1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument, Function>; 39 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 if (this != getParent()->arg_begin()) 158 return false; // StructRet param must be first param 159 return getParent()->getAttributes(). 160 hasAttribute(1, Attribute::StructRet); 161 } 162 163 /// hasReturnedAttr - Return true if this argument has the returned attribute on 164 /// it in its containing function. 165 bool Argument::hasReturnedAttr() const { 166 return getParent()->getAttributes(). 167 hasAttribute(getArgNo()+1, Attribute::Returned); 168 } 169 170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 171 /// its containing function. 172 bool Argument::hasZExtAttr() const { 173 return getParent()->getAttributes(). 174 hasAttribute(getArgNo()+1, Attribute::ZExt); 175 } 176 177 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 178 /// containing function. 179 bool Argument::hasSExtAttr() const { 180 return getParent()->getAttributes(). 181 hasAttribute(getArgNo()+1, Attribute::SExt); 182 } 183 184 /// Return true if this argument has the readonly or readnone attribute on it 185 /// in its containing function. 186 bool Argument::onlyReadsMemory() const { 187 return getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 189 getParent()->getAttributes(). 190 hasAttribute(getArgNo()+1, Attribute::ReadNone); 191 } 192 193 /// addAttr - Add attributes to an argument. 194 void Argument::addAttr(AttributeSet AS) { 195 assert(AS.getNumSlots() <= 1 && 196 "Trying to add more than one attribute set to an argument!"); 197 AttrBuilder B(AS, AS.getSlotIndex(0)); 198 getParent()->addAttributes(getArgNo() + 1, 199 AttributeSet::get(Parent->getContext(), 200 getArgNo() + 1, B)); 201 } 202 203 /// removeAttr - Remove attributes from an argument. 204 void Argument::removeAttr(AttributeSet AS) { 205 assert(AS.getNumSlots() <= 1 && 206 "Trying to remove more than one attribute set from an argument!"); 207 AttrBuilder B(AS, AS.getSlotIndex(0)); 208 getParent()->removeAttributes(getArgNo() + 1, 209 AttributeSet::get(Parent->getContext(), 210 getArgNo() + 1, B)); 211 } 212 213 //===----------------------------------------------------------------------===// 214 // Helper Methods in Function 215 //===----------------------------------------------------------------------===// 216 217 bool Function::isMaterializable() const { 218 return getGlobalObjectSubClassData() & IsMaterializableBit; 219 } 220 221 void Function::setIsMaterializable(bool V) { 222 setGlobalObjectBit(IsMaterializableBit, V); 223 } 224 225 LLVMContext &Function::getContext() const { 226 return getType()->getContext(); 227 } 228 229 FunctionType *Function::getFunctionType() const { return Ty; } 230 231 bool Function::isVarArg() const { 232 return getFunctionType()->isVarArg(); 233 } 234 235 Type *Function::getReturnType() const { 236 return getFunctionType()->getReturnType(); 237 } 238 239 void Function::removeFromParent() { 240 getParent()->getFunctionList().remove(this); 241 } 242 243 void Function::eraseFromParent() { 244 getParent()->getFunctionList().erase(this); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Function Implementation 249 //===----------------------------------------------------------------------===// 250 251 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 252 Module *ParentModule) 253 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0, 254 Linkage, name), 255 Ty(Ty) { 256 assert(FunctionType::isValidReturnType(getReturnType()) && 257 "invalid return type"); 258 setGlobalObjectSubClassData(0); 259 SymTab = new ValueSymbolTable(); 260 261 // If the function has arguments, mark them as lazily built. 262 if (Ty->getNumParams()) 263 setValueSubclassData(1); // Set the "has lazy arguments" bit. 264 265 if (ParentModule) 266 ParentModule->getFunctionList().push_back(this); 267 268 // Ensure intrinsics have the right parameter attributes. 269 if (unsigned IID = getIntrinsicID()) 270 setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID))); 271 272 } 273 274 Function::~Function() { 275 dropAllReferences(); // After this it is safe to delete instructions. 276 277 // Delete all of the method arguments and unlink from symbol table... 278 ArgumentList.clear(); 279 delete SymTab; 280 281 // Remove the function from the on-the-side GC table. 282 clearGC(); 283 284 // Remove the intrinsicID from the Cache. 285 if (getValueName() && isIntrinsic()) 286 getContext().pImpl->IntrinsicIDCache.erase(this); 287 } 288 289 void Function::BuildLazyArguments() const { 290 // Create the arguments vector, all arguments start out unnamed. 291 FunctionType *FT = getFunctionType(); 292 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 293 assert(!FT->getParamType(i)->isVoidTy() && 294 "Cannot have void typed arguments!"); 295 ArgumentList.push_back(new Argument(FT->getParamType(i))); 296 } 297 298 // Clear the lazy arguments bit. 299 unsigned SDC = getSubclassDataFromValue(); 300 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 301 } 302 303 size_t Function::arg_size() const { 304 return getFunctionType()->getNumParams(); 305 } 306 bool Function::arg_empty() const { 307 return getFunctionType()->getNumParams() == 0; 308 } 309 310 void Function::setParent(Module *parent) { 311 Parent = parent; 312 } 313 314 // dropAllReferences() - This function causes all the subinstructions to "let 315 // go" of all references that they are maintaining. This allows one to 316 // 'delete' a whole class at a time, even though there may be circular 317 // references... first all references are dropped, and all use counts go to 318 // zero. Then everything is deleted for real. Note that no operations are 319 // valid on an object that has "dropped all references", except operator 320 // delete. 321 // 322 void Function::dropAllReferences() { 323 setIsMaterializable(false); 324 325 for (iterator I = begin(), E = end(); I != E; ++I) 326 I->dropAllReferences(); 327 328 // Delete all basic blocks. They are now unused, except possibly by 329 // blockaddresses, but BasicBlock's destructor takes care of those. 330 while (!BasicBlocks.empty()) 331 BasicBlocks.begin()->eraseFromParent(); 332 333 // Prefix and prologue data are stored in a side table. 334 setPrefixData(nullptr); 335 setPrologueData(nullptr); 336 337 // Metadata is stored in a side-table. 338 clearMetadata(); 339 } 340 341 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 342 AttributeSet PAL = getAttributes(); 343 PAL = PAL.addAttribute(getContext(), i, attr); 344 setAttributes(PAL); 345 } 346 347 void Function::addAttributes(unsigned i, AttributeSet attrs) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addAttributes(getContext(), i, attrs); 350 setAttributes(PAL); 351 } 352 353 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.removeAttributes(getContext(), i, attrs); 356 setAttributes(PAL); 357 } 358 359 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 360 AttributeSet PAL = getAttributes(); 361 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 362 setAttributes(PAL); 363 } 364 365 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 368 setAttributes(PAL); 369 } 370 371 // Maintain the GC name for each function in an on-the-side table. This saves 372 // allocating an additional word in Function for programs which do not use GC 373 // (i.e., most programs) at the cost of increased overhead for clients which do 374 // use GC. 375 static DenseMap<const Function*,PooledStringPtr> *GCNames; 376 static StringPool *GCNamePool; 377 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 378 379 bool Function::hasGC() const { 380 sys::SmartScopedReader<true> Reader(*GCLock); 381 return GCNames && GCNames->count(this); 382 } 383 384 const char *Function::getGC() const { 385 assert(hasGC() && "Function has no collector"); 386 sys::SmartScopedReader<true> Reader(*GCLock); 387 return *(*GCNames)[this]; 388 } 389 390 void Function::setGC(const char *Str) { 391 sys::SmartScopedWriter<true> Writer(*GCLock); 392 if (!GCNamePool) 393 GCNamePool = new StringPool(); 394 if (!GCNames) 395 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 396 (*GCNames)[this] = GCNamePool->intern(Str); 397 } 398 399 void Function::clearGC() { 400 sys::SmartScopedWriter<true> Writer(*GCLock); 401 if (GCNames) { 402 GCNames->erase(this); 403 if (GCNames->empty()) { 404 delete GCNames; 405 GCNames = nullptr; 406 if (GCNamePool->empty()) { 407 delete GCNamePool; 408 GCNamePool = nullptr; 409 } 410 } 411 } 412 } 413 414 /// copyAttributesFrom - copy all additional attributes (those not needed to 415 /// create a Function) from the Function Src to this one. 416 void Function::copyAttributesFrom(const GlobalValue *Src) { 417 assert(isa<Function>(Src) && "Expected a Function!"); 418 GlobalObject::copyAttributesFrom(Src); 419 const Function *SrcF = cast<Function>(Src); 420 setCallingConv(SrcF->getCallingConv()); 421 setAttributes(SrcF->getAttributes()); 422 if (SrcF->hasGC()) 423 setGC(SrcF->getGC()); 424 else 425 clearGC(); 426 if (SrcF->hasPrefixData()) 427 setPrefixData(SrcF->getPrefixData()); 428 else 429 setPrefixData(nullptr); 430 if (SrcF->hasPrologueData()) 431 setPrologueData(SrcF->getPrologueData()); 432 else 433 setPrologueData(nullptr); 434 } 435 436 /// getIntrinsicID - This method returns the ID number of the specified 437 /// function, or Intrinsic::not_intrinsic if the function is not an 438 /// intrinsic, or if the pointer is null. This value is always defined to be 439 /// zero to allow easy checking for whether a function is intrinsic or not. The 440 /// particular intrinsic functions which correspond to this value are defined in 441 /// llvm/Intrinsics.h. Results are cached in the LLVM context, subsequent 442 /// requests for the same ID return results much faster from the cache. 443 /// 444 unsigned Function::getIntrinsicID() const { 445 const ValueName *ValName = this->getValueName(); 446 if (!ValName || !isIntrinsic()) 447 return 0; 448 449 LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache = 450 getContext().pImpl->IntrinsicIDCache; 451 if (!IntrinsicIDCache.count(this)) { 452 unsigned Id = lookupIntrinsicID(); 453 IntrinsicIDCache[this]=Id; 454 return Id; 455 } 456 return IntrinsicIDCache[this]; 457 } 458 459 /// This private method does the actual lookup of an intrinsic ID when the query 460 /// could not be answered from the cache. 461 unsigned Function::lookupIntrinsicID() const { 462 const ValueName *ValName = this->getValueName(); 463 unsigned Len = ValName->getKeyLength(); 464 const char *Name = ValName->getKeyData(); 465 466 #define GET_FUNCTION_RECOGNIZER 467 #include "llvm/IR/Intrinsics.gen" 468 #undef GET_FUNCTION_RECOGNIZER 469 470 return 0; 471 } 472 473 /// Returns a stable mangling for the type specified for use in the name 474 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 475 /// of named types is simply their name. Manglings for unnamed types consist 476 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 477 /// combined with the mangling of their component types. A vararg function 478 /// type will have a suffix of 'vararg'. Since function types can contain 479 /// other function types, we close a function type mangling with suffix 'f' 480 /// which can't be confused with it's prefix. This ensures we don't have 481 /// collisions between two unrelated function types. Otherwise, you might 482 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 483 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 484 /// cases) fall back to the MVT codepath, where they could be mangled to 485 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 486 /// everything. 487 static std::string getMangledTypeStr(Type* Ty) { 488 std::string Result; 489 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 490 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 491 getMangledTypeStr(PTyp->getElementType()); 492 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 493 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 494 getMangledTypeStr(ATyp->getElementType()); 495 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 496 assert(!STyp->isLiteral() && "TODO: implement literal types"); 497 Result += STyp->getName(); 498 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 499 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 500 for (size_t i = 0; i < FT->getNumParams(); i++) 501 Result += getMangledTypeStr(FT->getParamType(i)); 502 if (FT->isVarArg()) 503 Result += "vararg"; 504 // Ensure nested function types are distinguishable. 505 Result += "f"; 506 } else if (Ty) 507 Result += EVT::getEVT(Ty).getEVTString(); 508 return Result; 509 } 510 511 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 512 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 513 static const char * const Table[] = { 514 "not_intrinsic", 515 #define GET_INTRINSIC_NAME_TABLE 516 #include "llvm/IR/Intrinsics.gen" 517 #undef GET_INTRINSIC_NAME_TABLE 518 }; 519 if (Tys.empty()) 520 return Table[id]; 521 std::string Result(Table[id]); 522 for (unsigned i = 0; i < Tys.size(); ++i) { 523 Result += "." + getMangledTypeStr(Tys[i]); 524 } 525 return Result; 526 } 527 528 529 /// IIT_Info - These are enumerators that describe the entries returned by the 530 /// getIntrinsicInfoTableEntries function. 531 /// 532 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 533 enum IIT_Info { 534 // Common values should be encoded with 0-15. 535 IIT_Done = 0, 536 IIT_I1 = 1, 537 IIT_I8 = 2, 538 IIT_I16 = 3, 539 IIT_I32 = 4, 540 IIT_I64 = 5, 541 IIT_F16 = 6, 542 IIT_F32 = 7, 543 IIT_F64 = 8, 544 IIT_V2 = 9, 545 IIT_V4 = 10, 546 IIT_V8 = 11, 547 IIT_V16 = 12, 548 IIT_V32 = 13, 549 IIT_PTR = 14, 550 IIT_ARG = 15, 551 552 // Values from 16+ are only encodable with the inefficient encoding. 553 IIT_V64 = 16, 554 IIT_MMX = 17, 555 IIT_METADATA = 18, 556 IIT_EMPTYSTRUCT = 19, 557 IIT_STRUCT2 = 20, 558 IIT_STRUCT3 = 21, 559 IIT_STRUCT4 = 22, 560 IIT_STRUCT5 = 23, 561 IIT_EXTEND_ARG = 24, 562 IIT_TRUNC_ARG = 25, 563 IIT_ANYPTR = 26, 564 IIT_V1 = 27, 565 IIT_VARARG = 28, 566 IIT_HALF_VEC_ARG = 29, 567 IIT_SAME_VEC_WIDTH_ARG = 30, 568 IIT_PTR_TO_ARG = 31, 569 IIT_VEC_OF_PTRS_TO_ELT = 32 570 }; 571 572 573 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 574 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 575 IIT_Info Info = IIT_Info(Infos[NextElt++]); 576 unsigned StructElts = 2; 577 using namespace Intrinsic; 578 579 switch (Info) { 580 case IIT_Done: 581 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 582 return; 583 case IIT_VARARG: 584 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 585 return; 586 case IIT_MMX: 587 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 588 return; 589 case IIT_METADATA: 590 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 591 return; 592 case IIT_F16: 593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 594 return; 595 case IIT_F32: 596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 597 return; 598 case IIT_F64: 599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 600 return; 601 case IIT_I1: 602 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 603 return; 604 case IIT_I8: 605 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 606 return; 607 case IIT_I16: 608 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 609 return; 610 case IIT_I32: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 612 return; 613 case IIT_I64: 614 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 615 return; 616 case IIT_V1: 617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 618 DecodeIITType(NextElt, Infos, OutputTable); 619 return; 620 case IIT_V2: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 622 DecodeIITType(NextElt, Infos, OutputTable); 623 return; 624 case IIT_V4: 625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 626 DecodeIITType(NextElt, Infos, OutputTable); 627 return; 628 case IIT_V8: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 630 DecodeIITType(NextElt, Infos, OutputTable); 631 return; 632 case IIT_V16: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 634 DecodeIITType(NextElt, Infos, OutputTable); 635 return; 636 case IIT_V32: 637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 638 DecodeIITType(NextElt, Infos, OutputTable); 639 return; 640 case IIT_V64: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 642 DecodeIITType(NextElt, Infos, OutputTable); 643 return; 644 case IIT_PTR: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 646 DecodeIITType(NextElt, Infos, OutputTable); 647 return; 648 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 650 Infos[NextElt++])); 651 DecodeIITType(NextElt, Infos, OutputTable); 652 return; 653 } 654 case IIT_ARG: { 655 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 657 return; 658 } 659 case IIT_EXTEND_ARG: { 660 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 662 ArgInfo)); 663 return; 664 } 665 case IIT_TRUNC_ARG: { 666 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 667 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 668 ArgInfo)); 669 return; 670 } 671 case IIT_HALF_VEC_ARG: { 672 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 674 ArgInfo)); 675 return; 676 } 677 case IIT_SAME_VEC_WIDTH_ARG: { 678 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 680 ArgInfo)); 681 return; 682 } 683 case IIT_PTR_TO_ARG: { 684 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 685 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 686 ArgInfo)); 687 return; 688 } 689 case IIT_VEC_OF_PTRS_TO_ELT: { 690 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 692 ArgInfo)); 693 return; 694 } 695 case IIT_EMPTYSTRUCT: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 697 return; 698 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 699 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 700 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 701 case IIT_STRUCT2: { 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 703 704 for (unsigned i = 0; i != StructElts; ++i) 705 DecodeIITType(NextElt, Infos, OutputTable); 706 return; 707 } 708 } 709 llvm_unreachable("unhandled"); 710 } 711 712 713 #define GET_INTRINSIC_GENERATOR_GLOBAL 714 #include "llvm/IR/Intrinsics.gen" 715 #undef GET_INTRINSIC_GENERATOR_GLOBAL 716 717 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 718 SmallVectorImpl<IITDescriptor> &T){ 719 // Check to see if the intrinsic's type was expressible by the table. 720 unsigned TableVal = IIT_Table[id-1]; 721 722 // Decode the TableVal into an array of IITValues. 723 SmallVector<unsigned char, 8> IITValues; 724 ArrayRef<unsigned char> IITEntries; 725 unsigned NextElt = 0; 726 if ((TableVal >> 31) != 0) { 727 // This is an offset into the IIT_LongEncodingTable. 728 IITEntries = IIT_LongEncodingTable; 729 730 // Strip sentinel bit. 731 NextElt = (TableVal << 1) >> 1; 732 } else { 733 // Decode the TableVal into an array of IITValues. If the entry was encoded 734 // into a single word in the table itself, decode it now. 735 do { 736 IITValues.push_back(TableVal & 0xF); 737 TableVal >>= 4; 738 } while (TableVal); 739 740 IITEntries = IITValues; 741 NextElt = 0; 742 } 743 744 // Okay, decode the table into the output vector of IITDescriptors. 745 DecodeIITType(NextElt, IITEntries, T); 746 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 747 DecodeIITType(NextElt, IITEntries, T); 748 } 749 750 751 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 752 ArrayRef<Type*> Tys, LLVMContext &Context) { 753 using namespace Intrinsic; 754 IITDescriptor D = Infos.front(); 755 Infos = Infos.slice(1); 756 757 switch (D.Kind) { 758 case IITDescriptor::Void: return Type::getVoidTy(Context); 759 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 760 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 761 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 762 case IITDescriptor::Half: return Type::getHalfTy(Context); 763 case IITDescriptor::Float: return Type::getFloatTy(Context); 764 case IITDescriptor::Double: return Type::getDoubleTy(Context); 765 766 case IITDescriptor::Integer: 767 return IntegerType::get(Context, D.Integer_Width); 768 case IITDescriptor::Vector: 769 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 770 case IITDescriptor::Pointer: 771 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 772 D.Pointer_AddressSpace); 773 case IITDescriptor::Struct: { 774 Type *Elts[5]; 775 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 776 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 777 Elts[i] = DecodeFixedType(Infos, Tys, Context); 778 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 779 } 780 781 case IITDescriptor::Argument: 782 return Tys[D.getArgumentNumber()]; 783 case IITDescriptor::ExtendArgument: { 784 Type *Ty = Tys[D.getArgumentNumber()]; 785 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 786 return VectorType::getExtendedElementVectorType(VTy); 787 788 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 789 } 790 case IITDescriptor::TruncArgument: { 791 Type *Ty = Tys[D.getArgumentNumber()]; 792 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 793 return VectorType::getTruncatedElementVectorType(VTy); 794 795 IntegerType *ITy = cast<IntegerType>(Ty); 796 assert(ITy->getBitWidth() % 2 == 0); 797 return IntegerType::get(Context, ITy->getBitWidth() / 2); 798 } 799 case IITDescriptor::HalfVecArgument: 800 return VectorType::getHalfElementsVectorType(cast<VectorType>( 801 Tys[D.getArgumentNumber()])); 802 case IITDescriptor::SameVecWidthArgument: { 803 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 804 Type *Ty = Tys[D.getArgumentNumber()]; 805 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 806 return VectorType::get(EltTy, VTy->getNumElements()); 807 } 808 llvm_unreachable("unhandled"); 809 } 810 case IITDescriptor::PtrToArgument: { 811 Type *Ty = Tys[D.getArgumentNumber()]; 812 return PointerType::getUnqual(Ty); 813 } 814 case IITDescriptor::VecOfPtrsToElt: { 815 Type *Ty = Tys[D.getArgumentNumber()]; 816 VectorType *VTy = dyn_cast<VectorType>(Ty); 817 if (!VTy) 818 llvm_unreachable("Expected an argument of Vector Type"); 819 Type *EltTy = VTy->getVectorElementType(); 820 return VectorType::get(PointerType::getUnqual(EltTy), 821 VTy->getNumElements()); 822 } 823 } 824 llvm_unreachable("unhandled"); 825 } 826 827 828 829 FunctionType *Intrinsic::getType(LLVMContext &Context, 830 ID id, ArrayRef<Type*> Tys) { 831 SmallVector<IITDescriptor, 8> Table; 832 getIntrinsicInfoTableEntries(id, Table); 833 834 ArrayRef<IITDescriptor> TableRef = Table; 835 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 836 837 SmallVector<Type*, 8> ArgTys; 838 while (!TableRef.empty()) 839 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 840 841 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 842 // If we see void type as the type of the last argument, it is vararg intrinsic 843 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 844 ArgTys.pop_back(); 845 return FunctionType::get(ResultTy, ArgTys, true); 846 } 847 return FunctionType::get(ResultTy, ArgTys, false); 848 } 849 850 bool Intrinsic::isOverloaded(ID id) { 851 #define GET_INTRINSIC_OVERLOAD_TABLE 852 #include "llvm/IR/Intrinsics.gen" 853 #undef GET_INTRINSIC_OVERLOAD_TABLE 854 } 855 856 /// This defines the "Intrinsic::getAttributes(ID id)" method. 857 #define GET_INTRINSIC_ATTRIBUTES 858 #include "llvm/IR/Intrinsics.gen" 859 #undef GET_INTRINSIC_ATTRIBUTES 860 861 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 862 // There can never be multiple globals with the same name of different types, 863 // because intrinsics must be a specific type. 864 return 865 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 866 getType(M->getContext(), id, Tys))); 867 } 868 869 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 870 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 871 #include "llvm/IR/Intrinsics.gen" 872 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 873 874 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 875 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 876 #include "llvm/IR/Intrinsics.gen" 877 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 878 879 /// hasAddressTaken - returns true if there are any uses of this function 880 /// other than direct calls or invokes to it. 881 bool Function::hasAddressTaken(const User* *PutOffender) const { 882 for (const Use &U : uses()) { 883 const User *FU = U.getUser(); 884 if (isa<BlockAddress>(FU)) 885 continue; 886 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 887 return PutOffender ? (*PutOffender = FU, true) : true; 888 ImmutableCallSite CS(cast<Instruction>(FU)); 889 if (!CS.isCallee(&U)) 890 return PutOffender ? (*PutOffender = FU, true) : true; 891 } 892 return false; 893 } 894 895 bool Function::isDefTriviallyDead() const { 896 // Check the linkage 897 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 898 !hasAvailableExternallyLinkage()) 899 return false; 900 901 // Check if the function is used by anything other than a blockaddress. 902 for (const User *U : users()) 903 if (!isa<BlockAddress>(U)) 904 return false; 905 906 return true; 907 } 908 909 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 910 /// setjmp or other function that gcc recognizes as "returning twice". 911 bool Function::callsFunctionThatReturnsTwice() const { 912 for (const_inst_iterator 913 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 914 ImmutableCallSite CS(&*I); 915 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 916 return true; 917 } 918 919 return false; 920 } 921 922 Constant *Function::getPrefixData() const { 923 assert(hasPrefixData()); 924 const LLVMContextImpl::PrefixDataMapTy &PDMap = 925 getContext().pImpl->PrefixDataMap; 926 assert(PDMap.find(this) != PDMap.end()); 927 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 928 } 929 930 void Function::setPrefixData(Constant *PrefixData) { 931 if (!PrefixData && !hasPrefixData()) 932 return; 933 934 unsigned SCData = getSubclassDataFromValue(); 935 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 936 ReturnInst *&PDHolder = PDMap[this]; 937 if (PrefixData) { 938 if (PDHolder) 939 PDHolder->setOperand(0, PrefixData); 940 else 941 PDHolder = ReturnInst::Create(getContext(), PrefixData); 942 SCData |= (1<<1); 943 } else { 944 delete PDHolder; 945 PDMap.erase(this); 946 SCData &= ~(1<<1); 947 } 948 setValueSubclassData(SCData); 949 } 950 951 Constant *Function::getPrologueData() const { 952 assert(hasPrologueData()); 953 const LLVMContextImpl::PrologueDataMapTy &SOMap = 954 getContext().pImpl->PrologueDataMap; 955 assert(SOMap.find(this) != SOMap.end()); 956 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 957 } 958 959 void Function::setPrologueData(Constant *PrologueData) { 960 if (!PrologueData && !hasPrologueData()) 961 return; 962 963 unsigned PDData = getSubclassDataFromValue(); 964 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 965 ReturnInst *&PDHolder = PDMap[this]; 966 if (PrologueData) { 967 if (PDHolder) 968 PDHolder->setOperand(0, PrologueData); 969 else 970 PDHolder = ReturnInst::Create(getContext(), PrologueData); 971 PDData |= (1<<2); 972 } else { 973 delete PDHolder; 974 PDMap.erase(this); 975 PDData &= ~(1<<2); 976 } 977 setValueSubclassData(PDData); 978 } 979 980 void llvm::overrideFunctionAttribute(StringRef Kind, StringRef Value, 981 Function &F) { 982 auto &Ctx = F.getContext(); 983 AttributeSet Attrs = F.getAttributes(), AttrsToRemove; 984 985 AttrsToRemove = 986 AttrsToRemove.addAttribute(Ctx, AttributeSet::FunctionIndex, Kind); 987 Attrs = Attrs.removeAttributes(Ctx, AttributeSet::FunctionIndex, 988 AttrsToRemove); 989 Attrs = Attrs.addAttribute(Ctx, AttributeSet::FunctionIndex, Kind, Value); 990 F.setAttributes(Attrs); 991 } 992 993 void Function::setEntryCount(uint64_t Count) { 994 MDBuilder MDB(getContext()); 995 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 996 } 997 998 Optional<uint64_t> Function::getEntryCount() const { 999 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1000 if (MD && MD->getOperand(0)) 1001 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1002 if (MDS->getString().equals("function_entry_count")) { 1003 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1004 return CI->getValue().getZExtValue(); 1005 } 1006 return None; 1007 } 1008