xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision 75e8eb2b10b15b027608adb0d3eaaefbd19e5993)
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86 
87     const APFloat *getFpValPtr() const {
88       return reinterpret_cast<const APFloat *>(&FpValBuf);
89     }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211 
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215 
216 } // end anonymous namespace
217 
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228 
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231 
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238 
239   IsFp = BufHasFpVal = true;
240 }
241 
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245 
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255 
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259 
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262 
263   return T;
264 }
265 
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272 
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282 
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289 
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293 
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297 
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302 
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309 
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316 
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323 
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330 
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336 
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352 
353   unsigned Opcode = I->getOpcode();
354 
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361 
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364 
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371 
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381 
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384 
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389 
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397 
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403 
404   return 0;
405 }
406 
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414 
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418 
419   Addend0.Scale(Coeff);
420 
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423 
424   return BreakNum;
425 }
426 
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430 
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434 
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440 
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448 
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465 
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468 
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477 
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486 
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494 
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498 
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506 
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510 
511   return nullptr;
512 }
513 
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517 
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521 
522   // Points to the constant addend of the resulting simplified expression.
523   // If the resulting expr has constant-addend, this constant-addend is
524   // desirable to reside at the top of the resulting expression tree. Placing
525   // constant close to supper-expr(s) will potentially reveal some optimization
526   // opportunities in super-expr(s).
527   const FAddend *ConstAdd = nullptr;
528 
529   // Simplified addends are placed <SimpVect>.
530   AddendVect SimpVect;
531 
532   // The outer loop works on one symbolic-value at a time. Suppose the input
533   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
534   // The symbolic-values will be processed in this order: x, y, z.
535   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
536 
537     const FAddend *ThisAddend = Addends[SymIdx];
538     if (!ThisAddend) {
539       // This addend was processed before.
540       continue;
541     }
542 
543     Value *Val = ThisAddend->getSymVal();
544     unsigned StartIdx = SimpVect.size();
545     SimpVect.push_back(ThisAddend);
546 
547     // The inner loop collects addends sharing same symbolic-value, and these
548     // addends will be later on folded into a single addend. Following above
549     // example, if the symbolic value "y" is being processed, the inner loop
550     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
551     // be later on folded into "<b1+b2, y>".
552     for (unsigned SameSymIdx = SymIdx + 1;
553          SameSymIdx < AddendNum; SameSymIdx++) {
554       const FAddend *T = Addends[SameSymIdx];
555       if (T && T->getSymVal() == Val) {
556         // Set null such that next iteration of the outer loop will not process
557         // this addend again.
558         Addends[SameSymIdx] = nullptr;
559         SimpVect.push_back(T);
560       }
561     }
562 
563     // If multiple addends share same symbolic value, fold them together.
564     if (StartIdx + 1 != SimpVect.size()) {
565       FAddend &R = TmpResult[NextTmpIdx ++];
566       R = *SimpVect[StartIdx];
567       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
568         R += *SimpVect[Idx];
569 
570       // Pop all addends being folded and push the resulting folded addend.
571       SimpVect.resize(StartIdx);
572       if (Val) {
573         if (!R.isZero()) {
574           SimpVect.push_back(&R);
575         }
576       } else {
577         // Don't push constant addend at this time. It will be the last element
578         // of <SimpVect>.
579         ConstAdd = &R;
580       }
581     }
582   }
583 
584   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
585          "out-of-bound access");
586 
587   if (ConstAdd)
588     SimpVect.push_back(ConstAdd);
589 
590   Value *Result;
591   if (!SimpVect.empty())
592     Result = createNaryFAdd(SimpVect, InstrQuota);
593   else {
594     // The addition is folded to 0.0.
595     Result = ConstantFP::get(Instr->getType(), 0.0);
596   }
597 
598   return Result;
599 }
600 
601 Value *FAddCombine::createNaryFAdd
602   (const AddendVect &Opnds, unsigned InstrQuota) {
603   assert(!Opnds.empty() && "Expect at least one addend");
604 
605   // Step 1: Check if the # of instructions needed exceeds the quota.
606 
607   unsigned InstrNeeded = calcInstrNumber(Opnds);
608   if (InstrNeeded > InstrQuota)
609     return nullptr;
610 
611   initCreateInstNum();
612 
613   // step 2: Emit the N-ary addition.
614   // Note that at most three instructions are involved in Fadd-InstCombine: the
615   // addition in question, and at most two neighboring instructions.
616   // The resulting optimized addition should have at least one less instruction
617   // than the original addition expression tree. This implies that the resulting
618   // N-ary addition has at most two instructions, and we don't need to worry
619   // about tree-height when constructing the N-ary addition.
620 
621   Value *LastVal = nullptr;
622   bool LastValNeedNeg = false;
623 
624   // Iterate the addends, creating fadd/fsub using adjacent two addends.
625   for (const FAddend *Opnd : Opnds) {
626     bool NeedNeg;
627     Value *V = createAddendVal(*Opnd, NeedNeg);
628     if (!LastVal) {
629       LastVal = V;
630       LastValNeedNeg = NeedNeg;
631       continue;
632     }
633 
634     if (LastValNeedNeg == NeedNeg) {
635       LastVal = createFAdd(LastVal, V);
636       continue;
637     }
638 
639     if (LastValNeedNeg)
640       LastVal = createFSub(V, LastVal);
641     else
642       LastVal = createFSub(LastVal, V);
643 
644     LastValNeedNeg = false;
645   }
646 
647   if (LastValNeedNeg) {
648     LastVal = createFNeg(LastVal);
649   }
650 
651 #ifndef NDEBUG
652   assert(CreateInstrNum == InstrNeeded &&
653          "Inconsistent in instruction numbers");
654 #endif
655 
656   return LastVal;
657 }
658 
659 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
660   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
661   if (Instruction *I = dyn_cast<Instruction>(V))
662     createInstPostProc(I);
663   return V;
664 }
665 
666 Value *FAddCombine::createFNeg(Value *V) {
667   Value *NewV = Builder.CreateFNeg(V);
668   if (Instruction *I = dyn_cast<Instruction>(NewV))
669     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670   return NewV;
671 }
672 
673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675   if (Instruction *I = dyn_cast<Instruction>(V))
676     createInstPostProc(I);
677   return V;
678 }
679 
680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682   if (Instruction *I = dyn_cast<Instruction>(V))
683     createInstPostProc(I);
684   return V;
685 }
686 
687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688   NewInstr->setDebugLoc(Instr->getDebugLoc());
689 
690   // Keep track of the number of instruction created.
691   if (!NoNumber)
692     incCreateInstNum();
693 
694   // Propagate fast-math flags
695   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
696 }
697 
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701   unsigned OpndNum = Opnds.size();
702   unsigned InstrNeeded = OpndNum - 1;
703 
704   // The number of addends in the form of "(-1)*x".
705   unsigned NegOpndNum = 0;
706 
707   // Adjust the number of instructions needed to emit the N-ary add.
708   for (const FAddend *Opnd : Opnds) {
709     if (Opnd->isConstant())
710       continue;
711 
712     // The constant check above is really for a few special constant
713     // coefficients.
714     if (isa<UndefValue>(Opnd->getSymVal()))
715       continue;
716 
717     const FAddendCoef &CE = Opnd->getCoef();
718     if (CE.isMinusOne() || CE.isMinusTwo())
719       NegOpndNum++;
720 
721     // Let the addend be "c * x". If "c == +/-1", the value of the addend
722     // is immediately available; otherwise, it needs exactly one instruction
723     // to evaluate the value.
724     if (!CE.isMinusOne() && !CE.isOne())
725       InstrNeeded++;
726   }
727   return InstrNeeded;
728 }
729 
730 // Input Addend        Value           NeedNeg(output)
731 // ================================================================
732 // Constant C          C               false
733 // <+/-1, V>           V               coefficient is -1
734 // <2/-2, V>          "fadd V, V"      coefficient is -2
735 // <C, V>             "fmul V, C"      false
736 //
737 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
738 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
739   const FAddendCoef &Coeff = Opnd.getCoef();
740 
741   if (Opnd.isConstant()) {
742     NeedNeg = false;
743     return Coeff.getValue(Instr->getType());
744   }
745 
746   Value *OpndVal = Opnd.getSymVal();
747 
748   if (Coeff.isMinusOne() || Coeff.isOne()) {
749     NeedNeg = Coeff.isMinusOne();
750     return OpndVal;
751   }
752 
753   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
754     NeedNeg = Coeff.isMinusTwo();
755     return createFAdd(OpndVal, OpndVal);
756   }
757 
758   NeedNeg = false;
759   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
760 }
761 
762 // Checks if any operand is negative and we can convert add to sub.
763 // This function checks for following negative patterns
764 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
765 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
766 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
767 static Value *checkForNegativeOperand(BinaryOperator &I,
768                                       InstCombiner::BuilderTy &Builder) {
769   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
770 
771   // This function creates 2 instructions to replace ADD, we need at least one
772   // of LHS or RHS to have one use to ensure benefit in transform.
773   if (!LHS->hasOneUse() && !RHS->hasOneUse())
774     return nullptr;
775 
776   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
777   const APInt *C1 = nullptr, *C2 = nullptr;
778 
779   // if ONE is on other side, swap
780   if (match(RHS, m_Add(m_Value(X), m_One())))
781     std::swap(LHS, RHS);
782 
783   if (match(LHS, m_Add(m_Value(X), m_One()))) {
784     // if XOR on other side, swap
785     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
786       std::swap(X, RHS);
787 
788     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
789       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
790       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
791       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
792         Value *NewAnd = Builder.CreateAnd(Z, *C1);
793         return Builder.CreateSub(RHS, NewAnd, "sub");
794       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
795         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
796         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
797         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
798         return Builder.CreateSub(RHS, NewOr, "sub");
799       }
800     }
801   }
802 
803   // Restore LHS and RHS
804   LHS = I.getOperand(0);
805   RHS = I.getOperand(1);
806 
807   // if XOR is on other side, swap
808   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
809     std::swap(LHS, RHS);
810 
811   // C2 is ODD
812   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
813   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
814   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
815     if (C1->countTrailingZeros() == 0)
816       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
817         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
818         return Builder.CreateSub(RHS, NewOr, "sub");
819       }
820   return nullptr;
821 }
822 
823 /// Wrapping flags may allow combining constants separated by an extend.
824 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
825                                   InstCombiner::BuilderTy &Builder) {
826   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
827   Type *Ty = Add.getType();
828   Constant *Op1C;
829   if (!match(Op1, m_Constant(Op1C)))
830     return nullptr;
831 
832   // Try this match first because it results in an add in the narrow type.
833   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
834   Value *X;
835   const APInt *C1, *C2;
836   if (match(Op1, m_APInt(C1)) &&
837       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
838       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
839     Constant *NewC =
840         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
841     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
842   }
843 
844   // More general combining of constants in the wide type.
845   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
846   Constant *NarrowC;
847   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
848     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
849     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
850     Value *WideX = Builder.CreateSExt(X, Ty);
851     return BinaryOperator::CreateAdd(WideX, NewC);
852   }
853   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
854   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
855     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
856     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
857     Value *WideX = Builder.CreateZExt(X, Ty);
858     return BinaryOperator::CreateAdd(WideX, NewC);
859   }
860 
861   return nullptr;
862 }
863 
864 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
865   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
866   Constant *Op1C;
867   if (!match(Op1, m_ImmConstant(Op1C)))
868     return nullptr;
869 
870   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
871     return NV;
872 
873   Value *X;
874   Constant *Op00C;
875 
876   // add (sub C1, X), C2 --> sub (add C1, C2), X
877   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
878     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
879 
880   Value *Y;
881 
882   // add (sub X, Y), -1 --> add (not Y), X
883   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
884       match(Op1, m_AllOnes()))
885     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
886 
887   // zext(bool) + C -> bool ? C + 1 : C
888   if (match(Op0, m_ZExt(m_Value(X))) &&
889       X->getType()->getScalarSizeInBits() == 1)
890     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
891   // sext(bool) + C -> bool ? C - 1 : C
892   if (match(Op0, m_SExt(m_Value(X))) &&
893       X->getType()->getScalarSizeInBits() == 1)
894     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
895 
896   // ~X + C --> (C-1) - X
897   if (match(Op0, m_Not(m_Value(X))))
898     return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
899 
900   const APInt *C;
901   if (!match(Op1, m_APInt(C)))
902     return nullptr;
903 
904   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
905   Constant *Op01C;
906   if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
907       haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
908     return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
909 
910   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
911   const APInt *C2;
912   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
913     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
914 
915   if (C->isSignMask()) {
916     // If wrapping is not allowed, then the addition must set the sign bit:
917     // X + (signmask) --> X | signmask
918     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
919       return BinaryOperator::CreateOr(Op0, Op1);
920 
921     // If wrapping is allowed, then the addition flips the sign bit of LHS:
922     // X + (signmask) --> X ^ signmask
923     return BinaryOperator::CreateXor(Op0, Op1);
924   }
925 
926   // Is this add the last step in a convoluted sext?
927   // add(zext(xor i16 X, -32768), -32768) --> sext X
928   Type *Ty = Add.getType();
929   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
930       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
931     return CastInst::Create(Instruction::SExt, X, Ty);
932 
933   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
934     // (X ^ signmask) + C --> (X + (signmask ^ C))
935     if (C2->isSignMask())
936       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
937 
938     // If X has no high-bits set above an xor mask:
939     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
940     if (C2->isMask()) {
941       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
942       if ((*C2 | LHSKnown.Zero).isAllOnesValue())
943         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
944     }
945 
946     // Look for a math+logic pattern that corresponds to sext-in-register of a
947     // value with cleared high bits. Convert that into a pair of shifts:
948     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
949     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
950     if (Op0->hasOneUse() && *C2 == -(*C)) {
951       unsigned BitWidth = Ty->getScalarSizeInBits();
952       unsigned ShAmt = 0;
953       if (C->isPowerOf2())
954         ShAmt = BitWidth - C->logBase2() - 1;
955       else if (C2->isPowerOf2())
956         ShAmt = BitWidth - C2->logBase2() - 1;
957       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
958                                      0, &Add)) {
959         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
960         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
961         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
962       }
963     }
964   }
965 
966   if (C->isOneValue() && Op0->hasOneUse()) {
967     // add (sext i1 X), 1 --> zext (not X)
968     // TODO: The smallest IR representation is (select X, 0, 1), and that would
969     // not require the one-use check. But we need to remove a transform in
970     // visitSelect and make sure that IR value tracking for select is equal or
971     // better than for these ops.
972     if (match(Op0, m_SExt(m_Value(X))) &&
973         X->getType()->getScalarSizeInBits() == 1)
974       return new ZExtInst(Builder.CreateNot(X), Ty);
975 
976     // Shifts and add used to flip and mask off the low bit:
977     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
978     const APInt *C3;
979     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
980         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
981       Value *NotX = Builder.CreateNot(X);
982       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
983     }
984   }
985 
986   // If all bits affected by the add are included in a high-bit-mask, do the
987   // add before the mask op:
988   // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
989   if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
990       C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
991     Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
992     return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
993   }
994 
995   return nullptr;
996 }
997 
998 // Matches multiplication expression Op * C where C is a constant. Returns the
999 // constant value in C and the other operand in Op. Returns true if such a
1000 // match is found.
1001 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1002   const APInt *AI;
1003   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1004     C = *AI;
1005     return true;
1006   }
1007   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1008     C = APInt(AI->getBitWidth(), 1);
1009     C <<= *AI;
1010     return true;
1011   }
1012   return false;
1013 }
1014 
1015 // Matches remainder expression Op % C where C is a constant. Returns the
1016 // constant value in C and the other operand in Op. Returns the signedness of
1017 // the remainder operation in IsSigned. Returns true if such a match is
1018 // found.
1019 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1020   const APInt *AI;
1021   IsSigned = false;
1022   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1023     IsSigned = true;
1024     C = *AI;
1025     return true;
1026   }
1027   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1028     C = *AI;
1029     return true;
1030   }
1031   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1032     C = *AI + 1;
1033     return true;
1034   }
1035   return false;
1036 }
1037 
1038 // Matches division expression Op / C with the given signedness as indicated
1039 // by IsSigned, where C is a constant. Returns the constant value in C and the
1040 // other operand in Op. Returns true if such a match is found.
1041 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1042   const APInt *AI;
1043   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1044     C = *AI;
1045     return true;
1046   }
1047   if (!IsSigned) {
1048     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1049       C = *AI;
1050       return true;
1051     }
1052     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1053       C = APInt(AI->getBitWidth(), 1);
1054       C <<= *AI;
1055       return true;
1056     }
1057   }
1058   return false;
1059 }
1060 
1061 // Returns whether C0 * C1 with the given signedness overflows.
1062 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1063   bool overflow;
1064   if (IsSigned)
1065     (void)C0.smul_ov(C1, overflow);
1066   else
1067     (void)C0.umul_ov(C1, overflow);
1068   return overflow;
1069 }
1070 
1071 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1072 // does not overflow.
1073 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1074   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1075   Value *X, *MulOpV;
1076   APInt C0, MulOpC;
1077   bool IsSigned;
1078   // Match I = X % C0 + MulOpV * C0
1079   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1080        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1081       C0 == MulOpC) {
1082     Value *RemOpV;
1083     APInt C1;
1084     bool Rem2IsSigned;
1085     // Match MulOpC = RemOpV % C1
1086     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1087         IsSigned == Rem2IsSigned) {
1088       Value *DivOpV;
1089       APInt DivOpC;
1090       // Match RemOpV = X / C0
1091       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1092           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1093         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1094         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1095                         : Builder.CreateURem(X, NewDivisor, "urem");
1096       }
1097     }
1098   }
1099 
1100   return nullptr;
1101 }
1102 
1103 /// Fold
1104 ///   (1 << NBits) - 1
1105 /// Into:
1106 ///   ~(-(1 << NBits))
1107 /// Because a 'not' is better for bit-tracking analysis and other transforms
1108 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1109 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1110                                            InstCombiner::BuilderTy &Builder) {
1111   Value *NBits;
1112   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1113     return nullptr;
1114 
1115   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1116   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1117   // Be wary of constant folding.
1118   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1119     // Always NSW. But NUW propagates from `add`.
1120     BOp->setHasNoSignedWrap();
1121     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1122   }
1123 
1124   return BinaryOperator::CreateNot(NotMask, I.getName());
1125 }
1126 
1127 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1128   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1129   Type *Ty = I.getType();
1130   auto getUAddSat = [&]() {
1131     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1132   };
1133 
1134   // add (umin X, ~Y), Y --> uaddsat X, Y
1135   Value *X, *Y;
1136   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1137                         m_Deferred(Y))))
1138     return CallInst::Create(getUAddSat(), { X, Y });
1139 
1140   // add (umin X, ~C), C --> uaddsat X, C
1141   const APInt *C, *NotC;
1142   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1143       *C == ~*NotC)
1144     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1145 
1146   return nullptr;
1147 }
1148 
1149 Instruction *InstCombinerImpl::
1150     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1151         BinaryOperator &I) {
1152   assert((I.getOpcode() == Instruction::Add ||
1153           I.getOpcode() == Instruction::Or ||
1154           I.getOpcode() == Instruction::Sub) &&
1155          "Expecting add/or/sub instruction");
1156 
1157   // We have a subtraction/addition between a (potentially truncated) *logical*
1158   // right-shift of X and a "select".
1159   Value *X, *Select;
1160   Instruction *LowBitsToSkip, *Extract;
1161   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1162                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1163                                m_Instruction(Extract))),
1164                            m_Value(Select))))
1165     return nullptr;
1166 
1167   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1168   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1169     return nullptr;
1170 
1171   Type *XTy = X->getType();
1172   bool HadTrunc = I.getType() != XTy;
1173 
1174   // If there was a truncation of extracted value, then we'll need to produce
1175   // one extra instruction, so we need to ensure one instruction will go away.
1176   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1177     return nullptr;
1178 
1179   // Extraction should extract high NBits bits, with shift amount calculated as:
1180   //   low bits to skip = shift bitwidth - high bits to extract
1181   // The shift amount itself may be extended, and we need to look past zero-ext
1182   // when matching NBits, that will matter for matching later.
1183   Constant *C;
1184   Value *NBits;
1185   if (!match(
1186           LowBitsToSkip,
1187           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1188       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1189                                    APInt(C->getType()->getScalarSizeInBits(),
1190                                          X->getType()->getScalarSizeInBits()))))
1191     return nullptr;
1192 
1193   // Sign-extending value can be zero-extended if we `sub`tract it,
1194   // or sign-extended otherwise.
1195   auto SkipExtInMagic = [&I](Value *&V) {
1196     if (I.getOpcode() == Instruction::Sub)
1197       match(V, m_ZExtOrSelf(m_Value(V)));
1198     else
1199       match(V, m_SExtOrSelf(m_Value(V)));
1200   };
1201 
1202   // Now, finally validate the sign-extending magic.
1203   // `select` itself may be appropriately extended, look past that.
1204   SkipExtInMagic(Select);
1205 
1206   ICmpInst::Predicate Pred;
1207   const APInt *Thr;
1208   Value *SignExtendingValue, *Zero;
1209   bool ShouldSignext;
1210   // It must be a select between two values we will later establish to be a
1211   // sign-extending value and a zero constant. The condition guarding the
1212   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1213   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1214                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1215       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1216     return nullptr;
1217 
1218   // icmp-select pair is commutative.
1219   if (!ShouldSignext)
1220     std::swap(SignExtendingValue, Zero);
1221 
1222   // If we should not perform sign-extension then we must add/or/subtract zero.
1223   if (!match(Zero, m_Zero()))
1224     return nullptr;
1225   // Otherwise, it should be some constant, left-shifted by the same NBits we
1226   // had in `lshr`. Said left-shift can also be appropriately extended.
1227   // Again, we must look past zero-ext when looking for NBits.
1228   SkipExtInMagic(SignExtendingValue);
1229   Constant *SignExtendingValueBaseConstant;
1230   if (!match(SignExtendingValue,
1231              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1232                    m_ZExtOrSelf(m_Specific(NBits)))))
1233     return nullptr;
1234   // If we `sub`, then the constant should be one, else it should be all-ones.
1235   if (I.getOpcode() == Instruction::Sub
1236           ? !match(SignExtendingValueBaseConstant, m_One())
1237           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1238     return nullptr;
1239 
1240   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1241                                              Extract->getName() + ".sext");
1242   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1243   if (!HadTrunc)
1244     return NewAShr;
1245 
1246   Builder.Insert(NewAShr);
1247   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1248 }
1249 
1250 /// This is a specialization of a more general transform from
1251 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
1252 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1253 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1254                                             InstCombiner::BuilderTy &Builder) {
1255   // TODO: Also handle mul by doubling the shift amount?
1256   assert((I.getOpcode() == Instruction::Add ||
1257           I.getOpcode() == Instruction::Sub) &&
1258          "Expected add/sub");
1259   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1260   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1261   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1262     return nullptr;
1263 
1264   Value *X, *Y, *ShAmt;
1265   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1266       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1267     return nullptr;
1268 
1269   // No-wrap propagates only when all ops have no-wrap.
1270   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1271                 Op1->hasNoSignedWrap();
1272   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1273                 Op1->hasNoUnsignedWrap();
1274 
1275   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1276   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1277   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1278     NewI->setHasNoSignedWrap(HasNSW);
1279     NewI->setHasNoUnsignedWrap(HasNUW);
1280   }
1281   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1282   NewShl->setHasNoSignedWrap(HasNSW);
1283   NewShl->setHasNoUnsignedWrap(HasNUW);
1284   return NewShl;
1285 }
1286 
1287 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1288   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1289                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1290                                  SQ.getWithInstruction(&I)))
1291     return replaceInstUsesWith(I, V);
1292 
1293   if (SimplifyAssociativeOrCommutative(I))
1294     return &I;
1295 
1296   if (Instruction *X = foldVectorBinop(I))
1297     return X;
1298 
1299   // (A*B)+(A*C) -> A*(B+C) etc
1300   if (Value *V = SimplifyUsingDistributiveLaws(I))
1301     return replaceInstUsesWith(I, V);
1302 
1303   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1304     return R;
1305 
1306   if (Instruction *X = foldAddWithConstant(I))
1307     return X;
1308 
1309   if (Instruction *X = foldNoWrapAdd(I, Builder))
1310     return X;
1311 
1312   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1313   Type *Ty = I.getType();
1314   if (Ty->isIntOrIntVectorTy(1))
1315     return BinaryOperator::CreateXor(LHS, RHS);
1316 
1317   // X + X --> X << 1
1318   if (LHS == RHS) {
1319     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1320     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1321     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1322     return Shl;
1323   }
1324 
1325   Value *A, *B;
1326   if (match(LHS, m_Neg(m_Value(A)))) {
1327     // -A + -B --> -(A + B)
1328     if (match(RHS, m_Neg(m_Value(B))))
1329       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1330 
1331     // -A + B --> B - A
1332     return BinaryOperator::CreateSub(RHS, A);
1333   }
1334 
1335   // A + -B  -->  A - B
1336   if (match(RHS, m_Neg(m_Value(B))))
1337     return BinaryOperator::CreateSub(LHS, B);
1338 
1339   if (Value *V = checkForNegativeOperand(I, Builder))
1340     return replaceInstUsesWith(I, V);
1341 
1342   // (A + 1) + ~B --> A - B
1343   // ~B + (A + 1) --> A - B
1344   // (~B + A) + 1 --> A - B
1345   // (A + ~B) + 1 --> A - B
1346   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1347       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1348     return BinaryOperator::CreateSub(A, B);
1349 
1350   // (A + RHS) + RHS --> A + (RHS << 1)
1351   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1352     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1353 
1354   // LHS + (A + LHS) --> A + (LHS << 1)
1355   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1356     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1357 
1358   {
1359     // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1360     Constant *C1, *C2;
1361     if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1362                           m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1363         (LHS->hasOneUse() || RHS->hasOneUse())) {
1364       Value *Sub = Builder.CreateSub(A, B);
1365       return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1366     }
1367   }
1368 
1369   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1370   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1371 
1372   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1373   const APInt *C1, *C2;
1374   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1375     APInt one(C2->getBitWidth(), 1);
1376     APInt minusC1 = -(*C1);
1377     if (minusC1 == (one << *C2)) {
1378       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1379       return BinaryOperator::CreateSRem(RHS, NewRHS);
1380     }
1381   }
1382 
1383   // A+B --> A|B iff A and B have no bits set in common.
1384   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1385     return BinaryOperator::CreateOr(LHS, RHS);
1386 
1387   // add (select X 0 (sub n A)) A  -->  select X A n
1388   {
1389     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1390     Value *A = RHS;
1391     if (!SI) {
1392       SI = dyn_cast<SelectInst>(RHS);
1393       A = LHS;
1394     }
1395     if (SI && SI->hasOneUse()) {
1396       Value *TV = SI->getTrueValue();
1397       Value *FV = SI->getFalseValue();
1398       Value *N;
1399 
1400       // Can we fold the add into the argument of the select?
1401       // We check both true and false select arguments for a matching subtract.
1402       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1403         // Fold the add into the true select value.
1404         return SelectInst::Create(SI->getCondition(), N, A);
1405 
1406       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1407         // Fold the add into the false select value.
1408         return SelectInst::Create(SI->getCondition(), A, N);
1409     }
1410   }
1411 
1412   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1413     return Ext;
1414 
1415   // (add (xor A, B) (and A, B)) --> (or A, B)
1416   // (add (and A, B) (xor A, B)) --> (or A, B)
1417   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1418                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1419     return BinaryOperator::CreateOr(A, B);
1420 
1421   // (add (or A, B) (and A, B)) --> (add A, B)
1422   // (add (and A, B) (or A, B)) --> (add A, B)
1423   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1424                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1425     // Replacing operands in-place to preserve nuw/nsw flags.
1426     replaceOperand(I, 0, A);
1427     replaceOperand(I, 1, B);
1428     return &I;
1429   }
1430 
1431   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1432   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1433   // computeKnownBits.
1434   bool Changed = false;
1435   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1436     Changed = true;
1437     I.setHasNoSignedWrap(true);
1438   }
1439   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1440     Changed = true;
1441     I.setHasNoUnsignedWrap(true);
1442   }
1443 
1444   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1445     return V;
1446 
1447   if (Instruction *V =
1448           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1449     return V;
1450 
1451   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1452     return SatAdd;
1453 
1454   // usub.sat(A, B) + B => umax(A, B)
1455   if (match(&I, m_c_BinOp(
1456           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1457           m_Deferred(B)))) {
1458     return replaceInstUsesWith(I,
1459         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1460   }
1461 
1462   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1463   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1464       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1465       haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1466     return replaceInstUsesWith(
1467         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1468                                    {Builder.CreateOr(A, B)}));
1469 
1470   return Changed ? &I : nullptr;
1471 }
1472 
1473 /// Eliminate an op from a linear interpolation (lerp) pattern.
1474 static Instruction *factorizeLerp(BinaryOperator &I,
1475                                   InstCombiner::BuilderTy &Builder) {
1476   Value *X, *Y, *Z;
1477   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1478                                             m_OneUse(m_FSub(m_FPOne(),
1479                                                             m_Value(Z))))),
1480                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1481     return nullptr;
1482 
1483   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1484   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1485   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1486   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1487 }
1488 
1489 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1490 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1491                                       InstCombiner::BuilderTy &Builder) {
1492   assert((I.getOpcode() == Instruction::FAdd ||
1493           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1494   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1495          "FP factorization requires FMF");
1496 
1497   if (Instruction *Lerp = factorizeLerp(I, Builder))
1498     return Lerp;
1499 
1500   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1501   Value *X, *Y, *Z;
1502   bool IsFMul;
1503   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1504        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1505       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1506        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1507     IsFMul = true;
1508   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1509            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1510     IsFMul = false;
1511   else
1512     return nullptr;
1513 
1514   // (X * Z) + (Y * Z) --> (X + Y) * Z
1515   // (X * Z) - (Y * Z) --> (X - Y) * Z
1516   // (X / Z) + (Y / Z) --> (X + Y) / Z
1517   // (X / Z) - (Y / Z) --> (X - Y) / Z
1518   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1519   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1520                      : Builder.CreateFSubFMF(X, Y, &I);
1521 
1522   // Bail out if we just created a denormal constant.
1523   // TODO: This is copied from a previous implementation. Is it necessary?
1524   const APFloat *C;
1525   if (match(XY, m_APFloat(C)) && !C->isNormal())
1526     return nullptr;
1527 
1528   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1529                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1530 }
1531 
1532 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1533   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1534                                   I.getFastMathFlags(),
1535                                   SQ.getWithInstruction(&I)))
1536     return replaceInstUsesWith(I, V);
1537 
1538   if (SimplifyAssociativeOrCommutative(I))
1539     return &I;
1540 
1541   if (Instruction *X = foldVectorBinop(I))
1542     return X;
1543 
1544   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1545     return FoldedFAdd;
1546 
1547   // (-X) + Y --> Y - X
1548   Value *X, *Y;
1549   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1550     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1551 
1552   // Similar to above, but look through fmul/fdiv for the negated term.
1553   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1554   Value *Z;
1555   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1556                          m_Value(Z)))) {
1557     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1558     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1559   }
1560   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1561   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1562   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1563                          m_Value(Z))) ||
1564       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1565                          m_Value(Z)))) {
1566     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1567     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1568   }
1569 
1570   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1571   // integer add followed by a promotion.
1572   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1573   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1574     Value *LHSIntVal = LHSConv->getOperand(0);
1575     Type *FPType = LHSConv->getType();
1576 
1577     // TODO: This check is overly conservative. In many cases known bits
1578     // analysis can tell us that the result of the addition has less significant
1579     // bits than the integer type can hold.
1580     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1581       Type *FScalarTy = FTy->getScalarType();
1582       Type *IScalarTy = ITy->getScalarType();
1583 
1584       // Do we have enough bits in the significand to represent the result of
1585       // the integer addition?
1586       unsigned MaxRepresentableBits =
1587           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1588       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1589     };
1590 
1591     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1592     // ... if the constant fits in the integer value.  This is useful for things
1593     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1594     // requires a constant pool load, and generally allows the add to be better
1595     // instcombined.
1596     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1597       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1598         Constant *CI =
1599           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1600         if (LHSConv->hasOneUse() &&
1601             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1602             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1603           // Insert the new integer add.
1604           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1605           return new SIToFPInst(NewAdd, I.getType());
1606         }
1607       }
1608 
1609     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1610     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1611       Value *RHSIntVal = RHSConv->getOperand(0);
1612       // It's enough to check LHS types only because we require int types to
1613       // be the same for this transform.
1614       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1615         // Only do this if x/y have the same type, if at least one of them has a
1616         // single use (so we don't increase the number of int->fp conversions),
1617         // and if the integer add will not overflow.
1618         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1619             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1620             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1621           // Insert the new integer add.
1622           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1623           return new SIToFPInst(NewAdd, I.getType());
1624         }
1625       }
1626     }
1627   }
1628 
1629   // Handle specials cases for FAdd with selects feeding the operation
1630   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1631     return replaceInstUsesWith(I, V);
1632 
1633   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1634     if (Instruction *F = factorizeFAddFSub(I, Builder))
1635       return F;
1636 
1637     // Try to fold fadd into start value of reduction intrinsic.
1638     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1639                                m_AnyZeroFP(), m_Value(X))),
1640                            m_Value(Y)))) {
1641       // fadd (rdx 0.0, X), Y --> rdx Y, X
1642       return replaceInstUsesWith(
1643           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1644                                      {X->getType()}, {Y, X}, &I));
1645     }
1646     const APFloat *StartC, *C;
1647     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1648                        m_APFloat(StartC), m_Value(X)))) &&
1649         match(RHS, m_APFloat(C))) {
1650       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1651       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1652       return replaceInstUsesWith(
1653           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1654                                      {X->getType()}, {NewStartC, X}, &I));
1655     }
1656 
1657     if (Value *V = FAddCombine(Builder).simplify(&I))
1658       return replaceInstUsesWith(I, V);
1659   }
1660 
1661   return nullptr;
1662 }
1663 
1664 /// Optimize pointer differences into the same array into a size.  Consider:
1665 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1666 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1667 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1668                                                    Type *Ty, bool IsNUW) {
1669   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1670   // this.
1671   bool Swapped = false;
1672   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1673   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1674     std::swap(LHS, RHS);
1675     Swapped = true;
1676   }
1677 
1678   // Require at least one GEP with a common base pointer on both sides.
1679   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1680     // (gep X, ...) - X
1681     if (LHSGEP->getOperand(0) == RHS) {
1682       GEP1 = LHSGEP;
1683     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1684       // (gep X, ...) - (gep X, ...)
1685       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1686           RHSGEP->getOperand(0)->stripPointerCasts()) {
1687         GEP1 = LHSGEP;
1688         GEP2 = RHSGEP;
1689       }
1690     }
1691   }
1692 
1693   if (!GEP1)
1694     return nullptr;
1695 
1696   if (GEP2) {
1697     // (gep X, ...) - (gep X, ...)
1698     //
1699     // Avoid duplicating the arithmetic if there are more than one non-constant
1700     // indices between the two GEPs and either GEP has a non-constant index and
1701     // multiple users. If zero non-constant index, the result is a constant and
1702     // there is no duplication. If one non-constant index, the result is an add
1703     // or sub with a constant, which is no larger than the original code, and
1704     // there's no duplicated arithmetic, even if either GEP has multiple
1705     // users. If more than one non-constant indices combined, as long as the GEP
1706     // with at least one non-constant index doesn't have multiple users, there
1707     // is no duplication.
1708     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1709     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1710     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1711         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1712          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1713       return nullptr;
1714     }
1715   }
1716 
1717   // Emit the offset of the GEP and an intptr_t.
1718   Value *Result = EmitGEPOffset(GEP1);
1719 
1720   // If this is a single inbounds GEP and the original sub was nuw,
1721   // then the final multiplication is also nuw.
1722   if (auto *I = dyn_cast<Instruction>(Result))
1723     if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1724         I->getOpcode() == Instruction::Mul)
1725       I->setHasNoUnsignedWrap();
1726 
1727   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1728   // If both GEPs are inbounds, then the subtract does not have signed overflow.
1729   if (GEP2) {
1730     Value *Offset = EmitGEPOffset(GEP2);
1731     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1732                                GEP1->isInBounds() && GEP2->isInBounds());
1733   }
1734 
1735   // If we have p - gep(p, ...)  then we have to negate the result.
1736   if (Swapped)
1737     Result = Builder.CreateNeg(Result, "diff.neg");
1738 
1739   return Builder.CreateIntCast(Result, Ty, true);
1740 }
1741 
1742 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1743   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1744                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1745                                  SQ.getWithInstruction(&I)))
1746     return replaceInstUsesWith(I, V);
1747 
1748   if (Instruction *X = foldVectorBinop(I))
1749     return X;
1750 
1751   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1752 
1753   // If this is a 'B = x-(-A)', change to B = x+A.
1754   // We deal with this without involving Negator to preserve NSW flag.
1755   if (Value *V = dyn_castNegVal(Op1)) {
1756     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1757 
1758     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1759       assert(BO->getOpcode() == Instruction::Sub &&
1760              "Expected a subtraction operator!");
1761       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1762         Res->setHasNoSignedWrap(true);
1763     } else {
1764       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1765         Res->setHasNoSignedWrap(true);
1766     }
1767 
1768     return Res;
1769   }
1770 
1771   // Try this before Negator to preserve NSW flag.
1772   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1773     return R;
1774 
1775   Constant *C;
1776   if (match(Op0, m_ImmConstant(C))) {
1777     Value *X;
1778     Constant *C2;
1779 
1780     // C-(X+C2) --> (C-C2)-X
1781     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1782       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1783   }
1784 
1785   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1786     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1787       return Ext;
1788 
1789     bool Changed = false;
1790     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1791       Changed = true;
1792       I.setHasNoSignedWrap(true);
1793     }
1794     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1795       Changed = true;
1796       I.setHasNoUnsignedWrap(true);
1797     }
1798 
1799     return Changed ? &I : nullptr;
1800   };
1801 
1802   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1803   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1804   // a pure negation used by a select that looks like abs/nabs.
1805   bool IsNegation = match(Op0, m_ZeroInt());
1806   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1807         const Instruction *UI = dyn_cast<Instruction>(U);
1808         if (!UI)
1809           return false;
1810         return match(UI,
1811                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1812                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1813       })) {
1814     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1815       return BinaryOperator::CreateAdd(NegOp1, Op0);
1816   }
1817   if (IsNegation)
1818     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1819 
1820   // (A*B)-(A*C) -> A*(B-C) etc
1821   if (Value *V = SimplifyUsingDistributiveLaws(I))
1822     return replaceInstUsesWith(I, V);
1823 
1824   if (I.getType()->isIntOrIntVectorTy(1))
1825     return BinaryOperator::CreateXor(Op0, Op1);
1826 
1827   // Replace (-1 - A) with (~A).
1828   if (match(Op0, m_AllOnes()))
1829     return BinaryOperator::CreateNot(Op1);
1830 
1831   // (X + -1) - Y --> ~Y + X
1832   Value *X, *Y;
1833   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1834     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1835 
1836   // Reassociate sub/add sequences to create more add instructions and
1837   // reduce dependency chains:
1838   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1839   Value *Z;
1840   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1841                                   m_Value(Z))))) {
1842     Value *XZ = Builder.CreateAdd(X, Z);
1843     Value *YW = Builder.CreateAdd(Y, Op1);
1844     return BinaryOperator::CreateSub(XZ, YW);
1845   }
1846 
1847   // ((X - Y) - Op1)  -->  X - (Y + Op1)
1848   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
1849     Value *Add = Builder.CreateAdd(Y, Op1);
1850     return BinaryOperator::CreateSub(X, Add);
1851   }
1852 
1853   // (~X) - (~Y) --> Y - X
1854   // This is placed after the other reassociations and explicitly excludes a
1855   // sub-of-sub pattern to avoid infinite looping.
1856   if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
1857       isFreeToInvert(Op1, Op1->hasOneUse()) &&
1858       !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
1859     Value *NotOp0 = Builder.CreateNot(Op0);
1860     Value *NotOp1 = Builder.CreateNot(Op1);
1861     return BinaryOperator::CreateSub(NotOp1, NotOp0);
1862   }
1863 
1864   auto m_AddRdx = [](Value *&Vec) {
1865     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
1866   };
1867   Value *V0, *V1;
1868   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1869       V0->getType() == V1->getType()) {
1870     // Difference of sums is sum of differences:
1871     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1872     Value *Sub = Builder.CreateSub(V0, V1);
1873     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
1874                                          {Sub->getType()}, {Sub});
1875     return replaceInstUsesWith(I, Rdx);
1876   }
1877 
1878   if (Constant *C = dyn_cast<Constant>(Op0)) {
1879     Value *X;
1880     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1881       // C - (zext bool) --> bool ? C - 1 : C
1882       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
1883     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1884       // C - (sext bool) --> bool ? C + 1 : C
1885       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
1886 
1887     // C - ~X == X + (1+C)
1888     if (match(Op1, m_Not(m_Value(X))))
1889       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
1890 
1891     // Try to fold constant sub into select arguments.
1892     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1893       if (Instruction *R = FoldOpIntoSelect(I, SI))
1894         return R;
1895 
1896     // Try to fold constant sub into PHI values.
1897     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1898       if (Instruction *R = foldOpIntoPhi(I, PN))
1899         return R;
1900 
1901     Constant *C2;
1902 
1903     // C-(C2-X) --> X+(C-C2)
1904     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
1905       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1906   }
1907 
1908   const APInt *Op0C;
1909   if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1910     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1911     // zero.
1912     KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1913     if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1914       return BinaryOperator::CreateXor(Op1, Op0);
1915   }
1916 
1917   {
1918     Value *Y;
1919     // X-(X+Y) == -Y    X-(Y+X) == -Y
1920     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1921       return BinaryOperator::CreateNeg(Y);
1922 
1923     // (X-Y)-X == -Y
1924     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1925       return BinaryOperator::CreateNeg(Y);
1926   }
1927 
1928   // (sub (or A, B) (and A, B)) --> (xor A, B)
1929   {
1930     Value *A, *B;
1931     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1932         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1933       return BinaryOperator::CreateXor(A, B);
1934   }
1935 
1936   // (sub (add A, B) (or A, B)) --> (and A, B)
1937   {
1938     Value *A, *B;
1939     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
1940         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1941       return BinaryOperator::CreateAnd(A, B);
1942   }
1943 
1944   // (sub (add A, B) (and A, B)) --> (or A, B)
1945   {
1946     Value *A, *B;
1947     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
1948         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
1949       return BinaryOperator::CreateOr(A, B);
1950   }
1951 
1952   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1953   {
1954     Value *A, *B;
1955     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1956         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1957         (Op0->hasOneUse() || Op1->hasOneUse()))
1958       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1959   }
1960 
1961   // (sub (or A, B), (xor A, B)) --> (and A, B)
1962   {
1963     Value *A, *B;
1964     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1965         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1966       return BinaryOperator::CreateAnd(A, B);
1967   }
1968 
1969   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1970   {
1971     Value *A, *B;
1972     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1973         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1974         (Op0->hasOneUse() || Op1->hasOneUse()))
1975       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1976   }
1977 
1978   {
1979     Value *Y;
1980     // ((X | Y) - X) --> (~X & Y)
1981     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1982       return BinaryOperator::CreateAnd(
1983           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1984   }
1985 
1986   {
1987     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1988     Value *X;
1989     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
1990                                     m_OneUse(m_Neg(m_Value(X))))))) {
1991       return BinaryOperator::CreateNeg(Builder.CreateAnd(
1992           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
1993     }
1994   }
1995 
1996   {
1997     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1998     Constant *C;
1999     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2000       return BinaryOperator::CreateNeg(
2001           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2002     }
2003   }
2004 
2005   {
2006     // If we have a subtraction between some value and a select between
2007     // said value and something else, sink subtraction into select hands, i.e.:
2008     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2009     //     ->
2010     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2011     //  or
2012     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2013     //     ->
2014     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2015     // This will result in select between new subtraction and 0.
2016     auto SinkSubIntoSelect =
2017         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2018                            auto SubBuilder) -> Instruction * {
2019       Value *Cond, *TrueVal, *FalseVal;
2020       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2021                                            m_Value(FalseVal)))))
2022         return nullptr;
2023       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2024         return nullptr;
2025       // While it is really tempting to just create two subtractions and let
2026       // InstCombine fold one of those to 0, it isn't possible to do so
2027       // because of worklist visitation order. So ugly it is.
2028       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2029       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2030       Constant *Zero = Constant::getNullValue(Ty);
2031       SelectInst *NewSel =
2032           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2033                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2034       // Preserve prof metadata if any.
2035       NewSel->copyMetadata(cast<Instruction>(*Select));
2036       return NewSel;
2037     };
2038     if (Instruction *NewSel = SinkSubIntoSelect(
2039             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2040             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2041               return Builder->CreateSub(OtherHandOfSelect,
2042                                         /*OtherHandOfSub=*/Op1);
2043             }))
2044       return NewSel;
2045     if (Instruction *NewSel = SinkSubIntoSelect(
2046             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2047             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2048               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2049                                         OtherHandOfSelect);
2050             }))
2051       return NewSel;
2052   }
2053 
2054   // (X - (X & Y))   -->   (X & ~Y)
2055   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2056       (Op1->hasOneUse() || isa<Constant>(Y)))
2057     return BinaryOperator::CreateAnd(
2058         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2059 
2060   // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2061   // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2062   // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2063   // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2064   // As long as Y is freely invertible, this will be neutral or a win.
2065   // Note: We don't generate the inverse max/min, just create the 'not' of
2066   // it and let other folds do the rest.
2067   if (match(Op0, m_Not(m_Value(X))) &&
2068       match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2069       !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2070     Value *Not = Builder.CreateNot(Op1);
2071     return BinaryOperator::CreateSub(Not, X);
2072   }
2073   if (match(Op1, m_Not(m_Value(X))) &&
2074       match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2075       !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2076     Value *Not = Builder.CreateNot(Op0);
2077     return BinaryOperator::CreateSub(X, Not);
2078   }
2079 
2080   // TODO: This is the same logic as above but handles the cmp-select idioms
2081   //       for min/max, so the use checks are increased to account for the
2082   //       extra instructions. If we canonicalize to intrinsics, this block
2083   //       can likely be removed.
2084   {
2085     Value *LHS, *RHS, *A;
2086     Value *NotA = Op0, *MinMax = Op1;
2087     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
2088     if (!SelectPatternResult::isMinOrMax(SPF)) {
2089       NotA = Op1;
2090       MinMax = Op0;
2091       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
2092     }
2093     if (SelectPatternResult::isMinOrMax(SPF) &&
2094         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
2095       if (NotA == LHS)
2096         std::swap(LHS, RHS);
2097       // LHS is now Y above and expected to have at least 2 uses (the min/max)
2098       // NotA is expected to have 2 uses from the min/max and 1 from the sub.
2099       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
2100           !NotA->hasNUsesOrMore(4)) {
2101         Value *Not = Builder.CreateNot(MinMax);
2102         if (NotA == Op0)
2103           return BinaryOperator::CreateSub(Not, A);
2104         else
2105           return BinaryOperator::CreateSub(A, Not);
2106       }
2107     }
2108   }
2109 
2110   // Optimize pointer differences into the same array into a size.  Consider:
2111   //  &A[10] - &A[0]: we should compile this to "10".
2112   Value *LHSOp, *RHSOp;
2113   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2114       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2115     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2116                                                I.hasNoUnsignedWrap()))
2117       return replaceInstUsesWith(I, Res);
2118 
2119   // trunc(p)-trunc(q) -> trunc(p-q)
2120   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2121       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2122     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2123                                                /* IsNUW */ false))
2124       return replaceInstUsesWith(I, Res);
2125 
2126   // Canonicalize a shifty way to code absolute value to the common pattern.
2127   // There are 2 potential commuted variants.
2128   // We're relying on the fact that we only do this transform when the shift has
2129   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2130   // instructions).
2131   Value *A;
2132   const APInt *ShAmt;
2133   Type *Ty = I.getType();
2134   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2135       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2136       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2137     // B = ashr i32 A, 31 ; smear the sign bit
2138     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2139     // --> (A < 0) ? -A : A
2140     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2141     // Copy the nuw/nsw flags from the sub to the negate.
2142     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2143                                    I.hasNoSignedWrap());
2144     return SelectInst::Create(Cmp, Neg, A);
2145   }
2146 
2147   // If we are subtracting a low-bit masked subset of some value from an add
2148   // of that same value with no low bits changed, that is clearing some low bits
2149   // of the sum:
2150   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2151   const APInt *AddC, *AndC;
2152   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2153       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2154     unsigned BitWidth = Ty->getScalarSizeInBits();
2155     unsigned Cttz = AddC->countTrailingZeros();
2156     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2157     if ((HighMask & *AndC).isNullValue())
2158       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2159   }
2160 
2161   if (Instruction *V =
2162           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2163     return V;
2164 
2165   // X - usub.sat(X, Y) => umin(X, Y)
2166   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2167                                                            m_Value(Y)))))
2168     return replaceInstUsesWith(
2169         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2170 
2171   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2172   if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) &&
2173       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2174     return replaceInstUsesWith(
2175         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2176                                    {Builder.CreateNot(X)}));
2177 
2178   return TryToNarrowDeduceFlags();
2179 }
2180 
2181 /// This eliminates floating-point negation in either 'fneg(X)' or
2182 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2183 static Instruction *foldFNegIntoConstant(Instruction &I) {
2184   // This is limited with one-use because fneg is assumed better for
2185   // reassociation and cheaper in codegen than fmul/fdiv.
2186   // TODO: Should the m_OneUse restriction be removed?
2187   Instruction *FNegOp;
2188   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2189     return nullptr;
2190 
2191   Value *X;
2192   Constant *C;
2193 
2194   // Fold negation into constant operand.
2195   // -(X * C) --> X * (-C)
2196   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2197     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2198   // -(X / C) --> X / (-C)
2199   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2200     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2201   // -(C / X) --> (-C) / X
2202   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) {
2203     Instruction *FDiv =
2204         BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2205 
2206     // Intersect 'nsz' and 'ninf' because those special value exceptions may not
2207     // apply to the fdiv. Everything else propagates from the fneg.
2208     // TODO: We could propagate nsz/ninf from fdiv alone?
2209     FastMathFlags FMF = I.getFastMathFlags();
2210     FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2211     FDiv->setHasNoSignedZeros(FMF.noSignedZeros() & OpFMF.noSignedZeros());
2212     FDiv->setHasNoInfs(FMF.noInfs() & OpFMF.noInfs());
2213     return FDiv;
2214   }
2215   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2216   // -(X + C) --> -X + -C --> -C - X
2217   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2218     return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2219 
2220   return nullptr;
2221 }
2222 
2223 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2224                                            InstCombiner::BuilderTy &Builder) {
2225   Value *FNeg;
2226   if (!match(&I, m_FNeg(m_Value(FNeg))))
2227     return nullptr;
2228 
2229   Value *X, *Y;
2230   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2231     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2232 
2233   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2234     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2235 
2236   return nullptr;
2237 }
2238 
2239 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2240   Value *Op = I.getOperand(0);
2241 
2242   if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2243                                   getSimplifyQuery().getWithInstruction(&I)))
2244     return replaceInstUsesWith(I, V);
2245 
2246   if (Instruction *X = foldFNegIntoConstant(I))
2247     return X;
2248 
2249   Value *X, *Y;
2250 
2251   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2252   if (I.hasNoSignedZeros() &&
2253       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2254     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2255 
2256   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2257     return R;
2258 
2259   // Try to eliminate fneg if at least 1 arm of the select is negated.
2260   Value *Cond;
2261   if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) {
2262     // Unlike most transforms, this one is not safe to propagate nsz unless
2263     // it is present on the original select. (We are conservatively intersecting
2264     // the nsz flags from the select and root fneg instruction.)
2265     auto propagateSelectFMF = [&](SelectInst *S) {
2266       S->copyFastMathFlags(&I);
2267       if (auto *OldSel = dyn_cast<SelectInst>(Op))
2268         if (!OldSel->hasNoSignedZeros())
2269           S->setHasNoSignedZeros(false);
2270     };
2271     // -(Cond ? -P : Y) --> Cond ? P : -Y
2272     Value *P;
2273     if (match(X, m_FNeg(m_Value(P)))) {
2274       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2275       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2276       propagateSelectFMF(NewSel);
2277       return NewSel;
2278     }
2279     // -(Cond ? X : -P) --> Cond ? -X : P
2280     if (match(Y, m_FNeg(m_Value(P)))) {
2281       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2282       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2283       propagateSelectFMF(NewSel);
2284       return NewSel;
2285     }
2286   }
2287 
2288   return nullptr;
2289 }
2290 
2291 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2292   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2293                                   I.getFastMathFlags(),
2294                                   getSimplifyQuery().getWithInstruction(&I)))
2295     return replaceInstUsesWith(I, V);
2296 
2297   if (Instruction *X = foldVectorBinop(I))
2298     return X;
2299 
2300   // Subtraction from -0.0 is the canonical form of fneg.
2301   // fsub -0.0, X ==> fneg X
2302   // fsub nsz 0.0, X ==> fneg nsz X
2303   //
2304   // FIXME This matcher does not respect FTZ or DAZ yet:
2305   // fsub -0.0, Denorm ==> +-0
2306   // fneg Denorm ==> -Denorm
2307   Value *Op;
2308   if (match(&I, m_FNeg(m_Value(Op))))
2309     return UnaryOperator::CreateFNegFMF(Op, &I);
2310 
2311   if (Instruction *X = foldFNegIntoConstant(I))
2312     return X;
2313 
2314   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2315     return R;
2316 
2317   Value *X, *Y;
2318   Constant *C;
2319 
2320   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2321   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2322   // Canonicalize to fadd to make analysis easier.
2323   // This can also help codegen because fadd is commutative.
2324   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2325   // killed later. We still limit that particular transform with 'hasOneUse'
2326   // because an fneg is assumed better/cheaper than a generic fsub.
2327   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2328     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2329       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2330       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2331     }
2332   }
2333 
2334   // (-X) - Op1 --> -(X + Op1)
2335   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2336       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2337     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2338     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2339   }
2340 
2341   if (isa<Constant>(Op0))
2342     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2343       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2344         return NV;
2345 
2346   // X - C --> X + (-C)
2347   // But don't transform constant expressions because there's an inverse fold
2348   // for X + (-Y) --> X - Y.
2349   if (match(Op1, m_ImmConstant(C)))
2350     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2351 
2352   // X - (-Y) --> X + Y
2353   if (match(Op1, m_FNeg(m_Value(Y))))
2354     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2355 
2356   // Similar to above, but look through a cast of the negated value:
2357   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2358   Type *Ty = I.getType();
2359   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2360     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2361 
2362   // X - (fpext(-Y)) --> X + fpext(Y)
2363   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2364     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2365 
2366   // Similar to above, but look through fmul/fdiv of the negated value:
2367   // Op0 - (-X * Y) --> Op0 + (X * Y)
2368   // Op0 - (Y * -X) --> Op0 + (X * Y)
2369   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2370     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2371     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2372   }
2373   // Op0 - (-X / Y) --> Op0 + (X / Y)
2374   // Op0 - (X / -Y) --> Op0 + (X / Y)
2375   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2376       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2377     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2378     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2379   }
2380 
2381   // Handle special cases for FSub with selects feeding the operation
2382   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2383     return replaceInstUsesWith(I, V);
2384 
2385   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2386     // (Y - X) - Y --> -X
2387     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2388       return UnaryOperator::CreateFNegFMF(X, &I);
2389 
2390     // Y - (X + Y) --> -X
2391     // Y - (Y + X) --> -X
2392     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2393       return UnaryOperator::CreateFNegFMF(X, &I);
2394 
2395     // (X * C) - X --> X * (C - 1.0)
2396     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2397       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2398       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2399     }
2400     // X - (X * C) --> X * (1.0 - C)
2401     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2402       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2403       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2404     }
2405 
2406     // Reassociate fsub/fadd sequences to create more fadd instructions and
2407     // reduce dependency chains:
2408     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2409     Value *Z;
2410     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2411                                      m_Value(Z))))) {
2412       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2413       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2414       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2415     }
2416 
2417     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2418       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2419                                                                  m_Value(Vec)));
2420     };
2421     Value *A0, *A1, *V0, *V1;
2422     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2423         V0->getType() == V1->getType()) {
2424       // Difference of sums is sum of differences:
2425       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2426       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2427       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2428                                            {Sub->getType()}, {A0, Sub}, &I);
2429       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2430     }
2431 
2432     if (Instruction *F = factorizeFAddFSub(I, Builder))
2433       return F;
2434 
2435     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2436     // functionality has been subsumed by simple pattern matching here and in
2437     // InstSimplify. We should let a dedicated reassociation pass handle more
2438     // complex pattern matching and remove this from InstCombine.
2439     if (Value *V = FAddCombine(Builder).simplify(&I))
2440       return replaceInstUsesWith(I, V);
2441 
2442     // (X - Y) - Op1 --> X - (Y + Op1)
2443     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2444       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2445       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2446     }
2447   }
2448 
2449   return nullptr;
2450 }
2451