1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Analyze 'Val', seeing if it is a simple linear expression. 26 /// If so, decompose it, returning some value X, such that Val is 27 /// X*Scale+Offset. 28 /// 29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 30 uint64_t &Offset) { 31 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 32 Offset = CI->getZExtValue(); 33 Scale = 0; 34 return ConstantInt::get(Val->getType(), 0); 35 } 36 37 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 38 // Cannot look past anything that might overflow. 39 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 40 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 41 Scale = 1; 42 Offset = 0; 43 return Val; 44 } 45 46 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 47 if (I->getOpcode() == Instruction::Shl) { 48 // This is a value scaled by '1 << the shift amt'. 49 Scale = UINT64_C(1) << RHS->getZExtValue(); 50 Offset = 0; 51 return I->getOperand(0); 52 } 53 54 if (I->getOpcode() == Instruction::Mul) { 55 // This value is scaled by 'RHS'. 56 Scale = RHS->getZExtValue(); 57 Offset = 0; 58 return I->getOperand(0); 59 } 60 61 if (I->getOpcode() == Instruction::Add) { 62 // We have X+C. Check to see if we really have (X*C2)+C1, 63 // where C1 is divisible by C2. 64 unsigned SubScale; 65 Value *SubVal = 66 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 67 Offset += RHS->getZExtValue(); 68 Scale = SubScale; 69 return SubVal; 70 } 71 } 72 } 73 74 // Otherwise, we can't look past this. 75 Scale = 1; 76 Offset = 0; 77 return Val; 78 } 79 80 /// If we find a cast of an allocation instruction, try to eliminate the cast by 81 /// moving the type information into the alloc. 82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 83 AllocaInst &AI) { 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(&AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 93 94 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return nullptr; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 102 103 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 106 107 // If the allocation has multiple uses, only promote it if we're not 108 // shrinking the amount of memory being allocated. 109 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 110 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 112 113 // See if we can satisfy the modulus by pulling a scale out of the array 114 // size argument. 115 unsigned ArraySizeScale; 116 uint64_t ArrayOffset; 117 Value *NumElements = // See if the array size is a decomposable linear expr. 118 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 119 120 // If we can now satisfy the modulus, by using a non-1 scale, we really can 121 // do the xform. 122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 124 125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 126 Value *Amt = nullptr; 127 if (Scale == 1) { 128 Amt = NumElements; 129 } else { 130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 131 // Insert before the alloca, not before the cast. 132 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 133 } 134 135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 137 Offset, true); 138 Amt = AllocaBuilder.CreateAdd(Amt, Off); 139 } 140 141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 142 New->setAlignment(AI.getAlignment()); 143 New->takeName(&AI); 144 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 145 146 // If the allocation has multiple real uses, insert a cast and change all 147 // things that used it to use the new cast. This will also hack on CI, but it 148 // will die soon. 149 if (!AI.hasOneUse()) { 150 // New is the allocation instruction, pointer typed. AI is the original 151 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 152 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 153 replaceInstUsesWith(AI, NewCast); 154 } 155 return replaceInstUsesWith(CI, New); 156 } 157 158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 159 /// true for, actually insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with DL info. 165 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 166 C = FoldedC; 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = nullptr; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V = 216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 217 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 218 } 219 Res = NPN; 220 break; 221 } 222 default: 223 // TODO: Can handle more cases here. 224 llvm_unreachable("Unreachable!"); 225 } 226 227 Res->takeName(I); 228 return InsertNewInstWith(Res, *I); 229 } 230 231 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 232 const CastInst *CI2) { 233 Type *SrcTy = CI1->getSrcTy(); 234 Type *MidTy = CI1->getDestTy(); 235 Type *DstTy = CI2->getDestTy(); 236 237 Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode()); 238 Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode()); 239 Type *SrcIntPtrTy = 240 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 241 Type *MidIntPtrTy = 242 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 243 Type *DstIntPtrTy = 244 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 245 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 246 DstTy, SrcIntPtrTy, MidIntPtrTy, 247 DstIntPtrTy); 248 249 // We don't want to form an inttoptr or ptrtoint that converts to an integer 250 // type that differs from the pointer size. 251 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 252 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 253 Res = 0; 254 255 return Instruction::CastOps(Res); 256 } 257 258 /// @brief Implement the transforms common to all CastInst visitors. 259 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 260 Value *Src = CI.getOperand(0); 261 262 // Try to eliminate a cast of a cast. 263 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 264 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 265 // The first cast (CSrc) is eliminable so we need to fix up or replace 266 // the second cast (CI). CSrc will then have a good chance of being dead. 267 return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType()); 268 } 269 } 270 271 // If we are casting a select, then fold the cast into the select. 272 if (auto *SI = dyn_cast<SelectInst>(Src)) 273 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 274 return NV; 275 276 // If we are casting a PHI, then fold the cast into the PHI. 277 if (isa<PHINode>(Src)) { 278 // Don't do this if it would create a PHI node with an illegal type from a 279 // legal type. 280 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 281 ShouldChangeType(CI.getType(), Src->getType())) 282 if (Instruction *NV = FoldOpIntoPhi(CI)) 283 return NV; 284 } 285 286 return nullptr; 287 } 288 289 /// Return true if we can evaluate the specified expression tree as type Ty 290 /// instead of its larger type, and arrive with the same value. 291 /// This is used by code that tries to eliminate truncates. 292 /// 293 /// Ty will always be a type smaller than V. We should return true if trunc(V) 294 /// can be computed by computing V in the smaller type. If V is an instruction, 295 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 296 /// makes sense if x and y can be efficiently truncated. 297 /// 298 /// This function works on both vectors and scalars. 299 /// 300 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 301 Instruction *CxtI) { 302 // We can always evaluate constants in another type. 303 if (isa<Constant>(V)) 304 return true; 305 306 Instruction *I = dyn_cast<Instruction>(V); 307 if (!I) return false; 308 309 Type *OrigTy = V->getType(); 310 311 // If this is an extension from the dest type, we can eliminate it, even if it 312 // has multiple uses. 313 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 314 I->getOperand(0)->getType() == Ty) 315 return true; 316 317 // We can't extend or shrink something that has multiple uses: doing so would 318 // require duplicating the instruction in general, which isn't profitable. 319 if (!I->hasOneUse()) return false; 320 321 unsigned Opc = I->getOpcode(); 322 switch (Opc) { 323 case Instruction::Add: 324 case Instruction::Sub: 325 case Instruction::Mul: 326 case Instruction::And: 327 case Instruction::Or: 328 case Instruction::Xor: 329 // These operators can all arbitrarily be extended or truncated. 330 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 331 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 332 333 case Instruction::UDiv: 334 case Instruction::URem: { 335 // UDiv and URem can be truncated if all the truncated bits are zero. 336 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 337 uint32_t BitWidth = Ty->getScalarSizeInBits(); 338 if (BitWidth < OrigBitWidth) { 339 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 340 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 341 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 342 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 343 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 344 } 345 } 346 break; 347 } 348 case Instruction::Shl: 349 // If we are truncating the result of this SHL, and if it's a shift of a 350 // constant amount, we can always perform a SHL in a smaller type. 351 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 352 uint32_t BitWidth = Ty->getScalarSizeInBits(); 353 if (CI->getLimitedValue(BitWidth) < BitWidth) 354 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 355 } 356 break; 357 case Instruction::LShr: 358 // If this is a truncate of a logical shr, we can truncate it to a smaller 359 // lshr iff we know that the bits we would otherwise be shifting in are 360 // already zeros. 361 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 362 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 363 uint32_t BitWidth = Ty->getScalarSizeInBits(); 364 if (IC.MaskedValueIsZero(I->getOperand(0), 365 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 366 CI->getLimitedValue(BitWidth) < BitWidth) { 367 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 368 } 369 } 370 break; 371 case Instruction::Trunc: 372 // trunc(trunc(x)) -> trunc(x) 373 return true; 374 case Instruction::ZExt: 375 case Instruction::SExt: 376 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 377 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 378 return true; 379 case Instruction::Select: { 380 SelectInst *SI = cast<SelectInst>(I); 381 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 382 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 383 } 384 case Instruction::PHI: { 385 // We can change a phi if we can change all operands. Note that we never 386 // get into trouble with cyclic PHIs here because we only consider 387 // instructions with a single use. 388 PHINode *PN = cast<PHINode>(I); 389 for (Value *IncValue : PN->incoming_values()) 390 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 391 return false; 392 return true; 393 } 394 default: 395 // TODO: Can handle more cases here. 396 break; 397 } 398 399 return false; 400 } 401 402 /// Given a vector that is bitcast to an integer, optionally logically 403 /// right-shifted, and truncated, convert it to an extractelement. 404 /// Example (big endian): 405 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 406 /// ---> 407 /// extractelement <4 x i32> %X, 1 408 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC, 409 const DataLayout &DL) { 410 Value *TruncOp = Trunc.getOperand(0); 411 Type *DestType = Trunc.getType(); 412 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 413 return nullptr; 414 415 Value *VecInput = nullptr; 416 ConstantInt *ShiftVal = nullptr; 417 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 418 m_LShr(m_BitCast(m_Value(VecInput)), 419 m_ConstantInt(ShiftVal)))) || 420 !isa<VectorType>(VecInput->getType())) 421 return nullptr; 422 423 VectorType *VecType = cast<VectorType>(VecInput->getType()); 424 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 425 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 426 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 427 428 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 429 return nullptr; 430 431 // If the element type of the vector doesn't match the result type, 432 // bitcast it to a vector type that we can extract from. 433 unsigned NumVecElts = VecWidth / DestWidth; 434 if (VecType->getElementType() != DestType) { 435 VecType = VectorType::get(DestType, NumVecElts); 436 VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc"); 437 } 438 439 unsigned Elt = ShiftAmount / DestWidth; 440 if (DL.isBigEndian()) 441 Elt = NumVecElts - 1 - Elt; 442 443 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 444 } 445 446 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 447 if (Instruction *Result = commonCastTransforms(CI)) 448 return Result; 449 450 // Test if the trunc is the user of a select which is part of a 451 // minimum or maximum operation. If so, don't do any more simplification. 452 // Even simplifying demanded bits can break the canonical form of a 453 // min/max. 454 Value *LHS, *RHS; 455 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 456 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 457 return nullptr; 458 459 // See if we can simplify any instructions used by the input whose sole 460 // purpose is to compute bits we don't care about. 461 if (SimplifyDemandedInstructionBits(CI)) 462 return &CI; 463 464 Value *Src = CI.getOperand(0); 465 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 466 467 // Attempt to truncate the entire input expression tree to the destination 468 // type. Only do this if the dest type is a simple type, don't convert the 469 // expression tree to something weird like i93 unless the source is also 470 // strange. 471 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 472 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 473 474 // If this cast is a truncate, evaluting in a different type always 475 // eliminates the cast, so it is always a win. 476 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 477 " to avoid cast: " << CI << '\n'); 478 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 479 assert(Res->getType() == DestTy); 480 return replaceInstUsesWith(CI, Res); 481 } 482 483 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 484 if (DestTy->getScalarSizeInBits() == 1) { 485 Constant *One = ConstantInt::get(SrcTy, 1); 486 Src = Builder->CreateAnd(Src, One); 487 Value *Zero = Constant::getNullValue(Src->getType()); 488 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 489 } 490 491 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 492 Value *A = nullptr; ConstantInt *Cst = nullptr; 493 if (Src->hasOneUse() && 494 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 495 // We have three types to worry about here, the type of A, the source of 496 // the truncate (MidSize), and the destination of the truncate. We know that 497 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 498 // between ASize and ResultSize. 499 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 500 501 // If the shift amount is larger than the size of A, then the result is 502 // known to be zero because all the input bits got shifted out. 503 if (Cst->getZExtValue() >= ASize) 504 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 505 506 // Since we're doing an lshr and a zero extend, and know that the shift 507 // amount is smaller than ASize, it is always safe to do the shift in A's 508 // type, then zero extend or truncate to the result. 509 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 510 Shift->takeName(Src); 511 return CastInst::CreateIntegerCast(Shift, DestTy, false); 512 } 513 514 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 515 // conversion. 516 // It works because bits coming from sign extension have the same value as 517 // the sign bit of the original value; performing ashr instead of lshr 518 // generates bits of the same value as the sign bit. 519 if (Src->hasOneUse() && 520 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && 521 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { 522 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 523 // This optimization can be only performed when zero bits generated by 524 // the original lshr aren't pulled into the value after truncation, so we 525 // can only shift by values smaller than the size of destination type (in 526 // bits). 527 if (Cst->getValue().ult(ASize)) { 528 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); 529 Shift->takeName(Src); 530 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 531 } 532 } 533 534 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 535 ShouldChangeType(SrcTy, DestTy)) { 536 537 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the 538 // dest type is native. 539 if (match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 540 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 541 return BinaryOperator::CreateAnd(NewTrunc, 542 ConstantExpr::getTrunc(Cst, DestTy)); 543 } 544 545 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 546 // dest type is native and cst < dest size. 547 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 548 !match(A, m_Shr(m_Value(), m_Constant()))) { 549 // Skip shifts of shift by constants. It undoes a combine in 550 // FoldShiftByConstant and is the extend in reg pattern. 551 const unsigned DestSize = DestTy->getScalarSizeInBits(); 552 if (Cst->getValue().ult(DestSize)) { 553 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 554 555 return BinaryOperator::Create( 556 Instruction::Shl, NewTrunc, 557 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 558 } 559 } 560 } 561 562 if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL)) 563 return I; 564 565 return nullptr; 566 } 567 568 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 569 bool DoTransform) { 570 // If we are just checking for a icmp eq of a single bit and zext'ing it 571 // to an integer, then shift the bit to the appropriate place and then 572 // cast to integer to avoid the comparison. 573 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 574 const APInt &Op1CV = Op1C->getValue(); 575 576 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 577 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 578 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 579 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { 580 if (!DoTransform) return ICI; 581 582 Value *In = ICI->getOperand(0); 583 Value *Sh = ConstantInt::get(In->getType(), 584 In->getType()->getScalarSizeInBits() - 1); 585 In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit"); 586 if (In->getType() != CI.getType()) 587 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 588 589 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 590 Constant *One = ConstantInt::get(In->getType(), 1); 591 In = Builder->CreateXor(In, One, In->getName() + ".not"); 592 } 593 594 return replaceInstUsesWith(CI, In); 595 } 596 597 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 598 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 599 // zext (X == 1) to i32 --> X iff X has only the low bit set. 600 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 601 // zext (X != 0) to i32 --> X iff X has only the low bit set. 602 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 603 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 604 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 605 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 606 // This only works for EQ and NE 607 ICI->isEquality()) { 608 // If Op1C some other power of two, convert: 609 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 610 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 611 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 612 613 APInt KnownZeroMask(~KnownZero); 614 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 615 if (!DoTransform) return ICI; 616 617 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 618 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 619 // (X&4) == 2 --> false 620 // (X&4) != 2 --> true 621 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 622 isNE); 623 Res = ConstantExpr::getZExt(Res, CI.getType()); 624 return replaceInstUsesWith(CI, Res); 625 } 626 627 uint32_t ShAmt = KnownZeroMask.logBase2(); 628 Value *In = ICI->getOperand(0); 629 if (ShAmt) { 630 // Perform a logical shr by shiftamt. 631 // Insert the shift to put the result in the low bit. 632 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 633 In->getName() + ".lobit"); 634 } 635 636 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 637 Constant *One = ConstantInt::get(In->getType(), 1); 638 In = Builder->CreateXor(In, One); 639 } 640 641 if (CI.getType() == In->getType()) 642 return replaceInstUsesWith(CI, In); 643 644 Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false); 645 return replaceInstUsesWith(CI, IntCast); 646 } 647 } 648 } 649 650 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 651 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 652 // may lead to additional simplifications. 653 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 654 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 655 uint32_t BitWidth = ITy->getBitWidth(); 656 Value *LHS = ICI->getOperand(0); 657 Value *RHS = ICI->getOperand(1); 658 659 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 660 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 661 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 662 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 663 664 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 665 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 666 APInt UnknownBit = ~KnownBits; 667 if (UnknownBit.countPopulation() == 1) { 668 if (!DoTransform) return ICI; 669 670 Value *Result = Builder->CreateXor(LHS, RHS); 671 672 // Mask off any bits that are set and won't be shifted away. 673 if (KnownOneLHS.uge(UnknownBit)) 674 Result = Builder->CreateAnd(Result, 675 ConstantInt::get(ITy, UnknownBit)); 676 677 // Shift the bit we're testing down to the lsb. 678 Result = Builder->CreateLShr( 679 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 680 681 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 682 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 683 Result->takeName(ICI); 684 return replaceInstUsesWith(CI, Result); 685 } 686 } 687 } 688 } 689 690 return nullptr; 691 } 692 693 /// Determine if the specified value can be computed in the specified wider type 694 /// and produce the same low bits. If not, return false. 695 /// 696 /// If this function returns true, it can also return a non-zero number of bits 697 /// (in BitsToClear) which indicates that the value it computes is correct for 698 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 699 /// out. For example, to promote something like: 700 /// 701 /// %B = trunc i64 %A to i32 702 /// %C = lshr i32 %B, 8 703 /// %E = zext i32 %C to i64 704 /// 705 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 706 /// set to 8 to indicate that the promoted value needs to have bits 24-31 707 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 708 /// clear the top bits anyway, doing this has no extra cost. 709 /// 710 /// This function works on both vectors and scalars. 711 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 712 InstCombiner &IC, Instruction *CxtI) { 713 BitsToClear = 0; 714 if (isa<Constant>(V)) 715 return true; 716 717 Instruction *I = dyn_cast<Instruction>(V); 718 if (!I) return false; 719 720 // If the input is a truncate from the destination type, we can trivially 721 // eliminate it. 722 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 723 return true; 724 725 // We can't extend or shrink something that has multiple uses: doing so would 726 // require duplicating the instruction in general, which isn't profitable. 727 if (!I->hasOneUse()) return false; 728 729 unsigned Opc = I->getOpcode(), Tmp; 730 switch (Opc) { 731 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 732 case Instruction::SExt: // zext(sext(x)) -> sext(x). 733 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 734 return true; 735 case Instruction::And: 736 case Instruction::Or: 737 case Instruction::Xor: 738 case Instruction::Add: 739 case Instruction::Sub: 740 case Instruction::Mul: 741 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 742 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 743 return false; 744 // These can all be promoted if neither operand has 'bits to clear'. 745 if (BitsToClear == 0 && Tmp == 0) 746 return true; 747 748 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 749 // other side, BitsToClear is ok. 750 if (Tmp == 0 && I->isBitwiseLogicOp()) { 751 // We use MaskedValueIsZero here for generality, but the case we care 752 // about the most is constant RHS. 753 unsigned VSize = V->getType()->getScalarSizeInBits(); 754 if (IC.MaskedValueIsZero(I->getOperand(1), 755 APInt::getHighBitsSet(VSize, BitsToClear), 756 0, CxtI)) 757 return true; 758 } 759 760 // Otherwise, we don't know how to analyze this BitsToClear case yet. 761 return false; 762 763 case Instruction::Shl: 764 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 765 // upper bits we can reduce BitsToClear by the shift amount. 766 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 767 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 768 return false; 769 uint64_t ShiftAmt = Amt->getZExtValue(); 770 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 771 return true; 772 } 773 return false; 774 case Instruction::LShr: 775 // We can promote lshr(x, cst) if we can promote x. This requires the 776 // ultimate 'and' to clear out the high zero bits we're clearing out though. 777 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 778 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 779 return false; 780 BitsToClear += Amt->getZExtValue(); 781 if (BitsToClear > V->getType()->getScalarSizeInBits()) 782 BitsToClear = V->getType()->getScalarSizeInBits(); 783 return true; 784 } 785 // Cannot promote variable LSHR. 786 return false; 787 case Instruction::Select: 788 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 789 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 790 // TODO: If important, we could handle the case when the BitsToClear are 791 // known zero in the disagreeing side. 792 Tmp != BitsToClear) 793 return false; 794 return true; 795 796 case Instruction::PHI: { 797 // We can change a phi if we can change all operands. Note that we never 798 // get into trouble with cyclic PHIs here because we only consider 799 // instructions with a single use. 800 PHINode *PN = cast<PHINode>(I); 801 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 802 return false; 803 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 804 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 805 // TODO: If important, we could handle the case when the BitsToClear 806 // are known zero in the disagreeing input. 807 Tmp != BitsToClear) 808 return false; 809 return true; 810 } 811 default: 812 // TODO: Can handle more cases here. 813 return false; 814 } 815 } 816 817 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 818 // If this zero extend is only used by a truncate, let the truncate be 819 // eliminated before we try to optimize this zext. 820 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 821 return nullptr; 822 823 // If one of the common conversion will work, do it. 824 if (Instruction *Result = commonCastTransforms(CI)) 825 return Result; 826 827 // See if we can simplify any instructions used by the input whose sole 828 // purpose is to compute bits we don't care about. 829 if (SimplifyDemandedInstructionBits(CI)) 830 return &CI; 831 832 Value *Src = CI.getOperand(0); 833 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 834 835 // Attempt to extend the entire input expression tree to the destination 836 // type. Only do this if the dest type is a simple type, don't convert the 837 // expression tree to something weird like i93 unless the source is also 838 // strange. 839 unsigned BitsToClear; 840 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 841 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 842 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 843 "Unreasonable BitsToClear"); 844 845 // Okay, we can transform this! Insert the new expression now. 846 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 847 " to avoid zero extend: " << CI << '\n'); 848 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 849 assert(Res->getType() == DestTy); 850 851 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 852 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 853 854 // If the high bits are already filled with zeros, just replace this 855 // cast with the result. 856 if (MaskedValueIsZero(Res, 857 APInt::getHighBitsSet(DestBitSize, 858 DestBitSize-SrcBitsKept), 859 0, &CI)) 860 return replaceInstUsesWith(CI, Res); 861 862 // We need to emit an AND to clear the high bits. 863 Constant *C = ConstantInt::get(Res->getType(), 864 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 865 return BinaryOperator::CreateAnd(Res, C); 866 } 867 868 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 869 // types and if the sizes are just right we can convert this into a logical 870 // 'and' which will be much cheaper than the pair of casts. 871 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 872 // TODO: Subsume this into EvaluateInDifferentType. 873 874 // Get the sizes of the types involved. We know that the intermediate type 875 // will be smaller than A or C, but don't know the relation between A and C. 876 Value *A = CSrc->getOperand(0); 877 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 878 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 879 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 880 // If we're actually extending zero bits, then if 881 // SrcSize < DstSize: zext(a & mask) 882 // SrcSize == DstSize: a & mask 883 // SrcSize > DstSize: trunc(a) & mask 884 if (SrcSize < DstSize) { 885 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 886 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 887 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 888 return new ZExtInst(And, CI.getType()); 889 } 890 891 if (SrcSize == DstSize) { 892 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 893 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 894 AndValue)); 895 } 896 if (SrcSize > DstSize) { 897 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 898 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 899 return BinaryOperator::CreateAnd(Trunc, 900 ConstantInt::get(Trunc->getType(), 901 AndValue)); 902 } 903 } 904 905 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 906 return transformZExtICmp(ICI, CI); 907 908 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 909 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 910 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 911 // of the (zext icmp) can be eliminated. If so, immediately perform the 912 // according elimination. 913 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 914 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 915 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 916 (transformZExtICmp(LHS, CI, false) || 917 transformZExtICmp(RHS, CI, false))) { 918 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 919 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 920 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 921 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 922 923 // Perform the elimination. 924 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 925 transformZExtICmp(LHS, *LZExt); 926 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 927 transformZExtICmp(RHS, *RZExt); 928 929 return Or; 930 } 931 } 932 933 // zext(trunc(X) & C) -> (X & zext(C)). 934 Constant *C; 935 Value *X; 936 if (SrcI && 937 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 938 X->getType() == CI.getType()) 939 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 940 941 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 942 Value *And; 943 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 944 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 945 X->getType() == CI.getType()) { 946 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 947 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 948 } 949 950 return nullptr; 951 } 952 953 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 954 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 955 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 956 ICmpInst::Predicate Pred = ICI->getPredicate(); 957 958 // Don't bother if Op1 isn't of vector or integer type. 959 if (!Op1->getType()->isIntOrIntVectorTy()) 960 return nullptr; 961 962 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 963 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 964 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 965 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 966 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 967 968 Value *Sh = ConstantInt::get(Op0->getType(), 969 Op0->getType()->getScalarSizeInBits()-1); 970 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 971 if (In->getType() != CI.getType()) 972 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 973 974 if (Pred == ICmpInst::ICMP_SGT) 975 In = Builder->CreateNot(In, In->getName()+".not"); 976 return replaceInstUsesWith(CI, In); 977 } 978 } 979 980 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 981 // If we know that only one bit of the LHS of the icmp can be set and we 982 // have an equality comparison with zero or a power of 2, we can transform 983 // the icmp and sext into bitwise/integer operations. 984 if (ICI->hasOneUse() && 985 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 986 unsigned BitWidth = Op1C->getType()->getBitWidth(); 987 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 988 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 989 990 APInt KnownZeroMask(~KnownZero); 991 if (KnownZeroMask.isPowerOf2()) { 992 Value *In = ICI->getOperand(0); 993 994 // If the icmp tests for a known zero bit we can constant fold it. 995 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 996 Value *V = Pred == ICmpInst::ICMP_NE ? 997 ConstantInt::getAllOnesValue(CI.getType()) : 998 ConstantInt::getNullValue(CI.getType()); 999 return replaceInstUsesWith(CI, V); 1000 } 1001 1002 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1003 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1004 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1005 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1006 // Perform a right shift to place the desired bit in the LSB. 1007 if (ShiftAmt) 1008 In = Builder->CreateLShr(In, 1009 ConstantInt::get(In->getType(), ShiftAmt)); 1010 1011 // At this point "In" is either 1 or 0. Subtract 1 to turn 1012 // {1, 0} -> {0, -1}. 1013 In = Builder->CreateAdd(In, 1014 ConstantInt::getAllOnesValue(In->getType()), 1015 "sext"); 1016 } else { 1017 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1018 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1019 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1020 // Perform a left shift to place the desired bit in the MSB. 1021 if (ShiftAmt) 1022 In = Builder->CreateShl(In, 1023 ConstantInt::get(In->getType(), ShiftAmt)); 1024 1025 // Distribute the bit over the whole bit width. 1026 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 1027 BitWidth - 1), "sext"); 1028 } 1029 1030 if (CI.getType() == In->getType()) 1031 return replaceInstUsesWith(CI, In); 1032 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1033 } 1034 } 1035 } 1036 1037 return nullptr; 1038 } 1039 1040 /// Return true if we can take the specified value and return it as type Ty 1041 /// without inserting any new casts and without changing the value of the common 1042 /// low bits. This is used by code that tries to promote integer operations to 1043 /// a wider types will allow us to eliminate the extension. 1044 /// 1045 /// This function works on both vectors and scalars. 1046 /// 1047 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1048 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1049 "Can't sign extend type to a smaller type"); 1050 // If this is a constant, it can be trivially promoted. 1051 if (isa<Constant>(V)) 1052 return true; 1053 1054 Instruction *I = dyn_cast<Instruction>(V); 1055 if (!I) return false; 1056 1057 // If this is a truncate from the dest type, we can trivially eliminate it. 1058 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1059 return true; 1060 1061 // We can't extend or shrink something that has multiple uses: doing so would 1062 // require duplicating the instruction in general, which isn't profitable. 1063 if (!I->hasOneUse()) return false; 1064 1065 switch (I->getOpcode()) { 1066 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1067 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1068 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1069 return true; 1070 case Instruction::And: 1071 case Instruction::Or: 1072 case Instruction::Xor: 1073 case Instruction::Add: 1074 case Instruction::Sub: 1075 case Instruction::Mul: 1076 // These operators can all arbitrarily be extended if their inputs can. 1077 return canEvaluateSExtd(I->getOperand(0), Ty) && 1078 canEvaluateSExtd(I->getOperand(1), Ty); 1079 1080 //case Instruction::Shl: TODO 1081 //case Instruction::LShr: TODO 1082 1083 case Instruction::Select: 1084 return canEvaluateSExtd(I->getOperand(1), Ty) && 1085 canEvaluateSExtd(I->getOperand(2), Ty); 1086 1087 case Instruction::PHI: { 1088 // We can change a phi if we can change all operands. Note that we never 1089 // get into trouble with cyclic PHIs here because we only consider 1090 // instructions with a single use. 1091 PHINode *PN = cast<PHINode>(I); 1092 for (Value *IncValue : PN->incoming_values()) 1093 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1094 return true; 1095 } 1096 default: 1097 // TODO: Can handle more cases here. 1098 break; 1099 } 1100 1101 return false; 1102 } 1103 1104 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1105 // If this sign extend is only used by a truncate, let the truncate be 1106 // eliminated before we try to optimize this sext. 1107 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1108 return nullptr; 1109 1110 if (Instruction *I = commonCastTransforms(CI)) 1111 return I; 1112 1113 // See if we can simplify any instructions used by the input whose sole 1114 // purpose is to compute bits we don't care about. 1115 if (SimplifyDemandedInstructionBits(CI)) 1116 return &CI; 1117 1118 Value *Src = CI.getOperand(0); 1119 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1120 1121 // If we know that the value being extended is positive, we can use a zext 1122 // instead. 1123 bool KnownZero, KnownOne; 1124 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1125 if (KnownZero) { 1126 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1127 return replaceInstUsesWith(CI, ZExt); 1128 } 1129 1130 // Attempt to extend the entire input expression tree to the destination 1131 // type. Only do this if the dest type is a simple type, don't convert the 1132 // expression tree to something weird like i93 unless the source is also 1133 // strange. 1134 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1135 canEvaluateSExtd(Src, DestTy)) { 1136 // Okay, we can transform this! Insert the new expression now. 1137 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1138 " to avoid sign extend: " << CI << '\n'); 1139 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1140 assert(Res->getType() == DestTy); 1141 1142 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1143 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1144 1145 // If the high bits are already filled with sign bit, just replace this 1146 // cast with the result. 1147 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1148 return replaceInstUsesWith(CI, Res); 1149 1150 // We need to emit a shl + ashr to do the sign extend. 1151 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1152 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1153 ShAmt); 1154 } 1155 1156 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1157 // into shifts. 1158 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1159 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1160 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1161 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1162 1163 // We need to emit a shl + ashr to do the sign extend. 1164 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1165 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1166 return BinaryOperator::CreateAShr(Res, ShAmt); 1167 } 1168 1169 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1170 return transformSExtICmp(ICI, CI); 1171 1172 // If the input is a shl/ashr pair of a same constant, then this is a sign 1173 // extension from a smaller value. If we could trust arbitrary bitwidth 1174 // integers, we could turn this into a truncate to the smaller bit and then 1175 // use a sext for the whole extension. Since we don't, look deeper and check 1176 // for a truncate. If the source and dest are the same type, eliminate the 1177 // trunc and extend and just do shifts. For example, turn: 1178 // %a = trunc i32 %i to i8 1179 // %b = shl i8 %a, 6 1180 // %c = ashr i8 %b, 6 1181 // %d = sext i8 %c to i32 1182 // into: 1183 // %a = shl i32 %i, 30 1184 // %d = ashr i32 %a, 30 1185 Value *A = nullptr; 1186 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1187 ConstantInt *BA = nullptr, *CA = nullptr; 1188 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1189 m_ConstantInt(CA))) && 1190 BA == CA && A->getType() == CI.getType()) { 1191 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1192 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1193 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1194 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1195 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1196 return BinaryOperator::CreateAShr(A, ShAmtV); 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 1203 /// Return a Constant* for the specified floating-point constant if it fits 1204 /// in the specified FP type without changing its value. 1205 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1206 bool losesInfo; 1207 APFloat F = CFP->getValueAPF(); 1208 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1209 if (!losesInfo) 1210 return ConstantFP::get(CFP->getContext(), F); 1211 return nullptr; 1212 } 1213 1214 /// If this is a floating-point extension instruction, look 1215 /// through it until we get the source value. 1216 static Value *lookThroughFPExtensions(Value *V) { 1217 if (Instruction *I = dyn_cast<Instruction>(V)) 1218 if (I->getOpcode() == Instruction::FPExt) 1219 return lookThroughFPExtensions(I->getOperand(0)); 1220 1221 // If this value is a constant, return the constant in the smallest FP type 1222 // that can accurately represent it. This allows us to turn 1223 // (float)((double)X+2.0) into x+2.0f. 1224 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1225 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1226 return V; // No constant folding of this. 1227 // See if the value can be truncated to half and then reextended. 1228 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf)) 1229 return V; 1230 // See if the value can be truncated to float and then reextended. 1231 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle)) 1232 return V; 1233 if (CFP->getType()->isDoubleTy()) 1234 return V; // Won't shrink. 1235 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble)) 1236 return V; 1237 // Don't try to shrink to various long double types. 1238 } 1239 1240 return V; 1241 } 1242 1243 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1244 if (Instruction *I = commonCastTransforms(CI)) 1245 return I; 1246 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1247 // simplify this expression to avoid one or more of the trunc/extend 1248 // operations if we can do so without changing the numerical results. 1249 // 1250 // The exact manner in which the widths of the operands interact to limit 1251 // what we can and cannot do safely varies from operation to operation, and 1252 // is explained below in the various case statements. 1253 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1254 if (OpI && OpI->hasOneUse()) { 1255 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1256 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1257 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1258 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1259 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1260 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1261 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1262 switch (OpI->getOpcode()) { 1263 default: break; 1264 case Instruction::FAdd: 1265 case Instruction::FSub: 1266 // For addition and subtraction, the infinitely precise result can 1267 // essentially be arbitrarily wide; proving that double rounding 1268 // will not occur because the result of OpI is exact (as we will for 1269 // FMul, for example) is hopeless. However, we *can* nonetheless 1270 // frequently know that double rounding cannot occur (or that it is 1271 // innocuous) by taking advantage of the specific structure of 1272 // infinitely-precise results that admit double rounding. 1273 // 1274 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1275 // to represent both sources, we can guarantee that the double 1276 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1277 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1278 // for proof of this fact). 1279 // 1280 // Note: Figueroa does not consider the case where DstFormat != 1281 // SrcFormat. It's possible (likely even!) that this analysis 1282 // could be tightened for those cases, but they are rare (the main 1283 // case of interest here is (float)((double)float + float)). 1284 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1285 if (LHSOrig->getType() != CI.getType()) 1286 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1287 if (RHSOrig->getType() != CI.getType()) 1288 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1289 Instruction *RI = 1290 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1291 RI->copyFastMathFlags(OpI); 1292 return RI; 1293 } 1294 break; 1295 case Instruction::FMul: 1296 // For multiplication, the infinitely precise result has at most 1297 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1298 // that such a value can be exactly represented, then no double 1299 // rounding can possibly occur; we can safely perform the operation 1300 // in the destination format if it can represent both sources. 1301 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1302 if (LHSOrig->getType() != CI.getType()) 1303 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1304 if (RHSOrig->getType() != CI.getType()) 1305 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1306 Instruction *RI = 1307 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1308 RI->copyFastMathFlags(OpI); 1309 return RI; 1310 } 1311 break; 1312 case Instruction::FDiv: 1313 // For division, we use again use the bound from Figueroa's 1314 // dissertation. I am entirely certain that this bound can be 1315 // tightened in the unbalanced operand case by an analysis based on 1316 // the diophantine rational approximation bound, but the well-known 1317 // condition used here is a good conservative first pass. 1318 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1319 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1320 if (LHSOrig->getType() != CI.getType()) 1321 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1322 if (RHSOrig->getType() != CI.getType()) 1323 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1324 Instruction *RI = 1325 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1326 RI->copyFastMathFlags(OpI); 1327 return RI; 1328 } 1329 break; 1330 case Instruction::FRem: 1331 // Remainder is straightforward. Remainder is always exact, so the 1332 // type of OpI doesn't enter into things at all. We simply evaluate 1333 // in whichever source type is larger, then convert to the 1334 // destination type. 1335 if (SrcWidth == OpWidth) 1336 break; 1337 if (LHSWidth < SrcWidth) 1338 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1339 else if (RHSWidth <= SrcWidth) 1340 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1341 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1342 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1343 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1344 RI->copyFastMathFlags(OpI); 1345 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1346 } 1347 } 1348 1349 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1350 if (BinaryOperator::isFNeg(OpI)) { 1351 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1352 CI.getType()); 1353 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1354 RI->copyFastMathFlags(OpI); 1355 return RI; 1356 } 1357 } 1358 1359 // (fptrunc (select cond, R1, Cst)) --> 1360 // (select cond, (fptrunc R1), (fptrunc Cst)) 1361 // 1362 // - but only if this isn't part of a min/max operation, else we'll 1363 // ruin min/max canonical form which is to have the select and 1364 // compare's operands be of the same type with no casts to look through. 1365 Value *LHS, *RHS; 1366 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1367 if (SI && 1368 (isa<ConstantFP>(SI->getOperand(1)) || 1369 isa<ConstantFP>(SI->getOperand(2))) && 1370 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1371 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1372 CI.getType()); 1373 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1374 CI.getType()); 1375 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1376 } 1377 1378 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1379 if (II) { 1380 switch (II->getIntrinsicID()) { 1381 default: break; 1382 case Intrinsic::fabs: { 1383 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1384 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1385 CI.getType()); 1386 Type *IntrinsicType[] = { CI.getType() }; 1387 Function *Overload = Intrinsic::getDeclaration( 1388 CI.getModule(), II->getIntrinsicID(), IntrinsicType); 1389 1390 SmallVector<OperandBundleDef, 1> OpBundles; 1391 II->getOperandBundlesAsDefs(OpBundles); 1392 1393 Value *Args[] = { InnerTrunc }; 1394 return CallInst::Create(Overload, Args, OpBundles, II->getName()); 1395 } 1396 } 1397 } 1398 1399 return nullptr; 1400 } 1401 1402 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1403 return commonCastTransforms(CI); 1404 } 1405 1406 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1407 // This is safe if the intermediate type has enough bits in its mantissa to 1408 // accurately represent all values of X. For example, this won't work with 1409 // i64 -> float -> i64. 1410 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1411 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1412 return nullptr; 1413 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1414 1415 Value *SrcI = OpI->getOperand(0); 1416 Type *FITy = FI.getType(); 1417 Type *OpITy = OpI->getType(); 1418 Type *SrcTy = SrcI->getType(); 1419 bool IsInputSigned = isa<SIToFPInst>(OpI); 1420 bool IsOutputSigned = isa<FPToSIInst>(FI); 1421 1422 // We can safely assume the conversion won't overflow the output range, 1423 // because (for example) (uint8_t)18293.f is undefined behavior. 1424 1425 // Since we can assume the conversion won't overflow, our decision as to 1426 // whether the input will fit in the float should depend on the minimum 1427 // of the input range and output range. 1428 1429 // This means this is also safe for a signed input and unsigned output, since 1430 // a negative input would lead to undefined behavior. 1431 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1432 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1433 int ActualSize = std::min(InputSize, OutputSize); 1434 1435 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1436 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1437 if (IsInputSigned && IsOutputSigned) 1438 return new SExtInst(SrcI, FITy); 1439 return new ZExtInst(SrcI, FITy); 1440 } 1441 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1442 return new TruncInst(SrcI, FITy); 1443 if (SrcTy == FITy) 1444 return replaceInstUsesWith(FI, SrcI); 1445 return new BitCastInst(SrcI, FITy); 1446 } 1447 return nullptr; 1448 } 1449 1450 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1451 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1452 if (!OpI) 1453 return commonCastTransforms(FI); 1454 1455 if (Instruction *I = FoldItoFPtoI(FI)) 1456 return I; 1457 1458 return commonCastTransforms(FI); 1459 } 1460 1461 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1462 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1463 if (!OpI) 1464 return commonCastTransforms(FI); 1465 1466 if (Instruction *I = FoldItoFPtoI(FI)) 1467 return I; 1468 1469 return commonCastTransforms(FI); 1470 } 1471 1472 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1473 return commonCastTransforms(CI); 1474 } 1475 1476 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1477 return commonCastTransforms(CI); 1478 } 1479 1480 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1481 // If the source integer type is not the intptr_t type for this target, do a 1482 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1483 // cast to be exposed to other transforms. 1484 unsigned AS = CI.getAddressSpace(); 1485 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1486 DL.getPointerSizeInBits(AS)) { 1487 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1488 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1489 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1490 1491 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1492 return new IntToPtrInst(P, CI.getType()); 1493 } 1494 1495 if (Instruction *I = commonCastTransforms(CI)) 1496 return I; 1497 1498 return nullptr; 1499 } 1500 1501 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1502 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1503 Value *Src = CI.getOperand(0); 1504 1505 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1506 // If casting the result of a getelementptr instruction with no offset, turn 1507 // this into a cast of the original pointer! 1508 if (GEP->hasAllZeroIndices() && 1509 // If CI is an addrspacecast and GEP changes the poiner type, merging 1510 // GEP into CI would undo canonicalizing addrspacecast with different 1511 // pointer types, causing infinite loops. 1512 (!isa<AddrSpaceCastInst>(CI) || 1513 GEP->getType() == GEP->getPointerOperand()->getType())) { 1514 // Changing the cast operand is usually not a good idea but it is safe 1515 // here because the pointer operand is being replaced with another 1516 // pointer operand so the opcode doesn't need to change. 1517 Worklist.Add(GEP); 1518 CI.setOperand(0, GEP->getOperand(0)); 1519 return &CI; 1520 } 1521 } 1522 1523 return commonCastTransforms(CI); 1524 } 1525 1526 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1527 // If the destination integer type is not the intptr_t type for this target, 1528 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1529 // to be exposed to other transforms. 1530 1531 Type *Ty = CI.getType(); 1532 unsigned AS = CI.getPointerAddressSpace(); 1533 1534 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1535 return commonPointerCastTransforms(CI); 1536 1537 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1538 if (Ty->isVectorTy()) // Handle vectors of pointers. 1539 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1540 1541 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1542 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1543 } 1544 1545 /// This input value (which is known to have vector type) is being zero extended 1546 /// or truncated to the specified vector type. 1547 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1548 /// 1549 /// The source and destination vector types may have different element types. 1550 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1551 InstCombiner &IC) { 1552 // We can only do this optimization if the output is a multiple of the input 1553 // element size, or the input is a multiple of the output element size. 1554 // Convert the input type to have the same element type as the output. 1555 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1556 1557 if (SrcTy->getElementType() != DestTy->getElementType()) { 1558 // The input types don't need to be identical, but for now they must be the 1559 // same size. There is no specific reason we couldn't handle things like 1560 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1561 // there yet. 1562 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1563 DestTy->getElementType()->getPrimitiveSizeInBits()) 1564 return nullptr; 1565 1566 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1567 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1568 } 1569 1570 // Now that the element types match, get the shuffle mask and RHS of the 1571 // shuffle to use, which depends on whether we're increasing or decreasing the 1572 // size of the input. 1573 SmallVector<uint32_t, 16> ShuffleMask; 1574 Value *V2; 1575 1576 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1577 // If we're shrinking the number of elements, just shuffle in the low 1578 // elements from the input and use undef as the second shuffle input. 1579 V2 = UndefValue::get(SrcTy); 1580 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1581 ShuffleMask.push_back(i); 1582 1583 } else { 1584 // If we're increasing the number of elements, shuffle in all of the 1585 // elements from InVal and fill the rest of the result elements with zeros 1586 // from a constant zero. 1587 V2 = Constant::getNullValue(SrcTy); 1588 unsigned SrcElts = SrcTy->getNumElements(); 1589 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1590 ShuffleMask.push_back(i); 1591 1592 // The excess elements reference the first element of the zero input. 1593 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1594 ShuffleMask.push_back(SrcElts); 1595 } 1596 1597 return new ShuffleVectorInst(InVal, V2, 1598 ConstantDataVector::get(V2->getContext(), 1599 ShuffleMask)); 1600 } 1601 1602 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1603 return Value % Ty->getPrimitiveSizeInBits() == 0; 1604 } 1605 1606 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1607 return Value / Ty->getPrimitiveSizeInBits(); 1608 } 1609 1610 /// V is a value which is inserted into a vector of VecEltTy. 1611 /// Look through the value to see if we can decompose it into 1612 /// insertions into the vector. See the example in the comment for 1613 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1614 /// The type of V is always a non-zero multiple of VecEltTy's size. 1615 /// Shift is the number of bits between the lsb of V and the lsb of 1616 /// the vector. 1617 /// 1618 /// This returns false if the pattern can't be matched or true if it can, 1619 /// filling in Elements with the elements found here. 1620 static bool collectInsertionElements(Value *V, unsigned Shift, 1621 SmallVectorImpl<Value *> &Elements, 1622 Type *VecEltTy, bool isBigEndian) { 1623 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1624 "Shift should be a multiple of the element type size"); 1625 1626 // Undef values never contribute useful bits to the result. 1627 if (isa<UndefValue>(V)) return true; 1628 1629 // If we got down to a value of the right type, we win, try inserting into the 1630 // right element. 1631 if (V->getType() == VecEltTy) { 1632 // Inserting null doesn't actually insert any elements. 1633 if (Constant *C = dyn_cast<Constant>(V)) 1634 if (C->isNullValue()) 1635 return true; 1636 1637 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1638 if (isBigEndian) 1639 ElementIndex = Elements.size() - ElementIndex - 1; 1640 1641 // Fail if multiple elements are inserted into this slot. 1642 if (Elements[ElementIndex]) 1643 return false; 1644 1645 Elements[ElementIndex] = V; 1646 return true; 1647 } 1648 1649 if (Constant *C = dyn_cast<Constant>(V)) { 1650 // Figure out the # elements this provides, and bitcast it or slice it up 1651 // as required. 1652 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1653 VecEltTy); 1654 // If the constant is the size of a vector element, we just need to bitcast 1655 // it to the right type so it gets properly inserted. 1656 if (NumElts == 1) 1657 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1658 Shift, Elements, VecEltTy, isBigEndian); 1659 1660 // Okay, this is a constant that covers multiple elements. Slice it up into 1661 // pieces and insert each element-sized piece into the vector. 1662 if (!isa<IntegerType>(C->getType())) 1663 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1664 C->getType()->getPrimitiveSizeInBits())); 1665 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1666 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1667 1668 for (unsigned i = 0; i != NumElts; ++i) { 1669 unsigned ShiftI = Shift+i*ElementSize; 1670 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1671 ShiftI)); 1672 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1673 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1674 isBigEndian)) 1675 return false; 1676 } 1677 return true; 1678 } 1679 1680 if (!V->hasOneUse()) return false; 1681 1682 Instruction *I = dyn_cast<Instruction>(V); 1683 if (!I) return false; 1684 switch (I->getOpcode()) { 1685 default: return false; // Unhandled case. 1686 case Instruction::BitCast: 1687 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1688 isBigEndian); 1689 case Instruction::ZExt: 1690 if (!isMultipleOfTypeSize( 1691 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1692 VecEltTy)) 1693 return false; 1694 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1695 isBigEndian); 1696 case Instruction::Or: 1697 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1698 isBigEndian) && 1699 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1700 isBigEndian); 1701 case Instruction::Shl: { 1702 // Must be shifting by a constant that is a multiple of the element size. 1703 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1704 if (!CI) return false; 1705 Shift += CI->getZExtValue(); 1706 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1707 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1708 isBigEndian); 1709 } 1710 1711 } 1712 } 1713 1714 1715 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1716 /// assemble the elements of the vector manually. 1717 /// Try to rip the code out and replace it with insertelements. This is to 1718 /// optimize code like this: 1719 /// 1720 /// %tmp37 = bitcast float %inc to i32 1721 /// %tmp38 = zext i32 %tmp37 to i64 1722 /// %tmp31 = bitcast float %inc5 to i32 1723 /// %tmp32 = zext i32 %tmp31 to i64 1724 /// %tmp33 = shl i64 %tmp32, 32 1725 /// %ins35 = or i64 %tmp33, %tmp38 1726 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1727 /// 1728 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1729 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1730 InstCombiner &IC) { 1731 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1732 Value *IntInput = CI.getOperand(0); 1733 1734 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1735 if (!collectInsertionElements(IntInput, 0, Elements, 1736 DestVecTy->getElementType(), 1737 IC.getDataLayout().isBigEndian())) 1738 return nullptr; 1739 1740 // If we succeeded, we know that all of the element are specified by Elements 1741 // or are zero if Elements has a null entry. Recast this as a set of 1742 // insertions. 1743 Value *Result = Constant::getNullValue(CI.getType()); 1744 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1745 if (!Elements[i]) continue; // Unset element. 1746 1747 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1748 IC.Builder->getInt32(i)); 1749 } 1750 1751 return Result; 1752 } 1753 1754 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1755 /// vector followed by extract element. The backend tends to handle bitcasts of 1756 /// vectors better than bitcasts of scalars because vector registers are 1757 /// usually not type-specific like scalar integer or scalar floating-point. 1758 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1759 InstCombiner &IC, 1760 const DataLayout &DL) { 1761 // TODO: Create and use a pattern matcher for ExtractElementInst. 1762 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1763 if (!ExtElt || !ExtElt->hasOneUse()) 1764 return nullptr; 1765 1766 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1767 // type to extract from. 1768 Type *DestType = BitCast.getType(); 1769 if (!VectorType::isValidElementType(DestType)) 1770 return nullptr; 1771 1772 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1773 auto *NewVecType = VectorType::get(DestType, NumElts); 1774 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1775 NewVecType, "bc"); 1776 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1777 } 1778 1779 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 1780 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 1781 InstCombiner::BuilderTy &Builder) { 1782 Type *DestTy = BitCast.getType(); 1783 BinaryOperator *BO; 1784 if (!DestTy->getScalarType()->isIntegerTy() || 1785 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 1786 !BO->isBitwiseLogicOp()) 1787 return nullptr; 1788 1789 // FIXME: This transform is restricted to vector types to avoid backend 1790 // problems caused by creating potentially illegal operations. If a fix-up is 1791 // added to handle that situation, we can remove this check. 1792 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 1793 return nullptr; 1794 1795 Value *X; 1796 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 1797 X->getType() == DestTy && !isa<Constant>(X)) { 1798 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 1799 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 1800 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 1801 } 1802 1803 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 1804 X->getType() == DestTy && !isa<Constant>(X)) { 1805 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 1806 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 1807 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 1808 } 1809 1810 return nullptr; 1811 } 1812 1813 /// Check if all users of CI are StoreInsts. 1814 static bool hasStoreUsersOnly(CastInst &CI) { 1815 for (User *U : CI.users()) { 1816 if (!isa<StoreInst>(U)) 1817 return false; 1818 } 1819 return true; 1820 } 1821 1822 /// This function handles following case 1823 /// 1824 /// A -> B cast 1825 /// PHI 1826 /// B -> A cast 1827 /// 1828 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 1829 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 1830 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 1831 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 1832 if (hasStoreUsersOnly(CI)) 1833 return nullptr; 1834 1835 Value *Src = CI.getOperand(0); 1836 Type *SrcTy = Src->getType(); // Type B 1837 Type *DestTy = CI.getType(); // Type A 1838 1839 SmallVector<PHINode *, 4> PhiWorklist; 1840 SmallSetVector<PHINode *, 4> OldPhiNodes; 1841 1842 // Find all of the A->B casts and PHI nodes. 1843 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 1844 // OldPhiNodes is used to track all known PHI nodes, before adding a new 1845 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 1846 PhiWorklist.push_back(PN); 1847 OldPhiNodes.insert(PN); 1848 while (!PhiWorklist.empty()) { 1849 auto *OldPN = PhiWorklist.pop_back_val(); 1850 for (Value *IncValue : OldPN->incoming_values()) { 1851 if (isa<Constant>(IncValue)) 1852 continue; 1853 1854 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 1855 // If there is a sequence of one or more load instructions, each loaded 1856 // value is used as address of later load instruction, bitcast is 1857 // necessary to change the value type, don't optimize it. For 1858 // simplicity we give up if the load address comes from another load. 1859 Value *Addr = LI->getOperand(0); 1860 if (Addr == &CI || isa<LoadInst>(Addr)) 1861 return nullptr; 1862 if (LI->hasOneUse() && LI->isSimple()) 1863 continue; 1864 // If a LoadInst has more than one use, changing the type of loaded 1865 // value may create another bitcast. 1866 return nullptr; 1867 } 1868 1869 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 1870 if (OldPhiNodes.insert(PNode)) 1871 PhiWorklist.push_back(PNode); 1872 continue; 1873 } 1874 1875 auto *BCI = dyn_cast<BitCastInst>(IncValue); 1876 // We can't handle other instructions. 1877 if (!BCI) 1878 return nullptr; 1879 1880 // Verify it's a A->B cast. 1881 Type *TyA = BCI->getOperand(0)->getType(); 1882 Type *TyB = BCI->getType(); 1883 if (TyA != DestTy || TyB != SrcTy) 1884 return nullptr; 1885 } 1886 } 1887 1888 // For each old PHI node, create a corresponding new PHI node with a type A. 1889 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 1890 for (auto *OldPN : OldPhiNodes) { 1891 Builder->SetInsertPoint(OldPN); 1892 PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands()); 1893 NewPNodes[OldPN] = NewPN; 1894 } 1895 1896 // Fill in the operands of new PHI nodes. 1897 for (auto *OldPN : OldPhiNodes) { 1898 PHINode *NewPN = NewPNodes[OldPN]; 1899 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 1900 Value *V = OldPN->getOperand(j); 1901 Value *NewV = nullptr; 1902 if (auto *C = dyn_cast<Constant>(V)) { 1903 NewV = ConstantExpr::getBitCast(C, DestTy); 1904 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 1905 Builder->SetInsertPoint(LI->getNextNode()); 1906 NewV = Builder->CreateBitCast(LI, DestTy); 1907 Worklist.Add(LI); 1908 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 1909 NewV = BCI->getOperand(0); 1910 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 1911 NewV = NewPNodes[PrevPN]; 1912 } 1913 assert(NewV); 1914 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 1915 } 1916 } 1917 1918 // If there is a store with type B, change it to type A. 1919 for (User *U : PN->users()) { 1920 auto *SI = dyn_cast<StoreInst>(U); 1921 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 1922 Builder->SetInsertPoint(SI); 1923 auto *NewBC = 1924 cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy)); 1925 SI->setOperand(0, NewBC); 1926 Worklist.Add(SI); 1927 assert(hasStoreUsersOnly(*NewBC)); 1928 } 1929 } 1930 1931 return replaceInstUsesWith(CI, NewPNodes[PN]); 1932 } 1933 1934 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1935 // If the operands are integer typed then apply the integer transforms, 1936 // otherwise just apply the common ones. 1937 Value *Src = CI.getOperand(0); 1938 Type *SrcTy = Src->getType(); 1939 Type *DestTy = CI.getType(); 1940 1941 // Get rid of casts from one type to the same type. These are useless and can 1942 // be replaced by the operand. 1943 if (DestTy == Src->getType()) 1944 return replaceInstUsesWith(CI, Src); 1945 1946 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1947 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1948 Type *DstElTy = DstPTy->getElementType(); 1949 Type *SrcElTy = SrcPTy->getElementType(); 1950 1951 // If we are casting a alloca to a pointer to a type of the same 1952 // size, rewrite the allocation instruction to allocate the "right" type. 1953 // There is no need to modify malloc calls because it is their bitcast that 1954 // needs to be cleaned up. 1955 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1956 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1957 return V; 1958 1959 // When the type pointed to is not sized the cast cannot be 1960 // turned into a gep. 1961 Type *PointeeType = 1962 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 1963 if (!PointeeType->isSized()) 1964 return nullptr; 1965 1966 // If the source and destination are pointers, and this cast is equivalent 1967 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1968 // This can enhance SROA and other transforms that want type-safe pointers. 1969 unsigned NumZeros = 0; 1970 while (SrcElTy != DstElTy && 1971 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1972 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1973 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 1974 ++NumZeros; 1975 } 1976 1977 // If we found a path from the src to dest, create the getelementptr now. 1978 if (SrcElTy == DstElTy) { 1979 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 1980 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1981 } 1982 } 1983 1984 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1985 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1986 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1987 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1988 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1989 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1990 } 1991 1992 if (isa<IntegerType>(SrcTy)) { 1993 // If this is a cast from an integer to vector, check to see if the input 1994 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1995 // the casts with a shuffle and (potentially) a bitcast. 1996 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1997 CastInst *SrcCast = cast<CastInst>(Src); 1998 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1999 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2000 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2001 cast<VectorType>(DestTy), *this)) 2002 return I; 2003 } 2004 2005 // If the input is an 'or' instruction, we may be doing shifts and ors to 2006 // assemble the elements of the vector manually. Try to rip the code out 2007 // and replace it with insertelements. 2008 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2009 return replaceInstUsesWith(CI, V); 2010 } 2011 } 2012 2013 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2014 if (SrcVTy->getNumElements() == 1) { 2015 // If our destination is not a vector, then make this a straight 2016 // scalar-scalar cast. 2017 if (!DestTy->isVectorTy()) { 2018 Value *Elem = 2019 Builder->CreateExtractElement(Src, 2020 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2021 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2022 } 2023 2024 // Otherwise, see if our source is an insert. If so, then use the scalar 2025 // component directly. 2026 if (InsertElementInst *IEI = 2027 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2028 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2029 DestTy); 2030 } 2031 } 2032 2033 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2034 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2035 // a bitcast to a vector with the same # elts. 2036 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2037 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2038 SVI->getType()->getNumElements() == 2039 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2040 BitCastInst *Tmp; 2041 // If either of the operands is a cast from CI.getType(), then 2042 // evaluating the shuffle in the casted destination's type will allow 2043 // us to eliminate at least one cast. 2044 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2045 Tmp->getOperand(0)->getType() == DestTy) || 2046 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2047 Tmp->getOperand(0)->getType() == DestTy)) { 2048 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 2049 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 2050 // Return a new shuffle vector. Use the same element ID's, as we 2051 // know the vector types match #elts. 2052 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2053 } 2054 } 2055 } 2056 2057 // Handle the A->B->A cast, and there is an intervening PHI node. 2058 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2059 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2060 return I; 2061 2062 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 2063 return I; 2064 2065 if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder)) 2066 return I; 2067 2068 if (SrcTy->isPointerTy()) 2069 return commonPointerCastTransforms(CI); 2070 return commonCastTransforms(CI); 2071 } 2072 2073 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2074 // If the destination pointer element type is not the same as the source's 2075 // first do a bitcast to the destination type, and then the addrspacecast. 2076 // This allows the cast to be exposed to other transforms. 2077 Value *Src = CI.getOperand(0); 2078 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2079 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2080 2081 Type *DestElemTy = DestTy->getElementType(); 2082 if (SrcTy->getElementType() != DestElemTy) { 2083 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2084 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2085 // Handle vectors of pointers. 2086 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2087 } 2088 2089 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 2090 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2091 } 2092 2093 return commonPointerCastTransforms(CI); 2094 } 2095