1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/AlignOf.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/KnownBits.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() 86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 87 88 const APFloat *getFpValPtr() const 89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 Value *performFactorization(Instruction *I); 190 191 /// Convert given addend to a Value 192 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 193 194 /// Return the number of instructions needed to emit the N-ary addition. 195 unsigned calcInstrNumber(const AddendVect& Vect); 196 197 Value *createFSub(Value *Opnd0, Value *Opnd1); 198 Value *createFAdd(Value *Opnd0, Value *Opnd1); 199 Value *createFMul(Value *Opnd0, Value *Opnd1); 200 Value *createFDiv(Value *Opnd0, Value *Opnd1); 201 Value *createFNeg(Value *V); 202 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 203 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 204 205 // Debugging stuff are clustered here. 206 #ifndef NDEBUG 207 unsigned CreateInstrNum; 208 void initCreateInstNum() { CreateInstrNum = 0; } 209 void incCreateInstNum() { CreateInstrNum++; } 210 #else 211 void initCreateInstNum() {} 212 void incCreateInstNum() {} 213 #endif 214 215 InstCombiner::BuilderTy &Builder; 216 Instruction *Instr = nullptr; 217 }; 218 219 } // end anonymous namespace 220 221 //===----------------------------------------------------------------------===// 222 // 223 // Implementation of 224 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 225 // 226 //===----------------------------------------------------------------------===// 227 FAddendCoef::~FAddendCoef() { 228 if (BufHasFpVal) 229 getFpValPtr()->~APFloat(); 230 } 231 232 void FAddendCoef::set(const APFloat& C) { 233 APFloat *P = getFpValPtr(); 234 235 if (isInt()) { 236 // As the buffer is meanless byte stream, we cannot call 237 // APFloat::operator=(). 238 new(P) APFloat(C); 239 } else 240 *P = C; 241 242 IsFp = BufHasFpVal = true; 243 } 244 245 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 246 if (!isInt()) 247 return; 248 249 APFloat *P = getFpValPtr(); 250 if (IntVal > 0) 251 new(P) APFloat(Sem, IntVal); 252 else { 253 new(P) APFloat(Sem, 0 - IntVal); 254 P->changeSign(); 255 } 256 IsFp = BufHasFpVal = true; 257 } 258 259 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 260 if (Val >= 0) 261 return APFloat(Sem, Val); 262 263 APFloat T(Sem, 0 - Val); 264 T.changeSign(); 265 266 return T; 267 } 268 269 void FAddendCoef::operator=(const FAddendCoef &That) { 270 if (That.isInt()) 271 set(That.IntVal); 272 else 273 set(That.getFpVal()); 274 } 275 276 void FAddendCoef::operator+=(const FAddendCoef &That) { 277 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 278 if (isInt() == That.isInt()) { 279 if (isInt()) 280 IntVal += That.IntVal; 281 else 282 getFpVal().add(That.getFpVal(), RndMode); 283 return; 284 } 285 286 if (isInt()) { 287 const APFloat &T = That.getFpVal(); 288 convertToFpType(T.getSemantics()); 289 getFpVal().add(T, RndMode); 290 return; 291 } 292 293 APFloat &T = getFpVal(); 294 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 295 } 296 297 void FAddendCoef::operator*=(const FAddendCoef &That) { 298 if (That.isOne()) 299 return; 300 301 if (That.isMinusOne()) { 302 negate(); 303 return; 304 } 305 306 if (isInt() && That.isInt()) { 307 int Res = IntVal * (int)That.IntVal; 308 assert(!insaneIntVal(Res) && "Insane int value"); 309 IntVal = Res; 310 return; 311 } 312 313 const fltSemantics &Semantic = 314 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 315 316 if (isInt()) 317 convertToFpType(Semantic); 318 APFloat &F0 = getFpVal(); 319 320 if (That.isInt()) 321 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 322 APFloat::rmNearestTiesToEven); 323 else 324 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 325 } 326 327 void FAddendCoef::negate() { 328 if (isInt()) 329 IntVal = 0 - IntVal; 330 else 331 getFpVal().changeSign(); 332 } 333 334 Value *FAddendCoef::getValue(Type *Ty) const { 335 return isInt() ? 336 ConstantFP::get(Ty, float(IntVal)) : 337 ConstantFP::get(Ty->getContext(), getFpVal()); 338 } 339 340 // The definition of <Val> Addends 341 // ========================================= 342 // A + B <1, A>, <1,B> 343 // A - B <1, A>, <1,B> 344 // 0 - B <-1, B> 345 // C * A, <C, A> 346 // A + C <1, A> <C, NULL> 347 // 0 +/- 0 <0, NULL> (corner case) 348 // 349 // Legend: A and B are not constant, C is constant 350 unsigned FAddend::drillValueDownOneStep 351 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 352 Instruction *I = nullptr; 353 if (!Val || !(I = dyn_cast<Instruction>(Val))) 354 return 0; 355 356 unsigned Opcode = I->getOpcode(); 357 358 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 359 ConstantFP *C0, *C1; 360 Value *Opnd0 = I->getOperand(0); 361 Value *Opnd1 = I->getOperand(1); 362 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 363 Opnd0 = nullptr; 364 365 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 366 Opnd1 = nullptr; 367 368 if (Opnd0) { 369 if (!C0) 370 Addend0.set(1, Opnd0); 371 else 372 Addend0.set(C0, nullptr); 373 } 374 375 if (Opnd1) { 376 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 377 if (!C1) 378 Addend.set(1, Opnd1); 379 else 380 Addend.set(C1, nullptr); 381 if (Opcode == Instruction::FSub) 382 Addend.negate(); 383 } 384 385 if (Opnd0 || Opnd1) 386 return Opnd0 && Opnd1 ? 2 : 1; 387 388 // Both operands are zero. Weird! 389 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 390 return 1; 391 } 392 393 if (I->getOpcode() == Instruction::FMul) { 394 Value *V0 = I->getOperand(0); 395 Value *V1 = I->getOperand(1); 396 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 397 Addend0.set(C, V1); 398 return 1; 399 } 400 401 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 402 Addend0.set(C, V0); 403 return 1; 404 } 405 } 406 407 return 0; 408 } 409 410 // Try to break *this* addend into two addends. e.g. Suppose this addend is 411 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 412 // i.e. <2.3, X> and <2.3, Y>. 413 unsigned FAddend::drillAddendDownOneStep 414 (FAddend &Addend0, FAddend &Addend1) const { 415 if (isConstant()) 416 return 0; 417 418 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 419 if (!BreakNum || Coeff.isOne()) 420 return BreakNum; 421 422 Addend0.Scale(Coeff); 423 424 if (BreakNum == 2) 425 Addend1.Scale(Coeff); 426 427 return BreakNum; 428 } 429 430 // Try to perform following optimization on the input instruction I. Return the 431 // simplified expression if was successful; otherwise, return 0. 432 // 433 // Instruction "I" is Simplified into 434 // ------------------------------------------------------- 435 // (x * y) +/- (x * z) x * (y +/- z) 436 // (y / x) +/- (z / x) (y +/- z) / x 437 Value *FAddCombine::performFactorization(Instruction *I) { 438 assert((I->getOpcode() == Instruction::FAdd || 439 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 440 441 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 442 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 443 444 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 445 return nullptr; 446 447 bool isMpy = false; 448 if (I0->getOpcode() == Instruction::FMul) 449 isMpy = true; 450 else if (I0->getOpcode() != Instruction::FDiv) 451 return nullptr; 452 453 Value *Opnd0_0 = I0->getOperand(0); 454 Value *Opnd0_1 = I0->getOperand(1); 455 Value *Opnd1_0 = I1->getOperand(0); 456 Value *Opnd1_1 = I1->getOperand(1); 457 458 // Input Instr I Factor AddSub0 AddSub1 459 // ---------------------------------------------- 460 // (x*y) +/- (x*z) x y z 461 // (y/x) +/- (z/x) x y z 462 Value *Factor = nullptr; 463 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 464 465 if (isMpy) { 466 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 467 Factor = Opnd0_0; 468 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 469 Factor = Opnd0_1; 470 471 if (Factor) { 472 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 473 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 474 } 475 } else if (Opnd0_1 == Opnd1_1) { 476 Factor = Opnd0_1; 477 AddSub0 = Opnd0_0; 478 AddSub1 = Opnd1_0; 479 } 480 481 if (!Factor) 482 return nullptr; 483 484 FastMathFlags Flags; 485 Flags.setFast(); 486 if (I0) Flags &= I->getFastMathFlags(); 487 if (I1) Flags &= I->getFastMathFlags(); 488 489 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 490 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 491 createFAdd(AddSub0, AddSub1) : 492 createFSub(AddSub0, AddSub1); 493 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 494 const APFloat &F = CFP->getValueAPF(); 495 if (!F.isNormal()) 496 return nullptr; 497 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 498 II->setFastMathFlags(Flags); 499 500 if (isMpy) { 501 Value *RI = createFMul(Factor, NewAddSub); 502 if (Instruction *II = dyn_cast<Instruction>(RI)) 503 II->setFastMathFlags(Flags); 504 return RI; 505 } 506 507 Value *RI = createFDiv(NewAddSub, Factor); 508 if (Instruction *II = dyn_cast<Instruction>(RI)) 509 II->setFastMathFlags(Flags); 510 return RI; 511 } 512 513 Value *FAddCombine::simplify(Instruction *I) { 514 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 515 "Expected 'reassoc'+'nsz' instruction"); 516 517 // Currently we are not able to handle vector type. 518 if (I->getType()->isVectorTy()) 519 return nullptr; 520 521 assert((I->getOpcode() == Instruction::FAdd || 522 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 523 524 // Save the instruction before calling other member-functions. 525 Instr = I; 526 527 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 528 529 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 530 531 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 532 unsigned Opnd0_ExpNum = 0; 533 unsigned Opnd1_ExpNum = 0; 534 535 if (!Opnd0.isConstant()) 536 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 537 538 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 539 if (OpndNum == 2 && !Opnd1.isConstant()) 540 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 541 542 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 543 if (Opnd0_ExpNum && Opnd1_ExpNum) { 544 AddendVect AllOpnds; 545 AllOpnds.push_back(&Opnd0_0); 546 AllOpnds.push_back(&Opnd1_0); 547 if (Opnd0_ExpNum == 2) 548 AllOpnds.push_back(&Opnd0_1); 549 if (Opnd1_ExpNum == 2) 550 AllOpnds.push_back(&Opnd1_1); 551 552 // Compute instruction quota. We should save at least one instruction. 553 unsigned InstQuota = 0; 554 555 Value *V0 = I->getOperand(0); 556 Value *V1 = I->getOperand(1); 557 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 558 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 559 560 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 561 return R; 562 } 563 564 if (OpndNum != 2) { 565 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 566 // splitted into two addends, say "V = X - Y", the instruction would have 567 // been optimized into "I = Y - X" in the previous steps. 568 // 569 const FAddendCoef &CE = Opnd0.getCoef(); 570 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 571 } 572 573 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 574 if (Opnd1_ExpNum) { 575 AddendVect AllOpnds; 576 AllOpnds.push_back(&Opnd0); 577 AllOpnds.push_back(&Opnd1_0); 578 if (Opnd1_ExpNum == 2) 579 AllOpnds.push_back(&Opnd1_1); 580 581 if (Value *R = simplifyFAdd(AllOpnds, 1)) 582 return R; 583 } 584 585 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 586 if (Opnd0_ExpNum) { 587 AddendVect AllOpnds; 588 AllOpnds.push_back(&Opnd1); 589 AllOpnds.push_back(&Opnd0_0); 590 if (Opnd0_ExpNum == 2) 591 AllOpnds.push_back(&Opnd0_1); 592 593 if (Value *R = simplifyFAdd(AllOpnds, 1)) 594 return R; 595 } 596 597 // step 6: Try factorization as the last resort, 598 return performFactorization(I); 599 } 600 601 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 602 unsigned AddendNum = Addends.size(); 603 assert(AddendNum <= 4 && "Too many addends"); 604 605 // For saving intermediate results; 606 unsigned NextTmpIdx = 0; 607 FAddend TmpResult[3]; 608 609 // Points to the constant addend of the resulting simplified expression. 610 // If the resulting expr has constant-addend, this constant-addend is 611 // desirable to reside at the top of the resulting expression tree. Placing 612 // constant close to supper-expr(s) will potentially reveal some optimization 613 // opportunities in super-expr(s). 614 const FAddend *ConstAdd = nullptr; 615 616 // Simplified addends are placed <SimpVect>. 617 AddendVect SimpVect; 618 619 // The outer loop works on one symbolic-value at a time. Suppose the input 620 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 621 // The symbolic-values will be processed in this order: x, y, z. 622 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 623 624 const FAddend *ThisAddend = Addends[SymIdx]; 625 if (!ThisAddend) { 626 // This addend was processed before. 627 continue; 628 } 629 630 Value *Val = ThisAddend->getSymVal(); 631 unsigned StartIdx = SimpVect.size(); 632 SimpVect.push_back(ThisAddend); 633 634 // The inner loop collects addends sharing same symbolic-value, and these 635 // addends will be later on folded into a single addend. Following above 636 // example, if the symbolic value "y" is being processed, the inner loop 637 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 638 // be later on folded into "<b1+b2, y>". 639 for (unsigned SameSymIdx = SymIdx + 1; 640 SameSymIdx < AddendNum; SameSymIdx++) { 641 const FAddend *T = Addends[SameSymIdx]; 642 if (T && T->getSymVal() == Val) { 643 // Set null such that next iteration of the outer loop will not process 644 // this addend again. 645 Addends[SameSymIdx] = nullptr; 646 SimpVect.push_back(T); 647 } 648 } 649 650 // If multiple addends share same symbolic value, fold them together. 651 if (StartIdx + 1 != SimpVect.size()) { 652 FAddend &R = TmpResult[NextTmpIdx ++]; 653 R = *SimpVect[StartIdx]; 654 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 655 R += *SimpVect[Idx]; 656 657 // Pop all addends being folded and push the resulting folded addend. 658 SimpVect.resize(StartIdx); 659 if (Val) { 660 if (!R.isZero()) { 661 SimpVect.push_back(&R); 662 } 663 } else { 664 // Don't push constant addend at this time. It will be the last element 665 // of <SimpVect>. 666 ConstAdd = &R; 667 } 668 } 669 } 670 671 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 672 "out-of-bound access"); 673 674 if (ConstAdd) 675 SimpVect.push_back(ConstAdd); 676 677 Value *Result; 678 if (!SimpVect.empty()) 679 Result = createNaryFAdd(SimpVect, InstrQuota); 680 else { 681 // The addition is folded to 0.0. 682 Result = ConstantFP::get(Instr->getType(), 0.0); 683 } 684 685 return Result; 686 } 687 688 Value *FAddCombine::createNaryFAdd 689 (const AddendVect &Opnds, unsigned InstrQuota) { 690 assert(!Opnds.empty() && "Expect at least one addend"); 691 692 // Step 1: Check if the # of instructions needed exceeds the quota. 693 694 unsigned InstrNeeded = calcInstrNumber(Opnds); 695 if (InstrNeeded > InstrQuota) 696 return nullptr; 697 698 initCreateInstNum(); 699 700 // step 2: Emit the N-ary addition. 701 // Note that at most three instructions are involved in Fadd-InstCombine: the 702 // addition in question, and at most two neighboring instructions. 703 // The resulting optimized addition should have at least one less instruction 704 // than the original addition expression tree. This implies that the resulting 705 // N-ary addition has at most two instructions, and we don't need to worry 706 // about tree-height when constructing the N-ary addition. 707 708 Value *LastVal = nullptr; 709 bool LastValNeedNeg = false; 710 711 // Iterate the addends, creating fadd/fsub using adjacent two addends. 712 for (const FAddend *Opnd : Opnds) { 713 bool NeedNeg; 714 Value *V = createAddendVal(*Opnd, NeedNeg); 715 if (!LastVal) { 716 LastVal = V; 717 LastValNeedNeg = NeedNeg; 718 continue; 719 } 720 721 if (LastValNeedNeg == NeedNeg) { 722 LastVal = createFAdd(LastVal, V); 723 continue; 724 } 725 726 if (LastValNeedNeg) 727 LastVal = createFSub(V, LastVal); 728 else 729 LastVal = createFSub(LastVal, V); 730 731 LastValNeedNeg = false; 732 } 733 734 if (LastValNeedNeg) { 735 LastVal = createFNeg(LastVal); 736 } 737 738 #ifndef NDEBUG 739 assert(CreateInstrNum == InstrNeeded && 740 "Inconsistent in instruction numbers"); 741 #endif 742 743 return LastVal; 744 } 745 746 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 747 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 748 if (Instruction *I = dyn_cast<Instruction>(V)) 749 createInstPostProc(I); 750 return V; 751 } 752 753 Value *FAddCombine::createFNeg(Value *V) { 754 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 755 Value *NewV = createFSub(Zero, V); 756 if (Instruction *I = dyn_cast<Instruction>(NewV)) 757 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 758 return NewV; 759 } 760 761 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 762 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 763 if (Instruction *I = dyn_cast<Instruction>(V)) 764 createInstPostProc(I); 765 return V; 766 } 767 768 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 769 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 770 if (Instruction *I = dyn_cast<Instruction>(V)) 771 createInstPostProc(I); 772 return V; 773 } 774 775 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 776 Value *V = Builder.CreateFDiv(Opnd0, Opnd1); 777 if (Instruction *I = dyn_cast<Instruction>(V)) 778 createInstPostProc(I); 779 return V; 780 } 781 782 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 783 NewInstr->setDebugLoc(Instr->getDebugLoc()); 784 785 // Keep track of the number of instruction created. 786 if (!NoNumber) 787 incCreateInstNum(); 788 789 // Propagate fast-math flags 790 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 791 } 792 793 // Return the number of instruction needed to emit the N-ary addition. 794 // NOTE: Keep this function in sync with createAddendVal(). 795 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 796 unsigned OpndNum = Opnds.size(); 797 unsigned InstrNeeded = OpndNum - 1; 798 799 // The number of addends in the form of "(-1)*x". 800 unsigned NegOpndNum = 0; 801 802 // Adjust the number of instructions needed to emit the N-ary add. 803 for (const FAddend *Opnd : Opnds) { 804 if (Opnd->isConstant()) 805 continue; 806 807 // The constant check above is really for a few special constant 808 // coefficients. 809 if (isa<UndefValue>(Opnd->getSymVal())) 810 continue; 811 812 const FAddendCoef &CE = Opnd->getCoef(); 813 if (CE.isMinusOne() || CE.isMinusTwo()) 814 NegOpndNum++; 815 816 // Let the addend be "c * x". If "c == +/-1", the value of the addend 817 // is immediately available; otherwise, it needs exactly one instruction 818 // to evaluate the value. 819 if (!CE.isMinusOne() && !CE.isOne()) 820 InstrNeeded++; 821 } 822 if (NegOpndNum == OpndNum) 823 InstrNeeded++; 824 return InstrNeeded; 825 } 826 827 // Input Addend Value NeedNeg(output) 828 // ================================================================ 829 // Constant C C false 830 // <+/-1, V> V coefficient is -1 831 // <2/-2, V> "fadd V, V" coefficient is -2 832 // <C, V> "fmul V, C" false 833 // 834 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 835 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 836 const FAddendCoef &Coeff = Opnd.getCoef(); 837 838 if (Opnd.isConstant()) { 839 NeedNeg = false; 840 return Coeff.getValue(Instr->getType()); 841 } 842 843 Value *OpndVal = Opnd.getSymVal(); 844 845 if (Coeff.isMinusOne() || Coeff.isOne()) { 846 NeedNeg = Coeff.isMinusOne(); 847 return OpndVal; 848 } 849 850 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 851 NeedNeg = Coeff.isMinusTwo(); 852 return createFAdd(OpndVal, OpndVal); 853 } 854 855 NeedNeg = false; 856 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 857 } 858 859 // Checks if any operand is negative and we can convert add to sub. 860 // This function checks for following negative patterns 861 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 862 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 863 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 864 static Value *checkForNegativeOperand(BinaryOperator &I, 865 InstCombiner::BuilderTy &Builder) { 866 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 867 868 // This function creates 2 instructions to replace ADD, we need at least one 869 // of LHS or RHS to have one use to ensure benefit in transform. 870 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 871 return nullptr; 872 873 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 874 const APInt *C1 = nullptr, *C2 = nullptr; 875 876 // if ONE is on other side, swap 877 if (match(RHS, m_Add(m_Value(X), m_One()))) 878 std::swap(LHS, RHS); 879 880 if (match(LHS, m_Add(m_Value(X), m_One()))) { 881 // if XOR on other side, swap 882 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 883 std::swap(X, RHS); 884 885 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 886 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 887 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 888 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 889 Value *NewAnd = Builder.CreateAnd(Z, *C1); 890 return Builder.CreateSub(RHS, NewAnd, "sub"); 891 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 892 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 893 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 894 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 895 return Builder.CreateSub(RHS, NewOr, "sub"); 896 } 897 } 898 } 899 900 // Restore LHS and RHS 901 LHS = I.getOperand(0); 902 RHS = I.getOperand(1); 903 904 // if XOR is on other side, swap 905 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 906 std::swap(LHS, RHS); 907 908 // C2 is ODD 909 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 910 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 911 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 912 if (C1->countTrailingZeros() == 0) 913 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 914 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 915 return Builder.CreateSub(RHS, NewOr, "sub"); 916 } 917 return nullptr; 918 } 919 920 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 921 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 922 Constant *Op1C; 923 if (!match(Op1, m_Constant(Op1C))) 924 return nullptr; 925 926 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 927 return NV; 928 929 Value *X; 930 // zext(bool) + C -> bool ? C + 1 : C 931 if (match(Op0, m_ZExt(m_Value(X))) && 932 X->getType()->getScalarSizeInBits() == 1) 933 return SelectInst::Create(X, AddOne(Op1C), Op1); 934 935 // ~X + C --> (C-1) - X 936 if (match(Op0, m_Not(m_Value(X)))) 937 return BinaryOperator::CreateSub(SubOne(Op1C), X); 938 939 const APInt *C; 940 if (!match(Op1, m_APInt(C))) 941 return nullptr; 942 943 if (C->isSignMask()) { 944 // If wrapping is not allowed, then the addition must set the sign bit: 945 // X + (signmask) --> X | signmask 946 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 947 return BinaryOperator::CreateOr(Op0, Op1); 948 949 // If wrapping is allowed, then the addition flips the sign bit of LHS: 950 // X + (signmask) --> X ^ signmask 951 return BinaryOperator::CreateXor(Op0, Op1); 952 } 953 954 // Is this add the last step in a convoluted sext? 955 // add(zext(xor i16 X, -32768), -32768) --> sext X 956 Type *Ty = Add.getType(); 957 const APInt *C2; 958 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 959 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 960 return CastInst::Create(Instruction::SExt, X, Ty); 961 962 // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C)) 963 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 964 C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) { 965 Constant *NewC = 966 ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth())); 967 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 968 } 969 970 if (C->isOneValue() && Op0->hasOneUse()) { 971 // add (sext i1 X), 1 --> zext (not X) 972 // TODO: The smallest IR representation is (select X, 0, 1), and that would 973 // not require the one-use check. But we need to remove a transform in 974 // visitSelect and make sure that IR value tracking for select is equal or 975 // better than for these ops. 976 if (match(Op0, m_SExt(m_Value(X))) && 977 X->getType()->getScalarSizeInBits() == 1) 978 return new ZExtInst(Builder.CreateNot(X), Ty); 979 980 // Shifts and add used to flip and mask off the low bit: 981 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 982 const APInt *C3; 983 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 984 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 985 Value *NotX = Builder.CreateNot(X); 986 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 987 } 988 } 989 990 return nullptr; 991 } 992 993 // Matches multiplication expression Op * C where C is a constant. Returns the 994 // constant value in C and the other operand in Op. Returns true if such a 995 // match is found. 996 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 997 const APInt *AI; 998 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 999 C = *AI; 1000 return true; 1001 } 1002 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1003 C = APInt(AI->getBitWidth(), 1); 1004 C <<= *AI; 1005 return true; 1006 } 1007 return false; 1008 } 1009 1010 // Matches remainder expression Op % C where C is a constant. Returns the 1011 // constant value in C and the other operand in Op. Returns the signedness of 1012 // the remainder operation in IsSigned. Returns true if such a match is 1013 // found. 1014 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1015 const APInt *AI; 1016 IsSigned = false; 1017 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1018 IsSigned = true; 1019 C = *AI; 1020 return true; 1021 } 1022 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1023 C = *AI; 1024 return true; 1025 } 1026 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1027 C = *AI + 1; 1028 return true; 1029 } 1030 return false; 1031 } 1032 1033 // Matches division expression Op / C with the given signedness as indicated 1034 // by IsSigned, where C is a constant. Returns the constant value in C and the 1035 // other operand in Op. Returns true if such a match is found. 1036 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1037 const APInt *AI; 1038 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1039 C = *AI; 1040 return true; 1041 } 1042 if (!IsSigned) { 1043 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1044 C = *AI; 1045 return true; 1046 } 1047 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1048 C = APInt(AI->getBitWidth(), 1); 1049 C <<= *AI; 1050 return true; 1051 } 1052 } 1053 return false; 1054 } 1055 1056 // Returns whether C0 * C1 with the given signedness overflows. 1057 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1058 bool overflow; 1059 if (IsSigned) 1060 (void)C0.smul_ov(C1, overflow); 1061 else 1062 (void)C0.umul_ov(C1, overflow); 1063 return overflow; 1064 } 1065 1066 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1067 // does not overflow. 1068 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { 1069 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1070 Value *X, *MulOpV; 1071 APInt C0, MulOpC; 1072 bool IsSigned; 1073 // Match I = X % C0 + MulOpV * C0 1074 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1075 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1076 C0 == MulOpC) { 1077 Value *RemOpV; 1078 APInt C1; 1079 bool Rem2IsSigned; 1080 // Match MulOpC = RemOpV % C1 1081 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1082 IsSigned == Rem2IsSigned) { 1083 Value *DivOpV; 1084 APInt DivOpC; 1085 // Match RemOpV = X / C0 1086 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1087 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1088 Value *NewDivisor = 1089 ConstantInt::get(X->getType()->getContext(), C0 * C1); 1090 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1091 : Builder.CreateURem(X, NewDivisor, "urem"); 1092 } 1093 } 1094 } 1095 1096 return nullptr; 1097 } 1098 1099 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1100 bool Changed = SimplifyAssociativeOrCommutative(I); 1101 if (Value *V = SimplifyVectorOp(I)) 1102 return replaceInstUsesWith(I, V); 1103 1104 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1105 if (Value *V = 1106 SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1107 SQ.getWithInstruction(&I))) 1108 return replaceInstUsesWith(I, V); 1109 1110 // (A*B)+(A*C) -> A*(B+C) etc 1111 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1112 return replaceInstUsesWith(I, V); 1113 1114 if (Instruction *X = foldAddWithConstant(I)) 1115 return X; 1116 1117 // FIXME: This should be moved into the above helper function to allow these 1118 // transforms for general constant or constant splat vectors. 1119 Type *Ty = I.getType(); 1120 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1121 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1122 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1123 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1124 const APInt &RHSVal = CI->getValue(); 1125 unsigned ExtendAmt = 0; 1126 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1127 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1128 if (XorRHS->getValue() == -RHSVal) { 1129 if (RHSVal.isPowerOf2()) 1130 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1131 else if (XorRHS->getValue().isPowerOf2()) 1132 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1133 } 1134 1135 if (ExtendAmt) { 1136 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1137 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1138 ExtendAmt = 0; 1139 } 1140 1141 if (ExtendAmt) { 1142 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1143 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1144 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1145 } 1146 1147 // If this is a xor that was canonicalized from a sub, turn it back into 1148 // a sub and fuse this add with it. 1149 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1150 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1151 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1152 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1153 XorLHS); 1154 } 1155 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1156 // transform them into (X + (signmask ^ C)) 1157 if (XorRHS->getValue().isSignMask()) 1158 return BinaryOperator::CreateAdd(XorLHS, 1159 ConstantExpr::getXor(XorRHS, CI)); 1160 } 1161 } 1162 1163 if (Ty->isIntOrIntVectorTy(1)) 1164 return BinaryOperator::CreateXor(LHS, RHS); 1165 1166 // X + X --> X << 1 1167 if (LHS == RHS) { 1168 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1169 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1170 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1171 return Shl; 1172 } 1173 1174 Value *A, *B; 1175 if (match(LHS, m_Neg(m_Value(A)))) { 1176 // -A + -B --> -(A + B) 1177 if (match(RHS, m_Neg(m_Value(B)))) 1178 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1179 1180 // -A + B --> B - A 1181 return BinaryOperator::CreateSub(RHS, A); 1182 } 1183 1184 // A + -B --> A - B 1185 if (match(RHS, m_Neg(m_Value(B)))) 1186 return BinaryOperator::CreateSub(LHS, B); 1187 1188 if (Value *V = checkForNegativeOperand(I, Builder)) 1189 return replaceInstUsesWith(I, V); 1190 1191 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1192 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1193 1194 // A+B --> A|B iff A and B have no bits set in common. 1195 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1196 return BinaryOperator::CreateOr(LHS, RHS); 1197 1198 // FIXME: We already did a check for ConstantInt RHS above this. 1199 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1200 // removal. 1201 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1202 // (X & FF00) + xx00 -> (X+xx00) & FF00 1203 Value *X; 1204 ConstantInt *C2; 1205 if (LHS->hasOneUse() && 1206 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1207 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1208 // See if all bits from the first bit set in the Add RHS up are included 1209 // in the mask. First, get the rightmost bit. 1210 const APInt &AddRHSV = CRHS->getValue(); 1211 1212 // Form a mask of all bits from the lowest bit added through the top. 1213 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1214 1215 // See if the and mask includes all of these bits. 1216 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1217 1218 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1219 // Okay, the xform is safe. Insert the new add pronto. 1220 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1221 return BinaryOperator::CreateAnd(NewAdd, C2); 1222 } 1223 } 1224 } 1225 1226 // add (select X 0 (sub n A)) A --> select X A n 1227 { 1228 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1229 Value *A = RHS; 1230 if (!SI) { 1231 SI = dyn_cast<SelectInst>(RHS); 1232 A = LHS; 1233 } 1234 if (SI && SI->hasOneUse()) { 1235 Value *TV = SI->getTrueValue(); 1236 Value *FV = SI->getFalseValue(); 1237 Value *N; 1238 1239 // Can we fold the add into the argument of the select? 1240 // We check both true and false select arguments for a matching subtract. 1241 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1242 // Fold the add into the true select value. 1243 return SelectInst::Create(SI->getCondition(), N, A); 1244 1245 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1246 // Fold the add into the false select value. 1247 return SelectInst::Create(SI->getCondition(), A, N); 1248 } 1249 } 1250 1251 // Check for (add (sext x), y), see if we can merge this into an 1252 // integer add followed by a sext. 1253 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1254 // (add (sext x), cst) --> (sext (add x, cst')) 1255 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1256 if (LHSConv->hasOneUse()) { 1257 Constant *CI = 1258 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1259 if (ConstantExpr::getSExt(CI, Ty) == RHSC && 1260 willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1261 // Insert the new, smaller add. 1262 Value *NewAdd = 1263 Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv"); 1264 return new SExtInst(NewAdd, Ty); 1265 } 1266 } 1267 } 1268 1269 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1270 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1271 // Only do this if x/y have the same type, if at least one of them has a 1272 // single use (so we don't increase the number of sexts), and if the 1273 // integer add will not overflow. 1274 if (LHSConv->getOperand(0)->getType() == 1275 RHSConv->getOperand(0)->getType() && 1276 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1277 willNotOverflowSignedAdd(LHSConv->getOperand(0), 1278 RHSConv->getOperand(0), I)) { 1279 // Insert the new integer add. 1280 Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0), 1281 RHSConv->getOperand(0), "addconv"); 1282 return new SExtInst(NewAdd, Ty); 1283 } 1284 } 1285 } 1286 1287 // Check for (add (zext x), y), see if we can merge this into an 1288 // integer add followed by a zext. 1289 if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) { 1290 // (add (zext x), cst) --> (zext (add x, cst')) 1291 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1292 if (LHSConv->hasOneUse()) { 1293 Constant *CI = 1294 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1295 if (ConstantExpr::getZExt(CI, Ty) == RHSC && 1296 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) { 1297 // Insert the new, smaller add. 1298 Value *NewAdd = 1299 Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv"); 1300 return new ZExtInst(NewAdd, Ty); 1301 } 1302 } 1303 } 1304 1305 // (add (zext x), (zext y)) --> (zext (add int x, y)) 1306 if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) { 1307 // Only do this if x/y have the same type, if at least one of them has a 1308 // single use (so we don't increase the number of zexts), and if the 1309 // integer add will not overflow. 1310 if (LHSConv->getOperand(0)->getType() == 1311 RHSConv->getOperand(0)->getType() && 1312 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1313 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), 1314 RHSConv->getOperand(0), I)) { 1315 // Insert the new integer add. 1316 Value *NewAdd = Builder.CreateNUWAdd( 1317 LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); 1318 return new ZExtInst(NewAdd, Ty); 1319 } 1320 } 1321 } 1322 1323 // (add (xor A, B) (and A, B)) --> (or A, B) 1324 // (add (and A, B) (xor A, B)) --> (or A, B) 1325 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1326 m_c_And(m_Deferred(A), m_Deferred(B))))) 1327 return BinaryOperator::CreateOr(A, B); 1328 1329 // (add (or A, B) (and A, B)) --> (add A, B) 1330 // (add (and A, B) (or A, B)) --> (add A, B) 1331 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1332 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1333 I.setOperand(0, A); 1334 I.setOperand(1, B); 1335 return &I; 1336 } 1337 1338 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1339 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1340 // computeKnownBits. 1341 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1342 Changed = true; 1343 I.setHasNoSignedWrap(true); 1344 } 1345 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1346 Changed = true; 1347 I.setHasNoUnsignedWrap(true); 1348 } 1349 1350 return Changed ? &I : nullptr; 1351 } 1352 1353 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1354 bool Changed = SimplifyAssociativeOrCommutative(I); 1355 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1356 1357 if (Value *V = SimplifyVectorOp(I)) 1358 return replaceInstUsesWith(I, V); 1359 1360 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), 1361 SQ.getWithInstruction(&I))) 1362 return replaceInstUsesWith(I, V); 1363 1364 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1365 return FoldedFAdd; 1366 1367 Value *X; 1368 // (-X) + Y --> Y - X 1369 if (match(LHS, m_FNeg(m_Value(X)))) 1370 return BinaryOperator::CreateFSubFMF(RHS, X, &I); 1371 // Y + (-X) --> Y - X 1372 if (match(RHS, m_FNeg(m_Value(X)))) 1373 return BinaryOperator::CreateFSubFMF(LHS, X, &I); 1374 1375 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1376 // integer add followed by a promotion. 1377 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1378 Value *LHSIntVal = LHSConv->getOperand(0); 1379 Type *FPType = LHSConv->getType(); 1380 1381 // TODO: This check is overly conservative. In many cases known bits 1382 // analysis can tell us that the result of the addition has less significant 1383 // bits than the integer type can hold. 1384 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1385 Type *FScalarTy = FTy->getScalarType(); 1386 Type *IScalarTy = ITy->getScalarType(); 1387 1388 // Do we have enough bits in the significand to represent the result of 1389 // the integer addition? 1390 unsigned MaxRepresentableBits = 1391 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1392 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1393 }; 1394 1395 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1396 // ... if the constant fits in the integer value. This is useful for things 1397 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1398 // requires a constant pool load, and generally allows the add to be better 1399 // instcombined. 1400 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1401 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1402 Constant *CI = 1403 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1404 if (LHSConv->hasOneUse() && 1405 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1406 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1407 // Insert the new integer add. 1408 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1409 return new SIToFPInst(NewAdd, I.getType()); 1410 } 1411 } 1412 1413 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1414 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1415 Value *RHSIntVal = RHSConv->getOperand(0); 1416 // It's enough to check LHS types only because we require int types to 1417 // be the same for this transform. 1418 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1419 // Only do this if x/y have the same type, if at least one of them has a 1420 // single use (so we don't increase the number of int->fp conversions), 1421 // and if the integer add will not overflow. 1422 if (LHSIntVal->getType() == RHSIntVal->getType() && 1423 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1424 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1425 // Insert the new integer add. 1426 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1427 return new SIToFPInst(NewAdd, I.getType()); 1428 } 1429 } 1430 } 1431 } 1432 1433 // Handle specials cases for FAdd with selects feeding the operation 1434 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1435 return replaceInstUsesWith(I, V); 1436 1437 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1438 if (Value *V = FAddCombine(Builder).simplify(&I)) 1439 return replaceInstUsesWith(I, V); 1440 } 1441 1442 return Changed ? &I : nullptr; 1443 } 1444 1445 /// Optimize pointer differences into the same array into a size. Consider: 1446 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1447 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1448 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1449 Type *Ty) { 1450 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1451 // this. 1452 bool Swapped = false; 1453 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1454 1455 // For now we require one side to be the base pointer "A" or a constant 1456 // GEP derived from it. 1457 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1458 // (gep X, ...) - X 1459 if (LHSGEP->getOperand(0) == RHS) { 1460 GEP1 = LHSGEP; 1461 Swapped = false; 1462 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1463 // (gep X, ...) - (gep X, ...) 1464 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1465 RHSGEP->getOperand(0)->stripPointerCasts()) { 1466 GEP2 = RHSGEP; 1467 GEP1 = LHSGEP; 1468 Swapped = false; 1469 } 1470 } 1471 } 1472 1473 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1474 // X - (gep X, ...) 1475 if (RHSGEP->getOperand(0) == LHS) { 1476 GEP1 = RHSGEP; 1477 Swapped = true; 1478 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1479 // (gep X, ...) - (gep X, ...) 1480 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1481 LHSGEP->getOperand(0)->stripPointerCasts()) { 1482 GEP2 = LHSGEP; 1483 GEP1 = RHSGEP; 1484 Swapped = true; 1485 } 1486 } 1487 } 1488 1489 if (!GEP1) 1490 // No GEP found. 1491 return nullptr; 1492 1493 if (GEP2) { 1494 // (gep X, ...) - (gep X, ...) 1495 // 1496 // Avoid duplicating the arithmetic if there are more than one non-constant 1497 // indices between the two GEPs and either GEP has a non-constant index and 1498 // multiple users. If zero non-constant index, the result is a constant and 1499 // there is no duplication. If one non-constant index, the result is an add 1500 // or sub with a constant, which is no larger than the original code, and 1501 // there's no duplicated arithmetic, even if either GEP has multiple 1502 // users. If more than one non-constant indices combined, as long as the GEP 1503 // with at least one non-constant index doesn't have multiple users, there 1504 // is no duplication. 1505 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1506 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1507 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1508 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1509 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1510 return nullptr; 1511 } 1512 } 1513 1514 // Emit the offset of the GEP and an intptr_t. 1515 Value *Result = EmitGEPOffset(GEP1); 1516 1517 // If we had a constant expression GEP on the other side offsetting the 1518 // pointer, subtract it from the offset we have. 1519 if (GEP2) { 1520 Value *Offset = EmitGEPOffset(GEP2); 1521 Result = Builder.CreateSub(Result, Offset); 1522 } 1523 1524 // If we have p - gep(p, ...) then we have to negate the result. 1525 if (Swapped) 1526 Result = Builder.CreateNeg(Result, "diff.neg"); 1527 1528 return Builder.CreateIntCast(Result, Ty, true); 1529 } 1530 1531 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1532 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1533 1534 if (Value *V = SimplifyVectorOp(I)) 1535 return replaceInstUsesWith(I, V); 1536 1537 if (Value *V = 1538 SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1539 SQ.getWithInstruction(&I))) 1540 return replaceInstUsesWith(I, V); 1541 1542 // (A*B)-(A*C) -> A*(B-C) etc 1543 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1544 return replaceInstUsesWith(I, V); 1545 1546 // If this is a 'B = x-(-A)', change to B = x+A. 1547 if (Value *V = dyn_castNegVal(Op1)) { 1548 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1549 1550 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1551 assert(BO->getOpcode() == Instruction::Sub && 1552 "Expected a subtraction operator!"); 1553 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1554 Res->setHasNoSignedWrap(true); 1555 } else { 1556 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1557 Res->setHasNoSignedWrap(true); 1558 } 1559 1560 return Res; 1561 } 1562 1563 if (I.getType()->isIntOrIntVectorTy(1)) 1564 return BinaryOperator::CreateXor(Op0, Op1); 1565 1566 // Replace (-1 - A) with (~A). 1567 if (match(Op0, m_AllOnes())) 1568 return BinaryOperator::CreateNot(Op1); 1569 1570 // (~X) - (~Y) --> Y - X 1571 Value *X, *Y; 1572 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1573 return BinaryOperator::CreateSub(Y, X); 1574 1575 if (Constant *C = dyn_cast<Constant>(Op0)) { 1576 Value *X; 1577 // C - zext(bool) -> bool ? C - 1 : C 1578 if (match(Op1, m_ZExt(m_Value(X))) && 1579 X->getType()->getScalarSizeInBits() == 1) 1580 return SelectInst::Create(X, SubOne(C), C); 1581 1582 // C - ~X == X + (1+C) 1583 if (match(Op1, m_Not(m_Value(X)))) 1584 return BinaryOperator::CreateAdd(X, AddOne(C)); 1585 1586 // Try to fold constant sub into select arguments. 1587 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1588 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1589 return R; 1590 1591 // Try to fold constant sub into PHI values. 1592 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1593 if (Instruction *R = foldOpIntoPhi(I, PN)) 1594 return R; 1595 1596 // C-(X+C2) --> (C-C2)-X 1597 Constant *C2; 1598 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1599 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1600 1601 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 1602 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 1603 if (X->getType()->isIntOrIntVectorTy(1)) 1604 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 1605 1606 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 1607 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 1608 if (X->getType()->isIntOrIntVectorTy(1)) 1609 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 1610 } 1611 1612 const APInt *Op0C; 1613 if (match(Op0, m_APInt(Op0C))) { 1614 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1615 1616 // -(X >>u 31) -> (X >>s 31) 1617 // -(X >>s 31) -> (X >>u 31) 1618 if (Op0C->isNullValue()) { 1619 Value *X; 1620 const APInt *ShAmt; 1621 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1622 *ShAmt == BitWidth - 1) { 1623 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1624 return BinaryOperator::CreateAShr(X, ShAmtOp); 1625 } 1626 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1627 *ShAmt == BitWidth - 1) { 1628 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1629 return BinaryOperator::CreateLShr(X, ShAmtOp); 1630 } 1631 1632 if (Op1->hasOneUse()) { 1633 Value *LHS, *RHS; 1634 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; 1635 if (SPF == SPF_ABS || SPF == SPF_NABS) { 1636 // This is a negate of an ABS/NABS pattern. Just swap the operands 1637 // of the select. 1638 SelectInst *SI = cast<SelectInst>(Op1); 1639 Value *TrueVal = SI->getTrueValue(); 1640 Value *FalseVal = SI->getFalseValue(); 1641 SI->setTrueValue(FalseVal); 1642 SI->setFalseValue(TrueVal); 1643 // Don't swap prof metadata, we didn't change the branch behavior. 1644 return replaceInstUsesWith(I, SI); 1645 } 1646 } 1647 } 1648 1649 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1650 // zero. 1651 if (Op0C->isMask()) { 1652 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1653 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1654 return BinaryOperator::CreateXor(Op1, Op0); 1655 } 1656 } 1657 1658 { 1659 Value *Y; 1660 // X-(X+Y) == -Y X-(Y+X) == -Y 1661 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1662 return BinaryOperator::CreateNeg(Y); 1663 1664 // (X-Y)-X == -Y 1665 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1666 return BinaryOperator::CreateNeg(Y); 1667 } 1668 1669 // (sub (or A, B), (xor A, B)) --> (and A, B) 1670 { 1671 Value *A, *B; 1672 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1673 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1674 return BinaryOperator::CreateAnd(A, B); 1675 } 1676 1677 { 1678 Value *Y; 1679 // ((X | Y) - X) --> (~X & Y) 1680 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1681 return BinaryOperator::CreateAnd( 1682 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1683 } 1684 1685 if (Op1->hasOneUse()) { 1686 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1687 Constant *C = nullptr; 1688 1689 // (X - (Y - Z)) --> (X + (Z - Y)). 1690 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1691 return BinaryOperator::CreateAdd(Op0, 1692 Builder.CreateSub(Z, Y, Op1->getName())); 1693 1694 // (X - (X & Y)) --> (X & ~Y) 1695 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1696 return BinaryOperator::CreateAnd(Op0, 1697 Builder.CreateNot(Y, Y->getName() + ".not")); 1698 1699 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1700 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1701 C->isNotMinSignedValue() && !C->isOneValue()) 1702 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1703 1704 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1705 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1706 if (Value *XNeg = dyn_castNegVal(X)) 1707 return BinaryOperator::CreateShl(XNeg, Y); 1708 1709 // Subtracting -1/0 is the same as adding 1/0: 1710 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1711 // 'nuw' is dropped in favor of the canonical form. 1712 if (match(Op1, m_SExt(m_Value(Y))) && 1713 Y->getType()->getScalarSizeInBits() == 1) { 1714 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1715 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1716 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1717 return Add; 1718 } 1719 1720 // X - A*-B -> X + A*B 1721 // X - -A*B -> X + A*B 1722 Value *A, *B; 1723 Constant *CI; 1724 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1725 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1726 1727 // X - A*CI -> X + A*-CI 1728 // No need to handle commuted multiply because multiply handling will 1729 // ensure constant will be move to the right hand side. 1730 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) { 1731 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI)); 1732 return BinaryOperator::CreateAdd(Op0, NewMul); 1733 } 1734 } 1735 1736 // Optimize pointer differences into the same array into a size. Consider: 1737 // &A[10] - &A[0]: we should compile this to "10". 1738 Value *LHSOp, *RHSOp; 1739 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1740 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1741 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1742 return replaceInstUsesWith(I, Res); 1743 1744 // trunc(p)-trunc(q) -> trunc(p-q) 1745 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1746 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1747 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1748 return replaceInstUsesWith(I, Res); 1749 1750 bool Changed = false; 1751 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1752 Changed = true; 1753 I.setHasNoSignedWrap(true); 1754 } 1755 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1756 Changed = true; 1757 I.setHasNoUnsignedWrap(true); 1758 } 1759 1760 return Changed ? &I : nullptr; 1761 } 1762 1763 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1764 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1765 1766 if (Value *V = SimplifyVectorOp(I)) 1767 return replaceInstUsesWith(I, V); 1768 1769 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), 1770 SQ.getWithInstruction(&I))) 1771 return replaceInstUsesWith(I, V); 1772 1773 // Subtraction from -0.0 is the canonical form of fneg. 1774 // fsub nsz 0, X ==> fsub nsz -0.0, X 1775 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) 1776 return BinaryOperator::CreateFNegFMF(Op1, &I); 1777 1778 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 1779 // Canonicalize to fadd to make analysis easier. 1780 // This can also help codegen because fadd is commutative. 1781 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 1782 // killed later. We still limit that particular transform with 'hasOneUse' 1783 // because an fneg is assumed better/cheaper than a generic fsub. 1784 Value *X, *Y; 1785 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 1786 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 1787 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 1788 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 1789 } 1790 } 1791 1792 if (isa<Constant>(Op0)) 1793 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1794 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1795 return NV; 1796 1797 // X - C --> X + (-C) 1798 // But don't transform constant expressions because there's an inverse fold 1799 // for X + (-Y) --> X - Y. 1800 Constant *C; 1801 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) 1802 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 1803 1804 // X - (-Y) --> X + Y 1805 if (match(Op1, m_FNeg(m_Value(Y)))) 1806 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 1807 1808 // Similar to above, but look through a cast of the negated value: 1809 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 1810 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) { 1811 Value *TruncY = Builder.CreateFPTrunc(Y, I.getType()); 1812 return BinaryOperator::CreateFAddFMF(Op0, TruncY, &I); 1813 } 1814 // X - (fpext(-Y)) --> X + fpext(Y) 1815 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) { 1816 Value *ExtY = Builder.CreateFPExt(Y, I.getType()); 1817 return BinaryOperator::CreateFAddFMF(Op0, ExtY, &I); 1818 } 1819 1820 // Handle specials cases for FSub with selects feeding the operation 1821 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 1822 return replaceInstUsesWith(I, V); 1823 1824 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1825 if (Value *V = FAddCombine(Builder).simplify(&I)) 1826 return replaceInstUsesWith(I, V); 1827 } 1828 1829 return nullptr; 1830 } 1831