xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 45bcdcbefbfda867965fec755391f6ad0925f74a)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/RWMutex.h"
31 #include "llvm/Support/StringPool.h"
32 #include "llvm/Support/Threading.h"
33 using namespace llvm;
34 
35 // Explicit instantiations of SymbolTableListTraits since some of the methods
36 // are not in the public header file...
37 template class llvm::SymbolTableListTraits<Argument>;
38 template class llvm::SymbolTableListTraits<BasicBlock>;
39 
40 //===----------------------------------------------------------------------===//
41 // Argument Implementation
42 //===----------------------------------------------------------------------===//
43 
44 void Argument::anchor() { }
45 
46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
47   : Value(Ty, Value::ArgumentVal) {
48   Parent = nullptr;
49 
50   if (Par)
51     Par->getArgumentList().push_back(this);
52   setName(Name);
53 }
54 
55 void Argument::setParent(Function *parent) {
56   Parent = parent;
57 }
58 
59 /// getArgNo - Return the index of this formal argument in its containing
60 /// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
61 unsigned Argument::getArgNo() const {
62   const Function *F = getParent();
63   assert(F && "Argument is not in a function");
64 
65   Function::const_arg_iterator AI = F->arg_begin();
66   unsigned ArgIdx = 0;
67   for (; &*AI != this; ++AI)
68     ++ArgIdx;
69 
70   return ArgIdx;
71 }
72 
73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
74 /// it in its containing function. Also returns true if at least one byte is
75 /// known to be dereferenceable and the pointer is in addrspace(0).
76 bool Argument::hasNonNullAttr() const {
77   if (!getType()->isPointerTy()) return false;
78   if (getParent()->getAttributes().
79         hasAttribute(getArgNo()+1, Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            getType()->getPointerAddressSpace() == 0)
83     return true;
84   return false;
85 }
86 
87 /// hasByValAttr - Return true if this argument has the byval attribute on it
88 /// in its containing function.
89 bool Argument::hasByValAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   return hasAttribute(Attribute::ByVal);
92 }
93 
94 bool Argument::hasSwiftSelfAttr() const {
95   return getParent()->getAttributes().
96     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
97 }
98 
99 bool Argument::hasSwiftErrorAttr() const {
100   return getParent()->getAttributes().
101     hasAttribute(getArgNo()+1, Attribute::SwiftError);
102 }
103 
104 /// \brief Return true if this argument has the inalloca attribute on it in
105 /// its containing function.
106 bool Argument::hasInAllocaAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   return hasAttribute(Attribute::InAlloca);
109 }
110 
111 bool Argument::hasByValOrInAllocaAttr() const {
112   if (!getType()->isPointerTy()) return false;
113   AttributeSet Attrs = getParent()->getAttributes();
114   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
115          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
116 }
117 
118 unsigned Argument::getParamAlignment() const {
119   assert(getType()->isPointerTy() && "Only pointers have alignments");
120   return getParent()->getParamAlignment(getArgNo()+1);
121 
122 }
123 
124 uint64_t Argument::getDereferenceableBytes() const {
125   assert(getType()->isPointerTy() &&
126          "Only pointers have dereferenceable bytes");
127   return getParent()->getDereferenceableBytes(getArgNo()+1);
128 }
129 
130 uint64_t Argument::getDereferenceableOrNullBytes() const {
131   assert(getType()->isPointerTy() &&
132          "Only pointers have dereferenceable bytes");
133   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
134 }
135 
136 /// hasNestAttr - Return true if this argument has the nest attribute on
137 /// it in its containing function.
138 bool Argument::hasNestAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::Nest);
141 }
142 
143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
144 /// it in its containing function.
145 bool Argument::hasNoAliasAttr() const {
146   if (!getType()->isPointerTy()) return false;
147   return hasAttribute(Attribute::NoAlias);
148 }
149 
150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
151 /// on it in its containing function.
152 bool Argument::hasNoCaptureAttr() const {
153   if (!getType()->isPointerTy()) return false;
154   return hasAttribute(Attribute::NoCapture);
155 }
156 
157 /// hasSRetAttr - Return true if this argument has the sret attribute on
158 /// it in its containing function.
159 bool Argument::hasStructRetAttr() const {
160   if (!getType()->isPointerTy()) return false;
161   return hasAttribute(Attribute::StructRet);
162 }
163 
164 /// hasReturnedAttr - Return true if this argument has the returned attribute on
165 /// it in its containing function.
166 bool Argument::hasReturnedAttr() const {
167   return hasAttribute(Attribute::Returned);
168 }
169 
170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
171 /// its containing function.
172 bool Argument::hasZExtAttr() const {
173   return hasAttribute(Attribute::ZExt);
174 }
175 
176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
177 /// containing function.
178 bool Argument::hasSExtAttr() const {
179   return hasAttribute(Attribute::SExt);
180 }
181 
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
184 bool Argument::onlyReadsMemory() const {
185   return getParent()->getAttributes().
186       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187       getParent()->getAttributes().
188       hasAttribute(getArgNo()+1, Attribute::ReadNone);
189 }
190 
191 /// addAttr - Add attributes to an argument.
192 void Argument::addAttr(AttributeSet AS) {
193   assert(AS.getNumSlots() <= 1 &&
194          "Trying to add more than one attribute set to an argument!");
195   AttrBuilder B(AS, AS.getSlotIndex(0));
196   getParent()->addAttributes(getArgNo() + 1,
197                              AttributeSet::get(Parent->getContext(),
198                                                getArgNo() + 1, B));
199 }
200 
201 /// removeAttr - Remove attributes from an argument.
202 void Argument::removeAttr(AttributeSet AS) {
203   assert(AS.getNumSlots() <= 1 &&
204          "Trying to remove more than one attribute set from an argument!");
205   AttrBuilder B(AS, AS.getSlotIndex(0));
206   getParent()->removeAttributes(getArgNo() + 1,
207                                 AttributeSet::get(Parent->getContext(),
208                                                   getArgNo() + 1, B));
209 }
210 
211 /// hasAttribute - Checks if an argument has a given attribute.
212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
213   return getParent()->hasAttribute(getArgNo() + 1, Kind);
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // Helper Methods in Function
218 //===----------------------------------------------------------------------===//
219 
220 bool Function::isMaterializable() const {
221   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
222 }
223 
224 void Function::setIsMaterializable(bool V) {
225   unsigned Mask = 1 << IsMaterializableBit;
226   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
227                               (V ? Mask : 0u));
228 }
229 
230 LLVMContext &Function::getContext() const {
231   return getType()->getContext();
232 }
233 
234 FunctionType *Function::getFunctionType() const {
235   return cast<FunctionType>(getValueType());
236 }
237 
238 bool Function::isVarArg() const {
239   return getFunctionType()->isVarArg();
240 }
241 
242 Type *Function::getReturnType() const {
243   return getFunctionType()->getReturnType();
244 }
245 
246 void Function::removeFromParent() {
247   getParent()->getFunctionList().remove(getIterator());
248 }
249 
250 void Function::eraseFromParent() {
251   getParent()->getFunctionList().erase(getIterator());
252 }
253 
254 //===----------------------------------------------------------------------===//
255 // Function Implementation
256 //===----------------------------------------------------------------------===//
257 
258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
259                    Module *ParentModule)
260     : GlobalObject(Ty, Value::FunctionVal,
261                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
262   assert(FunctionType::isValidReturnType(getReturnType()) &&
263          "invalid return type");
264   setGlobalObjectSubClassData(0);
265   SymTab = new ValueSymbolTable();
266 
267   // If the function has arguments, mark them as lazily built.
268   if (Ty->getNumParams())
269     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
270 
271   if (ParentModule)
272     ParentModule->getFunctionList().push_back(this);
273 
274   // Ensure intrinsics have the right parameter attributes.
275   // Note, the IntID field will have been set in Value::setName if this function
276   // name is a valid intrinsic ID.
277   if (IntID)
278     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
279 }
280 
281 Function::~Function() {
282   dropAllReferences();    // After this it is safe to delete instructions.
283 
284   // Delete all of the method arguments and unlink from symbol table...
285   ArgumentList.clear();
286   delete SymTab;
287 
288   // Remove the function from the on-the-side GC table.
289   clearGC();
290 }
291 
292 void Function::BuildLazyArguments() const {
293   // Create the arguments vector, all arguments start out unnamed.
294   FunctionType *FT = getFunctionType();
295   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
296     assert(!FT->getParamType(i)->isVoidTy() &&
297            "Cannot have void typed arguments!");
298     ArgumentList.push_back(new Argument(FT->getParamType(i)));
299   }
300 
301   // Clear the lazy arguments bit.
302   unsigned SDC = getSubclassDataFromValue();
303   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
304 }
305 
306 void Function::stealArgumentListFrom(Function &Src) {
307   assert(isDeclaration() && "Expected no references to current arguments");
308 
309   // Drop the current arguments, if any, and set the lazy argument bit.
310   if (!hasLazyArguments()) {
311     assert(llvm::all_of(ArgumentList,
312                         [](const Argument &A) { return A.use_empty(); }) &&
313            "Expected arguments to be unused in declaration");
314     ArgumentList.clear();
315     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316   }
317 
318   // Nothing to steal if Src has lazy arguments.
319   if (Src.hasLazyArguments())
320     return;
321 
322   // Steal arguments from Src, and fix the lazy argument bits.
323   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
324   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
325   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
326 }
327 
328 size_t Function::arg_size() const {
329   return getFunctionType()->getNumParams();
330 }
331 bool Function::arg_empty() const {
332   return getFunctionType()->getNumParams() == 0;
333 }
334 
335 void Function::setParent(Module *parent) {
336   Parent = parent;
337 }
338 
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining.  This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero.  Then everything is deleted for real.  Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
346 //
347 void Function::dropAllReferences() {
348   setIsMaterializable(false);
349 
350   for (BasicBlock &BB : *this)
351     BB.dropAllReferences();
352 
353   // Delete all basic blocks. They are now unused, except possibly by
354   // blockaddresses, but BasicBlock's destructor takes care of those.
355   while (!BasicBlocks.empty())
356     BasicBlocks.begin()->eraseFromParent();
357 
358   // Drop uses of any optional data (real or placeholder).
359   if (getNumOperands()) {
360     User::dropAllReferences();
361     setNumHungOffUseOperands(0);
362     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
363   }
364 
365   // Metadata is stored in a side-table.
366   clearMetadata();
367 }
368 
369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370   AttributeSet PAL = getAttributes();
371   PAL = PAL.addAttribute(getContext(), i, Kind);
372   setAttributes(PAL);
373 }
374 
375 void Function::addAttribute(unsigned i, Attribute Attr) {
376   AttributeSet PAL = getAttributes();
377   PAL = PAL.addAttribute(getContext(), i, Attr);
378   setAttributes(PAL);
379 }
380 
381 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
382   AttributeSet PAL = getAttributes();
383   PAL = PAL.addAttributes(getContext(), i, Attrs);
384   setAttributes(PAL);
385 }
386 
387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
388   AttributeSet PAL = getAttributes();
389   PAL = PAL.removeAttribute(getContext(), i, Kind);
390   setAttributes(PAL);
391 }
392 
393 void Function::removeAttribute(unsigned i, StringRef Kind) {
394   AttributeSet PAL = getAttributes();
395   PAL = PAL.removeAttribute(getContext(), i, Kind);
396   setAttributes(PAL);
397 }
398 
399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
400   AttributeSet PAL = getAttributes();
401   PAL = PAL.removeAttributes(getContext(), i, Attrs);
402   setAttributes(PAL);
403 }
404 
405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
406   AttributeSet PAL = getAttributes();
407   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
408   setAttributes(PAL);
409 }
410 
411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
412   AttributeSet PAL = getAttributes();
413   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
414   setAttributes(PAL);
415 }
416 
417 const std::string &Function::getGC() const {
418   assert(hasGC() && "Function has no collector");
419   return getContext().getGC(*this);
420 }
421 
422 void Function::setGC(std::string Str) {
423   setValueSubclassDataBit(14, !Str.empty());
424   getContext().setGC(*this, std::move(Str));
425 }
426 
427 void Function::clearGC() {
428   if (!hasGC())
429     return;
430   getContext().deleteGC(*this);
431   setValueSubclassDataBit(14, false);
432 }
433 
434 /// Copy all additional attributes (those not needed to create a Function) from
435 /// the Function Src to this one.
436 void Function::copyAttributesFrom(const GlobalValue *Src) {
437   GlobalObject::copyAttributesFrom(Src);
438   const Function *SrcF = dyn_cast<Function>(Src);
439   if (!SrcF)
440     return;
441 
442   setCallingConv(SrcF->getCallingConv());
443   setAttributes(SrcF->getAttributes());
444   if (SrcF->hasGC())
445     setGC(SrcF->getGC());
446   else
447     clearGC();
448   if (SrcF->hasPersonalityFn())
449     setPersonalityFn(SrcF->getPersonalityFn());
450   if (SrcF->hasPrefixData())
451     setPrefixData(SrcF->getPrefixData());
452   if (SrcF->hasPrologueData())
453     setPrologueData(SrcF->getPrologueData());
454 }
455 
456 /// Table of string intrinsic names indexed by enum value.
457 static const char * const IntrinsicNameTable[] = {
458   "not_intrinsic",
459 #define GET_INTRINSIC_NAME_TABLE
460 #include "llvm/IR/Intrinsics.gen"
461 #undef GET_INTRINSIC_NAME_TABLE
462 };
463 
464 /// Table of per-target intrinsic name tables.
465 #define GET_INTRINSIC_TARGET_DATA
466 #include "llvm/IR/Intrinsics.gen"
467 #undef GET_INTRINSIC_TARGET_DATA
468 
469 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
470 /// target as \c Name, or the generic table if \c Name is not target specific.
471 ///
472 /// Returns the relevant slice of \c IntrinsicNameTable
473 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
474   assert(Name.startswith("llvm."));
475 
476   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
477   // Drop "llvm." and take the first dotted component. That will be the target
478   // if this is target specific.
479   StringRef Target = Name.drop_front(5).split('.').first;
480   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
481                              [](const IntrinsicTargetInfo &TI,
482                                 StringRef Target) { return TI.Name < Target; });
483   // We've either found the target or just fall back to the generic set, which
484   // is always first.
485   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
486   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
487 }
488 
489 /// \brief This does the actual lookup of an intrinsic ID which
490 /// matches the given function name.
491 static Intrinsic::ID lookupIntrinsicID(StringRef Name) {
492   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
493   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
494   if (Idx == -1)
495     return Intrinsic::not_intrinsic;
496 
497   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
498   // an index into a sub-table.
499   int Adjust = NameTable.data() - IntrinsicNameTable;
500   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
501 
502   // If the intrinsic is not overloaded, require an exact match. If it is
503   // overloaded, require a prefix match.
504   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
505   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
506 }
507 
508 void Function::recalculateIntrinsicID() {
509   if (!hasLLVMReservedName()) {
510     IntID = Intrinsic::not_intrinsic;
511     return;
512   }
513   IntID = lookupIntrinsicID(getName());
514 }
515 
516 /// Returns a stable mangling for the type specified for use in the name
517 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
518 /// of named types is simply their name.  Manglings for unnamed types consist
519 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
520 /// combined with the mangling of their component types.  A vararg function
521 /// type will have a suffix of 'vararg'.  Since function types can contain
522 /// other function types, we close a function type mangling with suffix 'f'
523 /// which can't be confused with it's prefix.  This ensures we don't have
524 /// collisions between two unrelated function types. Otherwise, you might
525 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
526 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
527 /// cases) fall back to the MVT codepath, where they could be mangled to
528 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
529 /// everything.
530 static std::string getMangledTypeStr(Type* Ty) {
531   std::string Result;
532   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
533     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
534       getMangledTypeStr(PTyp->getElementType());
535   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
536     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
537       getMangledTypeStr(ATyp->getElementType());
538   } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
539     assert(!STyp->isLiteral() && "TODO: implement literal types");
540     Result += STyp->getName();
541   } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
542     Result += "f_" + getMangledTypeStr(FT->getReturnType());
543     for (size_t i = 0; i < FT->getNumParams(); i++)
544       Result += getMangledTypeStr(FT->getParamType(i));
545     if (FT->isVarArg())
546       Result += "vararg";
547     // Ensure nested function types are distinguishable.
548     Result += "f";
549   } else if (isa<VectorType>(Ty))
550     Result += "v" + utostr(Ty->getVectorNumElements()) +
551       getMangledTypeStr(Ty->getVectorElementType());
552   else if (Ty)
553     Result += EVT::getEVT(Ty).getEVTString();
554   return Result;
555 }
556 
557 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
558   assert(id < num_intrinsics && "Invalid intrinsic ID!");
559   std::string Result(IntrinsicNameTable[id]);
560   for (Type *Ty : Tys) {
561     Result += "." + getMangledTypeStr(Ty);
562   }
563   return Result;
564 }
565 
566 
567 /// IIT_Info - These are enumerators that describe the entries returned by the
568 /// getIntrinsicInfoTableEntries function.
569 ///
570 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
571 enum IIT_Info {
572   // Common values should be encoded with 0-15.
573   IIT_Done = 0,
574   IIT_I1   = 1,
575   IIT_I8   = 2,
576   IIT_I16  = 3,
577   IIT_I32  = 4,
578   IIT_I64  = 5,
579   IIT_F16  = 6,
580   IIT_F32  = 7,
581   IIT_F64  = 8,
582   IIT_V2   = 9,
583   IIT_V4   = 10,
584   IIT_V8   = 11,
585   IIT_V16  = 12,
586   IIT_V32  = 13,
587   IIT_PTR  = 14,
588   IIT_ARG  = 15,
589 
590   // Values from 16+ are only encodable with the inefficient encoding.
591   IIT_V64  = 16,
592   IIT_MMX  = 17,
593   IIT_TOKEN = 18,
594   IIT_METADATA = 19,
595   IIT_EMPTYSTRUCT = 20,
596   IIT_STRUCT2 = 21,
597   IIT_STRUCT3 = 22,
598   IIT_STRUCT4 = 23,
599   IIT_STRUCT5 = 24,
600   IIT_EXTEND_ARG = 25,
601   IIT_TRUNC_ARG = 26,
602   IIT_ANYPTR = 27,
603   IIT_V1   = 28,
604   IIT_VARARG = 29,
605   IIT_HALF_VEC_ARG = 30,
606   IIT_SAME_VEC_WIDTH_ARG = 31,
607   IIT_PTR_TO_ARG = 32,
608   IIT_VEC_OF_PTRS_TO_ELT = 33,
609   IIT_I128 = 34,
610   IIT_V512 = 35,
611   IIT_V1024 = 36
612 };
613 
614 
615 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
616                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
617   IIT_Info Info = IIT_Info(Infos[NextElt++]);
618   unsigned StructElts = 2;
619   using namespace Intrinsic;
620 
621   switch (Info) {
622   case IIT_Done:
623     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
624     return;
625   case IIT_VARARG:
626     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
627     return;
628   case IIT_MMX:
629     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
630     return;
631   case IIT_TOKEN:
632     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
633     return;
634   case IIT_METADATA:
635     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
636     return;
637   case IIT_F16:
638     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
639     return;
640   case IIT_F32:
641     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
642     return;
643   case IIT_F64:
644     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
645     return;
646   case IIT_I1:
647     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
648     return;
649   case IIT_I8:
650     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
651     return;
652   case IIT_I16:
653     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
654     return;
655   case IIT_I32:
656     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
657     return;
658   case IIT_I64:
659     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
660     return;
661   case IIT_I128:
662     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
663     return;
664   case IIT_V1:
665     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
666     DecodeIITType(NextElt, Infos, OutputTable);
667     return;
668   case IIT_V2:
669     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
670     DecodeIITType(NextElt, Infos, OutputTable);
671     return;
672   case IIT_V4:
673     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
674     DecodeIITType(NextElt, Infos, OutputTable);
675     return;
676   case IIT_V8:
677     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
678     DecodeIITType(NextElt, Infos, OutputTable);
679     return;
680   case IIT_V16:
681     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
682     DecodeIITType(NextElt, Infos, OutputTable);
683     return;
684   case IIT_V32:
685     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
686     DecodeIITType(NextElt, Infos, OutputTable);
687     return;
688   case IIT_V64:
689     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
690     DecodeIITType(NextElt, Infos, OutputTable);
691     return;
692   case IIT_V512:
693     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
694     DecodeIITType(NextElt, Infos, OutputTable);
695     return;
696   case IIT_V1024:
697     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
698     DecodeIITType(NextElt, Infos, OutputTable);
699     return;
700   case IIT_PTR:
701     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
702     DecodeIITType(NextElt, Infos, OutputTable);
703     return;
704   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
705     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
706                                              Infos[NextElt++]));
707     DecodeIITType(NextElt, Infos, OutputTable);
708     return;
709   }
710   case IIT_ARG: {
711     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
712     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
713     return;
714   }
715   case IIT_EXTEND_ARG: {
716     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
717     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
718                                              ArgInfo));
719     return;
720   }
721   case IIT_TRUNC_ARG: {
722     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
723     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
724                                              ArgInfo));
725     return;
726   }
727   case IIT_HALF_VEC_ARG: {
728     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
729     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
730                                              ArgInfo));
731     return;
732   }
733   case IIT_SAME_VEC_WIDTH_ARG: {
734     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
736                                              ArgInfo));
737     return;
738   }
739   case IIT_PTR_TO_ARG: {
740     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
741     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
742                                              ArgInfo));
743     return;
744   }
745   case IIT_VEC_OF_PTRS_TO_ELT: {
746     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
747     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
748                                              ArgInfo));
749     return;
750   }
751   case IIT_EMPTYSTRUCT:
752     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
753     return;
754   case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
755   case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
756   case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
757   case IIT_STRUCT2: {
758     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
759 
760     for (unsigned i = 0; i != StructElts; ++i)
761       DecodeIITType(NextElt, Infos, OutputTable);
762     return;
763   }
764   }
765   llvm_unreachable("unhandled");
766 }
767 
768 
769 #define GET_INTRINSIC_GENERATOR_GLOBAL
770 #include "llvm/IR/Intrinsics.gen"
771 #undef GET_INTRINSIC_GENERATOR_GLOBAL
772 
773 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
774                                              SmallVectorImpl<IITDescriptor> &T){
775   // Check to see if the intrinsic's type was expressible by the table.
776   unsigned TableVal = IIT_Table[id-1];
777 
778   // Decode the TableVal into an array of IITValues.
779   SmallVector<unsigned char, 8> IITValues;
780   ArrayRef<unsigned char> IITEntries;
781   unsigned NextElt = 0;
782   if ((TableVal >> 31) != 0) {
783     // This is an offset into the IIT_LongEncodingTable.
784     IITEntries = IIT_LongEncodingTable;
785 
786     // Strip sentinel bit.
787     NextElt = (TableVal << 1) >> 1;
788   } else {
789     // Decode the TableVal into an array of IITValues.  If the entry was encoded
790     // into a single word in the table itself, decode it now.
791     do {
792       IITValues.push_back(TableVal & 0xF);
793       TableVal >>= 4;
794     } while (TableVal);
795 
796     IITEntries = IITValues;
797     NextElt = 0;
798   }
799 
800   // Okay, decode the table into the output vector of IITDescriptors.
801   DecodeIITType(NextElt, IITEntries, T);
802   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
803     DecodeIITType(NextElt, IITEntries, T);
804 }
805 
806 
807 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
808                              ArrayRef<Type*> Tys, LLVMContext &Context) {
809   using namespace Intrinsic;
810   IITDescriptor D = Infos.front();
811   Infos = Infos.slice(1);
812 
813   switch (D.Kind) {
814   case IITDescriptor::Void: return Type::getVoidTy(Context);
815   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
816   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
817   case IITDescriptor::Token: return Type::getTokenTy(Context);
818   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
819   case IITDescriptor::Half: return Type::getHalfTy(Context);
820   case IITDescriptor::Float: return Type::getFloatTy(Context);
821   case IITDescriptor::Double: return Type::getDoubleTy(Context);
822 
823   case IITDescriptor::Integer:
824     return IntegerType::get(Context, D.Integer_Width);
825   case IITDescriptor::Vector:
826     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
827   case IITDescriptor::Pointer:
828     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
829                             D.Pointer_AddressSpace);
830   case IITDescriptor::Struct: {
831     Type *Elts[5];
832     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
833     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
834       Elts[i] = DecodeFixedType(Infos, Tys, Context);
835     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
836   }
837 
838   case IITDescriptor::Argument:
839     return Tys[D.getArgumentNumber()];
840   case IITDescriptor::ExtendArgument: {
841     Type *Ty = Tys[D.getArgumentNumber()];
842     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
843       return VectorType::getExtendedElementVectorType(VTy);
844 
845     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
846   }
847   case IITDescriptor::TruncArgument: {
848     Type *Ty = Tys[D.getArgumentNumber()];
849     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
850       return VectorType::getTruncatedElementVectorType(VTy);
851 
852     IntegerType *ITy = cast<IntegerType>(Ty);
853     assert(ITy->getBitWidth() % 2 == 0);
854     return IntegerType::get(Context, ITy->getBitWidth() / 2);
855   }
856   case IITDescriptor::HalfVecArgument:
857     return VectorType::getHalfElementsVectorType(cast<VectorType>(
858                                                   Tys[D.getArgumentNumber()]));
859   case IITDescriptor::SameVecWidthArgument: {
860     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
861     Type *Ty = Tys[D.getArgumentNumber()];
862     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
863       return VectorType::get(EltTy, VTy->getNumElements());
864     }
865     llvm_unreachable("unhandled");
866   }
867   case IITDescriptor::PtrToArgument: {
868     Type *Ty = Tys[D.getArgumentNumber()];
869     return PointerType::getUnqual(Ty);
870   }
871   case IITDescriptor::VecOfPtrsToElt: {
872     Type *Ty = Tys[D.getArgumentNumber()];
873     VectorType *VTy = dyn_cast<VectorType>(Ty);
874     if (!VTy)
875       llvm_unreachable("Expected an argument of Vector Type");
876     Type *EltTy = VTy->getVectorElementType();
877     return VectorType::get(PointerType::getUnqual(EltTy),
878                            VTy->getNumElements());
879   }
880  }
881   llvm_unreachable("unhandled");
882 }
883 
884 
885 
886 FunctionType *Intrinsic::getType(LLVMContext &Context,
887                                  ID id, ArrayRef<Type*> Tys) {
888   SmallVector<IITDescriptor, 8> Table;
889   getIntrinsicInfoTableEntries(id, Table);
890 
891   ArrayRef<IITDescriptor> TableRef = Table;
892   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
893 
894   SmallVector<Type*, 8> ArgTys;
895   while (!TableRef.empty())
896     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
897 
898   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
899   // If we see void type as the type of the last argument, it is vararg intrinsic
900   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
901     ArgTys.pop_back();
902     return FunctionType::get(ResultTy, ArgTys, true);
903   }
904   return FunctionType::get(ResultTy, ArgTys, false);
905 }
906 
907 bool Intrinsic::isOverloaded(ID id) {
908 #define GET_INTRINSIC_OVERLOAD_TABLE
909 #include "llvm/IR/Intrinsics.gen"
910 #undef GET_INTRINSIC_OVERLOAD_TABLE
911 }
912 
913 bool Intrinsic::isLeaf(ID id) {
914   switch (id) {
915   default:
916     return true;
917 
918   case Intrinsic::experimental_gc_statepoint:
919   case Intrinsic::experimental_patchpoint_void:
920   case Intrinsic::experimental_patchpoint_i64:
921     return false;
922   }
923 }
924 
925 /// This defines the "Intrinsic::getAttributes(ID id)" method.
926 #define GET_INTRINSIC_ATTRIBUTES
927 #include "llvm/IR/Intrinsics.gen"
928 #undef GET_INTRINSIC_ATTRIBUTES
929 
930 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
931   // There can never be multiple globals with the same name of different types,
932   // because intrinsics must be a specific type.
933   return
934     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
935                                           getType(M->getContext(), id, Tys)));
936 }
937 
938 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
939 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
940 #include "llvm/IR/Intrinsics.gen"
941 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
942 
943 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
944 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
945 #include "llvm/IR/Intrinsics.gen"
946 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
947 
948 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
949                                    SmallVectorImpl<Type*> &ArgTys) {
950   using namespace Intrinsic;
951 
952   // If we ran out of descriptors, there are too many arguments.
953   if (Infos.empty()) return true;
954   IITDescriptor D = Infos.front();
955   Infos = Infos.slice(1);
956 
957   switch (D.Kind) {
958     case IITDescriptor::Void: return !Ty->isVoidTy();
959     case IITDescriptor::VarArg: return true;
960     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
961     case IITDescriptor::Token: return !Ty->isTokenTy();
962     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
963     case IITDescriptor::Half: return !Ty->isHalfTy();
964     case IITDescriptor::Float: return !Ty->isFloatTy();
965     case IITDescriptor::Double: return !Ty->isDoubleTy();
966     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
967     case IITDescriptor::Vector: {
968       VectorType *VT = dyn_cast<VectorType>(Ty);
969       return !VT || VT->getNumElements() != D.Vector_Width ||
970              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
971     }
972     case IITDescriptor::Pointer: {
973       PointerType *PT = dyn_cast<PointerType>(Ty);
974       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
975              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
976     }
977 
978     case IITDescriptor::Struct: {
979       StructType *ST = dyn_cast<StructType>(Ty);
980       if (!ST || ST->getNumElements() != D.Struct_NumElements)
981         return true;
982 
983       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
984         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
985           return true;
986       return false;
987     }
988 
989     case IITDescriptor::Argument:
990       // Two cases here - If this is the second occurrence of an argument, verify
991       // that the later instance matches the previous instance.
992       if (D.getArgumentNumber() < ArgTys.size())
993         return Ty != ArgTys[D.getArgumentNumber()];
994 
995           // Otherwise, if this is the first instance of an argument, record it and
996           // verify the "Any" kind.
997           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
998           ArgTys.push_back(Ty);
999 
1000           switch (D.getArgumentKind()) {
1001             case IITDescriptor::AK_Any:        return false; // Success
1002             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1003             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1004             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1005             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1006           }
1007           llvm_unreachable("all argument kinds not covered");
1008 
1009     case IITDescriptor::ExtendArgument: {
1010       // This may only be used when referring to a previous vector argument.
1011       if (D.getArgumentNumber() >= ArgTys.size())
1012         return true;
1013 
1014       Type *NewTy = ArgTys[D.getArgumentNumber()];
1015       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1016         NewTy = VectorType::getExtendedElementVectorType(VTy);
1017       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1018         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1019       else
1020         return true;
1021 
1022       return Ty != NewTy;
1023     }
1024     case IITDescriptor::TruncArgument: {
1025       // This may only be used when referring to a previous vector argument.
1026       if (D.getArgumentNumber() >= ArgTys.size())
1027         return true;
1028 
1029       Type *NewTy = ArgTys[D.getArgumentNumber()];
1030       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1031         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1032       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1033         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1034       else
1035         return true;
1036 
1037       return Ty != NewTy;
1038     }
1039     case IITDescriptor::HalfVecArgument:
1040       // This may only be used when referring to a previous vector argument.
1041       return D.getArgumentNumber() >= ArgTys.size() ||
1042              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1043              VectorType::getHalfElementsVectorType(
1044                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1045     case IITDescriptor::SameVecWidthArgument: {
1046       if (D.getArgumentNumber() >= ArgTys.size())
1047         return true;
1048       VectorType * ReferenceType =
1049               dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1050       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1051       if (!ThisArgType || !ReferenceType ||
1052           (ReferenceType->getVectorNumElements() !=
1053            ThisArgType->getVectorNumElements()))
1054         return true;
1055       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1056                                 Infos, ArgTys);
1057     }
1058     case IITDescriptor::PtrToArgument: {
1059       if (D.getArgumentNumber() >= ArgTys.size())
1060         return true;
1061       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1062       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1063       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1064     }
1065     case IITDescriptor::VecOfPtrsToElt: {
1066       if (D.getArgumentNumber() >= ArgTys.size())
1067         return true;
1068       VectorType * ReferenceType =
1069               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1070       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1071       if (!ThisArgVecTy || !ReferenceType ||
1072           (ReferenceType->getVectorNumElements() !=
1073            ThisArgVecTy->getVectorNumElements()))
1074         return true;
1075       PointerType *ThisArgEltTy =
1076               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1077       if (!ThisArgEltTy)
1078         return true;
1079       return ThisArgEltTy->getElementType() !=
1080              ReferenceType->getVectorElementType();
1081     }
1082   }
1083   llvm_unreachable("unhandled");
1084 }
1085 
1086 bool
1087 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1088                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1089   // If there are no descriptors left, then it can't be a vararg.
1090   if (Infos.empty())
1091     return isVarArg;
1092 
1093   // There should be only one descriptor remaining at this point.
1094   if (Infos.size() != 1)
1095     return true;
1096 
1097   // Check and verify the descriptor.
1098   IITDescriptor D = Infos.front();
1099   Infos = Infos.slice(1);
1100   if (D.Kind == IITDescriptor::VarArg)
1101     return !isVarArg;
1102 
1103   return true;
1104 }
1105 
1106 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1107   Intrinsic::ID ID = F->getIntrinsicID();
1108   if (!ID)
1109     return None;
1110 
1111   FunctionType *FTy = F->getFunctionType();
1112   // Accumulate an array of overloaded types for the given intrinsic
1113   SmallVector<Type *, 4> ArgTys;
1114   {
1115     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1116     getIntrinsicInfoTableEntries(ID, Table);
1117     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1118 
1119     // If we encounter any problems matching the signature with the descriptor
1120     // just give up remangling. It's up to verifier to report the discrepancy.
1121     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1122       return None;
1123     for (auto Ty : FTy->params())
1124       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1125         return None;
1126     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1127       return None;
1128   }
1129 
1130   StringRef Name = F->getName();
1131   if (Name == Intrinsic::getName(ID, ArgTys))
1132     return None;
1133 
1134   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1135   NewDecl->setCallingConv(F->getCallingConv());
1136   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1137   return NewDecl;
1138 }
1139 
1140 /// hasAddressTaken - returns true if there are any uses of this function
1141 /// other than direct calls or invokes to it.
1142 bool Function::hasAddressTaken(const User* *PutOffender) const {
1143   for (const Use &U : uses()) {
1144     const User *FU = U.getUser();
1145     if (isa<BlockAddress>(FU))
1146       continue;
1147     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1148       if (PutOffender)
1149         *PutOffender = FU;
1150       return true;
1151     }
1152     ImmutableCallSite CS(cast<Instruction>(FU));
1153     if (!CS.isCallee(&U)) {
1154       if (PutOffender)
1155         *PutOffender = FU;
1156       return true;
1157     }
1158   }
1159   return false;
1160 }
1161 
1162 bool Function::isDefTriviallyDead() const {
1163   // Check the linkage
1164   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1165       !hasAvailableExternallyLinkage())
1166     return false;
1167 
1168   // Check if the function is used by anything other than a blockaddress.
1169   for (const User *U : users())
1170     if (!isa<BlockAddress>(U))
1171       return false;
1172 
1173   return true;
1174 }
1175 
1176 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1177 /// setjmp or other function that gcc recognizes as "returning twice".
1178 bool Function::callsFunctionThatReturnsTwice() const {
1179   for (const_inst_iterator
1180          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1181     ImmutableCallSite CS(&*I);
1182     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1183       return true;
1184   }
1185 
1186   return false;
1187 }
1188 
1189 Constant *Function::getPersonalityFn() const {
1190   assert(hasPersonalityFn() && getNumOperands());
1191   return cast<Constant>(Op<0>());
1192 }
1193 
1194 void Function::setPersonalityFn(Constant *Fn) {
1195   setHungoffOperand<0>(Fn);
1196   setValueSubclassDataBit(3, Fn != nullptr);
1197 }
1198 
1199 Constant *Function::getPrefixData() const {
1200   assert(hasPrefixData() && getNumOperands());
1201   return cast<Constant>(Op<1>());
1202 }
1203 
1204 void Function::setPrefixData(Constant *PrefixData) {
1205   setHungoffOperand<1>(PrefixData);
1206   setValueSubclassDataBit(1, PrefixData != nullptr);
1207 }
1208 
1209 Constant *Function::getPrologueData() const {
1210   assert(hasPrologueData() && getNumOperands());
1211   return cast<Constant>(Op<2>());
1212 }
1213 
1214 void Function::setPrologueData(Constant *PrologueData) {
1215   setHungoffOperand<2>(PrologueData);
1216   setValueSubclassDataBit(2, PrologueData != nullptr);
1217 }
1218 
1219 void Function::allocHungoffUselist() {
1220   // If we've already allocated a uselist, stop here.
1221   if (getNumOperands())
1222     return;
1223 
1224   allocHungoffUses(3, /*IsPhi=*/ false);
1225   setNumHungOffUseOperands(3);
1226 
1227   // Initialize the uselist with placeholder operands to allow traversal.
1228   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1229   Op<0>().set(CPN);
1230   Op<1>().set(CPN);
1231   Op<2>().set(CPN);
1232 }
1233 
1234 template <int Idx>
1235 void Function::setHungoffOperand(Constant *C) {
1236   if (C) {
1237     allocHungoffUselist();
1238     Op<Idx>().set(C);
1239   } else if (getNumOperands()) {
1240     Op<Idx>().set(
1241         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1242   }
1243 }
1244 
1245 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1246   assert(Bit < 16 && "SubclassData contains only 16 bits");
1247   if (On)
1248     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1249   else
1250     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1251 }
1252 
1253 void Function::setEntryCount(uint64_t Count) {
1254   MDBuilder MDB(getContext());
1255   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1256 }
1257 
1258 Optional<uint64_t> Function::getEntryCount() const {
1259   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1260   if (MD && MD->getOperand(0))
1261     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1262       if (MDS->getString().equals("function_entry_count")) {
1263         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1264         return CI->getValue().getZExtValue();
1265       }
1266   return None;
1267 }
1268