1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsLoongArch.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ModRef.h" 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 //===----------------------------------------------------------------------===// 85 // Argument Implementation 86 //===----------------------------------------------------------------------===// 87 88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 90 setName(Name); 91 } 92 93 void Argument::setParent(Function *parent) { 94 Parent = parent; 95 } 96 97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 98 if (!getType()->isPointerTy()) return false; 99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 100 (AllowUndefOrPoison || 101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 102 return true; 103 else if (getDereferenceableBytes() > 0 && 104 !NullPointerIsDefined(getParent(), 105 getType()->getPointerAddressSpace())) 106 return true; 107 return false; 108 } 109 110 bool Argument::hasByValAttr() const { 111 if (!getType()->isPointerTy()) return false; 112 return hasAttribute(Attribute::ByVal); 113 } 114 115 bool Argument::hasByRefAttr() const { 116 if (!getType()->isPointerTy()) 117 return false; 118 return hasAttribute(Attribute::ByRef); 119 } 120 121 bool Argument::hasSwiftSelfAttr() const { 122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 123 } 124 125 bool Argument::hasSwiftErrorAttr() const { 126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 127 } 128 129 bool Argument::hasInAllocaAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::InAlloca); 132 } 133 134 bool Argument::hasPreallocatedAttr() const { 135 if (!getType()->isPointerTy()) 136 return false; 137 return hasAttribute(Attribute::Preallocated); 138 } 139 140 bool Argument::hasPassPointeeByValueCopyAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 AttributeList Attrs = getParent()->getAttributes(); 143 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 146 } 147 148 bool Argument::hasPointeeInMemoryValueAttr() const { 149 if (!getType()->isPointerTy()) 150 return false; 151 AttributeList Attrs = getParent()->getAttributes(); 152 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 156 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 157 } 158 159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 160 /// parameter type. 161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 162 // FIXME: All the type carrying attributes are mutually exclusive, so there 163 // should be a single query to get the stored type that handles any of them. 164 if (Type *ByValTy = ParamAttrs.getByValType()) 165 return ByValTy; 166 if (Type *ByRefTy = ParamAttrs.getByRefType()) 167 return ByRefTy; 168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 169 return PreAllocTy; 170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 171 return InAllocaTy; 172 if (Type *SRetTy = ParamAttrs.getStructRetType()) 173 return SRetTy; 174 175 return nullptr; 176 } 177 178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 179 AttributeSet ParamAttrs = 180 getParent()->getAttributes().getParamAttrs(getArgNo()); 181 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 182 return DL.getTypeAllocSize(MemTy); 183 return 0; 184 } 185 186 Type *Argument::getPointeeInMemoryValueType() const { 187 AttributeSet ParamAttrs = 188 getParent()->getAttributes().getParamAttrs(getArgNo()); 189 return getMemoryParamAllocType(ParamAttrs); 190 } 191 192 MaybeAlign Argument::getParamAlign() const { 193 assert(getType()->isPointerTy() && "Only pointers have alignments"); 194 return getParent()->getParamAlign(getArgNo()); 195 } 196 197 MaybeAlign Argument::getParamStackAlign() const { 198 return getParent()->getParamStackAlign(getArgNo()); 199 } 200 201 Type *Argument::getParamByValType() const { 202 assert(getType()->isPointerTy() && "Only pointers have byval types"); 203 return getParent()->getParamByValType(getArgNo()); 204 } 205 206 Type *Argument::getParamStructRetType() const { 207 assert(getType()->isPointerTy() && "Only pointers have sret types"); 208 return getParent()->getParamStructRetType(getArgNo()); 209 } 210 211 Type *Argument::getParamByRefType() const { 212 assert(getType()->isPointerTy() && "Only pointers have byref types"); 213 return getParent()->getParamByRefType(getArgNo()); 214 } 215 216 Type *Argument::getParamInAllocaType() const { 217 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 218 return getParent()->getParamInAllocaType(getArgNo()); 219 } 220 221 uint64_t Argument::getDereferenceableBytes() const { 222 assert(getType()->isPointerTy() && 223 "Only pointers have dereferenceable bytes"); 224 return getParent()->getParamDereferenceableBytes(getArgNo()); 225 } 226 227 uint64_t Argument::getDereferenceableOrNullBytes() const { 228 assert(getType()->isPointerTy() && 229 "Only pointers have dereferenceable bytes"); 230 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 231 } 232 233 FPClassTest Argument::getNoFPClass() const { 234 return getParent()->getParamNoFPClass(getArgNo()); 235 } 236 237 bool Argument::hasNestAttr() const { 238 if (!getType()->isPointerTy()) return false; 239 return hasAttribute(Attribute::Nest); 240 } 241 242 bool Argument::hasNoAliasAttr() const { 243 if (!getType()->isPointerTy()) return false; 244 return hasAttribute(Attribute::NoAlias); 245 } 246 247 bool Argument::hasNoCaptureAttr() const { 248 if (!getType()->isPointerTy()) return false; 249 return hasAttribute(Attribute::NoCapture); 250 } 251 252 bool Argument::hasNoFreeAttr() const { 253 if (!getType()->isPointerTy()) return false; 254 return hasAttribute(Attribute::NoFree); 255 } 256 257 bool Argument::hasStructRetAttr() const { 258 if (!getType()->isPointerTy()) return false; 259 return hasAttribute(Attribute::StructRet); 260 } 261 262 bool Argument::hasInRegAttr() const { 263 return hasAttribute(Attribute::InReg); 264 } 265 266 bool Argument::hasReturnedAttr() const { 267 return hasAttribute(Attribute::Returned); 268 } 269 270 bool Argument::hasZExtAttr() const { 271 return hasAttribute(Attribute::ZExt); 272 } 273 274 bool Argument::hasSExtAttr() const { 275 return hasAttribute(Attribute::SExt); 276 } 277 278 bool Argument::onlyReadsMemory() const { 279 AttributeList Attrs = getParent()->getAttributes(); 280 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 281 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 282 } 283 284 void Argument::addAttrs(AttrBuilder &B) { 285 AttributeList AL = getParent()->getAttributes(); 286 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 287 getParent()->setAttributes(AL); 288 } 289 290 void Argument::addAttr(Attribute::AttrKind Kind) { 291 getParent()->addParamAttr(getArgNo(), Kind); 292 } 293 294 void Argument::addAttr(Attribute Attr) { 295 getParent()->addParamAttr(getArgNo(), Attr); 296 } 297 298 void Argument::removeAttr(Attribute::AttrKind Kind) { 299 getParent()->removeParamAttr(getArgNo(), Kind); 300 } 301 302 void Argument::removeAttrs(const AttributeMask &AM) { 303 AttributeList AL = getParent()->getAttributes(); 304 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 305 getParent()->setAttributes(AL); 306 } 307 308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 309 return getParent()->hasParamAttribute(getArgNo(), Kind); 310 } 311 312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 313 return getParent()->getParamAttribute(getArgNo(), Kind); 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Helper Methods in Function 318 //===----------------------------------------------------------------------===// 319 320 LLVMContext &Function::getContext() const { 321 return getType()->getContext(); 322 } 323 324 unsigned Function::getInstructionCount() const { 325 unsigned NumInstrs = 0; 326 for (const BasicBlock &BB : BasicBlocks) 327 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 328 BB.instructionsWithoutDebug().end()); 329 return NumInstrs; 330 } 331 332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 333 const Twine &N, Module &M) { 334 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 335 } 336 337 Function *Function::createWithDefaultAttr(FunctionType *Ty, 338 LinkageTypes Linkage, 339 unsigned AddrSpace, const Twine &N, 340 Module *M) { 341 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 342 AttrBuilder B(F->getContext()); 343 UWTableKind UWTable = M->getUwtable(); 344 if (UWTable != UWTableKind::None) 345 B.addUWTableAttr(UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 if (M->getModuleFlag("function_return_thunk_extern")) 358 B.addAttribute(Attribute::FnRetThunkExtern); 359 F->addFnAttrs(B); 360 return F; 361 } 362 363 void Function::removeFromParent() { 364 getParent()->getFunctionList().remove(getIterator()); 365 } 366 367 void Function::eraseFromParent() { 368 getParent()->getFunctionList().erase(getIterator()); 369 } 370 371 void Function::splice(Function::iterator ToIt, Function *FromF, 372 Function::iterator FromBeginIt, 373 Function::iterator FromEndIt) { 374 #ifdef EXPENSIVE_CHECKS 375 // Check that FromBeginIt is before FromEndIt. 376 auto FromFEnd = FromF->end(); 377 for (auto It = FromBeginIt; It != FromEndIt; ++It) 378 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 379 #endif // EXPENSIVE_CHECKS 380 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 381 } 382 383 Function::iterator Function::erase(Function::iterator FromIt, 384 Function::iterator ToIt) { 385 return BasicBlocks.erase(FromIt, ToIt); 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Function Implementation 390 //===----------------------------------------------------------------------===// 391 392 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 393 // If AS == -1 and we are passed a valid module pointer we place the function 394 // in the program address space. Otherwise we default to AS0. 395 if (AddrSpace == static_cast<unsigned>(-1)) 396 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 397 return AddrSpace; 398 } 399 400 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 401 const Twine &name, Module *ParentModule) 402 : GlobalObject(Ty, Value::FunctionVal, 403 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 404 computeAddrSpace(AddrSpace, ParentModule)), 405 NumArgs(Ty->getNumParams()) { 406 assert(FunctionType::isValidReturnType(getReturnType()) && 407 "invalid return type"); 408 setGlobalObjectSubClassData(0); 409 410 // We only need a symbol table for a function if the context keeps value names 411 if (!getContext().shouldDiscardValueNames()) 412 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 413 414 // If the function has arguments, mark them as lazily built. 415 if (Ty->getNumParams()) 416 setValueSubclassData(1); // Set the "has lazy arguments" bit. 417 418 if (ParentModule) 419 ParentModule->getFunctionList().push_back(this); 420 421 HasLLVMReservedName = getName().startswith("llvm."); 422 // Ensure intrinsics have the right parameter attributes. 423 // Note, the IntID field will have been set in Value::setName if this function 424 // name is a valid intrinsic ID. 425 if (IntID) 426 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 427 } 428 429 Function::~Function() { 430 dropAllReferences(); // After this it is safe to delete instructions. 431 432 // Delete all of the method arguments and unlink from symbol table... 433 if (Arguments) 434 clearArguments(); 435 436 // Remove the function from the on-the-side GC table. 437 clearGC(); 438 } 439 440 void Function::BuildLazyArguments() const { 441 // Create the arguments vector, all arguments start out unnamed. 442 auto *FT = getFunctionType(); 443 if (NumArgs > 0) { 444 Arguments = std::allocator<Argument>().allocate(NumArgs); 445 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 446 Type *ArgTy = FT->getParamType(i); 447 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 448 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 449 } 450 } 451 452 // Clear the lazy arguments bit. 453 unsigned SDC = getSubclassDataFromValue(); 454 SDC &= ~(1 << 0); 455 const_cast<Function*>(this)->setValueSubclassData(SDC); 456 assert(!hasLazyArguments()); 457 } 458 459 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 460 return MutableArrayRef<Argument>(Args, Count); 461 } 462 463 bool Function::isConstrainedFPIntrinsic() const { 464 switch (getIntrinsicID()) { 465 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 466 case Intrinsic::INTRINSIC: 467 #include "llvm/IR/ConstrainedOps.def" 468 return true; 469 #undef INSTRUCTION 470 default: 471 return false; 472 } 473 } 474 475 void Function::clearArguments() { 476 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 477 A.setName(""); 478 A.~Argument(); 479 } 480 std::allocator<Argument>().deallocate(Arguments, NumArgs); 481 Arguments = nullptr; 482 } 483 484 void Function::stealArgumentListFrom(Function &Src) { 485 assert(isDeclaration() && "Expected no references to current arguments"); 486 487 // Drop the current arguments, if any, and set the lazy argument bit. 488 if (!hasLazyArguments()) { 489 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 490 [](const Argument &A) { return A.use_empty(); }) && 491 "Expected arguments to be unused in declaration"); 492 clearArguments(); 493 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 494 } 495 496 // Nothing to steal if Src has lazy arguments. 497 if (Src.hasLazyArguments()) 498 return; 499 500 // Steal arguments from Src, and fix the lazy argument bits. 501 assert(arg_size() == Src.arg_size()); 502 Arguments = Src.Arguments; 503 Src.Arguments = nullptr; 504 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 505 // FIXME: This does the work of transferNodesFromList inefficiently. 506 SmallString<128> Name; 507 if (A.hasName()) 508 Name = A.getName(); 509 if (!Name.empty()) 510 A.setName(""); 511 A.setParent(this); 512 if (!Name.empty()) 513 A.setName(Name); 514 } 515 516 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 517 assert(!hasLazyArguments()); 518 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 519 } 520 521 // dropAllReferences() - This function causes all the subinstructions to "let 522 // go" of all references that they are maintaining. This allows one to 523 // 'delete' a whole class at a time, even though there may be circular 524 // references... first all references are dropped, and all use counts go to 525 // zero. Then everything is deleted for real. Note that no operations are 526 // valid on an object that has "dropped all references", except operator 527 // delete. 528 // 529 void Function::dropAllReferences() { 530 setIsMaterializable(false); 531 532 for (BasicBlock &BB : *this) 533 BB.dropAllReferences(); 534 535 // Delete all basic blocks. They are now unused, except possibly by 536 // blockaddresses, but BasicBlock's destructor takes care of those. 537 while (!BasicBlocks.empty()) 538 BasicBlocks.begin()->eraseFromParent(); 539 540 // Drop uses of any optional data (real or placeholder). 541 if (getNumOperands()) { 542 User::dropAllReferences(); 543 setNumHungOffUseOperands(0); 544 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 545 } 546 547 // Metadata is stored in a side-table. 548 clearMetadata(); 549 } 550 551 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 552 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 553 } 554 555 void Function::addFnAttr(Attribute::AttrKind Kind) { 556 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 557 } 558 559 void Function::addFnAttr(StringRef Kind, StringRef Val) { 560 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 561 } 562 563 void Function::addFnAttr(Attribute Attr) { 564 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 565 } 566 567 void Function::addFnAttrs(const AttrBuilder &Attrs) { 568 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 569 } 570 571 void Function::addRetAttr(Attribute::AttrKind Kind) { 572 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 573 } 574 575 void Function::addRetAttr(Attribute Attr) { 576 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 577 } 578 579 void Function::addRetAttrs(const AttrBuilder &Attrs) { 580 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 581 } 582 583 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 584 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 585 } 586 587 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 588 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 589 } 590 591 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 592 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 593 } 594 595 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 596 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 597 } 598 599 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 600 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 601 } 602 603 void Function::removeFnAttr(Attribute::AttrKind Kind) { 604 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 605 } 606 607 void Function::removeFnAttr(StringRef Kind) { 608 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 609 } 610 611 void Function::removeFnAttrs(const AttributeMask &AM) { 612 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 613 } 614 615 void Function::removeRetAttr(Attribute::AttrKind Kind) { 616 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 617 } 618 619 void Function::removeRetAttr(StringRef Kind) { 620 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 621 } 622 623 void Function::removeRetAttrs(const AttributeMask &Attrs) { 624 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 625 } 626 627 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 628 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 629 } 630 631 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 632 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 633 } 634 635 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 636 AttributeSets = 637 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 638 } 639 640 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 641 AttributeSets = 642 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 643 } 644 645 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 646 return AttributeSets.hasFnAttr(Kind); 647 } 648 649 bool Function::hasFnAttribute(StringRef Kind) const { 650 return AttributeSets.hasFnAttr(Kind); 651 } 652 653 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 654 return AttributeSets.hasRetAttr(Kind); 655 } 656 657 bool Function::hasParamAttribute(unsigned ArgNo, 658 Attribute::AttrKind Kind) const { 659 return AttributeSets.hasParamAttr(ArgNo, Kind); 660 } 661 662 Attribute Function::getAttributeAtIndex(unsigned i, 663 Attribute::AttrKind Kind) const { 664 return AttributeSets.getAttributeAtIndex(i, Kind); 665 } 666 667 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 668 return AttributeSets.getAttributeAtIndex(i, Kind); 669 } 670 671 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 672 return AttributeSets.getFnAttr(Kind); 673 } 674 675 Attribute Function::getFnAttribute(StringRef Kind) const { 676 return AttributeSets.getFnAttr(Kind); 677 } 678 679 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 680 uint64_t Default) const { 681 Attribute A = getFnAttribute(Name); 682 uint64_t Result = Default; 683 if (A.isStringAttribute()) { 684 StringRef Str = A.getValueAsString(); 685 if (Str.getAsInteger(0, Result)) 686 getContext().emitError("cannot parse integer attribute " + Name); 687 } 688 689 return Result; 690 } 691 692 /// gets the specified attribute from the list of attributes. 693 Attribute Function::getParamAttribute(unsigned ArgNo, 694 Attribute::AttrKind Kind) const { 695 return AttributeSets.getParamAttr(ArgNo, Kind); 696 } 697 698 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 699 uint64_t Bytes) { 700 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 701 ArgNo, Bytes); 702 } 703 704 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 705 if (&FPType == &APFloat::IEEEsingle()) { 706 DenormalMode Mode = getDenormalModeF32Raw(); 707 // If the f32 variant of the attribute isn't specified, try to use the 708 // generic one. 709 if (Mode.isValid()) 710 return Mode; 711 } 712 713 return getDenormalModeRaw(); 714 } 715 716 DenormalMode Function::getDenormalModeRaw() const { 717 Attribute Attr = getFnAttribute("denormal-fp-math"); 718 StringRef Val = Attr.getValueAsString(); 719 return parseDenormalFPAttribute(Val); 720 } 721 722 DenormalMode Function::getDenormalModeF32Raw() const { 723 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 724 if (Attr.isValid()) { 725 StringRef Val = Attr.getValueAsString(); 726 return parseDenormalFPAttribute(Val); 727 } 728 729 return DenormalMode::getInvalid(); 730 } 731 732 const std::string &Function::getGC() const { 733 assert(hasGC() && "Function has no collector"); 734 return getContext().getGC(*this); 735 } 736 737 void Function::setGC(std::string Str) { 738 setValueSubclassDataBit(14, !Str.empty()); 739 getContext().setGC(*this, std::move(Str)); 740 } 741 742 void Function::clearGC() { 743 if (!hasGC()) 744 return; 745 getContext().deleteGC(*this); 746 setValueSubclassDataBit(14, false); 747 } 748 749 bool Function::hasStackProtectorFnAttr() const { 750 return hasFnAttribute(Attribute::StackProtect) || 751 hasFnAttribute(Attribute::StackProtectStrong) || 752 hasFnAttribute(Attribute::StackProtectReq); 753 } 754 755 /// Copy all additional attributes (those not needed to create a Function) from 756 /// the Function Src to this one. 757 void Function::copyAttributesFrom(const Function *Src) { 758 GlobalObject::copyAttributesFrom(Src); 759 setCallingConv(Src->getCallingConv()); 760 setAttributes(Src->getAttributes()); 761 if (Src->hasGC()) 762 setGC(Src->getGC()); 763 else 764 clearGC(); 765 if (Src->hasPersonalityFn()) 766 setPersonalityFn(Src->getPersonalityFn()); 767 if (Src->hasPrefixData()) 768 setPrefixData(Src->getPrefixData()); 769 if (Src->hasPrologueData()) 770 setPrologueData(Src->getPrologueData()); 771 } 772 773 MemoryEffects Function::getMemoryEffects() const { 774 return getAttributes().getMemoryEffects(); 775 } 776 void Function::setMemoryEffects(MemoryEffects ME) { 777 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 778 } 779 780 /// Determine if the function does not access memory. 781 bool Function::doesNotAccessMemory() const { 782 return getMemoryEffects().doesNotAccessMemory(); 783 } 784 void Function::setDoesNotAccessMemory() { 785 setMemoryEffects(MemoryEffects::none()); 786 } 787 788 /// Determine if the function does not access or only reads memory. 789 bool Function::onlyReadsMemory() const { 790 return getMemoryEffects().onlyReadsMemory(); 791 } 792 void Function::setOnlyReadsMemory() { 793 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 794 } 795 796 /// Determine if the function does not access or only writes memory. 797 bool Function::onlyWritesMemory() const { 798 return getMemoryEffects().onlyWritesMemory(); 799 } 800 void Function::setOnlyWritesMemory() { 801 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 802 } 803 804 /// Determine if the call can access memmory only using pointers based 805 /// on its arguments. 806 bool Function::onlyAccessesArgMemory() const { 807 return getMemoryEffects().onlyAccessesArgPointees(); 808 } 809 void Function::setOnlyAccessesArgMemory() { 810 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 811 } 812 813 /// Determine if the function may only access memory that is 814 /// inaccessible from the IR. 815 bool Function::onlyAccessesInaccessibleMemory() const { 816 return getMemoryEffects().onlyAccessesInaccessibleMem(); 817 } 818 void Function::setOnlyAccessesInaccessibleMemory() { 819 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 820 } 821 822 /// Determine if the function may only access memory that is 823 /// either inaccessible from the IR or pointed to by its arguments. 824 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 825 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 826 } 827 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 828 setMemoryEffects(getMemoryEffects() & 829 MemoryEffects::inaccessibleOrArgMemOnly()); 830 } 831 832 /// Table of string intrinsic names indexed by enum value. 833 static const char * const IntrinsicNameTable[] = { 834 "not_intrinsic", 835 #define GET_INTRINSIC_NAME_TABLE 836 #include "llvm/IR/IntrinsicImpl.inc" 837 #undef GET_INTRINSIC_NAME_TABLE 838 }; 839 840 /// Table of per-target intrinsic name tables. 841 #define GET_INTRINSIC_TARGET_DATA 842 #include "llvm/IR/IntrinsicImpl.inc" 843 #undef GET_INTRINSIC_TARGET_DATA 844 845 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 846 return IID > TargetInfos[0].Count; 847 } 848 849 bool Function::isTargetIntrinsic() const { 850 return isTargetIntrinsic(IntID); 851 } 852 853 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 854 /// target as \c Name, or the generic table if \c Name is not target specific. 855 /// 856 /// Returns the relevant slice of \c IntrinsicNameTable 857 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 858 assert(Name.startswith("llvm.")); 859 860 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 861 // Drop "llvm." and take the first dotted component. That will be the target 862 // if this is target specific. 863 StringRef Target = Name.drop_front(5).split('.').first; 864 auto It = partition_point( 865 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 866 // We've either found the target or just fall back to the generic set, which 867 // is always first. 868 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 869 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 870 } 871 872 /// This does the actual lookup of an intrinsic ID which 873 /// matches the given function name. 874 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 875 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 876 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 877 if (Idx == -1) 878 return Intrinsic::not_intrinsic; 879 880 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 881 // an index into a sub-table. 882 int Adjust = NameTable.data() - IntrinsicNameTable; 883 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 884 885 // If the intrinsic is not overloaded, require an exact match. If it is 886 // overloaded, require either exact or prefix match. 887 const auto MatchSize = strlen(NameTable[Idx]); 888 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 889 bool IsExactMatch = Name.size() == MatchSize; 890 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 891 : Intrinsic::not_intrinsic; 892 } 893 894 void Function::recalculateIntrinsicID() { 895 StringRef Name = getName(); 896 if (!Name.startswith("llvm.")) { 897 HasLLVMReservedName = false; 898 IntID = Intrinsic::not_intrinsic; 899 return; 900 } 901 HasLLVMReservedName = true; 902 IntID = lookupIntrinsicID(Name); 903 } 904 905 /// Returns a stable mangling for the type specified for use in the name 906 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 907 /// of named types is simply their name. Manglings for unnamed types consist 908 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 909 /// combined with the mangling of their component types. A vararg function 910 /// type will have a suffix of 'vararg'. Since function types can contain 911 /// other function types, we close a function type mangling with suffix 'f' 912 /// which can't be confused with it's prefix. This ensures we don't have 913 /// collisions between two unrelated function types. Otherwise, you might 914 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 915 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 916 /// indicating that extra care must be taken to ensure a unique name. 917 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 918 std::string Result; 919 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 920 Result += "p" + utostr(PTyp->getAddressSpace()); 921 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 922 Result += "a" + utostr(ATyp->getNumElements()) + 923 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 924 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 925 if (!STyp->isLiteral()) { 926 Result += "s_"; 927 if (STyp->hasName()) 928 Result += STyp->getName(); 929 else 930 HasUnnamedType = true; 931 } else { 932 Result += "sl_"; 933 for (auto *Elem : STyp->elements()) 934 Result += getMangledTypeStr(Elem, HasUnnamedType); 935 } 936 // Ensure nested structs are distinguishable. 937 Result += "s"; 938 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 939 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 940 for (size_t i = 0; i < FT->getNumParams(); i++) 941 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 942 if (FT->isVarArg()) 943 Result += "vararg"; 944 // Ensure nested function types are distinguishable. 945 Result += "f"; 946 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 947 ElementCount EC = VTy->getElementCount(); 948 if (EC.isScalable()) 949 Result += "nx"; 950 Result += "v" + utostr(EC.getKnownMinValue()) + 951 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 952 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 953 Result += "t"; 954 Result += TETy->getName(); 955 for (Type *ParamTy : TETy->type_params()) 956 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 957 for (unsigned IntParam : TETy->int_params()) 958 Result += "_" + utostr(IntParam); 959 // Ensure nested target extension types are distinguishable. 960 Result += "t"; 961 } else if (Ty) { 962 switch (Ty->getTypeID()) { 963 default: llvm_unreachable("Unhandled type"); 964 case Type::VoidTyID: Result += "isVoid"; break; 965 case Type::MetadataTyID: Result += "Metadata"; break; 966 case Type::HalfTyID: Result += "f16"; break; 967 case Type::BFloatTyID: Result += "bf16"; break; 968 case Type::FloatTyID: Result += "f32"; break; 969 case Type::DoubleTyID: Result += "f64"; break; 970 case Type::X86_FP80TyID: Result += "f80"; break; 971 case Type::FP128TyID: Result += "f128"; break; 972 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 973 case Type::X86_MMXTyID: Result += "x86mmx"; break; 974 case Type::X86_AMXTyID: Result += "x86amx"; break; 975 case Type::IntegerTyID: 976 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 977 break; 978 } 979 } 980 return Result; 981 } 982 983 StringRef Intrinsic::getBaseName(ID id) { 984 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 985 return IntrinsicNameTable[id]; 986 } 987 988 StringRef Intrinsic::getName(ID id) { 989 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 990 assert(!Intrinsic::isOverloaded(id) && 991 "This version of getName does not support overloading"); 992 return getBaseName(id); 993 } 994 995 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 996 Module *M, FunctionType *FT, 997 bool EarlyModuleCheck) { 998 999 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1000 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1001 "This version of getName is for overloaded intrinsics only"); 1002 (void)EarlyModuleCheck; 1003 assert((!EarlyModuleCheck || M || 1004 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1005 "Intrinsic overloading on pointer types need to provide a Module"); 1006 bool HasUnnamedType = false; 1007 std::string Result(Intrinsic::getBaseName(Id)); 1008 for (Type *Ty : Tys) 1009 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1010 if (HasUnnamedType) { 1011 assert(M && "unnamed types need a module"); 1012 if (!FT) 1013 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1014 else 1015 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1016 "Provided FunctionType must match arguments"); 1017 return M->getUniqueIntrinsicName(Result, Id, FT); 1018 } 1019 return Result; 1020 } 1021 1022 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1023 FunctionType *FT) { 1024 assert(M && "We need to have a Module"); 1025 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1026 } 1027 1028 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1029 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1030 } 1031 1032 /// IIT_Info - These are enumerators that describe the entries returned by the 1033 /// getIntrinsicInfoTableEntries function. 1034 /// 1035 /// Defined in Intrinsics.td. 1036 enum IIT_Info { 1037 #define GET_INTRINSIC_IITINFO 1038 #include "llvm/IR/IntrinsicImpl.inc" 1039 #undef GET_INTRINSIC_IITINFO 1040 }; 1041 1042 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1043 IIT_Info LastInfo, 1044 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1045 using namespace Intrinsic; 1046 1047 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1048 1049 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1050 unsigned StructElts = 2; 1051 1052 switch (Info) { 1053 case IIT_Done: 1054 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1055 return; 1056 case IIT_VARARG: 1057 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1058 return; 1059 case IIT_MMX: 1060 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1061 return; 1062 case IIT_AMX: 1063 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1064 return; 1065 case IIT_TOKEN: 1066 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1067 return; 1068 case IIT_METADATA: 1069 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1070 return; 1071 case IIT_F16: 1072 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1073 return; 1074 case IIT_BF16: 1075 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1076 return; 1077 case IIT_F32: 1078 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1079 return; 1080 case IIT_F64: 1081 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1082 return; 1083 case IIT_F128: 1084 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1085 return; 1086 case IIT_PPCF128: 1087 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1088 return; 1089 case IIT_I1: 1090 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1091 return; 1092 case IIT_I2: 1093 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1094 return; 1095 case IIT_I4: 1096 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1097 return; 1098 case IIT_AARCH64_SVCOUNT: 1099 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1100 return; 1101 case IIT_I8: 1102 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1103 return; 1104 case IIT_I16: 1105 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1106 return; 1107 case IIT_I32: 1108 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1109 return; 1110 case IIT_I64: 1111 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1112 return; 1113 case IIT_I128: 1114 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1115 return; 1116 case IIT_V1: 1117 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1118 DecodeIITType(NextElt, Infos, Info, OutputTable); 1119 return; 1120 case IIT_V2: 1121 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1122 DecodeIITType(NextElt, Infos, Info, OutputTable); 1123 return; 1124 case IIT_V3: 1125 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1126 DecodeIITType(NextElt, Infos, Info, OutputTable); 1127 return; 1128 case IIT_V4: 1129 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1130 DecodeIITType(NextElt, Infos, Info, OutputTable); 1131 return; 1132 case IIT_V8: 1133 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1134 DecodeIITType(NextElt, Infos, Info, OutputTable); 1135 return; 1136 case IIT_V16: 1137 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1138 DecodeIITType(NextElt, Infos, Info, OutputTable); 1139 return; 1140 case IIT_V32: 1141 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1142 DecodeIITType(NextElt, Infos, Info, OutputTable); 1143 return; 1144 case IIT_V64: 1145 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1146 DecodeIITType(NextElt, Infos, Info, OutputTable); 1147 return; 1148 case IIT_V128: 1149 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1150 DecodeIITType(NextElt, Infos, Info, OutputTable); 1151 return; 1152 case IIT_V256: 1153 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1154 DecodeIITType(NextElt, Infos, Info, OutputTable); 1155 return; 1156 case IIT_V512: 1157 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1158 DecodeIITType(NextElt, Infos, Info, OutputTable); 1159 return; 1160 case IIT_V1024: 1161 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1162 DecodeIITType(NextElt, Infos, Info, OutputTable); 1163 return; 1164 case IIT_EXTERNREF: 1165 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1166 return; 1167 case IIT_FUNCREF: 1168 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1169 return; 1170 case IIT_PTR: 1171 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1172 return; 1173 case IIT_ANYPTR: // [ANYPTR addrspace] 1174 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1175 Infos[NextElt++])); 1176 return; 1177 case IIT_ARG: { 1178 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1179 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1180 return; 1181 } 1182 case IIT_EXTEND_ARG: { 1183 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1184 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1185 ArgInfo)); 1186 return; 1187 } 1188 case IIT_TRUNC_ARG: { 1189 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1190 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1191 ArgInfo)); 1192 return; 1193 } 1194 case IIT_HALF_VEC_ARG: { 1195 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1196 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1197 ArgInfo)); 1198 return; 1199 } 1200 case IIT_SAME_VEC_WIDTH_ARG: { 1201 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1202 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1203 ArgInfo)); 1204 return; 1205 } 1206 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1207 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1208 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1209 OutputTable.push_back( 1210 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1211 return; 1212 } 1213 case IIT_EMPTYSTRUCT: 1214 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1215 return; 1216 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1217 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1218 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1219 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1220 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1221 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1222 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1223 case IIT_STRUCT2: { 1224 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1225 1226 for (unsigned i = 0; i != StructElts; ++i) 1227 DecodeIITType(NextElt, Infos, Info, OutputTable); 1228 return; 1229 } 1230 case IIT_SUBDIVIDE2_ARG: { 1231 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1232 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1233 ArgInfo)); 1234 return; 1235 } 1236 case IIT_SUBDIVIDE4_ARG: { 1237 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1238 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1239 ArgInfo)); 1240 return; 1241 } 1242 case IIT_VEC_ELEMENT: { 1243 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1244 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1245 ArgInfo)); 1246 return; 1247 } 1248 case IIT_SCALABLE_VEC: { 1249 DecodeIITType(NextElt, Infos, Info, OutputTable); 1250 return; 1251 } 1252 case IIT_VEC_OF_BITCASTS_TO_INT: { 1253 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1254 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1255 ArgInfo)); 1256 return; 1257 } 1258 } 1259 llvm_unreachable("unhandled"); 1260 } 1261 1262 #define GET_INTRINSIC_GENERATOR_GLOBAL 1263 #include "llvm/IR/IntrinsicImpl.inc" 1264 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1265 1266 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1267 SmallVectorImpl<IITDescriptor> &T){ 1268 // Check to see if the intrinsic's type was expressible by the table. 1269 unsigned TableVal = IIT_Table[id-1]; 1270 1271 // Decode the TableVal into an array of IITValues. 1272 SmallVector<unsigned char, 8> IITValues; 1273 ArrayRef<unsigned char> IITEntries; 1274 unsigned NextElt = 0; 1275 if ((TableVal >> 31) != 0) { 1276 // This is an offset into the IIT_LongEncodingTable. 1277 IITEntries = IIT_LongEncodingTable; 1278 1279 // Strip sentinel bit. 1280 NextElt = (TableVal << 1) >> 1; 1281 } else { 1282 // Decode the TableVal into an array of IITValues. If the entry was encoded 1283 // into a single word in the table itself, decode it now. 1284 do { 1285 IITValues.push_back(TableVal & 0xF); 1286 TableVal >>= 4; 1287 } while (TableVal); 1288 1289 IITEntries = IITValues; 1290 NextElt = 0; 1291 } 1292 1293 // Okay, decode the table into the output vector of IITDescriptors. 1294 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1295 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1296 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1297 } 1298 1299 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1300 ArrayRef<Type*> Tys, LLVMContext &Context) { 1301 using namespace Intrinsic; 1302 1303 IITDescriptor D = Infos.front(); 1304 Infos = Infos.slice(1); 1305 1306 switch (D.Kind) { 1307 case IITDescriptor::Void: return Type::getVoidTy(Context); 1308 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1309 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1310 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1311 case IITDescriptor::Token: return Type::getTokenTy(Context); 1312 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1313 case IITDescriptor::Half: return Type::getHalfTy(Context); 1314 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1315 case IITDescriptor::Float: return Type::getFloatTy(Context); 1316 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1317 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1318 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1319 case IITDescriptor::AArch64Svcount: 1320 return TargetExtType::get(Context, "aarch64.svcount"); 1321 1322 case IITDescriptor::Integer: 1323 return IntegerType::get(Context, D.Integer_Width); 1324 case IITDescriptor::Vector: 1325 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1326 D.Vector_Width); 1327 case IITDescriptor::Pointer: 1328 return PointerType::get(Context, D.Pointer_AddressSpace); 1329 case IITDescriptor::Struct: { 1330 SmallVector<Type *, 8> Elts; 1331 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1332 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1333 return StructType::get(Context, Elts); 1334 } 1335 case IITDescriptor::Argument: 1336 return Tys[D.getArgumentNumber()]; 1337 case IITDescriptor::ExtendArgument: { 1338 Type *Ty = Tys[D.getArgumentNumber()]; 1339 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1340 return VectorType::getExtendedElementVectorType(VTy); 1341 1342 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1343 } 1344 case IITDescriptor::TruncArgument: { 1345 Type *Ty = Tys[D.getArgumentNumber()]; 1346 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1347 return VectorType::getTruncatedElementVectorType(VTy); 1348 1349 IntegerType *ITy = cast<IntegerType>(Ty); 1350 assert(ITy->getBitWidth() % 2 == 0); 1351 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1352 } 1353 case IITDescriptor::Subdivide2Argument: 1354 case IITDescriptor::Subdivide4Argument: { 1355 Type *Ty = Tys[D.getArgumentNumber()]; 1356 VectorType *VTy = dyn_cast<VectorType>(Ty); 1357 assert(VTy && "Expected an argument of Vector Type"); 1358 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1359 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1360 } 1361 case IITDescriptor::HalfVecArgument: 1362 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1363 Tys[D.getArgumentNumber()])); 1364 case IITDescriptor::SameVecWidthArgument: { 1365 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1366 Type *Ty = Tys[D.getArgumentNumber()]; 1367 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1368 return VectorType::get(EltTy, VTy->getElementCount()); 1369 return EltTy; 1370 } 1371 case IITDescriptor::VecElementArgument: { 1372 Type *Ty = Tys[D.getArgumentNumber()]; 1373 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1374 return VTy->getElementType(); 1375 llvm_unreachable("Expected an argument of Vector Type"); 1376 } 1377 case IITDescriptor::VecOfBitcastsToInt: { 1378 Type *Ty = Tys[D.getArgumentNumber()]; 1379 VectorType *VTy = dyn_cast<VectorType>(Ty); 1380 assert(VTy && "Expected an argument of Vector Type"); 1381 return VectorType::getInteger(VTy); 1382 } 1383 case IITDescriptor::VecOfAnyPtrsToElt: 1384 // Return the overloaded type (which determines the pointers address space) 1385 return Tys[D.getOverloadArgNumber()]; 1386 } 1387 llvm_unreachable("unhandled"); 1388 } 1389 1390 FunctionType *Intrinsic::getType(LLVMContext &Context, 1391 ID id, ArrayRef<Type*> Tys) { 1392 SmallVector<IITDescriptor, 8> Table; 1393 getIntrinsicInfoTableEntries(id, Table); 1394 1395 ArrayRef<IITDescriptor> TableRef = Table; 1396 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1397 1398 SmallVector<Type*, 8> ArgTys; 1399 while (!TableRef.empty()) 1400 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1401 1402 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1403 // If we see void type as the type of the last argument, it is vararg intrinsic 1404 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1405 ArgTys.pop_back(); 1406 return FunctionType::get(ResultTy, ArgTys, true); 1407 } 1408 return FunctionType::get(ResultTy, ArgTys, false); 1409 } 1410 1411 bool Intrinsic::isOverloaded(ID id) { 1412 #define GET_INTRINSIC_OVERLOAD_TABLE 1413 #include "llvm/IR/IntrinsicImpl.inc" 1414 #undef GET_INTRINSIC_OVERLOAD_TABLE 1415 } 1416 1417 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1418 #define GET_INTRINSIC_ATTRIBUTES 1419 #include "llvm/IR/IntrinsicImpl.inc" 1420 #undef GET_INTRINSIC_ATTRIBUTES 1421 1422 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1423 // There can never be multiple globals with the same name of different types, 1424 // because intrinsics must be a specific type. 1425 auto *FT = getType(M->getContext(), id, Tys); 1426 return cast<Function>( 1427 M->getOrInsertFunction( 1428 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1429 .getCallee()); 1430 } 1431 1432 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1433 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1434 #include "llvm/IR/IntrinsicImpl.inc" 1435 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1436 1437 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1438 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1439 #include "llvm/IR/IntrinsicImpl.inc" 1440 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1441 1442 using DeferredIntrinsicMatchPair = 1443 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1444 1445 static bool matchIntrinsicType( 1446 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1447 SmallVectorImpl<Type *> &ArgTys, 1448 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1449 bool IsDeferredCheck) { 1450 using namespace Intrinsic; 1451 1452 // If we ran out of descriptors, there are too many arguments. 1453 if (Infos.empty()) return true; 1454 1455 // Do this before slicing off the 'front' part 1456 auto InfosRef = Infos; 1457 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1458 DeferredChecks.emplace_back(T, InfosRef); 1459 return false; 1460 }; 1461 1462 IITDescriptor D = Infos.front(); 1463 Infos = Infos.slice(1); 1464 1465 switch (D.Kind) { 1466 case IITDescriptor::Void: return !Ty->isVoidTy(); 1467 case IITDescriptor::VarArg: return true; 1468 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1469 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1470 case IITDescriptor::Token: return !Ty->isTokenTy(); 1471 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1472 case IITDescriptor::Half: return !Ty->isHalfTy(); 1473 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1474 case IITDescriptor::Float: return !Ty->isFloatTy(); 1475 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1476 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1477 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1478 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1479 case IITDescriptor::AArch64Svcount: 1480 return !isa<TargetExtType>(Ty) || 1481 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1482 case IITDescriptor::Vector: { 1483 VectorType *VT = dyn_cast<VectorType>(Ty); 1484 return !VT || VT->getElementCount() != D.Vector_Width || 1485 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1486 DeferredChecks, IsDeferredCheck); 1487 } 1488 case IITDescriptor::Pointer: { 1489 PointerType *PT = dyn_cast<PointerType>(Ty); 1490 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1491 } 1492 1493 case IITDescriptor::Struct: { 1494 StructType *ST = dyn_cast<StructType>(Ty); 1495 if (!ST || !ST->isLiteral() || ST->isPacked() || 1496 ST->getNumElements() != D.Struct_NumElements) 1497 return true; 1498 1499 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1500 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1501 DeferredChecks, IsDeferredCheck)) 1502 return true; 1503 return false; 1504 } 1505 1506 case IITDescriptor::Argument: 1507 // If this is the second occurrence of an argument, 1508 // verify that the later instance matches the previous instance. 1509 if (D.getArgumentNumber() < ArgTys.size()) 1510 return Ty != ArgTys[D.getArgumentNumber()]; 1511 1512 if (D.getArgumentNumber() > ArgTys.size() || 1513 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1514 return IsDeferredCheck || DeferCheck(Ty); 1515 1516 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1517 "Table consistency error"); 1518 ArgTys.push_back(Ty); 1519 1520 switch (D.getArgumentKind()) { 1521 case IITDescriptor::AK_Any: return false; // Success 1522 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1523 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1524 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1525 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1526 default: break; 1527 } 1528 llvm_unreachable("all argument kinds not covered"); 1529 1530 case IITDescriptor::ExtendArgument: { 1531 // If this is a forward reference, defer the check for later. 1532 if (D.getArgumentNumber() >= ArgTys.size()) 1533 return IsDeferredCheck || DeferCheck(Ty); 1534 1535 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1536 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1537 NewTy = VectorType::getExtendedElementVectorType(VTy); 1538 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1539 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1540 else 1541 return true; 1542 1543 return Ty != NewTy; 1544 } 1545 case IITDescriptor::TruncArgument: { 1546 // If this is a forward reference, defer the check for later. 1547 if (D.getArgumentNumber() >= ArgTys.size()) 1548 return IsDeferredCheck || DeferCheck(Ty); 1549 1550 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1551 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1552 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1553 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1554 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1555 else 1556 return true; 1557 1558 return Ty != NewTy; 1559 } 1560 case IITDescriptor::HalfVecArgument: 1561 // If this is a forward reference, defer the check for later. 1562 if (D.getArgumentNumber() >= ArgTys.size()) 1563 return IsDeferredCheck || DeferCheck(Ty); 1564 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1565 VectorType::getHalfElementsVectorType( 1566 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1567 case IITDescriptor::SameVecWidthArgument: { 1568 if (D.getArgumentNumber() >= ArgTys.size()) { 1569 // Defer check and subsequent check for the vector element type. 1570 Infos = Infos.slice(1); 1571 return IsDeferredCheck || DeferCheck(Ty); 1572 } 1573 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1574 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1575 // Both must be vectors of the same number of elements or neither. 1576 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1577 return true; 1578 Type *EltTy = Ty; 1579 if (ThisArgType) { 1580 if (ReferenceType->getElementCount() != 1581 ThisArgType->getElementCount()) 1582 return true; 1583 EltTy = ThisArgType->getElementType(); 1584 } 1585 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1586 IsDeferredCheck); 1587 } 1588 case IITDescriptor::VecOfAnyPtrsToElt: { 1589 unsigned RefArgNumber = D.getRefArgNumber(); 1590 if (RefArgNumber >= ArgTys.size()) { 1591 if (IsDeferredCheck) 1592 return true; 1593 // If forward referencing, already add the pointer-vector type and 1594 // defer the checks for later. 1595 ArgTys.push_back(Ty); 1596 return DeferCheck(Ty); 1597 } 1598 1599 if (!IsDeferredCheck){ 1600 assert(D.getOverloadArgNumber() == ArgTys.size() && 1601 "Table consistency error"); 1602 ArgTys.push_back(Ty); 1603 } 1604 1605 // Verify the overloaded type "matches" the Ref type. 1606 // i.e. Ty is a vector with the same width as Ref. 1607 // Composed of pointers to the same element type as Ref. 1608 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1609 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1610 if (!ThisArgVecTy || !ReferenceType || 1611 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1612 return true; 1613 return !ThisArgVecTy->getElementType()->isPointerTy(); 1614 } 1615 case IITDescriptor::VecElementArgument: { 1616 if (D.getArgumentNumber() >= ArgTys.size()) 1617 return IsDeferredCheck ? true : DeferCheck(Ty); 1618 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1619 return !ReferenceType || Ty != ReferenceType->getElementType(); 1620 } 1621 case IITDescriptor::Subdivide2Argument: 1622 case IITDescriptor::Subdivide4Argument: { 1623 // If this is a forward reference, defer the check for later. 1624 if (D.getArgumentNumber() >= ArgTys.size()) 1625 return IsDeferredCheck || DeferCheck(Ty); 1626 1627 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1628 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1629 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1630 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1631 return Ty != NewTy; 1632 } 1633 return true; 1634 } 1635 case IITDescriptor::VecOfBitcastsToInt: { 1636 if (D.getArgumentNumber() >= ArgTys.size()) 1637 return IsDeferredCheck || DeferCheck(Ty); 1638 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1639 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1640 if (!ThisArgVecTy || !ReferenceType) 1641 return true; 1642 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1643 } 1644 } 1645 llvm_unreachable("unhandled"); 1646 } 1647 1648 Intrinsic::MatchIntrinsicTypesResult 1649 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1650 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1651 SmallVectorImpl<Type *> &ArgTys) { 1652 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1653 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1654 false)) 1655 return MatchIntrinsicTypes_NoMatchRet; 1656 1657 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1658 1659 for (auto *Ty : FTy->params()) 1660 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1661 return MatchIntrinsicTypes_NoMatchArg; 1662 1663 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1664 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1665 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1666 true)) 1667 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1668 : MatchIntrinsicTypes_NoMatchArg; 1669 } 1670 1671 return MatchIntrinsicTypes_Match; 1672 } 1673 1674 bool 1675 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1676 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1677 // If there are no descriptors left, then it can't be a vararg. 1678 if (Infos.empty()) 1679 return isVarArg; 1680 1681 // There should be only one descriptor remaining at this point. 1682 if (Infos.size() != 1) 1683 return true; 1684 1685 // Check and verify the descriptor. 1686 IITDescriptor D = Infos.front(); 1687 Infos = Infos.slice(1); 1688 if (D.Kind == IITDescriptor::VarArg) 1689 return !isVarArg; 1690 1691 return true; 1692 } 1693 1694 bool Intrinsic::getIntrinsicSignature(Function *F, 1695 SmallVectorImpl<Type *> &ArgTys) { 1696 Intrinsic::ID ID = F->getIntrinsicID(); 1697 if (!ID) 1698 return false; 1699 1700 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1701 getIntrinsicInfoTableEntries(ID, Table); 1702 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1703 1704 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1705 ArgTys) != 1706 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1707 return false; 1708 } 1709 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1710 TableRef)) 1711 return false; 1712 return true; 1713 } 1714 1715 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1716 SmallVector<Type *, 4> ArgTys; 1717 if (!getIntrinsicSignature(F, ArgTys)) 1718 return std::nullopt; 1719 1720 Intrinsic::ID ID = F->getIntrinsicID(); 1721 StringRef Name = F->getName(); 1722 std::string WantedName = 1723 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1724 if (Name == WantedName) 1725 return std::nullopt; 1726 1727 Function *NewDecl = [&] { 1728 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1729 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1730 if (ExistingF->getFunctionType() == F->getFunctionType()) 1731 return ExistingF; 1732 1733 // The name already exists, but is not a function or has the wrong 1734 // prototype. Make place for the new one by renaming the old version. 1735 // Either this old version will be removed later on or the module is 1736 // invalid and we'll get an error. 1737 ExistingGV->setName(WantedName + ".renamed"); 1738 } 1739 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1740 }(); 1741 1742 NewDecl->setCallingConv(F->getCallingConv()); 1743 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1744 "Shouldn't change the signature"); 1745 return NewDecl; 1746 } 1747 1748 /// hasAddressTaken - returns true if there are any uses of this function 1749 /// other than direct calls or invokes to it. Optionally ignores callback 1750 /// uses, assume like pointer annotation calls, and references in llvm.used 1751 /// and llvm.compiler.used variables. 1752 bool Function::hasAddressTaken(const User **PutOffender, 1753 bool IgnoreCallbackUses, 1754 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1755 bool IgnoreARCAttachedCall, 1756 bool IgnoreCastedDirectCall) const { 1757 for (const Use &U : uses()) { 1758 const User *FU = U.getUser(); 1759 if (isa<BlockAddress>(FU)) 1760 continue; 1761 1762 if (IgnoreCallbackUses) { 1763 AbstractCallSite ACS(&U); 1764 if (ACS && ACS.isCallbackCall()) 1765 continue; 1766 } 1767 1768 const auto *Call = dyn_cast<CallBase>(FU); 1769 if (!Call) { 1770 if (IgnoreAssumeLikeCalls && 1771 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1772 all_of(FU->users(), [](const User *U) { 1773 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1774 return I->isAssumeLikeIntrinsic(); 1775 return false; 1776 })) { 1777 continue; 1778 } 1779 1780 if (IgnoreLLVMUsed && !FU->user_empty()) { 1781 const User *FUU = FU; 1782 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1783 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1784 FUU = *FU->user_begin(); 1785 if (llvm::all_of(FUU->users(), [](const User *U) { 1786 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1787 return GV->hasName() && 1788 (GV->getName().equals("llvm.compiler.used") || 1789 GV->getName().equals("llvm.used")); 1790 return false; 1791 })) 1792 continue; 1793 } 1794 if (PutOffender) 1795 *PutOffender = FU; 1796 return true; 1797 } 1798 1799 if (IgnoreAssumeLikeCalls) { 1800 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1801 if (I->isAssumeLikeIntrinsic()) 1802 continue; 1803 } 1804 1805 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1806 Call->getFunctionType() != getFunctionType())) { 1807 if (IgnoreARCAttachedCall && 1808 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1809 U.getOperandNo())) 1810 continue; 1811 1812 if (PutOffender) 1813 *PutOffender = FU; 1814 return true; 1815 } 1816 } 1817 return false; 1818 } 1819 1820 bool Function::isDefTriviallyDead() const { 1821 // Check the linkage 1822 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1823 !hasAvailableExternallyLinkage()) 1824 return false; 1825 1826 // Check if the function is used by anything other than a blockaddress. 1827 for (const User *U : users()) 1828 if (!isa<BlockAddress>(U)) 1829 return false; 1830 1831 return true; 1832 } 1833 1834 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1835 /// setjmp or other function that gcc recognizes as "returning twice". 1836 bool Function::callsFunctionThatReturnsTwice() const { 1837 for (const Instruction &I : instructions(this)) 1838 if (const auto *Call = dyn_cast<CallBase>(&I)) 1839 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1840 return true; 1841 1842 return false; 1843 } 1844 1845 Constant *Function::getPersonalityFn() const { 1846 assert(hasPersonalityFn() && getNumOperands()); 1847 return cast<Constant>(Op<0>()); 1848 } 1849 1850 void Function::setPersonalityFn(Constant *Fn) { 1851 setHungoffOperand<0>(Fn); 1852 setValueSubclassDataBit(3, Fn != nullptr); 1853 } 1854 1855 Constant *Function::getPrefixData() const { 1856 assert(hasPrefixData() && getNumOperands()); 1857 return cast<Constant>(Op<1>()); 1858 } 1859 1860 void Function::setPrefixData(Constant *PrefixData) { 1861 setHungoffOperand<1>(PrefixData); 1862 setValueSubclassDataBit(1, PrefixData != nullptr); 1863 } 1864 1865 Constant *Function::getPrologueData() const { 1866 assert(hasPrologueData() && getNumOperands()); 1867 return cast<Constant>(Op<2>()); 1868 } 1869 1870 void Function::setPrologueData(Constant *PrologueData) { 1871 setHungoffOperand<2>(PrologueData); 1872 setValueSubclassDataBit(2, PrologueData != nullptr); 1873 } 1874 1875 void Function::allocHungoffUselist() { 1876 // If we've already allocated a uselist, stop here. 1877 if (getNumOperands()) 1878 return; 1879 1880 allocHungoffUses(3, /*IsPhi=*/ false); 1881 setNumHungOffUseOperands(3); 1882 1883 // Initialize the uselist with placeholder operands to allow traversal. 1884 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1885 Op<0>().set(CPN); 1886 Op<1>().set(CPN); 1887 Op<2>().set(CPN); 1888 } 1889 1890 template <int Idx> 1891 void Function::setHungoffOperand(Constant *C) { 1892 if (C) { 1893 allocHungoffUselist(); 1894 Op<Idx>().set(C); 1895 } else if (getNumOperands()) { 1896 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1897 } 1898 } 1899 1900 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1901 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1902 if (On) 1903 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1904 else 1905 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1906 } 1907 1908 void Function::setEntryCount(ProfileCount Count, 1909 const DenseSet<GlobalValue::GUID> *S) { 1910 #if !defined(NDEBUG) 1911 auto PrevCount = getEntryCount(); 1912 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1913 #endif 1914 1915 auto ImportGUIDs = getImportGUIDs(); 1916 if (S == nullptr && ImportGUIDs.size()) 1917 S = &ImportGUIDs; 1918 1919 MDBuilder MDB(getContext()); 1920 setMetadata( 1921 LLVMContext::MD_prof, 1922 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1923 } 1924 1925 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1926 const DenseSet<GlobalValue::GUID> *Imports) { 1927 setEntryCount(ProfileCount(Count, Type), Imports); 1928 } 1929 1930 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1931 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1932 if (MD && MD->getOperand(0)) 1933 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1934 if (MDS->getString().equals("function_entry_count")) { 1935 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1936 uint64_t Count = CI->getValue().getZExtValue(); 1937 // A value of -1 is used for SamplePGO when there were no samples. 1938 // Treat this the same as unknown. 1939 if (Count == (uint64_t)-1) 1940 return std::nullopt; 1941 return ProfileCount(Count, PCT_Real); 1942 } else if (AllowSynthetic && 1943 MDS->getString().equals("synthetic_function_entry_count")) { 1944 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1945 uint64_t Count = CI->getValue().getZExtValue(); 1946 return ProfileCount(Count, PCT_Synthetic); 1947 } 1948 } 1949 return std::nullopt; 1950 } 1951 1952 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1953 DenseSet<GlobalValue::GUID> R; 1954 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1955 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1956 if (MDS->getString().equals("function_entry_count")) 1957 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1958 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1959 ->getValue() 1960 .getZExtValue()); 1961 return R; 1962 } 1963 1964 void Function::setSectionPrefix(StringRef Prefix) { 1965 MDBuilder MDB(getContext()); 1966 setMetadata(LLVMContext::MD_section_prefix, 1967 MDB.createFunctionSectionPrefix(Prefix)); 1968 } 1969 1970 std::optional<StringRef> Function::getSectionPrefix() const { 1971 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1972 assert(cast<MDString>(MD->getOperand(0)) 1973 ->getString() 1974 .equals("function_section_prefix") && 1975 "Metadata not match"); 1976 return cast<MDString>(MD->getOperand(1))->getString(); 1977 } 1978 return std::nullopt; 1979 } 1980 1981 bool Function::nullPointerIsDefined() const { 1982 return hasFnAttribute(Attribute::NullPointerIsValid); 1983 } 1984 1985 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1986 if (F && F->nullPointerIsDefined()) 1987 return true; 1988 1989 if (AS != 0) 1990 return true; 1991 1992 return false; 1993 } 1994