1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 /// Analyze 'Val', seeing if it is a simple linear expression. 25 /// If so, decompose it, returning some value X, such that Val is 26 /// X*Scale+Offset. 27 /// 28 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 29 uint64_t &Offset) { 30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 31 Offset = CI->getZExtValue(); 32 Scale = 0; 33 return ConstantInt::get(Val->getType(), 0); 34 } 35 36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 37 // Cannot look past anything that might overflow. 38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 40 Scale = 1; 41 Offset = 0; 42 return Val; 43 } 44 45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 46 if (I->getOpcode() == Instruction::Shl) { 47 // This is a value scaled by '1 << the shift amt'. 48 Scale = UINT64_C(1) << RHS->getZExtValue(); 49 Offset = 0; 50 return I->getOperand(0); 51 } 52 53 if (I->getOpcode() == Instruction::Mul) { 54 // This value is scaled by 'RHS'. 55 Scale = RHS->getZExtValue(); 56 Offset = 0; 57 return I->getOperand(0); 58 } 59 60 if (I->getOpcode() == Instruction::Add) { 61 // We have X+C. Check to see if we really have (X*C2)+C1, 62 // where C1 is divisible by C2. 63 unsigned SubScale; 64 Value *SubVal = 65 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 66 Offset += RHS->getZExtValue(); 67 Scale = SubScale; 68 return SubVal; 69 } 70 } 71 } 72 73 // Otherwise, we can't look past this. 74 Scale = 1; 75 Offset = 0; 76 return Val; 77 } 78 79 /// If we find a cast of an allocation instruction, try to eliminate the cast by 80 /// moving the type information into the alloc. 81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 82 AllocaInst &AI) { 83 PointerType *PTy = cast<PointerType>(CI.getType()); 84 85 BuilderTy AllocaBuilder(*Builder); 86 AllocaBuilder.SetInsertPoint(&AI); 87 88 // Get the type really allocated and the type casted to. 89 Type *AllocElTy = AI.getAllocatedType(); 90 Type *CastElTy = PTy->getElementType(); 91 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 92 93 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 94 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 95 if (CastElTyAlign < AllocElTyAlign) return nullptr; 96 97 // If the allocation has multiple uses, only promote it if we are strictly 98 // increasing the alignment of the resultant allocation. If we keep it the 99 // same, we open the door to infinite loops of various kinds. 100 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 101 102 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 103 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 104 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 105 106 // If the allocation has multiple uses, only promote it if we're not 107 // shrinking the amount of memory being allocated. 108 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 109 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 110 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 111 112 // See if we can satisfy the modulus by pulling a scale out of the array 113 // size argument. 114 unsigned ArraySizeScale; 115 uint64_t ArrayOffset; 116 Value *NumElements = // See if the array size is a decomposable linear expr. 117 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 118 119 // If we can now satisfy the modulus, by using a non-1 scale, we really can 120 // do the xform. 121 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 122 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 123 124 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 125 Value *Amt = nullptr; 126 if (Scale == 1) { 127 Amt = NumElements; 128 } else { 129 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 130 // Insert before the alloca, not before the cast. 131 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 132 } 133 134 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 135 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 136 Offset, true); 137 Amt = AllocaBuilder.CreateAdd(Amt, Off); 138 } 139 140 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 141 New->setAlignment(AI.getAlignment()); 142 New->takeName(&AI); 143 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 144 145 // If the allocation has multiple real uses, insert a cast and change all 146 // things that used it to use the new cast. This will also hack on CI, but it 147 // will die soon. 148 if (!AI.hasOneUse()) { 149 // New is the allocation instruction, pointer typed. AI is the original 150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 152 ReplaceInstUsesWith(AI, NewCast); 153 } 154 return ReplaceInstUsesWith(CI, New); 155 } 156 157 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 158 /// true for, actually insert the code to evaluate the expression. 159 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 160 bool isSigned) { 161 if (Constant *C = dyn_cast<Constant>(V)) { 162 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 163 // If we got a constantexpr back, try to simplify it with DL info. 164 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 165 C = ConstantFoldConstantExpression(CE, DL, TLI); 166 return C; 167 } 168 169 // Otherwise, it must be an instruction. 170 Instruction *I = cast<Instruction>(V); 171 Instruction *Res = nullptr; 172 unsigned Opc = I->getOpcode(); 173 switch (Opc) { 174 case Instruction::Add: 175 case Instruction::Sub: 176 case Instruction::Mul: 177 case Instruction::And: 178 case Instruction::Or: 179 case Instruction::Xor: 180 case Instruction::AShr: 181 case Instruction::LShr: 182 case Instruction::Shl: 183 case Instruction::UDiv: 184 case Instruction::URem: { 185 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 186 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 187 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 188 break; 189 } 190 case Instruction::Trunc: 191 case Instruction::ZExt: 192 case Instruction::SExt: 193 // If the source type of the cast is the type we're trying for then we can 194 // just return the source. There's no need to insert it because it is not 195 // new. 196 if (I->getOperand(0)->getType() == Ty) 197 return I->getOperand(0); 198 199 // Otherwise, must be the same type of cast, so just reinsert a new one. 200 // This also handles the case of zext(trunc(x)) -> zext(x). 201 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 202 Opc == Instruction::SExt); 203 break; 204 case Instruction::Select: { 205 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 206 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 207 Res = SelectInst::Create(I->getOperand(0), True, False); 208 break; 209 } 210 case Instruction::PHI: { 211 PHINode *OPN = cast<PHINode>(I); 212 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 213 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 214 Value *V = 215 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 216 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 217 } 218 Res = NPN; 219 break; 220 } 221 default: 222 // TODO: Can handle more cases here. 223 llvm_unreachable("Unreachable!"); 224 } 225 226 Res->takeName(I); 227 return InsertNewInstWith(Res, *I); 228 } 229 230 231 /// This function is a wrapper around CastInst::isEliminableCastPair. It 232 /// simply extracts arguments and returns what that function returns. 233 static Instruction::CastOps 234 isEliminableCastPair(const CastInst *CI, ///< First cast instruction 235 unsigned opcode, ///< Opcode for the second cast 236 Type *DstTy, ///< Target type for the second cast 237 const DataLayout &DL) { 238 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 239 Type *MidTy = CI->getType(); // B from above 240 241 // Get the opcodes of the two Cast instructions 242 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 243 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 244 Type *SrcIntPtrTy = 245 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 246 Type *MidIntPtrTy = 247 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 248 Type *DstIntPtrTy = 249 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 250 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 251 DstTy, SrcIntPtrTy, MidIntPtrTy, 252 DstIntPtrTy); 253 254 // We don't want to form an inttoptr or ptrtoint that converts to an integer 255 // type that differs from the pointer size. 256 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 257 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 258 Res = 0; 259 260 return Instruction::CastOps(Res); 261 } 262 263 /// Return true if the cast from "V to Ty" actually results in any code being 264 /// generated and is interesting to optimize out. 265 /// If the cast can be eliminated by some other simple transformation, we prefer 266 /// to do the simplification first. 267 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 268 Type *Ty) { 269 // Noop casts and casts of constants should be eliminated trivially. 270 if (V->getType() == Ty || isa<Constant>(V)) return false; 271 272 // If this is another cast that can be eliminated, we prefer to have it 273 // eliminated. 274 if (const CastInst *CI = dyn_cast<CastInst>(V)) 275 if (isEliminableCastPair(CI, opc, Ty, DL)) 276 return false; 277 278 // If this is a vector sext from a compare, then we don't want to break the 279 // idiom where each element of the extended vector is either zero or all ones. 280 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 281 return false; 282 283 return true; 284 } 285 286 287 /// @brief Implement the transforms common to all CastInst visitors. 288 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 289 Value *Src = CI.getOperand(0); 290 291 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 292 // eliminate it now. 293 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 294 if (Instruction::CastOps opc = 295 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) { 296 // The first cast (CSrc) is eliminable so we need to fix up or replace 297 // the second cast (CI). CSrc will then have a good chance of being dead. 298 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 299 } 300 } 301 302 // If we are casting a select then fold the cast into the select 303 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 304 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 305 return NV; 306 307 // If we are casting a PHI then fold the cast into the PHI 308 if (isa<PHINode>(Src)) { 309 // We don't do this if this would create a PHI node with an illegal type if 310 // it is currently legal. 311 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 312 ShouldChangeType(CI.getType(), Src->getType())) 313 if (Instruction *NV = FoldOpIntoPhi(CI)) 314 return NV; 315 } 316 317 return nullptr; 318 } 319 320 /// Return true if we can evaluate the specified expression tree as type Ty 321 /// instead of its larger type, and arrive with the same value. 322 /// This is used by code that tries to eliminate truncates. 323 /// 324 /// Ty will always be a type smaller than V. We should return true if trunc(V) 325 /// can be computed by computing V in the smaller type. If V is an instruction, 326 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 327 /// makes sense if x and y can be efficiently truncated. 328 /// 329 /// This function works on both vectors and scalars. 330 /// 331 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 332 Instruction *CxtI) { 333 // We can always evaluate constants in another type. 334 if (isa<Constant>(V)) 335 return true; 336 337 Instruction *I = dyn_cast<Instruction>(V); 338 if (!I) return false; 339 340 Type *OrigTy = V->getType(); 341 342 // If this is an extension from the dest type, we can eliminate it, even if it 343 // has multiple uses. 344 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 345 I->getOperand(0)->getType() == Ty) 346 return true; 347 348 // We can't extend or shrink something that has multiple uses: doing so would 349 // require duplicating the instruction in general, which isn't profitable. 350 if (!I->hasOneUse()) return false; 351 352 unsigned Opc = I->getOpcode(); 353 switch (Opc) { 354 case Instruction::Add: 355 case Instruction::Sub: 356 case Instruction::Mul: 357 case Instruction::And: 358 case Instruction::Or: 359 case Instruction::Xor: 360 // These operators can all arbitrarily be extended or truncated. 361 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 362 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 363 364 case Instruction::UDiv: 365 case Instruction::URem: { 366 // UDiv and URem can be truncated if all the truncated bits are zero. 367 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 368 uint32_t BitWidth = Ty->getScalarSizeInBits(); 369 if (BitWidth < OrigBitWidth) { 370 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 371 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 372 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 373 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 374 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 375 } 376 } 377 break; 378 } 379 case Instruction::Shl: 380 // If we are truncating the result of this SHL, and if it's a shift of a 381 // constant amount, we can always perform a SHL in a smaller type. 382 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 383 uint32_t BitWidth = Ty->getScalarSizeInBits(); 384 if (CI->getLimitedValue(BitWidth) < BitWidth) 385 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 386 } 387 break; 388 case Instruction::LShr: 389 // If this is a truncate of a logical shr, we can truncate it to a smaller 390 // lshr iff we know that the bits we would otherwise be shifting in are 391 // already zeros. 392 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 394 uint32_t BitWidth = Ty->getScalarSizeInBits(); 395 if (IC.MaskedValueIsZero(I->getOperand(0), 396 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 397 CI->getLimitedValue(BitWidth) < BitWidth) { 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 399 } 400 } 401 break; 402 case Instruction::Trunc: 403 // trunc(trunc(x)) -> trunc(x) 404 return true; 405 case Instruction::ZExt: 406 case Instruction::SExt: 407 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 408 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 409 return true; 410 case Instruction::Select: { 411 SelectInst *SI = cast<SelectInst>(I); 412 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 413 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 414 } 415 case Instruction::PHI: { 416 // We can change a phi if we can change all operands. Note that we never 417 // get into trouble with cyclic PHIs here because we only consider 418 // instructions with a single use. 419 PHINode *PN = cast<PHINode>(I); 420 for (Value *IncValue : PN->incoming_values()) 421 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 422 return false; 423 return true; 424 } 425 default: 426 // TODO: Can handle more cases here. 427 break; 428 } 429 430 return false; 431 } 432 433 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 434 if (Instruction *Result = commonCastTransforms(CI)) 435 return Result; 436 437 // Test if the trunc is the user of a select which is part of a 438 // minimum or maximum operation. If so, don't do any more simplification. 439 // Even simplifying demanded bits can break the canonical form of a 440 // min/max. 441 Value *LHS, *RHS; 442 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 443 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 444 return nullptr; 445 446 // See if we can simplify any instructions used by the input whose sole 447 // purpose is to compute bits we don't care about. 448 if (SimplifyDemandedInstructionBits(CI)) 449 return &CI; 450 451 Value *Src = CI.getOperand(0); 452 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 453 454 // Attempt to truncate the entire input expression tree to the destination 455 // type. Only do this if the dest type is a simple type, don't convert the 456 // expression tree to something weird like i93 unless the source is also 457 // strange. 458 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 459 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 460 461 // If this cast is a truncate, evaluting in a different type always 462 // eliminates the cast, so it is always a win. 463 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 464 " to avoid cast: " << CI << '\n'); 465 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 466 assert(Res->getType() == DestTy); 467 return ReplaceInstUsesWith(CI, Res); 468 } 469 470 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 471 if (DestTy->getScalarSizeInBits() == 1) { 472 Constant *One = ConstantInt::get(SrcTy, 1); 473 Src = Builder->CreateAnd(Src, One); 474 Value *Zero = Constant::getNullValue(Src->getType()); 475 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 476 } 477 478 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 479 Value *A = nullptr; ConstantInt *Cst = nullptr; 480 if (Src->hasOneUse() && 481 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 482 // We have three types to worry about here, the type of A, the source of 483 // the truncate (MidSize), and the destination of the truncate. We know that 484 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 485 // between ASize and ResultSize. 486 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 487 488 // If the shift amount is larger than the size of A, then the result is 489 // known to be zero because all the input bits got shifted out. 490 if (Cst->getZExtValue() >= ASize) 491 return ReplaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 492 493 // Since we're doing an lshr and a zero extend, and know that the shift 494 // amount is smaller than ASize, it is always safe to do the shift in A's 495 // type, then zero extend or truncate to the result. 496 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 497 Shift->takeName(Src); 498 return CastInst::CreateIntegerCast(Shift, DestTy, false); 499 } 500 501 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 502 // conversion. 503 // It works because bits coming from sign extension have the same value as 504 // the sign bit of the original value; performing ashr instead of lshr 505 // generates bits of the same value as the sign bit. 506 if (Src->hasOneUse() && 507 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) && 508 cast<Instruction>(Src)->getOperand(0)->hasOneUse()) { 509 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 510 // This optimization can be only performed when zero bits generated by 511 // the original lshr aren't pulled into the value after truncation, so we 512 // can only shift by values smaller than the size of destination type (in 513 // bits). 514 if (Cst->getValue().ult(ASize)) { 515 Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue()); 516 Shift->takeName(Src); 517 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 518 } 519 } 520 521 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 522 // type isn't non-native. 523 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 524 ShouldChangeType(SrcTy, DestTy) && 525 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 526 Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr"); 527 return BinaryOperator::CreateAnd(NewTrunc, 528 ConstantExpr::getTrunc(Cst, DestTy)); 529 } 530 531 return nullptr; 532 } 533 534 /// Transform (zext icmp) to bitwise / integer operations in order to eliminate 535 /// the icmp. 536 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 537 bool DoXform) { 538 // If we are just checking for a icmp eq of a single bit and zext'ing it 539 // to an integer, then shift the bit to the appropriate place and then 540 // cast to integer to avoid the comparison. 541 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 542 const APInt &Op1CV = Op1C->getValue(); 543 544 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 545 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 546 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 547 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 548 if (!DoXform) return ICI; 549 550 Value *In = ICI->getOperand(0); 551 Value *Sh = ConstantInt::get(In->getType(), 552 In->getType()->getScalarSizeInBits()-1); 553 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 554 if (In->getType() != CI.getType()) 555 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 556 557 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 558 Constant *One = ConstantInt::get(In->getType(), 1); 559 In = Builder->CreateXor(In, One, In->getName()+".not"); 560 } 561 562 return ReplaceInstUsesWith(CI, In); 563 } 564 565 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 566 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 567 // zext (X == 1) to i32 --> X iff X has only the low bit set. 568 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 569 // zext (X != 0) to i32 --> X iff X has only the low bit set. 570 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 571 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 572 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 573 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 574 // This only works for EQ and NE 575 ICI->isEquality()) { 576 // If Op1C some other power of two, convert: 577 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 578 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 579 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 580 581 APInt KnownZeroMask(~KnownZero); 582 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 583 if (!DoXform) return ICI; 584 585 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 586 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 587 // (X&4) == 2 --> false 588 // (X&4) != 2 --> true 589 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 590 isNE); 591 Res = ConstantExpr::getZExt(Res, CI.getType()); 592 return ReplaceInstUsesWith(CI, Res); 593 } 594 595 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 596 Value *In = ICI->getOperand(0); 597 if (ShiftAmt) { 598 // Perform a logical shr by shiftamt. 599 // Insert the shift to put the result in the low bit. 600 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 601 In->getName()+".lobit"); 602 } 603 604 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 605 Constant *One = ConstantInt::get(In->getType(), 1); 606 In = Builder->CreateXor(In, One); 607 } 608 609 if (CI.getType() == In->getType()) 610 return ReplaceInstUsesWith(CI, In); 611 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 612 } 613 } 614 } 615 616 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 617 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 618 // may lead to additional simplifications. 619 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 620 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 621 uint32_t BitWidth = ITy->getBitWidth(); 622 Value *LHS = ICI->getOperand(0); 623 Value *RHS = ICI->getOperand(1); 624 625 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 626 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 627 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 628 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 629 630 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 631 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 632 APInt UnknownBit = ~KnownBits; 633 if (UnknownBit.countPopulation() == 1) { 634 if (!DoXform) return ICI; 635 636 Value *Result = Builder->CreateXor(LHS, RHS); 637 638 // Mask off any bits that are set and won't be shifted away. 639 if (KnownOneLHS.uge(UnknownBit)) 640 Result = Builder->CreateAnd(Result, 641 ConstantInt::get(ITy, UnknownBit)); 642 643 // Shift the bit we're testing down to the lsb. 644 Result = Builder->CreateLShr( 645 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 646 647 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 648 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 649 Result->takeName(ICI); 650 return ReplaceInstUsesWith(CI, Result); 651 } 652 } 653 } 654 } 655 656 return nullptr; 657 } 658 659 /// Determine if the specified value can be computed in the specified wider type 660 /// and produce the same low bits. If not, return false. 661 /// 662 /// If this function returns true, it can also return a non-zero number of bits 663 /// (in BitsToClear) which indicates that the value it computes is correct for 664 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 665 /// out. For example, to promote something like: 666 /// 667 /// %B = trunc i64 %A to i32 668 /// %C = lshr i32 %B, 8 669 /// %E = zext i32 %C to i64 670 /// 671 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 672 /// set to 8 to indicate that the promoted value needs to have bits 24-31 673 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 674 /// clear the top bits anyway, doing this has no extra cost. 675 /// 676 /// This function works on both vectors and scalars. 677 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 678 InstCombiner &IC, Instruction *CxtI) { 679 BitsToClear = 0; 680 if (isa<Constant>(V)) 681 return true; 682 683 Instruction *I = dyn_cast<Instruction>(V); 684 if (!I) return false; 685 686 // If the input is a truncate from the destination type, we can trivially 687 // eliminate it. 688 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 689 return true; 690 691 // We can't extend or shrink something that has multiple uses: doing so would 692 // require duplicating the instruction in general, which isn't profitable. 693 if (!I->hasOneUse()) return false; 694 695 unsigned Opc = I->getOpcode(), Tmp; 696 switch (Opc) { 697 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 698 case Instruction::SExt: // zext(sext(x)) -> sext(x). 699 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 700 return true; 701 case Instruction::And: 702 case Instruction::Or: 703 case Instruction::Xor: 704 case Instruction::Add: 705 case Instruction::Sub: 706 case Instruction::Mul: 707 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 708 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 709 return false; 710 // These can all be promoted if neither operand has 'bits to clear'. 711 if (BitsToClear == 0 && Tmp == 0) 712 return true; 713 714 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 715 // other side, BitsToClear is ok. 716 if (Tmp == 0 && 717 (Opc == Instruction::And || Opc == Instruction::Or || 718 Opc == Instruction::Xor)) { 719 // We use MaskedValueIsZero here for generality, but the case we care 720 // about the most is constant RHS. 721 unsigned VSize = V->getType()->getScalarSizeInBits(); 722 if (IC.MaskedValueIsZero(I->getOperand(1), 723 APInt::getHighBitsSet(VSize, BitsToClear), 724 0, CxtI)) 725 return true; 726 } 727 728 // Otherwise, we don't know how to analyze this BitsToClear case yet. 729 return false; 730 731 case Instruction::Shl: 732 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 733 // upper bits we can reduce BitsToClear by the shift amount. 734 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 735 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 736 return false; 737 uint64_t ShiftAmt = Amt->getZExtValue(); 738 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 739 return true; 740 } 741 return false; 742 case Instruction::LShr: 743 // We can promote lshr(x, cst) if we can promote x. This requires the 744 // ultimate 'and' to clear out the high zero bits we're clearing out though. 745 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 746 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 747 return false; 748 BitsToClear += Amt->getZExtValue(); 749 if (BitsToClear > V->getType()->getScalarSizeInBits()) 750 BitsToClear = V->getType()->getScalarSizeInBits(); 751 return true; 752 } 753 // Cannot promote variable LSHR. 754 return false; 755 case Instruction::Select: 756 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 757 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 758 // TODO: If important, we could handle the case when the BitsToClear are 759 // known zero in the disagreeing side. 760 Tmp != BitsToClear) 761 return false; 762 return true; 763 764 case Instruction::PHI: { 765 // We can change a phi if we can change all operands. Note that we never 766 // get into trouble with cyclic PHIs here because we only consider 767 // instructions with a single use. 768 PHINode *PN = cast<PHINode>(I); 769 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 770 return false; 771 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 772 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 773 // TODO: If important, we could handle the case when the BitsToClear 774 // are known zero in the disagreeing input. 775 Tmp != BitsToClear) 776 return false; 777 return true; 778 } 779 default: 780 // TODO: Can handle more cases here. 781 return false; 782 } 783 } 784 785 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 786 // If this zero extend is only used by a truncate, let the truncate be 787 // eliminated before we try to optimize this zext. 788 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 789 return nullptr; 790 791 // If one of the common conversion will work, do it. 792 if (Instruction *Result = commonCastTransforms(CI)) 793 return Result; 794 795 // See if we can simplify any instructions used by the input whose sole 796 // purpose is to compute bits we don't care about. 797 if (SimplifyDemandedInstructionBits(CI)) 798 return &CI; 799 800 Value *Src = CI.getOperand(0); 801 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 802 803 // Attempt to extend the entire input expression tree to the destination 804 // type. Only do this if the dest type is a simple type, don't convert the 805 // expression tree to something weird like i93 unless the source is also 806 // strange. 807 unsigned BitsToClear; 808 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 809 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 810 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 811 "Unreasonable BitsToClear"); 812 813 // Okay, we can transform this! Insert the new expression now. 814 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 815 " to avoid zero extend: " << CI); 816 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 817 assert(Res->getType() == DestTy); 818 819 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 820 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 821 822 // If the high bits are already filled with zeros, just replace this 823 // cast with the result. 824 if (MaskedValueIsZero(Res, 825 APInt::getHighBitsSet(DestBitSize, 826 DestBitSize-SrcBitsKept), 827 0, &CI)) 828 return ReplaceInstUsesWith(CI, Res); 829 830 // We need to emit an AND to clear the high bits. 831 Constant *C = ConstantInt::get(Res->getType(), 832 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 833 return BinaryOperator::CreateAnd(Res, C); 834 } 835 836 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 837 // types and if the sizes are just right we can convert this into a logical 838 // 'and' which will be much cheaper than the pair of casts. 839 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 840 // TODO: Subsume this into EvaluateInDifferentType. 841 842 // Get the sizes of the types involved. We know that the intermediate type 843 // will be smaller than A or C, but don't know the relation between A and C. 844 Value *A = CSrc->getOperand(0); 845 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 846 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 847 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 848 // If we're actually extending zero bits, then if 849 // SrcSize < DstSize: zext(a & mask) 850 // SrcSize == DstSize: a & mask 851 // SrcSize > DstSize: trunc(a) & mask 852 if (SrcSize < DstSize) { 853 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 854 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 855 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 856 return new ZExtInst(And, CI.getType()); 857 } 858 859 if (SrcSize == DstSize) { 860 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 861 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 862 AndValue)); 863 } 864 if (SrcSize > DstSize) { 865 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 866 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 867 return BinaryOperator::CreateAnd(Trunc, 868 ConstantInt::get(Trunc->getType(), 869 AndValue)); 870 } 871 } 872 873 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 874 return transformZExtICmp(ICI, CI); 875 876 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 877 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 878 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 879 // of the (zext icmp) will be transformed. 880 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 881 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 882 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 883 (transformZExtICmp(LHS, CI, false) || 884 transformZExtICmp(RHS, CI, false))) { 885 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 886 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 887 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 888 } 889 } 890 891 // zext(trunc(X) & C) -> (X & zext(C)). 892 Constant *C; 893 Value *X; 894 if (SrcI && 895 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 896 X->getType() == CI.getType()) 897 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 898 899 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 900 Value *And; 901 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 902 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 903 X->getType() == CI.getType()) { 904 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 905 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 906 } 907 908 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 909 if (SrcI && SrcI->hasOneUse() && 910 SrcI->getType()->getScalarType()->isIntegerTy(1) && 911 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) { 912 Value *New = Builder->CreateZExt(X, CI.getType()); 913 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 914 } 915 916 return nullptr; 917 } 918 919 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 920 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 921 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 922 ICmpInst::Predicate Pred = ICI->getPredicate(); 923 924 // Don't bother if Op1 isn't of vector or integer type. 925 if (!Op1->getType()->isIntOrIntVectorTy()) 926 return nullptr; 927 928 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 929 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 930 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 931 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 932 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 933 934 Value *Sh = ConstantInt::get(Op0->getType(), 935 Op0->getType()->getScalarSizeInBits()-1); 936 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 937 if (In->getType() != CI.getType()) 938 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 939 940 if (Pred == ICmpInst::ICMP_SGT) 941 In = Builder->CreateNot(In, In->getName()+".not"); 942 return ReplaceInstUsesWith(CI, In); 943 } 944 } 945 946 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 947 // If we know that only one bit of the LHS of the icmp can be set and we 948 // have an equality comparison with zero or a power of 2, we can transform 949 // the icmp and sext into bitwise/integer operations. 950 if (ICI->hasOneUse() && 951 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 952 unsigned BitWidth = Op1C->getType()->getBitWidth(); 953 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 954 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 955 956 APInt KnownZeroMask(~KnownZero); 957 if (KnownZeroMask.isPowerOf2()) { 958 Value *In = ICI->getOperand(0); 959 960 // If the icmp tests for a known zero bit we can constant fold it. 961 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 962 Value *V = Pred == ICmpInst::ICMP_NE ? 963 ConstantInt::getAllOnesValue(CI.getType()) : 964 ConstantInt::getNullValue(CI.getType()); 965 return ReplaceInstUsesWith(CI, V); 966 } 967 968 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 969 // sext ((x & 2^n) == 0) -> (x >> n) - 1 970 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 971 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 972 // Perform a right shift to place the desired bit in the LSB. 973 if (ShiftAmt) 974 In = Builder->CreateLShr(In, 975 ConstantInt::get(In->getType(), ShiftAmt)); 976 977 // At this point "In" is either 1 or 0. Subtract 1 to turn 978 // {1, 0} -> {0, -1}. 979 In = Builder->CreateAdd(In, 980 ConstantInt::getAllOnesValue(In->getType()), 981 "sext"); 982 } else { 983 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 984 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 985 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 986 // Perform a left shift to place the desired bit in the MSB. 987 if (ShiftAmt) 988 In = Builder->CreateShl(In, 989 ConstantInt::get(In->getType(), ShiftAmt)); 990 991 // Distribute the bit over the whole bit width. 992 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 993 BitWidth - 1), "sext"); 994 } 995 996 if (CI.getType() == In->getType()) 997 return ReplaceInstUsesWith(CI, In); 998 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 999 } 1000 } 1001 } 1002 1003 return nullptr; 1004 } 1005 1006 /// Return true if we can take the specified value and return it as type Ty 1007 /// without inserting any new casts and without changing the value of the common 1008 /// low bits. This is used by code that tries to promote integer operations to 1009 /// a wider types will allow us to eliminate the extension. 1010 /// 1011 /// This function works on both vectors and scalars. 1012 /// 1013 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1014 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1015 "Can't sign extend type to a smaller type"); 1016 // If this is a constant, it can be trivially promoted. 1017 if (isa<Constant>(V)) 1018 return true; 1019 1020 Instruction *I = dyn_cast<Instruction>(V); 1021 if (!I) return false; 1022 1023 // If this is a truncate from the dest type, we can trivially eliminate it. 1024 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1025 return true; 1026 1027 // We can't extend or shrink something that has multiple uses: doing so would 1028 // require duplicating the instruction in general, which isn't profitable. 1029 if (!I->hasOneUse()) return false; 1030 1031 switch (I->getOpcode()) { 1032 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1033 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1034 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1035 return true; 1036 case Instruction::And: 1037 case Instruction::Or: 1038 case Instruction::Xor: 1039 case Instruction::Add: 1040 case Instruction::Sub: 1041 case Instruction::Mul: 1042 // These operators can all arbitrarily be extended if their inputs can. 1043 return canEvaluateSExtd(I->getOperand(0), Ty) && 1044 canEvaluateSExtd(I->getOperand(1), Ty); 1045 1046 //case Instruction::Shl: TODO 1047 //case Instruction::LShr: TODO 1048 1049 case Instruction::Select: 1050 return canEvaluateSExtd(I->getOperand(1), Ty) && 1051 canEvaluateSExtd(I->getOperand(2), Ty); 1052 1053 case Instruction::PHI: { 1054 // We can change a phi if we can change all operands. Note that we never 1055 // get into trouble with cyclic PHIs here because we only consider 1056 // instructions with a single use. 1057 PHINode *PN = cast<PHINode>(I); 1058 for (Value *IncValue : PN->incoming_values()) 1059 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1060 return true; 1061 } 1062 default: 1063 // TODO: Can handle more cases here. 1064 break; 1065 } 1066 1067 return false; 1068 } 1069 1070 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1071 // If this sign extend is only used by a truncate, let the truncate be 1072 // eliminated before we try to optimize this sext. 1073 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1074 return nullptr; 1075 1076 if (Instruction *I = commonCastTransforms(CI)) 1077 return I; 1078 1079 // See if we can simplify any instructions used by the input whose sole 1080 // purpose is to compute bits we don't care about. 1081 if (SimplifyDemandedInstructionBits(CI)) 1082 return &CI; 1083 1084 Value *Src = CI.getOperand(0); 1085 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1086 1087 // If we know that the value being extended is positive, we can use a zext 1088 // instead. 1089 bool KnownZero, KnownOne; 1090 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI); 1091 if (KnownZero) { 1092 Value *ZExt = Builder->CreateZExt(Src, DestTy); 1093 return ReplaceInstUsesWith(CI, ZExt); 1094 } 1095 1096 // Attempt to extend the entire input expression tree to the destination 1097 // type. Only do this if the dest type is a simple type, don't convert the 1098 // expression tree to something weird like i93 unless the source is also 1099 // strange. 1100 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1101 canEvaluateSExtd(Src, DestTy)) { 1102 // Okay, we can transform this! Insert the new expression now. 1103 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1104 " to avoid sign extend: " << CI); 1105 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1106 assert(Res->getType() == DestTy); 1107 1108 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1109 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1110 1111 // If the high bits are already filled with sign bit, just replace this 1112 // cast with the result. 1113 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1114 return ReplaceInstUsesWith(CI, Res); 1115 1116 // We need to emit a shl + ashr to do the sign extend. 1117 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1118 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1119 ShAmt); 1120 } 1121 1122 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1123 // into shifts. 1124 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1125 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1126 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1127 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1128 1129 // We need to emit a shl + ashr to do the sign extend. 1130 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1131 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1132 return BinaryOperator::CreateAShr(Res, ShAmt); 1133 } 1134 1135 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1136 return transformSExtICmp(ICI, CI); 1137 1138 // If the input is a shl/ashr pair of a same constant, then this is a sign 1139 // extension from a smaller value. If we could trust arbitrary bitwidth 1140 // integers, we could turn this into a truncate to the smaller bit and then 1141 // use a sext for the whole extension. Since we don't, look deeper and check 1142 // for a truncate. If the source and dest are the same type, eliminate the 1143 // trunc and extend and just do shifts. For example, turn: 1144 // %a = trunc i32 %i to i8 1145 // %b = shl i8 %a, 6 1146 // %c = ashr i8 %b, 6 1147 // %d = sext i8 %c to i32 1148 // into: 1149 // %a = shl i32 %i, 30 1150 // %d = ashr i32 %a, 30 1151 Value *A = nullptr; 1152 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1153 ConstantInt *BA = nullptr, *CA = nullptr; 1154 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1155 m_ConstantInt(CA))) && 1156 BA == CA && A->getType() == CI.getType()) { 1157 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1158 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1159 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1160 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1161 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1162 return BinaryOperator::CreateAShr(A, ShAmtV); 1163 } 1164 1165 return nullptr; 1166 } 1167 1168 1169 /// Return a Constant* for the specified floating-point constant if it fits 1170 /// in the specified FP type without changing its value. 1171 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1172 bool losesInfo; 1173 APFloat F = CFP->getValueAPF(); 1174 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1175 if (!losesInfo) 1176 return ConstantFP::get(CFP->getContext(), F); 1177 return nullptr; 1178 } 1179 1180 /// If this is a floating-point extension instruction, look 1181 /// through it until we get the source value. 1182 static Value *lookThroughFPExtensions(Value *V) { 1183 if (Instruction *I = dyn_cast<Instruction>(V)) 1184 if (I->getOpcode() == Instruction::FPExt) 1185 return lookThroughFPExtensions(I->getOperand(0)); 1186 1187 // If this value is a constant, return the constant in the smallest FP type 1188 // that can accurately represent it. This allows us to turn 1189 // (float)((double)X+2.0) into x+2.0f. 1190 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1191 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1192 return V; // No constant folding of this. 1193 // See if the value can be truncated to half and then reextended. 1194 if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf)) 1195 return V; 1196 // See if the value can be truncated to float and then reextended. 1197 if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle)) 1198 return V; 1199 if (CFP->getType()->isDoubleTy()) 1200 return V; // Won't shrink. 1201 if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble)) 1202 return V; 1203 // Don't try to shrink to various long double types. 1204 } 1205 1206 return V; 1207 } 1208 1209 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1210 if (Instruction *I = commonCastTransforms(CI)) 1211 return I; 1212 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1213 // simplify this expression to avoid one or more of the trunc/extend 1214 // operations if we can do so without changing the numerical results. 1215 // 1216 // The exact manner in which the widths of the operands interact to limit 1217 // what we can and cannot do safely varies from operation to operation, and 1218 // is explained below in the various case statements. 1219 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1220 if (OpI && OpI->hasOneUse()) { 1221 Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0)); 1222 Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1)); 1223 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1224 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1225 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1226 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1227 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1228 switch (OpI->getOpcode()) { 1229 default: break; 1230 case Instruction::FAdd: 1231 case Instruction::FSub: 1232 // For addition and subtraction, the infinitely precise result can 1233 // essentially be arbitrarily wide; proving that double rounding 1234 // will not occur because the result of OpI is exact (as we will for 1235 // FMul, for example) is hopeless. However, we *can* nonetheless 1236 // frequently know that double rounding cannot occur (or that it is 1237 // innocuous) by taking advantage of the specific structure of 1238 // infinitely-precise results that admit double rounding. 1239 // 1240 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1241 // to represent both sources, we can guarantee that the double 1242 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1243 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1244 // for proof of this fact). 1245 // 1246 // Note: Figueroa does not consider the case where DstFormat != 1247 // SrcFormat. It's possible (likely even!) that this analysis 1248 // could be tightened for those cases, but they are rare (the main 1249 // case of interest here is (float)((double)float + float)). 1250 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1251 if (LHSOrig->getType() != CI.getType()) 1252 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1253 if (RHSOrig->getType() != CI.getType()) 1254 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1255 Instruction *RI = 1256 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1257 RI->copyFastMathFlags(OpI); 1258 return RI; 1259 } 1260 break; 1261 case Instruction::FMul: 1262 // For multiplication, the infinitely precise result has at most 1263 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1264 // that such a value can be exactly represented, then no double 1265 // rounding can possibly occur; we can safely perform the operation 1266 // in the destination format if it can represent both sources. 1267 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1268 if (LHSOrig->getType() != CI.getType()) 1269 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1270 if (RHSOrig->getType() != CI.getType()) 1271 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1272 Instruction *RI = 1273 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1274 RI->copyFastMathFlags(OpI); 1275 return RI; 1276 } 1277 break; 1278 case Instruction::FDiv: 1279 // For division, we use again use the bound from Figueroa's 1280 // dissertation. I am entirely certain that this bound can be 1281 // tightened in the unbalanced operand case by an analysis based on 1282 // the diophantine rational approximation bound, but the well-known 1283 // condition used here is a good conservative first pass. 1284 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1285 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1286 if (LHSOrig->getType() != CI.getType()) 1287 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1288 if (RHSOrig->getType() != CI.getType()) 1289 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1290 Instruction *RI = 1291 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1292 RI->copyFastMathFlags(OpI); 1293 return RI; 1294 } 1295 break; 1296 case Instruction::FRem: 1297 // Remainder is straightforward. Remainder is always exact, so the 1298 // type of OpI doesn't enter into things at all. We simply evaluate 1299 // in whichever source type is larger, then convert to the 1300 // destination type. 1301 if (SrcWidth == OpWidth) 1302 break; 1303 if (LHSWidth < SrcWidth) 1304 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1305 else if (RHSWidth <= SrcWidth) 1306 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1307 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { 1308 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1309 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1310 RI->copyFastMathFlags(OpI); 1311 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1312 } 1313 } 1314 1315 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1316 if (BinaryOperator::isFNeg(OpI)) { 1317 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1318 CI.getType()); 1319 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1320 RI->copyFastMathFlags(OpI); 1321 return RI; 1322 } 1323 } 1324 1325 // (fptrunc (select cond, R1, Cst)) --> 1326 // (select cond, (fptrunc R1), (fptrunc Cst)) 1327 // 1328 // - but only if this isn't part of a min/max operation, else we'll 1329 // ruin min/max canonical form which is to have the select and 1330 // compare's operands be of the same type with no casts to look through. 1331 Value *LHS, *RHS; 1332 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1333 if (SI && 1334 (isa<ConstantFP>(SI->getOperand(1)) || 1335 isa<ConstantFP>(SI->getOperand(2))) && 1336 matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) { 1337 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1338 CI.getType()); 1339 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1340 CI.getType()); 1341 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1342 } 1343 1344 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1345 if (II) { 1346 switch (II->getIntrinsicID()) { 1347 default: break; 1348 case Intrinsic::fabs: { 1349 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1350 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1351 CI.getType()); 1352 Type *IntrinsicType[] = { CI.getType() }; 1353 Function *Overload = 1354 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(), 1355 II->getIntrinsicID(), IntrinsicType); 1356 1357 Value *Args[] = { InnerTrunc }; 1358 return CallInst::Create(Overload, Args, II->getName()); 1359 } 1360 } 1361 } 1362 1363 return nullptr; 1364 } 1365 1366 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1367 return commonCastTransforms(CI); 1368 } 1369 1370 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1371 // This is safe if the intermediate type has enough bits in its mantissa to 1372 // accurately represent all values of X. For example, this won't work with 1373 // i64 -> float -> i64. 1374 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1375 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1376 return nullptr; 1377 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1378 1379 Value *SrcI = OpI->getOperand(0); 1380 Type *FITy = FI.getType(); 1381 Type *OpITy = OpI->getType(); 1382 Type *SrcTy = SrcI->getType(); 1383 bool IsInputSigned = isa<SIToFPInst>(OpI); 1384 bool IsOutputSigned = isa<FPToSIInst>(FI); 1385 1386 // We can safely assume the conversion won't overflow the output range, 1387 // because (for example) (uint8_t)18293.f is undefined behavior. 1388 1389 // Since we can assume the conversion won't overflow, our decision as to 1390 // whether the input will fit in the float should depend on the minimum 1391 // of the input range and output range. 1392 1393 // This means this is also safe for a signed input and unsigned output, since 1394 // a negative input would lead to undefined behavior. 1395 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1396 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1397 int ActualSize = std::min(InputSize, OutputSize); 1398 1399 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1400 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1401 if (IsInputSigned && IsOutputSigned) 1402 return new SExtInst(SrcI, FITy); 1403 return new ZExtInst(SrcI, FITy); 1404 } 1405 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1406 return new TruncInst(SrcI, FITy); 1407 if (SrcTy == FITy) 1408 return ReplaceInstUsesWith(FI, SrcI); 1409 return new BitCastInst(SrcI, FITy); 1410 } 1411 return nullptr; 1412 } 1413 1414 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1415 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1416 if (!OpI) 1417 return commonCastTransforms(FI); 1418 1419 if (Instruction *I = FoldItoFPtoI(FI)) 1420 return I; 1421 1422 return commonCastTransforms(FI); 1423 } 1424 1425 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1426 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1427 if (!OpI) 1428 return commonCastTransforms(FI); 1429 1430 if (Instruction *I = FoldItoFPtoI(FI)) 1431 return I; 1432 1433 return commonCastTransforms(FI); 1434 } 1435 1436 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1437 return commonCastTransforms(CI); 1438 } 1439 1440 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1441 return commonCastTransforms(CI); 1442 } 1443 1444 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1445 // If the source integer type is not the intptr_t type for this target, do a 1446 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1447 // cast to be exposed to other transforms. 1448 unsigned AS = CI.getAddressSpace(); 1449 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1450 DL.getPointerSizeInBits(AS)) { 1451 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1452 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1453 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1454 1455 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1456 return new IntToPtrInst(P, CI.getType()); 1457 } 1458 1459 if (Instruction *I = commonCastTransforms(CI)) 1460 return I; 1461 1462 return nullptr; 1463 } 1464 1465 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1466 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1467 Value *Src = CI.getOperand(0); 1468 1469 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1470 // If casting the result of a getelementptr instruction with no offset, turn 1471 // this into a cast of the original pointer! 1472 if (GEP->hasAllZeroIndices() && 1473 // If CI is an addrspacecast and GEP changes the poiner type, merging 1474 // GEP into CI would undo canonicalizing addrspacecast with different 1475 // pointer types, causing infinite loops. 1476 (!isa<AddrSpaceCastInst>(CI) || 1477 GEP->getType() == GEP->getPointerOperand()->getType())) { 1478 // Changing the cast operand is usually not a good idea but it is safe 1479 // here because the pointer operand is being replaced with another 1480 // pointer operand so the opcode doesn't need to change. 1481 Worklist.Add(GEP); 1482 CI.setOperand(0, GEP->getOperand(0)); 1483 return &CI; 1484 } 1485 } 1486 1487 return commonCastTransforms(CI); 1488 } 1489 1490 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1491 // If the destination integer type is not the intptr_t type for this target, 1492 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1493 // to be exposed to other transforms. 1494 1495 Type *Ty = CI.getType(); 1496 unsigned AS = CI.getPointerAddressSpace(); 1497 1498 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1499 return commonPointerCastTransforms(CI); 1500 1501 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1502 if (Ty->isVectorTy()) // Handle vectors of pointers. 1503 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1504 1505 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1506 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1507 } 1508 1509 /// This input value (which is known to have vector type) is being zero extended 1510 /// or truncated to the specified vector type. 1511 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1512 /// 1513 /// The source and destination vector types may have different element types. 1514 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1515 InstCombiner &IC) { 1516 // We can only do this optimization if the output is a multiple of the input 1517 // element size, or the input is a multiple of the output element size. 1518 // Convert the input type to have the same element type as the output. 1519 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1520 1521 if (SrcTy->getElementType() != DestTy->getElementType()) { 1522 // The input types don't need to be identical, but for now they must be the 1523 // same size. There is no specific reason we couldn't handle things like 1524 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1525 // there yet. 1526 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1527 DestTy->getElementType()->getPrimitiveSizeInBits()) 1528 return nullptr; 1529 1530 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1531 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1532 } 1533 1534 // Now that the element types match, get the shuffle mask and RHS of the 1535 // shuffle to use, which depends on whether we're increasing or decreasing the 1536 // size of the input. 1537 SmallVector<uint32_t, 16> ShuffleMask; 1538 Value *V2; 1539 1540 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1541 // If we're shrinking the number of elements, just shuffle in the low 1542 // elements from the input and use undef as the second shuffle input. 1543 V2 = UndefValue::get(SrcTy); 1544 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1545 ShuffleMask.push_back(i); 1546 1547 } else { 1548 // If we're increasing the number of elements, shuffle in all of the 1549 // elements from InVal and fill the rest of the result elements with zeros 1550 // from a constant zero. 1551 V2 = Constant::getNullValue(SrcTy); 1552 unsigned SrcElts = SrcTy->getNumElements(); 1553 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1554 ShuffleMask.push_back(i); 1555 1556 // The excess elements reference the first element of the zero input. 1557 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1558 ShuffleMask.push_back(SrcElts); 1559 } 1560 1561 return new ShuffleVectorInst(InVal, V2, 1562 ConstantDataVector::get(V2->getContext(), 1563 ShuffleMask)); 1564 } 1565 1566 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1567 return Value % Ty->getPrimitiveSizeInBits() == 0; 1568 } 1569 1570 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1571 return Value / Ty->getPrimitiveSizeInBits(); 1572 } 1573 1574 /// V is a value which is inserted into a vector of VecEltTy. 1575 /// Look through the value to see if we can decompose it into 1576 /// insertions into the vector. See the example in the comment for 1577 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1578 /// The type of V is always a non-zero multiple of VecEltTy's size. 1579 /// Shift is the number of bits between the lsb of V and the lsb of 1580 /// the vector. 1581 /// 1582 /// This returns false if the pattern can't be matched or true if it can, 1583 /// filling in Elements with the elements found here. 1584 static bool collectInsertionElements(Value *V, unsigned Shift, 1585 SmallVectorImpl<Value *> &Elements, 1586 Type *VecEltTy, bool isBigEndian) { 1587 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1588 "Shift should be a multiple of the element type size"); 1589 1590 // Undef values never contribute useful bits to the result. 1591 if (isa<UndefValue>(V)) return true; 1592 1593 // If we got down to a value of the right type, we win, try inserting into the 1594 // right element. 1595 if (V->getType() == VecEltTy) { 1596 // Inserting null doesn't actually insert any elements. 1597 if (Constant *C = dyn_cast<Constant>(V)) 1598 if (C->isNullValue()) 1599 return true; 1600 1601 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1602 if (isBigEndian) 1603 ElementIndex = Elements.size() - ElementIndex - 1; 1604 1605 // Fail if multiple elements are inserted into this slot. 1606 if (Elements[ElementIndex]) 1607 return false; 1608 1609 Elements[ElementIndex] = V; 1610 return true; 1611 } 1612 1613 if (Constant *C = dyn_cast<Constant>(V)) { 1614 // Figure out the # elements this provides, and bitcast it or slice it up 1615 // as required. 1616 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1617 VecEltTy); 1618 // If the constant is the size of a vector element, we just need to bitcast 1619 // it to the right type so it gets properly inserted. 1620 if (NumElts == 1) 1621 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1622 Shift, Elements, VecEltTy, isBigEndian); 1623 1624 // Okay, this is a constant that covers multiple elements. Slice it up into 1625 // pieces and insert each element-sized piece into the vector. 1626 if (!isa<IntegerType>(C->getType())) 1627 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1628 C->getType()->getPrimitiveSizeInBits())); 1629 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1630 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1631 1632 for (unsigned i = 0; i != NumElts; ++i) { 1633 unsigned ShiftI = Shift+i*ElementSize; 1634 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1635 ShiftI)); 1636 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1637 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1638 isBigEndian)) 1639 return false; 1640 } 1641 return true; 1642 } 1643 1644 if (!V->hasOneUse()) return false; 1645 1646 Instruction *I = dyn_cast<Instruction>(V); 1647 if (!I) return false; 1648 switch (I->getOpcode()) { 1649 default: return false; // Unhandled case. 1650 case Instruction::BitCast: 1651 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1652 isBigEndian); 1653 case Instruction::ZExt: 1654 if (!isMultipleOfTypeSize( 1655 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1656 VecEltTy)) 1657 return false; 1658 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1659 isBigEndian); 1660 case Instruction::Or: 1661 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1662 isBigEndian) && 1663 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1664 isBigEndian); 1665 case Instruction::Shl: { 1666 // Must be shifting by a constant that is a multiple of the element size. 1667 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1668 if (!CI) return false; 1669 Shift += CI->getZExtValue(); 1670 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1671 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1672 isBigEndian); 1673 } 1674 1675 } 1676 } 1677 1678 1679 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1680 /// assemble the elements of the vector manually. 1681 /// Try to rip the code out and replace it with insertelements. This is to 1682 /// optimize code like this: 1683 /// 1684 /// %tmp37 = bitcast float %inc to i32 1685 /// %tmp38 = zext i32 %tmp37 to i64 1686 /// %tmp31 = bitcast float %inc5 to i32 1687 /// %tmp32 = zext i32 %tmp31 to i64 1688 /// %tmp33 = shl i64 %tmp32, 32 1689 /// %ins35 = or i64 %tmp33, %tmp38 1690 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1691 /// 1692 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1693 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 1694 InstCombiner &IC) { 1695 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1696 Value *IntInput = CI.getOperand(0); 1697 1698 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1699 if (!collectInsertionElements(IntInput, 0, Elements, 1700 DestVecTy->getElementType(), 1701 IC.getDataLayout().isBigEndian())) 1702 return nullptr; 1703 1704 // If we succeeded, we know that all of the element are specified by Elements 1705 // or are zero if Elements has a null entry. Recast this as a set of 1706 // insertions. 1707 Value *Result = Constant::getNullValue(CI.getType()); 1708 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1709 if (!Elements[i]) continue; // Unset element. 1710 1711 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1712 IC.Builder->getInt32(i)); 1713 } 1714 1715 return Result; 1716 } 1717 1718 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 1719 /// vector followed by extract element. The backend tends to handle bitcasts of 1720 /// vectors better than bitcasts of scalars because vector registers are 1721 /// usually not type-specific like scalar integer or scalar floating-point. 1722 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 1723 InstCombiner &IC, 1724 const DataLayout &DL) { 1725 // TODO: Create and use a pattern matcher for ExtractElementInst. 1726 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 1727 if (!ExtElt || !ExtElt->hasOneUse()) 1728 return nullptr; 1729 1730 // The bitcast must be to a vectorizable type, otherwise we can't make a new 1731 // type to extract from. 1732 Type *DestType = BitCast.getType(); 1733 if (!VectorType::isValidElementType(DestType)) 1734 return nullptr; 1735 1736 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 1737 auto *NewVecType = VectorType::get(DestType, NumElts); 1738 auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(), 1739 NewVecType, "bc"); 1740 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 1741 } 1742 1743 static Instruction *foldVecTruncToExtElt(Value *VecInput, Type *DestTy, 1744 unsigned ShiftAmt, InstCombiner &IC, 1745 const DataLayout &DL) { 1746 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1747 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1748 unsigned VecWidth = VecTy->getPrimitiveSizeInBits(); 1749 1750 if ((VecWidth % DestWidth != 0) || (ShiftAmt % DestWidth != 0)) 1751 return nullptr; 1752 1753 // If the element type of the vector doesn't match the result type, 1754 // bitcast it to be a vector type we can extract from. 1755 unsigned NumVecElts = VecWidth / DestWidth; 1756 if (VecTy->getElementType() != DestTy) { 1757 VecTy = VectorType::get(DestTy, NumVecElts); 1758 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1759 } 1760 1761 unsigned Elt = ShiftAmt / DestWidth; 1762 if (DL.isBigEndian()) 1763 Elt = NumVecElts - 1 - Elt; 1764 1765 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1766 } 1767 1768 /// See if we can optimize an integer->float/double bitcast. 1769 /// The various long double bitcasts can't get in here. 1770 static Instruction *optimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC, 1771 const DataLayout &DL) { 1772 Value *Src = CI.getOperand(0); 1773 Type *DstTy = CI.getType(); 1774 1775 // If this is a bitcast from int to float, check to see if the int is an 1776 // extraction from a vector. 1777 Value *VecInput = nullptr; 1778 // bitcast(trunc(bitcast(somevector))) 1779 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1780 isa<VectorType>(VecInput->getType())) 1781 return foldVecTruncToExtElt(VecInput, DstTy, 0, IC, DL); 1782 1783 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1784 ConstantInt *ShAmt = nullptr; 1785 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1786 m_ConstantInt(ShAmt)))) && 1787 isa<VectorType>(VecInput->getType())) 1788 return foldVecTruncToExtElt(VecInput, DstTy, ShAmt->getZExtValue(), IC, DL); 1789 1790 return nullptr; 1791 } 1792 1793 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1794 // If the operands are integer typed then apply the integer transforms, 1795 // otherwise just apply the common ones. 1796 Value *Src = CI.getOperand(0); 1797 Type *SrcTy = Src->getType(); 1798 Type *DestTy = CI.getType(); 1799 1800 // Get rid of casts from one type to the same type. These are useless and can 1801 // be replaced by the operand. 1802 if (DestTy == Src->getType()) 1803 return ReplaceInstUsesWith(CI, Src); 1804 1805 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1806 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1807 Type *DstElTy = DstPTy->getElementType(); 1808 Type *SrcElTy = SrcPTy->getElementType(); 1809 1810 // If we are casting a alloca to a pointer to a type of the same 1811 // size, rewrite the allocation instruction to allocate the "right" type. 1812 // There is no need to modify malloc calls because it is their bitcast that 1813 // needs to be cleaned up. 1814 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1815 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1816 return V; 1817 1818 // If the source and destination are pointers, and this cast is equivalent 1819 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1820 // This can enhance SROA and other transforms that want type-safe pointers. 1821 unsigned NumZeros = 0; 1822 while (SrcElTy != DstElTy && 1823 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1824 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1825 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 1826 ++NumZeros; 1827 } 1828 1829 // If we found a path from the src to dest, create the getelementptr now. 1830 if (SrcElTy == DstElTy) { 1831 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0)); 1832 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1833 } 1834 } 1835 1836 // Try to optimize int -> float bitcasts. 1837 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1838 if (Instruction *I = optimizeIntToFloatBitCast(CI, *this, DL)) 1839 return I; 1840 1841 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1842 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1843 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1844 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1845 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1846 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1847 } 1848 1849 if (isa<IntegerType>(SrcTy)) { 1850 // If this is a cast from an integer to vector, check to see if the input 1851 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1852 // the casts with a shuffle and (potentially) a bitcast. 1853 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1854 CastInst *SrcCast = cast<CastInst>(Src); 1855 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1856 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1857 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 1858 cast<VectorType>(DestTy), *this)) 1859 return I; 1860 } 1861 1862 // If the input is an 'or' instruction, we may be doing shifts and ors to 1863 // assemble the elements of the vector manually. Try to rip the code out 1864 // and replace it with insertelements. 1865 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 1866 return ReplaceInstUsesWith(CI, V); 1867 } 1868 } 1869 1870 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1871 if (SrcVTy->getNumElements() == 1) { 1872 // If our destination is not a vector, then make this a straight 1873 // scalar-scalar cast. 1874 if (!DestTy->isVectorTy()) { 1875 Value *Elem = 1876 Builder->CreateExtractElement(Src, 1877 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1878 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1879 } 1880 1881 // Otherwise, see if our source is an insert. If so, then use the scalar 1882 // component directly. 1883 if (InsertElementInst *IEI = 1884 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1885 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1886 DestTy); 1887 } 1888 } 1889 1890 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1891 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1892 // a bitcast to a vector with the same # elts. 1893 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1894 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 1895 SVI->getType()->getNumElements() == 1896 SVI->getOperand(0)->getType()->getVectorNumElements()) { 1897 BitCastInst *Tmp; 1898 // If either of the operands is a cast from CI.getType(), then 1899 // evaluating the shuffle in the casted destination's type will allow 1900 // us to eliminate at least one cast. 1901 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1902 Tmp->getOperand(0)->getType() == DestTy) || 1903 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1904 Tmp->getOperand(0)->getType() == DestTy)) { 1905 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1906 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1907 // Return a new shuffle vector. Use the same element ID's, as we 1908 // know the vector types match #elts. 1909 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1910 } 1911 } 1912 } 1913 1914 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL)) 1915 return I; 1916 1917 if (SrcTy->isPointerTy()) 1918 return commonPointerCastTransforms(CI); 1919 return commonCastTransforms(CI); 1920 } 1921 1922 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 1923 // If the destination pointer element type is not the same as the source's 1924 // first do a bitcast to the destination type, and then the addrspacecast. 1925 // This allows the cast to be exposed to other transforms. 1926 Value *Src = CI.getOperand(0); 1927 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 1928 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 1929 1930 Type *DestElemTy = DestTy->getElementType(); 1931 if (SrcTy->getElementType() != DestElemTy) { 1932 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 1933 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 1934 // Handle vectors of pointers. 1935 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1936 } 1937 1938 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 1939 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 1940 } 1941 1942 return commonPointerCastTransforms(CI); 1943 } 1944