value *LHS, *RHS; 830 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 831 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 832 return nullptr; 833 834 // See if we can simplify any instructions used by the input whose sole 835 // purpose is to compute bits we don't care about. 836 if (SimplifyDemandedInstructionBits(Trunc)) 837 return &Trunc; 838 839 if (DestWidth == 1) { 840 Value *Zero = Constant::getNullValue(SrcTy); 841 if (DestTy->isIntegerTy()) { 842 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 843 // TODO: We canonicalize to more instructions here because we are probably 844 // lacking equivalent analysis for trunc relative to icmp. There may also 845 // be codegen concerns. If those trunc limitations were removed, we could 846 // remove this transform. 847 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 848 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 849 } 850 851 // For vectors, we do not canonicalize all truncs to icmp, so optimize 852 // patterns that would be covered within visitICmpInst. 853 Value *X; 854 Constant *C; 855 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 856 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 857 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 858 Constant *MaskC = ConstantExpr::getShl(One, C); 859 Value *And = Builder.CreateAnd(X, MaskC); 860 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 861 } 862 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 863 m_Deferred(X))))) { 864 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 865 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 866 Constant *MaskC = ConstantExpr::getShl(One, C); 867 MaskC = ConstantExpr::getOr(MaskC, One); 868 Value *And = Builder.CreateAnd(X, MaskC); 869 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 870 } 871 } 872 873 Value *A, *B; 874 Constant *C; 875 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 876 unsigned AWidth = A->getType()->getScalarSizeInBits(); 877 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 878 auto *OldSh = cast<Instruction>(Src); 879 bool IsExact = OldSh->isExact(); 880 881 // If the shift is small enough, all zero bits created by the shift are 882 // removed by the trunc. 883 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 884 APInt(SrcWidth, MaxShiftAmt)))) { 885 // trunc (lshr (sext A), C) --> ashr A, C 886 if (A->getType() == DestTy) { 887 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 888 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 889 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 890 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 891 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 892 : BinaryOperator::CreateAShr(A, ShAmt); 893 } 894 // The types are mismatched, so create a cast after shifting: 895 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 896 if (Src->hasOneUse()) { 897 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 898 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 899 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 900 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 901 return CastInst::CreateIntegerCast(Shift, DestTy, true); 902 } 903 } 904 // TODO: Mask high bits with 'and'. 905 } 906 907 if (Instruction *I = narrowBinOp(Trunc)) 908 return I; 909 910 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 911 return I; 912 913 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 914 return I; 915 916 if (Src->hasOneUse() && 917 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 918 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 919 // dest type is native and cst < dest size. 920 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 921 !match(A, m_Shr(m_Value(), m_Constant()))) { 922 // Skip shifts of shift by constants. It undoes a combine in 923 // FoldShiftByConstant and is the extend in reg pattern. 924 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 925 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 926 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 927 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 928 ConstantExpr::getTrunc(C, DestTy)); 929 } 930 } 931 } 932 933 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 934 return I; 935 936 // Whenever an element is extracted from a vector, and then truncated, 937 // canonicalize by converting it to a bitcast followed by an 938 // extractelement. 939 // 940 // Example (little endian): 941 // trunc (extractelement <4 x i64> %X, 0) to i32 942 // ---> 943 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 944 Value *VecOp; 945 ConstantInt *Cst; 946 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 947 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 948 auto VecElts = VecOpTy->getElementCount(); 949 950 // A badly fit destination size would result in an invalid cast. 951 if (SrcWidth % DestWidth == 0) { 952 uint64_t TruncRatio = SrcWidth / DestWidth; 953 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 954 uint64_t VecOpIdx = Cst->getZExtValue(); 955 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 956 : VecOpIdx * TruncRatio; 957 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 958 "overflow 32-bits"); 959 960 auto *BitCastTo = 961 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 962 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 963 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 964 } 965 } 966 967 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 968 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 969 m_Value(B))))) { 970 unsigned AWidth = A->getType()->getScalarSizeInBits(); 971 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 972 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 973 Value *NarrowCtlz = 974 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 975 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 976 } 977 } 978 979 if (match(Src, m_VScale(DL))) { 980 if (Trunc.getFunction() && 981 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 982 Attribute Attr = 983 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 984 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 985 if (Log2_32(*MaxVScale) < DestWidth) { 986 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 987 return replaceInstUsesWith(Trunc, VScale); 988 } 989 } 990 } 991 } 992 993 return nullptr; 994 } 995 996 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext) { 997 // If we are just checking for a icmp eq of a single bit and zext'ing it 998 // to an integer, then shift the bit to the appropriate place and then 999 // cast to integer to avoid the comparison. 1000 1001 // FIXME: This set of transforms does not check for extra uses and/or creates 1002 // an extra instruction (an optional final cast is not included 1003 // in the transform comments). We may also want to favor icmp over 1004 // shifts in cases of equal instructions because icmp has better 1005 // analysis in general (invert the transform). 1006 1007 const APInt *Op1CV; 1008 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 1009 1010 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 1011 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { 1012 Value *In = Cmp->getOperand(0); 1013 Value *Sh = ConstantInt::get(In->getType(), 1014 In->getType()->getScalarSizeInBits() - 1); 1015 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 1016 if (In->getType() != Zext.getType()) 1017 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 1018 1019 return replaceInstUsesWith(Zext, In); 1020 } 1021 1022 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 1023 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1024 // zext (X != 0) to i32 --> X iff X has only the low bit set. 1025 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 1026 if (Op1CV->isZero() && Cmp->isEquality()) { 1027 // If Op1C some other power of two, convert: 1028 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 1029 1030 // Exactly 1 possible 1? But not the high-bit because that is 1031 // canonicalized to this form. 1032 APInt KnownZeroMask(~Known.Zero); 1033 if (KnownZeroMask.isPowerOf2() && 1034 (Zext.getType()->getScalarSizeInBits() != KnownZeroMask.logBase2() + 1)) { 1035 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1036 uint32_t ShAmt = KnownZeroMask.logBase2(); 1037 Value *In = Cmp->getOperand(0); 1038 if (ShAmt) { 1039 // Perform a logical shr by shiftamt. 1040 // Insert the shift to put the result in the low bit. 1041 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1042 In->getName() + ".lobit"); 1043 } 1044 1045 if (!isNE) { // Toggle the low bit. 1046 Constant *One = ConstantInt::get(In->getType(), 1); 1047 In = Builder.CreateXor(In, One); 1048 } 1049 1050 if (Zext.getType() == In->getType()) 1051 return replaceInstUsesWith(Zext, In); 1052 1053 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1054 return replaceInstUsesWith(Zext, IntCast); 1055 } 1056 } 1057 } 1058 1059 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1060 // Test if a bit is clear/set using a shifted-one mask: 1061 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 1062 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 1063 Value *X, *ShAmt; 1064 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 1065 match(Cmp->getOperand(0), 1066 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 1067 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1068 X = Builder.CreateNot(X); 1069 Value *Lshr = Builder.CreateLShr(X, ShAmt); 1070 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1071 return replaceInstUsesWith(Zext, And1); 1072 } 1073 1074 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1075 // It is also profitable to transform icmp eq into not(xor(A, B)) because 1076 // that may lead to additional simplifications. 1077 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1078 Value *LHS = Cmp->getOperand(0); 1079 Value *RHS = Cmp->getOperand(1); 1080 1081 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1082 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1083 1084 if (KnownLHS == KnownRHS) { 1085 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1086 APInt UnknownBit = ~KnownBits; 1087 if (UnknownBit.countPopulation() == 1) { 1088 Value *Result = Builder.CreateXor(LHS, RHS); 1089 1090 // Mask off any bits that are set and won't be shifted away. 1091 if (KnownLHS.One.uge(UnknownBit)) 1092 Result = Builder.CreateAnd(Result, 1093 ConstantInt::get(ITy, UnknownBit)); 1094 1095 // Shift the bit we're testing down to the lsb. 1096 Result = Builder.CreateLShr( 1097 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1098 1099 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1100 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1101 Result->takeName(Cmp); 1102 return replaceInstUsesWith(Zext, Result); 1103 } 1104 } 1105 } 1106 } 1107 1108 return nullptr; 1109 } 1110 1111 /// Determine if the specified value can be computed in the specified wider type 1112 /// and produce the same low bits. If not, return false. 1113 /// 1114 /// If this function returns true, it can also return a non-zero number of bits 1115 /// (in BitsToClear) which indicates that the value it computes is correct for 1116 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1117 /// out. For example, to promote something like: 1118 /// 1119 /// %B = trunc i64 %A to i32 1120 /// %C = lshr i32 %B, 8 1121 /// %E = zext i32 %C to i64 1122 /// 1123 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1124 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1125 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1126 /// clear the top bits anyway, doing this has no extra cost. 1127 /// 1128 /// This function works on both vectors and scalars. 1129 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1130 InstCombinerImpl &IC, Instruction *CxtI) { 1131 BitsToClear = 0; 1132 if (canAlwaysEvaluateInType(V, Ty)) 1133 return true; 1134 if (canNotEvaluateInType(V, Ty)) 1135 return false; 1136 1137 auto *I = cast<Instruction>(V); 1138 unsigned Tmp; 1139 switch (I->getOpcode()) { 1140 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1141 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1142 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1143 return true; 1144 case Instruction::And: 1145 case Instruction::Or: 1146 case Instruction::Xor: 1147 case Instruction::Add: 1148 case Instruction::Sub: 1149 case Instruction::Mul: 1150 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1151 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1152 return false; 1153 // These can all be promoted if neither operand has 'bits to clear'. 1154 if (BitsToClear == 0 && Tmp == 0) 1155 return true; 1156 1157 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1158 // other side, BitsToClear is ok. 1159 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1160 // We use MaskedValueIsZero here for generality, but the case we care 1161 // about the most is constant RHS. 1162 unsigned VSize = V->getType()->getScalarSizeInBits(); 1163 if (IC.MaskedValueIsZero(I->getOperand(1), 1164 APInt::getHighBitsSet(VSize, BitsToClear), 1165 0, CxtI)) { 1166 // If this is an And instruction and all of the BitsToClear are 1167 // known to be zero we can reset BitsToClear. 1168 if (I->getOpcode() == Instruction::And) 1169 BitsToClear = 0; 1170 return true; 1171 } 1172 } 1173 1174 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1175 return false; 1176 1177 case Instruction::Shl: { 1178 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1179 // upper bits we can reduce BitsToClear by the shift amount. 1180 const APInt *Amt; 1181 if (match(I->getOperand(1), m_APInt(Amt))) { 1182 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1183 return false; 1184 uint64_t ShiftAmt = Amt->getZExtValue(); 1185 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1186 return true; 1187 } 1188 return false; 1189 } 1190 case Instruction::LShr: { 1191 // We can promote lshr(x, cst) if we can promote x. This requires the 1192 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1193 const APInt *Amt; 1194 if (match(I->getOperand(1), m_APInt(Amt))) { 1195 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1196 return false; 1197 BitsToClear += Amt->getZExtValue(); 1198 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1199 BitsToClear = V->getType()->getScalarSizeInBits(); 1200 return true; 1201 } 1202 // Cannot promote variable LSHR. 1203 return false; 1204 } 1205 case Instruction::Select: 1206 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1207 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1208 // TODO: If important, we could handle the case when the BitsToClear are 1209 // known zero in the disagreeing side. 1210 Tmp != BitsToClear) 1211 return false; 1212 return true; 1213 1214 case Instruction::PHI: { 1215 // We can change a phi if we can change all operands. Note that we never 1216 // get into trouble with cyclic PHIs here because we only consider 1217 // instructions with a single use. 1218 PHINode *PN = cast<PHINode>(I); 1219 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1220 return false; 1221 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1222 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1223 // TODO: If important, we could handle the case when the BitsToClear 1224 // are known zero in the disagreeing input. 1225 Tmp != BitsToClear) 1226 return false; 1227 return true; 1228 } 1229 default: 1230 // TODO: Can handle more cases here. 1231 return false; 1232 } 1233 } 1234 1235 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1236 // If this zero extend is only used by a truncate, let the truncate be 1237 // eliminated before we try to optimize this zext. 1238 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1239 return nullptr; 1240 1241 // If one of the common conversion will work, do it. 1242 if (Instruction *Result = commonCastTransforms(CI)) 1243 return Result; 1244 1245 Value *Src = CI.getOperand(0); 1246 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1247 1248 // Try to extend the entire expression tree to the wide destination type. 1249 unsigned BitsToClear; 1250 if (shouldChangeType(SrcTy, DestTy) && 1251 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1252 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1253 "Can't clear more bits than in SrcTy"); 1254 1255 // Okay, we can transform this! Insert the new expression now. 1256 LLVM_DEBUG( 1257 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1258 " to avoid zero extend: " 1259 << CI << '\n'); 1260 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1261 assert(Res->getType() == DestTy); 1262 1263 // Preserve debug values referring to Src if the zext is its last use. 1264 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1265 if (SrcOp->hasOneUse()) 1266 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1267 1268 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1269 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1270 1271 // If the high bits are already filled with zeros, just replace this 1272 // cast with the result. 1273 if (MaskedValueIsZero(Res, 1274 APInt::getHighBitsSet(DestBitSize, 1275 DestBitSize-SrcBitsKept), 1276 0, &CI)) 1277 return replaceInstUsesWith(CI, Res); 1278 1279 // We need to emit an AND to clear the high bits. 1280 Constant *C = ConstantInt::get(Res->getType(), 1281 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1282 return BinaryOperator::CreateAnd(Res, C); 1283 } 1284 1285 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1286 // types and if the sizes are just right we can convert this into a logical 1287 // 'and' which will be much cheaper than the pair of casts. 1288 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1289 // TODO: Subsume this into EvaluateInDifferentType. 1290 1291 // Get the sizes of the types involved. We know that the intermediate type 1292 // will be smaller than A or C, but don't know the relation between A and C. 1293 Value *A = CSrc->getOperand(0); 1294 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1295 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1296 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1297 // If we're actually extending zero bits, then if 1298 // SrcSize < DstSize: zext(a & mask) 1299 // SrcSize == DstSize: a & mask 1300 // SrcSize > DstSize: trunc(a) & mask 1301 if (SrcSize < DstSize) { 1302 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1303 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1304 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1305 return new ZExtInst(And, CI.getType()); 1306 } 1307 1308 if (SrcSize == DstSize) { 1309 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1310 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1311 AndValue)); 1312 } 1313 if (SrcSize > DstSize) { 1314 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1315 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1316 return BinaryOperator::CreateAnd(Trunc, 1317 ConstantInt::get(Trunc->getType(), 1318 AndValue)); 1319 } 1320 } 1321 1322 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1323 return transformZExtICmp(Cmp, CI); 1324 1325 // zext(trunc(X) & C) -> (X & zext(C)). 1326 Constant *C; 1327 Value *X; 1328 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1329 X->getType() == CI.getType()) 1330 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1331 1332 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1333 Value *And; 1334 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1335 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1336 X->getType() == CI.getType()) { 1337 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1338 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1339 } 1340 1341 // If we are truncating, masking, and then zexting back to the original type, 1342 // that's just a mask. This is not handled by canEvaluateZextd if the 1343 // intermediate values have extra uses. This could be generalized further for 1344 // a non-constant mask operand. 1345 // zext (and (trunc X), C) --> and X, (zext C) 1346 if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) && 1347 X->getType() == DestTy) { 1348 Constant *ZextC = ConstantExpr::getZExt(C, DestTy); 1349 return BinaryOperator::CreateAnd(X, ZextC); 1350 } 1351 1352 if (match(Src, m_VScale(DL))) { 1353 if (CI.getFunction() && 1354 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1355 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1356 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1357 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1358 if (Log2_32(*MaxVScale) < TypeWidth) { 1359 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1360 return replaceInstUsesWith(CI, VScale); 1361 } 1362 } 1363 } 1364 } 1365 1366 return nullptr; 1367 } 1368 1369 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1370 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1371 Instruction &CI) { 1372 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1373 ICmpInst::Predicate Pred = ICI->getPredicate(); 1374 1375 // Don't bother if Op1 isn't of vector or integer type. 1376 if (!Op1->getType()->isIntOrIntVectorTy()) 1377 return nullptr; 1378 1379 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1380 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1381 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1382 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1383 Value *Sh = ConstantInt::get(Op0->getType(), 1384 Op0->getType()->getScalarSizeInBits() - 1); 1385 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1386 if (In->getType() != CI.getType()) 1387 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1388 1389 if (Pred == ICmpInst::ICMP_SGT) 1390 In = Builder.CreateNot(In, In->getName() + ".not"); 1391 return replaceInstUsesWith(CI, In); 1392 } 1393 1394 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1395 // If we know that only one bit of the LHS of the icmp can be set and we 1396 // have an equality comparison with zero or a power of 2, we can transform 1397 // the icmp and sext into bitwise/integer operations. 1398 if (ICI->hasOneUse() && 1399 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1400 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1401 1402 APInt KnownZeroMask(~Known.Zero); 1403 if (KnownZeroMask.isPowerOf2()) { 1404 Value *In = ICI->getOperand(0); 1405 1406 // If the icmp tests for a known zero bit we can constant fold it. 1407 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1408 Value *V = Pred == ICmpInst::ICMP_NE ? 1409 ConstantInt::getAllOnesValue(CI.getType()) : 1410 ConstantInt::getNullValue(CI.getType()); 1411 return replaceInstUsesWith(CI, V); 1412 } 1413 1414 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1415 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1416 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1417 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1418 // Perform a right shift to place the desired bit in the LSB. 1419 if (ShiftAmt) 1420 In = Builder.CreateLShr(In, 1421 ConstantInt::get(In->getType(), ShiftAmt)); 1422 1423 // At this point "In" is either 1 or 0. Subtract 1 to turn 1424 // {1, 0} -> {0, -1}. 1425 In = Builder.CreateAdd(In, 1426 ConstantInt::getAllOnesValue(In->getType()), 1427 "sext"); 1428 } else { 1429 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1430 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1431 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1432 // Perform a left shift to place the desired bit in the MSB. 1433 if (ShiftAmt) 1434 In = Builder.CreateShl(In, 1435 ConstantInt::get(In->getType(), ShiftAmt)); 1436 1437 // Distribute the bit over the whole bit width. 1438 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1439 KnownZeroMask.getBitWidth() - 1), "sext"); 1440 } 1441 1442 if (CI.getType() == In->getType()) 1443 return replaceInstUsesWith(CI, In); 1444 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1445 } 1446 } 1447 } 1448 1449 return nullptr; 1450 } 1451 1452 /// Return true if we can take the specified value and return it as type Ty 1453 /// without inserting any new casts and without changing the value of the common 1454 /// low bits. This is used by code that tries to promote integer operations to 1455 /// a wider types will allow us to eliminate the extension. 1456 /// 1457 /// This function works on both vectors and scalars. 1458 /// 1459 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1460 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1461 "Can't sign extend type to a smaller type"); 1462 if (canAlwaysEvaluateInType(V, Ty)) 1463 return true; 1464 if (canNotEvaluateInType(V, Ty)) 1465 return false; 1466 1467 auto *I = cast<Instruction>(V); 1468 switch (I->getOpcode()) { 1469 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1470 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1471 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1472 return true; 1473 case Instruction::And: 1474 case Instruction::Or: 1475 case Instruction::Xor: 1476 case Instruction::Add: 1477 case Instruction::Sub: 1478 case Instruction::Mul: 1479 // These operators can all arbitrarily be extended if their inputs can. 1480 return canEvaluateSExtd(I->getOperand(0), Ty) && 1481 canEvaluateSExtd(I->getOperand(1), Ty); 1482 1483 //case Instruction::Shl: TODO 1484 //case Instruction::LShr: TODO 1485 1486 case Instruction::Select: 1487 return canEvaluateSExtd(I->getOperand(1), Ty) && 1488 canEvaluateSExtd(I->getOperand(2), Ty); 1489 1490 case Instruction::PHI: { 1491 // We can change a phi if we can change all operands. Note that we never 1492 // get into trouble with cyclic PHIs here because we only consider 1493 // instructions with a single use. 1494 PHINode *PN = cast<PHINode>(I); 1495 for (Value *IncValue : PN->incoming_values()) 1496 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1497 return true; 1498 } 1499 default: 1500 // TODO: Can handle more cases here. 1501 break; 1502 } 1503 1504 return false; 1505 } 1506 1507 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1508 // If this sign extend is only used by a truncate, let the truncate be 1509 // eliminated before we try to optimize this sext. 1510 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1511 return nullptr; 1512 1513 if (Instruction *I = commonCastTransforms(CI)) 1514 return I; 1515 1516 Value *Src = CI.getOperand(0); 1517 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1518 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1519 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1520 1521 // If the value being extended is zero or positive, use a zext instead. 1522 if (isKnownNonNegative(Src, DL, 0, &AC, &CI, &DT)) 1523 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1524 1525 // Try to extend the entire expression tree to the wide destination type. 1526 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1527 // Okay, we can transform this! Insert the new expression now. 1528 LLVM_DEBUG( 1529 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1530 " to avoid sign extend: " 1531 << CI << '\n'); 1532 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1533 assert(Res->getType() == DestTy); 1534 1535 // If the high bits are already filled with sign bit, just replace this 1536 // cast with the result. 1537 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1538 return replaceInstUsesWith(CI, Res); 1539 1540 // We need to emit a shl + ashr to do the sign extend. 1541 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1542 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1543 ShAmt); 1544 } 1545 1546 Value *X; 1547 if (match(Src, m_Trunc(m_Value(X)))) { 1548 // If the input has more sign bits than bits truncated, then convert 1549 // directly to final type. 1550 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1551 if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize) 1552 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1553 1554 // If input is a trunc from the destination type, then convert into shifts. 1555 if (Src->hasOneUse() && X->getType() == DestTy) { 1556 // sext (trunc X) --> ashr (shl X, C), C 1557 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1558 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1559 } 1560 1561 // If we are replacing shifted-in high zero bits with sign bits, convert 1562 // the logic shift to arithmetic shift and eliminate the cast to 1563 // intermediate type: 1564 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1565 Value *Y; 1566 if (Src->hasOneUse() && 1567 match(X, m_LShr(m_Value(Y), 1568 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1569 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1570 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1571 } 1572 } 1573 1574 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1575 return transformSExtICmp(ICI, CI); 1576 1577 // If the input is a shl/ashr pair of a same constant, then this is a sign 1578 // extension from a smaller value. If we could trust arbitrary bitwidth 1579 // integers, we could turn this into a truncate to the smaller bit and then 1580 // use a sext for the whole extension. Since we don't, look deeper and check 1581 // for a truncate. If the source and dest are the same type, eliminate the 1582 // trunc and extend and just do shifts. For example, turn: 1583 // %a = trunc i32 %i to i8 1584 // %b = shl i8 %a, C 1585 // %c = ashr i8 %b, C 1586 // %d = sext i8 %c to i32 1587 // into: 1588 // %a = shl i32 %i, 32-(8-C) 1589 // %d = ashr i32 %a, 32-(8-C) 1590 Value *A = nullptr; 1591 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1592 Constant *BA = nullptr, *CA = nullptr; 1593 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1594 m_Constant(CA))) && 1595 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1596 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1597 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1598 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1599 Constant *NewShAmt = ConstantExpr::getSub( 1600 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1601 NumLowbitsLeft); 1602 NewShAmt = 1603 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1604 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1605 return BinaryOperator::CreateAShr(A, NewShAmt); 1606 } 1607 1608 // Splatting a bit of constant-index across a value: 1609 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1610 // If the dest type is different, use a cast (adjust use check). 1611 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1612 m_SpecificInt(SrcBitSize - 1))))) { 1613 Type *XTy = X->getType(); 1614 unsigned XBitSize = XTy->getScalarSizeInBits(); 1615 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); 1616 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); 1617 if (XTy == DestTy) 1618 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), 1619 AshrAmtC); 1620 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { 1621 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); 1622 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1623 } 1624 } 1625 1626 if (match(Src, m_VScale(DL))) { 1627 if (CI.getFunction() && 1628 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1629 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1630 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1631 if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) { 1632 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1633 return replaceInstUsesWith(CI, VScale); 1634 } 1635 } 1636 } 1637 } 1638 1639 return nullptr; 1640 } 1641 1642 /// Return a Constant* for the specified floating-point constant if it fits 1643 /// in the specified FP type without changing its value. 1644 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1645 bool losesInfo; 1646 APFloat F = CFP->getValueAPF(); 1647 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1648 return !losesInfo; 1649 } 1650 1651 static Type *shrinkFPConstant(ConstantFP *CFP) { 1652 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1653 return nullptr; // No constant folding of this. 1654 // See if the value can be truncated to half and then reextended. 1655 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1656 return Type::getHalfTy(CFP->getContext()); 1657 // See if the value can be truncated to float and then reextended. 1658 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1659 return Type::getFloatTy(CFP->getContext()); 1660 if (CFP->getType()->isDoubleTy()) 1661 return nullptr; // Won't shrink. 1662 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1663 return Type::getDoubleTy(CFP->getContext()); 1664 // Don't try to shrink to various long double types. 1665 return nullptr; 1666 } 1667 1668 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1669 // type we can safely truncate all elements to. 1670 static Type *shrinkFPConstantVector(Value *V) { 1671 auto *CV = dyn_cast<Constant>(V); 1672 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1673 if (!CV || !CVVTy) 1674 return nullptr; 1675 1676 Type *MinType = nullptr; 1677 1678 unsigned NumElts = CVVTy->getNumElements(); 1679 1680 // For fixed-width vectors we find the minimal type by looking 1681 // through the constant values of the vector. 1682 for (unsigned i = 0; i != NumElts; ++i) { 1683 if (isa<UndefValue>(CV->getAggregateElement(i))) 1684 continue; 1685 1686 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1687 if (!CFP) 1688 return nullptr; 1689 1690 Type *T = shrinkFPConstant(CFP); 1691 if (!T) 1692 return nullptr; 1693 1694 // If we haven't found a type yet or this type has a larger mantissa than 1695 // our previous type, this is our new minimal type. 1696 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1697 MinType = T; 1698 } 1699 1700 // Make a vector type from the minimal type. 1701 return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr; 1702 } 1703 1704 /// Find the minimum FP type we can safely truncate to. 1705 static Type *getMinimumFPType(Value *V) { 1706 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1707 return FPExt->getOperand(0)->getType(); 1708 1709 // If this value is a constant, return the constant in the smallest FP type 1710 // that can accurately represent it. This allows us to turn 1711 // (float)((double)X+2.0) into x+2.0f. 1712 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1713 if (Type *T = shrinkFPConstant(CFP)) 1714 return T; 1715 1716 // We can only correctly find a minimum type for a scalable vector when it is 1717 // a splat. For splats of constant values the fpext is wrapped up as a 1718 // ConstantExpr. 1719 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1720 if (FPCExt->getOpcode() == Instruction::FPExt) 1721 return FPCExt->getOperand(0)->getType(); 1722 1723 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1724 // vectors 1725 if (Type *T = shrinkFPConstantVector(V)) 1726 return T; 1727 1728 return V->getType(); 1729 } 1730 1731 /// Return true if the cast from integer to FP can be proven to be exact for all 1732 /// possible inputs (the conversion does not lose any precision). 1733 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { 1734 CastInst::CastOps Opcode = I.getOpcode(); 1735 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1736 "Unexpected cast"); 1737 Value *Src = I.getOperand(0); 1738 Type *SrcTy = Src->getType(); 1739 Type *FPTy = I.getType(); 1740 bool IsSigned = Opcode == Instruction::SIToFP; 1741 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1742 1743 // Easy case - if the source integer type has less bits than the FP mantissa, 1744 // then the cast must be exact. 1745 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1746 if (SrcSize <= DestNumSigBits) 1747 return true; 1748 1749 // Cast from FP to integer and back to FP is independent of the intermediate 1750 // integer width because of poison on overflow. 1751 Value *F; 1752 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1753 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1754 // potential rounding of negative FP input values. 1755 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1756 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1757 SrcNumSigBits++; 1758 1759 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1760 // significant bits than the destination (and make sure neither type is 1761 // weird -- ppc_fp128). 1762 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1763 SrcNumSigBits <= DestNumSigBits) 1764 return true; 1765 } 1766 1767 // TODO: 1768 // Try harder to find if the source integer type has less significant bits. 1769 // For example, compute number of sign bits. 1770 KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I); 1771 int SigBits = (int)SrcTy->getScalarSizeInBits() - 1772 SrcKnown.countMinLeadingZeros() - 1773 SrcKnown.countMinTrailingZeros(); 1774 if (SigBits <= DestNumSigBits) 1775 return true; 1776 1777 return false; 1778 } 1779 1780 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1781 if (Instruction *I = commonCastTransforms(FPT)) 1782 return I; 1783 1784 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1785 // simplify this expression to avoid one or more of the trunc/extend 1786 // operations if we can do so without changing the numerical results. 1787 // 1788 // The exact manner in which the widths of the operands interact to limit 1789 // what we can and cannot do safely varies from operation to operation, and 1790 // is explained below in the various case statements. 1791 Type *Ty = FPT.getType(); 1792 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1793 if (BO && BO->hasOneUse()) { 1794 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1795 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1796 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1797 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1798 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1799 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1800 unsigned DstWidth = Ty->getFPMantissaWidth(); 1801 switch (BO->getOpcode()) { 1802 default: break; 1803 case Instruction::FAdd: 1804 case Instruction::FSub: 1805 // For addition and subtraction, the infinitely precise result can 1806 // essentially be arbitrarily wide; proving that double rounding 1807 // will not occur because the result of OpI is exact (as we will for 1808 // FMul, for example) is hopeless. However, we *can* nonetheless 1809 // frequently know that double rounding cannot occur (or that it is 1810 // innocuous) by taking advantage of the specific structure of 1811 // infinitely-precise results that admit double rounding. 1812 // 1813 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1814 // to represent both sources, we can guarantee that the double 1815 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1816 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1817 // for proof of this fact). 1818 // 1819 // Note: Figueroa does not consider the case where DstFormat != 1820 // SrcFormat. It's possible (likely even!) that this analysis 1821 // could be tightened for those cases, but they are rare (the main 1822 // case of interest here is (float)((double)float + float)). 1823 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1824 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1825 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1826 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1827 RI->copyFastMathFlags(BO); 1828 return RI; 1829 } 1830 break; 1831 case Instruction::FMul: 1832 // For multiplication, the infinitely precise result has at most 1833 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1834 // that such a value can be exactly represented, then no double 1835 // rounding can possibly occur; we can safely perform the operation 1836 // in the destination format if it can represent both sources. 1837 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1838 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1839 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1840 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1841 } 1842 break; 1843 case Instruction::FDiv: 1844 // For division, we use again use the bound from Figueroa's 1845 // dissertation. I am entirely certain that this bound can be 1846 // tightened in the unbalanced operand case by an analysis based on 1847 // the diophantine rational approximation bound, but the well-known 1848 // condition used here is a good conservative first pass. 1849 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1850 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1851 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1852 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1853 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1854 } 1855 break; 1856 case Instruction::FRem: { 1857 // Remainder is straightforward. Remainder is always exact, so the 1858 // type of OpI doesn't enter into things at all. We simply evaluate 1859 // in whichever source type is larger, then convert to the 1860 // destination type. 1861 if (SrcWidth == OpWidth) 1862 break; 1863 Value *LHS, *RHS; 1864 if (LHSWidth == SrcWidth) { 1865 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1866 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1867 } else { 1868 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1869 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1870 } 1871 1872 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1873 return CastInst::CreateFPCast(ExactResult, Ty); 1874 } 1875 } 1876 } 1877 1878 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1879 Value *X; 1880 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1881 if (Op && Op->hasOneUse()) { 1882 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1883 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1884 if (isa<FPMathOperator>(Op)) 1885 Builder.setFastMathFlags(Op->getFastMathFlags()); 1886 1887 if (match(Op, m_FNeg(m_Value(X)))) { 1888 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1889 1890 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1891 } 1892 1893 // If we are truncating a select that has an extended operand, we can 1894 // narrow the other operand and do the select as a narrow op. 1895 Value *Cond, *X, *Y; 1896 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1897 X->getType() == Ty) { 1898 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1899 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1900 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1901 return replaceInstUsesWith(FPT, Sel); 1902 } 1903 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1904 X->getType() == Ty) { 1905 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1906 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1907 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1908 return replaceInstUsesWith(FPT, Sel); 1909 } 1910 } 1911 1912 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1913 switch (II->getIntrinsicID()) { 1914 default: break; 1915 case Intrinsic::ceil: 1916 case Intrinsic::fabs: 1917 case Intrinsic::floor: 1918 case Intrinsic::nearbyint: 1919 case Intrinsic::rint: 1920 case Intrinsic::round: 1921 case Intrinsic::roundeven: 1922 case Intrinsic::trunc: { 1923 Value *Src = II->getArgOperand(0); 1924 if (!Src->hasOneUse()) 1925 break; 1926 1927 // Except for fabs, this transformation requires the input of the unary FP 1928 // operation to be itself an fpext from the type to which we're 1929 // truncating. 1930 if (II->getIntrinsicID() != Intrinsic::fabs) { 1931 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1932 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1933 break; 1934 } 1935 1936 // Do unary FP operation on smaller type. 1937 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1938 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1939 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1940 II->getIntrinsicID(), Ty); 1941 SmallVector<OperandBundleDef, 1> OpBundles; 1942 II->getOperandBundlesAsDefs(OpBundles); 1943 CallInst *NewCI = 1944 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1945 NewCI->copyFastMathFlags(II); 1946 return NewCI; 1947 } 1948 } 1949 } 1950 1951 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1952 return I; 1953 1954 Value *Src = FPT.getOperand(0); 1955 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1956 auto *FPCast = cast<CastInst>(Src); 1957 if (isKnownExactCastIntToFP(*FPCast, *this)) 1958 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1959 } 1960 1961 return nullptr; 1962 } 1963 1964 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1965 // If the source operand is a cast from integer to FP and known exact, then 1966 // cast the integer operand directly to the destination type. 1967 Type *Ty = FPExt.getType(); 1968 Value *Src = FPExt.getOperand(0); 1969 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1970 auto *FPCast = cast<CastInst>(Src); 1971 if (isKnownExactCastIntToFP(*FPCast, *this)) 1972 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1973 } 1974 1975 return commonCastTransforms(FPExt); 1976 } 1977 1978 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1979 /// This is safe if the intermediate type has enough bits in its mantissa to 1980 /// accurately represent all values of X. For example, this won't work with 1981 /// i64 -> float -> i64. 1982 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1983 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1984 return nullptr; 1985 1986 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1987 Value *X = OpI->getOperand(0); 1988 Type *XType = X->getType(); 1989 Type *DestType = FI.getType(); 1990 bool IsOutputSigned = isa<FPToSIInst>(FI); 1991 1992 // Since we can assume the conversion won't overflow, our decision as to 1993 // whether the input will fit in the float should depend on the minimum 1994 // of the input range and output range. 1995 1996 // This means this is also safe for a signed input and unsigned output, since 1997 // a negative input would lead to undefined behavior. 1998 if (!isKnownExactCastIntToFP(*OpI, *this)) { 1999 // The first cast may not round exactly based on the source integer width 2000 // and FP width, but the overflow UB rules can still allow this to fold. 2001 // If the destination type is narrow, that means the intermediate FP value 2002 // must be large enough to hold the source value exactly. 2003 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 2004 int OutputSize = (int)DestType->getScalarSizeInBits(); 2005 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 2006 return nullptr; 2007 } 2008 2009 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 2010 bool IsInputSigned = isa<SIToFPInst>(OpI); 2011 if (IsInputSigned && IsOutputSigned) 2012 return new SExtInst(X, DestType); 2013 return new ZExtInst(X, DestType); 2014 } 2015 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 2016 return new TruncInst(X, DestType); 2017 2018 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 2019 return replaceInstUsesWith(FI, X); 2020 } 2021 2022 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 2023 if (Instruction *I = foldItoFPtoI(FI)) 2024 return I; 2025 2026 return commonCastTransforms(FI); 2027 } 2028 2029 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 2030 if (Instruction *I = foldItoFPtoI(FI)) 2031 return I; 2032 2033 return commonCastTransforms(FI); 2034 } 2035 2036 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 2037 return commonCastTransforms(CI); 2038 } 2039 2040 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 2041 return commonCastTransforms(CI); 2042 } 2043 2044 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 2045 // If the source integer type is not the intptr_t type for this target, do a 2046 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 2047 // cast to be exposed to other transforms. 2048 unsigned AS = CI.getAddressSpace(); 2049 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 2050 DL.getPointerSizeInBits(AS)) { 2051 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2052 DL.getIntPtrType(CI.getContext(), AS)); 2053 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2054 return new IntToPtrInst(P, CI.getType()); 2055 } 2056 2057 if (Instruction *I = commonCastTransforms(CI)) 2058 return I; 2059 2060 return nullptr; 2061 } 2062 2063 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 2064 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 2065 Value *Src = CI.getOperand(0); 2066 2067 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 2068 // If casting the result of a getelementptr instruction with no offset, turn 2069 // this into a cast of the original pointer! 2070 if (GEP->hasAllZeroIndices() && 2071 // If CI is an addrspacecast and GEP changes the poiner type, merging 2072 // GEP into CI would undo canonicalizing addrspacecast with different 2073 // pointer types, causing infinite loops. 2074 (!isa<AddrSpaceCastInst>(CI) || 2075 GEP->getType() == GEP->getPointerOperandType())) { 2076 // Changing the cast operand is usually not a good idea but it is safe 2077 // here because the pointer operand is being replaced with another 2078 // pointer operand so the opcode doesn't need to change. 2079 return replaceOperand(CI, 0, GEP->getOperand(0)); 2080 } 2081 } 2082 2083 return commonCastTransforms(CI); 2084 } 2085 2086 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2087 // If the destination integer type is not the intptr_t type for this target, 2088 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2089 // to be exposed to other transforms. 2090 Value *SrcOp = CI.getPointerOperand(); 2091 Type *SrcTy = SrcOp->getType(); 2092 Type *Ty = CI.getType(); 2093 unsigned AS = CI.getPointerAddressSpace(); 2094 unsigned TySize = Ty->getScalarSizeInBits(); 2095 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2096 if (TySize != PtrSize) { 2097 Type *IntPtrTy = 2098 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2099 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2100 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2101 } 2102 2103 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { 2104 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 2105 // While this can increase the number of instructions it doesn't actually 2106 // increase the overall complexity since the arithmetic is just part of 2107 // the GEP otherwise. 2108 if (GEP->hasOneUse() && 2109 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 2110 return replaceInstUsesWith(CI, 2111 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 2112 /*isSigned=*/false)); 2113 } 2114 } 2115 2116 Value *Vec, *Scalar, *Index; 2117 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2118 m_Value(Scalar), m_Value(Index)))) && 2119 Vec->getType() == Ty) { 2120 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2121 // Convert the scalar to int followed by insert to eliminate one cast: 2122 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2123 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2124 return InsertElementInst::Create(Vec, NewCast, Index); 2125 } 2126 2127 return commonPointerCastTransforms(CI); 2128 } 2129 2130 /// This input value (which is known to have vector type) is being zero extended 2131 /// or truncated to the specified vector type. Since the zext/trunc is done 2132 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2133 /// endianness will impact which end of the vector that is extended or 2134 /// truncated. 2135 /// 2136 /// A vector is always stored with index 0 at the lowest address, which 2137 /// corresponds to the most significant bits for a big endian stored integer and 2138 /// the least significant bits for little endian. A trunc/zext of an integer 2139 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2140 /// the front of the vector for big endian targets, and the back of the vector 2141 /// for little endian targets. 2142 /// 2143 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2144 /// 2145 /// The source and destination vector types may have different element types. 2146 static Instruction * 2147 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2148 InstCombinerImpl &IC) { 2149 // We can only do this optimization if the output is a multiple of the input 2150 // element size, or the input is a multiple of the output element size. 2151 // Convert the input type to have the same element type as the output. 2152 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2153 2154 if (SrcTy->getElementType() != DestTy->getElementType()) { 2155 // The input types don't need to be identical, but for now they must be the 2156 // same size. There is no specific reason we couldn't handle things like 2157 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2158 // there yet. 2159 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2160 DestTy->getElementType()->getPrimitiveSizeInBits()) 2161 return nullptr; 2162 2163 SrcTy = 2164 FixedVectorType::get(DestTy->getElementType(), 2165 cast<FixedVectorType>(SrcTy)->getNumElements()); 2166 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2167 } 2168 2169 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2170 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2171 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2172 2173 assert(SrcElts != DestElts && "Element counts should be different."); 2174 2175 // Now that the element types match, get the shuffle mask and RHS of the 2176 // shuffle to use, which depends on whether we're increasing or decreasing the 2177 // size of the input. 2178 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); 2179 ArrayRef<int> ShuffleMask; 2180 Value *V2; 2181 2182 if (SrcElts > DestElts) { 2183 // If we're shrinking the number of elements (rewriting an integer 2184 // truncate), just shuffle in the elements corresponding to the least 2185 // significant bits from the input and use poison as the second shuffle 2186 // input. 2187 V2 = PoisonValue::get(SrcTy); 2188 // Make sure the shuffle mask selects the "least significant bits" by 2189 // keeping elements from back of the src vector for big endian, and from the 2190 // front for little endian. 2191 ShuffleMask = ShuffleMaskStorage; 2192 if (IsBigEndian) 2193 ShuffleMask = ShuffleMask.take_back(DestElts); 2194 else 2195 ShuffleMask = ShuffleMask.take_front(DestElts); 2196 } else { 2197 // If we're increasing the number of elements (rewriting an integer zext), 2198 // shuffle in all of the elements from InVal. Fill the rest of the result 2199 // elements with zeros from a constant zero. 2200 V2 = Constant::getNullValue(SrcTy); 2201 // Use first elt from V2 when indicating zero in the shuffle mask. 2202 uint32_t NullElt = SrcElts; 2203 // Extend with null values in the "most significant bits" by adding elements 2204 // in front of the src vector for big endian, and at the back for little 2205 // endian. 2206 unsigned DeltaElts = DestElts - SrcElts; 2207 if (IsBigEndian) 2208 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2209 else 2210 ShuffleMaskStorage.append(DeltaElts, NullElt); 2211 ShuffleMask = ShuffleMaskStorage; 2212 } 2213 2214 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2215 } 2216 2217 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2218 return Value % Ty->getPrimitiveSizeInBits() == 0; 2219 } 2220 2221 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2222 return Value / Ty->getPrimitiveSizeInBits(); 2223 } 2224 2225 /// V is a value which is inserted into a vector of VecEltTy. 2226 /// Look through the value to see if we can decompose it into 2227 /// insertions into the vector. See the example in the comment for 2228 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2229 /// The type of V is always a non-zero multiple of VecEltTy's size. 2230 /// Shift is the number of bits between the lsb of V and the lsb of 2231 /// the vector. 2232 /// 2233 /// This returns false if the pattern can't be matched or true if it can, 2234 /// filling in Elements with the elements found here. 2235 static bool collectInsertionElements(Value *V, unsigned Shift, 2236 SmallVectorImpl<Value *> &Elements, 2237 Type *VecEltTy, bool isBigEndian) { 2238 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2239 "Shift should be a multiple of the element type size"); 2240 2241 // Undef values never contribute useful bits to the result. 2242 if (isa<UndefValue>(V)) return true; 2243 2244 // If we got down to a value of the right type, we win, try inserting into the 2245 // right element. 2246 if (V->getType() == VecEltTy) { 2247 // Inserting null doesn't actually insert any elements. 2248 if (Constant *C = dyn_cast<Constant>(V)) 2249 if (C->isNullValue()) 2250 return true; 2251 2252 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2253 if (isBigEndian) 2254 ElementIndex = Elements.size() - ElementIndex - 1; 2255 2256 // Fail if multiple elements are inserted into this slot. 2257 if (Elements[ElementIndex]) 2258 return false; 2259 2260 Elements[ElementIndex] = V; 2261 return true; 2262 } 2263 2264 if (Constant *C = dyn_cast<Constant>(V)) { 2265 // Figure out the # elements this provides, and bitcast it or slice it up 2266 // as required. 2267 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2268 VecEltTy); 2269 // If the constant is the size of a vector element, we just need to bitcast 2270 // it to the right type so it gets properly inserted. 2271 if (NumElts == 1) 2272 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2273 Shift, Elements, VecEltTy, isBigEndian); 2274 2275 // Okay, this is a constant that covers multiple elements. Slice it up into 2276 // pieces and insert each element-sized piece into the vector. 2277 if (!isa<IntegerType>(C->getType())) 2278 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2279 C->getType()->getPrimitiveSizeInBits())); 2280 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2281 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2282 2283 for (unsigned i = 0; i != NumElts; ++i) { 2284 unsigned ShiftI = Shift+i*ElementSize; 2285 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2286 ShiftI)); 2287 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2288 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2289 isBigEndian)) 2290 return false; 2291 } 2292 return true; 2293 } 2294 2295 if (!V->hasOneUse()) return false; 2296 2297 Instruction *I = dyn_cast<Instruction>(V); 2298 if (!I) return false; 2299 switch (I->getOpcode()) { 2300 default: return false; // Unhandled case. 2301 case Instruction::BitCast: 2302 if (I->getOperand(0)->getType()->isVectorTy()) 2303 return false; 2304 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2305 isBigEndian); 2306 case Instruction::ZExt: 2307 if (!isMultipleOfTypeSize( 2308 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2309 VecEltTy)) 2310 return false; 2311 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2312 isBigEndian); 2313 case Instruction::Or: 2314 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2315 isBigEndian) && 2316 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2317 isBigEndian); 2318 case Instruction::Shl: { 2319 // Must be shifting by a constant that is a multiple of the element size. 2320 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2321 if (!CI) return false; 2322 Shift += CI->getZExtValue(); 2323 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2324 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2325 isBigEndian); 2326 } 2327 2328 } 2329 } 2330 2331 2332 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2333 /// assemble the elements of the vector manually. 2334 /// Try to rip the code out and replace it with insertelements. This is to 2335 /// optimize code like this: 2336 /// 2337 /// %tmp37 = bitcast float %inc to i32 2338 /// %tmp38 = zext i32 %tmp37 to i64 2339 /// %tmp31 = bitcast float %inc5 to i32 2340 /// %tmp32 = zext i32 %tmp31 to i64 2341 /// %tmp33 = shl i64 %tmp32, 32 2342 /// %ins35 = or i64 %tmp33, %tmp38 2343 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2344 /// 2345 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2346 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2347 InstCombinerImpl &IC) { 2348 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2349 Value *IntInput = CI.getOperand(0); 2350 2351 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2352 if (!collectInsertionElements(IntInput, 0, Elements, 2353 DestVecTy->getElementType(), 2354 IC.getDataLayout().isBigEndian())) 2355 return nullptr; 2356 2357 // If we succeeded, we know that all of the element are specified by Elements 2358 // or are zero if Elements has a null entry. Recast this as a set of 2359 // insertions. 2360 Value *Result = Constant::getNullValue(CI.getType()); 2361 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2362 if (!Elements[i]) continue; // Unset element. 2363 2364 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2365 IC.Builder.getInt32(i)); 2366 } 2367 2368 return Result; 2369 } 2370 2371 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2372 /// vector followed by extract element. The backend tends to handle bitcasts of 2373 /// vectors better than bitcasts of scalars because vector registers are 2374 /// usually not type-specific like scalar integer or scalar floating-point. 2375 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2376 InstCombinerImpl &IC) { 2377 Value *VecOp, *Index; 2378 if (!match(BitCast.getOperand(0), 2379 m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) 2380 return nullptr; 2381 2382 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2383 // type to extract from. 2384 Type *DestType = BitCast.getType(); 2385 VectorType *VecType = cast<VectorType>(VecOp->getType()); 2386 if (VectorType::isValidElementType(DestType)) { 2387 auto *NewVecType = VectorType::get(DestType, VecType); 2388 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); 2389 return ExtractElementInst::Create(NewBC, Index); 2390 } 2391 2392 // Only solve DestType is vector to avoid inverse transform in visitBitCast. 2393 // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) 2394 auto *FixedVType = dyn_cast<FixedVectorType>(VecType); 2395 if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) 2396 return CastInst::Create(Instruction::BitCast, VecOp, DestType); 2397 2398 return nullptr; 2399 } 2400 2401 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2402 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2403 InstCombiner::BuilderTy &Builder) { 2404 Type *DestTy = BitCast.getType(); 2405 BinaryOperator *BO; 2406 2407 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2408 !BO->isBitwiseLogicOp()) 2409 return nullptr; 2410 2411 // FIXME: This transform is restricted to vector types to avoid backend 2412 // problems caused by creating potentially illegal operations. If a fix-up is 2413 // added to handle that situation, we can remove this check. 2414 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2415 return nullptr; 2416 2417 if (DestTy->isFPOrFPVectorTy()) { 2418 Value *X, *Y; 2419 // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) 2420 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2421 match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) { 2422 if (X->getType()->isFPOrFPVectorTy() && 2423 Y->getType()->isIntOrIntVectorTy()) { 2424 Value *CastedOp = 2425 Builder.CreateBitCast(BO->getOperand(0), Y->getType()); 2426 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y); 2427 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2428 } 2429 if (X->getType()->isIntOrIntVectorTy() && 2430 Y->getType()->isFPOrFPVectorTy()) { 2431 Value *CastedOp = 2432 Builder.CreateBitCast(BO->getOperand(1), X->getType()); 2433 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X); 2434 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2435 } 2436 } 2437 return nullptr; 2438 } 2439 2440 if (!DestTy->isIntOrIntVectorTy()) 2441 return nullptr; 2442 2443 Value *X; 2444 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2445 X->getType() == DestTy && !isa<Constant>(X)) { 2446 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2447 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2448 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2449 } 2450 2451 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2452 X->getType() == DestTy && !isa<Constant>(X)) { 2453 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2454 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2455 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2456 } 2457 2458 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2459 // constant. This eases recognition of special constants for later ops. 2460 // Example: 2461 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2462 Constant *C; 2463 if (match(BO->getOperand(1), m_Constant(C))) { 2464 // bitcast (logic X, C) --> logic (bitcast X, C') 2465 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2466 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2467 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2468 } 2469 2470 return nullptr; 2471 } 2472 2473 /// Change the type of a select if we can eliminate a bitcast. 2474 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2475 InstCombiner::BuilderTy &Builder) { 2476 Value *Cond, *TVal, *FVal; 2477 if (!match(BitCast.getOperand(0), 2478 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2479 return nullptr; 2480 2481 // A vector select must maintain the same number of elements in its operands. 2482 Type *CondTy = Cond->getType(); 2483 Type *DestTy = BitCast.getType(); 2484 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2485 if (!DestTy->isVectorTy() || 2486 CondVTy->getElementCount() != 2487 cast<VectorType>(DestTy)->getElementCount()) 2488 return nullptr; 2489 2490 // FIXME: This transform is restricted from changing the select between 2491 // scalars and vectors to avoid backend problems caused by creating 2492 // potentially illegal operations. If a fix-up is added to handle that 2493 // situation, we can remove this check. 2494 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2495 return nullptr; 2496 2497 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2498 Value *X; 2499 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2500 !isa<Constant>(X)) { 2501 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2502 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2503 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2504 } 2505 2506 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2507 !isa<Constant>(X)) { 2508 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2509 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2510 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2511 } 2512 2513 return nullptr; 2514 } 2515 2516 /// Check if all users of CI are StoreInsts. 2517 static bool hasStoreUsersOnly(CastInst &CI) { 2518 for (User *U : CI.users()) { 2519 if (!isa<StoreInst>(U)) 2520 return false; 2521 } 2522 return true; 2523 } 2524 2525 /// This function handles following case 2526 /// 2527 /// A -> B cast 2528 /// PHI 2529 /// B -> A cast 2530 /// 2531 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2532 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2533 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2534 PHINode *PN) { 2535 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2536 if (hasStoreUsersOnly(CI)) 2537 return nullptr; 2538 2539 Value *Src = CI.getOperand(0); 2540 Type *SrcTy = Src->getType(); // Type B 2541 Type *DestTy = CI.getType(); // Type A 2542 2543 SmallVector<PHINode *, 4> PhiWorklist; 2544 SmallSetVector<PHINode *, 4> OldPhiNodes; 2545 2546 // Find all of the A->B casts and PHI nodes. 2547 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2548 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2549 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2550 PhiWorklist.push_back(PN); 2551 OldPhiNodes.insert(PN); 2552 while (!PhiWorklist.empty()) { 2553 auto *OldPN = PhiWorklist.pop_back_val(); 2554 for (Value *IncValue : OldPN->incoming_values()) { 2555 if (isa<Constant>(IncValue)) 2556 continue; 2557 2558 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2559 // If there is a sequence of one or more load instructions, each loaded 2560 // value is used as address of later load instruction, bitcast is 2561 // necessary to change the value type, don't optimize it. For 2562 // simplicity we give up if the load address comes from another load. 2563 Value *Addr = LI->getOperand(0); 2564 if (Addr == &CI || isa<LoadInst>(Addr)) 2565 return nullptr; 2566 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2567 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2568 // TODO: Remove this check when bitcast between vector and x86_amx 2569 // is replaced with a specific intrinsic. 2570 if (DestTy->isX86_AMXTy()) 2571 return nullptr; 2572 if (LI->hasOneUse() && LI->isSimple()) 2573 continue; 2574 // If a LoadInst has more than one use, changing the type of loaded 2575 // value may create another bitcast. 2576 return nullptr; 2577 } 2578 2579 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2580 if (OldPhiNodes.insert(PNode)) 2581 PhiWorklist.push_back(PNode); 2582 continue; 2583 } 2584 2585 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2586 // We can't handle other instructions. 2587 if (!BCI) 2588 return nullptr; 2589 2590 // Verify it's a A->B cast. 2591 Type *TyA = BCI->getOperand(0)->getType(); 2592 Type *TyB = BCI->getType(); 2593 if (TyA != DestTy || TyB != SrcTy) 2594 return nullptr; 2595 } 2596 } 2597 2598 // Check that each user of each old PHI node is something that we can 2599 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2600 for (auto *OldPN : OldPhiNodes) { 2601 for (User *V : OldPN->users()) { 2602 if (auto *SI = dyn_cast<StoreInst>(V)) { 2603 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2604 return nullptr; 2605 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2606 // Verify it's a B->A cast. 2607 Type *TyB = BCI->getOperand(0)->getType(); 2608 Type *TyA = BCI->getType(); 2609 if (TyA != DestTy || TyB != SrcTy) 2610 return nullptr; 2611 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2612 // As long as the user is another old PHI node, then even if we don't 2613 // rewrite it, the PHI web we're considering won't have any users 2614 // outside itself, so it'll be dead. 2615 if (!OldPhiNodes.contains(PHI)) 2616 return nullptr; 2617 } else { 2618 return nullptr; 2619 } 2620 } 2621 } 2622 2623 // For each old PHI node, create a corresponding new PHI node with a type A. 2624 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2625 for (auto *OldPN : OldPhiNodes) { 2626 Builder.SetInsertPoint(OldPN); 2627 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2628 NewPNodes[OldPN] = NewPN; 2629 } 2630 2631 // Fill in the operands of new PHI nodes. 2632 for (auto *OldPN : OldPhiNodes) { 2633 PHINode *NewPN = NewPNodes[OldPN]; 2634 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2635 Value *V = OldPN->getOperand(j); 2636 Value *NewV = nullptr; 2637 if (auto *C = dyn_cast<Constant>(V)) { 2638 NewV = ConstantExpr::getBitCast(C, DestTy); 2639 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2640 // Explicitly perform load combine to make sure no opposing transform 2641 // can remove the bitcast in the meantime and trigger an infinite loop. 2642 Builder.SetInsertPoint(LI); 2643 NewV = combineLoadToNewType(*LI, DestTy); 2644 // Remove the old load and its use in the old phi, which itself becomes 2645 // dead once the whole transform finishes. 2646 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2647 eraseInstFromFunction(*LI); 2648 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2649 NewV = BCI->getOperand(0); 2650 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2651 NewV = NewPNodes[PrevPN]; 2652 } 2653 assert(NewV); 2654 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2655 } 2656 } 2657 2658 // Traverse all accumulated PHI nodes and process its users, 2659 // which are Stores and BitcCasts. Without this processing 2660 // NewPHI nodes could be replicated and could lead to extra 2661 // moves generated after DeSSA. 2662 // If there is a store with type B, change it to type A. 2663 2664 2665 // Replace users of BitCast B->A with NewPHI. These will help 2666 // later to get rid off a closure formed by OldPHI nodes. 2667 Instruction *RetVal = nullptr; 2668 for (auto *OldPN : OldPhiNodes) { 2669 PHINode *NewPN = NewPNodes[OldPN]; 2670 for (User *V : make_early_inc_range(OldPN->users())) { 2671 if (auto *SI = dyn_cast<StoreInst>(V)) { 2672 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2673 Builder.SetInsertPoint(SI); 2674 auto *NewBC = 2675 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2676 SI->setOperand(0, NewBC); 2677 Worklist.push(SI); 2678 assert(hasStoreUsersOnly(*NewBC)); 2679 } 2680 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2681 Type *TyB = BCI->getOperand(0)->getType(); 2682 Type *TyA = BCI->getType(); 2683 assert(TyA == DestTy && TyB == SrcTy); 2684 (void) TyA; 2685 (void) TyB; 2686 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2687 if (BCI == &CI) 2688 RetVal = I; 2689 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2690 assert(OldPhiNodes.contains(PHI)); 2691 (void) PHI; 2692 } else { 2693 llvm_unreachable("all uses should be handled"); 2694 } 2695 } 2696 } 2697 2698 return RetVal; 2699 } 2700 2701 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder, 2702 const DataLayout &DL) { 2703 Value *Src = CI.getOperand(0); 2704 PointerType *SrcPTy = cast<PointerType>(Src->getType()); 2705 PointerType *DstPTy = cast<PointerType>(CI.getType()); 2706 2707 // Bitcasts involving opaque pointers cannot be converted into a GEP. 2708 if (SrcPTy->isOpaque() || DstPTy->isOpaque()) 2709 return nullptr; 2710 2711 Type *DstElTy = DstPTy->getNonOpaquePointerElementType(); 2712 Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType(); 2713 2714 // When the type pointed to is not sized the cast cannot be 2715 // turned into a gep. 2716 if (!SrcElTy->isSized()) 2717 return nullptr; 2718 2719 // If the source and destination are pointers, and this cast is equivalent 2720 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2721 // This can enhance SROA and other transforms that want type-safe pointers. 2722 unsigned NumZeros = 0; 2723 while (SrcElTy && SrcElTy != DstElTy) { 2724 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2725 ++NumZeros; 2726 } 2727 2728 // If we found a path from the src to dest, create the getelementptr now. 2729 if (SrcElTy == DstElTy) { 2730 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2731 GetElementPtrInst *GEP = GetElementPtrInst::Create( 2732 SrcPTy->getNonOpaquePointerElementType(), Src, Idxs); 2733 2734 // If the source pointer is dereferenceable, then assume it points to an 2735 // allocated object and apply "inbounds" to the GEP. 2736 bool CanBeNull, CanBeFreed; 2737 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2738 // In a non-default address space (not 0), a null pointer can not be 2739 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2740 // The reason is that 'null' is not treated differently in these address 2741 // spaces, and we consequently ignore the 'gep inbounds' special case 2742 // for 'null' which allows 'inbounds' on 'null' if the indices are 2743 // zeros. 2744 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2745 GEP->setIsInBounds(); 2746 } 2747 return GEP; 2748 } 2749 return nullptr; 2750 } 2751 2752 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2753 // If the operands are integer typed then apply the integer transforms, 2754 // otherwise just apply the common ones. 2755 Value *Src = CI.getOperand(0); 2756 Type *SrcTy = Src->getType(); 2757 Type *DestTy = CI.getType(); 2758 2759 // Get rid of casts from one type to the same type. These are useless and can 2760 // be replaced by the operand. 2761 if (DestTy == Src->getType()) 2762 return replaceInstUsesWith(CI, Src); 2763 2764 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2765 // If we are casting a alloca to a pointer to a type of the same 2766 // size, rewrite the allocation instruction to allocate the "right" type. 2767 // There is no need to modify malloc calls because it is their bitcast that 2768 // needs to be cleaned up. 2769 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2770 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2771 return V; 2772 2773 if (Instruction *I = convertBitCastToGEP(CI, Builder, DL)) 2774 return I; 2775 } 2776 2777 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2778 // Beware: messing with this target-specific oddity may cause trouble. 2779 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2780 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2781 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2782 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2783 } 2784 2785 if (isa<IntegerType>(SrcTy)) { 2786 // If this is a cast from an integer to vector, check to see if the input 2787 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2788 // the casts with a shuffle and (potentially) a bitcast. 2789 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2790 CastInst *SrcCast = cast<CastInst>(Src); 2791 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2792 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2793 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2794 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2795 return I; 2796 } 2797 2798 // If the input is an 'or' instruction, we may be doing shifts and ors to 2799 // assemble the elements of the vector manually. Try to rip the code out 2800 // and replace it with insertelements. 2801 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2802 return replaceInstUsesWith(CI, V); 2803 } 2804 } 2805 2806 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2807 if (SrcVTy->getNumElements() == 1) { 2808 // If our destination is not a vector, then make this a straight 2809 // scalar-scalar cast. 2810 if (!DestTy->isVectorTy()) { 2811 Value *Elem = 2812 Builder.CreateExtractElement(Src, 2813 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2814 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2815 } 2816 2817 // Otherwise, see if our source is an insert. If so, then use the scalar 2818 // component directly: 2819 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2820 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2821 return new BitCastInst(InsElt->getOperand(1), DestTy); 2822 } 2823 2824 // Convert an artificial vector insert into more analyzable bitwise logic. 2825 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2826 Value *X, *Y; 2827 uint64_t IndexC; 2828 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2829 m_Value(Y), m_ConstantInt(IndexC)))) && 2830 DestTy->isIntegerTy() && X->getType() == DestTy && 2831 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2832 // Adjust for big endian - the LSBs are at the high index. 2833 if (DL.isBigEndian()) 2834 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2835 2836 // We only handle (endian-normalized) insert to index 0. Any other insert 2837 // would require a left-shift, so that is an extra instruction. 2838 if (IndexC == 0) { 2839 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2840 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2841 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2842 Value *AndX = Builder.CreateAnd(X, MaskC); 2843 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2844 return BinaryOperator::CreateOr(AndX, ZextY); 2845 } 2846 } 2847 } 2848 2849 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2850 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2851 // a bitcast to a vector with the same # elts. 2852 Value *ShufOp0 = Shuf->getOperand(0); 2853 Value *ShufOp1 = Shuf->getOperand(1); 2854 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2855 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2856 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2857 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2858 ShufElts == SrcVecElts) { 2859 BitCastInst *Tmp; 2860 // If either of the operands is a cast from CI.getType(), then 2861 // evaluating the shuffle in the casted destination's type will allow 2862 // us to eliminate at least one cast. 2863 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2864 Tmp->getOperand(0)->getType() == DestTy) || 2865 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2866 Tmp->getOperand(0)->getType() == DestTy)) { 2867 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2868 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2869 // Return a new shuffle vector. Use the same element ID's, as we 2870 // know the vector types match #elts. 2871 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2872 } 2873 } 2874 2875 // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized 2876 // as a byte/bit swap: 2877 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) 2878 // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) 2879 if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && 2880 Shuf->hasOneUse() && Shuf->isReverse()) { 2881 unsigned IntrinsicNum = 0; 2882 if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2883 SrcTy->getScalarSizeInBits() == 8) { 2884 IntrinsicNum = Intrinsic::bswap; 2885 } else if (SrcTy->getScalarSizeInBits() == 1) { 2886 IntrinsicNum = Intrinsic::bitreverse; 2887 } 2888 if (IntrinsicNum != 0) { 2889 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2890 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2891 Function *BswapOrBitreverse = 2892 Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy); 2893 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2894 return CallInst::Create(BswapOrBitreverse, {ScalarX}); 2895 } 2896 } 2897 } 2898 2899 // Handle the A->B->A cast, and there is an intervening PHI node. 2900 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2901 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2902 return I; 2903 2904 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2905 return I; 2906 2907 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2908 return I; 2909 2910 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2911 return I; 2912 2913 if (SrcTy->isPointerTy()) 2914 return commonPointerCastTransforms(CI); 2915 return commonCastTransforms(CI); 2916 } 2917 2918 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2919 // If the destination pointer element type is not the same as the source's 2920 // first do a bitcast to the destination type, and then the addrspacecast. 2921 // This allows the cast to be exposed to other transforms. 2922 Value *Src = CI.getOperand(0); 2923 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2924 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2925 2926 if (!SrcTy->hasSameElementTypeAs(DestTy)) { 2927 Type *MidTy = 2928 PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace()); 2929 // Handle vectors of pointers. 2930 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2931 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2932 2933 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2934 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2935 } 2936 2937 return commonPointerCastTransforms(CI); 2938 } 2939