xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 89fae41ef142892d8d6c20ead28465a34e12172b)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/ModRef.h"
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs);
190 }
191 
192 uint64_t Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttributeMask &AM) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B(F->getContext());
344   UWTableKind UWTable = M->getUwtable();
345   if (UWTable != UWTableKind::None)
346     B.addUWTableAttr(UWTable);
347   switch (M->getFramePointer()) {
348   case FramePointerKind::None:
349     // 0 ("none") is the default.
350     break;
351   case FramePointerKind::NonLeaf:
352     B.addAttribute("frame-pointer", "non-leaf");
353     break;
354   case FramePointerKind::All:
355     B.addAttribute("frame-pointer", "all");
356     break;
357   }
358   if (M->getModuleFlag("function_return_thunk_extern"))
359     B.addAttribute(Attribute::FnRetThunkExtern);
360   F->addFnAttrs(B);
361   return F;
362 }
363 
364 void Function::removeFromParent() {
365   getParent()->getFunctionList().remove(getIterator());
366 }
367 
368 void Function::eraseFromParent() {
369   getParent()->getFunctionList().erase(getIterator());
370 }
371 
372 //===----------------------------------------------------------------------===//
373 // Function Implementation
374 //===----------------------------------------------------------------------===//
375 
376 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
377   // If AS == -1 and we are passed a valid module pointer we place the function
378   // in the program address space. Otherwise we default to AS0.
379   if (AddrSpace == static_cast<unsigned>(-1))
380     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
381   return AddrSpace;
382 }
383 
384 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
385                    const Twine &name, Module *ParentModule)
386     : GlobalObject(Ty, Value::FunctionVal,
387                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
388                    computeAddrSpace(AddrSpace, ParentModule)),
389       NumArgs(Ty->getNumParams()) {
390   assert(FunctionType::isValidReturnType(getReturnType()) &&
391          "invalid return type");
392   setGlobalObjectSubClassData(0);
393 
394   // We only need a symbol table for a function if the context keeps value names
395   if (!getContext().shouldDiscardValueNames())
396     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
397 
398   // If the function has arguments, mark them as lazily built.
399   if (Ty->getNumParams())
400     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
401 
402   if (ParentModule)
403     ParentModule->getFunctionList().push_back(this);
404 
405   HasLLVMReservedName = getName().startswith("llvm.");
406   // Ensure intrinsics have the right parameter attributes.
407   // Note, the IntID field will have been set in Value::setName if this function
408   // name is a valid intrinsic ID.
409   if (IntID)
410     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
411 }
412 
413 Function::~Function() {
414   dropAllReferences();    // After this it is safe to delete instructions.
415 
416   // Delete all of the method arguments and unlink from symbol table...
417   if (Arguments)
418     clearArguments();
419 
420   // Remove the function from the on-the-side GC table.
421   clearGC();
422 }
423 
424 void Function::BuildLazyArguments() const {
425   // Create the arguments vector, all arguments start out unnamed.
426   auto *FT = getFunctionType();
427   if (NumArgs > 0) {
428     Arguments = std::allocator<Argument>().allocate(NumArgs);
429     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
430       Type *ArgTy = FT->getParamType(i);
431       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
432       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
433     }
434   }
435 
436   // Clear the lazy arguments bit.
437   unsigned SDC = getSubclassDataFromValue();
438   SDC &= ~(1 << 0);
439   const_cast<Function*>(this)->setValueSubclassData(SDC);
440   assert(!hasLazyArguments());
441 }
442 
443 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
444   return MutableArrayRef<Argument>(Args, Count);
445 }
446 
447 bool Function::isConstrainedFPIntrinsic() const {
448   switch (getIntrinsicID()) {
449 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
450   case Intrinsic::INTRINSIC:
451 #include "llvm/IR/ConstrainedOps.def"
452     return true;
453 #undef INSTRUCTION
454   default:
455     return false;
456   }
457 }
458 
459 void Function::clearArguments() {
460   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
461     A.setName("");
462     A.~Argument();
463   }
464   std::allocator<Argument>().deallocate(Arguments, NumArgs);
465   Arguments = nullptr;
466 }
467 
468 void Function::stealArgumentListFrom(Function &Src) {
469   assert(isDeclaration() && "Expected no references to current arguments");
470 
471   // Drop the current arguments, if any, and set the lazy argument bit.
472   if (!hasLazyArguments()) {
473     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
474                         [](const Argument &A) { return A.use_empty(); }) &&
475            "Expected arguments to be unused in declaration");
476     clearArguments();
477     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
478   }
479 
480   // Nothing to steal if Src has lazy arguments.
481   if (Src.hasLazyArguments())
482     return;
483 
484   // Steal arguments from Src, and fix the lazy argument bits.
485   assert(arg_size() == Src.arg_size());
486   Arguments = Src.Arguments;
487   Src.Arguments = nullptr;
488   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
489     // FIXME: This does the work of transferNodesFromList inefficiently.
490     SmallString<128> Name;
491     if (A.hasName())
492       Name = A.getName();
493     if (!Name.empty())
494       A.setName("");
495     A.setParent(this);
496     if (!Name.empty())
497       A.setName(Name);
498   }
499 
500   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
501   assert(!hasLazyArguments());
502   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
503 }
504 
505 // dropAllReferences() - This function causes all the subinstructions to "let
506 // go" of all references that they are maintaining.  This allows one to
507 // 'delete' a whole class at a time, even though there may be circular
508 // references... first all references are dropped, and all use counts go to
509 // zero.  Then everything is deleted for real.  Note that no operations are
510 // valid on an object that has "dropped all references", except operator
511 // delete.
512 //
513 void Function::dropAllReferences() {
514   setIsMaterializable(false);
515 
516   for (BasicBlock &BB : *this)
517     BB.dropAllReferences();
518 
519   // Delete all basic blocks. They are now unused, except possibly by
520   // blockaddresses, but BasicBlock's destructor takes care of those.
521   while (!BasicBlocks.empty())
522     BasicBlocks.begin()->eraseFromParent();
523 
524   // Drop uses of any optional data (real or placeholder).
525   if (getNumOperands()) {
526     User::dropAllReferences();
527     setNumHungOffUseOperands(0);
528     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
529   }
530 
531   // Metadata is stored in a side-table.
532   clearMetadata();
533 }
534 
535 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
536   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
537 }
538 
539 void Function::addFnAttr(Attribute::AttrKind Kind) {
540   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
541 }
542 
543 void Function::addFnAttr(StringRef Kind, StringRef Val) {
544   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
545 }
546 
547 void Function::addFnAttr(Attribute Attr) {
548   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
549 }
550 
551 void Function::addFnAttrs(const AttrBuilder &Attrs) {
552   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
553 }
554 
555 void Function::addRetAttr(Attribute::AttrKind Kind) {
556   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
557 }
558 
559 void Function::addRetAttr(Attribute Attr) {
560   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
561 }
562 
563 void Function::addRetAttrs(const AttrBuilder &Attrs) {
564   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
565 }
566 
567 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
568   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
569 }
570 
571 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
572   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
573 }
574 
575 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
576   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
577 }
578 
579 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
580   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
581 }
582 
583 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
584   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
585 }
586 
587 void Function::removeFnAttr(Attribute::AttrKind Kind) {
588   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
589 }
590 
591 void Function::removeFnAttr(StringRef Kind) {
592   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
593 }
594 
595 void Function::removeFnAttrs(const AttributeMask &AM) {
596   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
597 }
598 
599 void Function::removeRetAttr(Attribute::AttrKind Kind) {
600   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
601 }
602 
603 void Function::removeRetAttr(StringRef Kind) {
604   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
605 }
606 
607 void Function::removeRetAttrs(const AttributeMask &Attrs) {
608   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
609 }
610 
611 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
612   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
613 }
614 
615 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
616   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
617 }
618 
619 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
620   AttributeSets =
621       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
622 }
623 
624 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
625   AttributeSets =
626       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
627 }
628 
629 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
630   return AttributeSets.hasFnAttr(Kind);
631 }
632 
633 bool Function::hasFnAttribute(StringRef Kind) const {
634   return AttributeSets.hasFnAttr(Kind);
635 }
636 
637 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
638   return AttributeSets.hasRetAttr(Kind);
639 }
640 
641 bool Function::hasParamAttribute(unsigned ArgNo,
642                                  Attribute::AttrKind Kind) const {
643   return AttributeSets.hasParamAttr(ArgNo, Kind);
644 }
645 
646 Attribute Function::getAttributeAtIndex(unsigned i,
647                                         Attribute::AttrKind Kind) const {
648   return AttributeSets.getAttributeAtIndex(i, Kind);
649 }
650 
651 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
652   return AttributeSets.getAttributeAtIndex(i, Kind);
653 }
654 
655 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
656   return AttributeSets.getFnAttr(Kind);
657 }
658 
659 Attribute Function::getFnAttribute(StringRef Kind) const {
660   return AttributeSets.getFnAttr(Kind);
661 }
662 
663 /// gets the specified attribute from the list of attributes.
664 Attribute Function::getParamAttribute(unsigned ArgNo,
665                                       Attribute::AttrKind Kind) const {
666   return AttributeSets.getParamAttr(ArgNo, Kind);
667 }
668 
669 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
670                                                  uint64_t Bytes) {
671   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
672                                                                   ArgNo, Bytes);
673 }
674 
675 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
676   if (&FPType == &APFloat::IEEEsingle()) {
677     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
678     StringRef Val = Attr.getValueAsString();
679     if (!Val.empty())
680       return parseDenormalFPAttribute(Val);
681 
682     // If the f32 variant of the attribute isn't specified, try to use the
683     // generic one.
684   }
685 
686   Attribute Attr = getFnAttribute("denormal-fp-math");
687   return parseDenormalFPAttribute(Attr.getValueAsString());
688 }
689 
690 const std::string &Function::getGC() const {
691   assert(hasGC() && "Function has no collector");
692   return getContext().getGC(*this);
693 }
694 
695 void Function::setGC(std::string Str) {
696   setValueSubclassDataBit(14, !Str.empty());
697   getContext().setGC(*this, std::move(Str));
698 }
699 
700 void Function::clearGC() {
701   if (!hasGC())
702     return;
703   getContext().deleteGC(*this);
704   setValueSubclassDataBit(14, false);
705 }
706 
707 bool Function::hasStackProtectorFnAttr() const {
708   return hasFnAttribute(Attribute::StackProtect) ||
709          hasFnAttribute(Attribute::StackProtectStrong) ||
710          hasFnAttribute(Attribute::StackProtectReq);
711 }
712 
713 /// Copy all additional attributes (those not needed to create a Function) from
714 /// the Function Src to this one.
715 void Function::copyAttributesFrom(const Function *Src) {
716   GlobalObject::copyAttributesFrom(Src);
717   setCallingConv(Src->getCallingConv());
718   setAttributes(Src->getAttributes());
719   if (Src->hasGC())
720     setGC(Src->getGC());
721   else
722     clearGC();
723   if (Src->hasPersonalityFn())
724     setPersonalityFn(Src->getPersonalityFn());
725   if (Src->hasPrefixData())
726     setPrefixData(Src->getPrefixData());
727   if (Src->hasPrologueData())
728     setPrologueData(Src->getPrologueData());
729 }
730 
731 MemoryEffects Function::getMemoryEffects() const {
732   return getAttributes().getMemoryEffects();
733 }
734 void Function::setMemoryEffects(MemoryEffects ME) {
735   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
736 }
737 
738 /// Determine if the function does not access memory.
739 bool Function::doesNotAccessMemory() const {
740   return getMemoryEffects().doesNotAccessMemory();
741 }
742 void Function::setDoesNotAccessMemory() {
743   setMemoryEffects(MemoryEffects::none());
744 }
745 
746 /// Determine if the function does not access or only reads memory.
747 bool Function::onlyReadsMemory() const {
748   return getMemoryEffects().onlyReadsMemory();
749 }
750 void Function::setOnlyReadsMemory() {
751   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
752 }
753 
754 /// Determine if the function does not access or only writes memory.
755 bool Function::onlyWritesMemory() const {
756   return getMemoryEffects().onlyWritesMemory();
757 }
758 void Function::setOnlyWritesMemory() {
759   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
760 }
761 
762 /// Determine if the call can access memmory only using pointers based
763 /// on its arguments.
764 bool Function::onlyAccessesArgMemory() const {
765   return getMemoryEffects().onlyAccessesArgPointees();
766 }
767 void Function::setOnlyAccessesArgMemory() {
768   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
769 }
770 
771 /// Determine if the function may only access memory that is
772 ///  inaccessible from the IR.
773 bool Function::onlyAccessesInaccessibleMemory() const {
774   return getMemoryEffects().onlyAccessesInaccessibleMem();
775 }
776 void Function::setOnlyAccessesInaccessibleMemory() {
777   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
778 }
779 
780 /// Determine if the function may only access memory that is
781 ///  either inaccessible from the IR or pointed to by its arguments.
782 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
783   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
784 }
785 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
786   setMemoryEffects(getMemoryEffects() &
787                    MemoryEffects::inaccessibleOrArgMemOnly());
788 }
789 
790 /// Table of string intrinsic names indexed by enum value.
791 static const char * const IntrinsicNameTable[] = {
792   "not_intrinsic",
793 #define GET_INTRINSIC_NAME_TABLE
794 #include "llvm/IR/IntrinsicImpl.inc"
795 #undef GET_INTRINSIC_NAME_TABLE
796 };
797 
798 /// Table of per-target intrinsic name tables.
799 #define GET_INTRINSIC_TARGET_DATA
800 #include "llvm/IR/IntrinsicImpl.inc"
801 #undef GET_INTRINSIC_TARGET_DATA
802 
803 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
804   return IID > TargetInfos[0].Count;
805 }
806 
807 bool Function::isTargetIntrinsic() const {
808   return isTargetIntrinsic(IntID);
809 }
810 
811 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
812 /// target as \c Name, or the generic table if \c Name is not target specific.
813 ///
814 /// Returns the relevant slice of \c IntrinsicNameTable
815 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
816   assert(Name.startswith("llvm."));
817 
818   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
819   // Drop "llvm." and take the first dotted component. That will be the target
820   // if this is target specific.
821   StringRef Target = Name.drop_front(5).split('.').first;
822   auto It = partition_point(
823       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
824   // We've either found the target or just fall back to the generic set, which
825   // is always first.
826   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
827   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
828 }
829 
830 /// This does the actual lookup of an intrinsic ID which
831 /// matches the given function name.
832 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
833   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
834   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
835   if (Idx == -1)
836     return Intrinsic::not_intrinsic;
837 
838   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
839   // an index into a sub-table.
840   int Adjust = NameTable.data() - IntrinsicNameTable;
841   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
842 
843   // If the intrinsic is not overloaded, require an exact match. If it is
844   // overloaded, require either exact or prefix match.
845   const auto MatchSize = strlen(NameTable[Idx]);
846   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
847   bool IsExactMatch = Name.size() == MatchSize;
848   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
849                                                      : Intrinsic::not_intrinsic;
850 }
851 
852 void Function::recalculateIntrinsicID() {
853   StringRef Name = getName();
854   if (!Name.startswith("llvm.")) {
855     HasLLVMReservedName = false;
856     IntID = Intrinsic::not_intrinsic;
857     return;
858   }
859   HasLLVMReservedName = true;
860   IntID = lookupIntrinsicID(Name);
861 }
862 
863 /// Returns a stable mangling for the type specified for use in the name
864 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
865 /// of named types is simply their name.  Manglings for unnamed types consist
866 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
867 /// combined with the mangling of their component types.  A vararg function
868 /// type will have a suffix of 'vararg'.  Since function types can contain
869 /// other function types, we close a function type mangling with suffix 'f'
870 /// which can't be confused with it's prefix.  This ensures we don't have
871 /// collisions between two unrelated function types. Otherwise, you might
872 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
873 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
874 /// indicating that extra care must be taken to ensure a unique name.
875 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
876   std::string Result;
877   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
878     Result += "p" + utostr(PTyp->getAddressSpace());
879     // Opaque pointer doesn't have pointee type information, so we just mangle
880     // address space for opaque pointer.
881     if (!PTyp->isOpaque())
882       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
883                                   HasUnnamedType);
884   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
885     Result += "a" + utostr(ATyp->getNumElements()) +
886               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
887   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
888     if (!STyp->isLiteral()) {
889       Result += "s_";
890       if (STyp->hasName())
891         Result += STyp->getName();
892       else
893         HasUnnamedType = true;
894     } else {
895       Result += "sl_";
896       for (auto *Elem : STyp->elements())
897         Result += getMangledTypeStr(Elem, HasUnnamedType);
898     }
899     // Ensure nested structs are distinguishable.
900     Result += "s";
901   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
902     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
903     for (size_t i = 0; i < FT->getNumParams(); i++)
904       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
905     if (FT->isVarArg())
906       Result += "vararg";
907     // Ensure nested function types are distinguishable.
908     Result += "f";
909   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
910     ElementCount EC = VTy->getElementCount();
911     if (EC.isScalable())
912       Result += "nx";
913     Result += "v" + utostr(EC.getKnownMinValue()) +
914               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
915   } else if (Ty) {
916     switch (Ty->getTypeID()) {
917     default: llvm_unreachable("Unhandled type");
918     case Type::VoidTyID:      Result += "isVoid";   break;
919     case Type::MetadataTyID:  Result += "Metadata"; break;
920     case Type::HalfTyID:      Result += "f16";      break;
921     case Type::BFloatTyID:    Result += "bf16";     break;
922     case Type::FloatTyID:     Result += "f32";      break;
923     case Type::DoubleTyID:    Result += "f64";      break;
924     case Type::X86_FP80TyID:  Result += "f80";      break;
925     case Type::FP128TyID:     Result += "f128";     break;
926     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
927     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
928     case Type::X86_AMXTyID:   Result += "x86amx";   break;
929     case Type::IntegerTyID:
930       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
931       break;
932     }
933   }
934   return Result;
935 }
936 
937 StringRef Intrinsic::getBaseName(ID id) {
938   assert(id < num_intrinsics && "Invalid intrinsic ID!");
939   return IntrinsicNameTable[id];
940 }
941 
942 StringRef Intrinsic::getName(ID id) {
943   assert(id < num_intrinsics && "Invalid intrinsic ID!");
944   assert(!Intrinsic::isOverloaded(id) &&
945          "This version of getName does not support overloading");
946   return getBaseName(id);
947 }
948 
949 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
950                                         Module *M, FunctionType *FT,
951                                         bool EarlyModuleCheck) {
952 
953   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
954   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
955          "This version of getName is for overloaded intrinsics only");
956   (void)EarlyModuleCheck;
957   assert((!EarlyModuleCheck || M ||
958           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
959          "Intrinsic overloading on pointer types need to provide a Module");
960   bool HasUnnamedType = false;
961   std::string Result(Intrinsic::getBaseName(Id));
962   for (Type *Ty : Tys)
963     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
964   if (HasUnnamedType) {
965     assert(M && "unnamed types need a module");
966     if (!FT)
967       FT = Intrinsic::getType(M->getContext(), Id, Tys);
968     else
969       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
970              "Provided FunctionType must match arguments");
971     return M->getUniqueIntrinsicName(Result, Id, FT);
972   }
973   return Result;
974 }
975 
976 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
977                                FunctionType *FT) {
978   assert(M && "We need to have a Module");
979   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
980 }
981 
982 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
983   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
984 }
985 
986 /// IIT_Info - These are enumerators that describe the entries returned by the
987 /// getIntrinsicInfoTableEntries function.
988 ///
989 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
990 enum IIT_Info {
991   // Common values should be encoded with 0-15.
992   IIT_Done = 0,
993   IIT_I1 = 1,
994   IIT_I8 = 2,
995   IIT_I16 = 3,
996   IIT_I32 = 4,
997   IIT_I64 = 5,
998   IIT_F16 = 6,
999   IIT_F32 = 7,
1000   IIT_F64 = 8,
1001   IIT_V2 = 9,
1002   IIT_V4 = 10,
1003   IIT_V8 = 11,
1004   IIT_V16 = 12,
1005   IIT_V32 = 13,
1006   IIT_PTR = 14,
1007   IIT_ARG = 15,
1008 
1009   // Values from 16+ are only encodable with the inefficient encoding.
1010   IIT_V64 = 16,
1011   IIT_MMX = 17,
1012   IIT_TOKEN = 18,
1013   IIT_METADATA = 19,
1014   IIT_EMPTYSTRUCT = 20,
1015   IIT_STRUCT2 = 21,
1016   IIT_STRUCT3 = 22,
1017   IIT_STRUCT4 = 23,
1018   IIT_STRUCT5 = 24,
1019   IIT_EXTEND_ARG = 25,
1020   IIT_TRUNC_ARG = 26,
1021   IIT_ANYPTR = 27,
1022   IIT_V1 = 28,
1023   IIT_VARARG = 29,
1024   IIT_HALF_VEC_ARG = 30,
1025   IIT_SAME_VEC_WIDTH_ARG = 31,
1026   IIT_PTR_TO_ARG = 32,
1027   IIT_PTR_TO_ELT = 33,
1028   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
1029   IIT_I128 = 35,
1030   IIT_V512 = 36,
1031   IIT_V1024 = 37,
1032   IIT_STRUCT6 = 38,
1033   IIT_STRUCT7 = 39,
1034   IIT_STRUCT8 = 40,
1035   IIT_F128 = 41,
1036   IIT_VEC_ELEMENT = 42,
1037   IIT_SCALABLE_VEC = 43,
1038   IIT_SUBDIVIDE2_ARG = 44,
1039   IIT_SUBDIVIDE4_ARG = 45,
1040   IIT_VEC_OF_BITCASTS_TO_INT = 46,
1041   IIT_V128 = 47,
1042   IIT_BF16 = 48,
1043   IIT_STRUCT9 = 49,
1044   IIT_V256 = 50,
1045   IIT_AMX = 51,
1046   IIT_PPCF128 = 52,
1047   IIT_V3 = 53,
1048   IIT_EXTERNREF = 54,
1049   IIT_FUNCREF = 55,
1050   IIT_ANYPTR_TO_ELT = 56,
1051   IIT_I2 = 57,
1052   IIT_I4 = 58,
1053 };
1054 
1055 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1056                       IIT_Info LastInfo,
1057                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1058   using namespace Intrinsic;
1059 
1060   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1061 
1062   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1063   unsigned StructElts = 2;
1064 
1065   switch (Info) {
1066   case IIT_Done:
1067     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1068     return;
1069   case IIT_VARARG:
1070     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1071     return;
1072   case IIT_MMX:
1073     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1074     return;
1075   case IIT_AMX:
1076     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1077     return;
1078   case IIT_TOKEN:
1079     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1080     return;
1081   case IIT_METADATA:
1082     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1083     return;
1084   case IIT_F16:
1085     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1086     return;
1087   case IIT_BF16:
1088     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1089     return;
1090   case IIT_F32:
1091     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1092     return;
1093   case IIT_F64:
1094     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1095     return;
1096   case IIT_F128:
1097     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1098     return;
1099   case IIT_PPCF128:
1100     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1101     return;
1102   case IIT_I1:
1103     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1104     return;
1105   case IIT_I2:
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1107     return;
1108   case IIT_I4:
1109     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1110     return;
1111   case IIT_I8:
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1113     return;
1114   case IIT_I16:
1115     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1116     return;
1117   case IIT_I32:
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1119     return;
1120   case IIT_I64:
1121     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1122     return;
1123   case IIT_I128:
1124     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1125     return;
1126   case IIT_V1:
1127     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1128     DecodeIITType(NextElt, Infos, Info, OutputTable);
1129     return;
1130   case IIT_V2:
1131     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1132     DecodeIITType(NextElt, Infos, Info, OutputTable);
1133     return;
1134   case IIT_V3:
1135     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1136     DecodeIITType(NextElt, Infos, Info, OutputTable);
1137     return;
1138   case IIT_V4:
1139     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1140     DecodeIITType(NextElt, Infos, Info, OutputTable);
1141     return;
1142   case IIT_V8:
1143     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1144     DecodeIITType(NextElt, Infos, Info, OutputTable);
1145     return;
1146   case IIT_V16:
1147     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1148     DecodeIITType(NextElt, Infos, Info, OutputTable);
1149     return;
1150   case IIT_V32:
1151     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1152     DecodeIITType(NextElt, Infos, Info, OutputTable);
1153     return;
1154   case IIT_V64:
1155     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1156     DecodeIITType(NextElt, Infos, Info, OutputTable);
1157     return;
1158   case IIT_V128:
1159     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1160     DecodeIITType(NextElt, Infos, Info, OutputTable);
1161     return;
1162   case IIT_V256:
1163     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1164     DecodeIITType(NextElt, Infos, Info, OutputTable);
1165     return;
1166   case IIT_V512:
1167     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1168     DecodeIITType(NextElt, Infos, Info, OutputTable);
1169     return;
1170   case IIT_V1024:
1171     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1172     DecodeIITType(NextElt, Infos, Info, OutputTable);
1173     return;
1174   case IIT_EXTERNREF:
1175     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1176     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1177     return;
1178   case IIT_FUNCREF:
1179     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1180     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1181     return;
1182   case IIT_PTR:
1183     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1184     DecodeIITType(NextElt, Infos, Info, OutputTable);
1185     return;
1186   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1187     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1188                                              Infos[NextElt++]));
1189     DecodeIITType(NextElt, Infos, Info, OutputTable);
1190     return;
1191   }
1192   case IIT_ARG: {
1193     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1194     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1195     return;
1196   }
1197   case IIT_EXTEND_ARG: {
1198     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1199     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1200                                              ArgInfo));
1201     return;
1202   }
1203   case IIT_TRUNC_ARG: {
1204     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1205     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1206                                              ArgInfo));
1207     return;
1208   }
1209   case IIT_HALF_VEC_ARG: {
1210     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1211     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1212                                              ArgInfo));
1213     return;
1214   }
1215   case IIT_SAME_VEC_WIDTH_ARG: {
1216     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1217     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1218                                              ArgInfo));
1219     return;
1220   }
1221   case IIT_PTR_TO_ARG: {
1222     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1223     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1224                                              ArgInfo));
1225     return;
1226   }
1227   case IIT_PTR_TO_ELT: {
1228     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1229     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1230     return;
1231   }
1232   case IIT_ANYPTR_TO_ELT: {
1233     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1234     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1235     OutputTable.push_back(
1236         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1237     return;
1238   }
1239   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1240     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1241     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1242     OutputTable.push_back(
1243         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1244     return;
1245   }
1246   case IIT_EMPTYSTRUCT:
1247     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1248     return;
1249   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1250   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1251   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1252   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1253   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1254   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1255   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1256   case IIT_STRUCT2: {
1257     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1258 
1259     for (unsigned i = 0; i != StructElts; ++i)
1260       DecodeIITType(NextElt, Infos, Info, OutputTable);
1261     return;
1262   }
1263   case IIT_SUBDIVIDE2_ARG: {
1264     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1265     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1266                                              ArgInfo));
1267     return;
1268   }
1269   case IIT_SUBDIVIDE4_ARG: {
1270     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1271     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1272                                              ArgInfo));
1273     return;
1274   }
1275   case IIT_VEC_ELEMENT: {
1276     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1277     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1278                                              ArgInfo));
1279     return;
1280   }
1281   case IIT_SCALABLE_VEC: {
1282     DecodeIITType(NextElt, Infos, Info, OutputTable);
1283     return;
1284   }
1285   case IIT_VEC_OF_BITCASTS_TO_INT: {
1286     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1287     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1288                                              ArgInfo));
1289     return;
1290   }
1291   }
1292   llvm_unreachable("unhandled");
1293 }
1294 
1295 #define GET_INTRINSIC_GENERATOR_GLOBAL
1296 #include "llvm/IR/IntrinsicImpl.inc"
1297 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1298 
1299 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1300                                              SmallVectorImpl<IITDescriptor> &T){
1301   // Check to see if the intrinsic's type was expressible by the table.
1302   unsigned TableVal = IIT_Table[id-1];
1303 
1304   // Decode the TableVal into an array of IITValues.
1305   SmallVector<unsigned char, 8> IITValues;
1306   ArrayRef<unsigned char> IITEntries;
1307   unsigned NextElt = 0;
1308   if ((TableVal >> 31) != 0) {
1309     // This is an offset into the IIT_LongEncodingTable.
1310     IITEntries = IIT_LongEncodingTable;
1311 
1312     // Strip sentinel bit.
1313     NextElt = (TableVal << 1) >> 1;
1314   } else {
1315     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1316     // into a single word in the table itself, decode it now.
1317     do {
1318       IITValues.push_back(TableVal & 0xF);
1319       TableVal >>= 4;
1320     } while (TableVal);
1321 
1322     IITEntries = IITValues;
1323     NextElt = 0;
1324   }
1325 
1326   // Okay, decode the table into the output vector of IITDescriptors.
1327   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1328   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1329     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1330 }
1331 
1332 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1333                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1334   using namespace Intrinsic;
1335 
1336   IITDescriptor D = Infos.front();
1337   Infos = Infos.slice(1);
1338 
1339   switch (D.Kind) {
1340   case IITDescriptor::Void: return Type::getVoidTy(Context);
1341   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1342   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1343   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1344   case IITDescriptor::Token: return Type::getTokenTy(Context);
1345   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1346   case IITDescriptor::Half: return Type::getHalfTy(Context);
1347   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1348   case IITDescriptor::Float: return Type::getFloatTy(Context);
1349   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1350   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1351   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1352 
1353   case IITDescriptor::Integer:
1354     return IntegerType::get(Context, D.Integer_Width);
1355   case IITDescriptor::Vector:
1356     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1357                            D.Vector_Width);
1358   case IITDescriptor::Pointer:
1359     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1360                             D.Pointer_AddressSpace);
1361   case IITDescriptor::Struct: {
1362     SmallVector<Type *, 8> Elts;
1363     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1364       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1365     return StructType::get(Context, Elts);
1366   }
1367   case IITDescriptor::Argument:
1368     return Tys[D.getArgumentNumber()];
1369   case IITDescriptor::ExtendArgument: {
1370     Type *Ty = Tys[D.getArgumentNumber()];
1371     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1372       return VectorType::getExtendedElementVectorType(VTy);
1373 
1374     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1375   }
1376   case IITDescriptor::TruncArgument: {
1377     Type *Ty = Tys[D.getArgumentNumber()];
1378     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1379       return VectorType::getTruncatedElementVectorType(VTy);
1380 
1381     IntegerType *ITy = cast<IntegerType>(Ty);
1382     assert(ITy->getBitWidth() % 2 == 0);
1383     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1384   }
1385   case IITDescriptor::Subdivide2Argument:
1386   case IITDescriptor::Subdivide4Argument: {
1387     Type *Ty = Tys[D.getArgumentNumber()];
1388     VectorType *VTy = dyn_cast<VectorType>(Ty);
1389     assert(VTy && "Expected an argument of Vector Type");
1390     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1391     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1392   }
1393   case IITDescriptor::HalfVecArgument:
1394     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1395                                                   Tys[D.getArgumentNumber()]));
1396   case IITDescriptor::SameVecWidthArgument: {
1397     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1398     Type *Ty = Tys[D.getArgumentNumber()];
1399     if (auto *VTy = dyn_cast<VectorType>(Ty))
1400       return VectorType::get(EltTy, VTy->getElementCount());
1401     return EltTy;
1402   }
1403   case IITDescriptor::PtrToArgument: {
1404     Type *Ty = Tys[D.getArgumentNumber()];
1405     return PointerType::getUnqual(Ty);
1406   }
1407   case IITDescriptor::PtrToElt: {
1408     Type *Ty = Tys[D.getArgumentNumber()];
1409     VectorType *VTy = dyn_cast<VectorType>(Ty);
1410     if (!VTy)
1411       llvm_unreachable("Expected an argument of Vector Type");
1412     Type *EltTy = VTy->getElementType();
1413     return PointerType::getUnqual(EltTy);
1414   }
1415   case IITDescriptor::VecElementArgument: {
1416     Type *Ty = Tys[D.getArgumentNumber()];
1417     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1418       return VTy->getElementType();
1419     llvm_unreachable("Expected an argument of Vector Type");
1420   }
1421   case IITDescriptor::VecOfBitcastsToInt: {
1422     Type *Ty = Tys[D.getArgumentNumber()];
1423     VectorType *VTy = dyn_cast<VectorType>(Ty);
1424     assert(VTy && "Expected an argument of Vector Type");
1425     return VectorType::getInteger(VTy);
1426   }
1427   case IITDescriptor::VecOfAnyPtrsToElt:
1428     // Return the overloaded type (which determines the pointers address space)
1429     return Tys[D.getOverloadArgNumber()];
1430   case IITDescriptor::AnyPtrToElt:
1431     // Return the overloaded type (which determines the pointers address space)
1432     return Tys[D.getOverloadArgNumber()];
1433   }
1434   llvm_unreachable("unhandled");
1435 }
1436 
1437 FunctionType *Intrinsic::getType(LLVMContext &Context,
1438                                  ID id, ArrayRef<Type*> Tys) {
1439   SmallVector<IITDescriptor, 8> Table;
1440   getIntrinsicInfoTableEntries(id, Table);
1441 
1442   ArrayRef<IITDescriptor> TableRef = Table;
1443   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1444 
1445   SmallVector<Type*, 8> ArgTys;
1446   while (!TableRef.empty())
1447     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1448 
1449   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1450   // If we see void type as the type of the last argument, it is vararg intrinsic
1451   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1452     ArgTys.pop_back();
1453     return FunctionType::get(ResultTy, ArgTys, true);
1454   }
1455   return FunctionType::get(ResultTy, ArgTys, false);
1456 }
1457 
1458 bool Intrinsic::isOverloaded(ID id) {
1459 #define GET_INTRINSIC_OVERLOAD_TABLE
1460 #include "llvm/IR/IntrinsicImpl.inc"
1461 #undef GET_INTRINSIC_OVERLOAD_TABLE
1462 }
1463 
1464 bool Intrinsic::isLeaf(ID id) {
1465   switch (id) {
1466   default:
1467     return true;
1468 
1469   case Intrinsic::experimental_gc_statepoint:
1470   case Intrinsic::experimental_patchpoint_void:
1471   case Intrinsic::experimental_patchpoint_i64:
1472     return false;
1473   }
1474 }
1475 
1476 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1477 #define GET_INTRINSIC_ATTRIBUTES
1478 #include "llvm/IR/IntrinsicImpl.inc"
1479 #undef GET_INTRINSIC_ATTRIBUTES
1480 
1481 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1482   // There can never be multiple globals with the same name of different types,
1483   // because intrinsics must be a specific type.
1484   auto *FT = getType(M->getContext(), id, Tys);
1485   return cast<Function>(
1486       M->getOrInsertFunction(
1487            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1488           .getCallee());
1489 }
1490 
1491 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1492 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1493 #include "llvm/IR/IntrinsicImpl.inc"
1494 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1495 
1496 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1497 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1498 #include "llvm/IR/IntrinsicImpl.inc"
1499 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1500 
1501 using DeferredIntrinsicMatchPair =
1502     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1503 
1504 static bool matchIntrinsicType(
1505     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1506     SmallVectorImpl<Type *> &ArgTys,
1507     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1508     bool IsDeferredCheck) {
1509   using namespace Intrinsic;
1510 
1511   // If we ran out of descriptors, there are too many arguments.
1512   if (Infos.empty()) return true;
1513 
1514   // Do this before slicing off the 'front' part
1515   auto InfosRef = Infos;
1516   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1517     DeferredChecks.emplace_back(T, InfosRef);
1518     return false;
1519   };
1520 
1521   IITDescriptor D = Infos.front();
1522   Infos = Infos.slice(1);
1523 
1524   switch (D.Kind) {
1525     case IITDescriptor::Void: return !Ty->isVoidTy();
1526     case IITDescriptor::VarArg: return true;
1527     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1528     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1529     case IITDescriptor::Token: return !Ty->isTokenTy();
1530     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1531     case IITDescriptor::Half: return !Ty->isHalfTy();
1532     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1533     case IITDescriptor::Float: return !Ty->isFloatTy();
1534     case IITDescriptor::Double: return !Ty->isDoubleTy();
1535     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1536     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1537     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1538     case IITDescriptor::Vector: {
1539       VectorType *VT = dyn_cast<VectorType>(Ty);
1540       return !VT || VT->getElementCount() != D.Vector_Width ||
1541              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1542                                 DeferredChecks, IsDeferredCheck);
1543     }
1544     case IITDescriptor::Pointer: {
1545       PointerType *PT = dyn_cast<PointerType>(Ty);
1546       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1547         return true;
1548       if (!PT->isOpaque()) {
1549         /* Manually consume a pointer to empty struct descriptor, which is
1550          * used for externref. We don't want to enforce that the struct is
1551          * anonymous in this case. (This renders externref intrinsics
1552          * non-unique, but this will go away with opaque pointers anyway.) */
1553         if (Infos.front().Kind == IITDescriptor::Struct &&
1554             Infos.front().Struct_NumElements == 0) {
1555           Infos = Infos.slice(1);
1556           return false;
1557         }
1558         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1559                                   ArgTys, DeferredChecks, IsDeferredCheck);
1560       }
1561       // Consume IIT descriptors relating to the pointer element type.
1562       // FIXME: Intrinsic type matching of nested single value types or even
1563       // aggregates doesn't work properly with opaque pointers but hopefully
1564       // doesn't happen in practice.
1565       while (Infos.front().Kind == IITDescriptor::Pointer ||
1566              Infos.front().Kind == IITDescriptor::Vector)
1567         Infos = Infos.slice(1);
1568       assert((Infos.front().Kind != IITDescriptor::Argument ||
1569               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1570              "Unsupported polymorphic pointer type with opaque pointer");
1571       Infos = Infos.slice(1);
1572       return false;
1573     }
1574 
1575     case IITDescriptor::Struct: {
1576       StructType *ST = dyn_cast<StructType>(Ty);
1577       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1578           ST->getNumElements() != D.Struct_NumElements)
1579         return true;
1580 
1581       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1582         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1583                                DeferredChecks, IsDeferredCheck))
1584           return true;
1585       return false;
1586     }
1587 
1588     case IITDescriptor::Argument:
1589       // If this is the second occurrence of an argument,
1590       // verify that the later instance matches the previous instance.
1591       if (D.getArgumentNumber() < ArgTys.size())
1592         return Ty != ArgTys[D.getArgumentNumber()];
1593 
1594       if (D.getArgumentNumber() > ArgTys.size() ||
1595           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1596         return IsDeferredCheck || DeferCheck(Ty);
1597 
1598       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1599              "Table consistency error");
1600       ArgTys.push_back(Ty);
1601 
1602       switch (D.getArgumentKind()) {
1603         case IITDescriptor::AK_Any:        return false; // Success
1604         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1605         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1606         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1607         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1608         default:                           break;
1609       }
1610       llvm_unreachable("all argument kinds not covered");
1611 
1612     case IITDescriptor::ExtendArgument: {
1613       // If this is a forward reference, defer the check for later.
1614       if (D.getArgumentNumber() >= ArgTys.size())
1615         return IsDeferredCheck || DeferCheck(Ty);
1616 
1617       Type *NewTy = ArgTys[D.getArgumentNumber()];
1618       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1619         NewTy = VectorType::getExtendedElementVectorType(VTy);
1620       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1621         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1622       else
1623         return true;
1624 
1625       return Ty != NewTy;
1626     }
1627     case IITDescriptor::TruncArgument: {
1628       // If this is a forward reference, defer the check for later.
1629       if (D.getArgumentNumber() >= ArgTys.size())
1630         return IsDeferredCheck || DeferCheck(Ty);
1631 
1632       Type *NewTy = ArgTys[D.getArgumentNumber()];
1633       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1634         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1635       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1636         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1637       else
1638         return true;
1639 
1640       return Ty != NewTy;
1641     }
1642     case IITDescriptor::HalfVecArgument:
1643       // If this is a forward reference, defer the check for later.
1644       if (D.getArgumentNumber() >= ArgTys.size())
1645         return IsDeferredCheck || DeferCheck(Ty);
1646       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1647              VectorType::getHalfElementsVectorType(
1648                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1649     case IITDescriptor::SameVecWidthArgument: {
1650       if (D.getArgumentNumber() >= ArgTys.size()) {
1651         // Defer check and subsequent check for the vector element type.
1652         Infos = Infos.slice(1);
1653         return IsDeferredCheck || DeferCheck(Ty);
1654       }
1655       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1656       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1657       // Both must be vectors of the same number of elements or neither.
1658       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1659         return true;
1660       Type *EltTy = Ty;
1661       if (ThisArgType) {
1662         if (ReferenceType->getElementCount() !=
1663             ThisArgType->getElementCount())
1664           return true;
1665         EltTy = ThisArgType->getElementType();
1666       }
1667       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1668                                 IsDeferredCheck);
1669     }
1670     case IITDescriptor::PtrToArgument: {
1671       if (D.getArgumentNumber() >= ArgTys.size())
1672         return IsDeferredCheck || DeferCheck(Ty);
1673       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1674       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1675       return (!ThisArgType ||
1676               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1677     }
1678     case IITDescriptor::PtrToElt: {
1679       if (D.getArgumentNumber() >= ArgTys.size())
1680         return IsDeferredCheck || DeferCheck(Ty);
1681       VectorType * ReferenceType =
1682         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1683       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1684 
1685       if (!ThisArgType || !ReferenceType)
1686         return true;
1687       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1688           ReferenceType->getElementType());
1689     }
1690     case IITDescriptor::AnyPtrToElt: {
1691       unsigned RefArgNumber = D.getRefArgNumber();
1692       if (RefArgNumber >= ArgTys.size()) {
1693         if (IsDeferredCheck)
1694           return true;
1695         // If forward referencing, already add the pointer type and
1696         // defer the checks for later.
1697         ArgTys.push_back(Ty);
1698         return DeferCheck(Ty);
1699       }
1700 
1701       if (!IsDeferredCheck) {
1702         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1703                "Table consistency error");
1704         ArgTys.push_back(Ty);
1705       }
1706 
1707       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1708       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1709       if (!ThisArgType || !ReferenceType)
1710         return true;
1711       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1712           ReferenceType->getElementType());
1713     }
1714     case IITDescriptor::VecOfAnyPtrsToElt: {
1715       unsigned RefArgNumber = D.getRefArgNumber();
1716       if (RefArgNumber >= ArgTys.size()) {
1717         if (IsDeferredCheck)
1718           return true;
1719         // If forward referencing, already add the pointer-vector type and
1720         // defer the checks for later.
1721         ArgTys.push_back(Ty);
1722         return DeferCheck(Ty);
1723       }
1724 
1725       if (!IsDeferredCheck){
1726         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1727                "Table consistency error");
1728         ArgTys.push_back(Ty);
1729       }
1730 
1731       // Verify the overloaded type "matches" the Ref type.
1732       // i.e. Ty is a vector with the same width as Ref.
1733       // Composed of pointers to the same element type as Ref.
1734       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1735       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1736       if (!ThisArgVecTy || !ReferenceType ||
1737           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1738         return true;
1739       PointerType *ThisArgEltTy =
1740           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1741       if (!ThisArgEltTy)
1742         return true;
1743       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1744           ReferenceType->getElementType());
1745     }
1746     case IITDescriptor::VecElementArgument: {
1747       if (D.getArgumentNumber() >= ArgTys.size())
1748         return IsDeferredCheck ? true : DeferCheck(Ty);
1749       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1750       return !ReferenceType || Ty != ReferenceType->getElementType();
1751     }
1752     case IITDescriptor::Subdivide2Argument:
1753     case IITDescriptor::Subdivide4Argument: {
1754       // If this is a forward reference, defer the check for later.
1755       if (D.getArgumentNumber() >= ArgTys.size())
1756         return IsDeferredCheck || DeferCheck(Ty);
1757 
1758       Type *NewTy = ArgTys[D.getArgumentNumber()];
1759       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1760         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1761         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1762         return Ty != NewTy;
1763       }
1764       return true;
1765     }
1766     case IITDescriptor::VecOfBitcastsToInt: {
1767       if (D.getArgumentNumber() >= ArgTys.size())
1768         return IsDeferredCheck || DeferCheck(Ty);
1769       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1770       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1771       if (!ThisArgVecTy || !ReferenceType)
1772         return true;
1773       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1774     }
1775   }
1776   llvm_unreachable("unhandled");
1777 }
1778 
1779 Intrinsic::MatchIntrinsicTypesResult
1780 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1781                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1782                                    SmallVectorImpl<Type *> &ArgTys) {
1783   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1784   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1785                          false))
1786     return MatchIntrinsicTypes_NoMatchRet;
1787 
1788   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1789 
1790   for (auto *Ty : FTy->params())
1791     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1792       return MatchIntrinsicTypes_NoMatchArg;
1793 
1794   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1795     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1796     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1797                            true))
1798       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1799                                          : MatchIntrinsicTypes_NoMatchArg;
1800   }
1801 
1802   return MatchIntrinsicTypes_Match;
1803 }
1804 
1805 bool
1806 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1807                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1808   // If there are no descriptors left, then it can't be a vararg.
1809   if (Infos.empty())
1810     return isVarArg;
1811 
1812   // There should be only one descriptor remaining at this point.
1813   if (Infos.size() != 1)
1814     return true;
1815 
1816   // Check and verify the descriptor.
1817   IITDescriptor D = Infos.front();
1818   Infos = Infos.slice(1);
1819   if (D.Kind == IITDescriptor::VarArg)
1820     return !isVarArg;
1821 
1822   return true;
1823 }
1824 
1825 bool Intrinsic::getIntrinsicSignature(Function *F,
1826                                       SmallVectorImpl<Type *> &ArgTys) {
1827   Intrinsic::ID ID = F->getIntrinsicID();
1828   if (!ID)
1829     return false;
1830 
1831   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1832   getIntrinsicInfoTableEntries(ID, Table);
1833   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1834 
1835   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1836                                          ArgTys) !=
1837       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1838     return false;
1839   }
1840   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1841                                       TableRef))
1842     return false;
1843   return true;
1844 }
1845 
1846 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1847   SmallVector<Type *, 4> ArgTys;
1848   if (!getIntrinsicSignature(F, ArgTys))
1849     return std::nullopt;
1850 
1851   Intrinsic::ID ID = F->getIntrinsicID();
1852   StringRef Name = F->getName();
1853   std::string WantedName =
1854       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1855   if (Name == WantedName)
1856     return std::nullopt;
1857 
1858   Function *NewDecl = [&] {
1859     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1860       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1861         if (ExistingF->getFunctionType() == F->getFunctionType())
1862           return ExistingF;
1863 
1864       // The name already exists, but is not a function or has the wrong
1865       // prototype. Make place for the new one by renaming the old version.
1866       // Either this old version will be removed later on or the module is
1867       // invalid and we'll get an error.
1868       ExistingGV->setName(WantedName + ".renamed");
1869     }
1870     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1871   }();
1872 
1873   NewDecl->setCallingConv(F->getCallingConv());
1874   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1875          "Shouldn't change the signature");
1876   return NewDecl;
1877 }
1878 
1879 /// hasAddressTaken - returns true if there are any uses of this function
1880 /// other than direct calls or invokes to it. Optionally ignores callback
1881 /// uses, assume like pointer annotation calls, and references in llvm.used
1882 /// and llvm.compiler.used variables.
1883 bool Function::hasAddressTaken(const User **PutOffender,
1884                                bool IgnoreCallbackUses,
1885                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1886                                bool IgnoreARCAttachedCall) const {
1887   for (const Use &U : uses()) {
1888     const User *FU = U.getUser();
1889     if (isa<BlockAddress>(FU))
1890       continue;
1891 
1892     if (IgnoreCallbackUses) {
1893       AbstractCallSite ACS(&U);
1894       if (ACS && ACS.isCallbackCall())
1895         continue;
1896     }
1897 
1898     const auto *Call = dyn_cast<CallBase>(FU);
1899     if (!Call) {
1900       if (IgnoreAssumeLikeCalls) {
1901         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1902           if (FI->isCast() && !FI->user_empty() &&
1903               llvm::all_of(FU->users(), [](const User *U) {
1904                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1905                   return I->isAssumeLikeIntrinsic();
1906                 return false;
1907               }))
1908             continue;
1909         }
1910       }
1911       if (IgnoreLLVMUsed && !FU->user_empty()) {
1912         const User *FUU = FU;
1913         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1914             !FU->user_begin()->user_empty())
1915           FUU = *FU->user_begin();
1916         if (llvm::all_of(FUU->users(), [](const User *U) {
1917               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1918                 return GV->hasName() &&
1919                        (GV->getName().equals("llvm.compiler.used") ||
1920                         GV->getName().equals("llvm.used"));
1921               return false;
1922             }))
1923           continue;
1924       }
1925       if (PutOffender)
1926         *PutOffender = FU;
1927       return true;
1928     }
1929     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1930       if (IgnoreARCAttachedCall &&
1931           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1932                                       U.getOperandNo()))
1933         continue;
1934 
1935       if (PutOffender)
1936         *PutOffender = FU;
1937       return true;
1938     }
1939   }
1940   return false;
1941 }
1942 
1943 bool Function::isDefTriviallyDead() const {
1944   // Check the linkage
1945   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1946       !hasAvailableExternallyLinkage())
1947     return false;
1948 
1949   // Check if the function is used by anything other than a blockaddress.
1950   for (const User *U : users())
1951     if (!isa<BlockAddress>(U))
1952       return false;
1953 
1954   return true;
1955 }
1956 
1957 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1958 /// setjmp or other function that gcc recognizes as "returning twice".
1959 bool Function::callsFunctionThatReturnsTwice() const {
1960   for (const Instruction &I : instructions(this))
1961     if (const auto *Call = dyn_cast<CallBase>(&I))
1962       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1963         return true;
1964 
1965   return false;
1966 }
1967 
1968 Constant *Function::getPersonalityFn() const {
1969   assert(hasPersonalityFn() && getNumOperands());
1970   return cast<Constant>(Op<0>());
1971 }
1972 
1973 void Function::setPersonalityFn(Constant *Fn) {
1974   setHungoffOperand<0>(Fn);
1975   setValueSubclassDataBit(3, Fn != nullptr);
1976 }
1977 
1978 Constant *Function::getPrefixData() const {
1979   assert(hasPrefixData() && getNumOperands());
1980   return cast<Constant>(Op<1>());
1981 }
1982 
1983 void Function::setPrefixData(Constant *PrefixData) {
1984   setHungoffOperand<1>(PrefixData);
1985   setValueSubclassDataBit(1, PrefixData != nullptr);
1986 }
1987 
1988 Constant *Function::getPrologueData() const {
1989   assert(hasPrologueData() && getNumOperands());
1990   return cast<Constant>(Op<2>());
1991 }
1992 
1993 void Function::setPrologueData(Constant *PrologueData) {
1994   setHungoffOperand<2>(PrologueData);
1995   setValueSubclassDataBit(2, PrologueData != nullptr);
1996 }
1997 
1998 void Function::allocHungoffUselist() {
1999   // If we've already allocated a uselist, stop here.
2000   if (getNumOperands())
2001     return;
2002 
2003   allocHungoffUses(3, /*IsPhi=*/ false);
2004   setNumHungOffUseOperands(3);
2005 
2006   // Initialize the uselist with placeholder operands to allow traversal.
2007   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
2008   Op<0>().set(CPN);
2009   Op<1>().set(CPN);
2010   Op<2>().set(CPN);
2011 }
2012 
2013 template <int Idx>
2014 void Function::setHungoffOperand(Constant *C) {
2015   if (C) {
2016     allocHungoffUselist();
2017     Op<Idx>().set(C);
2018   } else if (getNumOperands()) {
2019     Op<Idx>().set(
2020         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
2021   }
2022 }
2023 
2024 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2025   assert(Bit < 16 && "SubclassData contains only 16 bits");
2026   if (On)
2027     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2028   else
2029     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2030 }
2031 
2032 void Function::setEntryCount(ProfileCount Count,
2033                              const DenseSet<GlobalValue::GUID> *S) {
2034 #if !defined(NDEBUG)
2035   auto PrevCount = getEntryCount();
2036   assert(!PrevCount || PrevCount->getType() == Count.getType());
2037 #endif
2038 
2039   auto ImportGUIDs = getImportGUIDs();
2040   if (S == nullptr && ImportGUIDs.size())
2041     S = &ImportGUIDs;
2042 
2043   MDBuilder MDB(getContext());
2044   setMetadata(
2045       LLVMContext::MD_prof,
2046       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2047 }
2048 
2049 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2050                              const DenseSet<GlobalValue::GUID> *Imports) {
2051   setEntryCount(ProfileCount(Count, Type), Imports);
2052 }
2053 
2054 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2055   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2056   if (MD && MD->getOperand(0))
2057     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2058       if (MDS->getString().equals("function_entry_count")) {
2059         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2060         uint64_t Count = CI->getValue().getZExtValue();
2061         // A value of -1 is used for SamplePGO when there were no samples.
2062         // Treat this the same as unknown.
2063         if (Count == (uint64_t)-1)
2064           return std::nullopt;
2065         return ProfileCount(Count, PCT_Real);
2066       } else if (AllowSynthetic &&
2067                  MDS->getString().equals("synthetic_function_entry_count")) {
2068         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2069         uint64_t Count = CI->getValue().getZExtValue();
2070         return ProfileCount(Count, PCT_Synthetic);
2071       }
2072     }
2073   return std::nullopt;
2074 }
2075 
2076 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2077   DenseSet<GlobalValue::GUID> R;
2078   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2079     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2080       if (MDS->getString().equals("function_entry_count"))
2081         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2082           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2083                        ->getValue()
2084                        .getZExtValue());
2085   return R;
2086 }
2087 
2088 void Function::setSectionPrefix(StringRef Prefix) {
2089   MDBuilder MDB(getContext());
2090   setMetadata(LLVMContext::MD_section_prefix,
2091               MDB.createFunctionSectionPrefix(Prefix));
2092 }
2093 
2094 std::optional<StringRef> Function::getSectionPrefix() const {
2095   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2096     assert(cast<MDString>(MD->getOperand(0))
2097                ->getString()
2098                .equals("function_section_prefix") &&
2099            "Metadata not match");
2100     return cast<MDString>(MD->getOperand(1))->getString();
2101   }
2102   return std::nullopt;
2103 }
2104 
2105 bool Function::nullPointerIsDefined() const {
2106   return hasFnAttribute(Attribute::NullPointerIsValid);
2107 }
2108 
2109 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2110   if (F && F->nullPointerIsDefined())
2111     return true;
2112 
2113   if (AS != 0)
2114     return true;
2115 
2116   return false;
2117 }
2118