xref: /llvm-project/llvm/lib/IR/Function.cpp (revision e6b02214c68df2c9f826e02310c9352ac652e456)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ModRef.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 uint64_t Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 MaybeAlign Argument::getParamStackAlign() const {
202   return getParent()->getParamStackAlign(getArgNo());
203 }
204 
205 Type *Argument::getParamByValType() const {
206   assert(getType()->isPointerTy() && "Only pointers have byval types");
207   return getParent()->getParamByValType(getArgNo());
208 }
209 
210 Type *Argument::getParamStructRetType() const {
211   assert(getType()->isPointerTy() && "Only pointers have sret types");
212   return getParent()->getParamStructRetType(getArgNo());
213 }
214 
215 Type *Argument::getParamByRefType() const {
216   assert(getType()->isPointerTy() && "Only pointers have byref types");
217   return getParent()->getParamByRefType(getArgNo());
218 }
219 
220 Type *Argument::getParamInAllocaType() const {
221   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
222   return getParent()->getParamInAllocaType(getArgNo());
223 }
224 
225 uint64_t Argument::getDereferenceableBytes() const {
226   assert(getType()->isPointerTy() &&
227          "Only pointers have dereferenceable bytes");
228   return getParent()->getParamDereferenceableBytes(getArgNo());
229 }
230 
231 uint64_t Argument::getDereferenceableOrNullBytes() const {
232   assert(getType()->isPointerTy() &&
233          "Only pointers have dereferenceable bytes");
234   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
235 }
236 
237 bool Argument::hasNestAttr() const {
238   if (!getType()->isPointerTy()) return false;
239   return hasAttribute(Attribute::Nest);
240 }
241 
242 bool Argument::hasNoAliasAttr() const {
243   if (!getType()->isPointerTy()) return false;
244   return hasAttribute(Attribute::NoAlias);
245 }
246 
247 bool Argument::hasNoCaptureAttr() const {
248   if (!getType()->isPointerTy()) return false;
249   return hasAttribute(Attribute::NoCapture);
250 }
251 
252 bool Argument::hasNoFreeAttr() const {
253   if (!getType()->isPointerTy()) return false;
254   return hasAttribute(Attribute::NoFree);
255 }
256 
257 bool Argument::hasStructRetAttr() const {
258   if (!getType()->isPointerTy()) return false;
259   return hasAttribute(Attribute::StructRet);
260 }
261 
262 bool Argument::hasInRegAttr() const {
263   return hasAttribute(Attribute::InReg);
264 }
265 
266 bool Argument::hasReturnedAttr() const {
267   return hasAttribute(Attribute::Returned);
268 }
269 
270 bool Argument::hasZExtAttr() const {
271   return hasAttribute(Attribute::ZExt);
272 }
273 
274 bool Argument::hasSExtAttr() const {
275   return hasAttribute(Attribute::SExt);
276 }
277 
278 bool Argument::onlyReadsMemory() const {
279   AttributeList Attrs = getParent()->getAttributes();
280   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
281          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
282 }
283 
284 void Argument::addAttrs(AttrBuilder &B) {
285   AttributeList AL = getParent()->getAttributes();
286   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
287   getParent()->setAttributes(AL);
288 }
289 
290 void Argument::addAttr(Attribute::AttrKind Kind) {
291   getParent()->addParamAttr(getArgNo(), Kind);
292 }
293 
294 void Argument::addAttr(Attribute Attr) {
295   getParent()->addParamAttr(getArgNo(), Attr);
296 }
297 
298 void Argument::removeAttr(Attribute::AttrKind Kind) {
299   getParent()->removeParamAttr(getArgNo(), Kind);
300 }
301 
302 void Argument::removeAttrs(const AttributeMask &AM) {
303   AttributeList AL = getParent()->getAttributes();
304   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
305   getParent()->setAttributes(AL);
306 }
307 
308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->hasParamAttribute(getArgNo(), Kind);
310 }
311 
312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
313   return getParent()->getParamAttribute(getArgNo(), Kind);
314 }
315 
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
319 
320 LLVMContext &Function::getContext() const {
321   return getType()->getContext();
322 }
323 
324 unsigned Function::getInstructionCount() const {
325   unsigned NumInstrs = 0;
326   for (const BasicBlock &BB : BasicBlocks)
327     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
328                                BB.instructionsWithoutDebug().end());
329   return NumInstrs;
330 }
331 
332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
333                            const Twine &N, Module &M) {
334   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
335 }
336 
337 Function *Function::createWithDefaultAttr(FunctionType *Ty,
338                                           LinkageTypes Linkage,
339                                           unsigned AddrSpace, const Twine &N,
340                                           Module *M) {
341   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
342   AttrBuilder B(F->getContext());
343   UWTableKind UWTable = M->getUwtable();
344   if (UWTable != UWTableKind::None)
345     B.addUWTableAttr(UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   if (M->getModuleFlag("function_return_thunk_extern"))
358     B.addAttribute(Attribute::FnRetThunkExtern);
359   F->addFnAttrs(B);
360   return F;
361 }
362 
363 void Function::removeFromParent() {
364   getParent()->getFunctionList().remove(getIterator());
365 }
366 
367 void Function::eraseFromParent() {
368   getParent()->getFunctionList().erase(getIterator());
369 }
370 
371 void Function::splice(Function::iterator ToIt, Function *FromF,
372                       Function::iterator FromBeginIt,
373                       Function::iterator FromEndIt) {
374 #ifdef EXPENSIVE_CHECKS
375   // Check that FromBeginIt is before FromEndIt.
376   auto FromFEnd = FromF->end();
377   for (auto It = FromBeginIt; It != FromEndIt; ++It)
378     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
379 #endif // EXPENSIVE_CHECKS
380   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
381 }
382 
383 Function::iterator Function::erase(Function::iterator FromIt,
384                                    Function::iterator ToIt) {
385   return BasicBlocks.erase(FromIt, ToIt);
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // Function Implementation
390 //===----------------------------------------------------------------------===//
391 
392 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
393   // If AS == -1 and we are passed a valid module pointer we place the function
394   // in the program address space. Otherwise we default to AS0.
395   if (AddrSpace == static_cast<unsigned>(-1))
396     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
397   return AddrSpace;
398 }
399 
400 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
401                    const Twine &name, Module *ParentModule)
402     : GlobalObject(Ty, Value::FunctionVal,
403                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
404                    computeAddrSpace(AddrSpace, ParentModule)),
405       NumArgs(Ty->getNumParams()) {
406   assert(FunctionType::isValidReturnType(getReturnType()) &&
407          "invalid return type");
408   setGlobalObjectSubClassData(0);
409 
410   // We only need a symbol table for a function if the context keeps value names
411   if (!getContext().shouldDiscardValueNames())
412     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
413 
414   // If the function has arguments, mark them as lazily built.
415   if (Ty->getNumParams())
416     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
417 
418   if (ParentModule)
419     ParentModule->getFunctionList().push_back(this);
420 
421   HasLLVMReservedName = getName().startswith("llvm.");
422   // Ensure intrinsics have the right parameter attributes.
423   // Note, the IntID field will have been set in Value::setName if this function
424   // name is a valid intrinsic ID.
425   if (IntID)
426     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
427 }
428 
429 Function::~Function() {
430   dropAllReferences();    // After this it is safe to delete instructions.
431 
432   // Delete all of the method arguments and unlink from symbol table...
433   if (Arguments)
434     clearArguments();
435 
436   // Remove the function from the on-the-side GC table.
437   clearGC();
438 }
439 
440 void Function::BuildLazyArguments() const {
441   // Create the arguments vector, all arguments start out unnamed.
442   auto *FT = getFunctionType();
443   if (NumArgs > 0) {
444     Arguments = std::allocator<Argument>().allocate(NumArgs);
445     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
446       Type *ArgTy = FT->getParamType(i);
447       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
448       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
449     }
450   }
451 
452   // Clear the lazy arguments bit.
453   unsigned SDC = getSubclassDataFromValue();
454   SDC &= ~(1 << 0);
455   const_cast<Function*>(this)->setValueSubclassData(SDC);
456   assert(!hasLazyArguments());
457 }
458 
459 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
460   return MutableArrayRef<Argument>(Args, Count);
461 }
462 
463 bool Function::isConstrainedFPIntrinsic() const {
464   switch (getIntrinsicID()) {
465 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
466   case Intrinsic::INTRINSIC:
467 #include "llvm/IR/ConstrainedOps.def"
468     return true;
469 #undef INSTRUCTION
470   default:
471     return false;
472   }
473 }
474 
475 void Function::clearArguments() {
476   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
477     A.setName("");
478     A.~Argument();
479   }
480   std::allocator<Argument>().deallocate(Arguments, NumArgs);
481   Arguments = nullptr;
482 }
483 
484 void Function::stealArgumentListFrom(Function &Src) {
485   assert(isDeclaration() && "Expected no references to current arguments");
486 
487   // Drop the current arguments, if any, and set the lazy argument bit.
488   if (!hasLazyArguments()) {
489     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
490                         [](const Argument &A) { return A.use_empty(); }) &&
491            "Expected arguments to be unused in declaration");
492     clearArguments();
493     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
494   }
495 
496   // Nothing to steal if Src has lazy arguments.
497   if (Src.hasLazyArguments())
498     return;
499 
500   // Steal arguments from Src, and fix the lazy argument bits.
501   assert(arg_size() == Src.arg_size());
502   Arguments = Src.Arguments;
503   Src.Arguments = nullptr;
504   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
505     // FIXME: This does the work of transferNodesFromList inefficiently.
506     SmallString<128> Name;
507     if (A.hasName())
508       Name = A.getName();
509     if (!Name.empty())
510       A.setName("");
511     A.setParent(this);
512     if (!Name.empty())
513       A.setName(Name);
514   }
515 
516   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
517   assert(!hasLazyArguments());
518   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
519 }
520 
521 // dropAllReferences() - This function causes all the subinstructions to "let
522 // go" of all references that they are maintaining.  This allows one to
523 // 'delete' a whole class at a time, even though there may be circular
524 // references... first all references are dropped, and all use counts go to
525 // zero.  Then everything is deleted for real.  Note that no operations are
526 // valid on an object that has "dropped all references", except operator
527 // delete.
528 //
529 void Function::dropAllReferences() {
530   setIsMaterializable(false);
531 
532   for (BasicBlock &BB : *this)
533     BB.dropAllReferences();
534 
535   // Delete all basic blocks. They are now unused, except possibly by
536   // blockaddresses, but BasicBlock's destructor takes care of those.
537   while (!BasicBlocks.empty())
538     BasicBlocks.begin()->eraseFromParent();
539 
540   // Drop uses of any optional data (real or placeholder).
541   if (getNumOperands()) {
542     User::dropAllReferences();
543     setNumHungOffUseOperands(0);
544     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
545   }
546 
547   // Metadata is stored in a side-table.
548   clearMetadata();
549 }
550 
551 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
552   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
553 }
554 
555 void Function::addFnAttr(Attribute::AttrKind Kind) {
556   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
557 }
558 
559 void Function::addFnAttr(StringRef Kind, StringRef Val) {
560   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
561 }
562 
563 void Function::addFnAttr(Attribute Attr) {
564   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
565 }
566 
567 void Function::addFnAttrs(const AttrBuilder &Attrs) {
568   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
569 }
570 
571 void Function::addRetAttr(Attribute::AttrKind Kind) {
572   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
573 }
574 
575 void Function::addRetAttr(Attribute Attr) {
576   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
577 }
578 
579 void Function::addRetAttrs(const AttrBuilder &Attrs) {
580   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
581 }
582 
583 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
584   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
585 }
586 
587 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
588   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
589 }
590 
591 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
592   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
593 }
594 
595 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
596   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
597 }
598 
599 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
600   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
601 }
602 
603 void Function::removeFnAttr(Attribute::AttrKind Kind) {
604   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
605 }
606 
607 void Function::removeFnAttr(StringRef Kind) {
608   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
609 }
610 
611 void Function::removeFnAttrs(const AttributeMask &AM) {
612   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
613 }
614 
615 void Function::removeRetAttr(Attribute::AttrKind Kind) {
616   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
617 }
618 
619 void Function::removeRetAttr(StringRef Kind) {
620   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
621 }
622 
623 void Function::removeRetAttrs(const AttributeMask &Attrs) {
624   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
625 }
626 
627 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
628   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
629 }
630 
631 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
632   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
633 }
634 
635 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
636   AttributeSets =
637       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
638 }
639 
640 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
641   AttributeSets =
642       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
643 }
644 
645 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
646   return AttributeSets.hasFnAttr(Kind);
647 }
648 
649 bool Function::hasFnAttribute(StringRef Kind) const {
650   return AttributeSets.hasFnAttr(Kind);
651 }
652 
653 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
654   return AttributeSets.hasRetAttr(Kind);
655 }
656 
657 bool Function::hasParamAttribute(unsigned ArgNo,
658                                  Attribute::AttrKind Kind) const {
659   return AttributeSets.hasParamAttr(ArgNo, Kind);
660 }
661 
662 Attribute Function::getAttributeAtIndex(unsigned i,
663                                         Attribute::AttrKind Kind) const {
664   return AttributeSets.getAttributeAtIndex(i, Kind);
665 }
666 
667 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
668   return AttributeSets.getAttributeAtIndex(i, Kind);
669 }
670 
671 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
672   return AttributeSets.getFnAttr(Kind);
673 }
674 
675 Attribute Function::getFnAttribute(StringRef Kind) const {
676   return AttributeSets.getFnAttr(Kind);
677 }
678 
679 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
680                                                  uint64_t Default) const {
681   Attribute A = getFnAttribute(Name);
682   uint64_t Result = Default;
683   if (A.isStringAttribute()) {
684     StringRef Str = A.getValueAsString();
685     if (Str.getAsInteger(0, Result))
686       getContext().emitError("cannot parse integer attribute " + Name);
687   }
688 
689   return Result;
690 }
691 
692 /// gets the specified attribute from the list of attributes.
693 Attribute Function::getParamAttribute(unsigned ArgNo,
694                                       Attribute::AttrKind Kind) const {
695   return AttributeSets.getParamAttr(ArgNo, Kind);
696 }
697 
698 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
699                                                  uint64_t Bytes) {
700   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
701                                                                   ArgNo, Bytes);
702 }
703 
704 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
705   if (&FPType == &APFloat::IEEEsingle()) {
706     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
707     StringRef Val = Attr.getValueAsString();
708     if (!Val.empty())
709       return parseDenormalFPAttribute(Val);
710 
711     // If the f32 variant of the attribute isn't specified, try to use the
712     // generic one.
713   }
714 
715   Attribute Attr = getFnAttribute("denormal-fp-math");
716   return parseDenormalFPAttribute(Attr.getValueAsString());
717 }
718 
719 const std::string &Function::getGC() const {
720   assert(hasGC() && "Function has no collector");
721   return getContext().getGC(*this);
722 }
723 
724 void Function::setGC(std::string Str) {
725   setValueSubclassDataBit(14, !Str.empty());
726   getContext().setGC(*this, std::move(Str));
727 }
728 
729 void Function::clearGC() {
730   if (!hasGC())
731     return;
732   getContext().deleteGC(*this);
733   setValueSubclassDataBit(14, false);
734 }
735 
736 bool Function::hasStackProtectorFnAttr() const {
737   return hasFnAttribute(Attribute::StackProtect) ||
738          hasFnAttribute(Attribute::StackProtectStrong) ||
739          hasFnAttribute(Attribute::StackProtectReq);
740 }
741 
742 /// Copy all additional attributes (those not needed to create a Function) from
743 /// the Function Src to this one.
744 void Function::copyAttributesFrom(const Function *Src) {
745   GlobalObject::copyAttributesFrom(Src);
746   setCallingConv(Src->getCallingConv());
747   setAttributes(Src->getAttributes());
748   if (Src->hasGC())
749     setGC(Src->getGC());
750   else
751     clearGC();
752   if (Src->hasPersonalityFn())
753     setPersonalityFn(Src->getPersonalityFn());
754   if (Src->hasPrefixData())
755     setPrefixData(Src->getPrefixData());
756   if (Src->hasPrologueData())
757     setPrologueData(Src->getPrologueData());
758 }
759 
760 MemoryEffects Function::getMemoryEffects() const {
761   return getAttributes().getMemoryEffects();
762 }
763 void Function::setMemoryEffects(MemoryEffects ME) {
764   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
765 }
766 
767 /// Determine if the function does not access memory.
768 bool Function::doesNotAccessMemory() const {
769   return getMemoryEffects().doesNotAccessMemory();
770 }
771 void Function::setDoesNotAccessMemory() {
772   setMemoryEffects(MemoryEffects::none());
773 }
774 
775 /// Determine if the function does not access or only reads memory.
776 bool Function::onlyReadsMemory() const {
777   return getMemoryEffects().onlyReadsMemory();
778 }
779 void Function::setOnlyReadsMemory() {
780   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
781 }
782 
783 /// Determine if the function does not access or only writes memory.
784 bool Function::onlyWritesMemory() const {
785   return getMemoryEffects().onlyWritesMemory();
786 }
787 void Function::setOnlyWritesMemory() {
788   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
789 }
790 
791 /// Determine if the call can access memmory only using pointers based
792 /// on its arguments.
793 bool Function::onlyAccessesArgMemory() const {
794   return getMemoryEffects().onlyAccessesArgPointees();
795 }
796 void Function::setOnlyAccessesArgMemory() {
797   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
798 }
799 
800 /// Determine if the function may only access memory that is
801 ///  inaccessible from the IR.
802 bool Function::onlyAccessesInaccessibleMemory() const {
803   return getMemoryEffects().onlyAccessesInaccessibleMem();
804 }
805 void Function::setOnlyAccessesInaccessibleMemory() {
806   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
807 }
808 
809 /// Determine if the function may only access memory that is
810 ///  either inaccessible from the IR or pointed to by its arguments.
811 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
812   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
813 }
814 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
815   setMemoryEffects(getMemoryEffects() &
816                    MemoryEffects::inaccessibleOrArgMemOnly());
817 }
818 
819 /// Table of string intrinsic names indexed by enum value.
820 static const char * const IntrinsicNameTable[] = {
821   "not_intrinsic",
822 #define GET_INTRINSIC_NAME_TABLE
823 #include "llvm/IR/IntrinsicImpl.inc"
824 #undef GET_INTRINSIC_NAME_TABLE
825 };
826 
827 /// Table of per-target intrinsic name tables.
828 #define GET_INTRINSIC_TARGET_DATA
829 #include "llvm/IR/IntrinsicImpl.inc"
830 #undef GET_INTRINSIC_TARGET_DATA
831 
832 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
833   return IID > TargetInfos[0].Count;
834 }
835 
836 bool Function::isTargetIntrinsic() const {
837   return isTargetIntrinsic(IntID);
838 }
839 
840 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
841 /// target as \c Name, or the generic table if \c Name is not target specific.
842 ///
843 /// Returns the relevant slice of \c IntrinsicNameTable
844 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
845   assert(Name.startswith("llvm."));
846 
847   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
848   // Drop "llvm." and take the first dotted component. That will be the target
849   // if this is target specific.
850   StringRef Target = Name.drop_front(5).split('.').first;
851   auto It = partition_point(
852       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
853   // We've either found the target or just fall back to the generic set, which
854   // is always first.
855   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
856   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
857 }
858 
859 /// This does the actual lookup of an intrinsic ID which
860 /// matches the given function name.
861 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
862   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
863   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
864   if (Idx == -1)
865     return Intrinsic::not_intrinsic;
866 
867   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
868   // an index into a sub-table.
869   int Adjust = NameTable.data() - IntrinsicNameTable;
870   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
871 
872   // If the intrinsic is not overloaded, require an exact match. If it is
873   // overloaded, require either exact or prefix match.
874   const auto MatchSize = strlen(NameTable[Idx]);
875   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
876   bool IsExactMatch = Name.size() == MatchSize;
877   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
878                                                      : Intrinsic::not_intrinsic;
879 }
880 
881 void Function::recalculateIntrinsicID() {
882   StringRef Name = getName();
883   if (!Name.startswith("llvm.")) {
884     HasLLVMReservedName = false;
885     IntID = Intrinsic::not_intrinsic;
886     return;
887   }
888   HasLLVMReservedName = true;
889   IntID = lookupIntrinsicID(Name);
890 }
891 
892 /// Returns a stable mangling for the type specified for use in the name
893 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
894 /// of named types is simply their name.  Manglings for unnamed types consist
895 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
896 /// combined with the mangling of their component types.  A vararg function
897 /// type will have a suffix of 'vararg'.  Since function types can contain
898 /// other function types, we close a function type mangling with suffix 'f'
899 /// which can't be confused with it's prefix.  This ensures we don't have
900 /// collisions between two unrelated function types. Otherwise, you might
901 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
902 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
903 /// indicating that extra care must be taken to ensure a unique name.
904 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
905   std::string Result;
906   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
907     Result += "p" + utostr(PTyp->getAddressSpace());
908     // Opaque pointer doesn't have pointee type information, so we just mangle
909     // address space for opaque pointer.
910     if (!PTyp->isOpaque())
911       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
912                                   HasUnnamedType);
913   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
914     Result += "a" + utostr(ATyp->getNumElements()) +
915               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
916   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
917     if (!STyp->isLiteral()) {
918       Result += "s_";
919       if (STyp->hasName())
920         Result += STyp->getName();
921       else
922         HasUnnamedType = true;
923     } else {
924       Result += "sl_";
925       for (auto *Elem : STyp->elements())
926         Result += getMangledTypeStr(Elem, HasUnnamedType);
927     }
928     // Ensure nested structs are distinguishable.
929     Result += "s";
930   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
931     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
932     for (size_t i = 0; i < FT->getNumParams(); i++)
933       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
934     if (FT->isVarArg())
935       Result += "vararg";
936     // Ensure nested function types are distinguishable.
937     Result += "f";
938   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
939     ElementCount EC = VTy->getElementCount();
940     if (EC.isScalable())
941       Result += "nx";
942     Result += "v" + utostr(EC.getKnownMinValue()) +
943               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
944   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
945     Result += "t";
946     Result += TETy->getName();
947     for (Type *ParamTy : TETy->type_params())
948       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
949     for (unsigned IntParam : TETy->int_params())
950       Result += "_" + utostr(IntParam);
951     // Ensure nested target extension types are distinguishable.
952     Result += "t";
953   } else if (Ty) {
954     switch (Ty->getTypeID()) {
955     default: llvm_unreachable("Unhandled type");
956     case Type::VoidTyID:      Result += "isVoid";   break;
957     case Type::MetadataTyID:  Result += "Metadata"; break;
958     case Type::HalfTyID:      Result += "f16";      break;
959     case Type::BFloatTyID:    Result += "bf16";     break;
960     case Type::FloatTyID:     Result += "f32";      break;
961     case Type::DoubleTyID:    Result += "f64";      break;
962     case Type::X86_FP80TyID:  Result += "f80";      break;
963     case Type::FP128TyID:     Result += "f128";     break;
964     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
965     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
966     case Type::X86_AMXTyID:   Result += "x86amx";   break;
967     case Type::IntegerTyID:
968       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
969       break;
970     }
971   }
972   return Result;
973 }
974 
975 StringRef Intrinsic::getBaseName(ID id) {
976   assert(id < num_intrinsics && "Invalid intrinsic ID!");
977   return IntrinsicNameTable[id];
978 }
979 
980 StringRef Intrinsic::getName(ID id) {
981   assert(id < num_intrinsics && "Invalid intrinsic ID!");
982   assert(!Intrinsic::isOverloaded(id) &&
983          "This version of getName does not support overloading");
984   return getBaseName(id);
985 }
986 
987 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
988                                         Module *M, FunctionType *FT,
989                                         bool EarlyModuleCheck) {
990 
991   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
992   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
993          "This version of getName is for overloaded intrinsics only");
994   (void)EarlyModuleCheck;
995   assert((!EarlyModuleCheck || M ||
996           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
997          "Intrinsic overloading on pointer types need to provide a Module");
998   bool HasUnnamedType = false;
999   std::string Result(Intrinsic::getBaseName(Id));
1000   for (Type *Ty : Tys)
1001     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1002   if (HasUnnamedType) {
1003     assert(M && "unnamed types need a module");
1004     if (!FT)
1005       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1006     else
1007       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1008              "Provided FunctionType must match arguments");
1009     return M->getUniqueIntrinsicName(Result, Id, FT);
1010   }
1011   return Result;
1012 }
1013 
1014 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1015                                FunctionType *FT) {
1016   assert(M && "We need to have a Module");
1017   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1018 }
1019 
1020 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1021   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1022 }
1023 
1024 /// IIT_Info - These are enumerators that describe the entries returned by the
1025 /// getIntrinsicInfoTableEntries function.
1026 ///
1027 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
1028 enum IIT_Info {
1029   // Common values should be encoded with 0-15.
1030   IIT_Done = 0,
1031   IIT_I1 = 1,
1032   IIT_I8 = 2,
1033   IIT_I16 = 3,
1034   IIT_I32 = 4,
1035   IIT_I64 = 5,
1036   IIT_F16 = 6,
1037   IIT_F32 = 7,
1038   IIT_F64 = 8,
1039   IIT_V2 = 9,
1040   IIT_V4 = 10,
1041   IIT_V8 = 11,
1042   IIT_V16 = 12,
1043   IIT_V32 = 13,
1044   IIT_PTR = 14,
1045   IIT_ARG = 15,
1046 
1047   // Values from 16+ are only encodable with the inefficient encoding.
1048   IIT_V64 = 16,
1049   IIT_MMX = 17,
1050   IIT_TOKEN = 18,
1051   IIT_METADATA = 19,
1052   IIT_EMPTYSTRUCT = 20,
1053   IIT_STRUCT2 = 21,
1054   IIT_STRUCT3 = 22,
1055   IIT_STRUCT4 = 23,
1056   IIT_STRUCT5 = 24,
1057   IIT_EXTEND_ARG = 25,
1058   IIT_TRUNC_ARG = 26,
1059   IIT_ANYPTR = 27,
1060   IIT_V1 = 28,
1061   IIT_VARARG = 29,
1062   IIT_HALF_VEC_ARG = 30,
1063   IIT_SAME_VEC_WIDTH_ARG = 31,
1064   IIT_PTR_TO_ARG = 32,
1065   IIT_PTR_TO_ELT = 33,
1066   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
1067   IIT_I128 = 35,
1068   IIT_V512 = 36,
1069   IIT_V1024 = 37,
1070   IIT_STRUCT6 = 38,
1071   IIT_STRUCT7 = 39,
1072   IIT_STRUCT8 = 40,
1073   IIT_F128 = 41,
1074   IIT_VEC_ELEMENT = 42,
1075   IIT_SCALABLE_VEC = 43,
1076   IIT_SUBDIVIDE2_ARG = 44,
1077   IIT_SUBDIVIDE4_ARG = 45,
1078   IIT_VEC_OF_BITCASTS_TO_INT = 46,
1079   IIT_V128 = 47,
1080   IIT_BF16 = 48,
1081   IIT_STRUCT9 = 49,
1082   IIT_V256 = 50,
1083   IIT_AMX = 51,
1084   IIT_PPCF128 = 52,
1085   IIT_V3 = 53,
1086   IIT_EXTERNREF = 54,
1087   IIT_FUNCREF = 55,
1088   IIT_ANYPTR_TO_ELT = 56,
1089   IIT_I2 = 57,
1090   IIT_I4 = 58,
1091 };
1092 
1093 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1094                       IIT_Info LastInfo,
1095                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1096   using namespace Intrinsic;
1097 
1098   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1099 
1100   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1101   unsigned StructElts = 2;
1102 
1103   switch (Info) {
1104   case IIT_Done:
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1106     return;
1107   case IIT_VARARG:
1108     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1109     return;
1110   case IIT_MMX:
1111     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1112     return;
1113   case IIT_AMX:
1114     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1115     return;
1116   case IIT_TOKEN:
1117     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1118     return;
1119   case IIT_METADATA:
1120     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1121     return;
1122   case IIT_F16:
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1124     return;
1125   case IIT_BF16:
1126     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1127     return;
1128   case IIT_F32:
1129     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1130     return;
1131   case IIT_F64:
1132     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1133     return;
1134   case IIT_F128:
1135     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1136     return;
1137   case IIT_PPCF128:
1138     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1139     return;
1140   case IIT_I1:
1141     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1142     return;
1143   case IIT_I2:
1144     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1145     return;
1146   case IIT_I4:
1147     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1148     return;
1149   case IIT_I8:
1150     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1151     return;
1152   case IIT_I16:
1153     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1154     return;
1155   case IIT_I32:
1156     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1157     return;
1158   case IIT_I64:
1159     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1160     return;
1161   case IIT_I128:
1162     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1163     return;
1164   case IIT_V1:
1165     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1166     DecodeIITType(NextElt, Infos, Info, OutputTable);
1167     return;
1168   case IIT_V2:
1169     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1170     DecodeIITType(NextElt, Infos, Info, OutputTable);
1171     return;
1172   case IIT_V3:
1173     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1174     DecodeIITType(NextElt, Infos, Info, OutputTable);
1175     return;
1176   case IIT_V4:
1177     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1178     DecodeIITType(NextElt, Infos, Info, OutputTable);
1179     return;
1180   case IIT_V8:
1181     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1182     DecodeIITType(NextElt, Infos, Info, OutputTable);
1183     return;
1184   case IIT_V16:
1185     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1186     DecodeIITType(NextElt, Infos, Info, OutputTable);
1187     return;
1188   case IIT_V32:
1189     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1190     DecodeIITType(NextElt, Infos, Info, OutputTable);
1191     return;
1192   case IIT_V64:
1193     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1194     DecodeIITType(NextElt, Infos, Info, OutputTable);
1195     return;
1196   case IIT_V128:
1197     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1198     DecodeIITType(NextElt, Infos, Info, OutputTable);
1199     return;
1200   case IIT_V256:
1201     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1202     DecodeIITType(NextElt, Infos, Info, OutputTable);
1203     return;
1204   case IIT_V512:
1205     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1206     DecodeIITType(NextElt, Infos, Info, OutputTable);
1207     return;
1208   case IIT_V1024:
1209     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1210     DecodeIITType(NextElt, Infos, Info, OutputTable);
1211     return;
1212   case IIT_EXTERNREF:
1213     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1214     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1215     return;
1216   case IIT_FUNCREF:
1217     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1218     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1219     return;
1220   case IIT_PTR:
1221     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1222     DecodeIITType(NextElt, Infos, Info, OutputTable);
1223     return;
1224   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1225     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1226                                              Infos[NextElt++]));
1227     DecodeIITType(NextElt, Infos, Info, OutputTable);
1228     return;
1229   }
1230   case IIT_ARG: {
1231     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1232     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1233     return;
1234   }
1235   case IIT_EXTEND_ARG: {
1236     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1237     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1238                                              ArgInfo));
1239     return;
1240   }
1241   case IIT_TRUNC_ARG: {
1242     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1243     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1244                                              ArgInfo));
1245     return;
1246   }
1247   case IIT_HALF_VEC_ARG: {
1248     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1249     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1250                                              ArgInfo));
1251     return;
1252   }
1253   case IIT_SAME_VEC_WIDTH_ARG: {
1254     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1255     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1256                                              ArgInfo));
1257     return;
1258   }
1259   case IIT_PTR_TO_ARG: {
1260     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1261     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1262                                              ArgInfo));
1263     return;
1264   }
1265   case IIT_PTR_TO_ELT: {
1266     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1267     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1268     return;
1269   }
1270   case IIT_ANYPTR_TO_ELT: {
1271     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1272     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1273     OutputTable.push_back(
1274         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1275     return;
1276   }
1277   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1278     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1279     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1280     OutputTable.push_back(
1281         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1282     return;
1283   }
1284   case IIT_EMPTYSTRUCT:
1285     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1286     return;
1287   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1288   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1289   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1290   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1291   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1292   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1293   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1294   case IIT_STRUCT2: {
1295     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1296 
1297     for (unsigned i = 0; i != StructElts; ++i)
1298       DecodeIITType(NextElt, Infos, Info, OutputTable);
1299     return;
1300   }
1301   case IIT_SUBDIVIDE2_ARG: {
1302     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1303     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1304                                              ArgInfo));
1305     return;
1306   }
1307   case IIT_SUBDIVIDE4_ARG: {
1308     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1309     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1310                                              ArgInfo));
1311     return;
1312   }
1313   case IIT_VEC_ELEMENT: {
1314     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1315     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1316                                              ArgInfo));
1317     return;
1318   }
1319   case IIT_SCALABLE_VEC: {
1320     DecodeIITType(NextElt, Infos, Info, OutputTable);
1321     return;
1322   }
1323   case IIT_VEC_OF_BITCASTS_TO_INT: {
1324     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1325     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1326                                              ArgInfo));
1327     return;
1328   }
1329   }
1330   llvm_unreachable("unhandled");
1331 }
1332 
1333 #define GET_INTRINSIC_GENERATOR_GLOBAL
1334 #include "llvm/IR/IntrinsicImpl.inc"
1335 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1336 
1337 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1338                                              SmallVectorImpl<IITDescriptor> &T){
1339   // Check to see if the intrinsic's type was expressible by the table.
1340   unsigned TableVal = IIT_Table[id-1];
1341 
1342   // Decode the TableVal into an array of IITValues.
1343   SmallVector<unsigned char, 8> IITValues;
1344   ArrayRef<unsigned char> IITEntries;
1345   unsigned NextElt = 0;
1346   if ((TableVal >> 31) != 0) {
1347     // This is an offset into the IIT_LongEncodingTable.
1348     IITEntries = IIT_LongEncodingTable;
1349 
1350     // Strip sentinel bit.
1351     NextElt = (TableVal << 1) >> 1;
1352   } else {
1353     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1354     // into a single word in the table itself, decode it now.
1355     do {
1356       IITValues.push_back(TableVal & 0xF);
1357       TableVal >>= 4;
1358     } while (TableVal);
1359 
1360     IITEntries = IITValues;
1361     NextElt = 0;
1362   }
1363 
1364   // Okay, decode the table into the output vector of IITDescriptors.
1365   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1366   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1367     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1368 }
1369 
1370 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1371                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1372   using namespace Intrinsic;
1373 
1374   IITDescriptor D = Infos.front();
1375   Infos = Infos.slice(1);
1376 
1377   switch (D.Kind) {
1378   case IITDescriptor::Void: return Type::getVoidTy(Context);
1379   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1380   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1381   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1382   case IITDescriptor::Token: return Type::getTokenTy(Context);
1383   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1384   case IITDescriptor::Half: return Type::getHalfTy(Context);
1385   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1386   case IITDescriptor::Float: return Type::getFloatTy(Context);
1387   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1388   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1389   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1390 
1391   case IITDescriptor::Integer:
1392     return IntegerType::get(Context, D.Integer_Width);
1393   case IITDescriptor::Vector:
1394     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1395                            D.Vector_Width);
1396   case IITDescriptor::Pointer:
1397     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1398                             D.Pointer_AddressSpace);
1399   case IITDescriptor::Struct: {
1400     SmallVector<Type *, 8> Elts;
1401     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1402       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1403     return StructType::get(Context, Elts);
1404   }
1405   case IITDescriptor::Argument:
1406     return Tys[D.getArgumentNumber()];
1407   case IITDescriptor::ExtendArgument: {
1408     Type *Ty = Tys[D.getArgumentNumber()];
1409     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1410       return VectorType::getExtendedElementVectorType(VTy);
1411 
1412     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1413   }
1414   case IITDescriptor::TruncArgument: {
1415     Type *Ty = Tys[D.getArgumentNumber()];
1416     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1417       return VectorType::getTruncatedElementVectorType(VTy);
1418 
1419     IntegerType *ITy = cast<IntegerType>(Ty);
1420     assert(ITy->getBitWidth() % 2 == 0);
1421     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1422   }
1423   case IITDescriptor::Subdivide2Argument:
1424   case IITDescriptor::Subdivide4Argument: {
1425     Type *Ty = Tys[D.getArgumentNumber()];
1426     VectorType *VTy = dyn_cast<VectorType>(Ty);
1427     assert(VTy && "Expected an argument of Vector Type");
1428     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1429     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1430   }
1431   case IITDescriptor::HalfVecArgument:
1432     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1433                                                   Tys[D.getArgumentNumber()]));
1434   case IITDescriptor::SameVecWidthArgument: {
1435     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1436     Type *Ty = Tys[D.getArgumentNumber()];
1437     if (auto *VTy = dyn_cast<VectorType>(Ty))
1438       return VectorType::get(EltTy, VTy->getElementCount());
1439     return EltTy;
1440   }
1441   case IITDescriptor::PtrToArgument: {
1442     Type *Ty = Tys[D.getArgumentNumber()];
1443     return PointerType::getUnqual(Ty);
1444   }
1445   case IITDescriptor::PtrToElt: {
1446     Type *Ty = Tys[D.getArgumentNumber()];
1447     VectorType *VTy = dyn_cast<VectorType>(Ty);
1448     if (!VTy)
1449       llvm_unreachable("Expected an argument of Vector Type");
1450     Type *EltTy = VTy->getElementType();
1451     return PointerType::getUnqual(EltTy);
1452   }
1453   case IITDescriptor::VecElementArgument: {
1454     Type *Ty = Tys[D.getArgumentNumber()];
1455     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1456       return VTy->getElementType();
1457     llvm_unreachable("Expected an argument of Vector Type");
1458   }
1459   case IITDescriptor::VecOfBitcastsToInt: {
1460     Type *Ty = Tys[D.getArgumentNumber()];
1461     VectorType *VTy = dyn_cast<VectorType>(Ty);
1462     assert(VTy && "Expected an argument of Vector Type");
1463     return VectorType::getInteger(VTy);
1464   }
1465   case IITDescriptor::VecOfAnyPtrsToElt:
1466     // Return the overloaded type (which determines the pointers address space)
1467     return Tys[D.getOverloadArgNumber()];
1468   case IITDescriptor::AnyPtrToElt:
1469     // Return the overloaded type (which determines the pointers address space)
1470     return Tys[D.getOverloadArgNumber()];
1471   }
1472   llvm_unreachable("unhandled");
1473 }
1474 
1475 FunctionType *Intrinsic::getType(LLVMContext &Context,
1476                                  ID id, ArrayRef<Type*> Tys) {
1477   SmallVector<IITDescriptor, 8> Table;
1478   getIntrinsicInfoTableEntries(id, Table);
1479 
1480   ArrayRef<IITDescriptor> TableRef = Table;
1481   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1482 
1483   SmallVector<Type*, 8> ArgTys;
1484   while (!TableRef.empty())
1485     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1486 
1487   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1488   // If we see void type as the type of the last argument, it is vararg intrinsic
1489   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1490     ArgTys.pop_back();
1491     return FunctionType::get(ResultTy, ArgTys, true);
1492   }
1493   return FunctionType::get(ResultTy, ArgTys, false);
1494 }
1495 
1496 bool Intrinsic::isOverloaded(ID id) {
1497 #define GET_INTRINSIC_OVERLOAD_TABLE
1498 #include "llvm/IR/IntrinsicImpl.inc"
1499 #undef GET_INTRINSIC_OVERLOAD_TABLE
1500 }
1501 
1502 bool Intrinsic::isLeaf(ID id) {
1503   switch (id) {
1504   default:
1505     return true;
1506 
1507   case Intrinsic::experimental_gc_statepoint:
1508   case Intrinsic::experimental_patchpoint_void:
1509   case Intrinsic::experimental_patchpoint_i64:
1510     return false;
1511   }
1512 }
1513 
1514 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1515 #define GET_INTRINSIC_ATTRIBUTES
1516 #include "llvm/IR/IntrinsicImpl.inc"
1517 #undef GET_INTRINSIC_ATTRIBUTES
1518 
1519 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1520   // There can never be multiple globals with the same name of different types,
1521   // because intrinsics must be a specific type.
1522   auto *FT = getType(M->getContext(), id, Tys);
1523   return cast<Function>(
1524       M->getOrInsertFunction(
1525            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1526           .getCallee());
1527 }
1528 
1529 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1530 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1531 #include "llvm/IR/IntrinsicImpl.inc"
1532 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1533 
1534 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1535 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1536 #include "llvm/IR/IntrinsicImpl.inc"
1537 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1538 
1539 using DeferredIntrinsicMatchPair =
1540     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1541 
1542 static bool matchIntrinsicType(
1543     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1544     SmallVectorImpl<Type *> &ArgTys,
1545     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1546     bool IsDeferredCheck) {
1547   using namespace Intrinsic;
1548 
1549   // If we ran out of descriptors, there are too many arguments.
1550   if (Infos.empty()) return true;
1551 
1552   // Do this before slicing off the 'front' part
1553   auto InfosRef = Infos;
1554   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1555     DeferredChecks.emplace_back(T, InfosRef);
1556     return false;
1557   };
1558 
1559   IITDescriptor D = Infos.front();
1560   Infos = Infos.slice(1);
1561 
1562   switch (D.Kind) {
1563     case IITDescriptor::Void: return !Ty->isVoidTy();
1564     case IITDescriptor::VarArg: return true;
1565     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1566     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1567     case IITDescriptor::Token: return !Ty->isTokenTy();
1568     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1569     case IITDescriptor::Half: return !Ty->isHalfTy();
1570     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1571     case IITDescriptor::Float: return !Ty->isFloatTy();
1572     case IITDescriptor::Double: return !Ty->isDoubleTy();
1573     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1574     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1575     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1576     case IITDescriptor::Vector: {
1577       VectorType *VT = dyn_cast<VectorType>(Ty);
1578       return !VT || VT->getElementCount() != D.Vector_Width ||
1579              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1580                                 DeferredChecks, IsDeferredCheck);
1581     }
1582     case IITDescriptor::Pointer: {
1583       PointerType *PT = dyn_cast<PointerType>(Ty);
1584       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1585         return true;
1586       if (!PT->isOpaque()) {
1587         /* Manually consume a pointer to empty struct descriptor, which is
1588          * used for externref. We don't want to enforce that the struct is
1589          * anonymous in this case. (This renders externref intrinsics
1590          * non-unique, but this will go away with opaque pointers anyway.) */
1591         if (Infos.front().Kind == IITDescriptor::Struct &&
1592             Infos.front().Struct_NumElements == 0) {
1593           Infos = Infos.slice(1);
1594           return false;
1595         }
1596         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1597                                   ArgTys, DeferredChecks, IsDeferredCheck);
1598       }
1599       // Consume IIT descriptors relating to the pointer element type.
1600       // FIXME: Intrinsic type matching of nested single value types or even
1601       // aggregates doesn't work properly with opaque pointers but hopefully
1602       // doesn't happen in practice.
1603       while (Infos.front().Kind == IITDescriptor::Pointer ||
1604              Infos.front().Kind == IITDescriptor::Vector)
1605         Infos = Infos.slice(1);
1606       assert((Infos.front().Kind != IITDescriptor::Argument ||
1607               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1608              "Unsupported polymorphic pointer type with opaque pointer");
1609       Infos = Infos.slice(1);
1610       return false;
1611     }
1612 
1613     case IITDescriptor::Struct: {
1614       StructType *ST = dyn_cast<StructType>(Ty);
1615       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1616           ST->getNumElements() != D.Struct_NumElements)
1617         return true;
1618 
1619       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1620         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1621                                DeferredChecks, IsDeferredCheck))
1622           return true;
1623       return false;
1624     }
1625 
1626     case IITDescriptor::Argument:
1627       // If this is the second occurrence of an argument,
1628       // verify that the later instance matches the previous instance.
1629       if (D.getArgumentNumber() < ArgTys.size())
1630         return Ty != ArgTys[D.getArgumentNumber()];
1631 
1632       if (D.getArgumentNumber() > ArgTys.size() ||
1633           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1634         return IsDeferredCheck || DeferCheck(Ty);
1635 
1636       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1637              "Table consistency error");
1638       ArgTys.push_back(Ty);
1639 
1640       switch (D.getArgumentKind()) {
1641         case IITDescriptor::AK_Any:        return false; // Success
1642         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1643         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1644         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1645         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1646         default:                           break;
1647       }
1648       llvm_unreachable("all argument kinds not covered");
1649 
1650     case IITDescriptor::ExtendArgument: {
1651       // If this is a forward reference, defer the check for later.
1652       if (D.getArgumentNumber() >= ArgTys.size())
1653         return IsDeferredCheck || DeferCheck(Ty);
1654 
1655       Type *NewTy = ArgTys[D.getArgumentNumber()];
1656       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1657         NewTy = VectorType::getExtendedElementVectorType(VTy);
1658       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1659         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1660       else
1661         return true;
1662 
1663       return Ty != NewTy;
1664     }
1665     case IITDescriptor::TruncArgument: {
1666       // If this is a forward reference, defer the check for later.
1667       if (D.getArgumentNumber() >= ArgTys.size())
1668         return IsDeferredCheck || DeferCheck(Ty);
1669 
1670       Type *NewTy = ArgTys[D.getArgumentNumber()];
1671       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1672         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1673       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1674         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1675       else
1676         return true;
1677 
1678       return Ty != NewTy;
1679     }
1680     case IITDescriptor::HalfVecArgument:
1681       // If this is a forward reference, defer the check for later.
1682       if (D.getArgumentNumber() >= ArgTys.size())
1683         return IsDeferredCheck || DeferCheck(Ty);
1684       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1685              VectorType::getHalfElementsVectorType(
1686                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1687     case IITDescriptor::SameVecWidthArgument: {
1688       if (D.getArgumentNumber() >= ArgTys.size()) {
1689         // Defer check and subsequent check for the vector element type.
1690         Infos = Infos.slice(1);
1691         return IsDeferredCheck || DeferCheck(Ty);
1692       }
1693       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1694       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1695       // Both must be vectors of the same number of elements or neither.
1696       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1697         return true;
1698       Type *EltTy = Ty;
1699       if (ThisArgType) {
1700         if (ReferenceType->getElementCount() !=
1701             ThisArgType->getElementCount())
1702           return true;
1703         EltTy = ThisArgType->getElementType();
1704       }
1705       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1706                                 IsDeferredCheck);
1707     }
1708     case IITDescriptor::PtrToArgument: {
1709       if (D.getArgumentNumber() >= ArgTys.size())
1710         return IsDeferredCheck || DeferCheck(Ty);
1711       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1712       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1713       return (!ThisArgType ||
1714               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1715     }
1716     case IITDescriptor::PtrToElt: {
1717       if (D.getArgumentNumber() >= ArgTys.size())
1718         return IsDeferredCheck || DeferCheck(Ty);
1719       VectorType * ReferenceType =
1720         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1721       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1722 
1723       if (!ThisArgType || !ReferenceType)
1724         return true;
1725       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1726           ReferenceType->getElementType());
1727     }
1728     case IITDescriptor::AnyPtrToElt: {
1729       unsigned RefArgNumber = D.getRefArgNumber();
1730       if (RefArgNumber >= ArgTys.size()) {
1731         if (IsDeferredCheck)
1732           return true;
1733         // If forward referencing, already add the pointer type and
1734         // defer the checks for later.
1735         ArgTys.push_back(Ty);
1736         return DeferCheck(Ty);
1737       }
1738 
1739       if (!IsDeferredCheck) {
1740         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1741                "Table consistency error");
1742         ArgTys.push_back(Ty);
1743       }
1744 
1745       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1746       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1747       if (!ThisArgType || !ReferenceType)
1748         return true;
1749       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1750           ReferenceType->getElementType());
1751     }
1752     case IITDescriptor::VecOfAnyPtrsToElt: {
1753       unsigned RefArgNumber = D.getRefArgNumber();
1754       if (RefArgNumber >= ArgTys.size()) {
1755         if (IsDeferredCheck)
1756           return true;
1757         // If forward referencing, already add the pointer-vector type and
1758         // defer the checks for later.
1759         ArgTys.push_back(Ty);
1760         return DeferCheck(Ty);
1761       }
1762 
1763       if (!IsDeferredCheck){
1764         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1765                "Table consistency error");
1766         ArgTys.push_back(Ty);
1767       }
1768 
1769       // Verify the overloaded type "matches" the Ref type.
1770       // i.e. Ty is a vector with the same width as Ref.
1771       // Composed of pointers to the same element type as Ref.
1772       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1773       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1774       if (!ThisArgVecTy || !ReferenceType ||
1775           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1776         return true;
1777       PointerType *ThisArgEltTy =
1778           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1779       if (!ThisArgEltTy)
1780         return true;
1781       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1782           ReferenceType->getElementType());
1783     }
1784     case IITDescriptor::VecElementArgument: {
1785       if (D.getArgumentNumber() >= ArgTys.size())
1786         return IsDeferredCheck ? true : DeferCheck(Ty);
1787       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1788       return !ReferenceType || Ty != ReferenceType->getElementType();
1789     }
1790     case IITDescriptor::Subdivide2Argument:
1791     case IITDescriptor::Subdivide4Argument: {
1792       // If this is a forward reference, defer the check for later.
1793       if (D.getArgumentNumber() >= ArgTys.size())
1794         return IsDeferredCheck || DeferCheck(Ty);
1795 
1796       Type *NewTy = ArgTys[D.getArgumentNumber()];
1797       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1798         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1799         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1800         return Ty != NewTy;
1801       }
1802       return true;
1803     }
1804     case IITDescriptor::VecOfBitcastsToInt: {
1805       if (D.getArgumentNumber() >= ArgTys.size())
1806         return IsDeferredCheck || DeferCheck(Ty);
1807       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1808       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1809       if (!ThisArgVecTy || !ReferenceType)
1810         return true;
1811       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1812     }
1813   }
1814   llvm_unreachable("unhandled");
1815 }
1816 
1817 Intrinsic::MatchIntrinsicTypesResult
1818 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1819                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1820                                    SmallVectorImpl<Type *> &ArgTys) {
1821   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1822   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1823                          false))
1824     return MatchIntrinsicTypes_NoMatchRet;
1825 
1826   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1827 
1828   for (auto *Ty : FTy->params())
1829     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1830       return MatchIntrinsicTypes_NoMatchArg;
1831 
1832   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1833     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1834     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1835                            true))
1836       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1837                                          : MatchIntrinsicTypes_NoMatchArg;
1838   }
1839 
1840   return MatchIntrinsicTypes_Match;
1841 }
1842 
1843 bool
1844 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1845                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1846   // If there are no descriptors left, then it can't be a vararg.
1847   if (Infos.empty())
1848     return isVarArg;
1849 
1850   // There should be only one descriptor remaining at this point.
1851   if (Infos.size() != 1)
1852     return true;
1853 
1854   // Check and verify the descriptor.
1855   IITDescriptor D = Infos.front();
1856   Infos = Infos.slice(1);
1857   if (D.Kind == IITDescriptor::VarArg)
1858     return !isVarArg;
1859 
1860   return true;
1861 }
1862 
1863 bool Intrinsic::getIntrinsicSignature(Function *F,
1864                                       SmallVectorImpl<Type *> &ArgTys) {
1865   Intrinsic::ID ID = F->getIntrinsicID();
1866   if (!ID)
1867     return false;
1868 
1869   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1870   getIntrinsicInfoTableEntries(ID, Table);
1871   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1872 
1873   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1874                                          ArgTys) !=
1875       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1876     return false;
1877   }
1878   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1879                                       TableRef))
1880     return false;
1881   return true;
1882 }
1883 
1884 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1885   SmallVector<Type *, 4> ArgTys;
1886   if (!getIntrinsicSignature(F, ArgTys))
1887     return std::nullopt;
1888 
1889   Intrinsic::ID ID = F->getIntrinsicID();
1890   StringRef Name = F->getName();
1891   std::string WantedName =
1892       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1893   if (Name == WantedName)
1894     return std::nullopt;
1895 
1896   Function *NewDecl = [&] {
1897     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1898       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1899         if (ExistingF->getFunctionType() == F->getFunctionType())
1900           return ExistingF;
1901 
1902       // The name already exists, but is not a function or has the wrong
1903       // prototype. Make place for the new one by renaming the old version.
1904       // Either this old version will be removed later on or the module is
1905       // invalid and we'll get an error.
1906       ExistingGV->setName(WantedName + ".renamed");
1907     }
1908     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1909   }();
1910 
1911   NewDecl->setCallingConv(F->getCallingConv());
1912   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1913          "Shouldn't change the signature");
1914   return NewDecl;
1915 }
1916 
1917 /// hasAddressTaken - returns true if there are any uses of this function
1918 /// other than direct calls or invokes to it. Optionally ignores callback
1919 /// uses, assume like pointer annotation calls, and references in llvm.used
1920 /// and llvm.compiler.used variables.
1921 bool Function::hasAddressTaken(const User **PutOffender,
1922                                bool IgnoreCallbackUses,
1923                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1924                                bool IgnoreARCAttachedCall) const {
1925   for (const Use &U : uses()) {
1926     const User *FU = U.getUser();
1927     if (isa<BlockAddress>(FU))
1928       continue;
1929 
1930     if (IgnoreCallbackUses) {
1931       AbstractCallSite ACS(&U);
1932       if (ACS && ACS.isCallbackCall())
1933         continue;
1934     }
1935 
1936     const auto *Call = dyn_cast<CallBase>(FU);
1937     if (!Call) {
1938       if (IgnoreAssumeLikeCalls &&
1939           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1940           all_of(FU->users(), [](const User *U) {
1941             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1942               return I->isAssumeLikeIntrinsic();
1943             return false;
1944           })) {
1945         continue;
1946       }
1947 
1948       if (IgnoreLLVMUsed && !FU->user_empty()) {
1949         const User *FUU = FU;
1950         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1951             FU->hasOneUse() && !FU->user_begin()->user_empty())
1952           FUU = *FU->user_begin();
1953         if (llvm::all_of(FUU->users(), [](const User *U) {
1954               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1955                 return GV->hasName() &&
1956                        (GV->getName().equals("llvm.compiler.used") ||
1957                         GV->getName().equals("llvm.used"));
1958               return false;
1959             }))
1960           continue;
1961       }
1962       if (PutOffender)
1963         *PutOffender = FU;
1964       return true;
1965     }
1966 
1967     if (IgnoreAssumeLikeCalls) {
1968       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1969         if (I->isAssumeLikeIntrinsic())
1970           continue;
1971     }
1972 
1973     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1974       if (IgnoreARCAttachedCall &&
1975           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1976                                       U.getOperandNo()))
1977         continue;
1978 
1979       if (PutOffender)
1980         *PutOffender = FU;
1981       return true;
1982     }
1983   }
1984   return false;
1985 }
1986 
1987 bool Function::isDefTriviallyDead() const {
1988   // Check the linkage
1989   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1990       !hasAvailableExternallyLinkage())
1991     return false;
1992 
1993   // Check if the function is used by anything other than a blockaddress.
1994   for (const User *U : users())
1995     if (!isa<BlockAddress>(U))
1996       return false;
1997 
1998   return true;
1999 }
2000 
2001 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
2002 /// setjmp or other function that gcc recognizes as "returning twice".
2003 bool Function::callsFunctionThatReturnsTwice() const {
2004   for (const Instruction &I : instructions(this))
2005     if (const auto *Call = dyn_cast<CallBase>(&I))
2006       if (Call->hasFnAttr(Attribute::ReturnsTwice))
2007         return true;
2008 
2009   return false;
2010 }
2011 
2012 Constant *Function::getPersonalityFn() const {
2013   assert(hasPersonalityFn() && getNumOperands());
2014   return cast<Constant>(Op<0>());
2015 }
2016 
2017 void Function::setPersonalityFn(Constant *Fn) {
2018   setHungoffOperand<0>(Fn);
2019   setValueSubclassDataBit(3, Fn != nullptr);
2020 }
2021 
2022 Constant *Function::getPrefixData() const {
2023   assert(hasPrefixData() && getNumOperands());
2024   return cast<Constant>(Op<1>());
2025 }
2026 
2027 void Function::setPrefixData(Constant *PrefixData) {
2028   setHungoffOperand<1>(PrefixData);
2029   setValueSubclassDataBit(1, PrefixData != nullptr);
2030 }
2031 
2032 Constant *Function::getPrologueData() const {
2033   assert(hasPrologueData() && getNumOperands());
2034   return cast<Constant>(Op<2>());
2035 }
2036 
2037 void Function::setPrologueData(Constant *PrologueData) {
2038   setHungoffOperand<2>(PrologueData);
2039   setValueSubclassDataBit(2, PrologueData != nullptr);
2040 }
2041 
2042 void Function::allocHungoffUselist() {
2043   // If we've already allocated a uselist, stop here.
2044   if (getNumOperands())
2045     return;
2046 
2047   allocHungoffUses(3, /*IsPhi=*/ false);
2048   setNumHungOffUseOperands(3);
2049 
2050   // Initialize the uselist with placeholder operands to allow traversal.
2051   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
2052   Op<0>().set(CPN);
2053   Op<1>().set(CPN);
2054   Op<2>().set(CPN);
2055 }
2056 
2057 template <int Idx>
2058 void Function::setHungoffOperand(Constant *C) {
2059   if (C) {
2060     allocHungoffUselist();
2061     Op<Idx>().set(C);
2062   } else if (getNumOperands()) {
2063     Op<Idx>().set(
2064         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
2065   }
2066 }
2067 
2068 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2069   assert(Bit < 16 && "SubclassData contains only 16 bits");
2070   if (On)
2071     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2072   else
2073     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2074 }
2075 
2076 void Function::setEntryCount(ProfileCount Count,
2077                              const DenseSet<GlobalValue::GUID> *S) {
2078 #if !defined(NDEBUG)
2079   auto PrevCount = getEntryCount();
2080   assert(!PrevCount || PrevCount->getType() == Count.getType());
2081 #endif
2082 
2083   auto ImportGUIDs = getImportGUIDs();
2084   if (S == nullptr && ImportGUIDs.size())
2085     S = &ImportGUIDs;
2086 
2087   MDBuilder MDB(getContext());
2088   setMetadata(
2089       LLVMContext::MD_prof,
2090       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2091 }
2092 
2093 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2094                              const DenseSet<GlobalValue::GUID> *Imports) {
2095   setEntryCount(ProfileCount(Count, Type), Imports);
2096 }
2097 
2098 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2099   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2100   if (MD && MD->getOperand(0))
2101     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2102       if (MDS->getString().equals("function_entry_count")) {
2103         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2104         uint64_t Count = CI->getValue().getZExtValue();
2105         // A value of -1 is used for SamplePGO when there were no samples.
2106         // Treat this the same as unknown.
2107         if (Count == (uint64_t)-1)
2108           return std::nullopt;
2109         return ProfileCount(Count, PCT_Real);
2110       } else if (AllowSynthetic &&
2111                  MDS->getString().equals("synthetic_function_entry_count")) {
2112         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2113         uint64_t Count = CI->getValue().getZExtValue();
2114         return ProfileCount(Count, PCT_Synthetic);
2115       }
2116     }
2117   return std::nullopt;
2118 }
2119 
2120 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2121   DenseSet<GlobalValue::GUID> R;
2122   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2123     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2124       if (MDS->getString().equals("function_entry_count"))
2125         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2126           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2127                        ->getValue()
2128                        .getZExtValue());
2129   return R;
2130 }
2131 
2132 void Function::setSectionPrefix(StringRef Prefix) {
2133   MDBuilder MDB(getContext());
2134   setMetadata(LLVMContext::MD_section_prefix,
2135               MDB.createFunctionSectionPrefix(Prefix));
2136 }
2137 
2138 std::optional<StringRef> Function::getSectionPrefix() const {
2139   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2140     assert(cast<MDString>(MD->getOperand(0))
2141                ->getString()
2142                .equals("function_section_prefix") &&
2143            "Metadata not match");
2144     return cast<MDString>(MD->getOperand(1))->getString();
2145   }
2146   return std::nullopt;
2147 }
2148 
2149 bool Function::nullPointerIsDefined() const {
2150   return hasFnAttribute(Attribute::NullPointerIsValid);
2151 }
2152 
2153 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2154   if (F && F->nullPointerIsDefined())
2155     return true;
2156 
2157   if (AS != 0)
2158     return true;
2159 
2160   return false;
2161 }
2162