xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetMachine.cpp (revision e040533ecec5b1c0ab83c1c7b65342d46478afc5)
1 //===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file defines the WebAssembly-specific subclass of TargetMachine.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "WebAssembly.h"
16 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
17 #include "WebAssemblyTargetMachine.h"
18 #include "WebAssemblyTargetObjectFile.h"
19 #include "WebAssemblyTargetTransformInfo.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/Support/TargetRegistry.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Transforms/Scalar.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "wasm"
31 
32 // Emscripten's asm.js-style exception handling
33 static cl::opt<bool> EnableEmException(
34     "enable-emscripten-cxx-exceptions",
35     cl::desc("WebAssembly Emscripten-style exception handling"),
36     cl::init(false));
37 
38 // Emscripten's asm.js-style setjmp/longjmp handling
39 static cl::opt<bool> EnableEmSjLj(
40     "enable-emscripten-sjlj",
41     cl::desc("WebAssembly Emscripten-style setjmp/longjmp handling"),
42     cl::init(false));
43 
44 extern "C" void LLVMInitializeWebAssemblyTarget() {
45   // Register the target.
46   RegisterTargetMachine<WebAssemblyTargetMachine> X(TheWebAssemblyTarget32);
47   RegisterTargetMachine<WebAssemblyTargetMachine> Y(TheWebAssemblyTarget64);
48 
49   // Register exception handling pass to opt
50   initializeWebAssemblyLowerEmscriptenEHSjLjPass(
51       *PassRegistry::getPassRegistry());
52 }
53 
54 //===----------------------------------------------------------------------===//
55 // WebAssembly Lowering public interface.
56 //===----------------------------------------------------------------------===//
57 
58 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
59   if (!RM.hasValue())
60     return Reloc::PIC_;
61   return *RM;
62 }
63 
64 /// Create an WebAssembly architecture model.
65 ///
66 WebAssemblyTargetMachine::WebAssemblyTargetMachine(
67     const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
68     const TargetOptions &Options, Optional<Reloc::Model> RM,
69     CodeModel::Model CM, CodeGenOpt::Level OL)
70     : LLVMTargetMachine(T,
71                         TT.isArch64Bit() ? "e-m:e-p:64:64-i64:64-n32:64-S128"
72                                          : "e-m:e-p:32:32-i64:64-n32:64-S128",
73                         TT, CPU, FS, Options, getEffectiveRelocModel(RM),
74                         CM, OL),
75       TLOF(make_unique<WebAssemblyTargetObjectFile>()) {
76   // WebAssembly type-checks instructions, but a noreturn function with a return
77   // type that doesn't match the context will cause a check failure. So we lower
78   // LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
79   // 'unreachable' instructions which is meant for that case.
80   this->Options.TrapUnreachable = true;
81 
82   initAsmInfo();
83 
84   // Note that we don't use setRequiresStructuredCFG(true). It disables
85   // optimizations than we're ok with, and want, such as critical edge
86   // splitting and tail merging.
87 }
88 
89 WebAssemblyTargetMachine::~WebAssemblyTargetMachine() {}
90 
91 const WebAssemblySubtarget *
92 WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
93   Attribute CPUAttr = F.getFnAttribute("target-cpu");
94   Attribute FSAttr = F.getFnAttribute("target-features");
95 
96   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
97                         ? CPUAttr.getValueAsString().str()
98                         : TargetCPU;
99   std::string FS = !FSAttr.hasAttribute(Attribute::None)
100                        ? FSAttr.getValueAsString().str()
101                        : TargetFS;
102 
103   auto &I = SubtargetMap[CPU + FS];
104   if (!I) {
105     // This needs to be done before we create a new subtarget since any
106     // creation will depend on the TM and the code generation flags on the
107     // function that reside in TargetOptions.
108     resetTargetOptions(F);
109     I = llvm::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
110   }
111   return I.get();
112 }
113 
114 namespace {
115 /// WebAssembly Code Generator Pass Configuration Options.
116 class WebAssemblyPassConfig final : public TargetPassConfig {
117 public:
118   WebAssemblyPassConfig(WebAssemblyTargetMachine *TM, PassManagerBase &PM)
119       : TargetPassConfig(TM, PM) {}
120 
121   WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
122     return getTM<WebAssemblyTargetMachine>();
123   }
124 
125   FunctionPass *createTargetRegisterAllocator(bool) override;
126 
127   void addIRPasses() override;
128   bool addInstSelector() override;
129   void addPostRegAlloc() override;
130   bool addGCPasses() override { return false; }
131   void addPreEmitPass() override;
132 };
133 } // end anonymous namespace
134 
135 TargetIRAnalysis WebAssemblyTargetMachine::getTargetIRAnalysis() {
136   return TargetIRAnalysis([this](const Function &F) {
137     return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
138   });
139 }
140 
141 TargetPassConfig *
142 WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
143   return new WebAssemblyPassConfig(this, PM);
144 }
145 
146 FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
147   return nullptr; // No reg alloc
148 }
149 
150 //===----------------------------------------------------------------------===//
151 // The following functions are called from lib/CodeGen/Passes.cpp to modify
152 // the CodeGen pass sequence.
153 //===----------------------------------------------------------------------===//
154 
155 void WebAssemblyPassConfig::addIRPasses() {
156   if (TM->Options.ThreadModel == ThreadModel::Single)
157     // In "single" mode, atomics get lowered to non-atomics.
158     addPass(createLowerAtomicPass());
159   else
160     // Expand some atomic operations. WebAssemblyTargetLowering has hooks which
161     // control specifically what gets lowered.
162     addPass(createAtomicExpandPass(TM));
163 
164   // Optimize "returned" function attributes.
165   if (getOptLevel() != CodeGenOpt::None)
166     addPass(createWebAssemblyOptimizeReturned());
167 
168   // If exception handling is not enabled and setjmp/longjmp handling is
169   // enabled, we lower invokes into calls and delete unreachable landingpad
170   // blocks. Lowering invokes when there is no EH support is done in
171   // TargetPassConfig::addPassesToHandleExceptions, but this runs after this
172   // function and SjLj handling expects all invokes to be lowered before.
173   if (!EnableEmException) {
174     addPass(createLowerInvokePass());
175     // The lower invoke pass may create unreachable code. Remove it in order not
176     // to process dead blocks in setjmp/longjmp handling.
177     addPass(createUnreachableBlockEliminationPass());
178   }
179 
180   // Handle exceptions and setjmp/longjmp if enabled.
181   if (EnableEmException || EnableEmSjLj)
182     addPass(createWebAssemblyLowerEmscriptenEHSjLj(EnableEmException,
183                                                    EnableEmSjLj));
184 
185   TargetPassConfig::addIRPasses();
186 }
187 
188 bool WebAssemblyPassConfig::addInstSelector() {
189   (void)TargetPassConfig::addInstSelector();
190   addPass(
191       createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
192   // Run the argument-move pass immediately after the ScheduleDAG scheduler
193   // so that we can fix up the ARGUMENT instructions before anything else
194   // sees them in the wrong place.
195   addPass(createWebAssemblyArgumentMove());
196   // Set the p2align operands. This information is present during ISel, however
197   // it's inconvenient to collect. Collect it now, and update the immediate
198   // operands.
199   addPass(createWebAssemblySetP2AlignOperands());
200   return false;
201 }
202 
203 void WebAssemblyPassConfig::addPostRegAlloc() {
204   // TODO: The following CodeGen passes don't currently support code containing
205   // virtual registers. Consider removing their restrictions and re-enabling
206   // them.
207 
208   // Has no asserts of its own, but was not written to handle virtual regs.
209   disablePass(&ShrinkWrapID);
210 
211   // These functions all require the NoVRegs property.
212   disablePass(&MachineCopyPropagationID);
213   disablePass(&PostRASchedulerID);
214   disablePass(&FuncletLayoutID);
215   disablePass(&StackMapLivenessID);
216   disablePass(&LiveDebugValuesID);
217   disablePass(&PatchableFunctionID);
218 
219   TargetPassConfig::addPostRegAlloc();
220 }
221 
222 void WebAssemblyPassConfig::addPreEmitPass() {
223   TargetPassConfig::addPreEmitPass();
224 
225   // Now that we have a prologue and epilogue and all frame indices are
226   // rewritten, eliminate SP and FP. This allows them to be stackified,
227   // colored, and numbered with the rest of the registers.
228   addPass(createWebAssemblyReplacePhysRegs());
229 
230   if (getOptLevel() != CodeGenOpt::None) {
231     // LiveIntervals isn't commonly run this late. Re-establish preconditions.
232     addPass(createWebAssemblyPrepareForLiveIntervals());
233 
234     // Depend on LiveIntervals and perform some optimizations on it.
235     addPass(createWebAssemblyOptimizeLiveIntervals());
236 
237     // Prepare store instructions for register stackifying.
238     addPass(createWebAssemblyStoreResults());
239 
240     // Mark registers as representing wasm's value stack. This is a key
241     // code-compression technique in WebAssembly. We run this pass (and
242     // StoreResults above) very late, so that it sees as much code as possible,
243     // including code emitted by PEI and expanded by late tail duplication.
244     addPass(createWebAssemblyRegStackify());
245 
246     // Run the register coloring pass to reduce the total number of registers.
247     // This runs after stackification so that it doesn't consider registers
248     // that become stackified.
249     addPass(createWebAssemblyRegColoring());
250   }
251 
252   // Eliminate multiple-entry loops.
253   addPass(createWebAssemblyFixIrreducibleControlFlow());
254 
255   // Put the CFG in structured form; insert BLOCK and LOOP markers.
256   addPass(createWebAssemblyCFGStackify());
257 
258   // Lower br_unless into br_if.
259   addPass(createWebAssemblyLowerBrUnless());
260 
261   // Perform the very last peephole optimizations on the code.
262   if (getOptLevel() != CodeGenOpt::None)
263     addPass(createWebAssemblyPeephole());
264 
265   // Create a mapping from LLVM CodeGen virtual registers to wasm registers.
266   addPass(createWebAssemblyRegNumbering());
267 }
268