xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision 6959b8e76f18f63aacaaf24dd74b11d733b57314)
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/AlignOf.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/KnownBits.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr()
86       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87 
88     const APFloat *getFpValPtr() const
89       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     Value *performFactorization(Instruction *I);
190 
191     /// Convert given addend to a Value
192     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
193 
194     /// Return the number of instructions needed to emit the N-ary addition.
195     unsigned calcInstrNumber(const AddendVect& Vect);
196 
197     Value *createFSub(Value *Opnd0, Value *Opnd1);
198     Value *createFAdd(Value *Opnd0, Value *Opnd1);
199     Value *createFMul(Value *Opnd0, Value *Opnd1);
200     Value *createFDiv(Value *Opnd0, Value *Opnd1);
201     Value *createFNeg(Value *V);
202     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
203     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
204 
205      // Debugging stuff are clustered here.
206     #ifndef NDEBUG
207       unsigned CreateInstrNum;
208       void initCreateInstNum() { CreateInstrNum = 0; }
209       void incCreateInstNum() { CreateInstrNum++; }
210     #else
211       void initCreateInstNum() {}
212       void incCreateInstNum() {}
213     #endif
214 
215     InstCombiner::BuilderTy &Builder;
216     Instruction *Instr = nullptr;
217   };
218 
219 } // end anonymous namespace
220 
221 //===----------------------------------------------------------------------===//
222 //
223 // Implementation of
224 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
225 //
226 //===----------------------------------------------------------------------===//
227 FAddendCoef::~FAddendCoef() {
228   if (BufHasFpVal)
229     getFpValPtr()->~APFloat();
230 }
231 
232 void FAddendCoef::set(const APFloat& C) {
233   APFloat *P = getFpValPtr();
234 
235   if (isInt()) {
236     // As the buffer is meanless byte stream, we cannot call
237     // APFloat::operator=().
238     new(P) APFloat(C);
239   } else
240     *P = C;
241 
242   IsFp = BufHasFpVal = true;
243 }
244 
245 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
246   if (!isInt())
247     return;
248 
249   APFloat *P = getFpValPtr();
250   if (IntVal > 0)
251     new(P) APFloat(Sem, IntVal);
252   else {
253     new(P) APFloat(Sem, 0 - IntVal);
254     P->changeSign();
255   }
256   IsFp = BufHasFpVal = true;
257 }
258 
259 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
260   if (Val >= 0)
261     return APFloat(Sem, Val);
262 
263   APFloat T(Sem, 0 - Val);
264   T.changeSign();
265 
266   return T;
267 }
268 
269 void FAddendCoef::operator=(const FAddendCoef &That) {
270   if (That.isInt())
271     set(That.IntVal);
272   else
273     set(That.getFpVal());
274 }
275 
276 void FAddendCoef::operator+=(const FAddendCoef &That) {
277   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
278   if (isInt() == That.isInt()) {
279     if (isInt())
280       IntVal += That.IntVal;
281     else
282       getFpVal().add(That.getFpVal(), RndMode);
283     return;
284   }
285 
286   if (isInt()) {
287     const APFloat &T = That.getFpVal();
288     convertToFpType(T.getSemantics());
289     getFpVal().add(T, RndMode);
290     return;
291   }
292 
293   APFloat &T = getFpVal();
294   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
295 }
296 
297 void FAddendCoef::operator*=(const FAddendCoef &That) {
298   if (That.isOne())
299     return;
300 
301   if (That.isMinusOne()) {
302     negate();
303     return;
304   }
305 
306   if (isInt() && That.isInt()) {
307     int Res = IntVal * (int)That.IntVal;
308     assert(!insaneIntVal(Res) && "Insane int value");
309     IntVal = Res;
310     return;
311   }
312 
313   const fltSemantics &Semantic =
314     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
315 
316   if (isInt())
317     convertToFpType(Semantic);
318   APFloat &F0 = getFpVal();
319 
320   if (That.isInt())
321     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
322                 APFloat::rmNearestTiesToEven);
323   else
324     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
325 }
326 
327 void FAddendCoef::negate() {
328   if (isInt())
329     IntVal = 0 - IntVal;
330   else
331     getFpVal().changeSign();
332 }
333 
334 Value *FAddendCoef::getValue(Type *Ty) const {
335   return isInt() ?
336     ConstantFP::get(Ty, float(IntVal)) :
337     ConstantFP::get(Ty->getContext(), getFpVal());
338 }
339 
340 // The definition of <Val>     Addends
341 // =========================================
342 //  A + B                     <1, A>, <1,B>
343 //  A - B                     <1, A>, <1,B>
344 //  0 - B                     <-1, B>
345 //  C * A,                    <C, A>
346 //  A + C                     <1, A> <C, NULL>
347 //  0 +/- 0                   <0, NULL> (corner case)
348 //
349 // Legend: A and B are not constant, C is constant
350 unsigned FAddend::drillValueDownOneStep
351   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
352   Instruction *I = nullptr;
353   if (!Val || !(I = dyn_cast<Instruction>(Val)))
354     return 0;
355 
356   unsigned Opcode = I->getOpcode();
357 
358   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
359     ConstantFP *C0, *C1;
360     Value *Opnd0 = I->getOperand(0);
361     Value *Opnd1 = I->getOperand(1);
362     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
363       Opnd0 = nullptr;
364 
365     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
366       Opnd1 = nullptr;
367 
368     if (Opnd0) {
369       if (!C0)
370         Addend0.set(1, Opnd0);
371       else
372         Addend0.set(C0, nullptr);
373     }
374 
375     if (Opnd1) {
376       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
377       if (!C1)
378         Addend.set(1, Opnd1);
379       else
380         Addend.set(C1, nullptr);
381       if (Opcode == Instruction::FSub)
382         Addend.negate();
383     }
384 
385     if (Opnd0 || Opnd1)
386       return Opnd0 && Opnd1 ? 2 : 1;
387 
388     // Both operands are zero. Weird!
389     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
390     return 1;
391   }
392 
393   if (I->getOpcode() == Instruction::FMul) {
394     Value *V0 = I->getOperand(0);
395     Value *V1 = I->getOperand(1);
396     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
397       Addend0.set(C, V1);
398       return 1;
399     }
400 
401     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
402       Addend0.set(C, V0);
403       return 1;
404     }
405   }
406 
407   return 0;
408 }
409 
410 // Try to break *this* addend into two addends. e.g. Suppose this addend is
411 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
412 // i.e. <2.3, X> and <2.3, Y>.
413 unsigned FAddend::drillAddendDownOneStep
414   (FAddend &Addend0, FAddend &Addend1) const {
415   if (isConstant())
416     return 0;
417 
418   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
419   if (!BreakNum || Coeff.isOne())
420     return BreakNum;
421 
422   Addend0.Scale(Coeff);
423 
424   if (BreakNum == 2)
425     Addend1.Scale(Coeff);
426 
427   return BreakNum;
428 }
429 
430 // Try to perform following optimization on the input instruction I. Return the
431 // simplified expression if was successful; otherwise, return 0.
432 //
433 //   Instruction "I" is                Simplified into
434 // -------------------------------------------------------
435 //   (x * y) +/- (x * z)               x * (y +/- z)
436 //   (y / x) +/- (z / x)               (y +/- z) / x
437 Value *FAddCombine::performFactorization(Instruction *I) {
438   assert((I->getOpcode() == Instruction::FAdd ||
439           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
440 
441   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
442   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
443 
444   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
445     return nullptr;
446 
447   bool isMpy = false;
448   if (I0->getOpcode() == Instruction::FMul)
449     isMpy = true;
450   else if (I0->getOpcode() != Instruction::FDiv)
451     return nullptr;
452 
453   Value *Opnd0_0 = I0->getOperand(0);
454   Value *Opnd0_1 = I0->getOperand(1);
455   Value *Opnd1_0 = I1->getOperand(0);
456   Value *Opnd1_1 = I1->getOperand(1);
457 
458   //  Input Instr I       Factor   AddSub0  AddSub1
459   //  ----------------------------------------------
460   // (x*y) +/- (x*z)        x        y         z
461   // (y/x) +/- (z/x)        x        y         z
462   Value *Factor = nullptr;
463   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
464 
465   if (isMpy) {
466     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
467       Factor = Opnd0_0;
468     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
469       Factor = Opnd0_1;
470 
471     if (Factor) {
472       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
473       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
474     }
475   } else if (Opnd0_1 == Opnd1_1) {
476     Factor = Opnd0_1;
477     AddSub0 = Opnd0_0;
478     AddSub1 = Opnd1_0;
479   }
480 
481   if (!Factor)
482     return nullptr;
483 
484   FastMathFlags Flags;
485   Flags.setFast();
486   if (I0) Flags &= I->getFastMathFlags();
487   if (I1) Flags &= I->getFastMathFlags();
488 
489   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
490   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
491                       createFAdd(AddSub0, AddSub1) :
492                       createFSub(AddSub0, AddSub1);
493   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
494     const APFloat &F = CFP->getValueAPF();
495     if (!F.isNormal())
496       return nullptr;
497   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
498     II->setFastMathFlags(Flags);
499 
500   if (isMpy) {
501     Value *RI = createFMul(Factor, NewAddSub);
502     if (Instruction *II = dyn_cast<Instruction>(RI))
503       II->setFastMathFlags(Flags);
504     return RI;
505   }
506 
507   Value *RI = createFDiv(NewAddSub, Factor);
508   if (Instruction *II = dyn_cast<Instruction>(RI))
509     II->setFastMathFlags(Flags);
510   return RI;
511 }
512 
513 Value *FAddCombine::simplify(Instruction *I) {
514   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
515          "Expected 'reassoc'+'nsz' instruction");
516 
517   // Currently we are not able to handle vector type.
518   if (I->getType()->isVectorTy())
519     return nullptr;
520 
521   assert((I->getOpcode() == Instruction::FAdd ||
522           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
523 
524   // Save the instruction before calling other member-functions.
525   Instr = I;
526 
527   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
528 
529   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
530 
531   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
532   unsigned Opnd0_ExpNum = 0;
533   unsigned Opnd1_ExpNum = 0;
534 
535   if (!Opnd0.isConstant())
536     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
537 
538   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
539   if (OpndNum == 2 && !Opnd1.isConstant())
540     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
541 
542   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
543   if (Opnd0_ExpNum && Opnd1_ExpNum) {
544     AddendVect AllOpnds;
545     AllOpnds.push_back(&Opnd0_0);
546     AllOpnds.push_back(&Opnd1_0);
547     if (Opnd0_ExpNum == 2)
548       AllOpnds.push_back(&Opnd0_1);
549     if (Opnd1_ExpNum == 2)
550       AllOpnds.push_back(&Opnd1_1);
551 
552     // Compute instruction quota. We should save at least one instruction.
553     unsigned InstQuota = 0;
554 
555     Value *V0 = I->getOperand(0);
556     Value *V1 = I->getOperand(1);
557     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
558                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
559 
560     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
561       return R;
562   }
563 
564   if (OpndNum != 2) {
565     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
566     // splitted into two addends, say "V = X - Y", the instruction would have
567     // been optimized into "I = Y - X" in the previous steps.
568     //
569     const FAddendCoef &CE = Opnd0.getCoef();
570     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
571   }
572 
573   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
574   if (Opnd1_ExpNum) {
575     AddendVect AllOpnds;
576     AllOpnds.push_back(&Opnd0);
577     AllOpnds.push_back(&Opnd1_0);
578     if (Opnd1_ExpNum == 2)
579       AllOpnds.push_back(&Opnd1_1);
580 
581     if (Value *R = simplifyFAdd(AllOpnds, 1))
582       return R;
583   }
584 
585   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
586   if (Opnd0_ExpNum) {
587     AddendVect AllOpnds;
588     AllOpnds.push_back(&Opnd1);
589     AllOpnds.push_back(&Opnd0_0);
590     if (Opnd0_ExpNum == 2)
591       AllOpnds.push_back(&Opnd0_1);
592 
593     if (Value *R = simplifyFAdd(AllOpnds, 1))
594       return R;
595   }
596 
597   // step 6: Try factorization as the last resort,
598   return performFactorization(I);
599 }
600 
601 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
602   unsigned AddendNum = Addends.size();
603   assert(AddendNum <= 4 && "Too many addends");
604 
605   // For saving intermediate results;
606   unsigned NextTmpIdx = 0;
607   FAddend TmpResult[3];
608 
609   // Points to the constant addend of the resulting simplified expression.
610   // If the resulting expr has constant-addend, this constant-addend is
611   // desirable to reside at the top of the resulting expression tree. Placing
612   // constant close to supper-expr(s) will potentially reveal some optimization
613   // opportunities in super-expr(s).
614   const FAddend *ConstAdd = nullptr;
615 
616   // Simplified addends are placed <SimpVect>.
617   AddendVect SimpVect;
618 
619   // The outer loop works on one symbolic-value at a time. Suppose the input
620   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
621   // The symbolic-values will be processed in this order: x, y, z.
622   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
623 
624     const FAddend *ThisAddend = Addends[SymIdx];
625     if (!ThisAddend) {
626       // This addend was processed before.
627       continue;
628     }
629 
630     Value *Val = ThisAddend->getSymVal();
631     unsigned StartIdx = SimpVect.size();
632     SimpVect.push_back(ThisAddend);
633 
634     // The inner loop collects addends sharing same symbolic-value, and these
635     // addends will be later on folded into a single addend. Following above
636     // example, if the symbolic value "y" is being processed, the inner loop
637     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
638     // be later on folded into "<b1+b2, y>".
639     for (unsigned SameSymIdx = SymIdx + 1;
640          SameSymIdx < AddendNum; SameSymIdx++) {
641       const FAddend *T = Addends[SameSymIdx];
642       if (T && T->getSymVal() == Val) {
643         // Set null such that next iteration of the outer loop will not process
644         // this addend again.
645         Addends[SameSymIdx] = nullptr;
646         SimpVect.push_back(T);
647       }
648     }
649 
650     // If multiple addends share same symbolic value, fold them together.
651     if (StartIdx + 1 != SimpVect.size()) {
652       FAddend &R = TmpResult[NextTmpIdx ++];
653       R = *SimpVect[StartIdx];
654       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
655         R += *SimpVect[Idx];
656 
657       // Pop all addends being folded and push the resulting folded addend.
658       SimpVect.resize(StartIdx);
659       if (Val) {
660         if (!R.isZero()) {
661           SimpVect.push_back(&R);
662         }
663       } else {
664         // Don't push constant addend at this time. It will be the last element
665         // of <SimpVect>.
666         ConstAdd = &R;
667       }
668     }
669   }
670 
671   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
672          "out-of-bound access");
673 
674   if (ConstAdd)
675     SimpVect.push_back(ConstAdd);
676 
677   Value *Result;
678   if (!SimpVect.empty())
679     Result = createNaryFAdd(SimpVect, InstrQuota);
680   else {
681     // The addition is folded to 0.0.
682     Result = ConstantFP::get(Instr->getType(), 0.0);
683   }
684 
685   return Result;
686 }
687 
688 Value *FAddCombine::createNaryFAdd
689   (const AddendVect &Opnds, unsigned InstrQuota) {
690   assert(!Opnds.empty() && "Expect at least one addend");
691 
692   // Step 1: Check if the # of instructions needed exceeds the quota.
693 
694   unsigned InstrNeeded = calcInstrNumber(Opnds);
695   if (InstrNeeded > InstrQuota)
696     return nullptr;
697 
698   initCreateInstNum();
699 
700   // step 2: Emit the N-ary addition.
701   // Note that at most three instructions are involved in Fadd-InstCombine: the
702   // addition in question, and at most two neighboring instructions.
703   // The resulting optimized addition should have at least one less instruction
704   // than the original addition expression tree. This implies that the resulting
705   // N-ary addition has at most two instructions, and we don't need to worry
706   // about tree-height when constructing the N-ary addition.
707 
708   Value *LastVal = nullptr;
709   bool LastValNeedNeg = false;
710 
711   // Iterate the addends, creating fadd/fsub using adjacent two addends.
712   for (const FAddend *Opnd : Opnds) {
713     bool NeedNeg;
714     Value *V = createAddendVal(*Opnd, NeedNeg);
715     if (!LastVal) {
716       LastVal = V;
717       LastValNeedNeg = NeedNeg;
718       continue;
719     }
720 
721     if (LastValNeedNeg == NeedNeg) {
722       LastVal = createFAdd(LastVal, V);
723       continue;
724     }
725 
726     if (LastValNeedNeg)
727       LastVal = createFSub(V, LastVal);
728     else
729       LastVal = createFSub(LastVal, V);
730 
731     LastValNeedNeg = false;
732   }
733 
734   if (LastValNeedNeg) {
735     LastVal = createFNeg(LastVal);
736   }
737 
738 #ifndef NDEBUG
739   assert(CreateInstrNum == InstrNeeded &&
740          "Inconsistent in instruction numbers");
741 #endif
742 
743   return LastVal;
744 }
745 
746 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
747   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
748   if (Instruction *I = dyn_cast<Instruction>(V))
749     createInstPostProc(I);
750   return V;
751 }
752 
753 Value *FAddCombine::createFNeg(Value *V) {
754   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
755   Value *NewV = createFSub(Zero, V);
756   if (Instruction *I = dyn_cast<Instruction>(NewV))
757     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
758   return NewV;
759 }
760 
761 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
762   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
763   if (Instruction *I = dyn_cast<Instruction>(V))
764     createInstPostProc(I);
765   return V;
766 }
767 
768 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
769   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
770   if (Instruction *I = dyn_cast<Instruction>(V))
771     createInstPostProc(I);
772   return V;
773 }
774 
775 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
776   Value *V = Builder.CreateFDiv(Opnd0, Opnd1);
777   if (Instruction *I = dyn_cast<Instruction>(V))
778     createInstPostProc(I);
779   return V;
780 }
781 
782 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
783   NewInstr->setDebugLoc(Instr->getDebugLoc());
784 
785   // Keep track of the number of instruction created.
786   if (!NoNumber)
787     incCreateInstNum();
788 
789   // Propagate fast-math flags
790   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
791 }
792 
793 // Return the number of instruction needed to emit the N-ary addition.
794 // NOTE: Keep this function in sync with createAddendVal().
795 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
796   unsigned OpndNum = Opnds.size();
797   unsigned InstrNeeded = OpndNum - 1;
798 
799   // The number of addends in the form of "(-1)*x".
800   unsigned NegOpndNum = 0;
801 
802   // Adjust the number of instructions needed to emit the N-ary add.
803   for (const FAddend *Opnd : Opnds) {
804     if (Opnd->isConstant())
805       continue;
806 
807     // The constant check above is really for a few special constant
808     // coefficients.
809     if (isa<UndefValue>(Opnd->getSymVal()))
810       continue;
811 
812     const FAddendCoef &CE = Opnd->getCoef();
813     if (CE.isMinusOne() || CE.isMinusTwo())
814       NegOpndNum++;
815 
816     // Let the addend be "c * x". If "c == +/-1", the value of the addend
817     // is immediately available; otherwise, it needs exactly one instruction
818     // to evaluate the value.
819     if (!CE.isMinusOne() && !CE.isOne())
820       InstrNeeded++;
821   }
822   if (NegOpndNum == OpndNum)
823     InstrNeeded++;
824   return InstrNeeded;
825 }
826 
827 // Input Addend        Value           NeedNeg(output)
828 // ================================================================
829 // Constant C          C               false
830 // <+/-1, V>           V               coefficient is -1
831 // <2/-2, V>          "fadd V, V"      coefficient is -2
832 // <C, V>             "fmul V, C"      false
833 //
834 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
835 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
836   const FAddendCoef &Coeff = Opnd.getCoef();
837 
838   if (Opnd.isConstant()) {
839     NeedNeg = false;
840     return Coeff.getValue(Instr->getType());
841   }
842 
843   Value *OpndVal = Opnd.getSymVal();
844 
845   if (Coeff.isMinusOne() || Coeff.isOne()) {
846     NeedNeg = Coeff.isMinusOne();
847     return OpndVal;
848   }
849 
850   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
851     NeedNeg = Coeff.isMinusTwo();
852     return createFAdd(OpndVal, OpndVal);
853   }
854 
855   NeedNeg = false;
856   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
857 }
858 
859 /// \brief Return true if we can prove that:
860 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
861 /// This basically requires proving that the add in the original type would not
862 /// overflow to change the sign bit or have a carry out.
863 /// TODO: Handle this for Vectors.
864 bool InstCombiner::willNotOverflowSignedSub(const Value *LHS,
865                                             const Value *RHS,
866                                             const Instruction &CxtI) const {
867   // If LHS and RHS each have at least two sign bits, the subtraction
868   // cannot overflow.
869   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
870       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
871     return true;
872 
873   KnownBits LHSKnown = computeKnownBits(LHS, 0, &CxtI);
874 
875   KnownBits RHSKnown = computeKnownBits(RHS, 0, &CxtI);
876 
877   // Subtraction of two 2's complement numbers having identical signs will
878   // never overflow.
879   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
880       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
881     return true;
882 
883   // TODO: implement logic similar to checkRippleForAdd
884   return false;
885 }
886 
887 /// \brief Return true if we can prove that:
888 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
889 bool InstCombiner::willNotOverflowUnsignedSub(const Value *LHS,
890                                               const Value *RHS,
891                                               const Instruction &CxtI) const {
892   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
893   KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
894   KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
895   if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
896     return true;
897 
898   return false;
899 }
900 
901 // Checks if any operand is negative and we can convert add to sub.
902 // This function checks for following negative patterns
903 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
904 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
905 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
906 static Value *checkForNegativeOperand(BinaryOperator &I,
907                                       InstCombiner::BuilderTy &Builder) {
908   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
909 
910   // This function creates 2 instructions to replace ADD, we need at least one
911   // of LHS or RHS to have one use to ensure benefit in transform.
912   if (!LHS->hasOneUse() && !RHS->hasOneUse())
913     return nullptr;
914 
915   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
916   const APInt *C1 = nullptr, *C2 = nullptr;
917 
918   // if ONE is on other side, swap
919   if (match(RHS, m_Add(m_Value(X), m_One())))
920     std::swap(LHS, RHS);
921 
922   if (match(LHS, m_Add(m_Value(X), m_One()))) {
923     // if XOR on other side, swap
924     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
925       std::swap(X, RHS);
926 
927     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
928       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
929       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
930       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
931         Value *NewAnd = Builder.CreateAnd(Z, *C1);
932         return Builder.CreateSub(RHS, NewAnd, "sub");
933       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
934         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
935         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
936         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
937         return Builder.CreateSub(RHS, NewOr, "sub");
938       }
939     }
940   }
941 
942   // Restore LHS and RHS
943   LHS = I.getOperand(0);
944   RHS = I.getOperand(1);
945 
946   // if XOR is on other side, swap
947   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
948     std::swap(LHS, RHS);
949 
950   // C2 is ODD
951   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
952   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
953   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
954     if (C1->countTrailingZeros() == 0)
955       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
956         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
957         return Builder.CreateSub(RHS, NewOr, "sub");
958       }
959   return nullptr;
960 }
961 
962 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
963   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
964   Constant *Op1C;
965   if (!match(Op1, m_Constant(Op1C)))
966     return nullptr;
967 
968   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
969     return NV;
970 
971   Value *X;
972   // zext(bool) + C -> bool ? C + 1 : C
973   if (match(Op0, m_ZExt(m_Value(X))) &&
974       X->getType()->getScalarSizeInBits() == 1)
975     return SelectInst::Create(X, AddOne(Op1C), Op1);
976 
977   // ~X + C --> (C-1) - X
978   if (match(Op0, m_Not(m_Value(X))))
979     return BinaryOperator::CreateSub(SubOne(Op1C), X);
980 
981   const APInt *C;
982   if (!match(Op1, m_APInt(C)))
983     return nullptr;
984 
985   if (C->isSignMask()) {
986     // If wrapping is not allowed, then the addition must set the sign bit:
987     // X + (signmask) --> X | signmask
988     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
989       return BinaryOperator::CreateOr(Op0, Op1);
990 
991     // If wrapping is allowed, then the addition flips the sign bit of LHS:
992     // X + (signmask) --> X ^ signmask
993     return BinaryOperator::CreateXor(Op0, Op1);
994   }
995 
996   // Is this add the last step in a convoluted sext?
997   // add(zext(xor i16 X, -32768), -32768) --> sext X
998   Type *Ty = Add.getType();
999   const APInt *C2;
1000   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
1001       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
1002     return CastInst::Create(Instruction::SExt, X, Ty);
1003 
1004   // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
1005   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
1006       C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) {
1007     Constant *NewC =
1008         ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
1009     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
1010   }
1011 
1012   if (C->isOneValue() && Op0->hasOneUse()) {
1013     // add (sext i1 X), 1 --> zext (not X)
1014     // TODO: The smallest IR representation is (select X, 0, 1), and that would
1015     // not require the one-use check. But we need to remove a transform in
1016     // visitSelect and make sure that IR value tracking for select is equal or
1017     // better than for these ops.
1018     if (match(Op0, m_SExt(m_Value(X))) &&
1019         X->getType()->getScalarSizeInBits() == 1)
1020       return new ZExtInst(Builder.CreateNot(X), Ty);
1021 
1022     // Shifts and add used to flip and mask off the low bit:
1023     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
1024     const APInt *C3;
1025     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
1026         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
1027       Value *NotX = Builder.CreateNot(X);
1028       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
1029     }
1030   }
1031 
1032   return nullptr;
1033 }
1034 
1035 // Matches multiplication expression Op * C where C is a constant. Returns the
1036 // constant value in C and the other operand in Op. Returns true if such a
1037 // match is found.
1038 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1039   const APInt *AI;
1040   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1041     C = *AI;
1042     return true;
1043   }
1044   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1045     C = APInt(AI->getBitWidth(), 1);
1046     C <<= *AI;
1047     return true;
1048   }
1049   return false;
1050 }
1051 
1052 // Matches remainder expression Op % C where C is a constant. Returns the
1053 // constant value in C and the other operand in Op. Returns the signedness of
1054 // the remainder operation in IsSigned. Returns true if such a match is
1055 // found.
1056 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1057   const APInt *AI;
1058   IsSigned = false;
1059   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1060     IsSigned = true;
1061     C = *AI;
1062     return true;
1063   }
1064   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1065     C = *AI;
1066     return true;
1067   }
1068   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1069     C = *AI + 1;
1070     return true;
1071   }
1072   return false;
1073 }
1074 
1075 // Matches division expression Op / C with the given signedness as indicated
1076 // by IsSigned, where C is a constant. Returns the constant value in C and the
1077 // other operand in Op. Returns true if such a match is found.
1078 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1079   const APInt *AI;
1080   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1081     C = *AI;
1082     return true;
1083   }
1084   if (!IsSigned) {
1085     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1086       C = *AI;
1087       return true;
1088     }
1089     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1090       C = APInt(AI->getBitWidth(), 1);
1091       C <<= *AI;
1092       return true;
1093     }
1094   }
1095   return false;
1096 }
1097 
1098 // Returns whether C0 * C1 with the given signedness overflows.
1099 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1100   bool overflow;
1101   if (IsSigned)
1102     (void)C0.smul_ov(C1, overflow);
1103   else
1104     (void)C0.umul_ov(C1, overflow);
1105   return overflow;
1106 }
1107 
1108 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1109 // does not overflow.
1110 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1111   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1112   Value *X, *MulOpV;
1113   APInt C0, MulOpC;
1114   bool IsSigned;
1115   // Match I = X % C0 + MulOpV * C0
1116   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1117        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1118       C0 == MulOpC) {
1119     Value *RemOpV;
1120     APInt C1;
1121     bool Rem2IsSigned;
1122     // Match MulOpC = RemOpV % C1
1123     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1124         IsSigned == Rem2IsSigned) {
1125       Value *DivOpV;
1126       APInt DivOpC;
1127       // Match RemOpV = X / C0
1128       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1129           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1130         Value *NewDivisor =
1131             ConstantInt::get(X->getType()->getContext(), C0 * C1);
1132         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1133                         : Builder.CreateURem(X, NewDivisor, "urem");
1134       }
1135     }
1136   }
1137 
1138   return nullptr;
1139 }
1140 
1141 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1142   bool Changed = SimplifyAssociativeOrCommutative(I);
1143   if (Value *V = SimplifyVectorOp(I))
1144     return replaceInstUsesWith(I, V);
1145 
1146   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1147   if (Value *V =
1148           SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1149                           SQ.getWithInstruction(&I)))
1150     return replaceInstUsesWith(I, V);
1151 
1152   // (A*B)+(A*C) -> A*(B+C) etc
1153   if (Value *V = SimplifyUsingDistributiveLaws(I))
1154     return replaceInstUsesWith(I, V);
1155 
1156   if (Instruction *X = foldAddWithConstant(I))
1157     return X;
1158 
1159   // FIXME: This should be moved into the above helper function to allow these
1160   // transforms for general constant or constant splat vectors.
1161   Type *Ty = I.getType();
1162   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1163     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1164     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1165       unsigned TySizeBits = Ty->getScalarSizeInBits();
1166       const APInt &RHSVal = CI->getValue();
1167       unsigned ExtendAmt = 0;
1168       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1169       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1170       if (XorRHS->getValue() == -RHSVal) {
1171         if (RHSVal.isPowerOf2())
1172           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1173         else if (XorRHS->getValue().isPowerOf2())
1174           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1175       }
1176 
1177       if (ExtendAmt) {
1178         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1179         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1180           ExtendAmt = 0;
1181       }
1182 
1183       if (ExtendAmt) {
1184         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1185         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1186         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1187       }
1188 
1189       // If this is a xor that was canonicalized from a sub, turn it back into
1190       // a sub and fuse this add with it.
1191       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1192         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1193         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1194           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1195                                            XorLHS);
1196       }
1197       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1198       // transform them into (X + (signmask ^ C))
1199       if (XorRHS->getValue().isSignMask())
1200         return BinaryOperator::CreateAdd(XorLHS,
1201                                          ConstantExpr::getXor(XorRHS, CI));
1202     }
1203   }
1204 
1205   if (Ty->isIntOrIntVectorTy(1))
1206     return BinaryOperator::CreateXor(LHS, RHS);
1207 
1208   // X + X --> X << 1
1209   if (LHS == RHS) {
1210     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1211     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1212     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1213     return Shl;
1214   }
1215 
1216   Value *A, *B;
1217   if (match(LHS, m_Neg(m_Value(A)))) {
1218     // -A + -B --> -(A + B)
1219     if (match(RHS, m_Neg(m_Value(B))))
1220       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1221 
1222     // -A + B --> B - A
1223     return BinaryOperator::CreateSub(RHS, A);
1224   }
1225 
1226   // A + -B  -->  A - B
1227   if (match(RHS, m_Neg(m_Value(B))))
1228     return BinaryOperator::CreateSub(LHS, B);
1229 
1230   if (Value *V = checkForNegativeOperand(I, Builder))
1231     return replaceInstUsesWith(I, V);
1232 
1233   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1234   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1235 
1236   // A+B --> A|B iff A and B have no bits set in common.
1237   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1238     return BinaryOperator::CreateOr(LHS, RHS);
1239 
1240   // FIXME: We already did a check for ConstantInt RHS above this.
1241   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1242   // removal.
1243   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1244     // (X & FF00) + xx00  -> (X+xx00) & FF00
1245     Value *X;
1246     ConstantInt *C2;
1247     if (LHS->hasOneUse() &&
1248         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1249         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1250       // See if all bits from the first bit set in the Add RHS up are included
1251       // in the mask.  First, get the rightmost bit.
1252       const APInt &AddRHSV = CRHS->getValue();
1253 
1254       // Form a mask of all bits from the lowest bit added through the top.
1255       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1256 
1257       // See if the and mask includes all of these bits.
1258       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1259 
1260       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1261         // Okay, the xform is safe.  Insert the new add pronto.
1262         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1263         return BinaryOperator::CreateAnd(NewAdd, C2);
1264       }
1265     }
1266   }
1267 
1268   // add (select X 0 (sub n A)) A  -->  select X A n
1269   {
1270     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1271     Value *A = RHS;
1272     if (!SI) {
1273       SI = dyn_cast<SelectInst>(RHS);
1274       A = LHS;
1275     }
1276     if (SI && SI->hasOneUse()) {
1277       Value *TV = SI->getTrueValue();
1278       Value *FV = SI->getFalseValue();
1279       Value *N;
1280 
1281       // Can we fold the add into the argument of the select?
1282       // We check both true and false select arguments for a matching subtract.
1283       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1284         // Fold the add into the true select value.
1285         return SelectInst::Create(SI->getCondition(), N, A);
1286 
1287       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1288         // Fold the add into the false select value.
1289         return SelectInst::Create(SI->getCondition(), A, N);
1290     }
1291   }
1292 
1293   // Check for (add (sext x), y), see if we can merge this into an
1294   // integer add followed by a sext.
1295   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1296     // (add (sext x), cst) --> (sext (add x, cst'))
1297     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1298       if (LHSConv->hasOneUse()) {
1299         Constant *CI =
1300             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1301         if (ConstantExpr::getSExt(CI, Ty) == RHSC &&
1302             willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1303           // Insert the new, smaller add.
1304           Value *NewAdd =
1305               Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1306           return new SExtInst(NewAdd, Ty);
1307         }
1308       }
1309     }
1310 
1311     // (add (sext x), (sext y)) --> (sext (add int x, y))
1312     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1313       // Only do this if x/y have the same type, if at least one of them has a
1314       // single use (so we don't increase the number of sexts), and if the
1315       // integer add will not overflow.
1316       if (LHSConv->getOperand(0)->getType() ==
1317               RHSConv->getOperand(0)->getType() &&
1318           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1319           willNotOverflowSignedAdd(LHSConv->getOperand(0),
1320                                    RHSConv->getOperand(0), I)) {
1321         // Insert the new integer add.
1322         Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0),
1323                                              RHSConv->getOperand(0), "addconv");
1324         return new SExtInst(NewAdd, Ty);
1325       }
1326     }
1327   }
1328 
1329   // Check for (add (zext x), y), see if we can merge this into an
1330   // integer add followed by a zext.
1331   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1332     // (add (zext x), cst) --> (zext (add x, cst'))
1333     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1334       if (LHSConv->hasOneUse()) {
1335         Constant *CI =
1336             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1337         if (ConstantExpr::getZExt(CI, Ty) == RHSC &&
1338             willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) {
1339           // Insert the new, smaller add.
1340           Value *NewAdd =
1341               Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1342           return new ZExtInst(NewAdd, Ty);
1343         }
1344       }
1345     }
1346 
1347     // (add (zext x), (zext y)) --> (zext (add int x, y))
1348     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1349       // Only do this if x/y have the same type, if at least one of them has a
1350       // single use (so we don't increase the number of zexts), and if the
1351       // integer add will not overflow.
1352       if (LHSConv->getOperand(0)->getType() ==
1353               RHSConv->getOperand(0)->getType() &&
1354           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1355           willNotOverflowUnsignedAdd(LHSConv->getOperand(0),
1356                                      RHSConv->getOperand(0), I)) {
1357         // Insert the new integer add.
1358         Value *NewAdd = Builder.CreateNUWAdd(
1359             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1360         return new ZExtInst(NewAdd, Ty);
1361       }
1362     }
1363   }
1364 
1365   // (add (xor A, B) (and A, B)) --> (or A, B)
1366   // (add (and A, B) (xor A, B)) --> (or A, B)
1367   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1368                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1369     return BinaryOperator::CreateOr(A, B);
1370 
1371   // (add (or A, B) (and A, B)) --> (add A, B)
1372   // (add (and A, B) (or A, B)) --> (add A, B)
1373   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1374                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1375     I.setOperand(0, A);
1376     I.setOperand(1, B);
1377     return &I;
1378   }
1379 
1380   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1381   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1382   // computeKnownBits.
1383   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1384     Changed = true;
1385     I.setHasNoSignedWrap(true);
1386   }
1387   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1388     Changed = true;
1389     I.setHasNoUnsignedWrap(true);
1390   }
1391 
1392   return Changed ? &I : nullptr;
1393 }
1394 
1395 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1396   bool Changed = SimplifyAssociativeOrCommutative(I);
1397   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1398 
1399   if (Value *V = SimplifyVectorOp(I))
1400     return replaceInstUsesWith(I, V);
1401 
1402   if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(),
1403                                   SQ.getWithInstruction(&I)))
1404     return replaceInstUsesWith(I, V);
1405 
1406   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1407     return FoldedFAdd;
1408 
1409   Value *X;
1410   // (-X) + Y --> Y - X
1411   if (match(LHS, m_FNeg(m_Value(X))))
1412     return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1413   // Y + (-X) --> Y - X
1414   if (match(RHS, m_FNeg(m_Value(X))))
1415     return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1416 
1417   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1418   // integer add followed by a promotion.
1419   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1420     Value *LHSIntVal = LHSConv->getOperand(0);
1421     Type *FPType = LHSConv->getType();
1422 
1423     // TODO: This check is overly conservative. In many cases known bits
1424     // analysis can tell us that the result of the addition has less significant
1425     // bits than the integer type can hold.
1426     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1427       Type *FScalarTy = FTy->getScalarType();
1428       Type *IScalarTy = ITy->getScalarType();
1429 
1430       // Do we have enough bits in the significand to represent the result of
1431       // the integer addition?
1432       unsigned MaxRepresentableBits =
1433           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1434       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1435     };
1436 
1437     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1438     // ... if the constant fits in the integer value.  This is useful for things
1439     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1440     // requires a constant pool load, and generally allows the add to be better
1441     // instcombined.
1442     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1443       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1444         Constant *CI =
1445           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1446         if (LHSConv->hasOneUse() &&
1447             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1448             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1449           // Insert the new integer add.
1450           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1451           return new SIToFPInst(NewAdd, I.getType());
1452         }
1453       }
1454 
1455     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1456     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1457       Value *RHSIntVal = RHSConv->getOperand(0);
1458       // It's enough to check LHS types only because we require int types to
1459       // be the same for this transform.
1460       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1461         // Only do this if x/y have the same type, if at least one of them has a
1462         // single use (so we don't increase the number of int->fp conversions),
1463         // and if the integer add will not overflow.
1464         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1465             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1466             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1467           // Insert the new integer add.
1468           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1469           return new SIToFPInst(NewAdd, I.getType());
1470         }
1471       }
1472     }
1473   }
1474 
1475   // Handle specials cases for FAdd with selects feeding the operation
1476   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1477     return replaceInstUsesWith(I, V);
1478 
1479   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1480     if (Value *V = FAddCombine(Builder).simplify(&I))
1481       return replaceInstUsesWith(I, V);
1482   }
1483 
1484   return Changed ? &I : nullptr;
1485 }
1486 
1487 /// Optimize pointer differences into the same array into a size.  Consider:
1488 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1489 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1490 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1491                                                Type *Ty) {
1492   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1493   // this.
1494   bool Swapped = false;
1495   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1496 
1497   // For now we require one side to be the base pointer "A" or a constant
1498   // GEP derived from it.
1499   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1500     // (gep X, ...) - X
1501     if (LHSGEP->getOperand(0) == RHS) {
1502       GEP1 = LHSGEP;
1503       Swapped = false;
1504     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1505       // (gep X, ...) - (gep X, ...)
1506       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1507             RHSGEP->getOperand(0)->stripPointerCasts()) {
1508         GEP2 = RHSGEP;
1509         GEP1 = LHSGEP;
1510         Swapped = false;
1511       }
1512     }
1513   }
1514 
1515   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1516     // X - (gep X, ...)
1517     if (RHSGEP->getOperand(0) == LHS) {
1518       GEP1 = RHSGEP;
1519       Swapped = true;
1520     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1521       // (gep X, ...) - (gep X, ...)
1522       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1523             LHSGEP->getOperand(0)->stripPointerCasts()) {
1524         GEP2 = LHSGEP;
1525         GEP1 = RHSGEP;
1526         Swapped = true;
1527       }
1528     }
1529   }
1530 
1531   if (!GEP1)
1532     // No GEP found.
1533     return nullptr;
1534 
1535   if (GEP2) {
1536     // (gep X, ...) - (gep X, ...)
1537     //
1538     // Avoid duplicating the arithmetic if there are more than one non-constant
1539     // indices between the two GEPs and either GEP has a non-constant index and
1540     // multiple users. If zero non-constant index, the result is a constant and
1541     // there is no duplication. If one non-constant index, the result is an add
1542     // or sub with a constant, which is no larger than the original code, and
1543     // there's no duplicated arithmetic, even if either GEP has multiple
1544     // users. If more than one non-constant indices combined, as long as the GEP
1545     // with at least one non-constant index doesn't have multiple users, there
1546     // is no duplication.
1547     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1548     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1549     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1550         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1551          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1552       return nullptr;
1553     }
1554   }
1555 
1556   // Emit the offset of the GEP and an intptr_t.
1557   Value *Result = EmitGEPOffset(GEP1);
1558 
1559   // If we had a constant expression GEP on the other side offsetting the
1560   // pointer, subtract it from the offset we have.
1561   if (GEP2) {
1562     Value *Offset = EmitGEPOffset(GEP2);
1563     Result = Builder.CreateSub(Result, Offset);
1564   }
1565 
1566   // If we have p - gep(p, ...)  then we have to negate the result.
1567   if (Swapped)
1568     Result = Builder.CreateNeg(Result, "diff.neg");
1569 
1570   return Builder.CreateIntCast(Result, Ty, true);
1571 }
1572 
1573 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1574   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1575 
1576   if (Value *V = SimplifyVectorOp(I))
1577     return replaceInstUsesWith(I, V);
1578 
1579   if (Value *V =
1580           SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1581                           SQ.getWithInstruction(&I)))
1582     return replaceInstUsesWith(I, V);
1583 
1584   // (A*B)-(A*C) -> A*(B-C) etc
1585   if (Value *V = SimplifyUsingDistributiveLaws(I))
1586     return replaceInstUsesWith(I, V);
1587 
1588   // If this is a 'B = x-(-A)', change to B = x+A.
1589   if (Value *V = dyn_castNegVal(Op1)) {
1590     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1591 
1592     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1593       assert(BO->getOpcode() == Instruction::Sub &&
1594              "Expected a subtraction operator!");
1595       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1596         Res->setHasNoSignedWrap(true);
1597     } else {
1598       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1599         Res->setHasNoSignedWrap(true);
1600     }
1601 
1602     return Res;
1603   }
1604 
1605   if (I.getType()->isIntOrIntVectorTy(1))
1606     return BinaryOperator::CreateXor(Op0, Op1);
1607 
1608   // Replace (-1 - A) with (~A).
1609   if (match(Op0, m_AllOnes()))
1610     return BinaryOperator::CreateNot(Op1);
1611 
1612   // (~X) - (~Y) --> Y - X
1613   Value *X, *Y;
1614   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1615     return BinaryOperator::CreateSub(Y, X);
1616 
1617   if (Constant *C = dyn_cast<Constant>(Op0)) {
1618     Value *X;
1619     // C - zext(bool) -> bool ? C - 1 : C
1620     if (match(Op1, m_ZExt(m_Value(X))) &&
1621         X->getType()->getScalarSizeInBits() == 1)
1622       return SelectInst::Create(X, SubOne(C), C);
1623 
1624     // C - ~X == X + (1+C)
1625     if (match(Op1, m_Not(m_Value(X))))
1626       return BinaryOperator::CreateAdd(X, AddOne(C));
1627 
1628     // Try to fold constant sub into select arguments.
1629     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1630       if (Instruction *R = FoldOpIntoSelect(I, SI))
1631         return R;
1632 
1633     // Try to fold constant sub into PHI values.
1634     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1635       if (Instruction *R = foldOpIntoPhi(I, PN))
1636         return R;
1637 
1638     // C-(X+C2) --> (C-C2)-X
1639     Constant *C2;
1640     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1641       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1642 
1643     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1644     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1645       if (X->getType()->isIntOrIntVectorTy(1))
1646         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1647 
1648     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1649     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1650       if (X->getType()->isIntOrIntVectorTy(1))
1651         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1652   }
1653 
1654   const APInt *Op0C;
1655   if (match(Op0, m_APInt(Op0C))) {
1656     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1657 
1658     // -(X >>u 31) -> (X >>s 31)
1659     // -(X >>s 31) -> (X >>u 31)
1660     if (Op0C->isNullValue()) {
1661       Value *X;
1662       const APInt *ShAmt;
1663       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1664           *ShAmt == BitWidth - 1) {
1665         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1666         return BinaryOperator::CreateAShr(X, ShAmtOp);
1667       }
1668       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1669           *ShAmt == BitWidth - 1) {
1670         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1671         return BinaryOperator::CreateLShr(X, ShAmtOp);
1672       }
1673     }
1674 
1675     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1676     // zero.
1677     if (Op0C->isMask()) {
1678       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1679       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1680         return BinaryOperator::CreateXor(Op1, Op0);
1681     }
1682   }
1683 
1684   {
1685     Value *Y;
1686     // X-(X+Y) == -Y    X-(Y+X) == -Y
1687     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1688       return BinaryOperator::CreateNeg(Y);
1689 
1690     // (X-Y)-X == -Y
1691     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1692       return BinaryOperator::CreateNeg(Y);
1693   }
1694 
1695   // (sub (or A, B), (xor A, B)) --> (and A, B)
1696   {
1697     Value *A, *B;
1698     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1699         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1700       return BinaryOperator::CreateAnd(A, B);
1701   }
1702 
1703   {
1704     Value *Y;
1705     // ((X | Y) - X) --> (~X & Y)
1706     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1707       return BinaryOperator::CreateAnd(
1708           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1709   }
1710 
1711   if (Op1->hasOneUse()) {
1712     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1713     Constant *C = nullptr;
1714 
1715     // (X - (Y - Z))  -->  (X + (Z - Y)).
1716     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1717       return BinaryOperator::CreateAdd(Op0,
1718                                       Builder.CreateSub(Z, Y, Op1->getName()));
1719 
1720     // (X - (X & Y))   -->   (X & ~Y)
1721     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1722       return BinaryOperator::CreateAnd(Op0,
1723                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1724 
1725     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1726     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1727         C->isNotMinSignedValue() && !C->isOneValue())
1728       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1729 
1730     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1731     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1732       if (Value *XNeg = dyn_castNegVal(X))
1733         return BinaryOperator::CreateShl(XNeg, Y);
1734 
1735     // Subtracting -1/0 is the same as adding 1/0:
1736     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1737     // 'nuw' is dropped in favor of the canonical form.
1738     if (match(Op1, m_SExt(m_Value(Y))) &&
1739         Y->getType()->getScalarSizeInBits() == 1) {
1740       Value *Zext = Builder.CreateZExt(Y, I.getType());
1741       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1742       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1743       return Add;
1744     }
1745 
1746     // X - A*-B -> X + A*B
1747     // X - -A*B -> X + A*B
1748     Value *A, *B;
1749     Constant *CI;
1750     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1751       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1752 
1753     // X - A*CI -> X + A*-CI
1754     // No need to handle commuted multiply because multiply handling will
1755     // ensure constant will be move to the right hand side.
1756     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1757       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI));
1758       return BinaryOperator::CreateAdd(Op0, NewMul);
1759     }
1760   }
1761 
1762   // Optimize pointer differences into the same array into a size.  Consider:
1763   //  &A[10] - &A[0]: we should compile this to "10".
1764   Value *LHSOp, *RHSOp;
1765   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1766       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1767     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1768       return replaceInstUsesWith(I, Res);
1769 
1770   // trunc(p)-trunc(q) -> trunc(p-q)
1771   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1772       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1773     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1774       return replaceInstUsesWith(I, Res);
1775 
1776   bool Changed = false;
1777   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1778     Changed = true;
1779     I.setHasNoSignedWrap(true);
1780   }
1781   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1782     Changed = true;
1783     I.setHasNoUnsignedWrap(true);
1784   }
1785 
1786   return Changed ? &I : nullptr;
1787 }
1788 
1789 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1790   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1791 
1792   if (Value *V = SimplifyVectorOp(I))
1793     return replaceInstUsesWith(I, V);
1794 
1795   if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(),
1796                                   SQ.getWithInstruction(&I)))
1797     return replaceInstUsesWith(I, V);
1798 
1799   // Subtraction from -0.0 is the canonical form of fneg.
1800   // fsub nsz 0, X ==> fsub nsz -0.0, X
1801   if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1802     return BinaryOperator::CreateFNegFMF(Op1, &I);
1803 
1804   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1805   // Canonicalize to fadd to make analysis easier.
1806   // This can also help codegen because fadd is commutative.
1807   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1808   // killed later. We still limit that particular transform with 'hasOneUse'
1809   // because an fneg is assumed better/cheaper than a generic fsub.
1810   Value *X, *Y;
1811   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1812     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1813       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1814       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1815     }
1816   }
1817 
1818   if (isa<Constant>(Op0))
1819     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1820       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1821         return NV;
1822 
1823   // X - C --> X + (-C)
1824   Constant *C;
1825   if (match(Op1, m_Constant(C)))
1826     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1827 
1828   // X - (-Y) --> X + Y
1829   if (match(Op1, m_FNeg(m_Value(Y))))
1830     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1831 
1832   // Similar to above, but look through a cast of the negated value:
1833   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1834   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) {
1835     Value *TruncY = Builder.CreateFPTrunc(Y, I.getType());
1836     return BinaryOperator::CreateFAddFMF(Op0, TruncY, &I);
1837   }
1838   // X - (fpext(-Y)) --> X + fpext(Y)
1839   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) {
1840     Value *ExtY = Builder.CreateFPExt(Y, I.getType());
1841     return BinaryOperator::CreateFAddFMF(Op0, ExtY, &I);
1842   }
1843 
1844   // Handle specials cases for FSub with selects feeding the operation
1845   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1846     return replaceInstUsesWith(I, V);
1847 
1848   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1849     if (Value *V = FAddCombine(Builder).simplify(&I))
1850       return replaceInstUsesWith(I, V);
1851   }
1852 
1853   return nullptr;
1854 }
1855