xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision 1e6ca44a8e6a8e9d562a7788b64cc6689652ee2c)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Analyze 'Val', seeing if it is a simple linear expression.
26 /// If so, decompose it, returning some value X, such that Val is
27 /// X*Scale+Offset.
28 ///
29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
30                                         uint64_t &Offset) {
31   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
32     Offset = CI->getZExtValue();
33     Scale  = 0;
34     return ConstantInt::get(Val->getType(), 0);
35   }
36 
37   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
38     // Cannot look past anything that might overflow.
39     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
40     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
41       Scale = 1;
42       Offset = 0;
43       return Val;
44     }
45 
46     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
47       if (I->getOpcode() == Instruction::Shl) {
48         // This is a value scaled by '1 << the shift amt'.
49         Scale = UINT64_C(1) << RHS->getZExtValue();
50         Offset = 0;
51         return I->getOperand(0);
52       }
53 
54       if (I->getOpcode() == Instruction::Mul) {
55         // This value is scaled by 'RHS'.
56         Scale = RHS->getZExtValue();
57         Offset = 0;
58         return I->getOperand(0);
59       }
60 
61       if (I->getOpcode() == Instruction::Add) {
62         // We have X+C.  Check to see if we really have (X*C2)+C1,
63         // where C1 is divisible by C2.
64         unsigned SubScale;
65         Value *SubVal =
66           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
67         Offset += RHS->getZExtValue();
68         Scale = SubScale;
69         return SubVal;
70       }
71     }
72   }
73 
74   // Otherwise, we can't look past this.
75   Scale = 1;
76   Offset = 0;
77   return Val;
78 }
79 
80 /// If we find a cast of an allocation instruction, try to eliminate the cast by
81 /// moving the type information into the alloc.
82 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
83                                                    AllocaInst &AI) {
84   PointerType *PTy = cast<PointerType>(CI.getType());
85 
86   BuilderTy AllocaBuilder(*Builder);
87   AllocaBuilder.SetInsertPoint(&AI);
88 
89   // Get the type really allocated and the type casted to.
90   Type *AllocElTy = AI.getAllocatedType();
91   Type *CastElTy = PTy->getElementType();
92   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
93 
94   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
95   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
96   if (CastElTyAlign < AllocElTyAlign) return nullptr;
97 
98   // If the allocation has multiple uses, only promote it if we are strictly
99   // increasing the alignment of the resultant allocation.  If we keep it the
100   // same, we open the door to infinite loops of various kinds.
101   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
102 
103   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
104   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
105   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
106 
107   // If the allocation has multiple uses, only promote it if we're not
108   // shrinking the amount of memory being allocated.
109   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
110   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
111   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
112 
113   // See if we can satisfy the modulus by pulling a scale out of the array
114   // size argument.
115   unsigned ArraySizeScale;
116   uint64_t ArrayOffset;
117   Value *NumElements = // See if the array size is a decomposable linear expr.
118     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
119 
120   // If we can now satisfy the modulus, by using a non-1 scale, we really can
121   // do the xform.
122   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
123       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
124 
125   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
126   Value *Amt = nullptr;
127   if (Scale == 1) {
128     Amt = NumElements;
129   } else {
130     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
131     // Insert before the alloca, not before the cast.
132     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
133   }
134 
135   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
136     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
137                                   Offset, true);
138     Amt = AllocaBuilder.CreateAdd(Amt, Off);
139   }
140 
141   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
142   New->setAlignment(AI.getAlignment());
143   New->takeName(&AI);
144   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
145 
146   // If the allocation has multiple real uses, insert a cast and change all
147   // things that used it to use the new cast.  This will also hack on CI, but it
148   // will die soon.
149   if (!AI.hasOneUse()) {
150     // New is the allocation instruction, pointer typed. AI is the original
151     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
152     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
153     replaceInstUsesWith(AI, NewCast);
154   }
155   return replaceInstUsesWith(CI, New);
156 }
157 
158 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
159 /// true for, actually insert the code to evaluate the expression.
160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
161                                              bool isSigned) {
162   if (Constant *C = dyn_cast<Constant>(V)) {
163     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
164     // If we got a constantexpr back, try to simplify it with DL info.
165     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
166       C = FoldedC;
167     return C;
168   }
169 
170   // Otherwise, it must be an instruction.
171   Instruction *I = cast<Instruction>(V);
172   Instruction *Res = nullptr;
173   unsigned Opc = I->getOpcode();
174   switch (Opc) {
175   case Instruction::Add:
176   case Instruction::Sub:
177   case Instruction::Mul:
178   case Instruction::And:
179   case Instruction::Or:
180   case Instruction::Xor:
181   case Instruction::AShr:
182   case Instruction::LShr:
183   case Instruction::Shl:
184   case Instruction::UDiv:
185   case Instruction::URem: {
186     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189     break;
190   }
191   case Instruction::Trunc:
192   case Instruction::ZExt:
193   case Instruction::SExt:
194     // If the source type of the cast is the type we're trying for then we can
195     // just return the source.  There's no need to insert it because it is not
196     // new.
197     if (I->getOperand(0)->getType() == Ty)
198       return I->getOperand(0);
199 
200     // Otherwise, must be the same type of cast, so just reinsert a new one.
201     // This also handles the case of zext(trunc(x)) -> zext(x).
202     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203                                       Opc == Instruction::SExt);
204     break;
205   case Instruction::Select: {
206     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208     Res = SelectInst::Create(I->getOperand(0), True, False);
209     break;
210   }
211   case Instruction::PHI: {
212     PHINode *OPN = cast<PHINode>(I);
213     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
214     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
215       Value *V =
216           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
217       NPN->addIncoming(V, OPN->getIncomingBlock(i));
218     }
219     Res = NPN;
220     break;
221   }
222   default:
223     // TODO: Can handle more cases here.
224     llvm_unreachable("Unreachable!");
225   }
226 
227   Res->takeName(I);
228   return InsertNewInstWith(Res, *I);
229 }
230 
231 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
232                                                         const CastInst *CI2) {
233   Type *SrcTy = CI1->getSrcTy();
234   Type *MidTy = CI1->getDestTy();
235   Type *DstTy = CI2->getDestTy();
236 
237   Instruction::CastOps firstOp = Instruction::CastOps(CI1->getOpcode());
238   Instruction::CastOps secondOp = Instruction::CastOps(CI2->getOpcode());
239   Type *SrcIntPtrTy =
240       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
241   Type *MidIntPtrTy =
242       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
243   Type *DstIntPtrTy =
244       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
245   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
246                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
247                                                 DstIntPtrTy);
248 
249   // We don't want to form an inttoptr or ptrtoint that converts to an integer
250   // type that differs from the pointer size.
251   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
252       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
253     Res = 0;
254 
255   return Instruction::CastOps(Res);
256 }
257 
258 /// @brief Implement the transforms common to all CastInst visitors.
259 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
260   Value *Src = CI.getOperand(0);
261 
262   // Try to eliminate a cast of a cast.
263   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
264     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
265       // The first cast (CSrc) is eliminable so we need to fix up or replace
266       // the second cast (CI). CSrc will then have a good chance of being dead.
267       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
268     }
269   }
270 
271   // If we are casting a select, then fold the cast into the select.
272   if (auto *SI = dyn_cast<SelectInst>(Src))
273     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
274       return NV;
275 
276   // If we are casting a PHI, then fold the cast into the PHI.
277   if (isa<PHINode>(Src)) {
278     // Don't do this if it would create a PHI node with an illegal type from a
279     // legal type.
280     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
281         ShouldChangeType(CI.getType(), Src->getType()))
282       if (Instruction *NV = FoldOpIntoPhi(CI))
283         return NV;
284   }
285 
286   return nullptr;
287 }
288 
289 /// Return true if we can evaluate the specified expression tree as type Ty
290 /// instead of its larger type, and arrive with the same value.
291 /// This is used by code that tries to eliminate truncates.
292 ///
293 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
294 /// can be computed by computing V in the smaller type.  If V is an instruction,
295 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
296 /// makes sense if x and y can be efficiently truncated.
297 ///
298 /// This function works on both vectors and scalars.
299 ///
300 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
301                                  Instruction *CxtI) {
302   // We can always evaluate constants in another type.
303   if (isa<Constant>(V))
304     return true;
305 
306   Instruction *I = dyn_cast<Instruction>(V);
307   if (!I) return false;
308 
309   Type *OrigTy = V->getType();
310 
311   // If this is an extension from the dest type, we can eliminate it, even if it
312   // has multiple uses.
313   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
314       I->getOperand(0)->getType() == Ty)
315     return true;
316 
317   // We can't extend or shrink something that has multiple uses: doing so would
318   // require duplicating the instruction in general, which isn't profitable.
319   if (!I->hasOneUse()) return false;
320 
321   unsigned Opc = I->getOpcode();
322   switch (Opc) {
323   case Instruction::Add:
324   case Instruction::Sub:
325   case Instruction::Mul:
326   case Instruction::And:
327   case Instruction::Or:
328   case Instruction::Xor:
329     // These operators can all arbitrarily be extended or truncated.
330     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
331            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
332 
333   case Instruction::UDiv:
334   case Instruction::URem: {
335     // UDiv and URem can be truncated if all the truncated bits are zero.
336     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
337     uint32_t BitWidth = Ty->getScalarSizeInBits();
338     if (BitWidth < OrigBitWidth) {
339       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
340       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
341           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
342         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
343                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
344       }
345     }
346     break;
347   }
348   case Instruction::Shl:
349     // If we are truncating the result of this SHL, and if it's a shift of a
350     // constant amount, we can always perform a SHL in a smaller type.
351     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
352       uint32_t BitWidth = Ty->getScalarSizeInBits();
353       if (CI->getLimitedValue(BitWidth) < BitWidth)
354         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
355     }
356     break;
357   case Instruction::LShr:
358     // If this is a truncate of a logical shr, we can truncate it to a smaller
359     // lshr iff we know that the bits we would otherwise be shifting in are
360     // already zeros.
361     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
362       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
363       uint32_t BitWidth = Ty->getScalarSizeInBits();
364       if (IC.MaskedValueIsZero(I->getOperand(0),
365             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
366           CI->getLimitedValue(BitWidth) < BitWidth) {
367         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
368       }
369     }
370     break;
371   case Instruction::Trunc:
372     // trunc(trunc(x)) -> trunc(x)
373     return true;
374   case Instruction::ZExt:
375   case Instruction::SExt:
376     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
377     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
378     return true;
379   case Instruction::Select: {
380     SelectInst *SI = cast<SelectInst>(I);
381     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
382            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
383   }
384   case Instruction::PHI: {
385     // We can change a phi if we can change all operands.  Note that we never
386     // get into trouble with cyclic PHIs here because we only consider
387     // instructions with a single use.
388     PHINode *PN = cast<PHINode>(I);
389     for (Value *IncValue : PN->incoming_values())
390       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
391         return false;
392     return true;
393   }
394   default:
395     // TODO: Can handle more cases here.
396     break;
397   }
398 
399   return false;
400 }
401 
402 /// Given a vector that is bitcast to an integer, optionally logically
403 /// right-shifted, and truncated, convert it to an extractelement.
404 /// Example (big endian):
405 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
406 ///   --->
407 ///   extractelement <4 x i32> %X, 1
408 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
409                                          const DataLayout &DL) {
410   Value *TruncOp = Trunc.getOperand(0);
411   Type *DestType = Trunc.getType();
412   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
413     return nullptr;
414 
415   Value *VecInput = nullptr;
416   ConstantInt *ShiftVal = nullptr;
417   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
418                                   m_LShr(m_BitCast(m_Value(VecInput)),
419                                          m_ConstantInt(ShiftVal)))) ||
420       !isa<VectorType>(VecInput->getType()))
421     return nullptr;
422 
423   VectorType *VecType = cast<VectorType>(VecInput->getType());
424   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
425   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
426   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
427 
428   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
429     return nullptr;
430 
431   // If the element type of the vector doesn't match the result type,
432   // bitcast it to a vector type that we can extract from.
433   unsigned NumVecElts = VecWidth / DestWidth;
434   if (VecType->getElementType() != DestType) {
435     VecType = VectorType::get(DestType, NumVecElts);
436     VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
437   }
438 
439   unsigned Elt = ShiftAmount / DestWidth;
440   if (DL.isBigEndian())
441     Elt = NumVecElts - 1 - Elt;
442 
443   return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
444 }
445 
446 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
447   if (Instruction *Result = commonCastTransforms(CI))
448     return Result;
449 
450   // Test if the trunc is the user of a select which is part of a
451   // minimum or maximum operation. If so, don't do any more simplification.
452   // Even simplifying demanded bits can break the canonical form of a
453   // min/max.
454   Value *LHS, *RHS;
455   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
456     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
457       return nullptr;
458 
459   // See if we can simplify any instructions used by the input whose sole
460   // purpose is to compute bits we don't care about.
461   if (SimplifyDemandedInstructionBits(CI))
462     return &CI;
463 
464   Value *Src = CI.getOperand(0);
465   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
466 
467   // Attempt to truncate the entire input expression tree to the destination
468   // type.   Only do this if the dest type is a simple type, don't convert the
469   // expression tree to something weird like i93 unless the source is also
470   // strange.
471   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
472       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
473 
474     // If this cast is a truncate, evaluting in a different type always
475     // eliminates the cast, so it is always a win.
476     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
477           " to avoid cast: " << CI << '\n');
478     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
479     assert(Res->getType() == DestTy);
480     return replaceInstUsesWith(CI, Res);
481   }
482 
483   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
484   if (DestTy->getScalarSizeInBits() == 1) {
485     Constant *One = ConstantInt::get(SrcTy, 1);
486     Src = Builder->CreateAnd(Src, One);
487     Value *Zero = Constant::getNullValue(Src->getType());
488     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
489   }
490 
491   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
492   Value *A = nullptr; ConstantInt *Cst = nullptr;
493   if (Src->hasOneUse() &&
494       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
495     // We have three types to worry about here, the type of A, the source of
496     // the truncate (MidSize), and the destination of the truncate. We know that
497     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
498     // between ASize and ResultSize.
499     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
500 
501     // If the shift amount is larger than the size of A, then the result is
502     // known to be zero because all the input bits got shifted out.
503     if (Cst->getZExtValue() >= ASize)
504       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
505 
506     // Since we're doing an lshr and a zero extend, and know that the shift
507     // amount is smaller than ASize, it is always safe to do the shift in A's
508     // type, then zero extend or truncate to the result.
509     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
510     Shift->takeName(Src);
511     return CastInst::CreateIntegerCast(Shift, DestTy, false);
512   }
513 
514   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
515   // conversion.
516   // It works because bits coming from sign extension have the same value as
517   // the sign bit of the original value; performing ashr instead of lshr
518   // generates bits of the same value as the sign bit.
519   if (Src->hasOneUse() &&
520       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
521       cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
522     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
523     // This optimization can be only performed when zero bits generated by
524     // the original lshr aren't pulled into the value after truncation, so we
525     // can only shift by values smaller than the size of destination type (in
526     // bits).
527     if (Cst->getValue().ult(ASize)) {
528       Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
529       Shift->takeName(Src);
530       return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
531     }
532   }
533 
534   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
535       ShouldChangeType(SrcTy, DestTy)) {
536 
537     // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the
538     // dest type is native.
539     if (match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
540       Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
541       return BinaryOperator::CreateAnd(NewTrunc,
542                                        ConstantExpr::getTrunc(Cst, DestTy));
543     }
544 
545     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
546     // dest type is native and cst < dest size.
547     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
548         !match(A, m_Shr(m_Value(), m_Constant()))) {
549       // Skip shifts of shift by constants. It undoes a combine in
550       // FoldShiftByConstant and is the extend in reg pattern.
551       const unsigned DestSize = DestTy->getScalarSizeInBits();
552       if (Cst->getValue().ult(DestSize)) {
553         Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
554 
555         return BinaryOperator::Create(
556           Instruction::Shl, NewTrunc,
557           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
558       }
559     }
560   }
561 
562   if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
563     return I;
564 
565   return nullptr;
566 }
567 
568 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
569                                              bool DoTransform) {
570   // If we are just checking for a icmp eq of a single bit and zext'ing it
571   // to an integer, then shift the bit to the appropriate place and then
572   // cast to integer to avoid the comparison.
573   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
574     const APInt &Op1CV = Op1C->getValue();
575 
576     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
577     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
578     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
579         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
580       if (!DoTransform) return ICI;
581 
582       Value *In = ICI->getOperand(0);
583       Value *Sh = ConstantInt::get(In->getType(),
584                                    In->getType()->getScalarSizeInBits() - 1);
585       In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
586       if (In->getType() != CI.getType())
587         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
588 
589       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
590         Constant *One = ConstantInt::get(In->getType(), 1);
591         In = Builder->CreateXor(In, One, In->getName() + ".not");
592       }
593 
594       return replaceInstUsesWith(CI, In);
595     }
596 
597     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
598     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
599     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
600     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
601     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
602     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
603     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
604     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
605     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
606         // This only works for EQ and NE
607         ICI->isEquality()) {
608       // If Op1C some other power of two, convert:
609       uint32_t BitWidth = Op1C->getType()->getBitWidth();
610       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
611       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
612 
613       APInt KnownZeroMask(~KnownZero);
614       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
615         if (!DoTransform) return ICI;
616 
617         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
618         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
619           // (X&4) == 2 --> false
620           // (X&4) != 2 --> true
621           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
622                                            isNE);
623           Res = ConstantExpr::getZExt(Res, CI.getType());
624           return replaceInstUsesWith(CI, Res);
625         }
626 
627         uint32_t ShAmt = KnownZeroMask.logBase2();
628         Value *In = ICI->getOperand(0);
629         if (ShAmt) {
630           // Perform a logical shr by shiftamt.
631           // Insert the shift to put the result in the low bit.
632           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
633                                    In->getName() + ".lobit");
634         }
635 
636         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
637           Constant *One = ConstantInt::get(In->getType(), 1);
638           In = Builder->CreateXor(In, One);
639         }
640 
641         if (CI.getType() == In->getType())
642           return replaceInstUsesWith(CI, In);
643 
644         Value *IntCast = Builder->CreateIntCast(In, CI.getType(), false);
645         return replaceInstUsesWith(CI, IntCast);
646       }
647     }
648   }
649 
650   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
651   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
652   // may lead to additional simplifications.
653   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
654     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
655       uint32_t BitWidth = ITy->getBitWidth();
656       Value *LHS = ICI->getOperand(0);
657       Value *RHS = ICI->getOperand(1);
658 
659       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
660       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
661       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
662       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
663 
664       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
665         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
666         APInt UnknownBit = ~KnownBits;
667         if (UnknownBit.countPopulation() == 1) {
668           if (!DoTransform) return ICI;
669 
670           Value *Result = Builder->CreateXor(LHS, RHS);
671 
672           // Mask off any bits that are set and won't be shifted away.
673           if (KnownOneLHS.uge(UnknownBit))
674             Result = Builder->CreateAnd(Result,
675                                         ConstantInt::get(ITy, UnknownBit));
676 
677           // Shift the bit we're testing down to the lsb.
678           Result = Builder->CreateLShr(
679                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
680 
681           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
682             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
683           Result->takeName(ICI);
684           return replaceInstUsesWith(CI, Result);
685         }
686       }
687     }
688   }
689 
690   return nullptr;
691 }
692 
693 /// Determine if the specified value can be computed in the specified wider type
694 /// and produce the same low bits. If not, return false.
695 ///
696 /// If this function returns true, it can also return a non-zero number of bits
697 /// (in BitsToClear) which indicates that the value it computes is correct for
698 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
699 /// out.  For example, to promote something like:
700 ///
701 ///   %B = trunc i64 %A to i32
702 ///   %C = lshr i32 %B, 8
703 ///   %E = zext i32 %C to i64
704 ///
705 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
706 /// set to 8 to indicate that the promoted value needs to have bits 24-31
707 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
708 /// clear the top bits anyway, doing this has no extra cost.
709 ///
710 /// This function works on both vectors and scalars.
711 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
712                              InstCombiner &IC, Instruction *CxtI) {
713   BitsToClear = 0;
714   if (isa<Constant>(V))
715     return true;
716 
717   Instruction *I = dyn_cast<Instruction>(V);
718   if (!I) return false;
719 
720   // If the input is a truncate from the destination type, we can trivially
721   // eliminate it.
722   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
723     return true;
724 
725   // We can't extend or shrink something that has multiple uses: doing so would
726   // require duplicating the instruction in general, which isn't profitable.
727   if (!I->hasOneUse()) return false;
728 
729   unsigned Opc = I->getOpcode(), Tmp;
730   switch (Opc) {
731   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
732   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
733   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
734     return true;
735   case Instruction::And:
736   case Instruction::Or:
737   case Instruction::Xor:
738   case Instruction::Add:
739   case Instruction::Sub:
740   case Instruction::Mul:
741     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
742         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
743       return false;
744     // These can all be promoted if neither operand has 'bits to clear'.
745     if (BitsToClear == 0 && Tmp == 0)
746       return true;
747 
748     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
749     // other side, BitsToClear is ok.
750     if (Tmp == 0 && I->isBitwiseLogicOp()) {
751       // We use MaskedValueIsZero here for generality, but the case we care
752       // about the most is constant RHS.
753       unsigned VSize = V->getType()->getScalarSizeInBits();
754       if (IC.MaskedValueIsZero(I->getOperand(1),
755                                APInt::getHighBitsSet(VSize, BitsToClear),
756                                0, CxtI))
757         return true;
758     }
759 
760     // Otherwise, we don't know how to analyze this BitsToClear case yet.
761     return false;
762 
763   case Instruction::Shl:
764     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
765     // upper bits we can reduce BitsToClear by the shift amount.
766     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
767       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
768         return false;
769       uint64_t ShiftAmt = Amt->getZExtValue();
770       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
771       return true;
772     }
773     return false;
774   case Instruction::LShr:
775     // We can promote lshr(x, cst) if we can promote x.  This requires the
776     // ultimate 'and' to clear out the high zero bits we're clearing out though.
777     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
778       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
779         return false;
780       BitsToClear += Amt->getZExtValue();
781       if (BitsToClear > V->getType()->getScalarSizeInBits())
782         BitsToClear = V->getType()->getScalarSizeInBits();
783       return true;
784     }
785     // Cannot promote variable LSHR.
786     return false;
787   case Instruction::Select:
788     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
789         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
790         // TODO: If important, we could handle the case when the BitsToClear are
791         // known zero in the disagreeing side.
792         Tmp != BitsToClear)
793       return false;
794     return true;
795 
796   case Instruction::PHI: {
797     // We can change a phi if we can change all operands.  Note that we never
798     // get into trouble with cyclic PHIs here because we only consider
799     // instructions with a single use.
800     PHINode *PN = cast<PHINode>(I);
801     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
802       return false;
803     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
804       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
805           // TODO: If important, we could handle the case when the BitsToClear
806           // are known zero in the disagreeing input.
807           Tmp != BitsToClear)
808         return false;
809     return true;
810   }
811   default:
812     // TODO: Can handle more cases here.
813     return false;
814   }
815 }
816 
817 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
818   // If this zero extend is only used by a truncate, let the truncate be
819   // eliminated before we try to optimize this zext.
820   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
821     return nullptr;
822 
823   // If one of the common conversion will work, do it.
824   if (Instruction *Result = commonCastTransforms(CI))
825     return Result;
826 
827   // See if we can simplify any instructions used by the input whose sole
828   // purpose is to compute bits we don't care about.
829   if (SimplifyDemandedInstructionBits(CI))
830     return &CI;
831 
832   Value *Src = CI.getOperand(0);
833   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
834 
835   // Attempt to extend the entire input expression tree to the destination
836   // type.   Only do this if the dest type is a simple type, don't convert the
837   // expression tree to something weird like i93 unless the source is also
838   // strange.
839   unsigned BitsToClear;
840   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
841       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
842     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
843            "Unreasonable BitsToClear");
844 
845     // Okay, we can transform this!  Insert the new expression now.
846     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
847           " to avoid zero extend: " << CI << '\n');
848     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
849     assert(Res->getType() == DestTy);
850 
851     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
852     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
853 
854     // If the high bits are already filled with zeros, just replace this
855     // cast with the result.
856     if (MaskedValueIsZero(Res,
857                           APInt::getHighBitsSet(DestBitSize,
858                                                 DestBitSize-SrcBitsKept),
859                              0, &CI))
860       return replaceInstUsesWith(CI, Res);
861 
862     // We need to emit an AND to clear the high bits.
863     Constant *C = ConstantInt::get(Res->getType(),
864                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
865     return BinaryOperator::CreateAnd(Res, C);
866   }
867 
868   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
869   // types and if the sizes are just right we can convert this into a logical
870   // 'and' which will be much cheaper than the pair of casts.
871   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
872     // TODO: Subsume this into EvaluateInDifferentType.
873 
874     // Get the sizes of the types involved.  We know that the intermediate type
875     // will be smaller than A or C, but don't know the relation between A and C.
876     Value *A = CSrc->getOperand(0);
877     unsigned SrcSize = A->getType()->getScalarSizeInBits();
878     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
879     unsigned DstSize = CI.getType()->getScalarSizeInBits();
880     // If we're actually extending zero bits, then if
881     // SrcSize <  DstSize: zext(a & mask)
882     // SrcSize == DstSize: a & mask
883     // SrcSize  > DstSize: trunc(a) & mask
884     if (SrcSize < DstSize) {
885       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
886       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
887       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
888       return new ZExtInst(And, CI.getType());
889     }
890 
891     if (SrcSize == DstSize) {
892       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
893       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
894                                                            AndValue));
895     }
896     if (SrcSize > DstSize) {
897       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
898       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
899       return BinaryOperator::CreateAnd(Trunc,
900                                        ConstantInt::get(Trunc->getType(),
901                                                         AndValue));
902     }
903   }
904 
905   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
906     return transformZExtICmp(ICI, CI);
907 
908   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
909   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
910     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
911     // of the (zext icmp) can be eliminated. If so, immediately perform the
912     // according elimination.
913     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
914     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
915     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
916         (transformZExtICmp(LHS, CI, false) ||
917          transformZExtICmp(RHS, CI, false))) {
918       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
919       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
920       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
921       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
922 
923       // Perform the elimination.
924       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
925         transformZExtICmp(LHS, *LZExt);
926       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
927         transformZExtICmp(RHS, *RZExt);
928 
929       return Or;
930     }
931   }
932 
933   // zext(trunc(X) & C) -> (X & zext(C)).
934   Constant *C;
935   Value *X;
936   if (SrcI &&
937       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
938       X->getType() == CI.getType())
939     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
940 
941   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
942   Value *And;
943   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
944       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
945       X->getType() == CI.getType()) {
946     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
947     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
948   }
949 
950   return nullptr;
951 }
952 
953 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
954 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
955   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
956   ICmpInst::Predicate Pred = ICI->getPredicate();
957 
958   // Don't bother if Op1 isn't of vector or integer type.
959   if (!Op1->getType()->isIntOrIntVectorTy())
960     return nullptr;
961 
962   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
963     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
964     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
965     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
966         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
967 
968       Value *Sh = ConstantInt::get(Op0->getType(),
969                                    Op0->getType()->getScalarSizeInBits()-1);
970       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
971       if (In->getType() != CI.getType())
972         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
973 
974       if (Pred == ICmpInst::ICMP_SGT)
975         In = Builder->CreateNot(In, In->getName()+".not");
976       return replaceInstUsesWith(CI, In);
977     }
978   }
979 
980   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
981     // If we know that only one bit of the LHS of the icmp can be set and we
982     // have an equality comparison with zero or a power of 2, we can transform
983     // the icmp and sext into bitwise/integer operations.
984     if (ICI->hasOneUse() &&
985         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
986       unsigned BitWidth = Op1C->getType()->getBitWidth();
987       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
988       computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
989 
990       APInt KnownZeroMask(~KnownZero);
991       if (KnownZeroMask.isPowerOf2()) {
992         Value *In = ICI->getOperand(0);
993 
994         // If the icmp tests for a known zero bit we can constant fold it.
995         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
996           Value *V = Pred == ICmpInst::ICMP_NE ?
997                        ConstantInt::getAllOnesValue(CI.getType()) :
998                        ConstantInt::getNullValue(CI.getType());
999           return replaceInstUsesWith(CI, V);
1000         }
1001 
1002         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1003           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1004           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1005           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1006           // Perform a right shift to place the desired bit in the LSB.
1007           if (ShiftAmt)
1008             In = Builder->CreateLShr(In,
1009                                      ConstantInt::get(In->getType(), ShiftAmt));
1010 
1011           // At this point "In" is either 1 or 0. Subtract 1 to turn
1012           // {1, 0} -> {0, -1}.
1013           In = Builder->CreateAdd(In,
1014                                   ConstantInt::getAllOnesValue(In->getType()),
1015                                   "sext");
1016         } else {
1017           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1018           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1019           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1020           // Perform a left shift to place the desired bit in the MSB.
1021           if (ShiftAmt)
1022             In = Builder->CreateShl(In,
1023                                     ConstantInt::get(In->getType(), ShiftAmt));
1024 
1025           // Distribute the bit over the whole bit width.
1026           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1027                                                         BitWidth - 1), "sext");
1028         }
1029 
1030         if (CI.getType() == In->getType())
1031           return replaceInstUsesWith(CI, In);
1032         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1033       }
1034     }
1035   }
1036 
1037   return nullptr;
1038 }
1039 
1040 /// Return true if we can take the specified value and return it as type Ty
1041 /// without inserting any new casts and without changing the value of the common
1042 /// low bits.  This is used by code that tries to promote integer operations to
1043 /// a wider types will allow us to eliminate the extension.
1044 ///
1045 /// This function works on both vectors and scalars.
1046 ///
1047 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1048   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1049          "Can't sign extend type to a smaller type");
1050   // If this is a constant, it can be trivially promoted.
1051   if (isa<Constant>(V))
1052     return true;
1053 
1054   Instruction *I = dyn_cast<Instruction>(V);
1055   if (!I) return false;
1056 
1057   // If this is a truncate from the dest type, we can trivially eliminate it.
1058   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1059     return true;
1060 
1061   // We can't extend or shrink something that has multiple uses: doing so would
1062   // require duplicating the instruction in general, which isn't profitable.
1063   if (!I->hasOneUse()) return false;
1064 
1065   switch (I->getOpcode()) {
1066   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1067   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1068   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1069     return true;
1070   case Instruction::And:
1071   case Instruction::Or:
1072   case Instruction::Xor:
1073   case Instruction::Add:
1074   case Instruction::Sub:
1075   case Instruction::Mul:
1076     // These operators can all arbitrarily be extended if their inputs can.
1077     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1078            canEvaluateSExtd(I->getOperand(1), Ty);
1079 
1080   //case Instruction::Shl:   TODO
1081   //case Instruction::LShr:  TODO
1082 
1083   case Instruction::Select:
1084     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1085            canEvaluateSExtd(I->getOperand(2), Ty);
1086 
1087   case Instruction::PHI: {
1088     // We can change a phi if we can change all operands.  Note that we never
1089     // get into trouble with cyclic PHIs here because we only consider
1090     // instructions with a single use.
1091     PHINode *PN = cast<PHINode>(I);
1092     for (Value *IncValue : PN->incoming_values())
1093       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1094     return true;
1095   }
1096   default:
1097     // TODO: Can handle more cases here.
1098     break;
1099   }
1100 
1101   return false;
1102 }
1103 
1104 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1105   // If this sign extend is only used by a truncate, let the truncate be
1106   // eliminated before we try to optimize this sext.
1107   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1108     return nullptr;
1109 
1110   if (Instruction *I = commonCastTransforms(CI))
1111     return I;
1112 
1113   // See if we can simplify any instructions used by the input whose sole
1114   // purpose is to compute bits we don't care about.
1115   if (SimplifyDemandedInstructionBits(CI))
1116     return &CI;
1117 
1118   Value *Src = CI.getOperand(0);
1119   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1120 
1121   // If we know that the value being extended is positive, we can use a zext
1122   // instead.
1123   bool KnownZero, KnownOne;
1124   ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1125   if (KnownZero) {
1126     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1127     return replaceInstUsesWith(CI, ZExt);
1128   }
1129 
1130   // Attempt to extend the entire input expression tree to the destination
1131   // type.   Only do this if the dest type is a simple type, don't convert the
1132   // expression tree to something weird like i93 unless the source is also
1133   // strange.
1134   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1135       canEvaluateSExtd(Src, DestTy)) {
1136     // Okay, we can transform this!  Insert the new expression now.
1137     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1138           " to avoid sign extend: " << CI << '\n');
1139     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1140     assert(Res->getType() == DestTy);
1141 
1142     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1143     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1144 
1145     // If the high bits are already filled with sign bit, just replace this
1146     // cast with the result.
1147     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1148       return replaceInstUsesWith(CI, Res);
1149 
1150     // We need to emit a shl + ashr to do the sign extend.
1151     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1152     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1153                                       ShAmt);
1154   }
1155 
1156   // If this input is a trunc from our destination, then turn sext(trunc(x))
1157   // into shifts.
1158   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1159     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1160       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1161       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1162 
1163       // We need to emit a shl + ashr to do the sign extend.
1164       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1165       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1166       return BinaryOperator::CreateAShr(Res, ShAmt);
1167     }
1168 
1169   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1170     return transformSExtICmp(ICI, CI);
1171 
1172   // If the input is a shl/ashr pair of a same constant, then this is a sign
1173   // extension from a smaller value.  If we could trust arbitrary bitwidth
1174   // integers, we could turn this into a truncate to the smaller bit and then
1175   // use a sext for the whole extension.  Since we don't, look deeper and check
1176   // for a truncate.  If the source and dest are the same type, eliminate the
1177   // trunc and extend and just do shifts.  For example, turn:
1178   //   %a = trunc i32 %i to i8
1179   //   %b = shl i8 %a, 6
1180   //   %c = ashr i8 %b, 6
1181   //   %d = sext i8 %c to i32
1182   // into:
1183   //   %a = shl i32 %i, 30
1184   //   %d = ashr i32 %a, 30
1185   Value *A = nullptr;
1186   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1187   ConstantInt *BA = nullptr, *CA = nullptr;
1188   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1189                         m_ConstantInt(CA))) &&
1190       BA == CA && A->getType() == CI.getType()) {
1191     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1192     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1193     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1194     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1195     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1196     return BinaryOperator::CreateAShr(A, ShAmtV);
1197   }
1198 
1199   return nullptr;
1200 }
1201 
1202 
1203 /// Return a Constant* for the specified floating-point constant if it fits
1204 /// in the specified FP type without changing its value.
1205 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1206   bool losesInfo;
1207   APFloat F = CFP->getValueAPF();
1208   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1209   if (!losesInfo)
1210     return ConstantFP::get(CFP->getContext(), F);
1211   return nullptr;
1212 }
1213 
1214 /// If this is a floating-point extension instruction, look
1215 /// through it until we get the source value.
1216 static Value *lookThroughFPExtensions(Value *V) {
1217   if (Instruction *I = dyn_cast<Instruction>(V))
1218     if (I->getOpcode() == Instruction::FPExt)
1219       return lookThroughFPExtensions(I->getOperand(0));
1220 
1221   // If this value is a constant, return the constant in the smallest FP type
1222   // that can accurately represent it.  This allows us to turn
1223   // (float)((double)X+2.0) into x+2.0f.
1224   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1225     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1226       return V;  // No constant folding of this.
1227     // See if the value can be truncated to half and then reextended.
1228     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
1229       return V;
1230     // See if the value can be truncated to float and then reextended.
1231     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
1232       return V;
1233     if (CFP->getType()->isDoubleTy())
1234       return V;  // Won't shrink.
1235     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
1236       return V;
1237     // Don't try to shrink to various long double types.
1238   }
1239 
1240   return V;
1241 }
1242 
1243 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1244   if (Instruction *I = commonCastTransforms(CI))
1245     return I;
1246   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1247   // simplify this expression to avoid one or more of the trunc/extend
1248   // operations if we can do so without changing the numerical results.
1249   //
1250   // The exact manner in which the widths of the operands interact to limit
1251   // what we can and cannot do safely varies from operation to operation, and
1252   // is explained below in the various case statements.
1253   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1254   if (OpI && OpI->hasOneUse()) {
1255     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1256     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1257     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1258     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1259     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1260     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1261     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1262     switch (OpI->getOpcode()) {
1263       default: break;
1264       case Instruction::FAdd:
1265       case Instruction::FSub:
1266         // For addition and subtraction, the infinitely precise result can
1267         // essentially be arbitrarily wide; proving that double rounding
1268         // will not occur because the result of OpI is exact (as we will for
1269         // FMul, for example) is hopeless.  However, we *can* nonetheless
1270         // frequently know that double rounding cannot occur (or that it is
1271         // innocuous) by taking advantage of the specific structure of
1272         // infinitely-precise results that admit double rounding.
1273         //
1274         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1275         // to represent both sources, we can guarantee that the double
1276         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1277         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1278         // for proof of this fact).
1279         //
1280         // Note: Figueroa does not consider the case where DstFormat !=
1281         // SrcFormat.  It's possible (likely even!) that this analysis
1282         // could be tightened for those cases, but they are rare (the main
1283         // case of interest here is (float)((double)float + float)).
1284         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1285           if (LHSOrig->getType() != CI.getType())
1286             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1287           if (RHSOrig->getType() != CI.getType())
1288             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1289           Instruction *RI =
1290             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1291           RI->copyFastMathFlags(OpI);
1292           return RI;
1293         }
1294         break;
1295       case Instruction::FMul:
1296         // For multiplication, the infinitely precise result has at most
1297         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1298         // that such a value can be exactly represented, then no double
1299         // rounding can possibly occur; we can safely perform the operation
1300         // in the destination format if it can represent both sources.
1301         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1302           if (LHSOrig->getType() != CI.getType())
1303             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1304           if (RHSOrig->getType() != CI.getType())
1305             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1306           Instruction *RI =
1307             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1308           RI->copyFastMathFlags(OpI);
1309           return RI;
1310         }
1311         break;
1312       case Instruction::FDiv:
1313         // For division, we use again use the bound from Figueroa's
1314         // dissertation.  I am entirely certain that this bound can be
1315         // tightened in the unbalanced operand case by an analysis based on
1316         // the diophantine rational approximation bound, but the well-known
1317         // condition used here is a good conservative first pass.
1318         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1319         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1320           if (LHSOrig->getType() != CI.getType())
1321             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1322           if (RHSOrig->getType() != CI.getType())
1323             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1324           Instruction *RI =
1325             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1326           RI->copyFastMathFlags(OpI);
1327           return RI;
1328         }
1329         break;
1330       case Instruction::FRem:
1331         // Remainder is straightforward.  Remainder is always exact, so the
1332         // type of OpI doesn't enter into things at all.  We simply evaluate
1333         // in whichever source type is larger, then convert to the
1334         // destination type.
1335         if (SrcWidth == OpWidth)
1336           break;
1337         if (LHSWidth < SrcWidth)
1338           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1339         else if (RHSWidth <= SrcWidth)
1340           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1341         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1342           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1343           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1344             RI->copyFastMathFlags(OpI);
1345           return CastInst::CreateFPCast(ExactResult, CI.getType());
1346         }
1347     }
1348 
1349     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1350     if (BinaryOperator::isFNeg(OpI)) {
1351       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1352                                                  CI.getType());
1353       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1354       RI->copyFastMathFlags(OpI);
1355       return RI;
1356     }
1357   }
1358 
1359   // (fptrunc (select cond, R1, Cst)) -->
1360   // (select cond, (fptrunc R1), (fptrunc Cst))
1361   //
1362   //  - but only if this isn't part of a min/max operation, else we'll
1363   // ruin min/max canonical form which is to have the select and
1364   // compare's operands be of the same type with no casts to look through.
1365   Value *LHS, *RHS;
1366   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1367   if (SI &&
1368       (isa<ConstantFP>(SI->getOperand(1)) ||
1369        isa<ConstantFP>(SI->getOperand(2))) &&
1370       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1371     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1372                                              CI.getType());
1373     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1374                                              CI.getType());
1375     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1376   }
1377 
1378   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1379   if (II) {
1380     switch (II->getIntrinsicID()) {
1381       default: break;
1382       case Intrinsic::fabs: {
1383         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1384         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1385                                                    CI.getType());
1386         Type *IntrinsicType[] = { CI.getType() };
1387         Function *Overload = Intrinsic::getDeclaration(
1388             CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1389 
1390         SmallVector<OperandBundleDef, 1> OpBundles;
1391         II->getOperandBundlesAsDefs(OpBundles);
1392 
1393         Value *Args[] = { InnerTrunc };
1394         return CallInst::Create(Overload, Args, OpBundles, II->getName());
1395       }
1396     }
1397   }
1398 
1399   return nullptr;
1400 }
1401 
1402 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1403   return commonCastTransforms(CI);
1404 }
1405 
1406 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1407 // This is safe if the intermediate type has enough bits in its mantissa to
1408 // accurately represent all values of X.  For example, this won't work with
1409 // i64 -> float -> i64.
1410 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1411   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1412     return nullptr;
1413   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1414 
1415   Value *SrcI = OpI->getOperand(0);
1416   Type *FITy = FI.getType();
1417   Type *OpITy = OpI->getType();
1418   Type *SrcTy = SrcI->getType();
1419   bool IsInputSigned = isa<SIToFPInst>(OpI);
1420   bool IsOutputSigned = isa<FPToSIInst>(FI);
1421 
1422   // We can safely assume the conversion won't overflow the output range,
1423   // because (for example) (uint8_t)18293.f is undefined behavior.
1424 
1425   // Since we can assume the conversion won't overflow, our decision as to
1426   // whether the input will fit in the float should depend on the minimum
1427   // of the input range and output range.
1428 
1429   // This means this is also safe for a signed input and unsigned output, since
1430   // a negative input would lead to undefined behavior.
1431   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1432   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1433   int ActualSize = std::min(InputSize, OutputSize);
1434 
1435   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1436     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1437       if (IsInputSigned && IsOutputSigned)
1438         return new SExtInst(SrcI, FITy);
1439       return new ZExtInst(SrcI, FITy);
1440     }
1441     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1442       return new TruncInst(SrcI, FITy);
1443     if (SrcTy == FITy)
1444       return replaceInstUsesWith(FI, SrcI);
1445     return new BitCastInst(SrcI, FITy);
1446   }
1447   return nullptr;
1448 }
1449 
1450 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1451   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1452   if (!OpI)
1453     return commonCastTransforms(FI);
1454 
1455   if (Instruction *I = FoldItoFPtoI(FI))
1456     return I;
1457 
1458   return commonCastTransforms(FI);
1459 }
1460 
1461 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1462   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1463   if (!OpI)
1464     return commonCastTransforms(FI);
1465 
1466   if (Instruction *I = FoldItoFPtoI(FI))
1467     return I;
1468 
1469   return commonCastTransforms(FI);
1470 }
1471 
1472 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1473   return commonCastTransforms(CI);
1474 }
1475 
1476 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1477   return commonCastTransforms(CI);
1478 }
1479 
1480 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1481   // If the source integer type is not the intptr_t type for this target, do a
1482   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1483   // cast to be exposed to other transforms.
1484   unsigned AS = CI.getAddressSpace();
1485   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1486       DL.getPointerSizeInBits(AS)) {
1487     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1488     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1489       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1490 
1491     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1492     return new IntToPtrInst(P, CI.getType());
1493   }
1494 
1495   if (Instruction *I = commonCastTransforms(CI))
1496     return I;
1497 
1498   return nullptr;
1499 }
1500 
1501 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1502 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1503   Value *Src = CI.getOperand(0);
1504 
1505   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1506     // If casting the result of a getelementptr instruction with no offset, turn
1507     // this into a cast of the original pointer!
1508     if (GEP->hasAllZeroIndices() &&
1509         // If CI is an addrspacecast and GEP changes the poiner type, merging
1510         // GEP into CI would undo canonicalizing addrspacecast with different
1511         // pointer types, causing infinite loops.
1512         (!isa<AddrSpaceCastInst>(CI) ||
1513           GEP->getType() == GEP->getPointerOperand()->getType())) {
1514       // Changing the cast operand is usually not a good idea but it is safe
1515       // here because the pointer operand is being replaced with another
1516       // pointer operand so the opcode doesn't need to change.
1517       Worklist.Add(GEP);
1518       CI.setOperand(0, GEP->getOperand(0));
1519       return &CI;
1520     }
1521   }
1522 
1523   return commonCastTransforms(CI);
1524 }
1525 
1526 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1527   // If the destination integer type is not the intptr_t type for this target,
1528   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1529   // to be exposed to other transforms.
1530 
1531   Type *Ty = CI.getType();
1532   unsigned AS = CI.getPointerAddressSpace();
1533 
1534   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1535     return commonPointerCastTransforms(CI);
1536 
1537   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1538   if (Ty->isVectorTy()) // Handle vectors of pointers.
1539     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1540 
1541   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1542   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1543 }
1544 
1545 /// This input value (which is known to have vector type) is being zero extended
1546 /// or truncated to the specified vector type.
1547 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1548 ///
1549 /// The source and destination vector types may have different element types.
1550 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1551                                          InstCombiner &IC) {
1552   // We can only do this optimization if the output is a multiple of the input
1553   // element size, or the input is a multiple of the output element size.
1554   // Convert the input type to have the same element type as the output.
1555   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1556 
1557   if (SrcTy->getElementType() != DestTy->getElementType()) {
1558     // The input types don't need to be identical, but for now they must be the
1559     // same size.  There is no specific reason we couldn't handle things like
1560     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1561     // there yet.
1562     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1563         DestTy->getElementType()->getPrimitiveSizeInBits())
1564       return nullptr;
1565 
1566     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1567     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1568   }
1569 
1570   // Now that the element types match, get the shuffle mask and RHS of the
1571   // shuffle to use, which depends on whether we're increasing or decreasing the
1572   // size of the input.
1573   SmallVector<uint32_t, 16> ShuffleMask;
1574   Value *V2;
1575 
1576   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1577     // If we're shrinking the number of elements, just shuffle in the low
1578     // elements from the input and use undef as the second shuffle input.
1579     V2 = UndefValue::get(SrcTy);
1580     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1581       ShuffleMask.push_back(i);
1582 
1583   } else {
1584     // If we're increasing the number of elements, shuffle in all of the
1585     // elements from InVal and fill the rest of the result elements with zeros
1586     // from a constant zero.
1587     V2 = Constant::getNullValue(SrcTy);
1588     unsigned SrcElts = SrcTy->getNumElements();
1589     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1590       ShuffleMask.push_back(i);
1591 
1592     // The excess elements reference the first element of the zero input.
1593     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1594       ShuffleMask.push_back(SrcElts);
1595   }
1596 
1597   return new ShuffleVectorInst(InVal, V2,
1598                                ConstantDataVector::get(V2->getContext(),
1599                                                        ShuffleMask));
1600 }
1601 
1602 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1603   return Value % Ty->getPrimitiveSizeInBits() == 0;
1604 }
1605 
1606 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1607   return Value / Ty->getPrimitiveSizeInBits();
1608 }
1609 
1610 /// V is a value which is inserted into a vector of VecEltTy.
1611 /// Look through the value to see if we can decompose it into
1612 /// insertions into the vector.  See the example in the comment for
1613 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1614 /// The type of V is always a non-zero multiple of VecEltTy's size.
1615 /// Shift is the number of bits between the lsb of V and the lsb of
1616 /// the vector.
1617 ///
1618 /// This returns false if the pattern can't be matched or true if it can,
1619 /// filling in Elements with the elements found here.
1620 static bool collectInsertionElements(Value *V, unsigned Shift,
1621                                      SmallVectorImpl<Value *> &Elements,
1622                                      Type *VecEltTy, bool isBigEndian) {
1623   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1624          "Shift should be a multiple of the element type size");
1625 
1626   // Undef values never contribute useful bits to the result.
1627   if (isa<UndefValue>(V)) return true;
1628 
1629   // If we got down to a value of the right type, we win, try inserting into the
1630   // right element.
1631   if (V->getType() == VecEltTy) {
1632     // Inserting null doesn't actually insert any elements.
1633     if (Constant *C = dyn_cast<Constant>(V))
1634       if (C->isNullValue())
1635         return true;
1636 
1637     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1638     if (isBigEndian)
1639       ElementIndex = Elements.size() - ElementIndex - 1;
1640 
1641     // Fail if multiple elements are inserted into this slot.
1642     if (Elements[ElementIndex])
1643       return false;
1644 
1645     Elements[ElementIndex] = V;
1646     return true;
1647   }
1648 
1649   if (Constant *C = dyn_cast<Constant>(V)) {
1650     // Figure out the # elements this provides, and bitcast it or slice it up
1651     // as required.
1652     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1653                                         VecEltTy);
1654     // If the constant is the size of a vector element, we just need to bitcast
1655     // it to the right type so it gets properly inserted.
1656     if (NumElts == 1)
1657       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1658                                       Shift, Elements, VecEltTy, isBigEndian);
1659 
1660     // Okay, this is a constant that covers multiple elements.  Slice it up into
1661     // pieces and insert each element-sized piece into the vector.
1662     if (!isa<IntegerType>(C->getType()))
1663       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1664                                        C->getType()->getPrimitiveSizeInBits()));
1665     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1666     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1667 
1668     for (unsigned i = 0; i != NumElts; ++i) {
1669       unsigned ShiftI = Shift+i*ElementSize;
1670       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1671                                                                   ShiftI));
1672       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1673       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1674                                     isBigEndian))
1675         return false;
1676     }
1677     return true;
1678   }
1679 
1680   if (!V->hasOneUse()) return false;
1681 
1682   Instruction *I = dyn_cast<Instruction>(V);
1683   if (!I) return false;
1684   switch (I->getOpcode()) {
1685   default: return false; // Unhandled case.
1686   case Instruction::BitCast:
1687     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1688                                     isBigEndian);
1689   case Instruction::ZExt:
1690     if (!isMultipleOfTypeSize(
1691                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1692                               VecEltTy))
1693       return false;
1694     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1695                                     isBigEndian);
1696   case Instruction::Or:
1697     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1698                                     isBigEndian) &&
1699            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1700                                     isBigEndian);
1701   case Instruction::Shl: {
1702     // Must be shifting by a constant that is a multiple of the element size.
1703     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1704     if (!CI) return false;
1705     Shift += CI->getZExtValue();
1706     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1707     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1708                                     isBigEndian);
1709   }
1710 
1711   }
1712 }
1713 
1714 
1715 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1716 /// assemble the elements of the vector manually.
1717 /// Try to rip the code out and replace it with insertelements.  This is to
1718 /// optimize code like this:
1719 ///
1720 ///    %tmp37 = bitcast float %inc to i32
1721 ///    %tmp38 = zext i32 %tmp37 to i64
1722 ///    %tmp31 = bitcast float %inc5 to i32
1723 ///    %tmp32 = zext i32 %tmp31 to i64
1724 ///    %tmp33 = shl i64 %tmp32, 32
1725 ///    %ins35 = or i64 %tmp33, %tmp38
1726 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1727 ///
1728 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1729 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1730                                                 InstCombiner &IC) {
1731   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1732   Value *IntInput = CI.getOperand(0);
1733 
1734   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1735   if (!collectInsertionElements(IntInput, 0, Elements,
1736                                 DestVecTy->getElementType(),
1737                                 IC.getDataLayout().isBigEndian()))
1738     return nullptr;
1739 
1740   // If we succeeded, we know that all of the element are specified by Elements
1741   // or are zero if Elements has a null entry.  Recast this as a set of
1742   // insertions.
1743   Value *Result = Constant::getNullValue(CI.getType());
1744   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1745     if (!Elements[i]) continue;  // Unset element.
1746 
1747     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1748                                              IC.Builder->getInt32(i));
1749   }
1750 
1751   return Result;
1752 }
1753 
1754 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1755 /// vector followed by extract element. The backend tends to handle bitcasts of
1756 /// vectors better than bitcasts of scalars because vector registers are
1757 /// usually not type-specific like scalar integer or scalar floating-point.
1758 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1759                                               InstCombiner &IC,
1760                                               const DataLayout &DL) {
1761   // TODO: Create and use a pattern matcher for ExtractElementInst.
1762   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1763   if (!ExtElt || !ExtElt->hasOneUse())
1764     return nullptr;
1765 
1766   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1767   // type to extract from.
1768   Type *DestType = BitCast.getType();
1769   if (!VectorType::isValidElementType(DestType))
1770     return nullptr;
1771 
1772   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1773   auto *NewVecType = VectorType::get(DestType, NumElts);
1774   auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1775                                           NewVecType, "bc");
1776   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1777 }
1778 
1779 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
1780 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
1781                                             InstCombiner::BuilderTy &Builder) {
1782   Type *DestTy = BitCast.getType();
1783   BinaryOperator *BO;
1784   if (!DestTy->getScalarType()->isIntegerTy() ||
1785       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
1786       !BO->isBitwiseLogicOp())
1787     return nullptr;
1788 
1789   // FIXME: This transform is restricted to vector types to avoid backend
1790   // problems caused by creating potentially illegal operations. If a fix-up is
1791   // added to handle that situation, we can remove this check.
1792   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
1793     return nullptr;
1794 
1795   Value *X;
1796   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
1797       X->getType() == DestTy && !isa<Constant>(X)) {
1798     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
1799     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
1800     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
1801   }
1802 
1803   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
1804       X->getType() == DestTy && !isa<Constant>(X)) {
1805     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
1806     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
1807     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
1808   }
1809 
1810   return nullptr;
1811 }
1812 
1813 /// Check if all users of CI are StoreInsts.
1814 static bool hasStoreUsersOnly(CastInst &CI) {
1815   for (User *U : CI.users()) {
1816     if (!isa<StoreInst>(U))
1817       return false;
1818   }
1819   return true;
1820 }
1821 
1822 /// This function handles following case
1823 ///
1824 ///     A  ->  B    cast
1825 ///     PHI
1826 ///     B  ->  A    cast
1827 ///
1828 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
1829 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
1830 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
1831   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
1832   if (hasStoreUsersOnly(CI))
1833     return nullptr;
1834 
1835   Value *Src = CI.getOperand(0);
1836   Type *SrcTy = Src->getType();         // Type B
1837   Type *DestTy = CI.getType();          // Type A
1838 
1839   SmallVector<PHINode *, 4> PhiWorklist;
1840   SmallSetVector<PHINode *, 4> OldPhiNodes;
1841 
1842   // Find all of the A->B casts and PHI nodes.
1843   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
1844   // OldPhiNodes is used to track all known PHI nodes, before adding a new
1845   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
1846   PhiWorklist.push_back(PN);
1847   OldPhiNodes.insert(PN);
1848   while (!PhiWorklist.empty()) {
1849     auto *OldPN = PhiWorklist.pop_back_val();
1850     for (Value *IncValue : OldPN->incoming_values()) {
1851       if (isa<Constant>(IncValue))
1852         continue;
1853 
1854       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
1855         // If there is a sequence of one or more load instructions, each loaded
1856         // value is used as address of later load instruction, bitcast is
1857         // necessary to change the value type, don't optimize it. For
1858         // simplicity we give up if the load address comes from another load.
1859         Value *Addr = LI->getOperand(0);
1860         if (Addr == &CI || isa<LoadInst>(Addr))
1861           return nullptr;
1862         if (LI->hasOneUse() && LI->isSimple())
1863           continue;
1864         // If a LoadInst has more than one use, changing the type of loaded
1865         // value may create another bitcast.
1866         return nullptr;
1867       }
1868 
1869       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
1870         if (OldPhiNodes.insert(PNode))
1871           PhiWorklist.push_back(PNode);
1872         continue;
1873       }
1874 
1875       auto *BCI = dyn_cast<BitCastInst>(IncValue);
1876       // We can't handle other instructions.
1877       if (!BCI)
1878         return nullptr;
1879 
1880       // Verify it's a A->B cast.
1881       Type *TyA = BCI->getOperand(0)->getType();
1882       Type *TyB = BCI->getType();
1883       if (TyA != DestTy || TyB != SrcTy)
1884         return nullptr;
1885     }
1886   }
1887 
1888   // For each old PHI node, create a corresponding new PHI node with a type A.
1889   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
1890   for (auto *OldPN : OldPhiNodes) {
1891     Builder->SetInsertPoint(OldPN);
1892     PHINode *NewPN = Builder->CreatePHI(DestTy, OldPN->getNumOperands());
1893     NewPNodes[OldPN] = NewPN;
1894   }
1895 
1896   // Fill in the operands of new PHI nodes.
1897   for (auto *OldPN : OldPhiNodes) {
1898     PHINode *NewPN = NewPNodes[OldPN];
1899     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
1900       Value *V = OldPN->getOperand(j);
1901       Value *NewV = nullptr;
1902       if (auto *C = dyn_cast<Constant>(V)) {
1903         NewV = ConstantExpr::getBitCast(C, DestTy);
1904       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
1905         Builder->SetInsertPoint(LI->getNextNode());
1906         NewV = Builder->CreateBitCast(LI, DestTy);
1907         Worklist.Add(LI);
1908       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
1909         NewV = BCI->getOperand(0);
1910       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
1911         NewV = NewPNodes[PrevPN];
1912       }
1913       assert(NewV);
1914       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
1915     }
1916   }
1917 
1918   // If there is a store with type B, change it to type A.
1919   for (User *U : PN->users()) {
1920     auto *SI = dyn_cast<StoreInst>(U);
1921     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
1922       Builder->SetInsertPoint(SI);
1923       auto *NewBC =
1924           cast<BitCastInst>(Builder->CreateBitCast(NewPNodes[PN], SrcTy));
1925       SI->setOperand(0, NewBC);
1926       Worklist.Add(SI);
1927       assert(hasStoreUsersOnly(*NewBC));
1928     }
1929   }
1930 
1931   return replaceInstUsesWith(CI, NewPNodes[PN]);
1932 }
1933 
1934 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1935   // If the operands are integer typed then apply the integer transforms,
1936   // otherwise just apply the common ones.
1937   Value *Src = CI.getOperand(0);
1938   Type *SrcTy = Src->getType();
1939   Type *DestTy = CI.getType();
1940 
1941   // Get rid of casts from one type to the same type. These are useless and can
1942   // be replaced by the operand.
1943   if (DestTy == Src->getType())
1944     return replaceInstUsesWith(CI, Src);
1945 
1946   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1947     PointerType *SrcPTy = cast<PointerType>(SrcTy);
1948     Type *DstElTy = DstPTy->getElementType();
1949     Type *SrcElTy = SrcPTy->getElementType();
1950 
1951     // If we are casting a alloca to a pointer to a type of the same
1952     // size, rewrite the allocation instruction to allocate the "right" type.
1953     // There is no need to modify malloc calls because it is their bitcast that
1954     // needs to be cleaned up.
1955     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1956       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1957         return V;
1958 
1959     // When the type pointed to is not sized the cast cannot be
1960     // turned into a gep.
1961     Type *PointeeType =
1962         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
1963     if (!PointeeType->isSized())
1964       return nullptr;
1965 
1966     // If the source and destination are pointers, and this cast is equivalent
1967     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1968     // This can enhance SROA and other transforms that want type-safe pointers.
1969     unsigned NumZeros = 0;
1970     while (SrcElTy != DstElTy &&
1971            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1972            SrcElTy->getNumContainedTypes() /* not "{}" */) {
1973       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
1974       ++NumZeros;
1975     }
1976 
1977     // If we found a path from the src to dest, create the getelementptr now.
1978     if (SrcElTy == DstElTy) {
1979       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
1980       return GetElementPtrInst::CreateInBounds(Src, Idxs);
1981     }
1982   }
1983 
1984   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1985     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1986       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1987       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1988                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1989       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1990     }
1991 
1992     if (isa<IntegerType>(SrcTy)) {
1993       // If this is a cast from an integer to vector, check to see if the input
1994       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1995       // the casts with a shuffle and (potentially) a bitcast.
1996       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1997         CastInst *SrcCast = cast<CastInst>(Src);
1998         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1999           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2000             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2001                                                cast<VectorType>(DestTy), *this))
2002               return I;
2003       }
2004 
2005       // If the input is an 'or' instruction, we may be doing shifts and ors to
2006       // assemble the elements of the vector manually.  Try to rip the code out
2007       // and replace it with insertelements.
2008       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2009         return replaceInstUsesWith(CI, V);
2010     }
2011   }
2012 
2013   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2014     if (SrcVTy->getNumElements() == 1) {
2015       // If our destination is not a vector, then make this a straight
2016       // scalar-scalar cast.
2017       if (!DestTy->isVectorTy()) {
2018         Value *Elem =
2019           Builder->CreateExtractElement(Src,
2020                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2021         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2022       }
2023 
2024       // Otherwise, see if our source is an insert. If so, then use the scalar
2025       // component directly.
2026       if (InsertElementInst *IEI =
2027             dyn_cast<InsertElementInst>(CI.getOperand(0)))
2028         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2029                                 DestTy);
2030     }
2031   }
2032 
2033   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2034     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2035     // a bitcast to a vector with the same # elts.
2036     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2037         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2038         SVI->getType()->getNumElements() ==
2039         SVI->getOperand(0)->getType()->getVectorNumElements()) {
2040       BitCastInst *Tmp;
2041       // If either of the operands is a cast from CI.getType(), then
2042       // evaluating the shuffle in the casted destination's type will allow
2043       // us to eliminate at least one cast.
2044       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2045            Tmp->getOperand(0)->getType() == DestTy) ||
2046           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2047            Tmp->getOperand(0)->getType() == DestTy)) {
2048         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
2049         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
2050         // Return a new shuffle vector.  Use the same element ID's, as we
2051         // know the vector types match #elts.
2052         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2053       }
2054     }
2055   }
2056 
2057   // Handle the A->B->A cast, and there is an intervening PHI node.
2058   if (PHINode *PN = dyn_cast<PHINode>(Src))
2059     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2060       return I;
2061 
2062   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
2063     return I;
2064 
2065   if (Instruction *I = foldBitCastBitwiseLogic(CI, *Builder))
2066     return I;
2067 
2068   if (SrcTy->isPointerTy())
2069     return commonPointerCastTransforms(CI);
2070   return commonCastTransforms(CI);
2071 }
2072 
2073 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2074   // If the destination pointer element type is not the same as the source's
2075   // first do a bitcast to the destination type, and then the addrspacecast.
2076   // This allows the cast to be exposed to other transforms.
2077   Value *Src = CI.getOperand(0);
2078   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2079   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2080 
2081   Type *DestElemTy = DestTy->getElementType();
2082   if (SrcTy->getElementType() != DestElemTy) {
2083     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2084     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2085       // Handle vectors of pointers.
2086       MidTy = VectorType::get(MidTy, VT->getNumElements());
2087     }
2088 
2089     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
2090     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2091   }
2092 
2093   return commonPointerCastTransforms(CI);
2094 }
2095