1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsVE.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/IntrinsicsXCore.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/SymbolTableListTraits.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/ModRef.h" 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 80 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 81 cl::desc("Maximum size for the name of non-global values.")); 82 83 //===----------------------------------------------------------------------===// 84 // Argument Implementation 85 //===----------------------------------------------------------------------===// 86 87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 88 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 89 setName(Name); 90 } 91 92 void Argument::setParent(Function *parent) { 93 Parent = parent; 94 } 95 96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 97 if (!getType()->isPointerTy()) return false; 98 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 99 (AllowUndefOrPoison || 100 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 101 return true; 102 else if (getDereferenceableBytes() > 0 && 103 !NullPointerIsDefined(getParent(), 104 getType()->getPointerAddressSpace())) 105 return true; 106 return false; 107 } 108 109 bool Argument::hasByValAttr() const { 110 if (!getType()->isPointerTy()) return false; 111 return hasAttribute(Attribute::ByVal); 112 } 113 114 bool Argument::hasByRefAttr() const { 115 if (!getType()->isPointerTy()) 116 return false; 117 return hasAttribute(Attribute::ByRef); 118 } 119 120 bool Argument::hasSwiftSelfAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 122 } 123 124 bool Argument::hasSwiftErrorAttr() const { 125 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 126 } 127 128 bool Argument::hasInAllocaAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return hasAttribute(Attribute::InAlloca); 131 } 132 133 bool Argument::hasPreallocatedAttr() const { 134 if (!getType()->isPointerTy()) 135 return false; 136 return hasAttribute(Attribute::Preallocated); 137 } 138 139 bool Argument::hasPassPointeeByValueCopyAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 AttributeList Attrs = getParent()->getAttributes(); 142 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 143 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 145 } 146 147 bool Argument::hasPointeeInMemoryValueAttr() const { 148 if (!getType()->isPointerTy()) 149 return false; 150 AttributeList Attrs = getParent()->getAttributes(); 151 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 152 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 156 } 157 158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 159 /// parameter type. 160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 161 // FIXME: All the type carrying attributes are mutually exclusive, so there 162 // should be a single query to get the stored type that handles any of them. 163 if (Type *ByValTy = ParamAttrs.getByValType()) 164 return ByValTy; 165 if (Type *ByRefTy = ParamAttrs.getByRefType()) 166 return ByRefTy; 167 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 168 return PreAllocTy; 169 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 170 return InAllocaTy; 171 if (Type *SRetTy = ParamAttrs.getStructRetType()) 172 return SRetTy; 173 174 return nullptr; 175 } 176 177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 178 AttributeSet ParamAttrs = 179 getParent()->getAttributes().getParamAttrs(getArgNo()); 180 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 181 return DL.getTypeAllocSize(MemTy); 182 return 0; 183 } 184 185 Type *Argument::getPointeeInMemoryValueType() const { 186 AttributeSet ParamAttrs = 187 getParent()->getAttributes().getParamAttrs(getArgNo()); 188 return getMemoryParamAllocType(ParamAttrs); 189 } 190 191 uint64_t Argument::getParamAlignment() const { 192 assert(getType()->isPointerTy() && "Only pointers have alignments"); 193 return getParent()->getParamAlignment(getArgNo()); 194 } 195 196 MaybeAlign Argument::getParamAlign() const { 197 assert(getType()->isPointerTy() && "Only pointers have alignments"); 198 return getParent()->getParamAlign(getArgNo()); 199 } 200 201 MaybeAlign Argument::getParamStackAlign() const { 202 return getParent()->getParamStackAlign(getArgNo()); 203 } 204 205 Type *Argument::getParamByValType() const { 206 assert(getType()->isPointerTy() && "Only pointers have byval types"); 207 return getParent()->getParamByValType(getArgNo()); 208 } 209 210 Type *Argument::getParamStructRetType() const { 211 assert(getType()->isPointerTy() && "Only pointers have sret types"); 212 return getParent()->getParamStructRetType(getArgNo()); 213 } 214 215 Type *Argument::getParamByRefType() const { 216 assert(getType()->isPointerTy() && "Only pointers have byref types"); 217 return getParent()->getParamByRefType(getArgNo()); 218 } 219 220 Type *Argument::getParamInAllocaType() const { 221 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 222 return getParent()->getParamInAllocaType(getArgNo()); 223 } 224 225 uint64_t Argument::getDereferenceableBytes() const { 226 assert(getType()->isPointerTy() && 227 "Only pointers have dereferenceable bytes"); 228 return getParent()->getParamDereferenceableBytes(getArgNo()); 229 } 230 231 uint64_t Argument::getDereferenceableOrNullBytes() const { 232 assert(getType()->isPointerTy() && 233 "Only pointers have dereferenceable bytes"); 234 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 235 } 236 237 bool Argument::hasNestAttr() const { 238 if (!getType()->isPointerTy()) return false; 239 return hasAttribute(Attribute::Nest); 240 } 241 242 bool Argument::hasNoAliasAttr() const { 243 if (!getType()->isPointerTy()) return false; 244 return hasAttribute(Attribute::NoAlias); 245 } 246 247 bool Argument::hasNoCaptureAttr() const { 248 if (!getType()->isPointerTy()) return false; 249 return hasAttribute(Attribute::NoCapture); 250 } 251 252 bool Argument::hasNoFreeAttr() const { 253 if (!getType()->isPointerTy()) return false; 254 return hasAttribute(Attribute::NoFree); 255 } 256 257 bool Argument::hasStructRetAttr() const { 258 if (!getType()->isPointerTy()) return false; 259 return hasAttribute(Attribute::StructRet); 260 } 261 262 bool Argument::hasInRegAttr() const { 263 return hasAttribute(Attribute::InReg); 264 } 265 266 bool Argument::hasReturnedAttr() const { 267 return hasAttribute(Attribute::Returned); 268 } 269 270 bool Argument::hasZExtAttr() const { 271 return hasAttribute(Attribute::ZExt); 272 } 273 274 bool Argument::hasSExtAttr() const { 275 return hasAttribute(Attribute::SExt); 276 } 277 278 bool Argument::onlyReadsMemory() const { 279 AttributeList Attrs = getParent()->getAttributes(); 280 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 281 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 282 } 283 284 void Argument::addAttrs(AttrBuilder &B) { 285 AttributeList AL = getParent()->getAttributes(); 286 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 287 getParent()->setAttributes(AL); 288 } 289 290 void Argument::addAttr(Attribute::AttrKind Kind) { 291 getParent()->addParamAttr(getArgNo(), Kind); 292 } 293 294 void Argument::addAttr(Attribute Attr) { 295 getParent()->addParamAttr(getArgNo(), Attr); 296 } 297 298 void Argument::removeAttr(Attribute::AttrKind Kind) { 299 getParent()->removeParamAttr(getArgNo(), Kind); 300 } 301 302 void Argument::removeAttrs(const AttributeMask &AM) { 303 AttributeList AL = getParent()->getAttributes(); 304 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 305 getParent()->setAttributes(AL); 306 } 307 308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 309 return getParent()->hasParamAttribute(getArgNo(), Kind); 310 } 311 312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 313 return getParent()->getParamAttribute(getArgNo(), Kind); 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Helper Methods in Function 318 //===----------------------------------------------------------------------===// 319 320 LLVMContext &Function::getContext() const { 321 return getType()->getContext(); 322 } 323 324 unsigned Function::getInstructionCount() const { 325 unsigned NumInstrs = 0; 326 for (const BasicBlock &BB : BasicBlocks) 327 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 328 BB.instructionsWithoutDebug().end()); 329 return NumInstrs; 330 } 331 332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 333 const Twine &N, Module &M) { 334 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 335 } 336 337 Function *Function::createWithDefaultAttr(FunctionType *Ty, 338 LinkageTypes Linkage, 339 unsigned AddrSpace, const Twine &N, 340 Module *M) { 341 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 342 AttrBuilder B(F->getContext()); 343 UWTableKind UWTable = M->getUwtable(); 344 if (UWTable != UWTableKind::None) 345 B.addUWTableAttr(UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 if (M->getModuleFlag("function_return_thunk_extern")) 358 B.addAttribute(Attribute::FnRetThunkExtern); 359 F->addFnAttrs(B); 360 return F; 361 } 362 363 void Function::removeFromParent() { 364 getParent()->getFunctionList().remove(getIterator()); 365 } 366 367 void Function::eraseFromParent() { 368 getParent()->getFunctionList().erase(getIterator()); 369 } 370 371 void Function::splice(Function::iterator ToIt, Function *FromF, 372 Function::iterator FromBeginIt, 373 Function::iterator FromEndIt) { 374 #ifdef EXPENSIVE_CHECKS 375 // Check that FromBeginIt is before FromEndIt. 376 auto FromFEnd = FromF->end(); 377 for (auto It = FromBeginIt; It != FromEndIt; ++It) 378 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 379 #endif // EXPENSIVE_CHECKS 380 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 381 } 382 383 //===----------------------------------------------------------------------===// 384 // Function Implementation 385 //===----------------------------------------------------------------------===// 386 387 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 388 // If AS == -1 and we are passed a valid module pointer we place the function 389 // in the program address space. Otherwise we default to AS0. 390 if (AddrSpace == static_cast<unsigned>(-1)) 391 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 392 return AddrSpace; 393 } 394 395 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 396 const Twine &name, Module *ParentModule) 397 : GlobalObject(Ty, Value::FunctionVal, 398 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 399 computeAddrSpace(AddrSpace, ParentModule)), 400 NumArgs(Ty->getNumParams()) { 401 assert(FunctionType::isValidReturnType(getReturnType()) && 402 "invalid return type"); 403 setGlobalObjectSubClassData(0); 404 405 // We only need a symbol table for a function if the context keeps value names 406 if (!getContext().shouldDiscardValueNames()) 407 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 408 409 // If the function has arguments, mark them as lazily built. 410 if (Ty->getNumParams()) 411 setValueSubclassData(1); // Set the "has lazy arguments" bit. 412 413 if (ParentModule) 414 ParentModule->getFunctionList().push_back(this); 415 416 HasLLVMReservedName = getName().startswith("llvm."); 417 // Ensure intrinsics have the right parameter attributes. 418 // Note, the IntID field will have been set in Value::setName if this function 419 // name is a valid intrinsic ID. 420 if (IntID) 421 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 422 } 423 424 Function::~Function() { 425 dropAllReferences(); // After this it is safe to delete instructions. 426 427 // Delete all of the method arguments and unlink from symbol table... 428 if (Arguments) 429 clearArguments(); 430 431 // Remove the function from the on-the-side GC table. 432 clearGC(); 433 } 434 435 void Function::BuildLazyArguments() const { 436 // Create the arguments vector, all arguments start out unnamed. 437 auto *FT = getFunctionType(); 438 if (NumArgs > 0) { 439 Arguments = std::allocator<Argument>().allocate(NumArgs); 440 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 441 Type *ArgTy = FT->getParamType(i); 442 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 443 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 444 } 445 } 446 447 // Clear the lazy arguments bit. 448 unsigned SDC = getSubclassDataFromValue(); 449 SDC &= ~(1 << 0); 450 const_cast<Function*>(this)->setValueSubclassData(SDC); 451 assert(!hasLazyArguments()); 452 } 453 454 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 455 return MutableArrayRef<Argument>(Args, Count); 456 } 457 458 bool Function::isConstrainedFPIntrinsic() const { 459 switch (getIntrinsicID()) { 460 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 461 case Intrinsic::INTRINSIC: 462 #include "llvm/IR/ConstrainedOps.def" 463 return true; 464 #undef INSTRUCTION 465 default: 466 return false; 467 } 468 } 469 470 void Function::clearArguments() { 471 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 472 A.setName(""); 473 A.~Argument(); 474 } 475 std::allocator<Argument>().deallocate(Arguments, NumArgs); 476 Arguments = nullptr; 477 } 478 479 void Function::stealArgumentListFrom(Function &Src) { 480 assert(isDeclaration() && "Expected no references to current arguments"); 481 482 // Drop the current arguments, if any, and set the lazy argument bit. 483 if (!hasLazyArguments()) { 484 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 485 [](const Argument &A) { return A.use_empty(); }) && 486 "Expected arguments to be unused in declaration"); 487 clearArguments(); 488 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 489 } 490 491 // Nothing to steal if Src has lazy arguments. 492 if (Src.hasLazyArguments()) 493 return; 494 495 // Steal arguments from Src, and fix the lazy argument bits. 496 assert(arg_size() == Src.arg_size()); 497 Arguments = Src.Arguments; 498 Src.Arguments = nullptr; 499 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 500 // FIXME: This does the work of transferNodesFromList inefficiently. 501 SmallString<128> Name; 502 if (A.hasName()) 503 Name = A.getName(); 504 if (!Name.empty()) 505 A.setName(""); 506 A.setParent(this); 507 if (!Name.empty()) 508 A.setName(Name); 509 } 510 511 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 512 assert(!hasLazyArguments()); 513 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 514 } 515 516 // dropAllReferences() - This function causes all the subinstructions to "let 517 // go" of all references that they are maintaining. This allows one to 518 // 'delete' a whole class at a time, even though there may be circular 519 // references... first all references are dropped, and all use counts go to 520 // zero. Then everything is deleted for real. Note that no operations are 521 // valid on an object that has "dropped all references", except operator 522 // delete. 523 // 524 void Function::dropAllReferences() { 525 setIsMaterializable(false); 526 527 for (BasicBlock &BB : *this) 528 BB.dropAllReferences(); 529 530 // Delete all basic blocks. They are now unused, except possibly by 531 // blockaddresses, but BasicBlock's destructor takes care of those. 532 while (!BasicBlocks.empty()) 533 BasicBlocks.begin()->eraseFromParent(); 534 535 // Drop uses of any optional data (real or placeholder). 536 if (getNumOperands()) { 537 User::dropAllReferences(); 538 setNumHungOffUseOperands(0); 539 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 540 } 541 542 // Metadata is stored in a side-table. 543 clearMetadata(); 544 } 545 546 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 547 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 548 } 549 550 void Function::addFnAttr(Attribute::AttrKind Kind) { 551 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 552 } 553 554 void Function::addFnAttr(StringRef Kind, StringRef Val) { 555 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 556 } 557 558 void Function::addFnAttr(Attribute Attr) { 559 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 560 } 561 562 void Function::addFnAttrs(const AttrBuilder &Attrs) { 563 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 564 } 565 566 void Function::addRetAttr(Attribute::AttrKind Kind) { 567 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 568 } 569 570 void Function::addRetAttr(Attribute Attr) { 571 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 572 } 573 574 void Function::addRetAttrs(const AttrBuilder &Attrs) { 575 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 576 } 577 578 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 579 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 580 } 581 582 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 583 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 584 } 585 586 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 587 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 588 } 589 590 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 591 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 592 } 593 594 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 595 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 596 } 597 598 void Function::removeFnAttr(Attribute::AttrKind Kind) { 599 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 600 } 601 602 void Function::removeFnAttr(StringRef Kind) { 603 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 604 } 605 606 void Function::removeFnAttrs(const AttributeMask &AM) { 607 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 608 } 609 610 void Function::removeRetAttr(Attribute::AttrKind Kind) { 611 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 612 } 613 614 void Function::removeRetAttr(StringRef Kind) { 615 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 616 } 617 618 void Function::removeRetAttrs(const AttributeMask &Attrs) { 619 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 620 } 621 622 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 623 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 624 } 625 626 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 627 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 628 } 629 630 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 631 AttributeSets = 632 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 633 } 634 635 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 636 AttributeSets = 637 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 638 } 639 640 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 641 return AttributeSets.hasFnAttr(Kind); 642 } 643 644 bool Function::hasFnAttribute(StringRef Kind) const { 645 return AttributeSets.hasFnAttr(Kind); 646 } 647 648 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 649 return AttributeSets.hasRetAttr(Kind); 650 } 651 652 bool Function::hasParamAttribute(unsigned ArgNo, 653 Attribute::AttrKind Kind) const { 654 return AttributeSets.hasParamAttr(ArgNo, Kind); 655 } 656 657 Attribute Function::getAttributeAtIndex(unsigned i, 658 Attribute::AttrKind Kind) const { 659 return AttributeSets.getAttributeAtIndex(i, Kind); 660 } 661 662 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 663 return AttributeSets.getAttributeAtIndex(i, Kind); 664 } 665 666 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 667 return AttributeSets.getFnAttr(Kind); 668 } 669 670 Attribute Function::getFnAttribute(StringRef Kind) const { 671 return AttributeSets.getFnAttr(Kind); 672 } 673 674 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 675 uint64_t Default) const { 676 Attribute A = getFnAttribute(Name); 677 uint64_t Result = Default; 678 if (A.isStringAttribute()) { 679 StringRef Str = A.getValueAsString(); 680 if (Str.getAsInteger(0, Result)) 681 getContext().emitError("cannot parse integer attribute " + Name); 682 } 683 684 return Result; 685 } 686 687 /// gets the specified attribute from the list of attributes. 688 Attribute Function::getParamAttribute(unsigned ArgNo, 689 Attribute::AttrKind Kind) const { 690 return AttributeSets.getParamAttr(ArgNo, Kind); 691 } 692 693 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 694 uint64_t Bytes) { 695 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 696 ArgNo, Bytes); 697 } 698 699 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 700 if (&FPType == &APFloat::IEEEsingle()) { 701 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 702 StringRef Val = Attr.getValueAsString(); 703 if (!Val.empty()) 704 return parseDenormalFPAttribute(Val); 705 706 // If the f32 variant of the attribute isn't specified, try to use the 707 // generic one. 708 } 709 710 Attribute Attr = getFnAttribute("denormal-fp-math"); 711 return parseDenormalFPAttribute(Attr.getValueAsString()); 712 } 713 714 const std::string &Function::getGC() const { 715 assert(hasGC() && "Function has no collector"); 716 return getContext().getGC(*this); 717 } 718 719 void Function::setGC(std::string Str) { 720 setValueSubclassDataBit(14, !Str.empty()); 721 getContext().setGC(*this, std::move(Str)); 722 } 723 724 void Function::clearGC() { 725 if (!hasGC()) 726 return; 727 getContext().deleteGC(*this); 728 setValueSubclassDataBit(14, false); 729 } 730 731 bool Function::hasStackProtectorFnAttr() const { 732 return hasFnAttribute(Attribute::StackProtect) || 733 hasFnAttribute(Attribute::StackProtectStrong) || 734 hasFnAttribute(Attribute::StackProtectReq); 735 } 736 737 /// Copy all additional attributes (those not needed to create a Function) from 738 /// the Function Src to this one. 739 void Function::copyAttributesFrom(const Function *Src) { 740 GlobalObject::copyAttributesFrom(Src); 741 setCallingConv(Src->getCallingConv()); 742 setAttributes(Src->getAttributes()); 743 if (Src->hasGC()) 744 setGC(Src->getGC()); 745 else 746 clearGC(); 747 if (Src->hasPersonalityFn()) 748 setPersonalityFn(Src->getPersonalityFn()); 749 if (Src->hasPrefixData()) 750 setPrefixData(Src->getPrefixData()); 751 if (Src->hasPrologueData()) 752 setPrologueData(Src->getPrologueData()); 753 } 754 755 MemoryEffects Function::getMemoryEffects() const { 756 return getAttributes().getMemoryEffects(); 757 } 758 void Function::setMemoryEffects(MemoryEffects ME) { 759 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 760 } 761 762 /// Determine if the function does not access memory. 763 bool Function::doesNotAccessMemory() const { 764 return getMemoryEffects().doesNotAccessMemory(); 765 } 766 void Function::setDoesNotAccessMemory() { 767 setMemoryEffects(MemoryEffects::none()); 768 } 769 770 /// Determine if the function does not access or only reads memory. 771 bool Function::onlyReadsMemory() const { 772 return getMemoryEffects().onlyReadsMemory(); 773 } 774 void Function::setOnlyReadsMemory() { 775 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 776 } 777 778 /// Determine if the function does not access or only writes memory. 779 bool Function::onlyWritesMemory() const { 780 return getMemoryEffects().onlyWritesMemory(); 781 } 782 void Function::setOnlyWritesMemory() { 783 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 784 } 785 786 /// Determine if the call can access memmory only using pointers based 787 /// on its arguments. 788 bool Function::onlyAccessesArgMemory() const { 789 return getMemoryEffects().onlyAccessesArgPointees(); 790 } 791 void Function::setOnlyAccessesArgMemory() { 792 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 793 } 794 795 /// Determine if the function may only access memory that is 796 /// inaccessible from the IR. 797 bool Function::onlyAccessesInaccessibleMemory() const { 798 return getMemoryEffects().onlyAccessesInaccessibleMem(); 799 } 800 void Function::setOnlyAccessesInaccessibleMemory() { 801 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 802 } 803 804 /// Determine if the function may only access memory that is 805 /// either inaccessible from the IR or pointed to by its arguments. 806 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 807 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 808 } 809 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 810 setMemoryEffects(getMemoryEffects() & 811 MemoryEffects::inaccessibleOrArgMemOnly()); 812 } 813 814 /// Table of string intrinsic names indexed by enum value. 815 static const char * const IntrinsicNameTable[] = { 816 "not_intrinsic", 817 #define GET_INTRINSIC_NAME_TABLE 818 #include "llvm/IR/IntrinsicImpl.inc" 819 #undef GET_INTRINSIC_NAME_TABLE 820 }; 821 822 /// Table of per-target intrinsic name tables. 823 #define GET_INTRINSIC_TARGET_DATA 824 #include "llvm/IR/IntrinsicImpl.inc" 825 #undef GET_INTRINSIC_TARGET_DATA 826 827 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 828 return IID > TargetInfos[0].Count; 829 } 830 831 bool Function::isTargetIntrinsic() const { 832 return isTargetIntrinsic(IntID); 833 } 834 835 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 836 /// target as \c Name, or the generic table if \c Name is not target specific. 837 /// 838 /// Returns the relevant slice of \c IntrinsicNameTable 839 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 840 assert(Name.startswith("llvm.")); 841 842 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 843 // Drop "llvm." and take the first dotted component. That will be the target 844 // if this is target specific. 845 StringRef Target = Name.drop_front(5).split('.').first; 846 auto It = partition_point( 847 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 848 // We've either found the target or just fall back to the generic set, which 849 // is always first. 850 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 851 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 852 } 853 854 /// This does the actual lookup of an intrinsic ID which 855 /// matches the given function name. 856 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 857 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 858 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 859 if (Idx == -1) 860 return Intrinsic::not_intrinsic; 861 862 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 863 // an index into a sub-table. 864 int Adjust = NameTable.data() - IntrinsicNameTable; 865 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 866 867 // If the intrinsic is not overloaded, require an exact match. If it is 868 // overloaded, require either exact or prefix match. 869 const auto MatchSize = strlen(NameTable[Idx]); 870 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 871 bool IsExactMatch = Name.size() == MatchSize; 872 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 873 : Intrinsic::not_intrinsic; 874 } 875 876 void Function::recalculateIntrinsicID() { 877 StringRef Name = getName(); 878 if (!Name.startswith("llvm.")) { 879 HasLLVMReservedName = false; 880 IntID = Intrinsic::not_intrinsic; 881 return; 882 } 883 HasLLVMReservedName = true; 884 IntID = lookupIntrinsicID(Name); 885 } 886 887 /// Returns a stable mangling for the type specified for use in the name 888 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 889 /// of named types is simply their name. Manglings for unnamed types consist 890 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 891 /// combined with the mangling of their component types. A vararg function 892 /// type will have a suffix of 'vararg'. Since function types can contain 893 /// other function types, we close a function type mangling with suffix 'f' 894 /// which can't be confused with it's prefix. This ensures we don't have 895 /// collisions between two unrelated function types. Otherwise, you might 896 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 897 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 898 /// indicating that extra care must be taken to ensure a unique name. 899 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 900 std::string Result; 901 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 902 Result += "p" + utostr(PTyp->getAddressSpace()); 903 // Opaque pointer doesn't have pointee type information, so we just mangle 904 // address space for opaque pointer. 905 if (!PTyp->isOpaque()) 906 Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(), 907 HasUnnamedType); 908 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 909 Result += "a" + utostr(ATyp->getNumElements()) + 910 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 911 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 912 if (!STyp->isLiteral()) { 913 Result += "s_"; 914 if (STyp->hasName()) 915 Result += STyp->getName(); 916 else 917 HasUnnamedType = true; 918 } else { 919 Result += "sl_"; 920 for (auto *Elem : STyp->elements()) 921 Result += getMangledTypeStr(Elem, HasUnnamedType); 922 } 923 // Ensure nested structs are distinguishable. 924 Result += "s"; 925 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 926 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 927 for (size_t i = 0; i < FT->getNumParams(); i++) 928 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 929 if (FT->isVarArg()) 930 Result += "vararg"; 931 // Ensure nested function types are distinguishable. 932 Result += "f"; 933 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 934 ElementCount EC = VTy->getElementCount(); 935 if (EC.isScalable()) 936 Result += "nx"; 937 Result += "v" + utostr(EC.getKnownMinValue()) + 938 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 939 } else if (Ty) { 940 switch (Ty->getTypeID()) { 941 default: llvm_unreachable("Unhandled type"); 942 case Type::VoidTyID: Result += "isVoid"; break; 943 case Type::MetadataTyID: Result += "Metadata"; break; 944 case Type::HalfTyID: Result += "f16"; break; 945 case Type::BFloatTyID: Result += "bf16"; break; 946 case Type::FloatTyID: Result += "f32"; break; 947 case Type::DoubleTyID: Result += "f64"; break; 948 case Type::X86_FP80TyID: Result += "f80"; break; 949 case Type::FP128TyID: Result += "f128"; break; 950 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 951 case Type::X86_MMXTyID: Result += "x86mmx"; break; 952 case Type::X86_AMXTyID: Result += "x86amx"; break; 953 case Type::IntegerTyID: 954 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 955 break; 956 } 957 } 958 return Result; 959 } 960 961 StringRef Intrinsic::getBaseName(ID id) { 962 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 963 return IntrinsicNameTable[id]; 964 } 965 966 StringRef Intrinsic::getName(ID id) { 967 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 968 assert(!Intrinsic::isOverloaded(id) && 969 "This version of getName does not support overloading"); 970 return getBaseName(id); 971 } 972 973 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 974 Module *M, FunctionType *FT, 975 bool EarlyModuleCheck) { 976 977 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 978 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 979 "This version of getName is for overloaded intrinsics only"); 980 (void)EarlyModuleCheck; 981 assert((!EarlyModuleCheck || M || 982 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 983 "Intrinsic overloading on pointer types need to provide a Module"); 984 bool HasUnnamedType = false; 985 std::string Result(Intrinsic::getBaseName(Id)); 986 for (Type *Ty : Tys) 987 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 988 if (HasUnnamedType) { 989 assert(M && "unnamed types need a module"); 990 if (!FT) 991 FT = Intrinsic::getType(M->getContext(), Id, Tys); 992 else 993 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 994 "Provided FunctionType must match arguments"); 995 return M->getUniqueIntrinsicName(Result, Id, FT); 996 } 997 return Result; 998 } 999 1000 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1001 FunctionType *FT) { 1002 assert(M && "We need to have a Module"); 1003 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1004 } 1005 1006 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1007 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1008 } 1009 1010 /// IIT_Info - These are enumerators that describe the entries returned by the 1011 /// getIntrinsicInfoTableEntries function. 1012 /// 1013 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 1014 enum IIT_Info { 1015 // Common values should be encoded with 0-15. 1016 IIT_Done = 0, 1017 IIT_I1 = 1, 1018 IIT_I8 = 2, 1019 IIT_I16 = 3, 1020 IIT_I32 = 4, 1021 IIT_I64 = 5, 1022 IIT_F16 = 6, 1023 IIT_F32 = 7, 1024 IIT_F64 = 8, 1025 IIT_V2 = 9, 1026 IIT_V4 = 10, 1027 IIT_V8 = 11, 1028 IIT_V16 = 12, 1029 IIT_V32 = 13, 1030 IIT_PTR = 14, 1031 IIT_ARG = 15, 1032 1033 // Values from 16+ are only encodable with the inefficient encoding. 1034 IIT_V64 = 16, 1035 IIT_MMX = 17, 1036 IIT_TOKEN = 18, 1037 IIT_METADATA = 19, 1038 IIT_EMPTYSTRUCT = 20, 1039 IIT_STRUCT2 = 21, 1040 IIT_STRUCT3 = 22, 1041 IIT_STRUCT4 = 23, 1042 IIT_STRUCT5 = 24, 1043 IIT_EXTEND_ARG = 25, 1044 IIT_TRUNC_ARG = 26, 1045 IIT_ANYPTR = 27, 1046 IIT_V1 = 28, 1047 IIT_VARARG = 29, 1048 IIT_HALF_VEC_ARG = 30, 1049 IIT_SAME_VEC_WIDTH_ARG = 31, 1050 IIT_PTR_TO_ARG = 32, 1051 IIT_PTR_TO_ELT = 33, 1052 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 1053 IIT_I128 = 35, 1054 IIT_V512 = 36, 1055 IIT_V1024 = 37, 1056 IIT_STRUCT6 = 38, 1057 IIT_STRUCT7 = 39, 1058 IIT_STRUCT8 = 40, 1059 IIT_F128 = 41, 1060 IIT_VEC_ELEMENT = 42, 1061 IIT_SCALABLE_VEC = 43, 1062 IIT_SUBDIVIDE2_ARG = 44, 1063 IIT_SUBDIVIDE4_ARG = 45, 1064 IIT_VEC_OF_BITCASTS_TO_INT = 46, 1065 IIT_V128 = 47, 1066 IIT_BF16 = 48, 1067 IIT_STRUCT9 = 49, 1068 IIT_V256 = 50, 1069 IIT_AMX = 51, 1070 IIT_PPCF128 = 52, 1071 IIT_V3 = 53, 1072 IIT_EXTERNREF = 54, 1073 IIT_FUNCREF = 55, 1074 IIT_ANYPTR_TO_ELT = 56, 1075 IIT_I2 = 57, 1076 IIT_I4 = 58, 1077 }; 1078 1079 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1080 IIT_Info LastInfo, 1081 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1082 using namespace Intrinsic; 1083 1084 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1085 1086 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1087 unsigned StructElts = 2; 1088 1089 switch (Info) { 1090 case IIT_Done: 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1092 return; 1093 case IIT_VARARG: 1094 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1095 return; 1096 case IIT_MMX: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1098 return; 1099 case IIT_AMX: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1101 return; 1102 case IIT_TOKEN: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1104 return; 1105 case IIT_METADATA: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1107 return; 1108 case IIT_F16: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1110 return; 1111 case IIT_BF16: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1113 return; 1114 case IIT_F32: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1116 return; 1117 case IIT_F64: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1119 return; 1120 case IIT_F128: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1122 return; 1123 case IIT_PPCF128: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1125 return; 1126 case IIT_I1: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1128 return; 1129 case IIT_I2: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1131 return; 1132 case IIT_I4: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1134 return; 1135 case IIT_I8: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1137 return; 1138 case IIT_I16: 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1140 return; 1141 case IIT_I32: 1142 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1143 return; 1144 case IIT_I64: 1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1146 return; 1147 case IIT_I128: 1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1149 return; 1150 case IIT_V1: 1151 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1152 DecodeIITType(NextElt, Infos, Info, OutputTable); 1153 return; 1154 case IIT_V2: 1155 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1156 DecodeIITType(NextElt, Infos, Info, OutputTable); 1157 return; 1158 case IIT_V3: 1159 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1160 DecodeIITType(NextElt, Infos, Info, OutputTable); 1161 return; 1162 case IIT_V4: 1163 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1164 DecodeIITType(NextElt, Infos, Info, OutputTable); 1165 return; 1166 case IIT_V8: 1167 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1168 DecodeIITType(NextElt, Infos, Info, OutputTable); 1169 return; 1170 case IIT_V16: 1171 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1172 DecodeIITType(NextElt, Infos, Info, OutputTable); 1173 return; 1174 case IIT_V32: 1175 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1176 DecodeIITType(NextElt, Infos, Info, OutputTable); 1177 return; 1178 case IIT_V64: 1179 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1180 DecodeIITType(NextElt, Infos, Info, OutputTable); 1181 return; 1182 case IIT_V128: 1183 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1184 DecodeIITType(NextElt, Infos, Info, OutputTable); 1185 return; 1186 case IIT_V256: 1187 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1188 DecodeIITType(NextElt, Infos, Info, OutputTable); 1189 return; 1190 case IIT_V512: 1191 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1192 DecodeIITType(NextElt, Infos, Info, OutputTable); 1193 return; 1194 case IIT_V1024: 1195 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1196 DecodeIITType(NextElt, Infos, Info, OutputTable); 1197 return; 1198 case IIT_EXTERNREF: 1199 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1200 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1201 return; 1202 case IIT_FUNCREF: 1203 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1204 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1205 return; 1206 case IIT_PTR: 1207 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1208 DecodeIITType(NextElt, Infos, Info, OutputTable); 1209 return; 1210 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1211 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1212 Infos[NextElt++])); 1213 DecodeIITType(NextElt, Infos, Info, OutputTable); 1214 return; 1215 } 1216 case IIT_ARG: { 1217 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1218 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1219 return; 1220 } 1221 case IIT_EXTEND_ARG: { 1222 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1223 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1224 ArgInfo)); 1225 return; 1226 } 1227 case IIT_TRUNC_ARG: { 1228 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1229 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1230 ArgInfo)); 1231 return; 1232 } 1233 case IIT_HALF_VEC_ARG: { 1234 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1235 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1236 ArgInfo)); 1237 return; 1238 } 1239 case IIT_SAME_VEC_WIDTH_ARG: { 1240 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1241 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1242 ArgInfo)); 1243 return; 1244 } 1245 case IIT_PTR_TO_ARG: { 1246 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1247 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1248 ArgInfo)); 1249 return; 1250 } 1251 case IIT_PTR_TO_ELT: { 1252 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1253 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1254 return; 1255 } 1256 case IIT_ANYPTR_TO_ELT: { 1257 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1258 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1259 OutputTable.push_back( 1260 IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo)); 1261 return; 1262 } 1263 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1264 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1265 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1266 OutputTable.push_back( 1267 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1268 return; 1269 } 1270 case IIT_EMPTYSTRUCT: 1271 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1272 return; 1273 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1274 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1275 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1276 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1277 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1278 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1279 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1280 case IIT_STRUCT2: { 1281 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1282 1283 for (unsigned i = 0; i != StructElts; ++i) 1284 DecodeIITType(NextElt, Infos, Info, OutputTable); 1285 return; 1286 } 1287 case IIT_SUBDIVIDE2_ARG: { 1288 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1289 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1290 ArgInfo)); 1291 return; 1292 } 1293 case IIT_SUBDIVIDE4_ARG: { 1294 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1295 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1296 ArgInfo)); 1297 return; 1298 } 1299 case IIT_VEC_ELEMENT: { 1300 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1301 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1302 ArgInfo)); 1303 return; 1304 } 1305 case IIT_SCALABLE_VEC: { 1306 DecodeIITType(NextElt, Infos, Info, OutputTable); 1307 return; 1308 } 1309 case IIT_VEC_OF_BITCASTS_TO_INT: { 1310 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1311 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1312 ArgInfo)); 1313 return; 1314 } 1315 } 1316 llvm_unreachable("unhandled"); 1317 } 1318 1319 #define GET_INTRINSIC_GENERATOR_GLOBAL 1320 #include "llvm/IR/IntrinsicImpl.inc" 1321 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1322 1323 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1324 SmallVectorImpl<IITDescriptor> &T){ 1325 // Check to see if the intrinsic's type was expressible by the table. 1326 unsigned TableVal = IIT_Table[id-1]; 1327 1328 // Decode the TableVal into an array of IITValues. 1329 SmallVector<unsigned char, 8> IITValues; 1330 ArrayRef<unsigned char> IITEntries; 1331 unsigned NextElt = 0; 1332 if ((TableVal >> 31) != 0) { 1333 // This is an offset into the IIT_LongEncodingTable. 1334 IITEntries = IIT_LongEncodingTable; 1335 1336 // Strip sentinel bit. 1337 NextElt = (TableVal << 1) >> 1; 1338 } else { 1339 // Decode the TableVal into an array of IITValues. If the entry was encoded 1340 // into a single word in the table itself, decode it now. 1341 do { 1342 IITValues.push_back(TableVal & 0xF); 1343 TableVal >>= 4; 1344 } while (TableVal); 1345 1346 IITEntries = IITValues; 1347 NextElt = 0; 1348 } 1349 1350 // Okay, decode the table into the output vector of IITDescriptors. 1351 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1352 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1353 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1354 } 1355 1356 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1357 ArrayRef<Type*> Tys, LLVMContext &Context) { 1358 using namespace Intrinsic; 1359 1360 IITDescriptor D = Infos.front(); 1361 Infos = Infos.slice(1); 1362 1363 switch (D.Kind) { 1364 case IITDescriptor::Void: return Type::getVoidTy(Context); 1365 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1366 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1367 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1368 case IITDescriptor::Token: return Type::getTokenTy(Context); 1369 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1370 case IITDescriptor::Half: return Type::getHalfTy(Context); 1371 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1372 case IITDescriptor::Float: return Type::getFloatTy(Context); 1373 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1374 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1375 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1376 1377 case IITDescriptor::Integer: 1378 return IntegerType::get(Context, D.Integer_Width); 1379 case IITDescriptor::Vector: 1380 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1381 D.Vector_Width); 1382 case IITDescriptor::Pointer: 1383 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1384 D.Pointer_AddressSpace); 1385 case IITDescriptor::Struct: { 1386 SmallVector<Type *, 8> Elts; 1387 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1388 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1389 return StructType::get(Context, Elts); 1390 } 1391 case IITDescriptor::Argument: 1392 return Tys[D.getArgumentNumber()]; 1393 case IITDescriptor::ExtendArgument: { 1394 Type *Ty = Tys[D.getArgumentNumber()]; 1395 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1396 return VectorType::getExtendedElementVectorType(VTy); 1397 1398 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1399 } 1400 case IITDescriptor::TruncArgument: { 1401 Type *Ty = Tys[D.getArgumentNumber()]; 1402 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1403 return VectorType::getTruncatedElementVectorType(VTy); 1404 1405 IntegerType *ITy = cast<IntegerType>(Ty); 1406 assert(ITy->getBitWidth() % 2 == 0); 1407 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1408 } 1409 case IITDescriptor::Subdivide2Argument: 1410 case IITDescriptor::Subdivide4Argument: { 1411 Type *Ty = Tys[D.getArgumentNumber()]; 1412 VectorType *VTy = dyn_cast<VectorType>(Ty); 1413 assert(VTy && "Expected an argument of Vector Type"); 1414 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1415 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1416 } 1417 case IITDescriptor::HalfVecArgument: 1418 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1419 Tys[D.getArgumentNumber()])); 1420 case IITDescriptor::SameVecWidthArgument: { 1421 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1422 Type *Ty = Tys[D.getArgumentNumber()]; 1423 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1424 return VectorType::get(EltTy, VTy->getElementCount()); 1425 return EltTy; 1426 } 1427 case IITDescriptor::PtrToArgument: { 1428 Type *Ty = Tys[D.getArgumentNumber()]; 1429 return PointerType::getUnqual(Ty); 1430 } 1431 case IITDescriptor::PtrToElt: { 1432 Type *Ty = Tys[D.getArgumentNumber()]; 1433 VectorType *VTy = dyn_cast<VectorType>(Ty); 1434 if (!VTy) 1435 llvm_unreachable("Expected an argument of Vector Type"); 1436 Type *EltTy = VTy->getElementType(); 1437 return PointerType::getUnqual(EltTy); 1438 } 1439 case IITDescriptor::VecElementArgument: { 1440 Type *Ty = Tys[D.getArgumentNumber()]; 1441 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1442 return VTy->getElementType(); 1443 llvm_unreachable("Expected an argument of Vector Type"); 1444 } 1445 case IITDescriptor::VecOfBitcastsToInt: { 1446 Type *Ty = Tys[D.getArgumentNumber()]; 1447 VectorType *VTy = dyn_cast<VectorType>(Ty); 1448 assert(VTy && "Expected an argument of Vector Type"); 1449 return VectorType::getInteger(VTy); 1450 } 1451 case IITDescriptor::VecOfAnyPtrsToElt: 1452 // Return the overloaded type (which determines the pointers address space) 1453 return Tys[D.getOverloadArgNumber()]; 1454 case IITDescriptor::AnyPtrToElt: 1455 // Return the overloaded type (which determines the pointers address space) 1456 return Tys[D.getOverloadArgNumber()]; 1457 } 1458 llvm_unreachable("unhandled"); 1459 } 1460 1461 FunctionType *Intrinsic::getType(LLVMContext &Context, 1462 ID id, ArrayRef<Type*> Tys) { 1463 SmallVector<IITDescriptor, 8> Table; 1464 getIntrinsicInfoTableEntries(id, Table); 1465 1466 ArrayRef<IITDescriptor> TableRef = Table; 1467 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1468 1469 SmallVector<Type*, 8> ArgTys; 1470 while (!TableRef.empty()) 1471 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1472 1473 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1474 // If we see void type as the type of the last argument, it is vararg intrinsic 1475 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1476 ArgTys.pop_back(); 1477 return FunctionType::get(ResultTy, ArgTys, true); 1478 } 1479 return FunctionType::get(ResultTy, ArgTys, false); 1480 } 1481 1482 bool Intrinsic::isOverloaded(ID id) { 1483 #define GET_INTRINSIC_OVERLOAD_TABLE 1484 #include "llvm/IR/IntrinsicImpl.inc" 1485 #undef GET_INTRINSIC_OVERLOAD_TABLE 1486 } 1487 1488 bool Intrinsic::isLeaf(ID id) { 1489 switch (id) { 1490 default: 1491 return true; 1492 1493 case Intrinsic::experimental_gc_statepoint: 1494 case Intrinsic::experimental_patchpoint_void: 1495 case Intrinsic::experimental_patchpoint_i64: 1496 return false; 1497 } 1498 } 1499 1500 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1501 #define GET_INTRINSIC_ATTRIBUTES 1502 #include "llvm/IR/IntrinsicImpl.inc" 1503 #undef GET_INTRINSIC_ATTRIBUTES 1504 1505 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1506 // There can never be multiple globals with the same name of different types, 1507 // because intrinsics must be a specific type. 1508 auto *FT = getType(M->getContext(), id, Tys); 1509 return cast<Function>( 1510 M->getOrInsertFunction( 1511 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1512 .getCallee()); 1513 } 1514 1515 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1516 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1517 #include "llvm/IR/IntrinsicImpl.inc" 1518 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1519 1520 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1521 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1522 #include "llvm/IR/IntrinsicImpl.inc" 1523 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1524 1525 using DeferredIntrinsicMatchPair = 1526 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1527 1528 static bool matchIntrinsicType( 1529 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1530 SmallVectorImpl<Type *> &ArgTys, 1531 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1532 bool IsDeferredCheck) { 1533 using namespace Intrinsic; 1534 1535 // If we ran out of descriptors, there are too many arguments. 1536 if (Infos.empty()) return true; 1537 1538 // Do this before slicing off the 'front' part 1539 auto InfosRef = Infos; 1540 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1541 DeferredChecks.emplace_back(T, InfosRef); 1542 return false; 1543 }; 1544 1545 IITDescriptor D = Infos.front(); 1546 Infos = Infos.slice(1); 1547 1548 switch (D.Kind) { 1549 case IITDescriptor::Void: return !Ty->isVoidTy(); 1550 case IITDescriptor::VarArg: return true; 1551 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1552 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1553 case IITDescriptor::Token: return !Ty->isTokenTy(); 1554 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1555 case IITDescriptor::Half: return !Ty->isHalfTy(); 1556 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1557 case IITDescriptor::Float: return !Ty->isFloatTy(); 1558 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1559 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1560 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1561 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1562 case IITDescriptor::Vector: { 1563 VectorType *VT = dyn_cast<VectorType>(Ty); 1564 return !VT || VT->getElementCount() != D.Vector_Width || 1565 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1566 DeferredChecks, IsDeferredCheck); 1567 } 1568 case IITDescriptor::Pointer: { 1569 PointerType *PT = dyn_cast<PointerType>(Ty); 1570 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1571 return true; 1572 if (!PT->isOpaque()) { 1573 /* Manually consume a pointer to empty struct descriptor, which is 1574 * used for externref. We don't want to enforce that the struct is 1575 * anonymous in this case. (This renders externref intrinsics 1576 * non-unique, but this will go away with opaque pointers anyway.) */ 1577 if (Infos.front().Kind == IITDescriptor::Struct && 1578 Infos.front().Struct_NumElements == 0) { 1579 Infos = Infos.slice(1); 1580 return false; 1581 } 1582 return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos, 1583 ArgTys, DeferredChecks, IsDeferredCheck); 1584 } 1585 // Consume IIT descriptors relating to the pointer element type. 1586 // FIXME: Intrinsic type matching of nested single value types or even 1587 // aggregates doesn't work properly with opaque pointers but hopefully 1588 // doesn't happen in practice. 1589 while (Infos.front().Kind == IITDescriptor::Pointer || 1590 Infos.front().Kind == IITDescriptor::Vector) 1591 Infos = Infos.slice(1); 1592 assert((Infos.front().Kind != IITDescriptor::Argument || 1593 Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) && 1594 "Unsupported polymorphic pointer type with opaque pointer"); 1595 Infos = Infos.slice(1); 1596 return false; 1597 } 1598 1599 case IITDescriptor::Struct: { 1600 StructType *ST = dyn_cast<StructType>(Ty); 1601 if (!ST || !ST->isLiteral() || ST->isPacked() || 1602 ST->getNumElements() != D.Struct_NumElements) 1603 return true; 1604 1605 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1606 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1607 DeferredChecks, IsDeferredCheck)) 1608 return true; 1609 return false; 1610 } 1611 1612 case IITDescriptor::Argument: 1613 // If this is the second occurrence of an argument, 1614 // verify that the later instance matches the previous instance. 1615 if (D.getArgumentNumber() < ArgTys.size()) 1616 return Ty != ArgTys[D.getArgumentNumber()]; 1617 1618 if (D.getArgumentNumber() > ArgTys.size() || 1619 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1620 return IsDeferredCheck || DeferCheck(Ty); 1621 1622 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1623 "Table consistency error"); 1624 ArgTys.push_back(Ty); 1625 1626 switch (D.getArgumentKind()) { 1627 case IITDescriptor::AK_Any: return false; // Success 1628 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1629 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1630 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1631 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1632 default: break; 1633 } 1634 llvm_unreachable("all argument kinds not covered"); 1635 1636 case IITDescriptor::ExtendArgument: { 1637 // If this is a forward reference, defer the check for later. 1638 if (D.getArgumentNumber() >= ArgTys.size()) 1639 return IsDeferredCheck || DeferCheck(Ty); 1640 1641 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1642 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1643 NewTy = VectorType::getExtendedElementVectorType(VTy); 1644 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1645 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1646 else 1647 return true; 1648 1649 return Ty != NewTy; 1650 } 1651 case IITDescriptor::TruncArgument: { 1652 // If this is a forward reference, defer the check for later. 1653 if (D.getArgumentNumber() >= ArgTys.size()) 1654 return IsDeferredCheck || DeferCheck(Ty); 1655 1656 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1657 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1658 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1659 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1660 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1661 else 1662 return true; 1663 1664 return Ty != NewTy; 1665 } 1666 case IITDescriptor::HalfVecArgument: 1667 // If this is a forward reference, defer the check for later. 1668 if (D.getArgumentNumber() >= ArgTys.size()) 1669 return IsDeferredCheck || DeferCheck(Ty); 1670 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1671 VectorType::getHalfElementsVectorType( 1672 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1673 case IITDescriptor::SameVecWidthArgument: { 1674 if (D.getArgumentNumber() >= ArgTys.size()) { 1675 // Defer check and subsequent check for the vector element type. 1676 Infos = Infos.slice(1); 1677 return IsDeferredCheck || DeferCheck(Ty); 1678 } 1679 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1680 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1681 // Both must be vectors of the same number of elements or neither. 1682 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1683 return true; 1684 Type *EltTy = Ty; 1685 if (ThisArgType) { 1686 if (ReferenceType->getElementCount() != 1687 ThisArgType->getElementCount()) 1688 return true; 1689 EltTy = ThisArgType->getElementType(); 1690 } 1691 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1692 IsDeferredCheck); 1693 } 1694 case IITDescriptor::PtrToArgument: { 1695 if (D.getArgumentNumber() >= ArgTys.size()) 1696 return IsDeferredCheck || DeferCheck(Ty); 1697 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1698 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1699 return (!ThisArgType || 1700 !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType)); 1701 } 1702 case IITDescriptor::PtrToElt: { 1703 if (D.getArgumentNumber() >= ArgTys.size()) 1704 return IsDeferredCheck || DeferCheck(Ty); 1705 VectorType * ReferenceType = 1706 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1707 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1708 1709 if (!ThisArgType || !ReferenceType) 1710 return true; 1711 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1712 ReferenceType->getElementType()); 1713 } 1714 case IITDescriptor::AnyPtrToElt: { 1715 unsigned RefArgNumber = D.getRefArgNumber(); 1716 if (RefArgNumber >= ArgTys.size()) { 1717 if (IsDeferredCheck) 1718 return true; 1719 // If forward referencing, already add the pointer type and 1720 // defer the checks for later. 1721 ArgTys.push_back(Ty); 1722 return DeferCheck(Ty); 1723 } 1724 1725 if (!IsDeferredCheck) { 1726 assert(D.getOverloadArgNumber() == ArgTys.size() && 1727 "Table consistency error"); 1728 ArgTys.push_back(Ty); 1729 } 1730 1731 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1732 auto *ThisArgType = dyn_cast<PointerType>(Ty); 1733 if (!ThisArgType || !ReferenceType) 1734 return true; 1735 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1736 ReferenceType->getElementType()); 1737 } 1738 case IITDescriptor::VecOfAnyPtrsToElt: { 1739 unsigned RefArgNumber = D.getRefArgNumber(); 1740 if (RefArgNumber >= ArgTys.size()) { 1741 if (IsDeferredCheck) 1742 return true; 1743 // If forward referencing, already add the pointer-vector type and 1744 // defer the checks for later. 1745 ArgTys.push_back(Ty); 1746 return DeferCheck(Ty); 1747 } 1748 1749 if (!IsDeferredCheck){ 1750 assert(D.getOverloadArgNumber() == ArgTys.size() && 1751 "Table consistency error"); 1752 ArgTys.push_back(Ty); 1753 } 1754 1755 // Verify the overloaded type "matches" the Ref type. 1756 // i.e. Ty is a vector with the same width as Ref. 1757 // Composed of pointers to the same element type as Ref. 1758 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1759 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1760 if (!ThisArgVecTy || !ReferenceType || 1761 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1762 return true; 1763 PointerType *ThisArgEltTy = 1764 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1765 if (!ThisArgEltTy) 1766 return true; 1767 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1768 ReferenceType->getElementType()); 1769 } 1770 case IITDescriptor::VecElementArgument: { 1771 if (D.getArgumentNumber() >= ArgTys.size()) 1772 return IsDeferredCheck ? true : DeferCheck(Ty); 1773 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1774 return !ReferenceType || Ty != ReferenceType->getElementType(); 1775 } 1776 case IITDescriptor::Subdivide2Argument: 1777 case IITDescriptor::Subdivide4Argument: { 1778 // If this is a forward reference, defer the check for later. 1779 if (D.getArgumentNumber() >= ArgTys.size()) 1780 return IsDeferredCheck || DeferCheck(Ty); 1781 1782 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1783 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1784 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1785 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1786 return Ty != NewTy; 1787 } 1788 return true; 1789 } 1790 case IITDescriptor::VecOfBitcastsToInt: { 1791 if (D.getArgumentNumber() >= ArgTys.size()) 1792 return IsDeferredCheck || DeferCheck(Ty); 1793 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1794 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1795 if (!ThisArgVecTy || !ReferenceType) 1796 return true; 1797 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1798 } 1799 } 1800 llvm_unreachable("unhandled"); 1801 } 1802 1803 Intrinsic::MatchIntrinsicTypesResult 1804 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1805 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1806 SmallVectorImpl<Type *> &ArgTys) { 1807 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1808 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1809 false)) 1810 return MatchIntrinsicTypes_NoMatchRet; 1811 1812 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1813 1814 for (auto *Ty : FTy->params()) 1815 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1816 return MatchIntrinsicTypes_NoMatchArg; 1817 1818 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1819 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1820 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1821 true)) 1822 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1823 : MatchIntrinsicTypes_NoMatchArg; 1824 } 1825 1826 return MatchIntrinsicTypes_Match; 1827 } 1828 1829 bool 1830 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1831 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1832 // If there are no descriptors left, then it can't be a vararg. 1833 if (Infos.empty()) 1834 return isVarArg; 1835 1836 // There should be only one descriptor remaining at this point. 1837 if (Infos.size() != 1) 1838 return true; 1839 1840 // Check and verify the descriptor. 1841 IITDescriptor D = Infos.front(); 1842 Infos = Infos.slice(1); 1843 if (D.Kind == IITDescriptor::VarArg) 1844 return !isVarArg; 1845 1846 return true; 1847 } 1848 1849 bool Intrinsic::getIntrinsicSignature(Function *F, 1850 SmallVectorImpl<Type *> &ArgTys) { 1851 Intrinsic::ID ID = F->getIntrinsicID(); 1852 if (!ID) 1853 return false; 1854 1855 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1856 getIntrinsicInfoTableEntries(ID, Table); 1857 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1858 1859 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1860 ArgTys) != 1861 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1862 return false; 1863 } 1864 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1865 TableRef)) 1866 return false; 1867 return true; 1868 } 1869 1870 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1871 SmallVector<Type *, 4> ArgTys; 1872 if (!getIntrinsicSignature(F, ArgTys)) 1873 return std::nullopt; 1874 1875 Intrinsic::ID ID = F->getIntrinsicID(); 1876 StringRef Name = F->getName(); 1877 std::string WantedName = 1878 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1879 if (Name == WantedName) 1880 return std::nullopt; 1881 1882 Function *NewDecl = [&] { 1883 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1884 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1885 if (ExistingF->getFunctionType() == F->getFunctionType()) 1886 return ExistingF; 1887 1888 // The name already exists, but is not a function or has the wrong 1889 // prototype. Make place for the new one by renaming the old version. 1890 // Either this old version will be removed later on or the module is 1891 // invalid and we'll get an error. 1892 ExistingGV->setName(WantedName + ".renamed"); 1893 } 1894 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1895 }(); 1896 1897 NewDecl->setCallingConv(F->getCallingConv()); 1898 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1899 "Shouldn't change the signature"); 1900 return NewDecl; 1901 } 1902 1903 static bool isPointerCastOperator(const User *U) { 1904 return isa<AddrSpaceCastOperator>(U) || isa<BitCastOperator>(U); 1905 } 1906 1907 /// hasAddressTaken - returns true if there are any uses of this function 1908 /// other than direct calls or invokes to it. Optionally ignores callback 1909 /// uses, assume like pointer annotation calls, and references in llvm.used 1910 /// and llvm.compiler.used variables. 1911 bool Function::hasAddressTaken(const User **PutOffender, 1912 bool IgnoreCallbackUses, 1913 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1914 bool IgnoreARCAttachedCall) const { 1915 for (const Use &U : uses()) { 1916 const User *FU = U.getUser(); 1917 if (isa<BlockAddress>(FU)) 1918 continue; 1919 1920 if (IgnoreCallbackUses) { 1921 AbstractCallSite ACS(&U); 1922 if (ACS && ACS.isCallbackCall()) 1923 continue; 1924 } 1925 1926 const auto *Call = dyn_cast<CallBase>(FU); 1927 if (!Call) { 1928 if (IgnoreAssumeLikeCalls && isPointerCastOperator(FU) && 1929 all_of(FU->users(), [](const User *U) { 1930 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1931 return I->isAssumeLikeIntrinsic(); 1932 return false; 1933 })) { 1934 continue; 1935 } 1936 1937 if (IgnoreLLVMUsed && !FU->user_empty()) { 1938 const User *FUU = FU; 1939 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1940 !FU->user_begin()->user_empty()) 1941 FUU = *FU->user_begin(); 1942 if (llvm::all_of(FUU->users(), [](const User *U) { 1943 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1944 return GV->hasName() && 1945 (GV->getName().equals("llvm.compiler.used") || 1946 GV->getName().equals("llvm.used")); 1947 return false; 1948 })) 1949 continue; 1950 } 1951 if (PutOffender) 1952 *PutOffender = FU; 1953 return true; 1954 } 1955 1956 if (IgnoreAssumeLikeCalls) { 1957 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1958 if (I->isAssumeLikeIntrinsic()) 1959 continue; 1960 } 1961 1962 if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) { 1963 if (IgnoreARCAttachedCall && 1964 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1965 U.getOperandNo())) 1966 continue; 1967 1968 if (PutOffender) 1969 *PutOffender = FU; 1970 return true; 1971 } 1972 } 1973 return false; 1974 } 1975 1976 bool Function::isDefTriviallyDead() const { 1977 // Check the linkage 1978 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1979 !hasAvailableExternallyLinkage()) 1980 return false; 1981 1982 // Check if the function is used by anything other than a blockaddress. 1983 for (const User *U : users()) 1984 if (!isa<BlockAddress>(U)) 1985 return false; 1986 1987 return true; 1988 } 1989 1990 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1991 /// setjmp or other function that gcc recognizes as "returning twice". 1992 bool Function::callsFunctionThatReturnsTwice() const { 1993 for (const Instruction &I : instructions(this)) 1994 if (const auto *Call = dyn_cast<CallBase>(&I)) 1995 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1996 return true; 1997 1998 return false; 1999 } 2000 2001 Constant *Function::getPersonalityFn() const { 2002 assert(hasPersonalityFn() && getNumOperands()); 2003 return cast<Constant>(Op<0>()); 2004 } 2005 2006 void Function::setPersonalityFn(Constant *Fn) { 2007 setHungoffOperand<0>(Fn); 2008 setValueSubclassDataBit(3, Fn != nullptr); 2009 } 2010 2011 Constant *Function::getPrefixData() const { 2012 assert(hasPrefixData() && getNumOperands()); 2013 return cast<Constant>(Op<1>()); 2014 } 2015 2016 void Function::setPrefixData(Constant *PrefixData) { 2017 setHungoffOperand<1>(PrefixData); 2018 setValueSubclassDataBit(1, PrefixData != nullptr); 2019 } 2020 2021 Constant *Function::getPrologueData() const { 2022 assert(hasPrologueData() && getNumOperands()); 2023 return cast<Constant>(Op<2>()); 2024 } 2025 2026 void Function::setPrologueData(Constant *PrologueData) { 2027 setHungoffOperand<2>(PrologueData); 2028 setValueSubclassDataBit(2, PrologueData != nullptr); 2029 } 2030 2031 void Function::allocHungoffUselist() { 2032 // If we've already allocated a uselist, stop here. 2033 if (getNumOperands()) 2034 return; 2035 2036 allocHungoffUses(3, /*IsPhi=*/ false); 2037 setNumHungOffUseOperands(3); 2038 2039 // Initialize the uselist with placeholder operands to allow traversal. 2040 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 2041 Op<0>().set(CPN); 2042 Op<1>().set(CPN); 2043 Op<2>().set(CPN); 2044 } 2045 2046 template <int Idx> 2047 void Function::setHungoffOperand(Constant *C) { 2048 if (C) { 2049 allocHungoffUselist(); 2050 Op<Idx>().set(C); 2051 } else if (getNumOperands()) { 2052 Op<Idx>().set( 2053 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 2054 } 2055 } 2056 2057 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 2058 assert(Bit < 16 && "SubclassData contains only 16 bits"); 2059 if (On) 2060 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 2061 else 2062 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 2063 } 2064 2065 void Function::setEntryCount(ProfileCount Count, 2066 const DenseSet<GlobalValue::GUID> *S) { 2067 #if !defined(NDEBUG) 2068 auto PrevCount = getEntryCount(); 2069 assert(!PrevCount || PrevCount->getType() == Count.getType()); 2070 #endif 2071 2072 auto ImportGUIDs = getImportGUIDs(); 2073 if (S == nullptr && ImportGUIDs.size()) 2074 S = &ImportGUIDs; 2075 2076 MDBuilder MDB(getContext()); 2077 setMetadata( 2078 LLVMContext::MD_prof, 2079 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2080 } 2081 2082 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2083 const DenseSet<GlobalValue::GUID> *Imports) { 2084 setEntryCount(ProfileCount(Count, Type), Imports); 2085 } 2086 2087 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2088 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2089 if (MD && MD->getOperand(0)) 2090 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2091 if (MDS->getString().equals("function_entry_count")) { 2092 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2093 uint64_t Count = CI->getValue().getZExtValue(); 2094 // A value of -1 is used for SamplePGO when there were no samples. 2095 // Treat this the same as unknown. 2096 if (Count == (uint64_t)-1) 2097 return std::nullopt; 2098 return ProfileCount(Count, PCT_Real); 2099 } else if (AllowSynthetic && 2100 MDS->getString().equals("synthetic_function_entry_count")) { 2101 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2102 uint64_t Count = CI->getValue().getZExtValue(); 2103 return ProfileCount(Count, PCT_Synthetic); 2104 } 2105 } 2106 return std::nullopt; 2107 } 2108 2109 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2110 DenseSet<GlobalValue::GUID> R; 2111 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2112 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2113 if (MDS->getString().equals("function_entry_count")) 2114 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2115 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2116 ->getValue() 2117 .getZExtValue()); 2118 return R; 2119 } 2120 2121 void Function::setSectionPrefix(StringRef Prefix) { 2122 MDBuilder MDB(getContext()); 2123 setMetadata(LLVMContext::MD_section_prefix, 2124 MDB.createFunctionSectionPrefix(Prefix)); 2125 } 2126 2127 std::optional<StringRef> Function::getSectionPrefix() const { 2128 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2129 assert(cast<MDString>(MD->getOperand(0)) 2130 ->getString() 2131 .equals("function_section_prefix") && 2132 "Metadata not match"); 2133 return cast<MDString>(MD->getOperand(1))->getString(); 2134 } 2135 return std::nullopt; 2136 } 2137 2138 bool Function::nullPointerIsDefined() const { 2139 return hasFnAttribute(Attribute::NullPointerIsValid); 2140 } 2141 2142 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2143 if (F && F->nullPointerIsDefined()) 2144 return true; 2145 2146 if (AS != 0) 2147 return true; 2148 2149 return false; 2150 } 2151