1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/RWMutex.h" 31 #include "llvm/Support/StringPool.h" 32 #include "llvm/Support/Threading.h" 33 using namespace llvm; 34 35 // Explicit instantiations of SymbolTableListTraits since some of the methods 36 // are not in the public header file... 37 template class llvm::SymbolTableListTraits<Argument>; 38 template class llvm::SymbolTableListTraits<BasicBlock>; 39 40 //===----------------------------------------------------------------------===// 41 // Argument Implementation 42 //===----------------------------------------------------------------------===// 43 44 void Argument::anchor() { } 45 46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 47 : Value(Ty, Value::ArgumentVal) { 48 Parent = nullptr; 49 50 if (Par) 51 Par->getArgumentList().push_back(this); 52 setName(Name); 53 } 54 55 void Argument::setParent(Function *parent) { 56 Parent = parent; 57 } 58 59 /// getArgNo - Return the index of this formal argument in its containing 60 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 61 unsigned Argument::getArgNo() const { 62 const Function *F = getParent(); 63 assert(F && "Argument is not in a function"); 64 65 Function::const_arg_iterator AI = F->arg_begin(); 66 unsigned ArgIdx = 0; 67 for (; &*AI != this; ++AI) 68 ++ArgIdx; 69 70 return ArgIdx; 71 } 72 73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 74 /// it in its containing function. Also returns true if at least one byte is 75 /// known to be dereferenceable and the pointer is in addrspace(0). 76 bool Argument::hasNonNullAttr() const { 77 if (!getType()->isPointerTy()) return false; 78 if (getParent()->getAttributes(). 79 hasAttribute(getArgNo()+1, Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 getType()->getPointerAddressSpace() == 0) 83 return true; 84 return false; 85 } 86 87 /// hasByValAttr - Return true if this argument has the byval attribute on it 88 /// in its containing function. 89 bool Argument::hasByValAttr() const { 90 if (!getType()->isPointerTy()) return false; 91 return hasAttribute(Attribute::ByVal); 92 } 93 94 bool Argument::hasSwiftSelfAttr() const { 95 return getParent()->getAttributes(). 96 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 97 } 98 99 bool Argument::hasSwiftErrorAttr() const { 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::SwiftError); 102 } 103 104 /// \brief Return true if this argument has the inalloca attribute on it in 105 /// its containing function. 106 bool Argument::hasInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 return hasAttribute(Attribute::InAlloca); 109 } 110 111 bool Argument::hasByValOrInAllocaAttr() const { 112 if (!getType()->isPointerTy()) return false; 113 AttributeSet Attrs = getParent()->getAttributes(); 114 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 115 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 116 } 117 118 unsigned Argument::getParamAlignment() const { 119 assert(getType()->isPointerTy() && "Only pointers have alignments"); 120 return getParent()->getParamAlignment(getArgNo()+1); 121 122 } 123 124 uint64_t Argument::getDereferenceableBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getDereferenceableBytes(getArgNo()+1); 128 } 129 130 uint64_t Argument::getDereferenceableOrNullBytes() const { 131 assert(getType()->isPointerTy() && 132 "Only pointers have dereferenceable bytes"); 133 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 134 } 135 136 /// hasNestAttr - Return true if this argument has the nest attribute on 137 /// it in its containing function. 138 bool Argument::hasNestAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::Nest); 141 } 142 143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 144 /// it in its containing function. 145 bool Argument::hasNoAliasAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::NoAlias); 148 } 149 150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 151 /// on it in its containing function. 152 bool Argument::hasNoCaptureAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::NoCapture); 155 } 156 157 /// hasSRetAttr - Return true if this argument has the sret attribute on 158 /// it in its containing function. 159 bool Argument::hasStructRetAttr() const { 160 if (!getType()->isPointerTy()) return false; 161 return hasAttribute(Attribute::StructRet); 162 } 163 164 /// hasReturnedAttr - Return true if this argument has the returned attribute on 165 /// it in its containing function. 166 bool Argument::hasReturnedAttr() const { 167 return hasAttribute(Attribute::Returned); 168 } 169 170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 171 /// its containing function. 172 bool Argument::hasZExtAttr() const { 173 return hasAttribute(Attribute::ZExt); 174 } 175 176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 177 /// containing function. 178 bool Argument::hasSExtAttr() const { 179 return hasAttribute(Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 /// hasAttribute - Checks if an argument has a given attribute. 212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 213 return getParent()->hasAttribute(getArgNo() + 1, Kind); 214 } 215 216 //===----------------------------------------------------------------------===// 217 // Helper Methods in Function 218 //===----------------------------------------------------------------------===// 219 220 bool Function::isMaterializable() const { 221 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 222 } 223 224 void Function::setIsMaterializable(bool V) { 225 unsigned Mask = 1 << IsMaterializableBit; 226 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 227 (V ? Mask : 0u)); 228 } 229 230 LLVMContext &Function::getContext() const { 231 return getType()->getContext(); 232 } 233 234 FunctionType *Function::getFunctionType() const { 235 return cast<FunctionType>(getValueType()); 236 } 237 238 bool Function::isVarArg() const { 239 return getFunctionType()->isVarArg(); 240 } 241 242 Type *Function::getReturnType() const { 243 return getFunctionType()->getReturnType(); 244 } 245 246 void Function::removeFromParent() { 247 getParent()->getFunctionList().remove(getIterator()); 248 } 249 250 void Function::eraseFromParent() { 251 getParent()->getFunctionList().erase(getIterator()); 252 } 253 254 //===----------------------------------------------------------------------===// 255 // Function Implementation 256 //===----------------------------------------------------------------------===// 257 258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 259 Module *ParentModule) 260 : GlobalObject(Ty, Value::FunctionVal, 261 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 262 assert(FunctionType::isValidReturnType(getReturnType()) && 263 "invalid return type"); 264 setGlobalObjectSubClassData(0); 265 SymTab = new ValueSymbolTable(); 266 267 // If the function has arguments, mark them as lazily built. 268 if (Ty->getNumParams()) 269 setValueSubclassData(1); // Set the "has lazy arguments" bit. 270 271 if (ParentModule) 272 ParentModule->getFunctionList().push_back(this); 273 274 // Ensure intrinsics have the right parameter attributes. 275 // Note, the IntID field will have been set in Value::setName if this function 276 // name is a valid intrinsic ID. 277 if (IntID) 278 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 279 } 280 281 Function::~Function() { 282 dropAllReferences(); // After this it is safe to delete instructions. 283 284 // Delete all of the method arguments and unlink from symbol table... 285 ArgumentList.clear(); 286 delete SymTab; 287 288 // Remove the function from the on-the-side GC table. 289 clearGC(); 290 } 291 292 void Function::BuildLazyArguments() const { 293 // Create the arguments vector, all arguments start out unnamed. 294 FunctionType *FT = getFunctionType(); 295 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 296 assert(!FT->getParamType(i)->isVoidTy() && 297 "Cannot have void typed arguments!"); 298 ArgumentList.push_back(new Argument(FT->getParamType(i))); 299 } 300 301 // Clear the lazy arguments bit. 302 unsigned SDC = getSubclassDataFromValue(); 303 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 304 } 305 306 void Function::stealArgumentListFrom(Function &Src) { 307 assert(isDeclaration() && "Expected no references to current arguments"); 308 309 // Drop the current arguments, if any, and set the lazy argument bit. 310 if (!hasLazyArguments()) { 311 assert(llvm::all_of(ArgumentList, 312 [](const Argument &A) { return A.use_empty(); }) && 313 "Expected arguments to be unused in declaration"); 314 ArgumentList.clear(); 315 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 316 } 317 318 // Nothing to steal if Src has lazy arguments. 319 if (Src.hasLazyArguments()) 320 return; 321 322 // Steal arguments from Src, and fix the lazy argument bits. 323 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 324 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 325 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 326 } 327 328 size_t Function::arg_size() const { 329 return getFunctionType()->getNumParams(); 330 } 331 bool Function::arg_empty() const { 332 return getFunctionType()->getNumParams() == 0; 333 } 334 335 void Function::setParent(Module *parent) { 336 Parent = parent; 337 } 338 339 // dropAllReferences() - This function causes all the subinstructions to "let 340 // go" of all references that they are maintaining. This allows one to 341 // 'delete' a whole class at a time, even though there may be circular 342 // references... first all references are dropped, and all use counts go to 343 // zero. Then everything is deleted for real. Note that no operations are 344 // valid on an object that has "dropped all references", except operator 345 // delete. 346 // 347 void Function::dropAllReferences() { 348 setIsMaterializable(false); 349 350 for (BasicBlock &BB : *this) 351 BB.dropAllReferences(); 352 353 // Delete all basic blocks. They are now unused, except possibly by 354 // blockaddresses, but BasicBlock's destructor takes care of those. 355 while (!BasicBlocks.empty()) 356 BasicBlocks.begin()->eraseFromParent(); 357 358 // Drop uses of any optional data (real or placeholder). 359 if (getNumOperands()) { 360 User::dropAllReferences(); 361 setNumHungOffUseOperands(0); 362 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 363 } 364 365 // Metadata is stored in a side-table. 366 clearMetadata(); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 370 AttributeSet PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Kind); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttribute(unsigned i, Attribute Attr) { 376 AttributeSet PAL = getAttributes(); 377 PAL = PAL.addAttribute(getContext(), i, Attr); 378 setAttributes(PAL); 379 } 380 381 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 382 AttributeSet PAL = getAttributes(); 383 PAL = PAL.addAttributes(getContext(), i, Attrs); 384 setAttributes(PAL); 385 } 386 387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 388 AttributeSet PAL = getAttributes(); 389 PAL = PAL.removeAttribute(getContext(), i, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::removeAttribute(unsigned i, StringRef Kind) { 394 AttributeSet PAL = getAttributes(); 395 PAL = PAL.removeAttribute(getContext(), i, Kind); 396 setAttributes(PAL); 397 } 398 399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 400 AttributeSet PAL = getAttributes(); 401 PAL = PAL.removeAttributes(getContext(), i, Attrs); 402 setAttributes(PAL); 403 } 404 405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 406 AttributeSet PAL = getAttributes(); 407 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 408 setAttributes(PAL); 409 } 410 411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 412 AttributeSet PAL = getAttributes(); 413 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 414 setAttributes(PAL); 415 } 416 417 const std::string &Function::getGC() const { 418 assert(hasGC() && "Function has no collector"); 419 return getContext().getGC(*this); 420 } 421 422 void Function::setGC(std::string Str) { 423 setValueSubclassDataBit(14, !Str.empty()); 424 getContext().setGC(*this, std::move(Str)); 425 } 426 427 void Function::clearGC() { 428 if (!hasGC()) 429 return; 430 getContext().deleteGC(*this); 431 setValueSubclassDataBit(14, false); 432 } 433 434 /// Copy all additional attributes (those not needed to create a Function) from 435 /// the Function Src to this one. 436 void Function::copyAttributesFrom(const GlobalValue *Src) { 437 GlobalObject::copyAttributesFrom(Src); 438 const Function *SrcF = dyn_cast<Function>(Src); 439 if (!SrcF) 440 return; 441 442 setCallingConv(SrcF->getCallingConv()); 443 setAttributes(SrcF->getAttributes()); 444 if (SrcF->hasGC()) 445 setGC(SrcF->getGC()); 446 else 447 clearGC(); 448 if (SrcF->hasPersonalityFn()) 449 setPersonalityFn(SrcF->getPersonalityFn()); 450 if (SrcF->hasPrefixData()) 451 setPrefixData(SrcF->getPrefixData()); 452 if (SrcF->hasPrologueData()) 453 setPrologueData(SrcF->getPrologueData()); 454 } 455 456 /// Table of string intrinsic names indexed by enum value. 457 static const char * const IntrinsicNameTable[] = { 458 "not_intrinsic", 459 #define GET_INTRINSIC_NAME_TABLE 460 #include "llvm/IR/Intrinsics.gen" 461 #undef GET_INTRINSIC_NAME_TABLE 462 }; 463 464 /// Table of per-target intrinsic name tables. 465 #define GET_INTRINSIC_TARGET_DATA 466 #include "llvm/IR/Intrinsics.gen" 467 #undef GET_INTRINSIC_TARGET_DATA 468 469 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 470 /// target as \c Name, or the generic table if \c Name is not target specific. 471 /// 472 /// Returns the relevant slice of \c IntrinsicNameTable 473 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 474 assert(Name.startswith("llvm.")); 475 476 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 477 // Drop "llvm." and take the first dotted component. That will be the target 478 // if this is target specific. 479 StringRef Target = Name.drop_front(5).split('.').first; 480 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 481 [](const IntrinsicTargetInfo &TI, 482 StringRef Target) { return TI.Name < Target; }); 483 // We've either found the target or just fall back to the generic set, which 484 // is always first. 485 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 486 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 487 } 488 489 /// \brief This does the actual lookup of an intrinsic ID which 490 /// matches the given function name. 491 static Intrinsic::ID lookupIntrinsicID(StringRef Name) { 492 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 493 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 494 if (Idx == -1) 495 return Intrinsic::not_intrinsic; 496 497 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 498 // an index into a sub-table. 499 int Adjust = NameTable.data() - IntrinsicNameTable; 500 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 501 502 // If the intrinsic is not overloaded, require an exact match. If it is 503 // overloaded, require a prefix match. 504 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 505 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 506 } 507 508 void Function::recalculateIntrinsicID() { 509 if (!hasLLVMReservedName()) { 510 IntID = Intrinsic::not_intrinsic; 511 return; 512 } 513 IntID = lookupIntrinsicID(getName()); 514 } 515 516 /// Returns a stable mangling for the type specified for use in the name 517 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 518 /// of named types is simply their name. Manglings for unnamed types consist 519 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 520 /// combined with the mangling of their component types. A vararg function 521 /// type will have a suffix of 'vararg'. Since function types can contain 522 /// other function types, we close a function type mangling with suffix 'f' 523 /// which can't be confused with it's prefix. This ensures we don't have 524 /// collisions between two unrelated function types. Otherwise, you might 525 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 526 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 527 /// cases) fall back to the MVT codepath, where they could be mangled to 528 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 529 /// everything. 530 static std::string getMangledTypeStr(Type* Ty) { 531 std::string Result; 532 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 533 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 534 getMangledTypeStr(PTyp->getElementType()); 535 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 536 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 537 getMangledTypeStr(ATyp->getElementType()); 538 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 539 assert(!STyp->isLiteral() && "TODO: implement literal types"); 540 Result += STyp->getName(); 541 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 542 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 543 for (size_t i = 0; i < FT->getNumParams(); i++) 544 Result += getMangledTypeStr(FT->getParamType(i)); 545 if (FT->isVarArg()) 546 Result += "vararg"; 547 // Ensure nested function types are distinguishable. 548 Result += "f"; 549 } else if (isa<VectorType>(Ty)) 550 Result += "v" + utostr(Ty->getVectorNumElements()) + 551 getMangledTypeStr(Ty->getVectorElementType()); 552 else if (Ty) 553 Result += EVT::getEVT(Ty).getEVTString(); 554 return Result; 555 } 556 557 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 558 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 559 std::string Result(IntrinsicNameTable[id]); 560 for (Type *Ty : Tys) { 561 Result += "." + getMangledTypeStr(Ty); 562 } 563 return Result; 564 } 565 566 567 /// IIT_Info - These are enumerators that describe the entries returned by the 568 /// getIntrinsicInfoTableEntries function. 569 /// 570 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 571 enum IIT_Info { 572 // Common values should be encoded with 0-15. 573 IIT_Done = 0, 574 IIT_I1 = 1, 575 IIT_I8 = 2, 576 IIT_I16 = 3, 577 IIT_I32 = 4, 578 IIT_I64 = 5, 579 IIT_F16 = 6, 580 IIT_F32 = 7, 581 IIT_F64 = 8, 582 IIT_V2 = 9, 583 IIT_V4 = 10, 584 IIT_V8 = 11, 585 IIT_V16 = 12, 586 IIT_V32 = 13, 587 IIT_PTR = 14, 588 IIT_ARG = 15, 589 590 // Values from 16+ are only encodable with the inefficient encoding. 591 IIT_V64 = 16, 592 IIT_MMX = 17, 593 IIT_TOKEN = 18, 594 IIT_METADATA = 19, 595 IIT_EMPTYSTRUCT = 20, 596 IIT_STRUCT2 = 21, 597 IIT_STRUCT3 = 22, 598 IIT_STRUCT4 = 23, 599 IIT_STRUCT5 = 24, 600 IIT_EXTEND_ARG = 25, 601 IIT_TRUNC_ARG = 26, 602 IIT_ANYPTR = 27, 603 IIT_V1 = 28, 604 IIT_VARARG = 29, 605 IIT_HALF_VEC_ARG = 30, 606 IIT_SAME_VEC_WIDTH_ARG = 31, 607 IIT_PTR_TO_ARG = 32, 608 IIT_VEC_OF_PTRS_TO_ELT = 33, 609 IIT_I128 = 34, 610 IIT_V512 = 35, 611 IIT_V1024 = 36 612 }; 613 614 615 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 616 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 617 IIT_Info Info = IIT_Info(Infos[NextElt++]); 618 unsigned StructElts = 2; 619 using namespace Intrinsic; 620 621 switch (Info) { 622 case IIT_Done: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 624 return; 625 case IIT_VARARG: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 627 return; 628 case IIT_MMX: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 630 return; 631 case IIT_TOKEN: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 633 return; 634 case IIT_METADATA: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 636 return; 637 case IIT_F16: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 639 return; 640 case IIT_F32: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 642 return; 643 case IIT_F64: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 645 return; 646 case IIT_I1: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 648 return; 649 case IIT_I8: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 651 return; 652 case IIT_I16: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 654 return; 655 case IIT_I32: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 657 return; 658 case IIT_I64: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 660 return; 661 case IIT_I128: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 663 return; 664 case IIT_V1: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 666 DecodeIITType(NextElt, Infos, OutputTable); 667 return; 668 case IIT_V2: 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 670 DecodeIITType(NextElt, Infos, OutputTable); 671 return; 672 case IIT_V4: 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 674 DecodeIITType(NextElt, Infos, OutputTable); 675 return; 676 case IIT_V8: 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 678 DecodeIITType(NextElt, Infos, OutputTable); 679 return; 680 case IIT_V16: 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 682 DecodeIITType(NextElt, Infos, OutputTable); 683 return; 684 case IIT_V32: 685 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 686 DecodeIITType(NextElt, Infos, OutputTable); 687 return; 688 case IIT_V64: 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 690 DecodeIITType(NextElt, Infos, OutputTable); 691 return; 692 case IIT_V512: 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 694 DecodeIITType(NextElt, Infos, OutputTable); 695 return; 696 case IIT_V1024: 697 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 698 DecodeIITType(NextElt, Infos, OutputTable); 699 return; 700 case IIT_PTR: 701 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 702 DecodeIITType(NextElt, Infos, OutputTable); 703 return; 704 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 706 Infos[NextElt++])); 707 DecodeIITType(NextElt, Infos, OutputTable); 708 return; 709 } 710 case IIT_ARG: { 711 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 713 return; 714 } 715 case IIT_EXTEND_ARG: { 716 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 717 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 718 ArgInfo)); 719 return; 720 } 721 case IIT_TRUNC_ARG: { 722 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 724 ArgInfo)); 725 return; 726 } 727 case IIT_HALF_VEC_ARG: { 728 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 730 ArgInfo)); 731 return; 732 } 733 case IIT_SAME_VEC_WIDTH_ARG: { 734 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 736 ArgInfo)); 737 return; 738 } 739 case IIT_PTR_TO_ARG: { 740 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 741 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 742 ArgInfo)); 743 return; 744 } 745 case IIT_VEC_OF_PTRS_TO_ELT: { 746 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 748 ArgInfo)); 749 return; 750 } 751 case IIT_EMPTYSTRUCT: 752 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 753 return; 754 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 755 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 756 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 757 case IIT_STRUCT2: { 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 759 760 for (unsigned i = 0; i != StructElts; ++i) 761 DecodeIITType(NextElt, Infos, OutputTable); 762 return; 763 } 764 } 765 llvm_unreachable("unhandled"); 766 } 767 768 769 #define GET_INTRINSIC_GENERATOR_GLOBAL 770 #include "llvm/IR/Intrinsics.gen" 771 #undef GET_INTRINSIC_GENERATOR_GLOBAL 772 773 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 774 SmallVectorImpl<IITDescriptor> &T){ 775 // Check to see if the intrinsic's type was expressible by the table. 776 unsigned TableVal = IIT_Table[id-1]; 777 778 // Decode the TableVal into an array of IITValues. 779 SmallVector<unsigned char, 8> IITValues; 780 ArrayRef<unsigned char> IITEntries; 781 unsigned NextElt = 0; 782 if ((TableVal >> 31) != 0) { 783 // This is an offset into the IIT_LongEncodingTable. 784 IITEntries = IIT_LongEncodingTable; 785 786 // Strip sentinel bit. 787 NextElt = (TableVal << 1) >> 1; 788 } else { 789 // Decode the TableVal into an array of IITValues. If the entry was encoded 790 // into a single word in the table itself, decode it now. 791 do { 792 IITValues.push_back(TableVal & 0xF); 793 TableVal >>= 4; 794 } while (TableVal); 795 796 IITEntries = IITValues; 797 NextElt = 0; 798 } 799 800 // Okay, decode the table into the output vector of IITDescriptors. 801 DecodeIITType(NextElt, IITEntries, T); 802 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 803 DecodeIITType(NextElt, IITEntries, T); 804 } 805 806 807 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 808 ArrayRef<Type*> Tys, LLVMContext &Context) { 809 using namespace Intrinsic; 810 IITDescriptor D = Infos.front(); 811 Infos = Infos.slice(1); 812 813 switch (D.Kind) { 814 case IITDescriptor::Void: return Type::getVoidTy(Context); 815 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 816 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 817 case IITDescriptor::Token: return Type::getTokenTy(Context); 818 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 819 case IITDescriptor::Half: return Type::getHalfTy(Context); 820 case IITDescriptor::Float: return Type::getFloatTy(Context); 821 case IITDescriptor::Double: return Type::getDoubleTy(Context); 822 823 case IITDescriptor::Integer: 824 return IntegerType::get(Context, D.Integer_Width); 825 case IITDescriptor::Vector: 826 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 827 case IITDescriptor::Pointer: 828 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 829 D.Pointer_AddressSpace); 830 case IITDescriptor::Struct: { 831 Type *Elts[5]; 832 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 833 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 834 Elts[i] = DecodeFixedType(Infos, Tys, Context); 835 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 836 } 837 838 case IITDescriptor::Argument: 839 return Tys[D.getArgumentNumber()]; 840 case IITDescriptor::ExtendArgument: { 841 Type *Ty = Tys[D.getArgumentNumber()]; 842 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 843 return VectorType::getExtendedElementVectorType(VTy); 844 845 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 846 } 847 case IITDescriptor::TruncArgument: { 848 Type *Ty = Tys[D.getArgumentNumber()]; 849 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 850 return VectorType::getTruncatedElementVectorType(VTy); 851 852 IntegerType *ITy = cast<IntegerType>(Ty); 853 assert(ITy->getBitWidth() % 2 == 0); 854 return IntegerType::get(Context, ITy->getBitWidth() / 2); 855 } 856 case IITDescriptor::HalfVecArgument: 857 return VectorType::getHalfElementsVectorType(cast<VectorType>( 858 Tys[D.getArgumentNumber()])); 859 case IITDescriptor::SameVecWidthArgument: { 860 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 861 Type *Ty = Tys[D.getArgumentNumber()]; 862 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 863 return VectorType::get(EltTy, VTy->getNumElements()); 864 } 865 llvm_unreachable("unhandled"); 866 } 867 case IITDescriptor::PtrToArgument: { 868 Type *Ty = Tys[D.getArgumentNumber()]; 869 return PointerType::getUnqual(Ty); 870 } 871 case IITDescriptor::VecOfPtrsToElt: { 872 Type *Ty = Tys[D.getArgumentNumber()]; 873 VectorType *VTy = dyn_cast<VectorType>(Ty); 874 if (!VTy) 875 llvm_unreachable("Expected an argument of Vector Type"); 876 Type *EltTy = VTy->getVectorElementType(); 877 return VectorType::get(PointerType::getUnqual(EltTy), 878 VTy->getNumElements()); 879 } 880 } 881 llvm_unreachable("unhandled"); 882 } 883 884 885 886 FunctionType *Intrinsic::getType(LLVMContext &Context, 887 ID id, ArrayRef<Type*> Tys) { 888 SmallVector<IITDescriptor, 8> Table; 889 getIntrinsicInfoTableEntries(id, Table); 890 891 ArrayRef<IITDescriptor> TableRef = Table; 892 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 893 894 SmallVector<Type*, 8> ArgTys; 895 while (!TableRef.empty()) 896 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 897 898 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 899 // If we see void type as the type of the last argument, it is vararg intrinsic 900 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 901 ArgTys.pop_back(); 902 return FunctionType::get(ResultTy, ArgTys, true); 903 } 904 return FunctionType::get(ResultTy, ArgTys, false); 905 } 906 907 bool Intrinsic::isOverloaded(ID id) { 908 #define GET_INTRINSIC_OVERLOAD_TABLE 909 #include "llvm/IR/Intrinsics.gen" 910 #undef GET_INTRINSIC_OVERLOAD_TABLE 911 } 912 913 bool Intrinsic::isLeaf(ID id) { 914 switch (id) { 915 default: 916 return true; 917 918 case Intrinsic::experimental_gc_statepoint: 919 case Intrinsic::experimental_patchpoint_void: 920 case Intrinsic::experimental_patchpoint_i64: 921 return false; 922 } 923 } 924 925 /// This defines the "Intrinsic::getAttributes(ID id)" method. 926 #define GET_INTRINSIC_ATTRIBUTES 927 #include "llvm/IR/Intrinsics.gen" 928 #undef GET_INTRINSIC_ATTRIBUTES 929 930 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 931 // There can never be multiple globals with the same name of different types, 932 // because intrinsics must be a specific type. 933 return 934 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 935 getType(M->getContext(), id, Tys))); 936 } 937 938 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 939 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 940 #include "llvm/IR/Intrinsics.gen" 941 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 942 943 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 944 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 945 #include "llvm/IR/Intrinsics.gen" 946 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 947 948 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 949 SmallVectorImpl<Type*> &ArgTys) { 950 using namespace Intrinsic; 951 952 // If we ran out of descriptors, there are too many arguments. 953 if (Infos.empty()) return true; 954 IITDescriptor D = Infos.front(); 955 Infos = Infos.slice(1); 956 957 switch (D.Kind) { 958 case IITDescriptor::Void: return !Ty->isVoidTy(); 959 case IITDescriptor::VarArg: return true; 960 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 961 case IITDescriptor::Token: return !Ty->isTokenTy(); 962 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 963 case IITDescriptor::Half: return !Ty->isHalfTy(); 964 case IITDescriptor::Float: return !Ty->isFloatTy(); 965 case IITDescriptor::Double: return !Ty->isDoubleTy(); 966 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 967 case IITDescriptor::Vector: { 968 VectorType *VT = dyn_cast<VectorType>(Ty); 969 return !VT || VT->getNumElements() != D.Vector_Width || 970 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 971 } 972 case IITDescriptor::Pointer: { 973 PointerType *PT = dyn_cast<PointerType>(Ty); 974 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 975 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 976 } 977 978 case IITDescriptor::Struct: { 979 StructType *ST = dyn_cast<StructType>(Ty); 980 if (!ST || ST->getNumElements() != D.Struct_NumElements) 981 return true; 982 983 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 984 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 985 return true; 986 return false; 987 } 988 989 case IITDescriptor::Argument: 990 // Two cases here - If this is the second occurrence of an argument, verify 991 // that the later instance matches the previous instance. 992 if (D.getArgumentNumber() < ArgTys.size()) 993 return Ty != ArgTys[D.getArgumentNumber()]; 994 995 // Otherwise, if this is the first instance of an argument, record it and 996 // verify the "Any" kind. 997 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 998 ArgTys.push_back(Ty); 999 1000 switch (D.getArgumentKind()) { 1001 case IITDescriptor::AK_Any: return false; // Success 1002 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1003 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1004 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1005 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1006 } 1007 llvm_unreachable("all argument kinds not covered"); 1008 1009 case IITDescriptor::ExtendArgument: { 1010 // This may only be used when referring to a previous vector argument. 1011 if (D.getArgumentNumber() >= ArgTys.size()) 1012 return true; 1013 1014 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1015 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1016 NewTy = VectorType::getExtendedElementVectorType(VTy); 1017 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1018 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1019 else 1020 return true; 1021 1022 return Ty != NewTy; 1023 } 1024 case IITDescriptor::TruncArgument: { 1025 // This may only be used when referring to a previous vector argument. 1026 if (D.getArgumentNumber() >= ArgTys.size()) 1027 return true; 1028 1029 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1030 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1031 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1032 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1033 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1034 else 1035 return true; 1036 1037 return Ty != NewTy; 1038 } 1039 case IITDescriptor::HalfVecArgument: 1040 // This may only be used when referring to a previous vector argument. 1041 return D.getArgumentNumber() >= ArgTys.size() || 1042 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1043 VectorType::getHalfElementsVectorType( 1044 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1045 case IITDescriptor::SameVecWidthArgument: { 1046 if (D.getArgumentNumber() >= ArgTys.size()) 1047 return true; 1048 VectorType * ReferenceType = 1049 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1050 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1051 if (!ThisArgType || !ReferenceType || 1052 (ReferenceType->getVectorNumElements() != 1053 ThisArgType->getVectorNumElements())) 1054 return true; 1055 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1056 Infos, ArgTys); 1057 } 1058 case IITDescriptor::PtrToArgument: { 1059 if (D.getArgumentNumber() >= ArgTys.size()) 1060 return true; 1061 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1062 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1063 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1064 } 1065 case IITDescriptor::VecOfPtrsToElt: { 1066 if (D.getArgumentNumber() >= ArgTys.size()) 1067 return true; 1068 VectorType * ReferenceType = 1069 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1070 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1071 if (!ThisArgVecTy || !ReferenceType || 1072 (ReferenceType->getVectorNumElements() != 1073 ThisArgVecTy->getVectorNumElements())) 1074 return true; 1075 PointerType *ThisArgEltTy = 1076 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1077 if (!ThisArgEltTy) 1078 return true; 1079 return ThisArgEltTy->getElementType() != 1080 ReferenceType->getVectorElementType(); 1081 } 1082 } 1083 llvm_unreachable("unhandled"); 1084 } 1085 1086 bool 1087 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1088 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1089 // If there are no descriptors left, then it can't be a vararg. 1090 if (Infos.empty()) 1091 return isVarArg; 1092 1093 // There should be only one descriptor remaining at this point. 1094 if (Infos.size() != 1) 1095 return true; 1096 1097 // Check and verify the descriptor. 1098 IITDescriptor D = Infos.front(); 1099 Infos = Infos.slice(1); 1100 if (D.Kind == IITDescriptor::VarArg) 1101 return !isVarArg; 1102 1103 return true; 1104 } 1105 1106 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1107 Intrinsic::ID ID = F->getIntrinsicID(); 1108 if (!ID) 1109 return None; 1110 1111 FunctionType *FTy = F->getFunctionType(); 1112 // Accumulate an array of overloaded types for the given intrinsic 1113 SmallVector<Type *, 4> ArgTys; 1114 { 1115 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1116 getIntrinsicInfoTableEntries(ID, Table); 1117 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1118 1119 // If we encounter any problems matching the signature with the descriptor 1120 // just give up remangling. It's up to verifier to report the discrepancy. 1121 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1122 return None; 1123 for (auto Ty : FTy->params()) 1124 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1125 return None; 1126 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1127 return None; 1128 } 1129 1130 StringRef Name = F->getName(); 1131 if (Name == Intrinsic::getName(ID, ArgTys)) 1132 return None; 1133 1134 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1135 NewDecl->setCallingConv(F->getCallingConv()); 1136 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1137 return NewDecl; 1138 } 1139 1140 /// hasAddressTaken - returns true if there are any uses of this function 1141 /// other than direct calls or invokes to it. 1142 bool Function::hasAddressTaken(const User* *PutOffender) const { 1143 for (const Use &U : uses()) { 1144 const User *FU = U.getUser(); 1145 if (isa<BlockAddress>(FU)) 1146 continue; 1147 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1148 if (PutOffender) 1149 *PutOffender = FU; 1150 return true; 1151 } 1152 ImmutableCallSite CS(cast<Instruction>(FU)); 1153 if (!CS.isCallee(&U)) { 1154 if (PutOffender) 1155 *PutOffender = FU; 1156 return true; 1157 } 1158 } 1159 return false; 1160 } 1161 1162 bool Function::isDefTriviallyDead() const { 1163 // Check the linkage 1164 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1165 !hasAvailableExternallyLinkage()) 1166 return false; 1167 1168 // Check if the function is used by anything other than a blockaddress. 1169 for (const User *U : users()) 1170 if (!isa<BlockAddress>(U)) 1171 return false; 1172 1173 return true; 1174 } 1175 1176 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1177 /// setjmp or other function that gcc recognizes as "returning twice". 1178 bool Function::callsFunctionThatReturnsTwice() const { 1179 for (const_inst_iterator 1180 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1181 ImmutableCallSite CS(&*I); 1182 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1183 return true; 1184 } 1185 1186 return false; 1187 } 1188 1189 Constant *Function::getPersonalityFn() const { 1190 assert(hasPersonalityFn() && getNumOperands()); 1191 return cast<Constant>(Op<0>()); 1192 } 1193 1194 void Function::setPersonalityFn(Constant *Fn) { 1195 setHungoffOperand<0>(Fn); 1196 setValueSubclassDataBit(3, Fn != nullptr); 1197 } 1198 1199 Constant *Function::getPrefixData() const { 1200 assert(hasPrefixData() && getNumOperands()); 1201 return cast<Constant>(Op<1>()); 1202 } 1203 1204 void Function::setPrefixData(Constant *PrefixData) { 1205 setHungoffOperand<1>(PrefixData); 1206 setValueSubclassDataBit(1, PrefixData != nullptr); 1207 } 1208 1209 Constant *Function::getPrologueData() const { 1210 assert(hasPrologueData() && getNumOperands()); 1211 return cast<Constant>(Op<2>()); 1212 } 1213 1214 void Function::setPrologueData(Constant *PrologueData) { 1215 setHungoffOperand<2>(PrologueData); 1216 setValueSubclassDataBit(2, PrologueData != nullptr); 1217 } 1218 1219 void Function::allocHungoffUselist() { 1220 // If we've already allocated a uselist, stop here. 1221 if (getNumOperands()) 1222 return; 1223 1224 allocHungoffUses(3, /*IsPhi=*/ false); 1225 setNumHungOffUseOperands(3); 1226 1227 // Initialize the uselist with placeholder operands to allow traversal. 1228 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1229 Op<0>().set(CPN); 1230 Op<1>().set(CPN); 1231 Op<2>().set(CPN); 1232 } 1233 1234 template <int Idx> 1235 void Function::setHungoffOperand(Constant *C) { 1236 if (C) { 1237 allocHungoffUselist(); 1238 Op<Idx>().set(C); 1239 } else if (getNumOperands()) { 1240 Op<Idx>().set( 1241 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1242 } 1243 } 1244 1245 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1246 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1247 if (On) 1248 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1249 else 1250 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1251 } 1252 1253 void Function::setEntryCount(uint64_t Count) { 1254 MDBuilder MDB(getContext()); 1255 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1256 } 1257 1258 Optional<uint64_t> Function::getEntryCount() const { 1259 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1260 if (MD && MD->getOperand(0)) 1261 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1262 if (MDS->getString().equals("function_entry_count")) { 1263 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1264 return CI->getValue().getZExtValue(); 1265 } 1266 return None; 1267 } 1268