1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Analyze 'Val', seeing if it is a simple linear expression. 27 /// If so, decompose it, returning some value X, such that Val is 28 /// X*Scale+Offset. 29 /// 30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 31 uint64_t &Offset) { 32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 33 Offset = CI->getZExtValue(); 34 Scale = 0; 35 return ConstantInt::get(Val->getType(), 0); 36 } 37 38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 39 // Cannot look past anything that might overflow. 40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 42 Scale = 1; 43 Offset = 0; 44 return Val; 45 } 46 47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 48 if (I->getOpcode() == Instruction::Shl) { 49 // This is a value scaled by '1 << the shift amt'. 50 Scale = UINT64_C(1) << RHS->getZExtValue(); 51 Offset = 0; 52 return I->getOperand(0); 53 } 54 55 if (I->getOpcode() == Instruction::Mul) { 56 // This value is scaled by 'RHS'. 57 Scale = RHS->getZExtValue(); 58 Offset = 0; 59 return I->getOperand(0); 60 } 61 62 if (I->getOpcode() == Instruction::Add) { 63 // We have X+C. Check to see if we really have (X*C2)+C1, 64 // where C1 is divisible by C2. 65 unsigned SubScale; 66 Value *SubVal = 67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 68 Offset += RHS->getZExtValue(); 69 Scale = SubScale; 70 return SubVal; 71 } 72 } 73 } 74 75 // Otherwise, we can't look past this. 76 Scale = 1; 77 Offset = 0; 78 return Val; 79 } 80 81 /// If we find a cast of an allocation instruction, try to eliminate the cast by 82 /// moving the type information into the alloc. 83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 84 AllocaInst &AI) { 85 PointerType *PTy = cast<PointerType>(CI.getType()); 86 87 BuilderTy AllocaBuilder(*Builder); 88 AllocaBuilder.SetInsertPoint(&AI); 89 90 // Get the type really allocated and the type casted to. 91 Type *AllocElTy = AI.getAllocatedType(); 92 Type *CastElTy = PTy->getElementType(); 93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 94 95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 97 if (CastElTyAlign < AllocElTyAlign) return nullptr; 98 99 // If the allocation has multiple uses, only promote it if we are strictly 100 // increasing the alignment of the resultant allocation. If we keep it the 101 // same, we open the door to infinite loops of various kinds. 102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 103 104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 107 108 // If the allocation has multiple uses, only promote it if we're not 109 // shrinking the amount of memory being allocated. 110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 113 114 // See if we can satisfy the modulus by pulling a scale out of the array 115 // size argument. 116 unsigned ArraySizeScale; 117 uint64_t ArrayOffset; 118 Value *NumElements = // See if the array size is a decomposable linear expr. 119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 120 121 // If we can now satisfy the modulus, by using a non-1 scale, we really can 122 // do the xform. 123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 125 126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 127 Value *Amt = nullptr; 128 if (Scale == 1) { 129 Amt = NumElements; 130 } else { 131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 132 // Insert before the alloca, not before the cast. 133 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 134 } 135 136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 138 Offset, true); 139 Amt = AllocaBuilder.CreateAdd(Amt, Off); 140 } 141 142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 143 New->setAlignment(AI.getAlignment()); 144 New->takeName(&AI); 145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 146 147 // If the allocation has multiple real uses, insert a cast and change all 148 // things that used it to use the new cast. This will also hack on CI, but it 149 // will die soon. 150 if (!AI.hasOneUse()) { 151 // New is the allocation instruction, pointer typed. AI is the original 152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 154 replaceInstUsesWith(AI, NewCast); 155 } 156 return replaceInstUsesWith(CI, New); 157 } 158 159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 160 /// true for, actually insert the code to evaluate the expression. 161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 162 bool isSigned) { 163 if (Constant *C = dyn_cast<Constant>(V)) { 164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 165 // If we got a constantexpr back, try to simplify it with DL info. 166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 167 C = FoldedC; 168 return C; 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode()); 239 Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode()); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// @brief Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 269 } 270 } 271 272 // If we are casting a select, then fold the cast into the select. 273 if (auto *SI = dyn_cast<SelectInst>(Src)) 274 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 275 return NV; 276 277 // If we are casting a PHI, then fold the cast into the PHI. 278 if (auto *PN = dyn_cast<PHINode>(Src)) { 279 // Don't do this if it would create a PHI node with an illegal type from a 280 // legal type. 281 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 282 shouldChangeType(CI.getType(), Src->getType())) 283 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 284 return NV; 285 } 286 287 return nullptr; 288 } 289 290 /// Return true if we can evaluate the specified expression tree as type Ty 291 /// instead of its larger type, and arrive with the same value. 292 /// This is used by code that tries to eliminate truncates. 293 /// 294 /// Ty will always be a type smaller than V. We should return true if trunc(V) 295 /// can be computed by computing V in the smaller type. If V is an instruction, 296 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 297 /// makes sense if x and y can be efficiently truncated. 298 /// 299 /// This function works on both vectors and scalars. 300 /// 301 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 302 Instruction *CxtI) { 303 // We can always evaluate constants in another type. 304 if (isa<Constant>(V)) 305 return true; 306 307 Instruction *I = dyn_cast<Instruction>(V); 308 if (!I) return false; 309 310 Type *OrigTy = V->getType(); 311 312 // If this is an extension from the dest type, we can eliminate it, even if it 313 // has multiple uses. 314 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 315 I->getOperand(0)->getType() == Ty) 316 return true; 317 318 // We can't extend or shrink something that has multiple uses: doing so would 319 // require duplicating the instruction in general, which isn't profitable. 320 if (!I->hasOneUse()) return false; 321 322 unsigned Opc = I->getOpcode(); 323 switch (Opc) { 324 case Instruction::Add: 325 case Instruction::Sub: 326 case Instruction::Mul: 327 case Instruction::And: 328 case Instruction::Or: 329 case Instruction::Xor: 330 // These operators can all arbitrarily be extended or truncated. 331 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 332 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 333 334 case Instruction::UDiv: 335 case Instruction::URem: { 336 // UDiv and URem can be truncated if all the truncated bits are zero. 337 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 338 uint32_t BitWidth = Ty->getScalarSizeInBits(); 339 if (BitWidth < OrigBitWidth) { 340 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 341 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 342 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 345 } 346 } 347 break; 348 } 349 case Instruction::Shl: 350 // If we are truncating the result of this SHL, and if it's a shift of a 351 // constant amount, we can always perform a SHL in a smaller type. 352 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 353 uint32_t BitWidth = Ty->getScalarSizeInBits(); 354 if (CI->getLimitedValue(BitWidth) < BitWidth) 355 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 356 } 357 break; 358 case Instruction::LShr: 359 // If this is a truncate of a logical shr, we can truncate it to a smaller 360 // lshr iff we know that the bits we would otherwise be shifting in are 361 // already zeros. 362 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 363 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 364 uint32_t BitWidth = Ty->getScalarSizeInBits(); 365 if (IC.MaskedValueIsZero(I->getOperand(0), 366 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 367 CI->getLimitedValue(BitWidth) < BitWidth) { 368 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 369 } 370 } 371 break; 372 case Instruction::Trunc: 373 // trunc(trunc(x)) -> trunc(x) 374 return true; 375 case Instruction::ZExt: 376 case Instruction::SExt: 377 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 378 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 379 return true; 380 case Instruction::Select: { 381 SelectInst *SI = cast<SelectInst>(I); 382 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 383 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 384 } 385 case Instruction::PHI: { 386 // We can change a phi if we can change all operands. Note that we never 387 // get into trouble with cyclic PHIs here because we only consider 388 // instructions with a single use. 389 PHINode *PN = cast<PHINode>(I); 390 for (Value *IncValue : PN->incoming_values()) 391 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 392 return false; 393 return true; 394 } 395 default: 396 // TODO: Can handle more cases here. 397 break; 398 } 399 400 return false; 401 } 402 403 /// Given a vector that is bitcast to an integer, optionally logically 404 /// right-shifted, and truncated, convert it to an extractelement. 405 /// Example (big endian): 406 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 407 /// ---> 408 /// extractelement <4 x i32> %X, 1 409 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, 410 const DataLayout &DL) { 411 Value *TruncOp = Trunc.getOperand(0); 412 Type *DestType = Trunc.getType(); 413 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 414 return nullptr; 415 416 Value *VecInput = nullptr; 417 ConstantInt *ShiftVal = nullptr; 418 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 419 m_LShr(m_BitCast(m_Value(VecInput)), 420 m_ConstantInt(ShiftVal)))) || 421 !isa<VectorType>(VecInput->getType())) 422 return nullptr; 423 424 VectorType *VecType = cast<VectorType>(VecInput->getType()); 425 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 426 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 427 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 428 429 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 430 return nullptr; 431 432 // If the element type of the vector doesn't match the result type, 433 // bitcast it to a vector type that we can extract from. 434 unsigned NumVecElts = VecWidth / DestWidth; 435 if (VecType->getElementType() != DestType) { 436 VecType = VectorType::get(DestType, NumVecElts); 437 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); 438 } 439 440 unsigned Elt = ShiftAmount / DestWidth; 441 if (DL.isBigEndian()) 442 Elt = NumVecElts - 1 - Elt; 443 444 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 445 } 446 447 /// Try to narrow the width of bitwise logic instructions with constants. 448 Instruction *InstCombiner::shrinkBitwiseLogic(TruncInst &Trunc) { 449 Type *SrcTy = Trunc.getSrcTy(); 450 Type *DestTy = Trunc.getType(); 451 if (isa<IntegerType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 452 return nullptr; 453 454 BinaryOperator *LogicOp; 455 Constant *C; 456 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(LogicOp))) || 457 !LogicOp->isBitwiseLogicOp() || 458 !match(LogicOp->getOperand(1), m_Constant(C))) 459 return nullptr; 460 461 // trunc (logic X, C) --> logic (trunc X, C') 462 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 463 Value *NarrowOp0 = Builder->CreateTrunc(LogicOp->getOperand(0), DestTy); 464 return BinaryOperator::Create(LogicOp->getOpcode(), NarrowOp0, NarrowC); 465 } 466 467 /// Try to narrow the width of a splat shuffle. This could be generalized to any 468 /// shuffle with a constant operand, but we limit the transform to avoid 469 /// creating a shuffle type that targets may not be able to lower effectively. 470 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 471 InstCombiner::BuilderTy &Builder) { 472 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 473 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 474 Shuf->getMask()->getSplatValue() && 475 Shuf->getType() == Shuf->getOperand(0)->getType()) { 476 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 477 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 478 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 479 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 480 } 481 482 return nullptr; 483 } 484 485 /// Try to narrow the width of an insert element. This could be generalized for 486 /// any vector constant, but we limit the transform to insertion into undef to 487 /// avoid potential backend problems from unsupported insertion widths. This 488 /// could also be extended to handle the case of inserting a scalar constant 489 /// into a vector variable. 490 static Instruction *shrinkInsertElt(CastInst &Trunc, 491 InstCombiner::BuilderTy &Builder) { 492 Instruction::CastOps Opcode = Trunc.getOpcode(); 493 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 494 "Unexpected instruction for shrinking"); 495 496 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 497 if (!InsElt || !InsElt->hasOneUse()) 498 return nullptr; 499 500 Type *DestTy = Trunc.getType(); 501 Type *DestScalarTy = DestTy->getScalarType(); 502 Value *VecOp = InsElt->getOperand(0); 503 Value *ScalarOp = InsElt->getOperand(1); 504 Value *Index = InsElt->getOperand(2); 505 506 if (isa<UndefValue>(VecOp)) { 507 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 508 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 509 UndefValue *NarrowUndef = UndefValue::get(DestTy); 510 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 511 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 512 } 513 514 return nullptr; 515 } 516 517 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 518 if (Instruction *Result = commonCastTransforms(CI)) 519 return Result; 520 521 // Test if the trunc is the user of a select which is part of a 522 // minimum or maximum operation. If so, don't do any more simplification. 523 // Even simplifying demanded bits can break the canonical form of a 524 // min/max. 525 Value *LHS, *RHS; 526 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 527 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 528 return nullptr; 529 530 // See if we can simplify any instructions used by the input whose sole 531 // purpose is to compute bits we don't care about. 532 if (SimplifyDemandedInstructionBits(CI)) 533 return &CI; 534 535 Value *Src = CI.getOperand(0); 536 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 537 538 // Attempt to truncate the entire input expression tree to the destination 539 // type. Only do this if the dest type is a simple type, don't convert the 540 // expression tree to something weird like i93 unless the source is also 541 // strange. 542 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 543 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 544 545 // If this cast is a truncate, evaluting in a different type always 546 // eliminates the cast, so it is always a win. 547 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 548 " to avoid cast: " << CI << '\n'); 549 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 550 assert(Res->getType() == DestTy); 551 return replaceInstUsesWith(CI, Res); 552 } 553 554 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 555 if (DestTy->getScalarSizeInBits() == 1) { 556 Constant *One = ConstantInt::get(SrcTy, 1); 557 Src = Builder->CreateAnd(Src, One); 558 Value *Zero = Constant::getNullValue(Src->getType()); 559 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 560 } 561 562 // FIXME: Maybe combine the next two transforms to handle the no cast case 563 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 564 565 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 566 Value *A = nullptr; ConstantInt *Cst = nullptr; 567 if (Src->hasOneUse() && 568 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 569 // We have three types to worry about here, the type of A, the source of 570 // the truncate (MidSize), and the destination of the truncate. We know that 571 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 572 // between ASize and ResultSize. 573 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 574 575 // If the shift amount is larger than the size of A, then the result is 576 // known to be zero because all the input bits got shifted out. 577 if (Cst->getZExtValue() >= ASize) 578 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 579 580 // Since we're doing an lshr and a zero extend, and know that the shift 581 // amount is smaller than ASize, it is always safe to do the shift in A's 582 // type, then zero extend or truncate to the result. 583 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 584 Shift->takeName(Src); 585 return CastInst::CreateIntegerCast(Shift, DestTy, false); 586 } 587 588 // FIXME: We should canonicalize to zext/trunc and remove this transform. 589 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 590 // conversion. 591 // It works because bits coming from sign extension have the same value as 592 // the sign bit of the original value; performing ashr instead of lshr 593 // generates bits of the same value as the sign bit. 594 if (Src->hasOneUse() && 595 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 596 Value *SExt = cast<Instruction>(Src)->getOperand(0); 597 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 598 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 599 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 600 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 601 unsigned ShiftAmt = Cst->getZExtValue(); 602 603 // This optimization can be only performed when zero bits generated by 604 // the original lshr aren't pulled into the value after truncation, so we 605 // can only shift by values no larger than the number of extension bits. 606 // FIXME: Instead of bailing when the shift is too large, use and to clear 607 // the extra bits. 608 if (ShiftAmt <= MaxAmt) { 609 if (CISize == ASize) 610 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 611 std::min(ShiftAmt, ASize - 1))); 612 if (SExt->hasOneUse()) { 613 Value *Shift = Builder->CreateAShr(A, std::min(ShiftAmt, ASize-1)); 614 Shift->takeName(Src); 615 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 616 } 617 } 618 } 619 620 if (Instruction *I = shrinkBitwiseLogic(CI)) 621 return I; 622 623 if (Instruction *I = shrinkSplatShuffle(CI, *Builder)) 624 return I; 625 626 if (Instruction *I = shrinkInsertElt(CI, *Builder)) 627 return I; 628 629 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 630 shouldChangeType(SrcTy, DestTy)) { 631 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 632 // dest type is native and cst < dest size. 633 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 634 !match(A, m_Shr(m_Value(), m_Constant()))) { 635 // Skip shifts of shift by constants. It undoes a combine in 636 // FoldShiftByConstant and is the extend in reg pattern. 637 const unsigned DestSize = DestTy->getScalarSizeInBits(); 638 if (Cst->getValue().ult(DestSize)) { 639 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 640 641 return BinaryOperator::Create( 642 Instruction::Shl, NewTrunc, 643 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 644 } 645 } 646 } 647 648 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) 649 return I; 650 651 return nullptr; 652 } 653 654 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 655 bool DoTransform) { 656 // If we are just checking for a icmp eq of a single bit and zext'ing it 657 // to an integer, then shift the bit to the appropriate place and then 658 // cast to integer to avoid the comparison. 659 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 660 const APInt &Op1CV = Op1C->getValue(); 661 662 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 663 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 664 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 665 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 666 if (!DoTransform) return ICI; 667 668 Value *In = ICI->getOperand(0); 669 Value *Sh = ConstantInt::get(In->getType(), 670 In->getType()->getScalarSizeInBits() - 1); 671 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); 672 if (In->getType() != CI.getType()) 673 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 674 675 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 676 Constant *One = ConstantInt::get(In->getType(), 1); 677 In = Builder->CreateXor(In, One, In->getName() + ".not"); 678 } 679 680 return replaceInstUsesWith(CI, In); 681 } 682 683 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 684 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 685 // zext (X == 1) to i32 --> X iff X has only the low bit set. 686 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 687 // zext (X != 0) to i32 --> X iff X has only the low bit set. 688 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 689 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 690 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 691 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 692 // This only works for EQ and NE 693 ICI->isEquality()) { 694 // If Op1C some other power of two, convert: 695 KnownBits Known(Op1C->getType()->getBitWidth()); 696 computeKnownBits(ICI->getOperand(0), Known, 0, &CI); 697 698 APInt KnownZeroMask(~Known.Zero); 699 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 700 if (!DoTransform) return ICI; 701 702 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 703 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 704 // (X&4) == 2 --> false 705 // (X&4) != 2 --> true 706 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 707 isNE); 708 Res = ConstantExpr::getZExt(Res, CI.getType()); 709 return replaceInstUsesWith(CI, Res); 710 } 711 712 uint32_t ShAmt = KnownZeroMask.logBase2(); 713 Value *In = ICI->getOperand(0); 714 if (ShAmt) { 715 // Perform a logical shr by shiftamt. 716 // Insert the shift to put the result in the low bit. 717 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 718 In->getName() + ".lobit"); 719 } 720 721 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 722 Constant *One = ConstantInt::get(In->getType(), 1); 723 In = Builder->CreateXor(In, One); 724 } 725 726 if (CI.getType() == In->getType()) 727 return replaceInstUsesWith(CI, In); 728 729 Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false); 730 return replaceInstUsesWith(CI, IntCast); 731 } 732 } 733 } 734 735 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 736 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 737 // may lead to additional simplifications. 738 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 739 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 740 uint32_t BitWidth = ITy->getBitWidth(); 741 Value *LHS = ICI->getOperand(0); 742 Value *RHS = ICI->getOperand(1); 743 744 KnownBits KnownLHS(BitWidth); 745 KnownBits KnownRHS(BitWidth); 746 computeKnownBits(LHS, KnownLHS, 0, &CI); 747 computeKnownBits(RHS, KnownRHS, 0, &CI); 748 749 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 750 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 751 APInt UnknownBit = ~KnownBits; 752 if (UnknownBit.countPopulation() == 1) { 753 if (!DoTransform) return ICI; 754 755 Value *Result = Builder->CreateXor(LHS, RHS); 756 757 // Mask off any bits that are set and won't be shifted away. 758 if (KnownLHS.One.uge(UnknownBit)) 759 Result = Builder->CreateAnd(Result, 760 ConstantInt::get(ITy, UnknownBit)); 761 762 // Shift the bit we're testing down to the lsb. 763 Result = Builder->CreateLShr( 764 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 765 766 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 767 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 768 Result->takeName(ICI); 769 return replaceInstUsesWith(CI, Result); 770 } 771 } 772 } 773 } 774 775 return nullptr; 776 } 777 778 /// Determine if the specified value can be computed in the specified wider type 779 /// and produce the same low bits. If not, return false. 780 /// 781 /// If this function returns true, it can also return a non-zero number of bits 782 /// (in BitsToClear) which indicates that the value it computes is correct for 783 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 784 /// out. For example, to promote something like: 785 /// 786 /// %B = trunc i64 %A to i32 787 /// %C = lshr i32 %B, 8 788 /// %E = zext i32 %C to i64 789 /// 790 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 791 /// set to 8 to indicate that the promoted value needs to have bits 24-31 792 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 793 /// clear the top bits anyway, doing this has no extra cost. 794 /// 795 /// This function works on both vectors and scalars. 796 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 797 InstCombiner &IC, Instruction *CxtI) { 798 BitsToClear = 0; 799 if (isa<Constant>(V)) 800 return true; 801 802 Instruction *I = dyn_cast<Instruction>(V); 803 if (!I) return false; 804 805 // If the input is a truncate from the destination type, we can trivially 806 // eliminate it. 807 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 808 return true; 809 810 // We can't extend or shrink something that has multiple uses: doing so would 811 // require duplicating the instruction in general, which isn't profitable. 812 if (!I->hasOneUse()) return false; 813 814 unsigned Opc = I->getOpcode(), Tmp; 815 switch (Opc) { 816 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 817 case Instruction::SExt: // zext(sext(x)) -> sext(x). 818 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 819 return true; 820 case Instruction::And: 821 case Instruction::Or: 822 case Instruction::Xor: 823 case Instruction::Add: 824 case Instruction::Sub: 825 case Instruction::Mul: 826 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 827 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 828 return false; 829 // These can all be promoted if neither operand has 'bits to clear'. 830 if (BitsToClear == 0 && Tmp == 0) 831 return true; 832 833 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 834 // other side, BitsToClear is ok. 835 if (Tmp == 0 && I->isBitwiseLogicOp()) { 836 // We use MaskedValueIsZero here for generality, but the case we care 837 // about the most is constant RHS. 838 unsigned VSize = V->getType()->getScalarSizeInBits(); 839 if (IC.MaskedValueIsZero(I->getOperand(1), 840 APInt::getHighBitsSet(VSize, BitsToClear), 841 0, CxtI)) 842 return true; 843 } 844 845 // Otherwise, we don't know how to analyze this BitsToClear case yet. 846 return false; 847 848 case Instruction::Shl: 849 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 850 // upper bits we can reduce BitsToClear by the shift amount. 851 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 852 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 853 return false; 854 uint64_t ShiftAmt = Amt->getZExtValue(); 855 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 856 return true; 857 } 858 return false; 859 case Instruction::LShr: 860 // We can promote lshr(x, cst) if we can promote x. This requires the 861 // ultimate 'and' to clear out the high zero bits we're clearing out though. 862 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 863 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 864 return false; 865 BitsToClear += Amt->getZExtValue(); 866 if (BitsToClear > V->getType()->getScalarSizeInBits()) 867 BitsToClear = V->getType()->getScalarSizeInBits(); 868 return true; 869 } 870 // Cannot promote variable LSHR. 871 return false; 872 case Instruction::Select: 873 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 874 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 875 // TODO: If important, we could handle the case when the BitsToClear are 876 // known zero in the disagreeing side. 877 Tmp != BitsToClear) 878 return false; 879 return true; 880 881 case Instruction::PHI: { 882 // We can change a phi if we can change all operands. Note that we never 883 // get into trouble with cyclic PHIs here because we only consider 884 // instructions with a single use. 885 PHINode *PN = cast<PHINode>(I); 886 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 887 return false; 888 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 889 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 890 // TODO: If important, we could handle the case when the BitsToClear 891 // are known zero in the disagreeing input. 892 Tmp != BitsToClear) 893 return false; 894 return true; 895 } 896 default: 897 // TODO: Can handle more cases here. 898 return false; 899 } 900 } 901 902 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 903 // If this zero extend is only used by a truncate, let the truncate be 904 // eliminated before we try to optimize this zext. 905 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 906 return nullptr; 907 908 // If one of the common conversion will work, do it. 909 if (Instruction *Result = commonCastTransforms(CI)) 910 return Result; 911 912 Value *Src = CI.getOperand(0); 913 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 914 915 // Attempt to extend the entire input expression tree to the destination 916 // type. Only do this if the dest type is a simple type, don't convert the 917 // expression tree to something weird like i93 unless the source is also 918 // strange. 919 unsigned BitsToClear; 920 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 921 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 922 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 923 "Can't clear more bits than in SrcTy"); 924 925 // Okay, we can transform this! Insert the new expression now. 926 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 927 " to avoid zero extend: " << CI << '\n'); 928 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 929 assert(Res->getType() == DestTy); 930 931 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 932 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 933 934 // If the high bits are already filled with zeros, just replace this 935 // cast with the result. 936 if (MaskedValueIsZero(Res, 937 APInt::getHighBitsSet(DestBitSize, 938 DestBitSize-SrcBitsKept), 939 0, &CI)) 940 return replaceInstUsesWith(CI, Res); 941 942 // We need to emit an AND to clear the high bits. 943 Constant *C = ConstantInt::get(Res->getType(), 944 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 945 return BinaryOperator::CreateAnd(Res, C); 946 } 947 948 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 949 // types and if the sizes are just right we can convert this into a logical 950 // 'and' which will be much cheaper than the pair of casts. 951 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 952 // TODO: Subsume this into EvaluateInDifferentType. 953 954 // Get the sizes of the types involved. We know that the intermediate type 955 // will be smaller than A or C, but don't know the relation between A and C. 956 Value *A = CSrc->getOperand(0); 957 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 958 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 959 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 960 // If we're actually extending zero bits, then if 961 // SrcSize < DstSize: zext(a & mask) 962 // SrcSize == DstSize: a & mask 963 // SrcSize > DstSize: trunc(a) & mask 964 if (SrcSize < DstSize) { 965 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 966 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 967 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 968 return new ZExtInst(And, CI.getType()); 969 } 970 971 if (SrcSize == DstSize) { 972 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 973 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 974 AndValue)); 975 } 976 if (SrcSize > DstSize) { 977 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 978 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 979 return BinaryOperator::CreateAnd(Trunc, 980 ConstantInt::get(Trunc->getType(), 981 AndValue)); 982 } 983 } 984 985 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 986 return transformZExtICmp(ICI, CI); 987 988 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 989 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 990 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 991 // of the (zext icmp) can be eliminated. If so, immediately perform the 992 // according elimination. 993 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 994 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 995 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 996 (transformZExtICmp(LHS, CI, false) || 997 transformZExtICmp(RHS, CI, false))) { 998 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 999 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 1000 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 1001 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1002 1003 // Perform the elimination. 1004 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1005 transformZExtICmp(LHS, *LZExt); 1006 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1007 transformZExtICmp(RHS, *RZExt); 1008 1009 return Or; 1010 } 1011 } 1012 1013 // zext(trunc(X) & C) -> (X & zext(C)). 1014 Constant *C; 1015 Value *X; 1016 if (SrcI && 1017 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1018 X->getType() == CI.getType()) 1019 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1020 1021 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1022 Value *And; 1023 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1024 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1025 X->getType() == CI.getType()) { 1026 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1027 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 1028 } 1029 1030 return nullptr; 1031 } 1032 1033 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1034 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1035 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1036 ICmpInst::Predicate Pred = ICI->getPredicate(); 1037 1038 // Don't bother if Op1 isn't of vector or integer type. 1039 if (!Op1->getType()->isIntOrIntVectorTy()) 1040 return nullptr; 1041 1042 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 1043 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1044 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1045 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 1046 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 1047 1048 Value *Sh = ConstantInt::get(Op0->getType(), 1049 Op0->getType()->getScalarSizeInBits()-1); 1050 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 1051 if (In->getType() != CI.getType()) 1052 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 1053 1054 if (Pred == ICmpInst::ICMP_SGT) 1055 In = Builder->CreateNot(In, In->getName()+".not"); 1056 return replaceInstUsesWith(CI, In); 1057 } 1058 } 1059 1060 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1061 // If we know that only one bit of the LHS of the icmp can be set and we 1062 // have an equality comparison with zero or a power of 2, we can transform 1063 // the icmp and sext into bitwise/integer operations. 1064 if (ICI->hasOneUse() && 1065 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1066 unsigned BitWidth = Op1C->getType()->getBitWidth(); 1067 KnownBits Known(BitWidth); 1068 computeKnownBits(Op0, Known, 0, &CI); 1069 1070 APInt KnownZeroMask(~Known.Zero); 1071 if (KnownZeroMask.isPowerOf2()) { 1072 Value *In = ICI->getOperand(0); 1073 1074 // If the icmp tests for a known zero bit we can constant fold it. 1075 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1076 Value *V = Pred == ICmpInst::ICMP_NE ? 1077 ConstantInt::getAllOnesValue(CI.getType()) : 1078 ConstantInt::getNullValue(CI.getType()); 1079 return replaceInstUsesWith(CI, V); 1080 } 1081 1082 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1083 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1084 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1085 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1086 // Perform a right shift to place the desired bit in the LSB. 1087 if (ShiftAmt) 1088 In = Builder->CreateLShr(In, 1089 ConstantInt::get(In->getType(), ShiftAmt)); 1090 1091 // At this point "In" is either 1 or 0. Subtract 1 to turn 1092 // {1, 0} -> {0, -1}. 1093 In = Builder->CreateAdd(In, 1094 ConstantInt::getAllOnesValue(In->getType()), 1095 "sext"); 1096 } else { 1097 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1098 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1099 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1100 // Perform a left shift to place the desired bit in the MSB. 1101 if (ShiftAmt) 1102 In = Builder->CreateShl(In, 1103 ConstantInt::get(In->getType(), ShiftAmt)); 1104 1105 // Distribute the bit over the whole bit width. 1106 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 1107 BitWidth - 1), "sext"); 1108 } 1109 1110 if (CI.getType() == In->getType()) 1111 return replaceInstUsesWith(CI, In); 1112 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1113 } 1114 } 1115 } 1116 1117 return nullptr; 1118 } 1119 1120 /// Return true if we can take the specified value and return it as type Ty 1121 /// without inserting any new casts and without changing the value of the common 1122 /// low bits. This is used by code that tries to promote integer operations to 1123 /// a wider types will allow us to eliminate the extension. 1124 /// 1125 /// This function works on both vectors and scalars. 1126 /// 1127 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1128 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1129 "Can't sign extend type to a smaller type"); 1130 // If this is a constant, it can be trivially promoted. 1131 if (isa<Constant>(V)) 1132 return true; 1133 1134 Instruction *I = dyn_cast<Instruction>(V); 1135 if (!I) return false; 1136 1137 // If this is a truncate from the dest type, we can trivially eliminate it. 1138 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1139 return true; 1140 1141 // We can't extend or shrink something that has multiple uses: doing so would 1142 // require duplicating the instruction in general, which isn't profitable. 1143 if (!I->hasOneUse()) return false; 1144 1145 switch (I->getOpcode()) { 1146 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1147 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1148 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1149 return true; 1150 case Instruction::And: 1151 case Instruction::Or: 1152 case Instruction::Xor: 1153 case Instruction::Add: 1154 case Instruction::Sub: 1155 case Instruction::Mul: 1156 // These operators can all arbitrarily be extended if their inputs can. 1157 return canEvaluateSExtd(I->getOperand(0), Ty) && 1158 canEvaluateSExtd(I->getOperand(1), Ty); 1159 1160 //case Instruction::Shl: TODO 1161 //case Instruction::LShr: TODO 1162 1163 case Instruction::Select: 1164 return canEvaluateSExtd(I->getOperand(1), Ty) && 1165 canEvaluateSExtd(I->getOperand(2), Ty); 1166 1167 case Instruction::PHI: { 1168 // We can change a phi if we can change all operands. Note that we never 1169 // get into trouble with cyclic PHIs here because we only consider 1170 // instructions with a single use. 1171 PHINode *PN = cast<PHINode>(I); 1172 for (Value *IncValue : PN->incoming_values()) 1173 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1174 return true; 1175 } 1176 default: 1177 // TODO: Can handle more cases here. 1178 break; 1179 } 1180 1181 return false; 1182 } 1183 1184 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1185 // If this sign extend is only used by a truncate, let the truncate be 1186 // eliminated before we try to optimize this sext. 1187 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1188 return nullptr; 1189 1190 if (Instruction *I = commonCastTransforms(CI)) 1191 return I; 1192 1193 Value *Src = CI.getOperand(0); 1194 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1195 1196 // If we know that the value being extended is positive, we can use a zext 1197 // instead. 1198 KnownBits Known = computeKnownBits(Src, 0, &CI); 1199 if (Known.isNonNegative()) { 1200 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1201 return replaceInstUsesWith(CI, ZExt); 1202 } 1203 1204 // Attempt to extend the entire input expression tree to the destination 1205 // type. Only do this if the dest type is a simple type, don't convert the 1206 // expression tree to something weird like i93 unless the source is also 1207 // strange. 1208 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 1209 canEvaluateSExtd(Src, DestTy)) { 1210 // Okay, we can transform this! Insert the new expression now. 1211 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1212 " to avoid sign extend: " << CI << '\n'); 1213 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1214 assert(Res->getType() == DestTy); 1215 1216 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1217 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1218 1219 // If the high bits are already filled with sign bit, just replace this 1220 // cast with the result. 1221 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1222 return replaceInstUsesWith(CI, Res); 1223 1224 // We need to emit a shl + ashr to do the sign extend. 1225 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1226 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1227 ShAmt); 1228 } 1229 1230 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1231 // into shifts. 1232 Value *X; 1233 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1234 // sext(trunc(X)) --> ashr(shl(X, C), C) 1235 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1236 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1237 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1238 return BinaryOperator::CreateAShr(Builder->CreateShl(X, ShAmt), ShAmt); 1239 } 1240 1241 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1242 return transformSExtICmp(ICI, CI); 1243 1244 // If the input is a shl/ashr pair of a same constant, then this is a sign 1245 // extension from a smaller value. If we could trust arbitrary bitwidth 1246 // integers, we could turn this into a truncate to the smaller bit and then 1247 // use a sext for the whole extension. Since we don't, look deeper and check 1248 // for a truncate. If the source and dest are the same type, eliminate the 1249 // trunc and extend and just do shifts. For example, turn: 1250 // %a = trunc i32 %i to i8 1251 // %b = shl i8 %a, 6 1252 // %c = ashr i8 %b, 6 1253 // %d = sext i8 %c to i32 1254 // into: 1255 // %a = shl i32 %i, 30 1256 // %d = ashr i32 %a, 30 1257 Value *A = nullptr; 1258 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1259 ConstantInt *BA = nullptr, *CA = nullptr; 1260 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1261 m_ConstantInt(CA))) && 1262 BA == CA && A->getType() == CI.getType()) { 1263 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1264 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1265 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1266 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1267 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1268 return BinaryOperator::CreateAShr(A, ShAmtV); 1269 } 1270 1271 return nullptr; 1272 } 1273 1274 1275 /// Return a Constant* for the specified floating-point constant if it fits 1276 /// in the specified FP type without changing its value. 1277 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1278 bool losesInfo; 1279 APFloat F = CFP->getValueAPF(); 1280 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1281 if (!losesInfo) 1282 return ConstantFP::get(CFP->getContext(), F); 1283 return nullptr; 1284 } 1285 1286 /// Look through floating-point extensions until we get the source value. 1287 static Value *lookThroughFPExtensions(Value *V) { 1288 while (auto *FPExt = dyn_cast<FPExtInst>(V)) 1289 V = FPExt->getOperand(0); 1290 1291 // If this value is a constant, return the constant in the smallest FP type 1292 // that can accurately represent it. This allows us to turn 1293 // (float)((double)X+2.0) into x+2.0f. 1294 if (auto *CFP = dyn_cast<ConstantFP>(V)) { 1295 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1296 return V; // No constant folding of this. 1297 // See if the value can be truncated to half and then reextended. 1298 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf())) 1299 return V; 1300 // See if the value can be truncated to float and then reextended. 1301 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle())) 1302 return V; 1303 if (CFP->getType()->isDoubleTy()) 1304 return V; // Won't shrink. 1305 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble())) 1306 return V; 1307 // Don't try to shrink to various long double types. 1308 } 1309 1310 return V; 1311 } 1312 1313 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1314 if (Instruction *I = commonCastTransforms(CI)) 1315 return I; 1316 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1317 // simplify this expression to avoid one or more of the trunc/extend 1318 // operations if we can do so without changing the numerical results. 1319 // 1320 // The exact manner in which the widths of the operands interact to limit 1321 // what we can and cannot do safely varies from operation to operation, and 1322 // is explained below in the various case statements. 1323 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1324 if (OpI && OpI->hasOneUse()) { 1325 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1326 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1327 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1328 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1329 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1330 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1331 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1332 switch (OpI->getOpcode()) { 1333 default: break; 1334 case Instruction::FAdd: 1335 case Instruction::FSub: 1336 // For addition and subtraction, the infinitely precise result can 1337 // essentially be arbitrarily wide; proving that double rounding 1338 // will not occur because the result of OpI is exact (as we will for 1339 // FMul, for example) is hopeless. However, we *can* nonetheless 1340 // frequently know that double rounding cannot occur (or that it is 1341 // innocuous) by taking advantage of the specific structure of 1342 // infinitely-precise results that admit double rounding. 1343 // 1344 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1345 // to represent both sources, we can guarantee that the double 1346 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1347 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1348 // for proof of this fact). 1349 // 1350 // Note: Figueroa does not consider the case where DstFormat != 1351 // SrcFormat. It's possible (likely even!) that this analysis 1352 // could be tightened for those cases, but they are rare (the main 1353 // case of interest here is (float)((double)float + float)). 1354 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1355 if (LHSOrig->getType() != CI.getType()) 1356 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1357 if (RHSOrig->getType() != CI.getType()) 1358 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1359 Instruction *RI = 1360 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1361 RI->copyFastMathFlags(OpI); 1362 return RI; 1363 } 1364 break; 1365 case Instruction::FMul: 1366 // For multiplication, the infinitely precise result has at most 1367 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1368 // that such a value can be exactly represented, then no double 1369 // rounding can possibly occur; we can safely perform the operation 1370 // in the destination format if it can represent both sources. 1371 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1372 if (LHSOrig->getType() != CI.getType()) 1373 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1374 if (RHSOrig->getType() != CI.getType()) 1375 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1376 Instruction *RI = 1377 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1378 RI->copyFastMathFlags(OpI); 1379 return RI; 1380 } 1381 break; 1382 case Instruction::FDiv: 1383 // For division, we use again use the bound from Figueroa's 1384 // dissertation. I am entirely certain that this bound can be 1385 // tightened in the unbalanced operand case by an analysis based on 1386 // the diophantine rational approximation bound, but the well-known 1387 // condition used here is a good conservative first pass. 1388 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1389 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1390 if (LHSOrig->getType() != CI.getType()) 1391 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1392 if (RHSOrig->getType() != CI.getType()) 1393 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1394 Instruction *RI = 1395 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1396 RI->copyFastMathFlags(OpI); 1397 return RI; 1398 } 1399 break; 1400 case Instruction::FRem: 1401 // Remainder is straightforward. Remainder is always exact, so the 1402 // type of OpI doesn't enter into things at all. We simply evaluate 1403 // in whichever source type is larger, then convert to the 1404 // destination type. 1405 if (SrcWidth == OpWidth) 1406 break; 1407 if (LHSWidth < SrcWidth) 1408 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1409 else if (RHSWidth <= SrcWidth) 1410 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1411 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1412 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1413 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1414 RI->copyFastMathFlags(OpI); 1415 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1416 } 1417 } 1418 1419 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1420 if (BinaryOperator::isFNeg(OpI)) { 1421 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1422 CI.getType()); 1423 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1424 RI->copyFastMathFlags(OpI); 1425 return RI; 1426 } 1427 } 1428 1429 // (fptrunc (select cond, R1, Cst)) --> 1430 // (select cond, (fptrunc R1), (fptrunc Cst)) 1431 // 1432 // - but only if this isn't part of a min/max operation, else we'll 1433 // ruin min/max canonical form which is to have the select and 1434 // compare's operands be of the same type with no casts to look through. 1435 Value *LHS, *RHS; 1436 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1437 if (SI && 1438 (isa<ConstantFP>(SI->getOperand(1)) || 1439 isa<ConstantFP>(SI->getOperand(2))) && 1440 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1441 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1442 CI.getType()); 1443 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1444 CI.getType()); 1445 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1446 } 1447 1448 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1449 if (II) { 1450 switch (II->getIntrinsicID()) { 1451 default: break; 1452 case Intrinsic::fabs: 1453 case Intrinsic::ceil: 1454 case Intrinsic::floor: 1455 case Intrinsic::rint: 1456 case Intrinsic::round: 1457 case Intrinsic::nearbyint: 1458 case Intrinsic::trunc: { 1459 Value *Src = II->getArgOperand(0); 1460 if (!Src->hasOneUse()) 1461 break; 1462 1463 // Except for fabs, this transformation requires the input of the unary FP 1464 // operation to be itself an fpext from the type to which we're 1465 // truncating. 1466 if (II->getIntrinsicID() != Intrinsic::fabs) { 1467 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1468 if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType()) 1469 break; 1470 } 1471 1472 // Do unary FP operation on smaller type. 1473 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1474 Value *InnerTrunc = Builder->CreateFPTrunc(Src, CI.getType()); 1475 Type *IntrinsicType[] = { CI.getType() }; 1476 Function *Overload = Intrinsic::getDeclaration( 1477 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1478 1479 SmallVector<OperandBundleDef, 1> OpBundles; 1480 II->getOperandBundlesAsDefs(OpBundles); 1481 1482 Value *Args[] = { InnerTrunc }; 1483 CallInst *NewCI = CallInst::Create(Overload, Args, 1484 OpBundles, II->getName()); 1485 NewCI->copyFastMathFlags(II); 1486 return NewCI; 1487 } 1488 } 1489 } 1490 1491 if (Instruction *I = shrinkInsertElt(CI, *Builder)) 1492 return I; 1493 1494 return nullptr; 1495 } 1496 1497 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1498 return commonCastTransforms(CI); 1499 } 1500 1501 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1502 // This is safe if the intermediate type has enough bits in its mantissa to 1503 // accurately represent all values of X. For example, this won't work with 1504 // i64 -> float -> i64. 1505 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1506 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1507 return nullptr; 1508 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1509 1510 Value *SrcI = OpI->getOperand(0); 1511 Type *FITy = FI.getType(); 1512 Type *OpITy = OpI->getType(); 1513 Type *SrcTy = SrcI->getType(); 1514 bool IsInputSigned = isa<SIToFPInst>(OpI); 1515 bool IsOutputSigned = isa<FPToSIInst>(FI); 1516 1517 // We can safely assume the conversion won't overflow the output range, 1518 // because (for example) (uint8_t)18293.f is undefined behavior. 1519 1520 // Since we can assume the conversion won't overflow, our decision as to 1521 // whether the input will fit in the float should depend on the minimum 1522 // of the input range and output range. 1523 1524 // This means this is also safe for a signed input and unsigned output, since 1525 // a negative input would lead to undefined behavior. 1526 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1527 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1528 int ActualSize = std::min(InputSize, OutputSize); 1529 1530 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1531 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1532 if (IsInputSigned && IsOutputSigned) 1533 return new SExtInst(SrcI, FITy); 1534 return new ZExtInst(SrcI, FITy); 1535 } 1536 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1537 return new TruncInst(SrcI, FITy); 1538 if (SrcTy == FITy) 1539 return replaceInstUsesWith(FI, SrcI); 1540 return new BitCastInst(SrcI, FITy); 1541 } 1542 return nullptr; 1543 } 1544 1545 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1546 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1547 if (!OpI) 1548 return commonCastTransforms(FI); 1549 1550 if (Instruction *I = FoldItoFPtoI(FI)) 1551 return I; 1552 1553 return commonCastTransforms(FI); 1554 } 1555 1556 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1557 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1558 if (!OpI) 1559 return commonCastTransforms(FI); 1560 1561 if (Instruction *I = FoldItoFPtoI(FI)) 1562 return I; 1563 1564 return commonCastTransforms(FI); 1565 } 1566 1567 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1568 return commonCastTransforms(CI); 1569 } 1570 1571 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1572 return commonCastTransforms(CI); 1573 } 1574 1575 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1576 // If the source integer type is not the intptr_t type for this target, do a 1577 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1578 // cast to be exposed to other transforms. 1579 unsigned AS = CI.getAddressSpace(); 1580 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1581 DL.getPointerSizeInBits(AS)) { 1582 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1583 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1584 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1585 1586 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1587 return new IntToPtrInst(P, CI.getType()); 1588 } 1589 1590 if (Instruction *I = commonCastTransforms(CI)) 1591 return I; 1592 1593 return nullptr; 1594 } 1595 1596 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1597 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1598 Value *Src = CI.getOperand(0); 1599 1600 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1601 // If casting the result of a getelementptr instruction with no offset, turn 1602 // this into a cast of the original pointer! 1603 if (GEP->hasAllZeroIndices() && 1604 // If CI is an addrspacecast and GEP changes the poiner type, merging 1605 // GEP into CI would undo canonicalizing addrspacecast with different 1606 // pointer types, causing infinite loops. 1607 (!isa<AddrSpaceCastInst>(CI) || 1608 GEP->getType() == GEP->getPointerOperandType())) { 1609 // Changing the cast operand is usually not a good idea but it is safe 1610 // here because the pointer operand is being replaced with another 1611 // pointer operand so the opcode doesn't need to change. 1612 Worklist.Add(GEP); 1613 CI.setOperand(0, GEP->getOperand(0)); 1614 return &CI; 1615 } 1616 } 1617 1618 return commonCastTransforms(CI); 1619 } 1620 1621 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1622 // If the destination integer type is not the intptr_t type for this target, 1623 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1624 // to be exposed to other transforms. 1625 1626 Type *Ty = CI.getType(); 1627 unsigned AS = CI.getPointerAddressSpace(); 1628 1629 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1630 return commonPointerCastTransforms(CI); 1631 1632 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1633 if (Ty->isVectorTy()) // Handle vectors of pointers. 1634 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1635 1636 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1637 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1638 } 1639 1640 /// This input value (which is known to have vector type) is being zero extended 1641 /// or truncated to the specified vector type. 1642 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1643 /// 1644 /// The source and destination vector types may have different element types. 1645 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1646 InstCombiner &IC) { 1647 // We can only do this optimization if the output is a multiple of the input 1648 // element size, or the input is a multiple of the output element size. 1649 // Convert the input type to have the same element type as the output. 1650 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1651 1652 if (SrcTy->getElementType() != DestTy->getElementType()) { 1653 // The input types don't need to be identical, but for now they must be the 1654 // same size. There is no specific reason we couldn't handle things like 1655 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1656 // there yet. 1657 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1658 DestTy->getElementType()->getPrimitiveSizeInBits()) 1659 return nullptr; 1660 1661 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1662 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1663 } 1664 1665 // Now that the element types match, get the shuffle mask and RHS of the 1666 // shuffle to use, which depends on whether we're increasing or decreasing the 1667 // size of the input. 1668 SmallVector<uint32_t, 16> ShuffleMask; 1669 Value *V2; 1670 1671 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1672 // If we're shrinking the number of elements, just shuffle in the low 1673 // elements from the input and use undef as the second shuffle input. 1674 V2 = UndefValue::get(SrcTy); 1675 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1676 ShuffleMask.push_back(i); 1677 1678 } else { 1679 // If we're increasing the number of elements, shuffle in all of the 1680 // elements from InVal and fill the rest of the result elements with zeros 1681 // from a constant zero. 1682 V2 = Constant::getNullValue(SrcTy); 1683 unsigned SrcElts = SrcTy->getNumElements(); 1684 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1685 ShuffleMask.push_back(i); 1686 1687 // The excess elements reference the first element of the zero input. 1688 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1689 ShuffleMask.push_back(SrcElts); 1690 } 1691 1692 return new ShuffleVectorInst(InVal, V2, 1693 ConstantDataVector::get(V2->getContext(), 1694 ShuffleMask)); 1695 } 1696 1697 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1698 return Value % Ty->getPrimitiveSizeInBits() == 0; 1699 } 1700 1701 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1702 return Value / Ty->getPrimitiveSizeInBits(); 1703 } 1704 1705 /// V is a value which is inserted into a vector of VecEltTy. 1706 /// Look through the value to see if we can decompose it into 1707 /// insertions into the vector. See the example in the comment for 1708 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1709 /// The type of V is always a non-zero multiple of VecEltTy's size. 1710 /// Shift is the number of bits between the lsb of V and the lsb of 1711 /// the vector. 1712 /// 1713 /// This returns false if the pattern can't be matched or true if it can, 1714 /// filling in Elements with the elements found here. 1715 static bool collectInsertionElements(Value *V, unsigned Shift, 1716 SmallVectorImpl<Value *> &Elements, 1717 Type *VecEltTy, bool isBigEndian) { 1718 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1719 "Shift should be a multiple of the element type size"); 1720 1721 // Undef values never contribute useful bits to the result. 1722 if (isa<UndefValue>(V)) return true; 1723 1724 // If we got down to a value of the right type, we win, try inserting into the 1725 // right element. 1726 if (V->getType() == VecEltTy) { 1727 // Inserting null doesn't actually insert any elements. 1728 if (Constant *C = dyn_cast<Constant>(V)) 1729 if (C->isNullValue()) 1730 return true; 1731 1732 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1733 if (isBigEndian) 1734 ElementIndex = Elements.size() - ElementIndex - 1; 1735 1736 // Fail if multiple elements are inserted into this slot. 1737 if (Elements[ElementIndex]) 1738 return false; 1739 1740 Elements[ElementIndex] = V; 1741 return true; 1742 } 1743 1744 if (Constant *C = dyn_cast<Constant>(V)) { 1745 // Figure out the # elements this provides, and bitcast it or slice it up 1746 // as required. 1747 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1748 VecEltTy); 1749 // If the constant is the size of a vector element, we just need to bitcast 1750 // it to the right type so it gets properly inserted. 1751 if (NumElts == 1) 1752 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1753 Shift, Elements, VecEltTy, isBigEndian); 1754 1755 // Okay, this is a constant that covers multiple elements. Slice it up into 1756 // pieces and insert each element-sized piece into the vector. 1757 if (!isa<IntegerType>(C->getType())) 1758 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1759 C->getType()->getPrimitiveSizeInBits())); 1760 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1761 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1762 1763 for (unsigned i = 0; i != NumElts; ++i) { 1764 unsigned ShiftI = Shift+i*ElementSize; 1765 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1766 ShiftI)); 1767 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1768 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1769 isBigEndian)) 1770 return false; 1771 } 1772 return true; 1773 } 1774 1775 if (!V->hasOneUse()) return false; 1776 1777 Instruction *I = dyn_cast<Instruction>(V); 1778 if (!I) return false; 1779 switch (I->getOpcode()) { 1780 default: return false; // Unhandled case. 1781 case Instruction::BitCast: 1782 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1783 isBigEndian); 1784 case Instruction::ZExt: 1785 if (!isMultipleOfTypeSize( 1786 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1787 VecEltTy)) 1788 return false; 1789 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1790 isBigEndian); 1791 case Instruction::Or: 1792 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1793 isBigEndian) && 1794 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1795 isBigEndian); 1796 case Instruction::Shl: { 1797 // Must be shifting by a constant that is a multiple of the element size. 1798 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1799 if (!CI) return false; 1800 Shift += CI->getZExtValue(); 1801 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1802 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1803 isBigEndian); 1804 } 1805 1806 } 1807 } 1808 1809 1810 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1811 /// assemble the elements of the vector manually. 1812 /// Try to rip the code out and replace it with insertelements. This is to 1813 /// optimize code like this: 1814 /// 1815 /// %tmp37 = bitcast float %inc to i32 1816 /// %tmp38 = zext i32 %tmp37 to i64 1817 /// %tmp31 = bitcast float %inc5 to i32 1818 /// %tmp32 = zext i32 %tmp31 to i64 1819 /// %tmp33 = shl i64 %tmp32, 32 1820 /// %ins35 = or i64 %tmp33, %tmp38 1821 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1822 /// 1823 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1824 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1825 InstCombiner &IC) { 1826 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1827 Value *IntInput = CI.getOperand(0); 1828 1829 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1830 if (!collectInsertionElements(IntInput, 0, Elements, 1831 DestVecTy->getElementType(), 1832 IC.getDataLayout().isBigEndian())) 1833 return nullptr; 1834 1835 // If we succeeded, we know that all of the element are specified by Elements 1836 // or are zero if Elements has a null entry. Recast this as a set of 1837 // insertions. 1838 Value *Result = Constant::getNullValue(CI.getType()); 1839 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1840 if (!Elements[i]) continue; // Unset element. 1841 1842 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1843 IC.Builder->getInt32(i)); 1844 } 1845 1846 return Result; 1847 } 1848 1849 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1850 /// vector followed by extract element. The backend tends to handle bitcasts of 1851 /// vectors better than bitcasts of scalars because vector registers are 1852 /// usually not type-specific like scalar integer or scalar floating-point. 1853 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1854 InstCombiner &IC, 1855 const DataLayout &DL) { 1856 // TODO: Create and use a pattern matcher for ExtractElementInst. 1857 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1858 if (!ExtElt || !ExtElt->hasOneUse()) 1859 return nullptr; 1860 1861 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1862 // type to extract from. 1863 Type *DestType = BitCast.getType(); 1864 if (!VectorType::isValidElementType(DestType)) 1865 return nullptr; 1866 1867 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1868 auto *NewVecType = VectorType::get(DestType, NumElts); 1869 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1870 NewVecType, "bc"); 1871 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1872 } 1873 1874 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1875 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1876 InstCombiner::BuilderTy &Builder) { 1877 Type *DestTy = BitCast.getType(); 1878 BinaryOperator *BO; 1879 if (!DestTy->getScalarType()->isIntegerTy() || 1880 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 1881 !BO->isBitwiseLogicOp()) 1882 return nullptr; 1883 1884 // FIXME: This transform is restricted to vector types to avoid backend 1885 // problems caused by creating potentially illegal operations. If a fix-up is 1886 // added to handle that situation, we can remove this check. 1887 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 1888 return nullptr; 1889 1890 Value *X; 1891 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 1892 X->getType() == DestTy && !isa<Constant>(X)) { 1893 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 1894 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 1895 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 1896 } 1897 1898 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 1899 X->getType() == DestTy && !isa<Constant>(X)) { 1900 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 1901 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1902 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 1903 } 1904 1905 return nullptr; 1906 } 1907 1908 /// Change the type of a select if we can eliminate a bitcast. 1909 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 1910 InstCombiner::BuilderTy &Builder) { 1911 Value *Cond, *TVal, *FVal; 1912 if (!match(BitCast.getOperand(0), 1913 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 1914 return nullptr; 1915 1916 // A vector select must maintain the same number of elements in its operands. 1917 Type *CondTy = Cond->getType(); 1918 Type *DestTy = BitCast.getType(); 1919 if (CondTy->isVectorTy()) { 1920 if (!DestTy->isVectorTy()) 1921 return nullptr; 1922 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 1923 return nullptr; 1924 } 1925 1926 // FIXME: This transform is restricted from changing the select between 1927 // scalars and vectors to avoid backend problems caused by creating 1928 // potentially illegal operations. If a fix-up is added to handle that 1929 // situation, we can remove this check. 1930 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 1931 return nullptr; 1932 1933 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 1934 Value *X; 1935 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 1936 !isa<Constant>(X)) { 1937 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 1938 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 1939 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 1940 } 1941 1942 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 1943 !isa<Constant>(X)) { 1944 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 1945 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 1946 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 1947 } 1948 1949 return nullptr; 1950 } 1951 1952 /// Check if all users of CI are StoreInsts. 1953 static bool hasStoreUsersOnly(CastInst &CI) { 1954 for (User *U : CI.users()) { 1955 if (!isa<StoreInst>(U)) 1956 return false; 1957 } 1958 return true; 1959 } 1960 1961 /// This function handles following case 1962 /// 1963 /// A -> B cast 1964 /// PHI 1965 /// B -> A cast 1966 /// 1967 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 1968 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 1969 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 1970 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 1971 if (hasStoreUsersOnly(CI)) 1972 return nullptr; 1973 1974 Value *Src = CI.getOperand(0); 1975 Type *SrcTy = Src->getType(); // Type B 1976 Type *DestTy = CI.getType(); // Type A 1977 1978 SmallVector<PHINode *, 4> PhiWorklist; 1979 SmallSetVector<PHINode *, 4> OldPhiNodes; 1980 1981 // Find all of the A->B casts and PHI nodes. 1982 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 1983 // OldPhiNodes is used to track all known PHI nodes, before adding a new 1984 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 1985 PhiWorklist.push_back(PN); 1986 OldPhiNodes.insert(PN); 1987 while (!PhiWorklist.empty()) { 1988 auto *OldPN = PhiWorklist.pop_back_val(); 1989 for (Value *IncValue : OldPN->incoming_values()) { 1990 if (isa<Constant>(IncValue)) 1991 continue; 1992 1993 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 1994 // If there is a sequence of one or more load instructions, each loaded 1995 // value is used as address of later load instruction, bitcast is 1996 // necessary to change the value type, don't optimize it. For 1997 // simplicity we give up if the load address comes from another load. 1998 Value *Addr = LI->getOperand(0); 1999 if (Addr == &CI || isa<LoadInst>(Addr)) 2000 return nullptr; 2001 if (LI->hasOneUse() && LI->isSimple()) 2002 continue; 2003 // If a LoadInst has more than one use, changing the type of loaded 2004 // value may create another bitcast. 2005 return nullptr; 2006 } 2007 2008 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2009 if (OldPhiNodes.insert(PNode)) 2010 PhiWorklist.push_back(PNode); 2011 continue; 2012 } 2013 2014 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2015 // We can't handle other instructions. 2016 if (!BCI) 2017 return nullptr; 2018 2019 // Verify it's a A->B cast. 2020 Type *TyA = BCI->getOperand(0)->getType(); 2021 Type *TyB = BCI->getType(); 2022 if (TyA != DestTy || TyB != SrcTy) 2023 return nullptr; 2024 } 2025 } 2026 2027 // For each old PHI node, create a corresponding new PHI node with a type A. 2028 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2029 for (auto *OldPN : OldPhiNodes) { 2030 Builder->SetInsertPoint(OldPN); 2031 PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands()); 2032 NewPNodes[OldPN] = NewPN; 2033 } 2034 2035 // Fill in the operands of new PHI nodes. 2036 for (auto *OldPN : OldPhiNodes) { 2037 PHINode *NewPN = NewPNodes[OldPN]; 2038 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2039 Value *V = OldPN->getOperand(j); 2040 Value *NewV = nullptr; 2041 if (auto *C = dyn_cast<Constant>(V)) { 2042 NewV = ConstantExpr::getBitCast(C, DestTy); 2043 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2044 Builder->SetInsertPoint(LI->getNextNode()); 2045 NewV = Builder->CreateBitCast(LI, DestTy); 2046 Worklist.Add(LI); 2047 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2048 NewV = BCI->getOperand(0); 2049 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2050 NewV = NewPNodes[PrevPN]; 2051 } 2052 assert(NewV); 2053 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2054 } 2055 } 2056 2057 // If there is a store with type B, change it to type A. 2058 for (User *U : PN->users()) { 2059 auto *SI = dyn_cast<StoreInst>(U); 2060 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2061 Builder->SetInsertPoint(SI); 2062 auto *NewBC = 2063 cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy)); 2064 SI->setOperand(0, NewBC); 2065 Worklist.Add(SI); 2066 assert(hasStoreUsersOnly(*NewBC)); 2067 } 2068 } 2069 2070 return replaceInstUsesWith(CI, NewPNodes[PN]); 2071 } 2072 2073 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2074 // If the operands are integer typed then apply the integer transforms, 2075 // otherwise just apply the common ones. 2076 Value *Src = CI.getOperand(0); 2077 Type *SrcTy = Src->getType(); 2078 Type *DestTy = CI.getType(); 2079 2080 // Get rid of casts from one type to the same type. These are useless and can 2081 // be replaced by the operand. 2082 if (DestTy == Src->getType()) 2083 return replaceInstUsesWith(CI, Src); 2084 2085 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2086 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2087 Type *DstElTy = DstPTy->getElementType(); 2088 Type *SrcElTy = SrcPTy->getElementType(); 2089 2090 // If we are casting a alloca to a pointer to a type of the same 2091 // size, rewrite the allocation instruction to allocate the "right" type. 2092 // There is no need to modify malloc calls because it is their bitcast that 2093 // needs to be cleaned up. 2094 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2095 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2096 return V; 2097 2098 // When the type pointed to is not sized the cast cannot be 2099 // turned into a gep. 2100 Type *PointeeType = 2101 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2102 if (!PointeeType->isSized()) 2103 return nullptr; 2104 2105 // If the source and destination are pointers, and this cast is equivalent 2106 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2107 // This can enhance SROA and other transforms that want type-safe pointers. 2108 unsigned NumZeros = 0; 2109 while (SrcElTy != DstElTy && 2110 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2111 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2112 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2113 ++NumZeros; 2114 } 2115 2116 // If we found a path from the src to dest, create the getelementptr now. 2117 if (SrcElTy == DstElTy) { 2118 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 2119 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2120 } 2121 } 2122 2123 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2124 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2125 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 2126 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2127 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2128 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2129 } 2130 2131 if (isa<IntegerType>(SrcTy)) { 2132 // If this is a cast from an integer to vector, check to see if the input 2133 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2134 // the casts with a shuffle and (potentially) a bitcast. 2135 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2136 CastInst *SrcCast = cast<CastInst>(Src); 2137 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2138 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2139 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2140 cast<VectorType>(DestTy), *this)) 2141 return I; 2142 } 2143 2144 // If the input is an 'or' instruction, we may be doing shifts and ors to 2145 // assemble the elements of the vector manually. Try to rip the code out 2146 // and replace it with insertelements. 2147 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2148 return replaceInstUsesWith(CI, V); 2149 } 2150 } 2151 2152 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2153 if (SrcVTy->getNumElements() == 1) { 2154 // If our destination is not a vector, then make this a straight 2155 // scalar-scalar cast. 2156 if (!DestTy->isVectorTy()) { 2157 Value *Elem = 2158 Builder->CreateExtractElement(Src, 2159 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2160 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2161 } 2162 2163 // Otherwise, see if our source is an insert. If so, then use the scalar 2164 // component directly. 2165 if (InsertElementInst *IEI = 2166 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2167 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2168 DestTy); 2169 } 2170 } 2171 2172 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2173 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2174 // a bitcast to a vector with the same # elts. 2175 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2176 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2177 SVI->getType()->getNumElements() == 2178 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2179 BitCastInst *Tmp; 2180 // If either of the operands is a cast from CI.getType(), then 2181 // evaluating the shuffle in the casted destination's type will allow 2182 // us to eliminate at least one cast. 2183 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2184 Tmp->getOperand(0)->getType() == DestTy) || 2185 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2186 Tmp->getOperand(0)->getType() == DestTy)) { 2187 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 2188 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 2189 // Return a new shuffle vector. Use the same element ID's, as we 2190 // know the vector types match #elts. 2191 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2192 } 2193 } 2194 } 2195 2196 // Handle the A->B->A cast, and there is an intervening PHI node. 2197 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2198 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2199 return I; 2200 2201 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 2202 return I; 2203 2204 if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder)) 2205 return I; 2206 2207 if (Instruction *I = foldBitCastSelect(CI, *Builder)) 2208 return I; 2209 2210 if (SrcTy->isPointerTy()) 2211 return commonPointerCastTransforms(CI); 2212 return commonCastTransforms(CI); 2213 } 2214 2215 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2216 // If the destination pointer element type is not the same as the source's 2217 // first do a bitcast to the destination type, and then the addrspacecast. 2218 // This allows the cast to be exposed to other transforms. 2219 Value *Src = CI.getOperand(0); 2220 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2221 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2222 2223 Type *DestElemTy = DestTy->getElementType(); 2224 if (SrcTy->getElementType() != DestElemTy) { 2225 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2226 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2227 // Handle vectors of pointers. 2228 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2229 } 2230 2231 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 2232 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2233 } 2234 2235 return commonPointerCastTransforms(CI); 2236 } 2237