1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsVE.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/IntrinsicsXCore.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/SymbolTableListTraits.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/ModRef.h" 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 80 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 81 cl::desc("Maximum size for the name of non-global values.")); 82 83 //===----------------------------------------------------------------------===// 84 // Argument Implementation 85 //===----------------------------------------------------------------------===// 86 87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 88 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 89 setName(Name); 90 } 91 92 void Argument::setParent(Function *parent) { 93 Parent = parent; 94 } 95 96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 97 if (!getType()->isPointerTy()) return false; 98 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 99 (AllowUndefOrPoison || 100 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 101 return true; 102 else if (getDereferenceableBytes() > 0 && 103 !NullPointerIsDefined(getParent(), 104 getType()->getPointerAddressSpace())) 105 return true; 106 return false; 107 } 108 109 bool Argument::hasByValAttr() const { 110 if (!getType()->isPointerTy()) return false; 111 return hasAttribute(Attribute::ByVal); 112 } 113 114 bool Argument::hasByRefAttr() const { 115 if (!getType()->isPointerTy()) 116 return false; 117 return hasAttribute(Attribute::ByRef); 118 } 119 120 bool Argument::hasSwiftSelfAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 122 } 123 124 bool Argument::hasSwiftErrorAttr() const { 125 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 126 } 127 128 bool Argument::hasInAllocaAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return hasAttribute(Attribute::InAlloca); 131 } 132 133 bool Argument::hasPreallocatedAttr() const { 134 if (!getType()->isPointerTy()) 135 return false; 136 return hasAttribute(Attribute::Preallocated); 137 } 138 139 bool Argument::hasPassPointeeByValueCopyAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 AttributeList Attrs = getParent()->getAttributes(); 142 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 143 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 145 } 146 147 bool Argument::hasPointeeInMemoryValueAttr() const { 148 if (!getType()->isPointerTy()) 149 return false; 150 AttributeList Attrs = getParent()->getAttributes(); 151 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 152 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 156 } 157 158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 159 /// parameter type. 160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 161 // FIXME: All the type carrying attributes are mutually exclusive, so there 162 // should be a single query to get the stored type that handles any of them. 163 if (Type *ByValTy = ParamAttrs.getByValType()) 164 return ByValTy; 165 if (Type *ByRefTy = ParamAttrs.getByRefType()) 166 return ByRefTy; 167 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 168 return PreAllocTy; 169 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 170 return InAllocaTy; 171 if (Type *SRetTy = ParamAttrs.getStructRetType()) 172 return SRetTy; 173 174 return nullptr; 175 } 176 177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 178 AttributeSet ParamAttrs = 179 getParent()->getAttributes().getParamAttrs(getArgNo()); 180 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 181 return DL.getTypeAllocSize(MemTy); 182 return 0; 183 } 184 185 Type *Argument::getPointeeInMemoryValueType() const { 186 AttributeSet ParamAttrs = 187 getParent()->getAttributes().getParamAttrs(getArgNo()); 188 return getMemoryParamAllocType(ParamAttrs); 189 } 190 191 MaybeAlign Argument::getParamAlign() const { 192 assert(getType()->isPointerTy() && "Only pointers have alignments"); 193 return getParent()->getParamAlign(getArgNo()); 194 } 195 196 MaybeAlign Argument::getParamStackAlign() const { 197 return getParent()->getParamStackAlign(getArgNo()); 198 } 199 200 Type *Argument::getParamByValType() const { 201 assert(getType()->isPointerTy() && "Only pointers have byval types"); 202 return getParent()->getParamByValType(getArgNo()); 203 } 204 205 Type *Argument::getParamStructRetType() const { 206 assert(getType()->isPointerTy() && "Only pointers have sret types"); 207 return getParent()->getParamStructRetType(getArgNo()); 208 } 209 210 Type *Argument::getParamByRefType() const { 211 assert(getType()->isPointerTy() && "Only pointers have byref types"); 212 return getParent()->getParamByRefType(getArgNo()); 213 } 214 215 Type *Argument::getParamInAllocaType() const { 216 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 217 return getParent()->getParamInAllocaType(getArgNo()); 218 } 219 220 uint64_t Argument::getDereferenceableBytes() const { 221 assert(getType()->isPointerTy() && 222 "Only pointers have dereferenceable bytes"); 223 return getParent()->getParamDereferenceableBytes(getArgNo()); 224 } 225 226 uint64_t Argument::getDereferenceableOrNullBytes() const { 227 assert(getType()->isPointerTy() && 228 "Only pointers have dereferenceable bytes"); 229 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 230 } 231 232 FPClassTest Argument::getNoFPClass() const { 233 return getParent()->getParamNoFPClass(getArgNo()); 234 } 235 236 bool Argument::hasNestAttr() const { 237 if (!getType()->isPointerTy()) return false; 238 return hasAttribute(Attribute::Nest); 239 } 240 241 bool Argument::hasNoAliasAttr() const { 242 if (!getType()->isPointerTy()) return false; 243 return hasAttribute(Attribute::NoAlias); 244 } 245 246 bool Argument::hasNoCaptureAttr() const { 247 if (!getType()->isPointerTy()) return false; 248 return hasAttribute(Attribute::NoCapture); 249 } 250 251 bool Argument::hasNoFreeAttr() const { 252 if (!getType()->isPointerTy()) return false; 253 return hasAttribute(Attribute::NoFree); 254 } 255 256 bool Argument::hasStructRetAttr() const { 257 if (!getType()->isPointerTy()) return false; 258 return hasAttribute(Attribute::StructRet); 259 } 260 261 bool Argument::hasInRegAttr() const { 262 return hasAttribute(Attribute::InReg); 263 } 264 265 bool Argument::hasReturnedAttr() const { 266 return hasAttribute(Attribute::Returned); 267 } 268 269 bool Argument::hasZExtAttr() const { 270 return hasAttribute(Attribute::ZExt); 271 } 272 273 bool Argument::hasSExtAttr() const { 274 return hasAttribute(Attribute::SExt); 275 } 276 277 bool Argument::onlyReadsMemory() const { 278 AttributeList Attrs = getParent()->getAttributes(); 279 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 280 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 281 } 282 283 void Argument::addAttrs(AttrBuilder &B) { 284 AttributeList AL = getParent()->getAttributes(); 285 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 286 getParent()->setAttributes(AL); 287 } 288 289 void Argument::addAttr(Attribute::AttrKind Kind) { 290 getParent()->addParamAttr(getArgNo(), Kind); 291 } 292 293 void Argument::addAttr(Attribute Attr) { 294 getParent()->addParamAttr(getArgNo(), Attr); 295 } 296 297 void Argument::removeAttr(Attribute::AttrKind Kind) { 298 getParent()->removeParamAttr(getArgNo(), Kind); 299 } 300 301 void Argument::removeAttrs(const AttributeMask &AM) { 302 AttributeList AL = getParent()->getAttributes(); 303 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 304 getParent()->setAttributes(AL); 305 } 306 307 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 308 return getParent()->hasParamAttribute(getArgNo(), Kind); 309 } 310 311 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 312 return getParent()->getParamAttribute(getArgNo(), Kind); 313 } 314 315 //===----------------------------------------------------------------------===// 316 // Helper Methods in Function 317 //===----------------------------------------------------------------------===// 318 319 LLVMContext &Function::getContext() const { 320 return getType()->getContext(); 321 } 322 323 unsigned Function::getInstructionCount() const { 324 unsigned NumInstrs = 0; 325 for (const BasicBlock &BB : BasicBlocks) 326 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 327 BB.instructionsWithoutDebug().end()); 328 return NumInstrs; 329 } 330 331 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 332 const Twine &N, Module &M) { 333 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 334 } 335 336 Function *Function::createWithDefaultAttr(FunctionType *Ty, 337 LinkageTypes Linkage, 338 unsigned AddrSpace, const Twine &N, 339 Module *M) { 340 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 341 AttrBuilder B(F->getContext()); 342 UWTableKind UWTable = M->getUwtable(); 343 if (UWTable != UWTableKind::None) 344 B.addUWTableAttr(UWTable); 345 switch (M->getFramePointer()) { 346 case FramePointerKind::None: 347 // 0 ("none") is the default. 348 break; 349 case FramePointerKind::NonLeaf: 350 B.addAttribute("frame-pointer", "non-leaf"); 351 break; 352 case FramePointerKind::All: 353 B.addAttribute("frame-pointer", "all"); 354 break; 355 } 356 if (M->getModuleFlag("function_return_thunk_extern")) 357 B.addAttribute(Attribute::FnRetThunkExtern); 358 F->addFnAttrs(B); 359 return F; 360 } 361 362 void Function::removeFromParent() { 363 getParent()->getFunctionList().remove(getIterator()); 364 } 365 366 void Function::eraseFromParent() { 367 getParent()->getFunctionList().erase(getIterator()); 368 } 369 370 void Function::splice(Function::iterator ToIt, Function *FromF, 371 Function::iterator FromBeginIt, 372 Function::iterator FromEndIt) { 373 #ifdef EXPENSIVE_CHECKS 374 // Check that FromBeginIt is before FromEndIt. 375 auto FromFEnd = FromF->end(); 376 for (auto It = FromBeginIt; It != FromEndIt; ++It) 377 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 378 #endif // EXPENSIVE_CHECKS 379 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 380 } 381 382 Function::iterator Function::erase(Function::iterator FromIt, 383 Function::iterator ToIt) { 384 return BasicBlocks.erase(FromIt, ToIt); 385 } 386 387 //===----------------------------------------------------------------------===// 388 // Function Implementation 389 //===----------------------------------------------------------------------===// 390 391 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 392 // If AS == -1 and we are passed a valid module pointer we place the function 393 // in the program address space. Otherwise we default to AS0. 394 if (AddrSpace == static_cast<unsigned>(-1)) 395 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 396 return AddrSpace; 397 } 398 399 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 400 const Twine &name, Module *ParentModule) 401 : GlobalObject(Ty, Value::FunctionVal, 402 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 403 computeAddrSpace(AddrSpace, ParentModule)), 404 NumArgs(Ty->getNumParams()) { 405 assert(FunctionType::isValidReturnType(getReturnType()) && 406 "invalid return type"); 407 setGlobalObjectSubClassData(0); 408 409 // We only need a symbol table for a function if the context keeps value names 410 if (!getContext().shouldDiscardValueNames()) 411 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 412 413 // If the function has arguments, mark them as lazily built. 414 if (Ty->getNumParams()) 415 setValueSubclassData(1); // Set the "has lazy arguments" bit. 416 417 if (ParentModule) 418 ParentModule->getFunctionList().push_back(this); 419 420 HasLLVMReservedName = getName().startswith("llvm."); 421 // Ensure intrinsics have the right parameter attributes. 422 // Note, the IntID field will have been set in Value::setName if this function 423 // name is a valid intrinsic ID. 424 if (IntID) 425 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 426 } 427 428 Function::~Function() { 429 dropAllReferences(); // After this it is safe to delete instructions. 430 431 // Delete all of the method arguments and unlink from symbol table... 432 if (Arguments) 433 clearArguments(); 434 435 // Remove the function from the on-the-side GC table. 436 clearGC(); 437 } 438 439 void Function::BuildLazyArguments() const { 440 // Create the arguments vector, all arguments start out unnamed. 441 auto *FT = getFunctionType(); 442 if (NumArgs > 0) { 443 Arguments = std::allocator<Argument>().allocate(NumArgs); 444 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 445 Type *ArgTy = FT->getParamType(i); 446 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 447 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 448 } 449 } 450 451 // Clear the lazy arguments bit. 452 unsigned SDC = getSubclassDataFromValue(); 453 SDC &= ~(1 << 0); 454 const_cast<Function*>(this)->setValueSubclassData(SDC); 455 assert(!hasLazyArguments()); 456 } 457 458 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 459 return MutableArrayRef<Argument>(Args, Count); 460 } 461 462 bool Function::isConstrainedFPIntrinsic() const { 463 switch (getIntrinsicID()) { 464 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 465 case Intrinsic::INTRINSIC: 466 #include "llvm/IR/ConstrainedOps.def" 467 return true; 468 #undef INSTRUCTION 469 default: 470 return false; 471 } 472 } 473 474 void Function::clearArguments() { 475 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 476 A.setName(""); 477 A.~Argument(); 478 } 479 std::allocator<Argument>().deallocate(Arguments, NumArgs); 480 Arguments = nullptr; 481 } 482 483 void Function::stealArgumentListFrom(Function &Src) { 484 assert(isDeclaration() && "Expected no references to current arguments"); 485 486 // Drop the current arguments, if any, and set the lazy argument bit. 487 if (!hasLazyArguments()) { 488 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 489 [](const Argument &A) { return A.use_empty(); }) && 490 "Expected arguments to be unused in declaration"); 491 clearArguments(); 492 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 493 } 494 495 // Nothing to steal if Src has lazy arguments. 496 if (Src.hasLazyArguments()) 497 return; 498 499 // Steal arguments from Src, and fix the lazy argument bits. 500 assert(arg_size() == Src.arg_size()); 501 Arguments = Src.Arguments; 502 Src.Arguments = nullptr; 503 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 504 // FIXME: This does the work of transferNodesFromList inefficiently. 505 SmallString<128> Name; 506 if (A.hasName()) 507 Name = A.getName(); 508 if (!Name.empty()) 509 A.setName(""); 510 A.setParent(this); 511 if (!Name.empty()) 512 A.setName(Name); 513 } 514 515 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 516 assert(!hasLazyArguments()); 517 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 518 } 519 520 // dropAllReferences() - This function causes all the subinstructions to "let 521 // go" of all references that they are maintaining. This allows one to 522 // 'delete' a whole class at a time, even though there may be circular 523 // references... first all references are dropped, and all use counts go to 524 // zero. Then everything is deleted for real. Note that no operations are 525 // valid on an object that has "dropped all references", except operator 526 // delete. 527 // 528 void Function::dropAllReferences() { 529 setIsMaterializable(false); 530 531 for (BasicBlock &BB : *this) 532 BB.dropAllReferences(); 533 534 // Delete all basic blocks. They are now unused, except possibly by 535 // blockaddresses, but BasicBlock's destructor takes care of those. 536 while (!BasicBlocks.empty()) 537 BasicBlocks.begin()->eraseFromParent(); 538 539 // Drop uses of any optional data (real or placeholder). 540 if (getNumOperands()) { 541 User::dropAllReferences(); 542 setNumHungOffUseOperands(0); 543 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 544 } 545 546 // Metadata is stored in a side-table. 547 clearMetadata(); 548 } 549 550 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 551 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 552 } 553 554 void Function::addFnAttr(Attribute::AttrKind Kind) { 555 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 556 } 557 558 void Function::addFnAttr(StringRef Kind, StringRef Val) { 559 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 560 } 561 562 void Function::addFnAttr(Attribute Attr) { 563 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 564 } 565 566 void Function::addFnAttrs(const AttrBuilder &Attrs) { 567 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 568 } 569 570 void Function::addRetAttr(Attribute::AttrKind Kind) { 571 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 572 } 573 574 void Function::addRetAttr(Attribute Attr) { 575 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 576 } 577 578 void Function::addRetAttrs(const AttrBuilder &Attrs) { 579 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 580 } 581 582 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 583 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 584 } 585 586 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 587 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 588 } 589 590 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 591 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 592 } 593 594 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 595 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 596 } 597 598 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 599 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 600 } 601 602 void Function::removeFnAttr(Attribute::AttrKind Kind) { 603 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 604 } 605 606 void Function::removeFnAttr(StringRef Kind) { 607 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 608 } 609 610 void Function::removeFnAttrs(const AttributeMask &AM) { 611 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 612 } 613 614 void Function::removeRetAttr(Attribute::AttrKind Kind) { 615 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 616 } 617 618 void Function::removeRetAttr(StringRef Kind) { 619 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 620 } 621 622 void Function::removeRetAttrs(const AttributeMask &Attrs) { 623 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 624 } 625 626 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 627 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 628 } 629 630 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 631 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 632 } 633 634 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 635 AttributeSets = 636 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 637 } 638 639 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 640 AttributeSets = 641 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 642 } 643 644 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 645 return AttributeSets.hasFnAttr(Kind); 646 } 647 648 bool Function::hasFnAttribute(StringRef Kind) const { 649 return AttributeSets.hasFnAttr(Kind); 650 } 651 652 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 653 return AttributeSets.hasRetAttr(Kind); 654 } 655 656 bool Function::hasParamAttribute(unsigned ArgNo, 657 Attribute::AttrKind Kind) const { 658 return AttributeSets.hasParamAttr(ArgNo, Kind); 659 } 660 661 Attribute Function::getAttributeAtIndex(unsigned i, 662 Attribute::AttrKind Kind) const { 663 return AttributeSets.getAttributeAtIndex(i, Kind); 664 } 665 666 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 667 return AttributeSets.getAttributeAtIndex(i, Kind); 668 } 669 670 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 671 return AttributeSets.getFnAttr(Kind); 672 } 673 674 Attribute Function::getFnAttribute(StringRef Kind) const { 675 return AttributeSets.getFnAttr(Kind); 676 } 677 678 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 679 uint64_t Default) const { 680 Attribute A = getFnAttribute(Name); 681 uint64_t Result = Default; 682 if (A.isStringAttribute()) { 683 StringRef Str = A.getValueAsString(); 684 if (Str.getAsInteger(0, Result)) 685 getContext().emitError("cannot parse integer attribute " + Name); 686 } 687 688 return Result; 689 } 690 691 /// gets the specified attribute from the list of attributes. 692 Attribute Function::getParamAttribute(unsigned ArgNo, 693 Attribute::AttrKind Kind) const { 694 return AttributeSets.getParamAttr(ArgNo, Kind); 695 } 696 697 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 698 uint64_t Bytes) { 699 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 700 ArgNo, Bytes); 701 } 702 703 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 704 if (&FPType == &APFloat::IEEEsingle()) { 705 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 706 StringRef Val = Attr.getValueAsString(); 707 if (!Val.empty()) 708 return parseDenormalFPAttribute(Val); 709 710 // If the f32 variant of the attribute isn't specified, try to use the 711 // generic one. 712 } 713 714 Attribute Attr = getFnAttribute("denormal-fp-math"); 715 return parseDenormalFPAttribute(Attr.getValueAsString()); 716 } 717 718 const std::string &Function::getGC() const { 719 assert(hasGC() && "Function has no collector"); 720 return getContext().getGC(*this); 721 } 722 723 void Function::setGC(std::string Str) { 724 setValueSubclassDataBit(14, !Str.empty()); 725 getContext().setGC(*this, std::move(Str)); 726 } 727 728 void Function::clearGC() { 729 if (!hasGC()) 730 return; 731 getContext().deleteGC(*this); 732 setValueSubclassDataBit(14, false); 733 } 734 735 bool Function::hasStackProtectorFnAttr() const { 736 return hasFnAttribute(Attribute::StackProtect) || 737 hasFnAttribute(Attribute::StackProtectStrong) || 738 hasFnAttribute(Attribute::StackProtectReq); 739 } 740 741 /// Copy all additional attributes (those not needed to create a Function) from 742 /// the Function Src to this one. 743 void Function::copyAttributesFrom(const Function *Src) { 744 GlobalObject::copyAttributesFrom(Src); 745 setCallingConv(Src->getCallingConv()); 746 setAttributes(Src->getAttributes()); 747 if (Src->hasGC()) 748 setGC(Src->getGC()); 749 else 750 clearGC(); 751 if (Src->hasPersonalityFn()) 752 setPersonalityFn(Src->getPersonalityFn()); 753 if (Src->hasPrefixData()) 754 setPrefixData(Src->getPrefixData()); 755 if (Src->hasPrologueData()) 756 setPrologueData(Src->getPrologueData()); 757 } 758 759 MemoryEffects Function::getMemoryEffects() const { 760 return getAttributes().getMemoryEffects(); 761 } 762 void Function::setMemoryEffects(MemoryEffects ME) { 763 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 764 } 765 766 /// Determine if the function does not access memory. 767 bool Function::doesNotAccessMemory() const { 768 return getMemoryEffects().doesNotAccessMemory(); 769 } 770 void Function::setDoesNotAccessMemory() { 771 setMemoryEffects(MemoryEffects::none()); 772 } 773 774 /// Determine if the function does not access or only reads memory. 775 bool Function::onlyReadsMemory() const { 776 return getMemoryEffects().onlyReadsMemory(); 777 } 778 void Function::setOnlyReadsMemory() { 779 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 780 } 781 782 /// Determine if the function does not access or only writes memory. 783 bool Function::onlyWritesMemory() const { 784 return getMemoryEffects().onlyWritesMemory(); 785 } 786 void Function::setOnlyWritesMemory() { 787 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 788 } 789 790 /// Determine if the call can access memmory only using pointers based 791 /// on its arguments. 792 bool Function::onlyAccessesArgMemory() const { 793 return getMemoryEffects().onlyAccessesArgPointees(); 794 } 795 void Function::setOnlyAccessesArgMemory() { 796 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 797 } 798 799 /// Determine if the function may only access memory that is 800 /// inaccessible from the IR. 801 bool Function::onlyAccessesInaccessibleMemory() const { 802 return getMemoryEffects().onlyAccessesInaccessibleMem(); 803 } 804 void Function::setOnlyAccessesInaccessibleMemory() { 805 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 806 } 807 808 /// Determine if the function may only access memory that is 809 /// either inaccessible from the IR or pointed to by its arguments. 810 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 811 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 812 } 813 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 814 setMemoryEffects(getMemoryEffects() & 815 MemoryEffects::inaccessibleOrArgMemOnly()); 816 } 817 818 /// Table of string intrinsic names indexed by enum value. 819 static const char * const IntrinsicNameTable[] = { 820 "not_intrinsic", 821 #define GET_INTRINSIC_NAME_TABLE 822 #include "llvm/IR/IntrinsicImpl.inc" 823 #undef GET_INTRINSIC_NAME_TABLE 824 }; 825 826 /// Table of per-target intrinsic name tables. 827 #define GET_INTRINSIC_TARGET_DATA 828 #include "llvm/IR/IntrinsicImpl.inc" 829 #undef GET_INTRINSIC_TARGET_DATA 830 831 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 832 return IID > TargetInfos[0].Count; 833 } 834 835 bool Function::isTargetIntrinsic() const { 836 return isTargetIntrinsic(IntID); 837 } 838 839 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 840 /// target as \c Name, or the generic table if \c Name is not target specific. 841 /// 842 /// Returns the relevant slice of \c IntrinsicNameTable 843 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 844 assert(Name.startswith("llvm.")); 845 846 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 847 // Drop "llvm." and take the first dotted component. That will be the target 848 // if this is target specific. 849 StringRef Target = Name.drop_front(5).split('.').first; 850 auto It = partition_point( 851 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 852 // We've either found the target or just fall back to the generic set, which 853 // is always first. 854 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 855 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 856 } 857 858 /// This does the actual lookup of an intrinsic ID which 859 /// matches the given function name. 860 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 861 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 862 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 863 if (Idx == -1) 864 return Intrinsic::not_intrinsic; 865 866 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 867 // an index into a sub-table. 868 int Adjust = NameTable.data() - IntrinsicNameTable; 869 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 870 871 // If the intrinsic is not overloaded, require an exact match. If it is 872 // overloaded, require either exact or prefix match. 873 const auto MatchSize = strlen(NameTable[Idx]); 874 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 875 bool IsExactMatch = Name.size() == MatchSize; 876 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 877 : Intrinsic::not_intrinsic; 878 } 879 880 void Function::recalculateIntrinsicID() { 881 StringRef Name = getName(); 882 if (!Name.startswith("llvm.")) { 883 HasLLVMReservedName = false; 884 IntID = Intrinsic::not_intrinsic; 885 return; 886 } 887 HasLLVMReservedName = true; 888 IntID = lookupIntrinsicID(Name); 889 } 890 891 /// Returns a stable mangling for the type specified for use in the name 892 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 893 /// of named types is simply their name. Manglings for unnamed types consist 894 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 895 /// combined with the mangling of their component types. A vararg function 896 /// type will have a suffix of 'vararg'. Since function types can contain 897 /// other function types, we close a function type mangling with suffix 'f' 898 /// which can't be confused with it's prefix. This ensures we don't have 899 /// collisions between two unrelated function types. Otherwise, you might 900 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 901 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 902 /// indicating that extra care must be taken to ensure a unique name. 903 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 904 std::string Result; 905 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 906 Result += "p" + utostr(PTyp->getAddressSpace()); 907 // Opaque pointer doesn't have pointee type information, so we just mangle 908 // address space for opaque pointer. 909 if (!PTyp->isOpaque()) 910 Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(), 911 HasUnnamedType); 912 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 913 Result += "a" + utostr(ATyp->getNumElements()) + 914 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 915 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 916 if (!STyp->isLiteral()) { 917 Result += "s_"; 918 if (STyp->hasName()) 919 Result += STyp->getName(); 920 else 921 HasUnnamedType = true; 922 } else { 923 Result += "sl_"; 924 for (auto *Elem : STyp->elements()) 925 Result += getMangledTypeStr(Elem, HasUnnamedType); 926 } 927 // Ensure nested structs are distinguishable. 928 Result += "s"; 929 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 930 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 931 for (size_t i = 0; i < FT->getNumParams(); i++) 932 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 933 if (FT->isVarArg()) 934 Result += "vararg"; 935 // Ensure nested function types are distinguishable. 936 Result += "f"; 937 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 938 ElementCount EC = VTy->getElementCount(); 939 if (EC.isScalable()) 940 Result += "nx"; 941 Result += "v" + utostr(EC.getKnownMinValue()) + 942 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 943 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 944 Result += "t"; 945 Result += TETy->getName(); 946 for (Type *ParamTy : TETy->type_params()) 947 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 948 for (unsigned IntParam : TETy->int_params()) 949 Result += "_" + utostr(IntParam); 950 // Ensure nested target extension types are distinguishable. 951 Result += "t"; 952 } else if (Ty) { 953 switch (Ty->getTypeID()) { 954 default: llvm_unreachable("Unhandled type"); 955 case Type::VoidTyID: Result += "isVoid"; break; 956 case Type::MetadataTyID: Result += "Metadata"; break; 957 case Type::HalfTyID: Result += "f16"; break; 958 case Type::BFloatTyID: Result += "bf16"; break; 959 case Type::FloatTyID: Result += "f32"; break; 960 case Type::DoubleTyID: Result += "f64"; break; 961 case Type::X86_FP80TyID: Result += "f80"; break; 962 case Type::FP128TyID: Result += "f128"; break; 963 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 964 case Type::X86_MMXTyID: Result += "x86mmx"; break; 965 case Type::X86_AMXTyID: Result += "x86amx"; break; 966 case Type::IntegerTyID: 967 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 968 break; 969 } 970 } 971 return Result; 972 } 973 974 StringRef Intrinsic::getBaseName(ID id) { 975 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 976 return IntrinsicNameTable[id]; 977 } 978 979 StringRef Intrinsic::getName(ID id) { 980 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 981 assert(!Intrinsic::isOverloaded(id) && 982 "This version of getName does not support overloading"); 983 return getBaseName(id); 984 } 985 986 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 987 Module *M, FunctionType *FT, 988 bool EarlyModuleCheck) { 989 990 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 991 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 992 "This version of getName is for overloaded intrinsics only"); 993 (void)EarlyModuleCheck; 994 assert((!EarlyModuleCheck || M || 995 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 996 "Intrinsic overloading on pointer types need to provide a Module"); 997 bool HasUnnamedType = false; 998 std::string Result(Intrinsic::getBaseName(Id)); 999 for (Type *Ty : Tys) 1000 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1001 if (HasUnnamedType) { 1002 assert(M && "unnamed types need a module"); 1003 if (!FT) 1004 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1005 else 1006 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1007 "Provided FunctionType must match arguments"); 1008 return M->getUniqueIntrinsicName(Result, Id, FT); 1009 } 1010 return Result; 1011 } 1012 1013 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1014 FunctionType *FT) { 1015 assert(M && "We need to have a Module"); 1016 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1017 } 1018 1019 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1020 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1021 } 1022 1023 /// IIT_Info - These are enumerators that describe the entries returned by the 1024 /// getIntrinsicInfoTableEntries function. 1025 /// 1026 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 1027 enum IIT_Info { 1028 // Common values should be encoded with 0-15. 1029 IIT_Done = 0, 1030 IIT_I1 = 1, 1031 IIT_I8 = 2, 1032 IIT_I16 = 3, 1033 IIT_I32 = 4, 1034 IIT_I64 = 5, 1035 IIT_F16 = 6, 1036 IIT_F32 = 7, 1037 IIT_F64 = 8, 1038 IIT_V2 = 9, 1039 IIT_V4 = 10, 1040 IIT_V8 = 11, 1041 IIT_V16 = 12, 1042 IIT_V32 = 13, 1043 IIT_PTR = 14, 1044 IIT_ARG = 15, 1045 1046 // Values from 16+ are only encodable with the inefficient encoding. 1047 IIT_V64 = 16, 1048 IIT_MMX = 17, 1049 IIT_TOKEN = 18, 1050 IIT_METADATA = 19, 1051 IIT_EMPTYSTRUCT = 20, 1052 IIT_STRUCT2 = 21, 1053 IIT_STRUCT3 = 22, 1054 IIT_STRUCT4 = 23, 1055 IIT_STRUCT5 = 24, 1056 IIT_EXTEND_ARG = 25, 1057 IIT_TRUNC_ARG = 26, 1058 IIT_ANYPTR = 27, 1059 IIT_V1 = 28, 1060 IIT_VARARG = 29, 1061 IIT_HALF_VEC_ARG = 30, 1062 IIT_SAME_VEC_WIDTH_ARG = 31, 1063 IIT_PTR_TO_ARG = 32, 1064 IIT_PTR_TO_ELT = 33, 1065 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 1066 IIT_I128 = 35, 1067 IIT_V512 = 36, 1068 IIT_V1024 = 37, 1069 IIT_STRUCT6 = 38, 1070 IIT_STRUCT7 = 39, 1071 IIT_STRUCT8 = 40, 1072 IIT_F128 = 41, 1073 IIT_VEC_ELEMENT = 42, 1074 IIT_SCALABLE_VEC = 43, 1075 IIT_SUBDIVIDE2_ARG = 44, 1076 IIT_SUBDIVIDE4_ARG = 45, 1077 IIT_VEC_OF_BITCASTS_TO_INT = 46, 1078 IIT_V128 = 47, 1079 IIT_BF16 = 48, 1080 IIT_STRUCT9 = 49, 1081 IIT_V256 = 50, 1082 IIT_AMX = 51, 1083 IIT_PPCF128 = 52, 1084 IIT_V3 = 53, 1085 IIT_EXTERNREF = 54, 1086 IIT_FUNCREF = 55, 1087 IIT_ANYPTR_TO_ELT = 56, 1088 IIT_I2 = 57, 1089 IIT_I4 = 58, 1090 }; 1091 1092 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1093 IIT_Info LastInfo, 1094 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1095 using namespace Intrinsic; 1096 1097 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1098 1099 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1100 unsigned StructElts = 2; 1101 1102 switch (Info) { 1103 case IIT_Done: 1104 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1105 return; 1106 case IIT_VARARG: 1107 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1108 return; 1109 case IIT_MMX: 1110 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1111 return; 1112 case IIT_AMX: 1113 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1114 return; 1115 case IIT_TOKEN: 1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1117 return; 1118 case IIT_METADATA: 1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1120 return; 1121 case IIT_F16: 1122 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1123 return; 1124 case IIT_BF16: 1125 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1126 return; 1127 case IIT_F32: 1128 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1129 return; 1130 case IIT_F64: 1131 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1132 return; 1133 case IIT_F128: 1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1135 return; 1136 case IIT_PPCF128: 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1138 return; 1139 case IIT_I1: 1140 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1141 return; 1142 case IIT_I2: 1143 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1144 return; 1145 case IIT_I4: 1146 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1147 return; 1148 case IIT_I8: 1149 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1150 return; 1151 case IIT_I16: 1152 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1153 return; 1154 case IIT_I32: 1155 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1156 return; 1157 case IIT_I64: 1158 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1159 return; 1160 case IIT_I128: 1161 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1162 return; 1163 case IIT_V1: 1164 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1165 DecodeIITType(NextElt, Infos, Info, OutputTable); 1166 return; 1167 case IIT_V2: 1168 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1169 DecodeIITType(NextElt, Infos, Info, OutputTable); 1170 return; 1171 case IIT_V3: 1172 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1173 DecodeIITType(NextElt, Infos, Info, OutputTable); 1174 return; 1175 case IIT_V4: 1176 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1177 DecodeIITType(NextElt, Infos, Info, OutputTable); 1178 return; 1179 case IIT_V8: 1180 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1181 DecodeIITType(NextElt, Infos, Info, OutputTable); 1182 return; 1183 case IIT_V16: 1184 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1185 DecodeIITType(NextElt, Infos, Info, OutputTable); 1186 return; 1187 case IIT_V32: 1188 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1189 DecodeIITType(NextElt, Infos, Info, OutputTable); 1190 return; 1191 case IIT_V64: 1192 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1193 DecodeIITType(NextElt, Infos, Info, OutputTable); 1194 return; 1195 case IIT_V128: 1196 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1197 DecodeIITType(NextElt, Infos, Info, OutputTable); 1198 return; 1199 case IIT_V256: 1200 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1201 DecodeIITType(NextElt, Infos, Info, OutputTable); 1202 return; 1203 case IIT_V512: 1204 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1205 DecodeIITType(NextElt, Infos, Info, OutputTable); 1206 return; 1207 case IIT_V1024: 1208 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1209 DecodeIITType(NextElt, Infos, Info, OutputTable); 1210 return; 1211 case IIT_EXTERNREF: 1212 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1213 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1214 return; 1215 case IIT_FUNCREF: 1216 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1217 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1218 return; 1219 case IIT_PTR: 1220 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1221 DecodeIITType(NextElt, Infos, Info, OutputTable); 1222 return; 1223 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1224 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1225 Infos[NextElt++])); 1226 DecodeIITType(NextElt, Infos, Info, OutputTable); 1227 return; 1228 } 1229 case IIT_ARG: { 1230 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1231 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1232 return; 1233 } 1234 case IIT_EXTEND_ARG: { 1235 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1236 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1237 ArgInfo)); 1238 return; 1239 } 1240 case IIT_TRUNC_ARG: { 1241 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1242 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1243 ArgInfo)); 1244 return; 1245 } 1246 case IIT_HALF_VEC_ARG: { 1247 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1248 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1249 ArgInfo)); 1250 return; 1251 } 1252 case IIT_SAME_VEC_WIDTH_ARG: { 1253 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1254 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1255 ArgInfo)); 1256 return; 1257 } 1258 case IIT_PTR_TO_ARG: { 1259 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1260 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1261 ArgInfo)); 1262 return; 1263 } 1264 case IIT_PTR_TO_ELT: { 1265 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1266 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1267 return; 1268 } 1269 case IIT_ANYPTR_TO_ELT: { 1270 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1271 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1272 OutputTable.push_back( 1273 IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo)); 1274 return; 1275 } 1276 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1277 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1278 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1279 OutputTable.push_back( 1280 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1281 return; 1282 } 1283 case IIT_EMPTYSTRUCT: 1284 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1285 return; 1286 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1287 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1288 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1289 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1290 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1291 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1292 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1293 case IIT_STRUCT2: { 1294 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1295 1296 for (unsigned i = 0; i != StructElts; ++i) 1297 DecodeIITType(NextElt, Infos, Info, OutputTable); 1298 return; 1299 } 1300 case IIT_SUBDIVIDE2_ARG: { 1301 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1302 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1303 ArgInfo)); 1304 return; 1305 } 1306 case IIT_SUBDIVIDE4_ARG: { 1307 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1308 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1309 ArgInfo)); 1310 return; 1311 } 1312 case IIT_VEC_ELEMENT: { 1313 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1314 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1315 ArgInfo)); 1316 return; 1317 } 1318 case IIT_SCALABLE_VEC: { 1319 DecodeIITType(NextElt, Infos, Info, OutputTable); 1320 return; 1321 } 1322 case IIT_VEC_OF_BITCASTS_TO_INT: { 1323 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1324 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1325 ArgInfo)); 1326 return; 1327 } 1328 } 1329 llvm_unreachable("unhandled"); 1330 } 1331 1332 #define GET_INTRINSIC_GENERATOR_GLOBAL 1333 #include "llvm/IR/IntrinsicImpl.inc" 1334 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1335 1336 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1337 SmallVectorImpl<IITDescriptor> &T){ 1338 // Check to see if the intrinsic's type was expressible by the table. 1339 unsigned TableVal = IIT_Table[id-1]; 1340 1341 // Decode the TableVal into an array of IITValues. 1342 SmallVector<unsigned char, 8> IITValues; 1343 ArrayRef<unsigned char> IITEntries; 1344 unsigned NextElt = 0; 1345 if ((TableVal >> 31) != 0) { 1346 // This is an offset into the IIT_LongEncodingTable. 1347 IITEntries = IIT_LongEncodingTable; 1348 1349 // Strip sentinel bit. 1350 NextElt = (TableVal << 1) >> 1; 1351 } else { 1352 // Decode the TableVal into an array of IITValues. If the entry was encoded 1353 // into a single word in the table itself, decode it now. 1354 do { 1355 IITValues.push_back(TableVal & 0xF); 1356 TableVal >>= 4; 1357 } while (TableVal); 1358 1359 IITEntries = IITValues; 1360 NextElt = 0; 1361 } 1362 1363 // Okay, decode the table into the output vector of IITDescriptors. 1364 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1365 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1366 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1367 } 1368 1369 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1370 ArrayRef<Type*> Tys, LLVMContext &Context) { 1371 using namespace Intrinsic; 1372 1373 IITDescriptor D = Infos.front(); 1374 Infos = Infos.slice(1); 1375 1376 switch (D.Kind) { 1377 case IITDescriptor::Void: return Type::getVoidTy(Context); 1378 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1379 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1380 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1381 case IITDescriptor::Token: return Type::getTokenTy(Context); 1382 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1383 case IITDescriptor::Half: return Type::getHalfTy(Context); 1384 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1385 case IITDescriptor::Float: return Type::getFloatTy(Context); 1386 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1387 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1388 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1389 1390 case IITDescriptor::Integer: 1391 return IntegerType::get(Context, D.Integer_Width); 1392 case IITDescriptor::Vector: 1393 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1394 D.Vector_Width); 1395 case IITDescriptor::Pointer: 1396 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1397 D.Pointer_AddressSpace); 1398 case IITDescriptor::Struct: { 1399 SmallVector<Type *, 8> Elts; 1400 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1401 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1402 return StructType::get(Context, Elts); 1403 } 1404 case IITDescriptor::Argument: 1405 return Tys[D.getArgumentNumber()]; 1406 case IITDescriptor::ExtendArgument: { 1407 Type *Ty = Tys[D.getArgumentNumber()]; 1408 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1409 return VectorType::getExtendedElementVectorType(VTy); 1410 1411 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1412 } 1413 case IITDescriptor::TruncArgument: { 1414 Type *Ty = Tys[D.getArgumentNumber()]; 1415 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1416 return VectorType::getTruncatedElementVectorType(VTy); 1417 1418 IntegerType *ITy = cast<IntegerType>(Ty); 1419 assert(ITy->getBitWidth() % 2 == 0); 1420 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1421 } 1422 case IITDescriptor::Subdivide2Argument: 1423 case IITDescriptor::Subdivide4Argument: { 1424 Type *Ty = Tys[D.getArgumentNumber()]; 1425 VectorType *VTy = dyn_cast<VectorType>(Ty); 1426 assert(VTy && "Expected an argument of Vector Type"); 1427 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1428 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1429 } 1430 case IITDescriptor::HalfVecArgument: 1431 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1432 Tys[D.getArgumentNumber()])); 1433 case IITDescriptor::SameVecWidthArgument: { 1434 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1435 Type *Ty = Tys[D.getArgumentNumber()]; 1436 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1437 return VectorType::get(EltTy, VTy->getElementCount()); 1438 return EltTy; 1439 } 1440 case IITDescriptor::PtrToArgument: { 1441 Type *Ty = Tys[D.getArgumentNumber()]; 1442 return PointerType::getUnqual(Ty); 1443 } 1444 case IITDescriptor::PtrToElt: { 1445 Type *Ty = Tys[D.getArgumentNumber()]; 1446 VectorType *VTy = dyn_cast<VectorType>(Ty); 1447 if (!VTy) 1448 llvm_unreachable("Expected an argument of Vector Type"); 1449 Type *EltTy = VTy->getElementType(); 1450 return PointerType::getUnqual(EltTy); 1451 } 1452 case IITDescriptor::VecElementArgument: { 1453 Type *Ty = Tys[D.getArgumentNumber()]; 1454 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1455 return VTy->getElementType(); 1456 llvm_unreachable("Expected an argument of Vector Type"); 1457 } 1458 case IITDescriptor::VecOfBitcastsToInt: { 1459 Type *Ty = Tys[D.getArgumentNumber()]; 1460 VectorType *VTy = dyn_cast<VectorType>(Ty); 1461 assert(VTy && "Expected an argument of Vector Type"); 1462 return VectorType::getInteger(VTy); 1463 } 1464 case IITDescriptor::VecOfAnyPtrsToElt: 1465 // Return the overloaded type (which determines the pointers address space) 1466 return Tys[D.getOverloadArgNumber()]; 1467 case IITDescriptor::AnyPtrToElt: 1468 // Return the overloaded type (which determines the pointers address space) 1469 return Tys[D.getOverloadArgNumber()]; 1470 } 1471 llvm_unreachable("unhandled"); 1472 } 1473 1474 FunctionType *Intrinsic::getType(LLVMContext &Context, 1475 ID id, ArrayRef<Type*> Tys) { 1476 SmallVector<IITDescriptor, 8> Table; 1477 getIntrinsicInfoTableEntries(id, Table); 1478 1479 ArrayRef<IITDescriptor> TableRef = Table; 1480 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1481 1482 SmallVector<Type*, 8> ArgTys; 1483 while (!TableRef.empty()) 1484 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1485 1486 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1487 // If we see void type as the type of the last argument, it is vararg intrinsic 1488 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1489 ArgTys.pop_back(); 1490 return FunctionType::get(ResultTy, ArgTys, true); 1491 } 1492 return FunctionType::get(ResultTy, ArgTys, false); 1493 } 1494 1495 bool Intrinsic::isOverloaded(ID id) { 1496 #define GET_INTRINSIC_OVERLOAD_TABLE 1497 #include "llvm/IR/IntrinsicImpl.inc" 1498 #undef GET_INTRINSIC_OVERLOAD_TABLE 1499 } 1500 1501 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1502 #define GET_INTRINSIC_ATTRIBUTES 1503 #include "llvm/IR/IntrinsicImpl.inc" 1504 #undef GET_INTRINSIC_ATTRIBUTES 1505 1506 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1507 // There can never be multiple globals with the same name of different types, 1508 // because intrinsics must be a specific type. 1509 auto *FT = getType(M->getContext(), id, Tys); 1510 return cast<Function>( 1511 M->getOrInsertFunction( 1512 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1513 .getCallee()); 1514 } 1515 1516 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1517 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1518 #include "llvm/IR/IntrinsicImpl.inc" 1519 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1520 1521 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1522 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1523 #include "llvm/IR/IntrinsicImpl.inc" 1524 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1525 1526 using DeferredIntrinsicMatchPair = 1527 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1528 1529 static bool matchIntrinsicType( 1530 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1531 SmallVectorImpl<Type *> &ArgTys, 1532 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1533 bool IsDeferredCheck) { 1534 using namespace Intrinsic; 1535 1536 // If we ran out of descriptors, there are too many arguments. 1537 if (Infos.empty()) return true; 1538 1539 // Do this before slicing off the 'front' part 1540 auto InfosRef = Infos; 1541 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1542 DeferredChecks.emplace_back(T, InfosRef); 1543 return false; 1544 }; 1545 1546 IITDescriptor D = Infos.front(); 1547 Infos = Infos.slice(1); 1548 1549 switch (D.Kind) { 1550 case IITDescriptor::Void: return !Ty->isVoidTy(); 1551 case IITDescriptor::VarArg: return true; 1552 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1553 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1554 case IITDescriptor::Token: return !Ty->isTokenTy(); 1555 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1556 case IITDescriptor::Half: return !Ty->isHalfTy(); 1557 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1558 case IITDescriptor::Float: return !Ty->isFloatTy(); 1559 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1560 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1561 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1562 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1563 case IITDescriptor::Vector: { 1564 VectorType *VT = dyn_cast<VectorType>(Ty); 1565 return !VT || VT->getElementCount() != D.Vector_Width || 1566 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1567 DeferredChecks, IsDeferredCheck); 1568 } 1569 case IITDescriptor::Pointer: { 1570 PointerType *PT = dyn_cast<PointerType>(Ty); 1571 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1572 return true; 1573 if (!PT->isOpaque()) { 1574 /* Manually consume a pointer to empty struct descriptor, which is 1575 * used for externref. We don't want to enforce that the struct is 1576 * anonymous in this case. (This renders externref intrinsics 1577 * non-unique, but this will go away with opaque pointers anyway.) */ 1578 if (Infos.front().Kind == IITDescriptor::Struct && 1579 Infos.front().Struct_NumElements == 0) { 1580 Infos = Infos.slice(1); 1581 return false; 1582 } 1583 return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos, 1584 ArgTys, DeferredChecks, IsDeferredCheck); 1585 } 1586 // Consume IIT descriptors relating to the pointer element type. 1587 // FIXME: Intrinsic type matching of nested single value types or even 1588 // aggregates doesn't work properly with opaque pointers but hopefully 1589 // doesn't happen in practice. 1590 while (Infos.front().Kind == IITDescriptor::Pointer || 1591 Infos.front().Kind == IITDescriptor::Vector) 1592 Infos = Infos.slice(1); 1593 assert((Infos.front().Kind != IITDescriptor::Argument || 1594 Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) && 1595 "Unsupported polymorphic pointer type with opaque pointer"); 1596 Infos = Infos.slice(1); 1597 return false; 1598 } 1599 1600 case IITDescriptor::Struct: { 1601 StructType *ST = dyn_cast<StructType>(Ty); 1602 if (!ST || !ST->isLiteral() || ST->isPacked() || 1603 ST->getNumElements() != D.Struct_NumElements) 1604 return true; 1605 1606 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1607 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1608 DeferredChecks, IsDeferredCheck)) 1609 return true; 1610 return false; 1611 } 1612 1613 case IITDescriptor::Argument: 1614 // If this is the second occurrence of an argument, 1615 // verify that the later instance matches the previous instance. 1616 if (D.getArgumentNumber() < ArgTys.size()) 1617 return Ty != ArgTys[D.getArgumentNumber()]; 1618 1619 if (D.getArgumentNumber() > ArgTys.size() || 1620 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1621 return IsDeferredCheck || DeferCheck(Ty); 1622 1623 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1624 "Table consistency error"); 1625 ArgTys.push_back(Ty); 1626 1627 switch (D.getArgumentKind()) { 1628 case IITDescriptor::AK_Any: return false; // Success 1629 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1630 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1631 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1632 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1633 default: break; 1634 } 1635 llvm_unreachable("all argument kinds not covered"); 1636 1637 case IITDescriptor::ExtendArgument: { 1638 // If this is a forward reference, defer the check for later. 1639 if (D.getArgumentNumber() >= ArgTys.size()) 1640 return IsDeferredCheck || DeferCheck(Ty); 1641 1642 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1643 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1644 NewTy = VectorType::getExtendedElementVectorType(VTy); 1645 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1646 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1647 else 1648 return true; 1649 1650 return Ty != NewTy; 1651 } 1652 case IITDescriptor::TruncArgument: { 1653 // If this is a forward reference, defer the check for later. 1654 if (D.getArgumentNumber() >= ArgTys.size()) 1655 return IsDeferredCheck || DeferCheck(Ty); 1656 1657 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1658 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1659 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1660 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1661 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1662 else 1663 return true; 1664 1665 return Ty != NewTy; 1666 } 1667 case IITDescriptor::HalfVecArgument: 1668 // If this is a forward reference, defer the check for later. 1669 if (D.getArgumentNumber() >= ArgTys.size()) 1670 return IsDeferredCheck || DeferCheck(Ty); 1671 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1672 VectorType::getHalfElementsVectorType( 1673 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1674 case IITDescriptor::SameVecWidthArgument: { 1675 if (D.getArgumentNumber() >= ArgTys.size()) { 1676 // Defer check and subsequent check for the vector element type. 1677 Infos = Infos.slice(1); 1678 return IsDeferredCheck || DeferCheck(Ty); 1679 } 1680 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1681 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1682 // Both must be vectors of the same number of elements or neither. 1683 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1684 return true; 1685 Type *EltTy = Ty; 1686 if (ThisArgType) { 1687 if (ReferenceType->getElementCount() != 1688 ThisArgType->getElementCount()) 1689 return true; 1690 EltTy = ThisArgType->getElementType(); 1691 } 1692 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1693 IsDeferredCheck); 1694 } 1695 case IITDescriptor::PtrToArgument: { 1696 if (D.getArgumentNumber() >= ArgTys.size()) 1697 return IsDeferredCheck || DeferCheck(Ty); 1698 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1699 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1700 return (!ThisArgType || 1701 !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType)); 1702 } 1703 case IITDescriptor::PtrToElt: { 1704 if (D.getArgumentNumber() >= ArgTys.size()) 1705 return IsDeferredCheck || DeferCheck(Ty); 1706 VectorType * ReferenceType = 1707 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1708 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1709 1710 if (!ThisArgType || !ReferenceType) 1711 return true; 1712 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1713 ReferenceType->getElementType()); 1714 } 1715 case IITDescriptor::AnyPtrToElt: { 1716 unsigned RefArgNumber = D.getRefArgNumber(); 1717 if (RefArgNumber >= ArgTys.size()) { 1718 if (IsDeferredCheck) 1719 return true; 1720 // If forward referencing, already add the pointer type and 1721 // defer the checks for later. 1722 ArgTys.push_back(Ty); 1723 return DeferCheck(Ty); 1724 } 1725 1726 if (!IsDeferredCheck) { 1727 assert(D.getOverloadArgNumber() == ArgTys.size() && 1728 "Table consistency error"); 1729 ArgTys.push_back(Ty); 1730 } 1731 1732 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1733 auto *ThisArgType = dyn_cast<PointerType>(Ty); 1734 if (!ThisArgType || !ReferenceType) 1735 return true; 1736 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1737 ReferenceType->getElementType()); 1738 } 1739 case IITDescriptor::VecOfAnyPtrsToElt: { 1740 unsigned RefArgNumber = D.getRefArgNumber(); 1741 if (RefArgNumber >= ArgTys.size()) { 1742 if (IsDeferredCheck) 1743 return true; 1744 // If forward referencing, already add the pointer-vector type and 1745 // defer the checks for later. 1746 ArgTys.push_back(Ty); 1747 return DeferCheck(Ty); 1748 } 1749 1750 if (!IsDeferredCheck){ 1751 assert(D.getOverloadArgNumber() == ArgTys.size() && 1752 "Table consistency error"); 1753 ArgTys.push_back(Ty); 1754 } 1755 1756 // Verify the overloaded type "matches" the Ref type. 1757 // i.e. Ty is a vector with the same width as Ref. 1758 // Composed of pointers to the same element type as Ref. 1759 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1760 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1761 if (!ThisArgVecTy || !ReferenceType || 1762 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1763 return true; 1764 PointerType *ThisArgEltTy = 1765 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1766 if (!ThisArgEltTy) 1767 return true; 1768 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1769 ReferenceType->getElementType()); 1770 } 1771 case IITDescriptor::VecElementArgument: { 1772 if (D.getArgumentNumber() >= ArgTys.size()) 1773 return IsDeferredCheck ? true : DeferCheck(Ty); 1774 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1775 return !ReferenceType || Ty != ReferenceType->getElementType(); 1776 } 1777 case IITDescriptor::Subdivide2Argument: 1778 case IITDescriptor::Subdivide4Argument: { 1779 // If this is a forward reference, defer the check for later. 1780 if (D.getArgumentNumber() >= ArgTys.size()) 1781 return IsDeferredCheck || DeferCheck(Ty); 1782 1783 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1784 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1785 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1786 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1787 return Ty != NewTy; 1788 } 1789 return true; 1790 } 1791 case IITDescriptor::VecOfBitcastsToInt: { 1792 if (D.getArgumentNumber() >= ArgTys.size()) 1793 return IsDeferredCheck || DeferCheck(Ty); 1794 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1795 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1796 if (!ThisArgVecTy || !ReferenceType) 1797 return true; 1798 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1799 } 1800 } 1801 llvm_unreachable("unhandled"); 1802 } 1803 1804 Intrinsic::MatchIntrinsicTypesResult 1805 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1806 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1807 SmallVectorImpl<Type *> &ArgTys) { 1808 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1809 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1810 false)) 1811 return MatchIntrinsicTypes_NoMatchRet; 1812 1813 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1814 1815 for (auto *Ty : FTy->params()) 1816 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1817 return MatchIntrinsicTypes_NoMatchArg; 1818 1819 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1820 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1821 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1822 true)) 1823 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1824 : MatchIntrinsicTypes_NoMatchArg; 1825 } 1826 1827 return MatchIntrinsicTypes_Match; 1828 } 1829 1830 bool 1831 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1832 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1833 // If there are no descriptors left, then it can't be a vararg. 1834 if (Infos.empty()) 1835 return isVarArg; 1836 1837 // There should be only one descriptor remaining at this point. 1838 if (Infos.size() != 1) 1839 return true; 1840 1841 // Check and verify the descriptor. 1842 IITDescriptor D = Infos.front(); 1843 Infos = Infos.slice(1); 1844 if (D.Kind == IITDescriptor::VarArg) 1845 return !isVarArg; 1846 1847 return true; 1848 } 1849 1850 bool Intrinsic::getIntrinsicSignature(Function *F, 1851 SmallVectorImpl<Type *> &ArgTys) { 1852 Intrinsic::ID ID = F->getIntrinsicID(); 1853 if (!ID) 1854 return false; 1855 1856 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1857 getIntrinsicInfoTableEntries(ID, Table); 1858 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1859 1860 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1861 ArgTys) != 1862 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1863 return false; 1864 } 1865 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1866 TableRef)) 1867 return false; 1868 return true; 1869 } 1870 1871 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1872 SmallVector<Type *, 4> ArgTys; 1873 if (!getIntrinsicSignature(F, ArgTys)) 1874 return std::nullopt; 1875 1876 Intrinsic::ID ID = F->getIntrinsicID(); 1877 StringRef Name = F->getName(); 1878 std::string WantedName = 1879 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1880 if (Name == WantedName) 1881 return std::nullopt; 1882 1883 Function *NewDecl = [&] { 1884 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1885 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1886 if (ExistingF->getFunctionType() == F->getFunctionType()) 1887 return ExistingF; 1888 1889 // The name already exists, but is not a function or has the wrong 1890 // prototype. Make place for the new one by renaming the old version. 1891 // Either this old version will be removed later on or the module is 1892 // invalid and we'll get an error. 1893 ExistingGV->setName(WantedName + ".renamed"); 1894 } 1895 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1896 }(); 1897 1898 NewDecl->setCallingConv(F->getCallingConv()); 1899 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1900 "Shouldn't change the signature"); 1901 return NewDecl; 1902 } 1903 1904 /// hasAddressTaken - returns true if there are any uses of this function 1905 /// other than direct calls or invokes to it. Optionally ignores callback 1906 /// uses, assume like pointer annotation calls, and references in llvm.used 1907 /// and llvm.compiler.used variables. 1908 bool Function::hasAddressTaken(const User **PutOffender, 1909 bool IgnoreCallbackUses, 1910 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1911 bool IgnoreARCAttachedCall) const { 1912 for (const Use &U : uses()) { 1913 const User *FU = U.getUser(); 1914 if (isa<BlockAddress>(FU)) 1915 continue; 1916 1917 if (IgnoreCallbackUses) { 1918 AbstractCallSite ACS(&U); 1919 if (ACS && ACS.isCallbackCall()) 1920 continue; 1921 } 1922 1923 const auto *Call = dyn_cast<CallBase>(FU); 1924 if (!Call) { 1925 if (IgnoreAssumeLikeCalls && 1926 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1927 all_of(FU->users(), [](const User *U) { 1928 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1929 return I->isAssumeLikeIntrinsic(); 1930 return false; 1931 })) { 1932 continue; 1933 } 1934 1935 if (IgnoreLLVMUsed && !FU->user_empty()) { 1936 const User *FUU = FU; 1937 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1938 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1939 FUU = *FU->user_begin(); 1940 if (llvm::all_of(FUU->users(), [](const User *U) { 1941 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1942 return GV->hasName() && 1943 (GV->getName().equals("llvm.compiler.used") || 1944 GV->getName().equals("llvm.used")); 1945 return false; 1946 })) 1947 continue; 1948 } 1949 if (PutOffender) 1950 *PutOffender = FU; 1951 return true; 1952 } 1953 1954 if (IgnoreAssumeLikeCalls) { 1955 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1956 if (I->isAssumeLikeIntrinsic()) 1957 continue; 1958 } 1959 1960 if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) { 1961 if (IgnoreARCAttachedCall && 1962 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1963 U.getOperandNo())) 1964 continue; 1965 1966 if (PutOffender) 1967 *PutOffender = FU; 1968 return true; 1969 } 1970 } 1971 return false; 1972 } 1973 1974 bool Function::isDefTriviallyDead() const { 1975 // Check the linkage 1976 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1977 !hasAvailableExternallyLinkage()) 1978 return false; 1979 1980 // Check if the function is used by anything other than a blockaddress. 1981 for (const User *U : users()) 1982 if (!isa<BlockAddress>(U)) 1983 return false; 1984 1985 return true; 1986 } 1987 1988 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1989 /// setjmp or other function that gcc recognizes as "returning twice". 1990 bool Function::callsFunctionThatReturnsTwice() const { 1991 for (const Instruction &I : instructions(this)) 1992 if (const auto *Call = dyn_cast<CallBase>(&I)) 1993 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1994 return true; 1995 1996 return false; 1997 } 1998 1999 Constant *Function::getPersonalityFn() const { 2000 assert(hasPersonalityFn() && getNumOperands()); 2001 return cast<Constant>(Op<0>()); 2002 } 2003 2004 void Function::setPersonalityFn(Constant *Fn) { 2005 setHungoffOperand<0>(Fn); 2006 setValueSubclassDataBit(3, Fn != nullptr); 2007 } 2008 2009 Constant *Function::getPrefixData() const { 2010 assert(hasPrefixData() && getNumOperands()); 2011 return cast<Constant>(Op<1>()); 2012 } 2013 2014 void Function::setPrefixData(Constant *PrefixData) { 2015 setHungoffOperand<1>(PrefixData); 2016 setValueSubclassDataBit(1, PrefixData != nullptr); 2017 } 2018 2019 Constant *Function::getPrologueData() const { 2020 assert(hasPrologueData() && getNumOperands()); 2021 return cast<Constant>(Op<2>()); 2022 } 2023 2024 void Function::setPrologueData(Constant *PrologueData) { 2025 setHungoffOperand<2>(PrologueData); 2026 setValueSubclassDataBit(2, PrologueData != nullptr); 2027 } 2028 2029 void Function::allocHungoffUselist() { 2030 // If we've already allocated a uselist, stop here. 2031 if (getNumOperands()) 2032 return; 2033 2034 allocHungoffUses(3, /*IsPhi=*/ false); 2035 setNumHungOffUseOperands(3); 2036 2037 // Initialize the uselist with placeholder operands to allow traversal. 2038 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 2039 Op<0>().set(CPN); 2040 Op<1>().set(CPN); 2041 Op<2>().set(CPN); 2042 } 2043 2044 template <int Idx> 2045 void Function::setHungoffOperand(Constant *C) { 2046 if (C) { 2047 allocHungoffUselist(); 2048 Op<Idx>().set(C); 2049 } else if (getNumOperands()) { 2050 Op<Idx>().set( 2051 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 2052 } 2053 } 2054 2055 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 2056 assert(Bit < 16 && "SubclassData contains only 16 bits"); 2057 if (On) 2058 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 2059 else 2060 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 2061 } 2062 2063 void Function::setEntryCount(ProfileCount Count, 2064 const DenseSet<GlobalValue::GUID> *S) { 2065 #if !defined(NDEBUG) 2066 auto PrevCount = getEntryCount(); 2067 assert(!PrevCount || PrevCount->getType() == Count.getType()); 2068 #endif 2069 2070 auto ImportGUIDs = getImportGUIDs(); 2071 if (S == nullptr && ImportGUIDs.size()) 2072 S = &ImportGUIDs; 2073 2074 MDBuilder MDB(getContext()); 2075 setMetadata( 2076 LLVMContext::MD_prof, 2077 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2078 } 2079 2080 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2081 const DenseSet<GlobalValue::GUID> *Imports) { 2082 setEntryCount(ProfileCount(Count, Type), Imports); 2083 } 2084 2085 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2086 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2087 if (MD && MD->getOperand(0)) 2088 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2089 if (MDS->getString().equals("function_entry_count")) { 2090 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2091 uint64_t Count = CI->getValue().getZExtValue(); 2092 // A value of -1 is used for SamplePGO when there were no samples. 2093 // Treat this the same as unknown. 2094 if (Count == (uint64_t)-1) 2095 return std::nullopt; 2096 return ProfileCount(Count, PCT_Real); 2097 } else if (AllowSynthetic && 2098 MDS->getString().equals("synthetic_function_entry_count")) { 2099 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2100 uint64_t Count = CI->getValue().getZExtValue(); 2101 return ProfileCount(Count, PCT_Synthetic); 2102 } 2103 } 2104 return std::nullopt; 2105 } 2106 2107 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2108 DenseSet<GlobalValue::GUID> R; 2109 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2110 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2111 if (MDS->getString().equals("function_entry_count")) 2112 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2113 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2114 ->getValue() 2115 .getZExtValue()); 2116 return R; 2117 } 2118 2119 void Function::setSectionPrefix(StringRef Prefix) { 2120 MDBuilder MDB(getContext()); 2121 setMetadata(LLVMContext::MD_section_prefix, 2122 MDB.createFunctionSectionPrefix(Prefix)); 2123 } 2124 2125 std::optional<StringRef> Function::getSectionPrefix() const { 2126 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2127 assert(cast<MDString>(MD->getOperand(0)) 2128 ->getString() 2129 .equals("function_section_prefix") && 2130 "Metadata not match"); 2131 return cast<MDString>(MD->getOperand(1))->getString(); 2132 } 2133 return std::nullopt; 2134 } 2135 2136 bool Function::nullPointerIsDefined() const { 2137 return hasFnAttribute(Attribute::NullPointerIsValid); 2138 } 2139 2140 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2141 if (F && F->nullPointerIsDefined()) 2142 return true; 2143 2144 if (AS != 0) 2145 return true; 2146 2147 return false; 2148 } 2149