xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 66440a46b172c99399e3456a86b9e54d27ae51d0)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ModRef.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 uint64_t Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 MaybeAlign Argument::getParamStackAlign() const {
202   return getParent()->getParamStackAlign(getArgNo());
203 }
204 
205 Type *Argument::getParamByValType() const {
206   assert(getType()->isPointerTy() && "Only pointers have byval types");
207   return getParent()->getParamByValType(getArgNo());
208 }
209 
210 Type *Argument::getParamStructRetType() const {
211   assert(getType()->isPointerTy() && "Only pointers have sret types");
212   return getParent()->getParamStructRetType(getArgNo());
213 }
214 
215 Type *Argument::getParamByRefType() const {
216   assert(getType()->isPointerTy() && "Only pointers have byref types");
217   return getParent()->getParamByRefType(getArgNo());
218 }
219 
220 Type *Argument::getParamInAllocaType() const {
221   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
222   return getParent()->getParamInAllocaType(getArgNo());
223 }
224 
225 uint64_t Argument::getDereferenceableBytes() const {
226   assert(getType()->isPointerTy() &&
227          "Only pointers have dereferenceable bytes");
228   return getParent()->getParamDereferenceableBytes(getArgNo());
229 }
230 
231 uint64_t Argument::getDereferenceableOrNullBytes() const {
232   assert(getType()->isPointerTy() &&
233          "Only pointers have dereferenceable bytes");
234   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
235 }
236 
237 bool Argument::hasNestAttr() const {
238   if (!getType()->isPointerTy()) return false;
239   return hasAttribute(Attribute::Nest);
240 }
241 
242 bool Argument::hasNoAliasAttr() const {
243   if (!getType()->isPointerTy()) return false;
244   return hasAttribute(Attribute::NoAlias);
245 }
246 
247 bool Argument::hasNoCaptureAttr() const {
248   if (!getType()->isPointerTy()) return false;
249   return hasAttribute(Attribute::NoCapture);
250 }
251 
252 bool Argument::hasNoFreeAttr() const {
253   if (!getType()->isPointerTy()) return false;
254   return hasAttribute(Attribute::NoFree);
255 }
256 
257 bool Argument::hasStructRetAttr() const {
258   if (!getType()->isPointerTy()) return false;
259   return hasAttribute(Attribute::StructRet);
260 }
261 
262 bool Argument::hasInRegAttr() const {
263   return hasAttribute(Attribute::InReg);
264 }
265 
266 bool Argument::hasReturnedAttr() const {
267   return hasAttribute(Attribute::Returned);
268 }
269 
270 bool Argument::hasZExtAttr() const {
271   return hasAttribute(Attribute::ZExt);
272 }
273 
274 bool Argument::hasSExtAttr() const {
275   return hasAttribute(Attribute::SExt);
276 }
277 
278 bool Argument::onlyReadsMemory() const {
279   AttributeList Attrs = getParent()->getAttributes();
280   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
281          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
282 }
283 
284 void Argument::addAttrs(AttrBuilder &B) {
285   AttributeList AL = getParent()->getAttributes();
286   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
287   getParent()->setAttributes(AL);
288 }
289 
290 void Argument::addAttr(Attribute::AttrKind Kind) {
291   getParent()->addParamAttr(getArgNo(), Kind);
292 }
293 
294 void Argument::addAttr(Attribute Attr) {
295   getParent()->addParamAttr(getArgNo(), Attr);
296 }
297 
298 void Argument::removeAttr(Attribute::AttrKind Kind) {
299   getParent()->removeParamAttr(getArgNo(), Kind);
300 }
301 
302 void Argument::removeAttrs(const AttributeMask &AM) {
303   AttributeList AL = getParent()->getAttributes();
304   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
305   getParent()->setAttributes(AL);
306 }
307 
308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->hasParamAttribute(getArgNo(), Kind);
310 }
311 
312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
313   return getParent()->getParamAttribute(getArgNo(), Kind);
314 }
315 
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
319 
320 LLVMContext &Function::getContext() const {
321   return getType()->getContext();
322 }
323 
324 unsigned Function::getInstructionCount() const {
325   unsigned NumInstrs = 0;
326   for (const BasicBlock &BB : BasicBlocks)
327     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
328                                BB.instructionsWithoutDebug().end());
329   return NumInstrs;
330 }
331 
332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
333                            const Twine &N, Module &M) {
334   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
335 }
336 
337 Function *Function::createWithDefaultAttr(FunctionType *Ty,
338                                           LinkageTypes Linkage,
339                                           unsigned AddrSpace, const Twine &N,
340                                           Module *M) {
341   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
342   AttrBuilder B(F->getContext());
343   UWTableKind UWTable = M->getUwtable();
344   if (UWTable != UWTableKind::None)
345     B.addUWTableAttr(UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   if (M->getModuleFlag("function_return_thunk_extern"))
358     B.addAttribute(Attribute::FnRetThunkExtern);
359   F->addFnAttrs(B);
360   return F;
361 }
362 
363 void Function::removeFromParent() {
364   getParent()->getFunctionList().remove(getIterator());
365 }
366 
367 void Function::eraseFromParent() {
368   getParent()->getFunctionList().erase(getIterator());
369 }
370 
371 void Function::splice(Function::iterator ToIt, Function *FromF,
372                       Function::iterator FromBeginIt,
373                       Function::iterator FromEndIt) {
374 #ifdef EXPENSIVE_CHECKS
375   // Check that FromBeginIt is before FromEndIt.
376   auto FromFEnd = FromF->end();
377   for (auto It = FromBeginIt; It != FromEndIt; ++It)
378     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
379 #endif // EXPENSIVE_CHECKS
380   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
381 }
382 
383 //===----------------------------------------------------------------------===//
384 // Function Implementation
385 //===----------------------------------------------------------------------===//
386 
387 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
388   // If AS == -1 and we are passed a valid module pointer we place the function
389   // in the program address space. Otherwise we default to AS0.
390   if (AddrSpace == static_cast<unsigned>(-1))
391     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
392   return AddrSpace;
393 }
394 
395 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
396                    const Twine &name, Module *ParentModule)
397     : GlobalObject(Ty, Value::FunctionVal,
398                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
399                    computeAddrSpace(AddrSpace, ParentModule)),
400       NumArgs(Ty->getNumParams()) {
401   assert(FunctionType::isValidReturnType(getReturnType()) &&
402          "invalid return type");
403   setGlobalObjectSubClassData(0);
404 
405   // We only need a symbol table for a function if the context keeps value names
406   if (!getContext().shouldDiscardValueNames())
407     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
408 
409   // If the function has arguments, mark them as lazily built.
410   if (Ty->getNumParams())
411     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
412 
413   if (ParentModule)
414     ParentModule->getFunctionList().push_back(this);
415 
416   HasLLVMReservedName = getName().startswith("llvm.");
417   // Ensure intrinsics have the right parameter attributes.
418   // Note, the IntID field will have been set in Value::setName if this function
419   // name is a valid intrinsic ID.
420   if (IntID)
421     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
422 }
423 
424 Function::~Function() {
425   dropAllReferences();    // After this it is safe to delete instructions.
426 
427   // Delete all of the method arguments and unlink from symbol table...
428   if (Arguments)
429     clearArguments();
430 
431   // Remove the function from the on-the-side GC table.
432   clearGC();
433 }
434 
435 void Function::BuildLazyArguments() const {
436   // Create the arguments vector, all arguments start out unnamed.
437   auto *FT = getFunctionType();
438   if (NumArgs > 0) {
439     Arguments = std::allocator<Argument>().allocate(NumArgs);
440     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
441       Type *ArgTy = FT->getParamType(i);
442       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
443       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
444     }
445   }
446 
447   // Clear the lazy arguments bit.
448   unsigned SDC = getSubclassDataFromValue();
449   SDC &= ~(1 << 0);
450   const_cast<Function*>(this)->setValueSubclassData(SDC);
451   assert(!hasLazyArguments());
452 }
453 
454 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
455   return MutableArrayRef<Argument>(Args, Count);
456 }
457 
458 bool Function::isConstrainedFPIntrinsic() const {
459   switch (getIntrinsicID()) {
460 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
461   case Intrinsic::INTRINSIC:
462 #include "llvm/IR/ConstrainedOps.def"
463     return true;
464 #undef INSTRUCTION
465   default:
466     return false;
467   }
468 }
469 
470 void Function::clearArguments() {
471   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
472     A.setName("");
473     A.~Argument();
474   }
475   std::allocator<Argument>().deallocate(Arguments, NumArgs);
476   Arguments = nullptr;
477 }
478 
479 void Function::stealArgumentListFrom(Function &Src) {
480   assert(isDeclaration() && "Expected no references to current arguments");
481 
482   // Drop the current arguments, if any, and set the lazy argument bit.
483   if (!hasLazyArguments()) {
484     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
485                         [](const Argument &A) { return A.use_empty(); }) &&
486            "Expected arguments to be unused in declaration");
487     clearArguments();
488     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
489   }
490 
491   // Nothing to steal if Src has lazy arguments.
492   if (Src.hasLazyArguments())
493     return;
494 
495   // Steal arguments from Src, and fix the lazy argument bits.
496   assert(arg_size() == Src.arg_size());
497   Arguments = Src.Arguments;
498   Src.Arguments = nullptr;
499   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
500     // FIXME: This does the work of transferNodesFromList inefficiently.
501     SmallString<128> Name;
502     if (A.hasName())
503       Name = A.getName();
504     if (!Name.empty())
505       A.setName("");
506     A.setParent(this);
507     if (!Name.empty())
508       A.setName(Name);
509   }
510 
511   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
512   assert(!hasLazyArguments());
513   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
514 }
515 
516 // dropAllReferences() - This function causes all the subinstructions to "let
517 // go" of all references that they are maintaining.  This allows one to
518 // 'delete' a whole class at a time, even though there may be circular
519 // references... first all references are dropped, and all use counts go to
520 // zero.  Then everything is deleted for real.  Note that no operations are
521 // valid on an object that has "dropped all references", except operator
522 // delete.
523 //
524 void Function::dropAllReferences() {
525   setIsMaterializable(false);
526 
527   for (BasicBlock &BB : *this)
528     BB.dropAllReferences();
529 
530   // Delete all basic blocks. They are now unused, except possibly by
531   // blockaddresses, but BasicBlock's destructor takes care of those.
532   while (!BasicBlocks.empty())
533     BasicBlocks.begin()->eraseFromParent();
534 
535   // Drop uses of any optional data (real or placeholder).
536   if (getNumOperands()) {
537     User::dropAllReferences();
538     setNumHungOffUseOperands(0);
539     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
540   }
541 
542   // Metadata is stored in a side-table.
543   clearMetadata();
544 }
545 
546 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
547   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
548 }
549 
550 void Function::addFnAttr(Attribute::AttrKind Kind) {
551   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
552 }
553 
554 void Function::addFnAttr(StringRef Kind, StringRef Val) {
555   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
556 }
557 
558 void Function::addFnAttr(Attribute Attr) {
559   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
560 }
561 
562 void Function::addFnAttrs(const AttrBuilder &Attrs) {
563   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
564 }
565 
566 void Function::addRetAttr(Attribute::AttrKind Kind) {
567   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
568 }
569 
570 void Function::addRetAttr(Attribute Attr) {
571   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
572 }
573 
574 void Function::addRetAttrs(const AttrBuilder &Attrs) {
575   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
576 }
577 
578 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
579   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
580 }
581 
582 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
583   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
584 }
585 
586 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
587   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
588 }
589 
590 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
591   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
592 }
593 
594 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
595   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
596 }
597 
598 void Function::removeFnAttr(Attribute::AttrKind Kind) {
599   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
600 }
601 
602 void Function::removeFnAttr(StringRef Kind) {
603   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
604 }
605 
606 void Function::removeFnAttrs(const AttributeMask &AM) {
607   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
608 }
609 
610 void Function::removeRetAttr(Attribute::AttrKind Kind) {
611   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
612 }
613 
614 void Function::removeRetAttr(StringRef Kind) {
615   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
616 }
617 
618 void Function::removeRetAttrs(const AttributeMask &Attrs) {
619   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
620 }
621 
622 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
623   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
624 }
625 
626 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
627   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
628 }
629 
630 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
631   AttributeSets =
632       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
633 }
634 
635 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
636   AttributeSets =
637       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
638 }
639 
640 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
641   return AttributeSets.hasFnAttr(Kind);
642 }
643 
644 bool Function::hasFnAttribute(StringRef Kind) const {
645   return AttributeSets.hasFnAttr(Kind);
646 }
647 
648 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
649   return AttributeSets.hasRetAttr(Kind);
650 }
651 
652 bool Function::hasParamAttribute(unsigned ArgNo,
653                                  Attribute::AttrKind Kind) const {
654   return AttributeSets.hasParamAttr(ArgNo, Kind);
655 }
656 
657 Attribute Function::getAttributeAtIndex(unsigned i,
658                                         Attribute::AttrKind Kind) const {
659   return AttributeSets.getAttributeAtIndex(i, Kind);
660 }
661 
662 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
663   return AttributeSets.getAttributeAtIndex(i, Kind);
664 }
665 
666 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
667   return AttributeSets.getFnAttr(Kind);
668 }
669 
670 Attribute Function::getFnAttribute(StringRef Kind) const {
671   return AttributeSets.getFnAttr(Kind);
672 }
673 
674 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
675                                                  uint64_t Default) const {
676   Attribute A = getFnAttribute(Name);
677   uint64_t Result = Default;
678   if (A.isStringAttribute()) {
679     StringRef Str = A.getValueAsString();
680     if (Str.getAsInteger(0, Result))
681       getContext().emitError("cannot parse integer attribute " + Name);
682   }
683 
684   return Result;
685 }
686 
687 /// gets the specified attribute from the list of attributes.
688 Attribute Function::getParamAttribute(unsigned ArgNo,
689                                       Attribute::AttrKind Kind) const {
690   return AttributeSets.getParamAttr(ArgNo, Kind);
691 }
692 
693 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
694                                                  uint64_t Bytes) {
695   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
696                                                                   ArgNo, Bytes);
697 }
698 
699 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
700   if (&FPType == &APFloat::IEEEsingle()) {
701     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
702     StringRef Val = Attr.getValueAsString();
703     if (!Val.empty())
704       return parseDenormalFPAttribute(Val);
705 
706     // If the f32 variant of the attribute isn't specified, try to use the
707     // generic one.
708   }
709 
710   Attribute Attr = getFnAttribute("denormal-fp-math");
711   return parseDenormalFPAttribute(Attr.getValueAsString());
712 }
713 
714 const std::string &Function::getGC() const {
715   assert(hasGC() && "Function has no collector");
716   return getContext().getGC(*this);
717 }
718 
719 void Function::setGC(std::string Str) {
720   setValueSubclassDataBit(14, !Str.empty());
721   getContext().setGC(*this, std::move(Str));
722 }
723 
724 void Function::clearGC() {
725   if (!hasGC())
726     return;
727   getContext().deleteGC(*this);
728   setValueSubclassDataBit(14, false);
729 }
730 
731 bool Function::hasStackProtectorFnAttr() const {
732   return hasFnAttribute(Attribute::StackProtect) ||
733          hasFnAttribute(Attribute::StackProtectStrong) ||
734          hasFnAttribute(Attribute::StackProtectReq);
735 }
736 
737 /// Copy all additional attributes (those not needed to create a Function) from
738 /// the Function Src to this one.
739 void Function::copyAttributesFrom(const Function *Src) {
740   GlobalObject::copyAttributesFrom(Src);
741   setCallingConv(Src->getCallingConv());
742   setAttributes(Src->getAttributes());
743   if (Src->hasGC())
744     setGC(Src->getGC());
745   else
746     clearGC();
747   if (Src->hasPersonalityFn())
748     setPersonalityFn(Src->getPersonalityFn());
749   if (Src->hasPrefixData())
750     setPrefixData(Src->getPrefixData());
751   if (Src->hasPrologueData())
752     setPrologueData(Src->getPrologueData());
753 }
754 
755 MemoryEffects Function::getMemoryEffects() const {
756   return getAttributes().getMemoryEffects();
757 }
758 void Function::setMemoryEffects(MemoryEffects ME) {
759   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
760 }
761 
762 /// Determine if the function does not access memory.
763 bool Function::doesNotAccessMemory() const {
764   return getMemoryEffects().doesNotAccessMemory();
765 }
766 void Function::setDoesNotAccessMemory() {
767   setMemoryEffects(MemoryEffects::none());
768 }
769 
770 /// Determine if the function does not access or only reads memory.
771 bool Function::onlyReadsMemory() const {
772   return getMemoryEffects().onlyReadsMemory();
773 }
774 void Function::setOnlyReadsMemory() {
775   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
776 }
777 
778 /// Determine if the function does not access or only writes memory.
779 bool Function::onlyWritesMemory() const {
780   return getMemoryEffects().onlyWritesMemory();
781 }
782 void Function::setOnlyWritesMemory() {
783   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
784 }
785 
786 /// Determine if the call can access memmory only using pointers based
787 /// on its arguments.
788 bool Function::onlyAccessesArgMemory() const {
789   return getMemoryEffects().onlyAccessesArgPointees();
790 }
791 void Function::setOnlyAccessesArgMemory() {
792   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
793 }
794 
795 /// Determine if the function may only access memory that is
796 ///  inaccessible from the IR.
797 bool Function::onlyAccessesInaccessibleMemory() const {
798   return getMemoryEffects().onlyAccessesInaccessibleMem();
799 }
800 void Function::setOnlyAccessesInaccessibleMemory() {
801   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
802 }
803 
804 /// Determine if the function may only access memory that is
805 ///  either inaccessible from the IR or pointed to by its arguments.
806 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
807   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
808 }
809 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
810   setMemoryEffects(getMemoryEffects() &
811                    MemoryEffects::inaccessibleOrArgMemOnly());
812 }
813 
814 /// Table of string intrinsic names indexed by enum value.
815 static const char * const IntrinsicNameTable[] = {
816   "not_intrinsic",
817 #define GET_INTRINSIC_NAME_TABLE
818 #include "llvm/IR/IntrinsicImpl.inc"
819 #undef GET_INTRINSIC_NAME_TABLE
820 };
821 
822 /// Table of per-target intrinsic name tables.
823 #define GET_INTRINSIC_TARGET_DATA
824 #include "llvm/IR/IntrinsicImpl.inc"
825 #undef GET_INTRINSIC_TARGET_DATA
826 
827 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
828   return IID > TargetInfos[0].Count;
829 }
830 
831 bool Function::isTargetIntrinsic() const {
832   return isTargetIntrinsic(IntID);
833 }
834 
835 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
836 /// target as \c Name, or the generic table if \c Name is not target specific.
837 ///
838 /// Returns the relevant slice of \c IntrinsicNameTable
839 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
840   assert(Name.startswith("llvm."));
841 
842   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
843   // Drop "llvm." and take the first dotted component. That will be the target
844   // if this is target specific.
845   StringRef Target = Name.drop_front(5).split('.').first;
846   auto It = partition_point(
847       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
848   // We've either found the target or just fall back to the generic set, which
849   // is always first.
850   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
851   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
852 }
853 
854 /// This does the actual lookup of an intrinsic ID which
855 /// matches the given function name.
856 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
857   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
858   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
859   if (Idx == -1)
860     return Intrinsic::not_intrinsic;
861 
862   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
863   // an index into a sub-table.
864   int Adjust = NameTable.data() - IntrinsicNameTable;
865   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
866 
867   // If the intrinsic is not overloaded, require an exact match. If it is
868   // overloaded, require either exact or prefix match.
869   const auto MatchSize = strlen(NameTable[Idx]);
870   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
871   bool IsExactMatch = Name.size() == MatchSize;
872   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
873                                                      : Intrinsic::not_intrinsic;
874 }
875 
876 void Function::recalculateIntrinsicID() {
877   StringRef Name = getName();
878   if (!Name.startswith("llvm.")) {
879     HasLLVMReservedName = false;
880     IntID = Intrinsic::not_intrinsic;
881     return;
882   }
883   HasLLVMReservedName = true;
884   IntID = lookupIntrinsicID(Name);
885 }
886 
887 /// Returns a stable mangling for the type specified for use in the name
888 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
889 /// of named types is simply their name.  Manglings for unnamed types consist
890 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
891 /// combined with the mangling of their component types.  A vararg function
892 /// type will have a suffix of 'vararg'.  Since function types can contain
893 /// other function types, we close a function type mangling with suffix 'f'
894 /// which can't be confused with it's prefix.  This ensures we don't have
895 /// collisions between two unrelated function types. Otherwise, you might
896 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
897 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
898 /// indicating that extra care must be taken to ensure a unique name.
899 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
900   std::string Result;
901   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
902     Result += "p" + utostr(PTyp->getAddressSpace());
903     // Opaque pointer doesn't have pointee type information, so we just mangle
904     // address space for opaque pointer.
905     if (!PTyp->isOpaque())
906       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
907                                   HasUnnamedType);
908   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
909     Result += "a" + utostr(ATyp->getNumElements()) +
910               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
911   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
912     if (!STyp->isLiteral()) {
913       Result += "s_";
914       if (STyp->hasName())
915         Result += STyp->getName();
916       else
917         HasUnnamedType = true;
918     } else {
919       Result += "sl_";
920       for (auto *Elem : STyp->elements())
921         Result += getMangledTypeStr(Elem, HasUnnamedType);
922     }
923     // Ensure nested structs are distinguishable.
924     Result += "s";
925   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
926     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
927     for (size_t i = 0; i < FT->getNumParams(); i++)
928       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
929     if (FT->isVarArg())
930       Result += "vararg";
931     // Ensure nested function types are distinguishable.
932     Result += "f";
933   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
934     ElementCount EC = VTy->getElementCount();
935     if (EC.isScalable())
936       Result += "nx";
937     Result += "v" + utostr(EC.getKnownMinValue()) +
938               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
939   } else if (Ty) {
940     switch (Ty->getTypeID()) {
941     default: llvm_unreachable("Unhandled type");
942     case Type::VoidTyID:      Result += "isVoid";   break;
943     case Type::MetadataTyID:  Result += "Metadata"; break;
944     case Type::HalfTyID:      Result += "f16";      break;
945     case Type::BFloatTyID:    Result += "bf16";     break;
946     case Type::FloatTyID:     Result += "f32";      break;
947     case Type::DoubleTyID:    Result += "f64";      break;
948     case Type::X86_FP80TyID:  Result += "f80";      break;
949     case Type::FP128TyID:     Result += "f128";     break;
950     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
951     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
952     case Type::X86_AMXTyID:   Result += "x86amx";   break;
953     case Type::IntegerTyID:
954       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
955       break;
956     }
957   }
958   return Result;
959 }
960 
961 StringRef Intrinsic::getBaseName(ID id) {
962   assert(id < num_intrinsics && "Invalid intrinsic ID!");
963   return IntrinsicNameTable[id];
964 }
965 
966 StringRef Intrinsic::getName(ID id) {
967   assert(id < num_intrinsics && "Invalid intrinsic ID!");
968   assert(!Intrinsic::isOverloaded(id) &&
969          "This version of getName does not support overloading");
970   return getBaseName(id);
971 }
972 
973 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
974                                         Module *M, FunctionType *FT,
975                                         bool EarlyModuleCheck) {
976 
977   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
978   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
979          "This version of getName is for overloaded intrinsics only");
980   (void)EarlyModuleCheck;
981   assert((!EarlyModuleCheck || M ||
982           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
983          "Intrinsic overloading on pointer types need to provide a Module");
984   bool HasUnnamedType = false;
985   std::string Result(Intrinsic::getBaseName(Id));
986   for (Type *Ty : Tys)
987     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
988   if (HasUnnamedType) {
989     assert(M && "unnamed types need a module");
990     if (!FT)
991       FT = Intrinsic::getType(M->getContext(), Id, Tys);
992     else
993       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
994              "Provided FunctionType must match arguments");
995     return M->getUniqueIntrinsicName(Result, Id, FT);
996   }
997   return Result;
998 }
999 
1000 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1001                                FunctionType *FT) {
1002   assert(M && "We need to have a Module");
1003   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1004 }
1005 
1006 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1007   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1008 }
1009 
1010 /// IIT_Info - These are enumerators that describe the entries returned by the
1011 /// getIntrinsicInfoTableEntries function.
1012 ///
1013 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
1014 enum IIT_Info {
1015   // Common values should be encoded with 0-15.
1016   IIT_Done = 0,
1017   IIT_I1 = 1,
1018   IIT_I8 = 2,
1019   IIT_I16 = 3,
1020   IIT_I32 = 4,
1021   IIT_I64 = 5,
1022   IIT_F16 = 6,
1023   IIT_F32 = 7,
1024   IIT_F64 = 8,
1025   IIT_V2 = 9,
1026   IIT_V4 = 10,
1027   IIT_V8 = 11,
1028   IIT_V16 = 12,
1029   IIT_V32 = 13,
1030   IIT_PTR = 14,
1031   IIT_ARG = 15,
1032 
1033   // Values from 16+ are only encodable with the inefficient encoding.
1034   IIT_V64 = 16,
1035   IIT_MMX = 17,
1036   IIT_TOKEN = 18,
1037   IIT_METADATA = 19,
1038   IIT_EMPTYSTRUCT = 20,
1039   IIT_STRUCT2 = 21,
1040   IIT_STRUCT3 = 22,
1041   IIT_STRUCT4 = 23,
1042   IIT_STRUCT5 = 24,
1043   IIT_EXTEND_ARG = 25,
1044   IIT_TRUNC_ARG = 26,
1045   IIT_ANYPTR = 27,
1046   IIT_V1 = 28,
1047   IIT_VARARG = 29,
1048   IIT_HALF_VEC_ARG = 30,
1049   IIT_SAME_VEC_WIDTH_ARG = 31,
1050   IIT_PTR_TO_ARG = 32,
1051   IIT_PTR_TO_ELT = 33,
1052   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
1053   IIT_I128 = 35,
1054   IIT_V512 = 36,
1055   IIT_V1024 = 37,
1056   IIT_STRUCT6 = 38,
1057   IIT_STRUCT7 = 39,
1058   IIT_STRUCT8 = 40,
1059   IIT_F128 = 41,
1060   IIT_VEC_ELEMENT = 42,
1061   IIT_SCALABLE_VEC = 43,
1062   IIT_SUBDIVIDE2_ARG = 44,
1063   IIT_SUBDIVIDE4_ARG = 45,
1064   IIT_VEC_OF_BITCASTS_TO_INT = 46,
1065   IIT_V128 = 47,
1066   IIT_BF16 = 48,
1067   IIT_STRUCT9 = 49,
1068   IIT_V256 = 50,
1069   IIT_AMX = 51,
1070   IIT_PPCF128 = 52,
1071   IIT_V3 = 53,
1072   IIT_EXTERNREF = 54,
1073   IIT_FUNCREF = 55,
1074   IIT_ANYPTR_TO_ELT = 56,
1075   IIT_I2 = 57,
1076   IIT_I4 = 58,
1077 };
1078 
1079 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1080                       IIT_Info LastInfo,
1081                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1082   using namespace Intrinsic;
1083 
1084   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1085 
1086   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1087   unsigned StructElts = 2;
1088 
1089   switch (Info) {
1090   case IIT_Done:
1091     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1092     return;
1093   case IIT_VARARG:
1094     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1095     return;
1096   case IIT_MMX:
1097     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1098     return;
1099   case IIT_AMX:
1100     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1101     return;
1102   case IIT_TOKEN:
1103     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1104     return;
1105   case IIT_METADATA:
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1107     return;
1108   case IIT_F16:
1109     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1110     return;
1111   case IIT_BF16:
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1113     return;
1114   case IIT_F32:
1115     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1116     return;
1117   case IIT_F64:
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1119     return;
1120   case IIT_F128:
1121     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1122     return;
1123   case IIT_PPCF128:
1124     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1125     return;
1126   case IIT_I1:
1127     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1128     return;
1129   case IIT_I2:
1130     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1131     return;
1132   case IIT_I4:
1133     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1134     return;
1135   case IIT_I8:
1136     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1137     return;
1138   case IIT_I16:
1139     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1140     return;
1141   case IIT_I32:
1142     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1143     return;
1144   case IIT_I64:
1145     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1146     return;
1147   case IIT_I128:
1148     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1149     return;
1150   case IIT_V1:
1151     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1152     DecodeIITType(NextElt, Infos, Info, OutputTable);
1153     return;
1154   case IIT_V2:
1155     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1156     DecodeIITType(NextElt, Infos, Info, OutputTable);
1157     return;
1158   case IIT_V3:
1159     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1160     DecodeIITType(NextElt, Infos, Info, OutputTable);
1161     return;
1162   case IIT_V4:
1163     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1164     DecodeIITType(NextElt, Infos, Info, OutputTable);
1165     return;
1166   case IIT_V8:
1167     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1168     DecodeIITType(NextElt, Infos, Info, OutputTable);
1169     return;
1170   case IIT_V16:
1171     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1172     DecodeIITType(NextElt, Infos, Info, OutputTable);
1173     return;
1174   case IIT_V32:
1175     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1176     DecodeIITType(NextElt, Infos, Info, OutputTable);
1177     return;
1178   case IIT_V64:
1179     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1180     DecodeIITType(NextElt, Infos, Info, OutputTable);
1181     return;
1182   case IIT_V128:
1183     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1184     DecodeIITType(NextElt, Infos, Info, OutputTable);
1185     return;
1186   case IIT_V256:
1187     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1188     DecodeIITType(NextElt, Infos, Info, OutputTable);
1189     return;
1190   case IIT_V512:
1191     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1192     DecodeIITType(NextElt, Infos, Info, OutputTable);
1193     return;
1194   case IIT_V1024:
1195     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1196     DecodeIITType(NextElt, Infos, Info, OutputTable);
1197     return;
1198   case IIT_EXTERNREF:
1199     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1200     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1201     return;
1202   case IIT_FUNCREF:
1203     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1204     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1205     return;
1206   case IIT_PTR:
1207     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1208     DecodeIITType(NextElt, Infos, Info, OutputTable);
1209     return;
1210   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1211     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1212                                              Infos[NextElt++]));
1213     DecodeIITType(NextElt, Infos, Info, OutputTable);
1214     return;
1215   }
1216   case IIT_ARG: {
1217     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1218     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1219     return;
1220   }
1221   case IIT_EXTEND_ARG: {
1222     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1223     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1224                                              ArgInfo));
1225     return;
1226   }
1227   case IIT_TRUNC_ARG: {
1228     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1229     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1230                                              ArgInfo));
1231     return;
1232   }
1233   case IIT_HALF_VEC_ARG: {
1234     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1235     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1236                                              ArgInfo));
1237     return;
1238   }
1239   case IIT_SAME_VEC_WIDTH_ARG: {
1240     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1241     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1242                                              ArgInfo));
1243     return;
1244   }
1245   case IIT_PTR_TO_ARG: {
1246     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1247     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1248                                              ArgInfo));
1249     return;
1250   }
1251   case IIT_PTR_TO_ELT: {
1252     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1253     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1254     return;
1255   }
1256   case IIT_ANYPTR_TO_ELT: {
1257     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1258     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1259     OutputTable.push_back(
1260         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1261     return;
1262   }
1263   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1264     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1265     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1266     OutputTable.push_back(
1267         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1268     return;
1269   }
1270   case IIT_EMPTYSTRUCT:
1271     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1272     return;
1273   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1274   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1275   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1276   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1277   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1278   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1279   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1280   case IIT_STRUCT2: {
1281     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1282 
1283     for (unsigned i = 0; i != StructElts; ++i)
1284       DecodeIITType(NextElt, Infos, Info, OutputTable);
1285     return;
1286   }
1287   case IIT_SUBDIVIDE2_ARG: {
1288     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1289     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1290                                              ArgInfo));
1291     return;
1292   }
1293   case IIT_SUBDIVIDE4_ARG: {
1294     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1295     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1296                                              ArgInfo));
1297     return;
1298   }
1299   case IIT_VEC_ELEMENT: {
1300     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1301     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1302                                              ArgInfo));
1303     return;
1304   }
1305   case IIT_SCALABLE_VEC: {
1306     DecodeIITType(NextElt, Infos, Info, OutputTable);
1307     return;
1308   }
1309   case IIT_VEC_OF_BITCASTS_TO_INT: {
1310     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1311     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1312                                              ArgInfo));
1313     return;
1314   }
1315   }
1316   llvm_unreachable("unhandled");
1317 }
1318 
1319 #define GET_INTRINSIC_GENERATOR_GLOBAL
1320 #include "llvm/IR/IntrinsicImpl.inc"
1321 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1322 
1323 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1324                                              SmallVectorImpl<IITDescriptor> &T){
1325   // Check to see if the intrinsic's type was expressible by the table.
1326   unsigned TableVal = IIT_Table[id-1];
1327 
1328   // Decode the TableVal into an array of IITValues.
1329   SmallVector<unsigned char, 8> IITValues;
1330   ArrayRef<unsigned char> IITEntries;
1331   unsigned NextElt = 0;
1332   if ((TableVal >> 31) != 0) {
1333     // This is an offset into the IIT_LongEncodingTable.
1334     IITEntries = IIT_LongEncodingTable;
1335 
1336     // Strip sentinel bit.
1337     NextElt = (TableVal << 1) >> 1;
1338   } else {
1339     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1340     // into a single word in the table itself, decode it now.
1341     do {
1342       IITValues.push_back(TableVal & 0xF);
1343       TableVal >>= 4;
1344     } while (TableVal);
1345 
1346     IITEntries = IITValues;
1347     NextElt = 0;
1348   }
1349 
1350   // Okay, decode the table into the output vector of IITDescriptors.
1351   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1352   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1353     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1354 }
1355 
1356 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1357                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1358   using namespace Intrinsic;
1359 
1360   IITDescriptor D = Infos.front();
1361   Infos = Infos.slice(1);
1362 
1363   switch (D.Kind) {
1364   case IITDescriptor::Void: return Type::getVoidTy(Context);
1365   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1366   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1367   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1368   case IITDescriptor::Token: return Type::getTokenTy(Context);
1369   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1370   case IITDescriptor::Half: return Type::getHalfTy(Context);
1371   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1372   case IITDescriptor::Float: return Type::getFloatTy(Context);
1373   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1374   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1375   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1376 
1377   case IITDescriptor::Integer:
1378     return IntegerType::get(Context, D.Integer_Width);
1379   case IITDescriptor::Vector:
1380     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1381                            D.Vector_Width);
1382   case IITDescriptor::Pointer:
1383     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1384                             D.Pointer_AddressSpace);
1385   case IITDescriptor::Struct: {
1386     SmallVector<Type *, 8> Elts;
1387     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1388       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1389     return StructType::get(Context, Elts);
1390   }
1391   case IITDescriptor::Argument:
1392     return Tys[D.getArgumentNumber()];
1393   case IITDescriptor::ExtendArgument: {
1394     Type *Ty = Tys[D.getArgumentNumber()];
1395     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1396       return VectorType::getExtendedElementVectorType(VTy);
1397 
1398     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1399   }
1400   case IITDescriptor::TruncArgument: {
1401     Type *Ty = Tys[D.getArgumentNumber()];
1402     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1403       return VectorType::getTruncatedElementVectorType(VTy);
1404 
1405     IntegerType *ITy = cast<IntegerType>(Ty);
1406     assert(ITy->getBitWidth() % 2 == 0);
1407     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1408   }
1409   case IITDescriptor::Subdivide2Argument:
1410   case IITDescriptor::Subdivide4Argument: {
1411     Type *Ty = Tys[D.getArgumentNumber()];
1412     VectorType *VTy = dyn_cast<VectorType>(Ty);
1413     assert(VTy && "Expected an argument of Vector Type");
1414     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1415     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1416   }
1417   case IITDescriptor::HalfVecArgument:
1418     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1419                                                   Tys[D.getArgumentNumber()]));
1420   case IITDescriptor::SameVecWidthArgument: {
1421     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1422     Type *Ty = Tys[D.getArgumentNumber()];
1423     if (auto *VTy = dyn_cast<VectorType>(Ty))
1424       return VectorType::get(EltTy, VTy->getElementCount());
1425     return EltTy;
1426   }
1427   case IITDescriptor::PtrToArgument: {
1428     Type *Ty = Tys[D.getArgumentNumber()];
1429     return PointerType::getUnqual(Ty);
1430   }
1431   case IITDescriptor::PtrToElt: {
1432     Type *Ty = Tys[D.getArgumentNumber()];
1433     VectorType *VTy = dyn_cast<VectorType>(Ty);
1434     if (!VTy)
1435       llvm_unreachable("Expected an argument of Vector Type");
1436     Type *EltTy = VTy->getElementType();
1437     return PointerType::getUnqual(EltTy);
1438   }
1439   case IITDescriptor::VecElementArgument: {
1440     Type *Ty = Tys[D.getArgumentNumber()];
1441     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1442       return VTy->getElementType();
1443     llvm_unreachable("Expected an argument of Vector Type");
1444   }
1445   case IITDescriptor::VecOfBitcastsToInt: {
1446     Type *Ty = Tys[D.getArgumentNumber()];
1447     VectorType *VTy = dyn_cast<VectorType>(Ty);
1448     assert(VTy && "Expected an argument of Vector Type");
1449     return VectorType::getInteger(VTy);
1450   }
1451   case IITDescriptor::VecOfAnyPtrsToElt:
1452     // Return the overloaded type (which determines the pointers address space)
1453     return Tys[D.getOverloadArgNumber()];
1454   case IITDescriptor::AnyPtrToElt:
1455     // Return the overloaded type (which determines the pointers address space)
1456     return Tys[D.getOverloadArgNumber()];
1457   }
1458   llvm_unreachable("unhandled");
1459 }
1460 
1461 FunctionType *Intrinsic::getType(LLVMContext &Context,
1462                                  ID id, ArrayRef<Type*> Tys) {
1463   SmallVector<IITDescriptor, 8> Table;
1464   getIntrinsicInfoTableEntries(id, Table);
1465 
1466   ArrayRef<IITDescriptor> TableRef = Table;
1467   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1468 
1469   SmallVector<Type*, 8> ArgTys;
1470   while (!TableRef.empty())
1471     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1472 
1473   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1474   // If we see void type as the type of the last argument, it is vararg intrinsic
1475   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1476     ArgTys.pop_back();
1477     return FunctionType::get(ResultTy, ArgTys, true);
1478   }
1479   return FunctionType::get(ResultTy, ArgTys, false);
1480 }
1481 
1482 bool Intrinsic::isOverloaded(ID id) {
1483 #define GET_INTRINSIC_OVERLOAD_TABLE
1484 #include "llvm/IR/IntrinsicImpl.inc"
1485 #undef GET_INTRINSIC_OVERLOAD_TABLE
1486 }
1487 
1488 bool Intrinsic::isLeaf(ID id) {
1489   switch (id) {
1490   default:
1491     return true;
1492 
1493   case Intrinsic::experimental_gc_statepoint:
1494   case Intrinsic::experimental_patchpoint_void:
1495   case Intrinsic::experimental_patchpoint_i64:
1496     return false;
1497   }
1498 }
1499 
1500 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1501 #define GET_INTRINSIC_ATTRIBUTES
1502 #include "llvm/IR/IntrinsicImpl.inc"
1503 #undef GET_INTRINSIC_ATTRIBUTES
1504 
1505 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1506   // There can never be multiple globals with the same name of different types,
1507   // because intrinsics must be a specific type.
1508   auto *FT = getType(M->getContext(), id, Tys);
1509   return cast<Function>(
1510       M->getOrInsertFunction(
1511            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1512           .getCallee());
1513 }
1514 
1515 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1516 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1517 #include "llvm/IR/IntrinsicImpl.inc"
1518 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1519 
1520 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1521 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1522 #include "llvm/IR/IntrinsicImpl.inc"
1523 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1524 
1525 using DeferredIntrinsicMatchPair =
1526     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1527 
1528 static bool matchIntrinsicType(
1529     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1530     SmallVectorImpl<Type *> &ArgTys,
1531     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1532     bool IsDeferredCheck) {
1533   using namespace Intrinsic;
1534 
1535   // If we ran out of descriptors, there are too many arguments.
1536   if (Infos.empty()) return true;
1537 
1538   // Do this before slicing off the 'front' part
1539   auto InfosRef = Infos;
1540   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1541     DeferredChecks.emplace_back(T, InfosRef);
1542     return false;
1543   };
1544 
1545   IITDescriptor D = Infos.front();
1546   Infos = Infos.slice(1);
1547 
1548   switch (D.Kind) {
1549     case IITDescriptor::Void: return !Ty->isVoidTy();
1550     case IITDescriptor::VarArg: return true;
1551     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1552     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1553     case IITDescriptor::Token: return !Ty->isTokenTy();
1554     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1555     case IITDescriptor::Half: return !Ty->isHalfTy();
1556     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1557     case IITDescriptor::Float: return !Ty->isFloatTy();
1558     case IITDescriptor::Double: return !Ty->isDoubleTy();
1559     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1560     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1561     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1562     case IITDescriptor::Vector: {
1563       VectorType *VT = dyn_cast<VectorType>(Ty);
1564       return !VT || VT->getElementCount() != D.Vector_Width ||
1565              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1566                                 DeferredChecks, IsDeferredCheck);
1567     }
1568     case IITDescriptor::Pointer: {
1569       PointerType *PT = dyn_cast<PointerType>(Ty);
1570       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1571         return true;
1572       if (!PT->isOpaque()) {
1573         /* Manually consume a pointer to empty struct descriptor, which is
1574          * used for externref. We don't want to enforce that the struct is
1575          * anonymous in this case. (This renders externref intrinsics
1576          * non-unique, but this will go away with opaque pointers anyway.) */
1577         if (Infos.front().Kind == IITDescriptor::Struct &&
1578             Infos.front().Struct_NumElements == 0) {
1579           Infos = Infos.slice(1);
1580           return false;
1581         }
1582         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1583                                   ArgTys, DeferredChecks, IsDeferredCheck);
1584       }
1585       // Consume IIT descriptors relating to the pointer element type.
1586       // FIXME: Intrinsic type matching of nested single value types or even
1587       // aggregates doesn't work properly with opaque pointers but hopefully
1588       // doesn't happen in practice.
1589       while (Infos.front().Kind == IITDescriptor::Pointer ||
1590              Infos.front().Kind == IITDescriptor::Vector)
1591         Infos = Infos.slice(1);
1592       assert((Infos.front().Kind != IITDescriptor::Argument ||
1593               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1594              "Unsupported polymorphic pointer type with opaque pointer");
1595       Infos = Infos.slice(1);
1596       return false;
1597     }
1598 
1599     case IITDescriptor::Struct: {
1600       StructType *ST = dyn_cast<StructType>(Ty);
1601       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1602           ST->getNumElements() != D.Struct_NumElements)
1603         return true;
1604 
1605       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1606         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1607                                DeferredChecks, IsDeferredCheck))
1608           return true;
1609       return false;
1610     }
1611 
1612     case IITDescriptor::Argument:
1613       // If this is the second occurrence of an argument,
1614       // verify that the later instance matches the previous instance.
1615       if (D.getArgumentNumber() < ArgTys.size())
1616         return Ty != ArgTys[D.getArgumentNumber()];
1617 
1618       if (D.getArgumentNumber() > ArgTys.size() ||
1619           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1620         return IsDeferredCheck || DeferCheck(Ty);
1621 
1622       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1623              "Table consistency error");
1624       ArgTys.push_back(Ty);
1625 
1626       switch (D.getArgumentKind()) {
1627         case IITDescriptor::AK_Any:        return false; // Success
1628         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1629         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1630         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1631         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1632         default:                           break;
1633       }
1634       llvm_unreachable("all argument kinds not covered");
1635 
1636     case IITDescriptor::ExtendArgument: {
1637       // If this is a forward reference, defer the check for later.
1638       if (D.getArgumentNumber() >= ArgTys.size())
1639         return IsDeferredCheck || DeferCheck(Ty);
1640 
1641       Type *NewTy = ArgTys[D.getArgumentNumber()];
1642       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1643         NewTy = VectorType::getExtendedElementVectorType(VTy);
1644       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1645         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1646       else
1647         return true;
1648 
1649       return Ty != NewTy;
1650     }
1651     case IITDescriptor::TruncArgument: {
1652       // If this is a forward reference, defer the check for later.
1653       if (D.getArgumentNumber() >= ArgTys.size())
1654         return IsDeferredCheck || DeferCheck(Ty);
1655 
1656       Type *NewTy = ArgTys[D.getArgumentNumber()];
1657       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1658         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1659       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1660         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1661       else
1662         return true;
1663 
1664       return Ty != NewTy;
1665     }
1666     case IITDescriptor::HalfVecArgument:
1667       // If this is a forward reference, defer the check for later.
1668       if (D.getArgumentNumber() >= ArgTys.size())
1669         return IsDeferredCheck || DeferCheck(Ty);
1670       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1671              VectorType::getHalfElementsVectorType(
1672                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1673     case IITDescriptor::SameVecWidthArgument: {
1674       if (D.getArgumentNumber() >= ArgTys.size()) {
1675         // Defer check and subsequent check for the vector element type.
1676         Infos = Infos.slice(1);
1677         return IsDeferredCheck || DeferCheck(Ty);
1678       }
1679       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1680       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1681       // Both must be vectors of the same number of elements or neither.
1682       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1683         return true;
1684       Type *EltTy = Ty;
1685       if (ThisArgType) {
1686         if (ReferenceType->getElementCount() !=
1687             ThisArgType->getElementCount())
1688           return true;
1689         EltTy = ThisArgType->getElementType();
1690       }
1691       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1692                                 IsDeferredCheck);
1693     }
1694     case IITDescriptor::PtrToArgument: {
1695       if (D.getArgumentNumber() >= ArgTys.size())
1696         return IsDeferredCheck || DeferCheck(Ty);
1697       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1698       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1699       return (!ThisArgType ||
1700               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1701     }
1702     case IITDescriptor::PtrToElt: {
1703       if (D.getArgumentNumber() >= ArgTys.size())
1704         return IsDeferredCheck || DeferCheck(Ty);
1705       VectorType * ReferenceType =
1706         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1707       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1708 
1709       if (!ThisArgType || !ReferenceType)
1710         return true;
1711       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1712           ReferenceType->getElementType());
1713     }
1714     case IITDescriptor::AnyPtrToElt: {
1715       unsigned RefArgNumber = D.getRefArgNumber();
1716       if (RefArgNumber >= ArgTys.size()) {
1717         if (IsDeferredCheck)
1718           return true;
1719         // If forward referencing, already add the pointer type and
1720         // defer the checks for later.
1721         ArgTys.push_back(Ty);
1722         return DeferCheck(Ty);
1723       }
1724 
1725       if (!IsDeferredCheck) {
1726         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1727                "Table consistency error");
1728         ArgTys.push_back(Ty);
1729       }
1730 
1731       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1732       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1733       if (!ThisArgType || !ReferenceType)
1734         return true;
1735       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1736           ReferenceType->getElementType());
1737     }
1738     case IITDescriptor::VecOfAnyPtrsToElt: {
1739       unsigned RefArgNumber = D.getRefArgNumber();
1740       if (RefArgNumber >= ArgTys.size()) {
1741         if (IsDeferredCheck)
1742           return true;
1743         // If forward referencing, already add the pointer-vector type and
1744         // defer the checks for later.
1745         ArgTys.push_back(Ty);
1746         return DeferCheck(Ty);
1747       }
1748 
1749       if (!IsDeferredCheck){
1750         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1751                "Table consistency error");
1752         ArgTys.push_back(Ty);
1753       }
1754 
1755       // Verify the overloaded type "matches" the Ref type.
1756       // i.e. Ty is a vector with the same width as Ref.
1757       // Composed of pointers to the same element type as Ref.
1758       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1759       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1760       if (!ThisArgVecTy || !ReferenceType ||
1761           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1762         return true;
1763       PointerType *ThisArgEltTy =
1764           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1765       if (!ThisArgEltTy)
1766         return true;
1767       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1768           ReferenceType->getElementType());
1769     }
1770     case IITDescriptor::VecElementArgument: {
1771       if (D.getArgumentNumber() >= ArgTys.size())
1772         return IsDeferredCheck ? true : DeferCheck(Ty);
1773       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1774       return !ReferenceType || Ty != ReferenceType->getElementType();
1775     }
1776     case IITDescriptor::Subdivide2Argument:
1777     case IITDescriptor::Subdivide4Argument: {
1778       // If this is a forward reference, defer the check for later.
1779       if (D.getArgumentNumber() >= ArgTys.size())
1780         return IsDeferredCheck || DeferCheck(Ty);
1781 
1782       Type *NewTy = ArgTys[D.getArgumentNumber()];
1783       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1784         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1785         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1786         return Ty != NewTy;
1787       }
1788       return true;
1789     }
1790     case IITDescriptor::VecOfBitcastsToInt: {
1791       if (D.getArgumentNumber() >= ArgTys.size())
1792         return IsDeferredCheck || DeferCheck(Ty);
1793       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1794       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1795       if (!ThisArgVecTy || !ReferenceType)
1796         return true;
1797       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1798     }
1799   }
1800   llvm_unreachable("unhandled");
1801 }
1802 
1803 Intrinsic::MatchIntrinsicTypesResult
1804 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1805                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1806                                    SmallVectorImpl<Type *> &ArgTys) {
1807   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1808   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1809                          false))
1810     return MatchIntrinsicTypes_NoMatchRet;
1811 
1812   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1813 
1814   for (auto *Ty : FTy->params())
1815     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1816       return MatchIntrinsicTypes_NoMatchArg;
1817 
1818   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1819     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1820     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1821                            true))
1822       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1823                                          : MatchIntrinsicTypes_NoMatchArg;
1824   }
1825 
1826   return MatchIntrinsicTypes_Match;
1827 }
1828 
1829 bool
1830 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1831                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1832   // If there are no descriptors left, then it can't be a vararg.
1833   if (Infos.empty())
1834     return isVarArg;
1835 
1836   // There should be only one descriptor remaining at this point.
1837   if (Infos.size() != 1)
1838     return true;
1839 
1840   // Check and verify the descriptor.
1841   IITDescriptor D = Infos.front();
1842   Infos = Infos.slice(1);
1843   if (D.Kind == IITDescriptor::VarArg)
1844     return !isVarArg;
1845 
1846   return true;
1847 }
1848 
1849 bool Intrinsic::getIntrinsicSignature(Function *F,
1850                                       SmallVectorImpl<Type *> &ArgTys) {
1851   Intrinsic::ID ID = F->getIntrinsicID();
1852   if (!ID)
1853     return false;
1854 
1855   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1856   getIntrinsicInfoTableEntries(ID, Table);
1857   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1858 
1859   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1860                                          ArgTys) !=
1861       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1862     return false;
1863   }
1864   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1865                                       TableRef))
1866     return false;
1867   return true;
1868 }
1869 
1870 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1871   SmallVector<Type *, 4> ArgTys;
1872   if (!getIntrinsicSignature(F, ArgTys))
1873     return std::nullopt;
1874 
1875   Intrinsic::ID ID = F->getIntrinsicID();
1876   StringRef Name = F->getName();
1877   std::string WantedName =
1878       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1879   if (Name == WantedName)
1880     return std::nullopt;
1881 
1882   Function *NewDecl = [&] {
1883     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1884       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1885         if (ExistingF->getFunctionType() == F->getFunctionType())
1886           return ExistingF;
1887 
1888       // The name already exists, but is not a function or has the wrong
1889       // prototype. Make place for the new one by renaming the old version.
1890       // Either this old version will be removed later on or the module is
1891       // invalid and we'll get an error.
1892       ExistingGV->setName(WantedName + ".renamed");
1893     }
1894     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1895   }();
1896 
1897   NewDecl->setCallingConv(F->getCallingConv());
1898   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1899          "Shouldn't change the signature");
1900   return NewDecl;
1901 }
1902 
1903 static bool isPointerCastOperator(const User *U) {
1904   return isa<AddrSpaceCastOperator>(U) || isa<BitCastOperator>(U);
1905 }
1906 
1907 /// hasAddressTaken - returns true if there are any uses of this function
1908 /// other than direct calls or invokes to it. Optionally ignores callback
1909 /// uses, assume like pointer annotation calls, and references in llvm.used
1910 /// and llvm.compiler.used variables.
1911 bool Function::hasAddressTaken(const User **PutOffender,
1912                                bool IgnoreCallbackUses,
1913                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1914                                bool IgnoreARCAttachedCall) const {
1915   for (const Use &U : uses()) {
1916     const User *FU = U.getUser();
1917     if (isa<BlockAddress>(FU))
1918       continue;
1919 
1920     if (IgnoreCallbackUses) {
1921       AbstractCallSite ACS(&U);
1922       if (ACS && ACS.isCallbackCall())
1923         continue;
1924     }
1925 
1926     const auto *Call = dyn_cast<CallBase>(FU);
1927     if (!Call) {
1928       if (IgnoreAssumeLikeCalls && isPointerCastOperator(FU) &&
1929           all_of(FU->users(), [](const User *U) {
1930             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1931               return I->isAssumeLikeIntrinsic();
1932             return false;
1933           })) {
1934         continue;
1935       }
1936 
1937       if (IgnoreLLVMUsed && !FU->user_empty()) {
1938         const User *FUU = FU;
1939         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1940             !FU->user_begin()->user_empty())
1941           FUU = *FU->user_begin();
1942         if (llvm::all_of(FUU->users(), [](const User *U) {
1943               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1944                 return GV->hasName() &&
1945                        (GV->getName().equals("llvm.compiler.used") ||
1946                         GV->getName().equals("llvm.used"));
1947               return false;
1948             }))
1949           continue;
1950       }
1951       if (PutOffender)
1952         *PutOffender = FU;
1953       return true;
1954     }
1955 
1956     if (IgnoreAssumeLikeCalls) {
1957       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1958         if (I->isAssumeLikeIntrinsic())
1959           continue;
1960     }
1961 
1962     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1963       if (IgnoreARCAttachedCall &&
1964           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1965                                       U.getOperandNo()))
1966         continue;
1967 
1968       if (PutOffender)
1969         *PutOffender = FU;
1970       return true;
1971     }
1972   }
1973   return false;
1974 }
1975 
1976 bool Function::isDefTriviallyDead() const {
1977   // Check the linkage
1978   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1979       !hasAvailableExternallyLinkage())
1980     return false;
1981 
1982   // Check if the function is used by anything other than a blockaddress.
1983   for (const User *U : users())
1984     if (!isa<BlockAddress>(U))
1985       return false;
1986 
1987   return true;
1988 }
1989 
1990 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1991 /// setjmp or other function that gcc recognizes as "returning twice".
1992 bool Function::callsFunctionThatReturnsTwice() const {
1993   for (const Instruction &I : instructions(this))
1994     if (const auto *Call = dyn_cast<CallBase>(&I))
1995       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1996         return true;
1997 
1998   return false;
1999 }
2000 
2001 Constant *Function::getPersonalityFn() const {
2002   assert(hasPersonalityFn() && getNumOperands());
2003   return cast<Constant>(Op<0>());
2004 }
2005 
2006 void Function::setPersonalityFn(Constant *Fn) {
2007   setHungoffOperand<0>(Fn);
2008   setValueSubclassDataBit(3, Fn != nullptr);
2009 }
2010 
2011 Constant *Function::getPrefixData() const {
2012   assert(hasPrefixData() && getNumOperands());
2013   return cast<Constant>(Op<1>());
2014 }
2015 
2016 void Function::setPrefixData(Constant *PrefixData) {
2017   setHungoffOperand<1>(PrefixData);
2018   setValueSubclassDataBit(1, PrefixData != nullptr);
2019 }
2020 
2021 Constant *Function::getPrologueData() const {
2022   assert(hasPrologueData() && getNumOperands());
2023   return cast<Constant>(Op<2>());
2024 }
2025 
2026 void Function::setPrologueData(Constant *PrologueData) {
2027   setHungoffOperand<2>(PrologueData);
2028   setValueSubclassDataBit(2, PrologueData != nullptr);
2029 }
2030 
2031 void Function::allocHungoffUselist() {
2032   // If we've already allocated a uselist, stop here.
2033   if (getNumOperands())
2034     return;
2035 
2036   allocHungoffUses(3, /*IsPhi=*/ false);
2037   setNumHungOffUseOperands(3);
2038 
2039   // Initialize the uselist with placeholder operands to allow traversal.
2040   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
2041   Op<0>().set(CPN);
2042   Op<1>().set(CPN);
2043   Op<2>().set(CPN);
2044 }
2045 
2046 template <int Idx>
2047 void Function::setHungoffOperand(Constant *C) {
2048   if (C) {
2049     allocHungoffUselist();
2050     Op<Idx>().set(C);
2051   } else if (getNumOperands()) {
2052     Op<Idx>().set(
2053         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
2054   }
2055 }
2056 
2057 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2058   assert(Bit < 16 && "SubclassData contains only 16 bits");
2059   if (On)
2060     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2061   else
2062     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2063 }
2064 
2065 void Function::setEntryCount(ProfileCount Count,
2066                              const DenseSet<GlobalValue::GUID> *S) {
2067 #if !defined(NDEBUG)
2068   auto PrevCount = getEntryCount();
2069   assert(!PrevCount || PrevCount->getType() == Count.getType());
2070 #endif
2071 
2072   auto ImportGUIDs = getImportGUIDs();
2073   if (S == nullptr && ImportGUIDs.size())
2074     S = &ImportGUIDs;
2075 
2076   MDBuilder MDB(getContext());
2077   setMetadata(
2078       LLVMContext::MD_prof,
2079       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2080 }
2081 
2082 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2083                              const DenseSet<GlobalValue::GUID> *Imports) {
2084   setEntryCount(ProfileCount(Count, Type), Imports);
2085 }
2086 
2087 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2088   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2089   if (MD && MD->getOperand(0))
2090     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2091       if (MDS->getString().equals("function_entry_count")) {
2092         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2093         uint64_t Count = CI->getValue().getZExtValue();
2094         // A value of -1 is used for SamplePGO when there were no samples.
2095         // Treat this the same as unknown.
2096         if (Count == (uint64_t)-1)
2097           return std::nullopt;
2098         return ProfileCount(Count, PCT_Real);
2099       } else if (AllowSynthetic &&
2100                  MDS->getString().equals("synthetic_function_entry_count")) {
2101         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2102         uint64_t Count = CI->getValue().getZExtValue();
2103         return ProfileCount(Count, PCT_Synthetic);
2104       }
2105     }
2106   return std::nullopt;
2107 }
2108 
2109 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2110   DenseSet<GlobalValue::GUID> R;
2111   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2112     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2113       if (MDS->getString().equals("function_entry_count"))
2114         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2115           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2116                        ->getValue()
2117                        .getZExtValue());
2118   return R;
2119 }
2120 
2121 void Function::setSectionPrefix(StringRef Prefix) {
2122   MDBuilder MDB(getContext());
2123   setMetadata(LLVMContext::MD_section_prefix,
2124               MDB.createFunctionSectionPrefix(Prefix));
2125 }
2126 
2127 std::optional<StringRef> Function::getSectionPrefix() const {
2128   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2129     assert(cast<MDString>(MD->getOperand(0))
2130                ->getString()
2131                .equals("function_section_prefix") &&
2132            "Metadata not match");
2133     return cast<MDString>(MD->getOperand(1))->getString();
2134   }
2135   return std::nullopt;
2136 }
2137 
2138 bool Function::nullPointerIsDefined() const {
2139   return hasFnAttribute(Attribute::NullPointerIsValid);
2140 }
2141 
2142 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2143   if (F && F->nullPointerIsDefined())
2144     return true;
2145 
2146   if (AS != 0)
2147     return true;
2148 
2149   return false;
2150 }
2151