1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/AlignOf.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/KnownBits.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() 86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 87 88 const APFloat *getFpValPtr() const 89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 Value *performFactorization(Instruction *I); 190 191 /// Convert given addend to a Value 192 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 193 194 /// Return the number of instructions needed to emit the N-ary addition. 195 unsigned calcInstrNumber(const AddendVect& Vect); 196 197 Value *createFSub(Value *Opnd0, Value *Opnd1); 198 Value *createFAdd(Value *Opnd0, Value *Opnd1); 199 Value *createFMul(Value *Opnd0, Value *Opnd1); 200 Value *createFDiv(Value *Opnd0, Value *Opnd1); 201 Value *createFNeg(Value *V); 202 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 203 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 204 205 // Debugging stuff are clustered here. 206 #ifndef NDEBUG 207 unsigned CreateInstrNum; 208 void initCreateInstNum() { CreateInstrNum = 0; } 209 void incCreateInstNum() { CreateInstrNum++; } 210 #else 211 void initCreateInstNum() {} 212 void incCreateInstNum() {} 213 #endif 214 215 InstCombiner::BuilderTy &Builder; 216 Instruction *Instr = nullptr; 217 }; 218 219 } // end anonymous namespace 220 221 //===----------------------------------------------------------------------===// 222 // 223 // Implementation of 224 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 225 // 226 //===----------------------------------------------------------------------===// 227 FAddendCoef::~FAddendCoef() { 228 if (BufHasFpVal) 229 getFpValPtr()->~APFloat(); 230 } 231 232 void FAddendCoef::set(const APFloat& C) { 233 APFloat *P = getFpValPtr(); 234 235 if (isInt()) { 236 // As the buffer is meanless byte stream, we cannot call 237 // APFloat::operator=(). 238 new(P) APFloat(C); 239 } else 240 *P = C; 241 242 IsFp = BufHasFpVal = true; 243 } 244 245 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 246 if (!isInt()) 247 return; 248 249 APFloat *P = getFpValPtr(); 250 if (IntVal > 0) 251 new(P) APFloat(Sem, IntVal); 252 else { 253 new(P) APFloat(Sem, 0 - IntVal); 254 P->changeSign(); 255 } 256 IsFp = BufHasFpVal = true; 257 } 258 259 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 260 if (Val >= 0) 261 return APFloat(Sem, Val); 262 263 APFloat T(Sem, 0 - Val); 264 T.changeSign(); 265 266 return T; 267 } 268 269 void FAddendCoef::operator=(const FAddendCoef &That) { 270 if (That.isInt()) 271 set(That.IntVal); 272 else 273 set(That.getFpVal()); 274 } 275 276 void FAddendCoef::operator+=(const FAddendCoef &That) { 277 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 278 if (isInt() == That.isInt()) { 279 if (isInt()) 280 IntVal += That.IntVal; 281 else 282 getFpVal().add(That.getFpVal(), RndMode); 283 return; 284 } 285 286 if (isInt()) { 287 const APFloat &T = That.getFpVal(); 288 convertToFpType(T.getSemantics()); 289 getFpVal().add(T, RndMode); 290 return; 291 } 292 293 APFloat &T = getFpVal(); 294 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 295 } 296 297 void FAddendCoef::operator*=(const FAddendCoef &That) { 298 if (That.isOne()) 299 return; 300 301 if (That.isMinusOne()) { 302 negate(); 303 return; 304 } 305 306 if (isInt() && That.isInt()) { 307 int Res = IntVal * (int)That.IntVal; 308 assert(!insaneIntVal(Res) && "Insane int value"); 309 IntVal = Res; 310 return; 311 } 312 313 const fltSemantics &Semantic = 314 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 315 316 if (isInt()) 317 convertToFpType(Semantic); 318 APFloat &F0 = getFpVal(); 319 320 if (That.isInt()) 321 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 322 APFloat::rmNearestTiesToEven); 323 else 324 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 325 } 326 327 void FAddendCoef::negate() { 328 if (isInt()) 329 IntVal = 0 - IntVal; 330 else 331 getFpVal().changeSign(); 332 } 333 334 Value *FAddendCoef::getValue(Type *Ty) const { 335 return isInt() ? 336 ConstantFP::get(Ty, float(IntVal)) : 337 ConstantFP::get(Ty->getContext(), getFpVal()); 338 } 339 340 // The definition of <Val> Addends 341 // ========================================= 342 // A + B <1, A>, <1,B> 343 // A - B <1, A>, <1,B> 344 // 0 - B <-1, B> 345 // C * A, <C, A> 346 // A + C <1, A> <C, NULL> 347 // 0 +/- 0 <0, NULL> (corner case) 348 // 349 // Legend: A and B are not constant, C is constant 350 unsigned FAddend::drillValueDownOneStep 351 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 352 Instruction *I = nullptr; 353 if (!Val || !(I = dyn_cast<Instruction>(Val))) 354 return 0; 355 356 unsigned Opcode = I->getOpcode(); 357 358 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 359 ConstantFP *C0, *C1; 360 Value *Opnd0 = I->getOperand(0); 361 Value *Opnd1 = I->getOperand(1); 362 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 363 Opnd0 = nullptr; 364 365 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 366 Opnd1 = nullptr; 367 368 if (Opnd0) { 369 if (!C0) 370 Addend0.set(1, Opnd0); 371 else 372 Addend0.set(C0, nullptr); 373 } 374 375 if (Opnd1) { 376 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 377 if (!C1) 378 Addend.set(1, Opnd1); 379 else 380 Addend.set(C1, nullptr); 381 if (Opcode == Instruction::FSub) 382 Addend.negate(); 383 } 384 385 if (Opnd0 || Opnd1) 386 return Opnd0 && Opnd1 ? 2 : 1; 387 388 // Both operands are zero. Weird! 389 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 390 return 1; 391 } 392 393 if (I->getOpcode() == Instruction::FMul) { 394 Value *V0 = I->getOperand(0); 395 Value *V1 = I->getOperand(1); 396 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 397 Addend0.set(C, V1); 398 return 1; 399 } 400 401 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 402 Addend0.set(C, V0); 403 return 1; 404 } 405 } 406 407 return 0; 408 } 409 410 // Try to break *this* addend into two addends. e.g. Suppose this addend is 411 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 412 // i.e. <2.3, X> and <2.3, Y>. 413 unsigned FAddend::drillAddendDownOneStep 414 (FAddend &Addend0, FAddend &Addend1) const { 415 if (isConstant()) 416 return 0; 417 418 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 419 if (!BreakNum || Coeff.isOne()) 420 return BreakNum; 421 422 Addend0.Scale(Coeff); 423 424 if (BreakNum == 2) 425 Addend1.Scale(Coeff); 426 427 return BreakNum; 428 } 429 430 // Try to perform following optimization on the input instruction I. Return the 431 // simplified expression if was successful; otherwise, return 0. 432 // 433 // Instruction "I" is Simplified into 434 // ------------------------------------------------------- 435 // (x * y) +/- (x * z) x * (y +/- z) 436 // (y / x) +/- (z / x) (y +/- z) / x 437 Value *FAddCombine::performFactorization(Instruction *I) { 438 assert((I->getOpcode() == Instruction::FAdd || 439 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 440 441 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 442 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 443 444 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 445 return nullptr; 446 447 bool isMpy = false; 448 if (I0->getOpcode() == Instruction::FMul) 449 isMpy = true; 450 else if (I0->getOpcode() != Instruction::FDiv) 451 return nullptr; 452 453 Value *Opnd0_0 = I0->getOperand(0); 454 Value *Opnd0_1 = I0->getOperand(1); 455 Value *Opnd1_0 = I1->getOperand(0); 456 Value *Opnd1_1 = I1->getOperand(1); 457 458 // Input Instr I Factor AddSub0 AddSub1 459 // ---------------------------------------------- 460 // (x*y) +/- (x*z) x y z 461 // (y/x) +/- (z/x) x y z 462 Value *Factor = nullptr; 463 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 464 465 if (isMpy) { 466 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 467 Factor = Opnd0_0; 468 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 469 Factor = Opnd0_1; 470 471 if (Factor) { 472 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 473 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 474 } 475 } else if (Opnd0_1 == Opnd1_1) { 476 Factor = Opnd0_1; 477 AddSub0 = Opnd0_0; 478 AddSub1 = Opnd1_0; 479 } 480 481 if (!Factor) 482 return nullptr; 483 484 FastMathFlags Flags; 485 Flags.setFast(); 486 if (I0) Flags &= I->getFastMathFlags(); 487 if (I1) Flags &= I->getFastMathFlags(); 488 489 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 490 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 491 createFAdd(AddSub0, AddSub1) : 492 createFSub(AddSub0, AddSub1); 493 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 494 const APFloat &F = CFP->getValueAPF(); 495 if (!F.isNormal()) 496 return nullptr; 497 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 498 II->setFastMathFlags(Flags); 499 500 if (isMpy) { 501 Value *RI = createFMul(Factor, NewAddSub); 502 if (Instruction *II = dyn_cast<Instruction>(RI)) 503 II->setFastMathFlags(Flags); 504 return RI; 505 } 506 507 Value *RI = createFDiv(NewAddSub, Factor); 508 if (Instruction *II = dyn_cast<Instruction>(RI)) 509 II->setFastMathFlags(Flags); 510 return RI; 511 } 512 513 Value *FAddCombine::simplify(Instruction *I) { 514 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 515 "Expected 'reassoc'+'nsz' instruction"); 516 517 // Currently we are not able to handle vector type. 518 if (I->getType()->isVectorTy()) 519 return nullptr; 520 521 assert((I->getOpcode() == Instruction::FAdd || 522 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 523 524 // Save the instruction before calling other member-functions. 525 Instr = I; 526 527 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 528 529 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 530 531 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 532 unsigned Opnd0_ExpNum = 0; 533 unsigned Opnd1_ExpNum = 0; 534 535 if (!Opnd0.isConstant()) 536 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 537 538 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 539 if (OpndNum == 2 && !Opnd1.isConstant()) 540 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 541 542 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 543 if (Opnd0_ExpNum && Opnd1_ExpNum) { 544 AddendVect AllOpnds; 545 AllOpnds.push_back(&Opnd0_0); 546 AllOpnds.push_back(&Opnd1_0); 547 if (Opnd0_ExpNum == 2) 548 AllOpnds.push_back(&Opnd0_1); 549 if (Opnd1_ExpNum == 2) 550 AllOpnds.push_back(&Opnd1_1); 551 552 // Compute instruction quota. We should save at least one instruction. 553 unsigned InstQuota = 0; 554 555 Value *V0 = I->getOperand(0); 556 Value *V1 = I->getOperand(1); 557 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 558 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 559 560 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 561 return R; 562 } 563 564 if (OpndNum != 2) { 565 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 566 // splitted into two addends, say "V = X - Y", the instruction would have 567 // been optimized into "I = Y - X" in the previous steps. 568 // 569 const FAddendCoef &CE = Opnd0.getCoef(); 570 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 571 } 572 573 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 574 if (Opnd1_ExpNum) { 575 AddendVect AllOpnds; 576 AllOpnds.push_back(&Opnd0); 577 AllOpnds.push_back(&Opnd1_0); 578 if (Opnd1_ExpNum == 2) 579 AllOpnds.push_back(&Opnd1_1); 580 581 if (Value *R = simplifyFAdd(AllOpnds, 1)) 582 return R; 583 } 584 585 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 586 if (Opnd0_ExpNum) { 587 AddendVect AllOpnds; 588 AllOpnds.push_back(&Opnd1); 589 AllOpnds.push_back(&Opnd0_0); 590 if (Opnd0_ExpNum == 2) 591 AllOpnds.push_back(&Opnd0_1); 592 593 if (Value *R = simplifyFAdd(AllOpnds, 1)) 594 return R; 595 } 596 597 // step 6: Try factorization as the last resort, 598 return performFactorization(I); 599 } 600 601 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 602 unsigned AddendNum = Addends.size(); 603 assert(AddendNum <= 4 && "Too many addends"); 604 605 // For saving intermediate results; 606 unsigned NextTmpIdx = 0; 607 FAddend TmpResult[3]; 608 609 // Points to the constant addend of the resulting simplified expression. 610 // If the resulting expr has constant-addend, this constant-addend is 611 // desirable to reside at the top of the resulting expression tree. Placing 612 // constant close to supper-expr(s) will potentially reveal some optimization 613 // opportunities in super-expr(s). 614 const FAddend *ConstAdd = nullptr; 615 616 // Simplified addends are placed <SimpVect>. 617 AddendVect SimpVect; 618 619 // The outer loop works on one symbolic-value at a time. Suppose the input 620 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 621 // The symbolic-values will be processed in this order: x, y, z. 622 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 623 624 const FAddend *ThisAddend = Addends[SymIdx]; 625 if (!ThisAddend) { 626 // This addend was processed before. 627 continue; 628 } 629 630 Value *Val = ThisAddend->getSymVal(); 631 unsigned StartIdx = SimpVect.size(); 632 SimpVect.push_back(ThisAddend); 633 634 // The inner loop collects addends sharing same symbolic-value, and these 635 // addends will be later on folded into a single addend. Following above 636 // example, if the symbolic value "y" is being processed, the inner loop 637 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 638 // be later on folded into "<b1+b2, y>". 639 for (unsigned SameSymIdx = SymIdx + 1; 640 SameSymIdx < AddendNum; SameSymIdx++) { 641 const FAddend *T = Addends[SameSymIdx]; 642 if (T && T->getSymVal() == Val) { 643 // Set null such that next iteration of the outer loop will not process 644 // this addend again. 645 Addends[SameSymIdx] = nullptr; 646 SimpVect.push_back(T); 647 } 648 } 649 650 // If multiple addends share same symbolic value, fold them together. 651 if (StartIdx + 1 != SimpVect.size()) { 652 FAddend &R = TmpResult[NextTmpIdx ++]; 653 R = *SimpVect[StartIdx]; 654 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 655 R += *SimpVect[Idx]; 656 657 // Pop all addends being folded and push the resulting folded addend. 658 SimpVect.resize(StartIdx); 659 if (Val) { 660 if (!R.isZero()) { 661 SimpVect.push_back(&R); 662 } 663 } else { 664 // Don't push constant addend at this time. It will be the last element 665 // of <SimpVect>. 666 ConstAdd = &R; 667 } 668 } 669 } 670 671 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 672 "out-of-bound access"); 673 674 if (ConstAdd) 675 SimpVect.push_back(ConstAdd); 676 677 Value *Result; 678 if (!SimpVect.empty()) 679 Result = createNaryFAdd(SimpVect, InstrQuota); 680 else { 681 // The addition is folded to 0.0. 682 Result = ConstantFP::get(Instr->getType(), 0.0); 683 } 684 685 return Result; 686 } 687 688 Value *FAddCombine::createNaryFAdd 689 (const AddendVect &Opnds, unsigned InstrQuota) { 690 assert(!Opnds.empty() && "Expect at least one addend"); 691 692 // Step 1: Check if the # of instructions needed exceeds the quota. 693 694 unsigned InstrNeeded = calcInstrNumber(Opnds); 695 if (InstrNeeded > InstrQuota) 696 return nullptr; 697 698 initCreateInstNum(); 699 700 // step 2: Emit the N-ary addition. 701 // Note that at most three instructions are involved in Fadd-InstCombine: the 702 // addition in question, and at most two neighboring instructions. 703 // The resulting optimized addition should have at least one less instruction 704 // than the original addition expression tree. This implies that the resulting 705 // N-ary addition has at most two instructions, and we don't need to worry 706 // about tree-height when constructing the N-ary addition. 707 708 Value *LastVal = nullptr; 709 bool LastValNeedNeg = false; 710 711 // Iterate the addends, creating fadd/fsub using adjacent two addends. 712 for (const FAddend *Opnd : Opnds) { 713 bool NeedNeg; 714 Value *V = createAddendVal(*Opnd, NeedNeg); 715 if (!LastVal) { 716 LastVal = V; 717 LastValNeedNeg = NeedNeg; 718 continue; 719 } 720 721 if (LastValNeedNeg == NeedNeg) { 722 LastVal = createFAdd(LastVal, V); 723 continue; 724 } 725 726 if (LastValNeedNeg) 727 LastVal = createFSub(V, LastVal); 728 else 729 LastVal = createFSub(LastVal, V); 730 731 LastValNeedNeg = false; 732 } 733 734 if (LastValNeedNeg) { 735 LastVal = createFNeg(LastVal); 736 } 737 738 #ifndef NDEBUG 739 assert(CreateInstrNum == InstrNeeded && 740 "Inconsistent in instruction numbers"); 741 #endif 742 743 return LastVal; 744 } 745 746 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 747 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 748 if (Instruction *I = dyn_cast<Instruction>(V)) 749 createInstPostProc(I); 750 return V; 751 } 752 753 Value *FAddCombine::createFNeg(Value *V) { 754 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 755 Value *NewV = createFSub(Zero, V); 756 if (Instruction *I = dyn_cast<Instruction>(NewV)) 757 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 758 return NewV; 759 } 760 761 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 762 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 763 if (Instruction *I = dyn_cast<Instruction>(V)) 764 createInstPostProc(I); 765 return V; 766 } 767 768 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 769 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 770 if (Instruction *I = dyn_cast<Instruction>(V)) 771 createInstPostProc(I); 772 return V; 773 } 774 775 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 776 Value *V = Builder.CreateFDiv(Opnd0, Opnd1); 777 if (Instruction *I = dyn_cast<Instruction>(V)) 778 createInstPostProc(I); 779 return V; 780 } 781 782 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 783 NewInstr->setDebugLoc(Instr->getDebugLoc()); 784 785 // Keep track of the number of instruction created. 786 if (!NoNumber) 787 incCreateInstNum(); 788 789 // Propagate fast-math flags 790 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 791 } 792 793 // Return the number of instruction needed to emit the N-ary addition. 794 // NOTE: Keep this function in sync with createAddendVal(). 795 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 796 unsigned OpndNum = Opnds.size(); 797 unsigned InstrNeeded = OpndNum - 1; 798 799 // The number of addends in the form of "(-1)*x". 800 unsigned NegOpndNum = 0; 801 802 // Adjust the number of instructions needed to emit the N-ary add. 803 for (const FAddend *Opnd : Opnds) { 804 if (Opnd->isConstant()) 805 continue; 806 807 // The constant check above is really for a few special constant 808 // coefficients. 809 if (isa<UndefValue>(Opnd->getSymVal())) 810 continue; 811 812 const FAddendCoef &CE = Opnd->getCoef(); 813 if (CE.isMinusOne() || CE.isMinusTwo()) 814 NegOpndNum++; 815 816 // Let the addend be "c * x". If "c == +/-1", the value of the addend 817 // is immediately available; otherwise, it needs exactly one instruction 818 // to evaluate the value. 819 if (!CE.isMinusOne() && !CE.isOne()) 820 InstrNeeded++; 821 } 822 if (NegOpndNum == OpndNum) 823 InstrNeeded++; 824 return InstrNeeded; 825 } 826 827 // Input Addend Value NeedNeg(output) 828 // ================================================================ 829 // Constant C C false 830 // <+/-1, V> V coefficient is -1 831 // <2/-2, V> "fadd V, V" coefficient is -2 832 // <C, V> "fmul V, C" false 833 // 834 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 835 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 836 const FAddendCoef &Coeff = Opnd.getCoef(); 837 838 if (Opnd.isConstant()) { 839 NeedNeg = false; 840 return Coeff.getValue(Instr->getType()); 841 } 842 843 Value *OpndVal = Opnd.getSymVal(); 844 845 if (Coeff.isMinusOne() || Coeff.isOne()) { 846 NeedNeg = Coeff.isMinusOne(); 847 return OpndVal; 848 } 849 850 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 851 NeedNeg = Coeff.isMinusTwo(); 852 return createFAdd(OpndVal, OpndVal); 853 } 854 855 NeedNeg = false; 856 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 857 } 858 859 /// \brief Return true if we can prove that: 860 /// (sub LHS, RHS) === (sub nsw LHS, RHS) 861 /// This basically requires proving that the add in the original type would not 862 /// overflow to change the sign bit or have a carry out. 863 /// TODO: Handle this for Vectors. 864 bool InstCombiner::willNotOverflowSignedSub(const Value *LHS, 865 const Value *RHS, 866 const Instruction &CxtI) const { 867 // If LHS and RHS each have at least two sign bits, the subtraction 868 // cannot overflow. 869 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 870 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 871 return true; 872 873 KnownBits LHSKnown = computeKnownBits(LHS, 0, &CxtI); 874 875 KnownBits RHSKnown = computeKnownBits(RHS, 0, &CxtI); 876 877 // Subtraction of two 2's complement numbers having identical signs will 878 // never overflow. 879 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 880 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 881 return true; 882 883 // TODO: implement logic similar to checkRippleForAdd 884 return false; 885 } 886 887 /// \brief Return true if we can prove that: 888 /// (sub LHS, RHS) === (sub nuw LHS, RHS) 889 bool InstCombiner::willNotOverflowUnsignedSub(const Value *LHS, 890 const Value *RHS, 891 const Instruction &CxtI) const { 892 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 893 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI); 894 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI); 895 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 896 return true; 897 898 return false; 899 } 900 901 // Checks if any operand is negative and we can convert add to sub. 902 // This function checks for following negative patterns 903 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 904 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 905 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 906 static Value *checkForNegativeOperand(BinaryOperator &I, 907 InstCombiner::BuilderTy &Builder) { 908 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 909 910 // This function creates 2 instructions to replace ADD, we need at least one 911 // of LHS or RHS to have one use to ensure benefit in transform. 912 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 913 return nullptr; 914 915 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 916 const APInt *C1 = nullptr, *C2 = nullptr; 917 918 // if ONE is on other side, swap 919 if (match(RHS, m_Add(m_Value(X), m_One()))) 920 std::swap(LHS, RHS); 921 922 if (match(LHS, m_Add(m_Value(X), m_One()))) { 923 // if XOR on other side, swap 924 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 925 std::swap(X, RHS); 926 927 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 928 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 929 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 930 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 931 Value *NewAnd = Builder.CreateAnd(Z, *C1); 932 return Builder.CreateSub(RHS, NewAnd, "sub"); 933 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 934 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 935 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 936 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 937 return Builder.CreateSub(RHS, NewOr, "sub"); 938 } 939 } 940 } 941 942 // Restore LHS and RHS 943 LHS = I.getOperand(0); 944 RHS = I.getOperand(1); 945 946 // if XOR is on other side, swap 947 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 948 std::swap(LHS, RHS); 949 950 // C2 is ODD 951 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 952 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 953 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 954 if (C1->countTrailingZeros() == 0) 955 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 956 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 957 return Builder.CreateSub(RHS, NewOr, "sub"); 958 } 959 return nullptr; 960 } 961 962 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 963 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 964 Constant *Op1C; 965 if (!match(Op1, m_Constant(Op1C))) 966 return nullptr; 967 968 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 969 return NV; 970 971 Value *X; 972 // zext(bool) + C -> bool ? C + 1 : C 973 if (match(Op0, m_ZExt(m_Value(X))) && 974 X->getType()->getScalarSizeInBits() == 1) 975 return SelectInst::Create(X, AddOne(Op1C), Op1); 976 977 // ~X + C --> (C-1) - X 978 if (match(Op0, m_Not(m_Value(X)))) 979 return BinaryOperator::CreateSub(SubOne(Op1C), X); 980 981 const APInt *C; 982 if (!match(Op1, m_APInt(C))) 983 return nullptr; 984 985 if (C->isSignMask()) { 986 // If wrapping is not allowed, then the addition must set the sign bit: 987 // X + (signmask) --> X | signmask 988 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 989 return BinaryOperator::CreateOr(Op0, Op1); 990 991 // If wrapping is allowed, then the addition flips the sign bit of LHS: 992 // X + (signmask) --> X ^ signmask 993 return BinaryOperator::CreateXor(Op0, Op1); 994 } 995 996 // Is this add the last step in a convoluted sext? 997 // add(zext(xor i16 X, -32768), -32768) --> sext X 998 Type *Ty = Add.getType(); 999 const APInt *C2; 1000 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 1001 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 1002 return CastInst::Create(Instruction::SExt, X, Ty); 1003 1004 // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C)) 1005 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 1006 C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) { 1007 Constant *NewC = 1008 ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth())); 1009 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 1010 } 1011 1012 if (C->isOneValue() && Op0->hasOneUse()) { 1013 // add (sext i1 X), 1 --> zext (not X) 1014 // TODO: The smallest IR representation is (select X, 0, 1), and that would 1015 // not require the one-use check. But we need to remove a transform in 1016 // visitSelect and make sure that IR value tracking for select is equal or 1017 // better than for these ops. 1018 if (match(Op0, m_SExt(m_Value(X))) && 1019 X->getType()->getScalarSizeInBits() == 1) 1020 return new ZExtInst(Builder.CreateNot(X), Ty); 1021 1022 // Shifts and add used to flip and mask off the low bit: 1023 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 1024 const APInt *C3; 1025 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 1026 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 1027 Value *NotX = Builder.CreateNot(X); 1028 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 1029 } 1030 } 1031 1032 return nullptr; 1033 } 1034 1035 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1036 bool Changed = SimplifyAssociativeOrCommutative(I); 1037 if (Value *V = SimplifyVectorOp(I)) 1038 return replaceInstUsesWith(I, V); 1039 1040 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1041 if (Value *V = 1042 SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1043 SQ.getWithInstruction(&I))) 1044 return replaceInstUsesWith(I, V); 1045 1046 // (A*B)+(A*C) -> A*(B+C) etc 1047 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1048 return replaceInstUsesWith(I, V); 1049 1050 if (Instruction *X = foldAddWithConstant(I)) 1051 return X; 1052 1053 // FIXME: This should be moved into the above helper function to allow these 1054 // transforms for general constant or constant splat vectors. 1055 Type *Ty = I.getType(); 1056 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1057 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1058 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1059 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1060 const APInt &RHSVal = CI->getValue(); 1061 unsigned ExtendAmt = 0; 1062 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1063 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1064 if (XorRHS->getValue() == -RHSVal) { 1065 if (RHSVal.isPowerOf2()) 1066 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1067 else if (XorRHS->getValue().isPowerOf2()) 1068 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1069 } 1070 1071 if (ExtendAmt) { 1072 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1073 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1074 ExtendAmt = 0; 1075 } 1076 1077 if (ExtendAmt) { 1078 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1079 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1080 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1081 } 1082 1083 // If this is a xor that was canonicalized from a sub, turn it back into 1084 // a sub and fuse this add with it. 1085 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1086 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1087 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1088 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1089 XorLHS); 1090 } 1091 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1092 // transform them into (X + (signmask ^ C)) 1093 if (XorRHS->getValue().isSignMask()) 1094 return BinaryOperator::CreateAdd(XorLHS, 1095 ConstantExpr::getXor(XorRHS, CI)); 1096 } 1097 } 1098 1099 if (Ty->isIntOrIntVectorTy(1)) 1100 return BinaryOperator::CreateXor(LHS, RHS); 1101 1102 // X + X --> X << 1 1103 if (LHS == RHS) { 1104 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1105 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1106 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1107 return Shl; 1108 } 1109 1110 Value *A, *B; 1111 if (match(LHS, m_Neg(m_Value(A)))) { 1112 // -A + -B --> -(A + B) 1113 if (match(RHS, m_Neg(m_Value(B)))) 1114 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1115 1116 // -A + B --> B - A 1117 return BinaryOperator::CreateSub(RHS, A); 1118 } 1119 1120 // A + -B --> A - B 1121 if (match(RHS, m_Neg(m_Value(B)))) 1122 return BinaryOperator::CreateSub(LHS, B); 1123 1124 if (Value *V = checkForNegativeOperand(I, Builder)) 1125 return replaceInstUsesWith(I, V); 1126 1127 // A+B --> A|B iff A and B have no bits set in common. 1128 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1129 return BinaryOperator::CreateOr(LHS, RHS); 1130 1131 // FIXME: We already did a check for ConstantInt RHS above this. 1132 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1133 // removal. 1134 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1135 // (X & FF00) + xx00 -> (X+xx00) & FF00 1136 Value *X; 1137 ConstantInt *C2; 1138 if (LHS->hasOneUse() && 1139 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1140 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1141 // See if all bits from the first bit set in the Add RHS up are included 1142 // in the mask. First, get the rightmost bit. 1143 const APInt &AddRHSV = CRHS->getValue(); 1144 1145 // Form a mask of all bits from the lowest bit added through the top. 1146 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1147 1148 // See if the and mask includes all of these bits. 1149 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1150 1151 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1152 // Okay, the xform is safe. Insert the new add pronto. 1153 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1154 return BinaryOperator::CreateAnd(NewAdd, C2); 1155 } 1156 } 1157 } 1158 1159 // add (select X 0 (sub n A)) A --> select X A n 1160 { 1161 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1162 Value *A = RHS; 1163 if (!SI) { 1164 SI = dyn_cast<SelectInst>(RHS); 1165 A = LHS; 1166 } 1167 if (SI && SI->hasOneUse()) { 1168 Value *TV = SI->getTrueValue(); 1169 Value *FV = SI->getFalseValue(); 1170 Value *N; 1171 1172 // Can we fold the add into the argument of the select? 1173 // We check both true and false select arguments for a matching subtract. 1174 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1175 // Fold the add into the true select value. 1176 return SelectInst::Create(SI->getCondition(), N, A); 1177 1178 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1179 // Fold the add into the false select value. 1180 return SelectInst::Create(SI->getCondition(), A, N); 1181 } 1182 } 1183 1184 // Check for (add (sext x), y), see if we can merge this into an 1185 // integer add followed by a sext. 1186 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1187 // (add (sext x), cst) --> (sext (add x, cst')) 1188 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1189 if (LHSConv->hasOneUse()) { 1190 Constant *CI = 1191 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1192 if (ConstantExpr::getSExt(CI, Ty) == RHSC && 1193 willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1194 // Insert the new, smaller add. 1195 Value *NewAdd = 1196 Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv"); 1197 return new SExtInst(NewAdd, Ty); 1198 } 1199 } 1200 } 1201 1202 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1203 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1204 // Only do this if x/y have the same type, if at least one of them has a 1205 // single use (so we don't increase the number of sexts), and if the 1206 // integer add will not overflow. 1207 if (LHSConv->getOperand(0)->getType() == 1208 RHSConv->getOperand(0)->getType() && 1209 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1210 willNotOverflowSignedAdd(LHSConv->getOperand(0), 1211 RHSConv->getOperand(0), I)) { 1212 // Insert the new integer add. 1213 Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0), 1214 RHSConv->getOperand(0), "addconv"); 1215 return new SExtInst(NewAdd, Ty); 1216 } 1217 } 1218 } 1219 1220 // Check for (add (zext x), y), see if we can merge this into an 1221 // integer add followed by a zext. 1222 if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) { 1223 // (add (zext x), cst) --> (zext (add x, cst')) 1224 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1225 if (LHSConv->hasOneUse()) { 1226 Constant *CI = 1227 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1228 if (ConstantExpr::getZExt(CI, Ty) == RHSC && 1229 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) { 1230 // Insert the new, smaller add. 1231 Value *NewAdd = 1232 Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv"); 1233 return new ZExtInst(NewAdd, Ty); 1234 } 1235 } 1236 } 1237 1238 // (add (zext x), (zext y)) --> (zext (add int x, y)) 1239 if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) { 1240 // Only do this if x/y have the same type, if at least one of them has a 1241 // single use (so we don't increase the number of zexts), and if the 1242 // integer add will not overflow. 1243 if (LHSConv->getOperand(0)->getType() == 1244 RHSConv->getOperand(0)->getType() && 1245 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1246 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), 1247 RHSConv->getOperand(0), I)) { 1248 // Insert the new integer add. 1249 Value *NewAdd = Builder.CreateNUWAdd( 1250 LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); 1251 return new ZExtInst(NewAdd, Ty); 1252 } 1253 } 1254 } 1255 1256 // (add (xor A, B) (and A, B)) --> (or A, B) 1257 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 1258 match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) 1259 return BinaryOperator::CreateOr(A, B); 1260 1261 // (add (and A, B) (xor A, B)) --> (or A, B) 1262 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 1263 match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) 1264 return BinaryOperator::CreateOr(A, B); 1265 1266 // (add (or A, B) (and A, B)) --> (add A, B) 1267 if (match(LHS, m_Or(m_Value(A), m_Value(B))) && 1268 match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) { 1269 I.setOperand(0, A); 1270 I.setOperand(1, B); 1271 return &I; 1272 } 1273 1274 // (add (and A, B) (or A, B)) --> (add A, B) 1275 if (match(RHS, m_Or(m_Value(A), m_Value(B))) && 1276 match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) { 1277 I.setOperand(0, A); 1278 I.setOperand(1, B); 1279 return &I; 1280 } 1281 1282 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1283 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1284 // computeKnownBits. 1285 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1286 Changed = true; 1287 I.setHasNoSignedWrap(true); 1288 } 1289 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1290 Changed = true; 1291 I.setHasNoUnsignedWrap(true); 1292 } 1293 1294 return Changed ? &I : nullptr; 1295 } 1296 1297 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1298 bool Changed = SimplifyAssociativeOrCommutative(I); 1299 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1300 1301 if (Value *V = SimplifyVectorOp(I)) 1302 return replaceInstUsesWith(I, V); 1303 1304 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), 1305 SQ.getWithInstruction(&I))) 1306 return replaceInstUsesWith(I, V); 1307 1308 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1309 return FoldedFAdd; 1310 1311 Value *X; 1312 // (-X) + Y --> Y - X 1313 if (match(LHS, m_FNeg(m_Value(X)))) 1314 return BinaryOperator::CreateFSubFMF(RHS, X, &I); 1315 // Y + (-X) --> Y - X 1316 if (match(RHS, m_FNeg(m_Value(X)))) 1317 return BinaryOperator::CreateFSubFMF(LHS, X, &I); 1318 1319 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1320 // integer add followed by a promotion. 1321 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1322 Value *LHSIntVal = LHSConv->getOperand(0); 1323 Type *FPType = LHSConv->getType(); 1324 1325 // TODO: This check is overly conservative. In many cases known bits 1326 // analysis can tell us that the result of the addition has less significant 1327 // bits than the integer type can hold. 1328 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1329 Type *FScalarTy = FTy->getScalarType(); 1330 Type *IScalarTy = ITy->getScalarType(); 1331 1332 // Do we have enough bits in the significand to represent the result of 1333 // the integer addition? 1334 unsigned MaxRepresentableBits = 1335 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1336 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1337 }; 1338 1339 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1340 // ... if the constant fits in the integer value. This is useful for things 1341 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1342 // requires a constant pool load, and generally allows the add to be better 1343 // instcombined. 1344 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1345 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1346 Constant *CI = 1347 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1348 if (LHSConv->hasOneUse() && 1349 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1350 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1351 // Insert the new integer add. 1352 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1353 return new SIToFPInst(NewAdd, I.getType()); 1354 } 1355 } 1356 1357 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1358 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1359 Value *RHSIntVal = RHSConv->getOperand(0); 1360 // It's enough to check LHS types only because we require int types to 1361 // be the same for this transform. 1362 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1363 // Only do this if x/y have the same type, if at least one of them has a 1364 // single use (so we don't increase the number of int->fp conversions), 1365 // and if the integer add will not overflow. 1366 if (LHSIntVal->getType() == RHSIntVal->getType() && 1367 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1368 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1369 // Insert the new integer add. 1370 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1371 return new SIToFPInst(NewAdd, I.getType()); 1372 } 1373 } 1374 } 1375 } 1376 1377 // Handle specials cases for FAdd with selects feeding the operation 1378 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1379 return replaceInstUsesWith(I, V); 1380 1381 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1382 if (Value *V = FAddCombine(Builder).simplify(&I)) 1383 return replaceInstUsesWith(I, V); 1384 } 1385 1386 return Changed ? &I : nullptr; 1387 } 1388 1389 /// Optimize pointer differences into the same array into a size. Consider: 1390 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1391 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1392 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1393 Type *Ty) { 1394 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1395 // this. 1396 bool Swapped = false; 1397 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1398 1399 // For now we require one side to be the base pointer "A" or a constant 1400 // GEP derived from it. 1401 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1402 // (gep X, ...) - X 1403 if (LHSGEP->getOperand(0) == RHS) { 1404 GEP1 = LHSGEP; 1405 Swapped = false; 1406 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1407 // (gep X, ...) - (gep X, ...) 1408 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1409 RHSGEP->getOperand(0)->stripPointerCasts()) { 1410 GEP2 = RHSGEP; 1411 GEP1 = LHSGEP; 1412 Swapped = false; 1413 } 1414 } 1415 } 1416 1417 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1418 // X - (gep X, ...) 1419 if (RHSGEP->getOperand(0) == LHS) { 1420 GEP1 = RHSGEP; 1421 Swapped = true; 1422 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1423 // (gep X, ...) - (gep X, ...) 1424 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1425 LHSGEP->getOperand(0)->stripPointerCasts()) { 1426 GEP2 = LHSGEP; 1427 GEP1 = RHSGEP; 1428 Swapped = true; 1429 } 1430 } 1431 } 1432 1433 if (!GEP1) 1434 // No GEP found. 1435 return nullptr; 1436 1437 if (GEP2) { 1438 // (gep X, ...) - (gep X, ...) 1439 // 1440 // Avoid duplicating the arithmetic if there are more than one non-constant 1441 // indices between the two GEPs and either GEP has a non-constant index and 1442 // multiple users. If zero non-constant index, the result is a constant and 1443 // there is no duplication. If one non-constant index, the result is an add 1444 // or sub with a constant, which is no larger than the original code, and 1445 // there's no duplicated arithmetic, even if either GEP has multiple 1446 // users. If more than one non-constant indices combined, as long as the GEP 1447 // with at least one non-constant index doesn't have multiple users, there 1448 // is no duplication. 1449 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1450 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1451 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1452 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1453 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1454 return nullptr; 1455 } 1456 } 1457 1458 // Emit the offset of the GEP and an intptr_t. 1459 Value *Result = EmitGEPOffset(GEP1); 1460 1461 // If we had a constant expression GEP on the other side offsetting the 1462 // pointer, subtract it from the offset we have. 1463 if (GEP2) { 1464 Value *Offset = EmitGEPOffset(GEP2); 1465 Result = Builder.CreateSub(Result, Offset); 1466 } 1467 1468 // If we have p - gep(p, ...) then we have to negate the result. 1469 if (Swapped) 1470 Result = Builder.CreateNeg(Result, "diff.neg"); 1471 1472 return Builder.CreateIntCast(Result, Ty, true); 1473 } 1474 1475 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1476 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1477 1478 if (Value *V = SimplifyVectorOp(I)) 1479 return replaceInstUsesWith(I, V); 1480 1481 if (Value *V = 1482 SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1483 SQ.getWithInstruction(&I))) 1484 return replaceInstUsesWith(I, V); 1485 1486 // (A*B)-(A*C) -> A*(B-C) etc 1487 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1488 return replaceInstUsesWith(I, V); 1489 1490 // If this is a 'B = x-(-A)', change to B = x+A. 1491 if (Value *V = dyn_castNegVal(Op1)) { 1492 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1493 1494 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1495 assert(BO->getOpcode() == Instruction::Sub && 1496 "Expected a subtraction operator!"); 1497 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1498 Res->setHasNoSignedWrap(true); 1499 } else { 1500 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1501 Res->setHasNoSignedWrap(true); 1502 } 1503 1504 return Res; 1505 } 1506 1507 if (I.getType()->isIntOrIntVectorTy(1)) 1508 return BinaryOperator::CreateXor(Op0, Op1); 1509 1510 // Replace (-1 - A) with (~A). 1511 if (match(Op0, m_AllOnes())) 1512 return BinaryOperator::CreateNot(Op1); 1513 1514 // (~X) - (~Y) --> Y - X 1515 Value *X, *Y; 1516 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1517 return BinaryOperator::CreateSub(Y, X); 1518 1519 if (Constant *C = dyn_cast<Constant>(Op0)) { 1520 Value *X; 1521 // C - zext(bool) -> bool ? C - 1 : C 1522 if (match(Op1, m_ZExt(m_Value(X))) && 1523 X->getType()->getScalarSizeInBits() == 1) 1524 return SelectInst::Create(X, SubOne(C), C); 1525 1526 // C - ~X == X + (1+C) 1527 if (match(Op1, m_Not(m_Value(X)))) 1528 return BinaryOperator::CreateAdd(X, AddOne(C)); 1529 1530 // Try to fold constant sub into select arguments. 1531 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1532 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1533 return R; 1534 1535 // Try to fold constant sub into PHI values. 1536 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1537 if (Instruction *R = foldOpIntoPhi(I, PN)) 1538 return R; 1539 1540 // C-(X+C2) --> (C-C2)-X 1541 Constant *C2; 1542 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1543 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1544 1545 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 1546 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 1547 if (X->getType()->isIntOrIntVectorTy(1)) 1548 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 1549 1550 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 1551 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 1552 if (X->getType()->isIntOrIntVectorTy(1)) 1553 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 1554 } 1555 1556 const APInt *Op0C; 1557 if (match(Op0, m_APInt(Op0C))) { 1558 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1559 1560 // -(X >>u 31) -> (X >>s 31) 1561 // -(X >>s 31) -> (X >>u 31) 1562 if (Op0C->isNullValue()) { 1563 Value *X; 1564 const APInt *ShAmt; 1565 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1566 *ShAmt == BitWidth - 1) { 1567 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1568 return BinaryOperator::CreateAShr(X, ShAmtOp); 1569 } 1570 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1571 *ShAmt == BitWidth - 1) { 1572 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1573 return BinaryOperator::CreateLShr(X, ShAmtOp); 1574 } 1575 } 1576 1577 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1578 // zero. 1579 if (Op0C->isMask()) { 1580 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1581 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1582 return BinaryOperator::CreateXor(Op1, Op0); 1583 } 1584 } 1585 1586 { 1587 Value *Y; 1588 // X-(X+Y) == -Y X-(Y+X) == -Y 1589 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1590 return BinaryOperator::CreateNeg(Y); 1591 1592 // (X-Y)-X == -Y 1593 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1594 return BinaryOperator::CreateNeg(Y); 1595 } 1596 1597 // (sub (or A, B), (xor A, B)) --> (and A, B) 1598 { 1599 Value *A, *B; 1600 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1601 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1602 return BinaryOperator::CreateAnd(A, B); 1603 } 1604 1605 { 1606 Value *Y; 1607 // ((X | Y) - X) --> (~X & Y) 1608 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1609 return BinaryOperator::CreateAnd( 1610 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1611 } 1612 1613 if (Op1->hasOneUse()) { 1614 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1615 Constant *C = nullptr; 1616 1617 // (X - (Y - Z)) --> (X + (Z - Y)). 1618 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1619 return BinaryOperator::CreateAdd(Op0, 1620 Builder.CreateSub(Z, Y, Op1->getName())); 1621 1622 // (X - (X & Y)) --> (X & ~Y) 1623 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1624 return BinaryOperator::CreateAnd(Op0, 1625 Builder.CreateNot(Y, Y->getName() + ".not")); 1626 1627 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1628 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1629 C->isNotMinSignedValue() && !C->isOneValue()) 1630 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1631 1632 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1633 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1634 if (Value *XNeg = dyn_castNegVal(X)) 1635 return BinaryOperator::CreateShl(XNeg, Y); 1636 1637 // Subtracting -1/0 is the same as adding 1/0: 1638 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1639 // 'nuw' is dropped in favor of the canonical form. 1640 if (match(Op1, m_SExt(m_Value(Y))) && 1641 Y->getType()->getScalarSizeInBits() == 1) { 1642 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1643 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1644 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1645 return Add; 1646 } 1647 1648 // X - A*-B -> X + A*B 1649 // X - -A*B -> X + A*B 1650 Value *A, *B; 1651 Constant *CI; 1652 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1653 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1654 1655 // X - A*CI -> X + A*-CI 1656 // No need to handle commuted multiply because multiply handling will 1657 // ensure constant will be move to the right hand side. 1658 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) { 1659 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI)); 1660 return BinaryOperator::CreateAdd(Op0, NewMul); 1661 } 1662 } 1663 1664 // Optimize pointer differences into the same array into a size. Consider: 1665 // &A[10] - &A[0]: we should compile this to "10". 1666 Value *LHSOp, *RHSOp; 1667 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1668 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1669 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1670 return replaceInstUsesWith(I, Res); 1671 1672 // trunc(p)-trunc(q) -> trunc(p-q) 1673 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1674 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1675 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1676 return replaceInstUsesWith(I, Res); 1677 1678 bool Changed = false; 1679 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1680 Changed = true; 1681 I.setHasNoSignedWrap(true); 1682 } 1683 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1684 Changed = true; 1685 I.setHasNoUnsignedWrap(true); 1686 } 1687 1688 return Changed ? &I : nullptr; 1689 } 1690 1691 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1692 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1693 1694 if (Value *V = SimplifyVectorOp(I)) 1695 return replaceInstUsesWith(I, V); 1696 1697 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), 1698 SQ.getWithInstruction(&I))) 1699 return replaceInstUsesWith(I, V); 1700 1701 // Subtraction from -0.0 is the canonical form of fneg. 1702 // fsub nsz 0, X ==> fsub nsz -0.0, X 1703 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) 1704 return BinaryOperator::CreateFNegFMF(Op1, &I); 1705 1706 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 1707 // Canonicalize to fadd to make analysis easier. 1708 // This can also help codegen because fadd is commutative. 1709 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 1710 // killed later. We still limit that particular transform with 'hasOneUse' 1711 // because an fneg is assumed better/cheaper than a generic fsub. 1712 Value *X, *Y; 1713 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 1714 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 1715 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 1716 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 1717 } 1718 } 1719 1720 if (isa<Constant>(Op0)) 1721 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1722 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1723 return NV; 1724 1725 // X - C --> X + (-C) 1726 Constant *C; 1727 if (match(Op1, m_Constant(C))) 1728 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 1729 1730 // X - (-Y) --> X + Y 1731 if (match(Op1, m_FNeg(m_Value(Y)))) 1732 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 1733 1734 // Similar to above, but look through a cast of the negated value: 1735 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 1736 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) { 1737 Value *TruncY = Builder.CreateFPTrunc(Y, I.getType()); 1738 return BinaryOperator::CreateFAddFMF(Op0, TruncY, &I); 1739 } 1740 // X - (fpext(-Y)) --> X + fpext(Y) 1741 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) { 1742 Value *ExtY = Builder.CreateFPExt(Y, I.getType()); 1743 return BinaryOperator::CreateFAddFMF(Op0, ExtY, &I); 1744 } 1745 1746 // Handle specials cases for FSub with selects feeding the operation 1747 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 1748 return replaceInstUsesWith(I, V); 1749 1750 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1751 if (Value *V = FAddCombine(Builder).simplify(&I)) 1752 return replaceInstUsesWith(I, V); 1753 } 1754 1755 return nullptr; 1756 } 1757