1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 // Update machine-CFG edges. 1164 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1165 MachineBasicBlock *CatchingMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1166 MachineBasicBlock *UnwindMBB = FuncInfo.MBBMap[I.getUnwindDest()]; 1167 PadMBB->addSuccessor(CatchingMBB); 1168 PadMBB->addSuccessor(UnwindMBB); 1169 1170 CatchingMBB->setIsEHFuncletEntry(); 1171 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1172 MMI.setHasEHFunclets(true); 1173 } 1174 1175 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1176 // Update machine-CFG edge. 1177 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1178 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1179 PadMBB->addSuccessor(TargetMBB); 1180 1181 // Create the terminator node. 1182 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1183 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1184 DAG.setRoot(Ret); 1185 } 1186 1187 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1188 // If this unwinds to caller, we don't need a DAG node hanging around. 1189 if (!I.hasUnwindDest()) 1190 return; 1191 1192 // Update machine-CFG edge. 1193 MachineBasicBlock *PadMBB = FuncInfo.MBB; 1194 MachineBasicBlock *UnwindMBB = FuncInfo.MBBMap[I.getUnwindDest()]; 1195 PadMBB->addSuccessor(UnwindMBB); 1196 } 1197 1198 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1199 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1200 MMI.setHasEHFunclets(true); 1201 report_fatal_error("visitCleanupPad not yet implemented!"); 1202 } 1203 1204 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1205 report_fatal_error("visitCleanupRet not yet implemented!"); 1206 } 1207 1208 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1209 report_fatal_error("visitTerminatePad not yet implemented!"); 1210 } 1211 1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1214 auto &DL = DAG.getDataLayout(); 1215 SDValue Chain = getControlRoot(); 1216 SmallVector<ISD::OutputArg, 8> Outs; 1217 SmallVector<SDValue, 8> OutVals; 1218 1219 if (!FuncInfo.CanLowerReturn) { 1220 unsigned DemoteReg = FuncInfo.DemoteRegister; 1221 const Function *F = I.getParent()->getParent(); 1222 1223 // Emit a store of the return value through the virtual register. 1224 // Leave Outs empty so that LowerReturn won't try to load return 1225 // registers the usual way. 1226 SmallVector<EVT, 1> PtrValueVTs; 1227 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1228 PtrValueVTs); 1229 1230 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 SmallVector<EVT, 4> ValueVTs; 1234 SmallVector<uint64_t, 4> Offsets; 1235 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1236 unsigned NumValues = ValueVTs.size(); 1237 1238 SmallVector<SDValue, 4> Chains(NumValues); 1239 for (unsigned i = 0; i != NumValues; ++i) { 1240 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1241 RetPtr.getValueType(), RetPtr, 1242 DAG.getIntPtrConstant(Offsets[i], 1243 getCurSDLoc())); 1244 Chains[i] = 1245 DAG.getStore(Chain, getCurSDLoc(), 1246 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1247 // FIXME: better loc info would be nice. 1248 Add, MachinePointerInfo(), false, false, 0); 1249 } 1250 1251 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1252 MVT::Other, Chains); 1253 } else if (I.getNumOperands() != 0) { 1254 SmallVector<EVT, 4> ValueVTs; 1255 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1256 unsigned NumValues = ValueVTs.size(); 1257 if (NumValues) { 1258 SDValue RetOp = getValue(I.getOperand(0)); 1259 1260 const Function *F = I.getParent()->getParent(); 1261 1262 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1263 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1264 Attribute::SExt)) 1265 ExtendKind = ISD::SIGN_EXTEND; 1266 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::ZExt)) 1268 ExtendKind = ISD::ZERO_EXTEND; 1269 1270 LLVMContext &Context = F->getContext(); 1271 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1272 Attribute::InReg); 1273 1274 for (unsigned j = 0; j != NumValues; ++j) { 1275 EVT VT = ValueVTs[j]; 1276 1277 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1278 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1279 1280 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1281 MVT PartVT = TLI.getRegisterType(Context, VT); 1282 SmallVector<SDValue, 4> Parts(NumParts); 1283 getCopyToParts(DAG, getCurSDLoc(), 1284 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1285 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1286 1287 // 'inreg' on function refers to return value 1288 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1289 if (RetInReg) 1290 Flags.setInReg(); 1291 1292 // Propagate extension type if any 1293 if (ExtendKind == ISD::SIGN_EXTEND) 1294 Flags.setSExt(); 1295 else if (ExtendKind == ISD::ZERO_EXTEND) 1296 Flags.setZExt(); 1297 1298 for (unsigned i = 0; i < NumParts; ++i) { 1299 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1300 VT, /*isfixed=*/true, 0, 0)); 1301 OutVals.push_back(Parts[i]); 1302 } 1303 } 1304 } 1305 } 1306 1307 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1308 CallingConv::ID CallConv = 1309 DAG.getMachineFunction().getFunction()->getCallingConv(); 1310 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1311 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1312 1313 // Verify that the target's LowerReturn behaved as expected. 1314 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1315 "LowerReturn didn't return a valid chain!"); 1316 1317 // Update the DAG with the new chain value resulting from return lowering. 1318 DAG.setRoot(Chain); 1319 } 1320 1321 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1322 /// created for it, emit nodes to copy the value into the virtual 1323 /// registers. 1324 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1325 // Skip empty types 1326 if (V->getType()->isEmptyTy()) 1327 return; 1328 1329 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1330 if (VMI != FuncInfo.ValueMap.end()) { 1331 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1332 CopyValueToVirtualRegister(V, VMI->second); 1333 } 1334 } 1335 1336 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1337 /// the current basic block, add it to ValueMap now so that we'll get a 1338 /// CopyTo/FromReg. 1339 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1340 // No need to export constants. 1341 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1342 1343 // Already exported? 1344 if (FuncInfo.isExportedInst(V)) return; 1345 1346 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1347 CopyValueToVirtualRegister(V, Reg); 1348 } 1349 1350 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1351 const BasicBlock *FromBB) { 1352 // The operands of the setcc have to be in this block. We don't know 1353 // how to export them from some other block. 1354 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1355 // Can export from current BB. 1356 if (VI->getParent() == FromBB) 1357 return true; 1358 1359 // Is already exported, noop. 1360 return FuncInfo.isExportedInst(V); 1361 } 1362 1363 // If this is an argument, we can export it if the BB is the entry block or 1364 // if it is already exported. 1365 if (isa<Argument>(V)) { 1366 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1367 return true; 1368 1369 // Otherwise, can only export this if it is already exported. 1370 return FuncInfo.isExportedInst(V); 1371 } 1372 1373 // Otherwise, constants can always be exported. 1374 return true; 1375 } 1376 1377 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1378 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1379 const MachineBasicBlock *Dst) const { 1380 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1381 if (!BPI) 1382 return 0; 1383 const BasicBlock *SrcBB = Src->getBasicBlock(); 1384 const BasicBlock *DstBB = Dst->getBasicBlock(); 1385 return BPI->getEdgeWeight(SrcBB, DstBB); 1386 } 1387 1388 void SelectionDAGBuilder:: 1389 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1390 uint32_t Weight /* = 0 */) { 1391 if (!Weight) 1392 Weight = getEdgeWeight(Src, Dst); 1393 Src->addSuccessor(Dst, Weight); 1394 } 1395 1396 1397 static bool InBlock(const Value *V, const BasicBlock *BB) { 1398 if (const Instruction *I = dyn_cast<Instruction>(V)) 1399 return I->getParent() == BB; 1400 return true; 1401 } 1402 1403 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1404 /// This function emits a branch and is used at the leaves of an OR or an 1405 /// AND operator tree. 1406 /// 1407 void 1408 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1409 MachineBasicBlock *TBB, 1410 MachineBasicBlock *FBB, 1411 MachineBasicBlock *CurBB, 1412 MachineBasicBlock *SwitchBB, 1413 uint32_t TWeight, 1414 uint32_t FWeight) { 1415 const BasicBlock *BB = CurBB->getBasicBlock(); 1416 1417 // If the leaf of the tree is a comparison, merge the condition into 1418 // the caseblock. 1419 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1420 // The operands of the cmp have to be in this block. We don't know 1421 // how to export them from some other block. If this is the first block 1422 // of the sequence, no exporting is needed. 1423 if (CurBB == SwitchBB || 1424 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1425 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1426 ISD::CondCode Condition; 1427 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1428 Condition = getICmpCondCode(IC->getPredicate()); 1429 } else { 1430 const FCmpInst *FC = cast<FCmpInst>(Cond); 1431 Condition = getFCmpCondCode(FC->getPredicate()); 1432 if (TM.Options.NoNaNsFPMath) 1433 Condition = getFCmpCodeWithoutNaN(Condition); 1434 } 1435 1436 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1437 TBB, FBB, CurBB, TWeight, FWeight); 1438 SwitchCases.push_back(CB); 1439 return; 1440 } 1441 } 1442 1443 // Create a CaseBlock record representing this branch. 1444 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1445 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 } 1448 1449 /// Scale down both weights to fit into uint32_t. 1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1452 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1453 NewTrue = NewTrue / Scale; 1454 NewFalse = NewFalse / Scale; 1455 } 1456 1457 /// FindMergedConditions - If Cond is an expression like 1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1459 MachineBasicBlock *TBB, 1460 MachineBasicBlock *FBB, 1461 MachineBasicBlock *CurBB, 1462 MachineBasicBlock *SwitchBB, 1463 Instruction::BinaryOps Opc, 1464 uint32_t TWeight, 1465 uint32_t FWeight) { 1466 // If this node is not part of the or/and tree, emit it as a branch. 1467 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1468 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1469 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1470 BOp->getParent() != CurBB->getBasicBlock() || 1471 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1472 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1473 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1474 TWeight, FWeight); 1475 return; 1476 } 1477 1478 // Create TmpBB after CurBB. 1479 MachineFunction::iterator BBI = CurBB; 1480 MachineFunction &MF = DAG.getMachineFunction(); 1481 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1482 CurBB->getParent()->insert(++BBI, TmpBB); 1483 1484 if (Opc == Instruction::Or) { 1485 // Codegen X | Y as: 1486 // BB1: 1487 // jmp_if_X TBB 1488 // jmp TmpBB 1489 // TmpBB: 1490 // jmp_if_Y TBB 1491 // jmp FBB 1492 // 1493 1494 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1495 // The requirement is that 1496 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1497 // = TrueProb for original BB. 1498 // Assuming the original weights are A and B, one choice is to set BB1's 1499 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1500 // assumes that 1501 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1502 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1503 // TmpBB, but the math is more complicated. 1504 1505 uint64_t NewTrueWeight = TWeight; 1506 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1507 ScaleWeights(NewTrueWeight, NewFalseWeight); 1508 // Emit the LHS condition. 1509 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1510 NewTrueWeight, NewFalseWeight); 1511 1512 NewTrueWeight = TWeight; 1513 NewFalseWeight = 2 * (uint64_t)FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the RHS condition into TmpBB. 1516 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 } else { 1519 assert(Opc == Instruction::And && "Unknown merge op!"); 1520 // Codegen X & Y as: 1521 // BB1: 1522 // jmp_if_X TmpBB 1523 // jmp FBB 1524 // TmpBB: 1525 // jmp_if_Y TBB 1526 // jmp FBB 1527 // 1528 // This requires creation of TmpBB after CurBB. 1529 1530 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1531 // The requirement is that 1532 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1533 // = FalseProb for original BB. 1534 // Assuming the original weights are A and B, one choice is to set BB1's 1535 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1536 // assumes that 1537 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1538 1539 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1540 uint64_t NewFalseWeight = FWeight; 1541 ScaleWeights(NewTrueWeight, NewFalseWeight); 1542 // Emit the LHS condition. 1543 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1544 NewTrueWeight, NewFalseWeight); 1545 1546 NewTrueWeight = 2 * (uint64_t)TWeight; 1547 NewFalseWeight = FWeight; 1548 ScaleWeights(NewTrueWeight, NewFalseWeight); 1549 // Emit the RHS condition into TmpBB. 1550 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1551 NewTrueWeight, NewFalseWeight); 1552 } 1553 } 1554 1555 /// If the set of cases should be emitted as a series of branches, return true. 1556 /// If we should emit this as a bunch of and/or'd together conditions, return 1557 /// false. 1558 bool 1559 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1560 if (Cases.size() != 2) return true; 1561 1562 // If this is two comparisons of the same values or'd or and'd together, they 1563 // will get folded into a single comparison, so don't emit two blocks. 1564 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1565 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1566 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1567 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1568 return false; 1569 } 1570 1571 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1572 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1573 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1574 Cases[0].CC == Cases[1].CC && 1575 isa<Constant>(Cases[0].CmpRHS) && 1576 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1577 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1578 return false; 1579 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1580 return false; 1581 } 1582 1583 return true; 1584 } 1585 1586 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1587 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1588 1589 // Update machine-CFG edges. 1590 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1591 1592 if (I.isUnconditional()) { 1593 // Update machine-CFG edges. 1594 BrMBB->addSuccessor(Succ0MBB); 1595 1596 // If this is not a fall-through branch or optimizations are switched off, 1597 // emit the branch. 1598 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1599 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1600 MVT::Other, getControlRoot(), 1601 DAG.getBasicBlock(Succ0MBB))); 1602 1603 return; 1604 } 1605 1606 // If this condition is one of the special cases we handle, do special stuff 1607 // now. 1608 const Value *CondVal = I.getCondition(); 1609 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1610 1611 // If this is a series of conditions that are or'd or and'd together, emit 1612 // this as a sequence of branches instead of setcc's with and/or operations. 1613 // As long as jumps are not expensive, this should improve performance. 1614 // For example, instead of something like: 1615 // cmp A, B 1616 // C = seteq 1617 // cmp D, E 1618 // F = setle 1619 // or C, F 1620 // jnz foo 1621 // Emit: 1622 // cmp A, B 1623 // je foo 1624 // cmp D, E 1625 // jle foo 1626 // 1627 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1628 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1629 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1630 !I.getMetadata(LLVMContext::MD_unpredictable) && 1631 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1632 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1633 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1634 getEdgeWeight(BrMBB, Succ1MBB)); 1635 // If the compares in later blocks need to use values not currently 1636 // exported from this block, export them now. This block should always 1637 // be the first entry. 1638 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1639 1640 // Allow some cases to be rejected. 1641 if (ShouldEmitAsBranches(SwitchCases)) { 1642 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1643 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1644 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1645 } 1646 1647 // Emit the branch for this block. 1648 visitSwitchCase(SwitchCases[0], BrMBB); 1649 SwitchCases.erase(SwitchCases.begin()); 1650 return; 1651 } 1652 1653 // Okay, we decided not to do this, remove any inserted MBB's and clear 1654 // SwitchCases. 1655 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1656 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1657 1658 SwitchCases.clear(); 1659 } 1660 } 1661 1662 // Create a CaseBlock record representing this branch. 1663 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1664 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1665 1666 // Use visitSwitchCase to actually insert the fast branch sequence for this 1667 // cond branch. 1668 visitSwitchCase(CB, BrMBB); 1669 } 1670 1671 /// visitSwitchCase - Emits the necessary code to represent a single node in 1672 /// the binary search tree resulting from lowering a switch instruction. 1673 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1674 MachineBasicBlock *SwitchBB) { 1675 SDValue Cond; 1676 SDValue CondLHS = getValue(CB.CmpLHS); 1677 SDLoc dl = getCurSDLoc(); 1678 1679 // Build the setcc now. 1680 if (!CB.CmpMHS) { 1681 // Fold "(X == true)" to X and "(X == false)" to !X to 1682 // handle common cases produced by branch lowering. 1683 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1684 CB.CC == ISD::SETEQ) 1685 Cond = CondLHS; 1686 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1687 CB.CC == ISD::SETEQ) { 1688 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1689 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1690 } else 1691 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1692 } else { 1693 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1694 1695 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1696 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1697 1698 SDValue CmpOp = getValue(CB.CmpMHS); 1699 EVT VT = CmpOp.getValueType(); 1700 1701 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1702 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1703 ISD::SETLE); 1704 } else { 1705 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1706 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1707 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1708 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1709 } 1710 } 1711 1712 // Update successor info 1713 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1714 // TrueBB and FalseBB are always different unless the incoming IR is 1715 // degenerate. This only happens when running llc on weird IR. 1716 if (CB.TrueBB != CB.FalseBB) 1717 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1718 1719 // If the lhs block is the next block, invert the condition so that we can 1720 // fall through to the lhs instead of the rhs block. 1721 if (CB.TrueBB == NextBlock(SwitchBB)) { 1722 std::swap(CB.TrueBB, CB.FalseBB); 1723 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1724 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1725 } 1726 1727 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1728 MVT::Other, getControlRoot(), Cond, 1729 DAG.getBasicBlock(CB.TrueBB)); 1730 1731 // Insert the false branch. Do this even if it's a fall through branch, 1732 // this makes it easier to do DAG optimizations which require inverting 1733 // the branch condition. 1734 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1735 DAG.getBasicBlock(CB.FalseBB)); 1736 1737 DAG.setRoot(BrCond); 1738 } 1739 1740 /// visitJumpTable - Emit JumpTable node in the current MBB 1741 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1742 // Emit the code for the jump table 1743 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1744 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1745 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1746 JT.Reg, PTy); 1747 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1748 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1749 MVT::Other, Index.getValue(1), 1750 Table, Index); 1751 DAG.setRoot(BrJumpTable); 1752 } 1753 1754 /// visitJumpTableHeader - This function emits necessary code to produce index 1755 /// in the JumpTable from switch case. 1756 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1757 JumpTableHeader &JTH, 1758 MachineBasicBlock *SwitchBB) { 1759 SDLoc dl = getCurSDLoc(); 1760 1761 // Subtract the lowest switch case value from the value being switched on and 1762 // conditional branch to default mbb if the result is greater than the 1763 // difference between smallest and largest cases. 1764 SDValue SwitchOp = getValue(JTH.SValue); 1765 EVT VT = SwitchOp.getValueType(); 1766 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1767 DAG.getConstant(JTH.First, dl, VT)); 1768 1769 // The SDNode we just created, which holds the value being switched on minus 1770 // the smallest case value, needs to be copied to a virtual register so it 1771 // can be used as an index into the jump table in a subsequent basic block. 1772 // This value may be smaller or larger than the target's pointer type, and 1773 // therefore require extension or truncating. 1774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1775 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1776 1777 unsigned JumpTableReg = 1778 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1779 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1780 JumpTableReg, SwitchOp); 1781 JT.Reg = JumpTableReg; 1782 1783 // Emit the range check for the jump table, and branch to the default block 1784 // for the switch statement if the value being switched on exceeds the largest 1785 // case in the switch. 1786 SDValue CMP = DAG.getSetCC( 1787 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1788 Sub.getValueType()), 1789 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1790 1791 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1792 MVT::Other, CopyTo, CMP, 1793 DAG.getBasicBlock(JT.Default)); 1794 1795 // Avoid emitting unnecessary branches to the next block. 1796 if (JT.MBB != NextBlock(SwitchBB)) 1797 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1798 DAG.getBasicBlock(JT.MBB)); 1799 1800 DAG.setRoot(BrCond); 1801 } 1802 1803 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1804 /// tail spliced into a stack protector check success bb. 1805 /// 1806 /// For a high level explanation of how this fits into the stack protector 1807 /// generation see the comment on the declaration of class 1808 /// StackProtectorDescriptor. 1809 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1810 MachineBasicBlock *ParentBB) { 1811 1812 // First create the loads to the guard/stack slot for the comparison. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1815 1816 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1817 int FI = MFI->getStackProtectorIndex(); 1818 1819 const Value *IRGuard = SPD.getGuard(); 1820 SDValue GuardPtr = getValue(IRGuard); 1821 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1822 1823 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1824 1825 SDValue Guard; 1826 SDLoc dl = getCurSDLoc(); 1827 1828 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1829 // guard value from the virtual register holding the value. Otherwise, emit a 1830 // volatile load to retrieve the stack guard value. 1831 unsigned GuardReg = SPD.getGuardReg(); 1832 1833 if (GuardReg && TLI.useLoadStackGuardNode()) 1834 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1835 PtrTy); 1836 else 1837 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1838 GuardPtr, MachinePointerInfo(IRGuard, 0), 1839 true, false, false, Align); 1840 1841 SDValue StackSlot = DAG.getLoad( 1842 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1843 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1844 false, false, Align); 1845 1846 // Perform the comparison via a subtract/getsetcc. 1847 EVT VT = Guard.getValueType(); 1848 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1849 1850 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1851 *DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1854 1855 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1856 // branch to failure MBB. 1857 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1858 MVT::Other, StackSlot.getOperand(0), 1859 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1860 // Otherwise branch to success MBB. 1861 SDValue Br = DAG.getNode(ISD::BR, dl, 1862 MVT::Other, BrCond, 1863 DAG.getBasicBlock(SPD.getSuccessMBB())); 1864 1865 DAG.setRoot(Br); 1866 } 1867 1868 /// Codegen the failure basic block for a stack protector check. 1869 /// 1870 /// A failure stack protector machine basic block consists simply of a call to 1871 /// __stack_chk_fail(). 1872 /// 1873 /// For a high level explanation of how this fits into the stack protector 1874 /// generation see the comment on the declaration of class 1875 /// StackProtectorDescriptor. 1876 void 1877 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1879 SDValue Chain = 1880 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1881 nullptr, 0, false, getCurSDLoc(), false, false).second; 1882 DAG.setRoot(Chain); 1883 } 1884 1885 /// visitBitTestHeader - This function emits necessary code to produce value 1886 /// suitable for "bit tests" 1887 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1888 MachineBasicBlock *SwitchBB) { 1889 SDLoc dl = getCurSDLoc(); 1890 1891 // Subtract the minimum value 1892 SDValue SwitchOp = getValue(B.SValue); 1893 EVT VT = SwitchOp.getValueType(); 1894 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1895 DAG.getConstant(B.First, dl, VT)); 1896 1897 // Check range 1898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1899 SDValue RangeCmp = DAG.getSetCC( 1900 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1901 Sub.getValueType()), 1902 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1903 1904 // Determine the type of the test operands. 1905 bool UsePtrType = false; 1906 if (!TLI.isTypeLegal(VT)) 1907 UsePtrType = true; 1908 else { 1909 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1910 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1911 // Switch table case range are encoded into series of masks. 1912 // Just use pointer type, it's guaranteed to fit. 1913 UsePtrType = true; 1914 break; 1915 } 1916 } 1917 if (UsePtrType) { 1918 VT = TLI.getPointerTy(DAG.getDataLayout()); 1919 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1920 } 1921 1922 B.RegVT = VT.getSimpleVT(); 1923 B.Reg = FuncInfo.CreateReg(B.RegVT); 1924 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1925 1926 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1927 1928 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1929 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1930 1931 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1932 MVT::Other, CopyTo, RangeCmp, 1933 DAG.getBasicBlock(B.Default)); 1934 1935 // Avoid emitting unnecessary branches to the next block. 1936 if (MBB != NextBlock(SwitchBB)) 1937 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1938 DAG.getBasicBlock(MBB)); 1939 1940 DAG.setRoot(BrRange); 1941 } 1942 1943 /// visitBitTestCase - this function produces one "bit test" 1944 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1945 MachineBasicBlock* NextMBB, 1946 uint32_t BranchWeightToNext, 1947 unsigned Reg, 1948 BitTestCase &B, 1949 MachineBasicBlock *SwitchBB) { 1950 SDLoc dl = getCurSDLoc(); 1951 MVT VT = BB.RegVT; 1952 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1953 SDValue Cmp; 1954 unsigned PopCount = countPopulation(B.Mask); 1955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1956 if (PopCount == 1) { 1957 // Testing for a single bit; just compare the shift count with what it 1958 // would need to be to shift a 1 bit in that position. 1959 Cmp = DAG.getSetCC( 1960 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1961 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1962 ISD::SETEQ); 1963 } else if (PopCount == BB.Range) { 1964 // There is only one zero bit in the range, test for it directly. 1965 Cmp = DAG.getSetCC( 1966 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1967 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1968 ISD::SETNE); 1969 } else { 1970 // Make desired shift 1971 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1972 DAG.getConstant(1, dl, VT), ShiftOp); 1973 1974 // Emit bit tests and jumps 1975 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1976 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1977 Cmp = DAG.getSetCC( 1978 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1979 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1980 } 1981 1982 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1983 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1984 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1985 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1986 1987 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1988 MVT::Other, getControlRoot(), 1989 Cmp, DAG.getBasicBlock(B.TargetBB)); 1990 1991 // Avoid emitting unnecessary branches to the next block. 1992 if (NextMBB != NextBlock(SwitchBB)) 1993 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 switch (Fn->getIntrinsicID()) { 2012 default: 2013 llvm_unreachable("Cannot invoke this intrinsic"); 2014 case Intrinsic::donothing: 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 break; 2017 case Intrinsic::experimental_patchpoint_void: 2018 case Intrinsic::experimental_patchpoint_i64: 2019 visitPatchpoint(&I, LandingPad); 2020 break; 2021 case Intrinsic::experimental_gc_statepoint: 2022 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2023 break; 2024 } 2025 } else 2026 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2027 2028 // If the value of the invoke is used outside of its defining block, make it 2029 // available as a virtual register. 2030 // We already took care of the exported value for the statepoint instruction 2031 // during call to the LowerStatepoint. 2032 if (!isStatepoint(I)) { 2033 CopyToExportRegsIfNeeded(&I); 2034 } 2035 2036 // Update successor info 2037 addSuccessorWithWeight(InvokeMBB, Return); 2038 addSuccessorWithWeight(InvokeMBB, LandingPad); 2039 2040 // Drop into normal successor. 2041 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2042 MVT::Other, getControlRoot(), 2043 DAG.getBasicBlock(Return))); 2044 } 2045 2046 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2047 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2048 } 2049 2050 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2051 assert(FuncInfo.MBB->isEHPad() && 2052 "Call to landingpad not in landing pad!"); 2053 2054 MachineBasicBlock *MBB = FuncInfo.MBB; 2055 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2056 AddLandingPadInfo(LP, MMI, MBB); 2057 2058 // If there aren't registers to copy the values into (e.g., during SjLj 2059 // exceptions), then don't bother to create these DAG nodes. 2060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2061 if (TLI.getExceptionPointerRegister() == 0 && 2062 TLI.getExceptionSelectorRegister() == 0) 2063 return; 2064 2065 SmallVector<EVT, 2> ValueVTs; 2066 SDLoc dl = getCurSDLoc(); 2067 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2068 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2069 2070 // Get the two live-in registers as SDValues. The physregs have already been 2071 // copied into virtual registers. 2072 SDValue Ops[2]; 2073 if (FuncInfo.ExceptionPointerVirtReg) { 2074 Ops[0] = DAG.getZExtOrTrunc( 2075 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2076 FuncInfo.ExceptionPointerVirtReg, 2077 TLI.getPointerTy(DAG.getDataLayout())), 2078 dl, ValueVTs[0]); 2079 } else { 2080 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2081 } 2082 Ops[1] = DAG.getZExtOrTrunc( 2083 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2084 FuncInfo.ExceptionSelectorVirtReg, 2085 TLI.getPointerTy(DAG.getDataLayout())), 2086 dl, ValueVTs[1]); 2087 2088 // Merge into one. 2089 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2090 DAG.getVTList(ValueVTs), Ops); 2091 setValue(&LP, Res); 2092 } 2093 2094 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2095 #ifndef NDEBUG 2096 for (const CaseCluster &CC : Clusters) 2097 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2098 #endif 2099 2100 std::sort(Clusters.begin(), Clusters.end(), 2101 [](const CaseCluster &a, const CaseCluster &b) { 2102 return a.Low->getValue().slt(b.Low->getValue()); 2103 }); 2104 2105 // Merge adjacent clusters with the same destination. 2106 const unsigned N = Clusters.size(); 2107 unsigned DstIndex = 0; 2108 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2109 CaseCluster &CC = Clusters[SrcIndex]; 2110 const ConstantInt *CaseVal = CC.Low; 2111 MachineBasicBlock *Succ = CC.MBB; 2112 2113 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2114 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2115 // If this case has the same successor and is a neighbour, merge it into 2116 // the previous cluster. 2117 Clusters[DstIndex - 1].High = CaseVal; 2118 Clusters[DstIndex - 1].Weight += CC.Weight; 2119 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2120 } else { 2121 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2122 sizeof(Clusters[SrcIndex])); 2123 } 2124 } 2125 Clusters.resize(DstIndex); 2126 } 2127 2128 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2129 MachineBasicBlock *Last) { 2130 // Update JTCases. 2131 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2132 if (JTCases[i].first.HeaderBB == First) 2133 JTCases[i].first.HeaderBB = Last; 2134 2135 // Update BitTestCases. 2136 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2137 if (BitTestCases[i].Parent == First) 2138 BitTestCases[i].Parent = Last; 2139 } 2140 2141 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2142 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2143 2144 // Update machine-CFG edges with unique successors. 2145 SmallSet<BasicBlock*, 32> Done; 2146 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2147 BasicBlock *BB = I.getSuccessor(i); 2148 bool Inserted = Done.insert(BB).second; 2149 if (!Inserted) 2150 continue; 2151 2152 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2153 addSuccessorWithWeight(IndirectBrMBB, Succ); 2154 } 2155 2156 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2157 MVT::Other, getControlRoot(), 2158 getValue(I.getAddress()))); 2159 } 2160 2161 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2162 if (DAG.getTarget().Options.TrapUnreachable) 2163 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2164 } 2165 2166 void SelectionDAGBuilder::visitFSub(const User &I) { 2167 // -0.0 - X --> fneg 2168 Type *Ty = I.getType(); 2169 if (isa<Constant>(I.getOperand(0)) && 2170 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2171 SDValue Op2 = getValue(I.getOperand(1)); 2172 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2173 Op2.getValueType(), Op2)); 2174 return; 2175 } 2176 2177 visitBinary(I, ISD::FSUB); 2178 } 2179 2180 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2181 SDValue Op1 = getValue(I.getOperand(0)); 2182 SDValue Op2 = getValue(I.getOperand(1)); 2183 2184 bool nuw = false; 2185 bool nsw = false; 2186 bool exact = false; 2187 FastMathFlags FMF; 2188 2189 if (const OverflowingBinaryOperator *OFBinOp = 2190 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2191 nuw = OFBinOp->hasNoUnsignedWrap(); 2192 nsw = OFBinOp->hasNoSignedWrap(); 2193 } 2194 if (const PossiblyExactOperator *ExactOp = 2195 dyn_cast<const PossiblyExactOperator>(&I)) 2196 exact = ExactOp->isExact(); 2197 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2198 FMF = FPOp->getFastMathFlags(); 2199 2200 SDNodeFlags Flags; 2201 Flags.setExact(exact); 2202 Flags.setNoSignedWrap(nsw); 2203 Flags.setNoUnsignedWrap(nuw); 2204 if (EnableFMFInDAG) { 2205 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2206 Flags.setNoInfs(FMF.noInfs()); 2207 Flags.setNoNaNs(FMF.noNaNs()); 2208 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2209 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2210 } 2211 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2212 Op1, Op2, &Flags); 2213 setValue(&I, BinNodeValue); 2214 } 2215 2216 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2217 SDValue Op1 = getValue(I.getOperand(0)); 2218 SDValue Op2 = getValue(I.getOperand(1)); 2219 2220 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2221 Op2.getValueType(), DAG.getDataLayout()); 2222 2223 // Coerce the shift amount to the right type if we can. 2224 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2225 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2226 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2227 SDLoc DL = getCurSDLoc(); 2228 2229 // If the operand is smaller than the shift count type, promote it. 2230 if (ShiftSize > Op2Size) 2231 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2232 2233 // If the operand is larger than the shift count type but the shift 2234 // count type has enough bits to represent any shift value, truncate 2235 // it now. This is a common case and it exposes the truncate to 2236 // optimization early. 2237 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2238 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2239 // Otherwise we'll need to temporarily settle for some other convenient 2240 // type. Type legalization will make adjustments once the shiftee is split. 2241 else 2242 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2243 } 2244 2245 bool nuw = false; 2246 bool nsw = false; 2247 bool exact = false; 2248 2249 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2250 2251 if (const OverflowingBinaryOperator *OFBinOp = 2252 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2253 nuw = OFBinOp->hasNoUnsignedWrap(); 2254 nsw = OFBinOp->hasNoSignedWrap(); 2255 } 2256 if (const PossiblyExactOperator *ExactOp = 2257 dyn_cast<const PossiblyExactOperator>(&I)) 2258 exact = ExactOp->isExact(); 2259 } 2260 SDNodeFlags Flags; 2261 Flags.setExact(exact); 2262 Flags.setNoSignedWrap(nsw); 2263 Flags.setNoUnsignedWrap(nuw); 2264 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2265 &Flags); 2266 setValue(&I, Res); 2267 } 2268 2269 void SelectionDAGBuilder::visitSDiv(const User &I) { 2270 SDValue Op1 = getValue(I.getOperand(0)); 2271 SDValue Op2 = getValue(I.getOperand(1)); 2272 2273 SDNodeFlags Flags; 2274 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2275 cast<PossiblyExactOperator>(&I)->isExact()); 2276 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2277 Op2, &Flags)); 2278 } 2279 2280 void SelectionDAGBuilder::visitICmp(const User &I) { 2281 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2282 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2283 predicate = IC->getPredicate(); 2284 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2285 predicate = ICmpInst::Predicate(IC->getPredicate()); 2286 SDValue Op1 = getValue(I.getOperand(0)); 2287 SDValue Op2 = getValue(I.getOperand(1)); 2288 ISD::CondCode Opcode = getICmpCondCode(predicate); 2289 2290 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2291 I.getType()); 2292 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2293 } 2294 2295 void SelectionDAGBuilder::visitFCmp(const User &I) { 2296 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2297 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2298 predicate = FC->getPredicate(); 2299 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2300 predicate = FCmpInst::Predicate(FC->getPredicate()); 2301 SDValue Op1 = getValue(I.getOperand(0)); 2302 SDValue Op2 = getValue(I.getOperand(1)); 2303 ISD::CondCode Condition = getFCmpCondCode(predicate); 2304 if (TM.Options.NoNaNsFPMath) 2305 Condition = getFCmpCodeWithoutNaN(Condition); 2306 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2307 I.getType()); 2308 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2309 } 2310 2311 void SelectionDAGBuilder::visitSelect(const User &I) { 2312 SmallVector<EVT, 4> ValueVTs; 2313 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2314 ValueVTs); 2315 unsigned NumValues = ValueVTs.size(); 2316 if (NumValues == 0) return; 2317 2318 SmallVector<SDValue, 4> Values(NumValues); 2319 SDValue Cond = getValue(I.getOperand(0)); 2320 SDValue LHSVal = getValue(I.getOperand(1)); 2321 SDValue RHSVal = getValue(I.getOperand(2)); 2322 auto BaseOps = {Cond}; 2323 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2324 ISD::VSELECT : ISD::SELECT; 2325 2326 // Min/max matching is only viable if all output VTs are the same. 2327 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2328 EVT VT = ValueVTs[0]; 2329 LLVMContext &Ctx = *DAG.getContext(); 2330 auto &TLI = DAG.getTargetLoweringInfo(); 2331 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2332 VT = TLI.getTypeToTransformTo(Ctx, VT); 2333 2334 Value *LHS, *RHS; 2335 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2336 ISD::NodeType Opc = ISD::DELETED_NODE; 2337 switch (SPR.Flavor) { 2338 case SPF_UMAX: Opc = ISD::UMAX; break; 2339 case SPF_UMIN: Opc = ISD::UMIN; break; 2340 case SPF_SMAX: Opc = ISD::SMAX; break; 2341 case SPF_SMIN: Opc = ISD::SMIN; break; 2342 case SPF_FMINNUM: 2343 switch (SPR.NaNBehavior) { 2344 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2345 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2346 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2347 case SPNB_RETURNS_ANY: 2348 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2349 : ISD::FMINNAN; 2350 break; 2351 } 2352 break; 2353 case SPF_FMAXNUM: 2354 switch (SPR.NaNBehavior) { 2355 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2356 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2357 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2358 case SPNB_RETURNS_ANY: 2359 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2360 : ISD::FMAXNAN; 2361 break; 2362 } 2363 break; 2364 default: break; 2365 } 2366 2367 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2368 // If the underlying comparison instruction is used by any other instruction, 2369 // the consumed instructions won't be destroyed, so it is not profitable 2370 // to convert to a min/max. 2371 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2372 OpCode = Opc; 2373 LHSVal = getValue(LHS); 2374 RHSVal = getValue(RHS); 2375 BaseOps = {}; 2376 } 2377 } 2378 2379 for (unsigned i = 0; i != NumValues; ++i) { 2380 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2381 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2382 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2383 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2384 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2385 Ops); 2386 } 2387 2388 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2389 DAG.getVTList(ValueVTs), Values)); 2390 } 2391 2392 void SelectionDAGBuilder::visitTrunc(const User &I) { 2393 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2394 SDValue N = getValue(I.getOperand(0)); 2395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2396 I.getType()); 2397 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2398 } 2399 2400 void SelectionDAGBuilder::visitZExt(const User &I) { 2401 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2402 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2403 SDValue N = getValue(I.getOperand(0)); 2404 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2405 I.getType()); 2406 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2407 } 2408 2409 void SelectionDAGBuilder::visitSExt(const User &I) { 2410 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2411 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2412 SDValue N = getValue(I.getOperand(0)); 2413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2414 I.getType()); 2415 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2416 } 2417 2418 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2419 // FPTrunc is never a no-op cast, no need to check 2420 SDValue N = getValue(I.getOperand(0)); 2421 SDLoc dl = getCurSDLoc(); 2422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2423 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2424 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2425 DAG.getTargetConstant( 2426 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2427 } 2428 2429 void SelectionDAGBuilder::visitFPExt(const User &I) { 2430 // FPExt is never a no-op cast, no need to check 2431 SDValue N = getValue(I.getOperand(0)); 2432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2433 I.getType()); 2434 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2435 } 2436 2437 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2438 // FPToUI is never a no-op cast, no need to check 2439 SDValue N = getValue(I.getOperand(0)); 2440 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2441 I.getType()); 2442 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2443 } 2444 2445 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2446 // FPToSI is never a no-op cast, no need to check 2447 SDValue N = getValue(I.getOperand(0)); 2448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2449 I.getType()); 2450 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2451 } 2452 2453 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2454 // UIToFP is never a no-op cast, no need to check 2455 SDValue N = getValue(I.getOperand(0)); 2456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2457 I.getType()); 2458 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2459 } 2460 2461 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2462 // SIToFP is never a no-op cast, no need to check 2463 SDValue N = getValue(I.getOperand(0)); 2464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2465 I.getType()); 2466 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2467 } 2468 2469 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2470 // What to do depends on the size of the integer and the size of the pointer. 2471 // We can either truncate, zero extend, or no-op, accordingly. 2472 SDValue N = getValue(I.getOperand(0)); 2473 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2474 I.getType()); 2475 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2476 } 2477 2478 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2479 // What to do depends on the size of the integer and the size of the pointer. 2480 // We can either truncate, zero extend, or no-op, accordingly. 2481 SDValue N = getValue(I.getOperand(0)); 2482 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2483 I.getType()); 2484 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2485 } 2486 2487 void SelectionDAGBuilder::visitBitCast(const User &I) { 2488 SDValue N = getValue(I.getOperand(0)); 2489 SDLoc dl = getCurSDLoc(); 2490 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2491 I.getType()); 2492 2493 // BitCast assures us that source and destination are the same size so this is 2494 // either a BITCAST or a no-op. 2495 if (DestVT != N.getValueType()) 2496 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2497 DestVT, N)); // convert types. 2498 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2499 // might fold any kind of constant expression to an integer constant and that 2500 // is not what we are looking for. Only regcognize a bitcast of a genuine 2501 // constant integer as an opaque constant. 2502 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2503 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2504 /*isOpaque*/true)); 2505 else 2506 setValue(&I, N); // noop cast. 2507 } 2508 2509 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 const Value *SV = I.getOperand(0); 2512 SDValue N = getValue(SV); 2513 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2514 2515 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2516 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2517 2518 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2519 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2520 2521 setValue(&I, N); 2522 } 2523 2524 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2526 SDValue InVec = getValue(I.getOperand(0)); 2527 SDValue InVal = getValue(I.getOperand(1)); 2528 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2529 TLI.getVectorIdxTy(DAG.getDataLayout())); 2530 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2531 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2532 InVec, InVal, InIdx)); 2533 } 2534 2535 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 SDValue InVec = getValue(I.getOperand(0)); 2538 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2539 TLI.getVectorIdxTy(DAG.getDataLayout())); 2540 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2541 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2542 InVec, InIdx)); 2543 } 2544 2545 // Utility for visitShuffleVector - Return true if every element in Mask, 2546 // beginning from position Pos and ending in Pos+Size, falls within the 2547 // specified sequential range [L, L+Pos). or is undef. 2548 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2549 unsigned Pos, unsigned Size, int Low) { 2550 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2551 if (Mask[i] >= 0 && Mask[i] != Low) 2552 return false; 2553 return true; 2554 } 2555 2556 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2557 SDValue Src1 = getValue(I.getOperand(0)); 2558 SDValue Src2 = getValue(I.getOperand(1)); 2559 2560 SmallVector<int, 8> Mask; 2561 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2562 unsigned MaskNumElts = Mask.size(); 2563 2564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2565 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2566 EVT SrcVT = Src1.getValueType(); 2567 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2568 2569 if (SrcNumElts == MaskNumElts) { 2570 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2571 &Mask[0])); 2572 return; 2573 } 2574 2575 // Normalize the shuffle vector since mask and vector length don't match. 2576 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2577 // Mask is longer than the source vectors and is a multiple of the source 2578 // vectors. We can use concatenate vector to make the mask and vectors 2579 // lengths match. 2580 if (SrcNumElts*2 == MaskNumElts) { 2581 // First check for Src1 in low and Src2 in high 2582 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2583 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2584 // The shuffle is concatenating two vectors together. 2585 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2586 VT, Src1, Src2)); 2587 return; 2588 } 2589 // Then check for Src2 in low and Src1 in high 2590 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2591 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2592 // The shuffle is concatenating two vectors together. 2593 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2594 VT, Src2, Src1)); 2595 return; 2596 } 2597 } 2598 2599 // Pad both vectors with undefs to make them the same length as the mask. 2600 unsigned NumConcat = MaskNumElts / SrcNumElts; 2601 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2602 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2603 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2604 2605 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2606 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2607 MOps1[0] = Src1; 2608 MOps2[0] = Src2; 2609 2610 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2611 getCurSDLoc(), VT, MOps1); 2612 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2613 getCurSDLoc(), VT, MOps2); 2614 2615 // Readjust mask for new input vector length. 2616 SmallVector<int, 8> MappedOps; 2617 for (unsigned i = 0; i != MaskNumElts; ++i) { 2618 int Idx = Mask[i]; 2619 if (Idx >= (int)SrcNumElts) 2620 Idx -= SrcNumElts - MaskNumElts; 2621 MappedOps.push_back(Idx); 2622 } 2623 2624 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2625 &MappedOps[0])); 2626 return; 2627 } 2628 2629 if (SrcNumElts > MaskNumElts) { 2630 // Analyze the access pattern of the vector to see if we can extract 2631 // two subvectors and do the shuffle. The analysis is done by calculating 2632 // the range of elements the mask access on both vectors. 2633 int MinRange[2] = { static_cast<int>(SrcNumElts), 2634 static_cast<int>(SrcNumElts)}; 2635 int MaxRange[2] = {-1, -1}; 2636 2637 for (unsigned i = 0; i != MaskNumElts; ++i) { 2638 int Idx = Mask[i]; 2639 unsigned Input = 0; 2640 if (Idx < 0) 2641 continue; 2642 2643 if (Idx >= (int)SrcNumElts) { 2644 Input = 1; 2645 Idx -= SrcNumElts; 2646 } 2647 if (Idx > MaxRange[Input]) 2648 MaxRange[Input] = Idx; 2649 if (Idx < MinRange[Input]) 2650 MinRange[Input] = Idx; 2651 } 2652 2653 // Check if the access is smaller than the vector size and can we find 2654 // a reasonable extract index. 2655 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2656 // Extract. 2657 int StartIdx[2]; // StartIdx to extract from 2658 for (unsigned Input = 0; Input < 2; ++Input) { 2659 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2660 RangeUse[Input] = 0; // Unused 2661 StartIdx[Input] = 0; 2662 continue; 2663 } 2664 2665 // Find a good start index that is a multiple of the mask length. Then 2666 // see if the rest of the elements are in range. 2667 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2668 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2669 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2670 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2671 } 2672 2673 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2674 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2675 return; 2676 } 2677 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2678 // Extract appropriate subvector and generate a vector shuffle 2679 for (unsigned Input = 0; Input < 2; ++Input) { 2680 SDValue &Src = Input == 0 ? Src1 : Src2; 2681 if (RangeUse[Input] == 0) 2682 Src = DAG.getUNDEF(VT); 2683 else { 2684 SDLoc dl = getCurSDLoc(); 2685 Src = DAG.getNode( 2686 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2687 DAG.getConstant(StartIdx[Input], dl, 2688 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2689 } 2690 } 2691 2692 // Calculate new mask. 2693 SmallVector<int, 8> MappedOps; 2694 for (unsigned i = 0; i != MaskNumElts; ++i) { 2695 int Idx = Mask[i]; 2696 if (Idx >= 0) { 2697 if (Idx < (int)SrcNumElts) 2698 Idx -= StartIdx[0]; 2699 else 2700 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2701 } 2702 MappedOps.push_back(Idx); 2703 } 2704 2705 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2706 &MappedOps[0])); 2707 return; 2708 } 2709 } 2710 2711 // We can't use either concat vectors or extract subvectors so fall back to 2712 // replacing the shuffle with extract and build vector. 2713 // to insert and build vector. 2714 EVT EltVT = VT.getVectorElementType(); 2715 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2716 SDLoc dl = getCurSDLoc(); 2717 SmallVector<SDValue,8> Ops; 2718 for (unsigned i = 0; i != MaskNumElts; ++i) { 2719 int Idx = Mask[i]; 2720 SDValue Res; 2721 2722 if (Idx < 0) { 2723 Res = DAG.getUNDEF(EltVT); 2724 } else { 2725 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2726 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2727 2728 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2729 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2730 } 2731 2732 Ops.push_back(Res); 2733 } 2734 2735 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2736 } 2737 2738 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2739 const Value *Op0 = I.getOperand(0); 2740 const Value *Op1 = I.getOperand(1); 2741 Type *AggTy = I.getType(); 2742 Type *ValTy = Op1->getType(); 2743 bool IntoUndef = isa<UndefValue>(Op0); 2744 bool FromUndef = isa<UndefValue>(Op1); 2745 2746 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2747 2748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2749 SmallVector<EVT, 4> AggValueVTs; 2750 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2751 SmallVector<EVT, 4> ValValueVTs; 2752 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2753 2754 unsigned NumAggValues = AggValueVTs.size(); 2755 unsigned NumValValues = ValValueVTs.size(); 2756 SmallVector<SDValue, 4> Values(NumAggValues); 2757 2758 // Ignore an insertvalue that produces an empty object 2759 if (!NumAggValues) { 2760 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2761 return; 2762 } 2763 2764 SDValue Agg = getValue(Op0); 2765 unsigned i = 0; 2766 // Copy the beginning value(s) from the original aggregate. 2767 for (; i != LinearIndex; ++i) 2768 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2769 SDValue(Agg.getNode(), Agg.getResNo() + i); 2770 // Copy values from the inserted value(s). 2771 if (NumValValues) { 2772 SDValue Val = getValue(Op1); 2773 for (; i != LinearIndex + NumValValues; ++i) 2774 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2775 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2776 } 2777 // Copy remaining value(s) from the original aggregate. 2778 for (; i != NumAggValues; ++i) 2779 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2780 SDValue(Agg.getNode(), Agg.getResNo() + i); 2781 2782 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2783 DAG.getVTList(AggValueVTs), Values)); 2784 } 2785 2786 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2787 const Value *Op0 = I.getOperand(0); 2788 Type *AggTy = Op0->getType(); 2789 Type *ValTy = I.getType(); 2790 bool OutOfUndef = isa<UndefValue>(Op0); 2791 2792 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2793 2794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2795 SmallVector<EVT, 4> ValValueVTs; 2796 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2797 2798 unsigned NumValValues = ValValueVTs.size(); 2799 2800 // Ignore a extractvalue that produces an empty object 2801 if (!NumValValues) { 2802 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2803 return; 2804 } 2805 2806 SmallVector<SDValue, 4> Values(NumValValues); 2807 2808 SDValue Agg = getValue(Op0); 2809 // Copy out the selected value(s). 2810 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2811 Values[i - LinearIndex] = 2812 OutOfUndef ? 2813 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2814 SDValue(Agg.getNode(), Agg.getResNo() + i); 2815 2816 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2817 DAG.getVTList(ValValueVTs), Values)); 2818 } 2819 2820 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2821 Value *Op0 = I.getOperand(0); 2822 // Note that the pointer operand may be a vector of pointers. Take the scalar 2823 // element which holds a pointer. 2824 Type *Ty = Op0->getType()->getScalarType(); 2825 unsigned AS = Ty->getPointerAddressSpace(); 2826 SDValue N = getValue(Op0); 2827 SDLoc dl = getCurSDLoc(); 2828 2829 // Normalize Vector GEP - all scalar operands should be converted to the 2830 // splat vector. 2831 unsigned VectorWidth = I.getType()->isVectorTy() ? 2832 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2833 2834 if (VectorWidth && !N.getValueType().isVector()) { 2835 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2836 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2837 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2838 } 2839 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2840 OI != E; ++OI) { 2841 const Value *Idx = *OI; 2842 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2843 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2844 if (Field) { 2845 // N = N + Offset 2846 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2847 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2848 DAG.getConstant(Offset, dl, N.getValueType())); 2849 } 2850 2851 Ty = StTy->getElementType(Field); 2852 } else { 2853 Ty = cast<SequentialType>(Ty)->getElementType(); 2854 MVT PtrTy = 2855 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2856 unsigned PtrSize = PtrTy.getSizeInBits(); 2857 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2858 2859 // If this is a scalar constant or a splat vector of constants, 2860 // handle it quickly. 2861 const auto *CI = dyn_cast<ConstantInt>(Idx); 2862 if (!CI && isa<ConstantDataVector>(Idx) && 2863 cast<ConstantDataVector>(Idx)->getSplatValue()) 2864 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2865 2866 if (CI) { 2867 if (CI->isZero()) 2868 continue; 2869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2870 SDValue OffsVal = VectorWidth ? 2871 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2872 DAG.getConstant(Offs, dl, PtrTy); 2873 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2874 continue; 2875 } 2876 2877 // N = N + Idx * ElementSize; 2878 SDValue IdxN = getValue(Idx); 2879 2880 if (!IdxN.getValueType().isVector() && VectorWidth) { 2881 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2882 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2883 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2884 } 2885 // If the index is smaller or larger than intptr_t, truncate or extend 2886 // it. 2887 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2888 2889 // If this is a multiply by a power of two, turn it into a shl 2890 // immediately. This is a very common case. 2891 if (ElementSize != 1) { 2892 if (ElementSize.isPowerOf2()) { 2893 unsigned Amt = ElementSize.logBase2(); 2894 IdxN = DAG.getNode(ISD::SHL, dl, 2895 N.getValueType(), IdxN, 2896 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2897 } else { 2898 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2899 IdxN = DAG.getNode(ISD::MUL, dl, 2900 N.getValueType(), IdxN, Scale); 2901 } 2902 } 2903 2904 N = DAG.getNode(ISD::ADD, dl, 2905 N.getValueType(), N, IdxN); 2906 } 2907 } 2908 2909 setValue(&I, N); 2910 } 2911 2912 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2913 // If this is a fixed sized alloca in the entry block of the function, 2914 // allocate it statically on the stack. 2915 if (FuncInfo.StaticAllocaMap.count(&I)) 2916 return; // getValue will auto-populate this. 2917 2918 SDLoc dl = getCurSDLoc(); 2919 Type *Ty = I.getAllocatedType(); 2920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2921 auto &DL = DAG.getDataLayout(); 2922 uint64_t TySize = DL.getTypeAllocSize(Ty); 2923 unsigned Align = 2924 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2925 2926 SDValue AllocSize = getValue(I.getArraySize()); 2927 2928 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2929 if (AllocSize.getValueType() != IntPtr) 2930 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2931 2932 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2933 AllocSize, 2934 DAG.getConstant(TySize, dl, IntPtr)); 2935 2936 // Handle alignment. If the requested alignment is less than or equal to 2937 // the stack alignment, ignore it. If the size is greater than or equal to 2938 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2939 unsigned StackAlign = 2940 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2941 if (Align <= StackAlign) 2942 Align = 0; 2943 2944 // Round the size of the allocation up to the stack alignment size 2945 // by add SA-1 to the size. 2946 AllocSize = DAG.getNode(ISD::ADD, dl, 2947 AllocSize.getValueType(), AllocSize, 2948 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2949 2950 // Mask out the low bits for alignment purposes. 2951 AllocSize = DAG.getNode(ISD::AND, dl, 2952 AllocSize.getValueType(), AllocSize, 2953 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2954 dl)); 2955 2956 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2957 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2958 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2959 setValue(&I, DSA); 2960 DAG.setRoot(DSA.getValue(1)); 2961 2962 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2963 } 2964 2965 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2966 if (I.isAtomic()) 2967 return visitAtomicLoad(I); 2968 2969 const Value *SV = I.getOperand(0); 2970 SDValue Ptr = getValue(SV); 2971 2972 Type *Ty = I.getType(); 2973 2974 bool isVolatile = I.isVolatile(); 2975 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2976 2977 // The IR notion of invariant_load only guarantees that all *non-faulting* 2978 // invariant loads result in the same value. The MI notion of invariant load 2979 // guarantees that the load can be legally moved to any location within its 2980 // containing function. The MI notion of invariant_load is stronger than the 2981 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2982 // with a guarantee that the location being loaded from is dereferenceable 2983 // throughout the function's lifetime. 2984 2985 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2986 isDereferenceablePointer(SV, DAG.getDataLayout()); 2987 unsigned Alignment = I.getAlignment(); 2988 2989 AAMDNodes AAInfo; 2990 I.getAAMetadata(AAInfo); 2991 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2992 2993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2994 SmallVector<EVT, 4> ValueVTs; 2995 SmallVector<uint64_t, 4> Offsets; 2996 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2997 unsigned NumValues = ValueVTs.size(); 2998 if (NumValues == 0) 2999 return; 3000 3001 SDValue Root; 3002 bool ConstantMemory = false; 3003 if (isVolatile || NumValues > MaxParallelChains) 3004 // Serialize volatile loads with other side effects. 3005 Root = getRoot(); 3006 else if (AA->pointsToConstantMemory(MemoryLocation( 3007 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3008 // Do not serialize (non-volatile) loads of constant memory with anything. 3009 Root = DAG.getEntryNode(); 3010 ConstantMemory = true; 3011 } else { 3012 // Do not serialize non-volatile loads against each other. 3013 Root = DAG.getRoot(); 3014 } 3015 3016 SDLoc dl = getCurSDLoc(); 3017 3018 if (isVolatile) 3019 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3020 3021 SmallVector<SDValue, 4> Values(NumValues); 3022 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3023 EVT PtrVT = Ptr.getValueType(); 3024 unsigned ChainI = 0; 3025 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3026 // Serializing loads here may result in excessive register pressure, and 3027 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3028 // could recover a bit by hoisting nodes upward in the chain by recognizing 3029 // they are side-effect free or do not alias. The optimizer should really 3030 // avoid this case by converting large object/array copies to llvm.memcpy 3031 // (MaxParallelChains should always remain as failsafe). 3032 if (ChainI == MaxParallelChains) { 3033 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3034 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3035 makeArrayRef(Chains.data(), ChainI)); 3036 Root = Chain; 3037 ChainI = 0; 3038 } 3039 SDValue A = DAG.getNode(ISD::ADD, dl, 3040 PtrVT, Ptr, 3041 DAG.getConstant(Offsets[i], dl, PtrVT)); 3042 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3043 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3044 isNonTemporal, isInvariant, Alignment, AAInfo, 3045 Ranges); 3046 3047 Values[i] = L; 3048 Chains[ChainI] = L.getValue(1); 3049 } 3050 3051 if (!ConstantMemory) { 3052 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3053 makeArrayRef(Chains.data(), ChainI)); 3054 if (isVolatile) 3055 DAG.setRoot(Chain); 3056 else 3057 PendingLoads.push_back(Chain); 3058 } 3059 3060 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3061 DAG.getVTList(ValueVTs), Values)); 3062 } 3063 3064 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3065 if (I.isAtomic()) 3066 return visitAtomicStore(I); 3067 3068 const Value *SrcV = I.getOperand(0); 3069 const Value *PtrV = I.getOperand(1); 3070 3071 SmallVector<EVT, 4> ValueVTs; 3072 SmallVector<uint64_t, 4> Offsets; 3073 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3074 SrcV->getType(), ValueVTs, &Offsets); 3075 unsigned NumValues = ValueVTs.size(); 3076 if (NumValues == 0) 3077 return; 3078 3079 // Get the lowered operands. Note that we do this after 3080 // checking if NumResults is zero, because with zero results 3081 // the operands won't have values in the map. 3082 SDValue Src = getValue(SrcV); 3083 SDValue Ptr = getValue(PtrV); 3084 3085 SDValue Root = getRoot(); 3086 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3087 EVT PtrVT = Ptr.getValueType(); 3088 bool isVolatile = I.isVolatile(); 3089 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3090 unsigned Alignment = I.getAlignment(); 3091 SDLoc dl = getCurSDLoc(); 3092 3093 AAMDNodes AAInfo; 3094 I.getAAMetadata(AAInfo); 3095 3096 unsigned ChainI = 0; 3097 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3098 // See visitLoad comments. 3099 if (ChainI == MaxParallelChains) { 3100 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3101 makeArrayRef(Chains.data(), ChainI)); 3102 Root = Chain; 3103 ChainI = 0; 3104 } 3105 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3106 DAG.getConstant(Offsets[i], dl, PtrVT)); 3107 SDValue St = DAG.getStore(Root, dl, 3108 SDValue(Src.getNode(), Src.getResNo() + i), 3109 Add, MachinePointerInfo(PtrV, Offsets[i]), 3110 isVolatile, isNonTemporal, Alignment, AAInfo); 3111 Chains[ChainI] = St; 3112 } 3113 3114 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3115 makeArrayRef(Chains.data(), ChainI)); 3116 DAG.setRoot(StoreNode); 3117 } 3118 3119 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3120 SDLoc sdl = getCurSDLoc(); 3121 3122 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3123 Value *PtrOperand = I.getArgOperand(1); 3124 SDValue Ptr = getValue(PtrOperand); 3125 SDValue Src0 = getValue(I.getArgOperand(0)); 3126 SDValue Mask = getValue(I.getArgOperand(3)); 3127 EVT VT = Src0.getValueType(); 3128 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3129 if (!Alignment) 3130 Alignment = DAG.getEVTAlignment(VT); 3131 3132 AAMDNodes AAInfo; 3133 I.getAAMetadata(AAInfo); 3134 3135 MachineMemOperand *MMO = 3136 DAG.getMachineFunction(). 3137 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3138 MachineMemOperand::MOStore, VT.getStoreSize(), 3139 Alignment, AAInfo); 3140 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3141 MMO, false); 3142 DAG.setRoot(StoreNode); 3143 setValue(&I, StoreNode); 3144 } 3145 3146 // Get a uniform base for the Gather/Scatter intrinsic. 3147 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3148 // We try to represent it as a base pointer + vector of indices. 3149 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3150 // The first operand of the GEP may be a single pointer or a vector of pointers 3151 // Example: 3152 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3153 // or 3154 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3155 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3156 // 3157 // When the first GEP operand is a single pointer - it is the uniform base we 3158 // are looking for. If first operand of the GEP is a splat vector - we 3159 // extract the spalt value and use it as a uniform base. 3160 // In all other cases the function returns 'false'. 3161 // 3162 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3163 SelectionDAGBuilder* SDB) { 3164 3165 SelectionDAG& DAG = SDB->DAG; 3166 LLVMContext &Context = *DAG.getContext(); 3167 3168 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3169 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3170 if (!GEP || GEP->getNumOperands() > 2) 3171 return false; 3172 3173 Value *GEPPtr = GEP->getPointerOperand(); 3174 if (!GEPPtr->getType()->isVectorTy()) 3175 Ptr = GEPPtr; 3176 else if (!(Ptr = getSplatValue(GEPPtr))) 3177 return false; 3178 3179 Value *IndexVal = GEP->getOperand(1); 3180 3181 // The operands of the GEP may be defined in another basic block. 3182 // In this case we'll not find nodes for the operands. 3183 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3184 return false; 3185 3186 Base = SDB->getValue(Ptr); 3187 Index = SDB->getValue(IndexVal); 3188 3189 // Suppress sign extension. 3190 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3191 if (SDB->findValue(Sext->getOperand(0))) { 3192 IndexVal = Sext->getOperand(0); 3193 Index = SDB->getValue(IndexVal); 3194 } 3195 } 3196 if (!Index.getValueType().isVector()) { 3197 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3198 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3199 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3200 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3201 } 3202 return true; 3203 } 3204 3205 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3206 SDLoc sdl = getCurSDLoc(); 3207 3208 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3209 Value *Ptr = I.getArgOperand(1); 3210 SDValue Src0 = getValue(I.getArgOperand(0)); 3211 SDValue Mask = getValue(I.getArgOperand(3)); 3212 EVT VT = Src0.getValueType(); 3213 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3214 if (!Alignment) 3215 Alignment = DAG.getEVTAlignment(VT); 3216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3217 3218 AAMDNodes AAInfo; 3219 I.getAAMetadata(AAInfo); 3220 3221 SDValue Base; 3222 SDValue Index; 3223 Value *BasePtr = Ptr; 3224 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3225 3226 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3227 MachineMemOperand *MMO = DAG.getMachineFunction(). 3228 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3229 MachineMemOperand::MOStore, VT.getStoreSize(), 3230 Alignment, AAInfo); 3231 if (!UniformBase) { 3232 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3233 Index = getValue(Ptr); 3234 } 3235 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3236 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3237 Ops, MMO); 3238 DAG.setRoot(Scatter); 3239 setValue(&I, Scatter); 3240 } 3241 3242 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3243 SDLoc sdl = getCurSDLoc(); 3244 3245 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3246 Value *PtrOperand = I.getArgOperand(0); 3247 SDValue Ptr = getValue(PtrOperand); 3248 SDValue Src0 = getValue(I.getArgOperand(3)); 3249 SDValue Mask = getValue(I.getArgOperand(2)); 3250 3251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3252 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3253 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3254 if (!Alignment) 3255 Alignment = DAG.getEVTAlignment(VT); 3256 3257 AAMDNodes AAInfo; 3258 I.getAAMetadata(AAInfo); 3259 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3260 3261 SDValue InChain = DAG.getRoot(); 3262 if (AA->pointsToConstantMemory(MemoryLocation( 3263 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3264 AAInfo))) { 3265 // Do not serialize (non-volatile) loads of constant memory with anything. 3266 InChain = DAG.getEntryNode(); 3267 } 3268 3269 MachineMemOperand *MMO = 3270 DAG.getMachineFunction(). 3271 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3272 MachineMemOperand::MOLoad, VT.getStoreSize(), 3273 Alignment, AAInfo, Ranges); 3274 3275 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3276 ISD::NON_EXTLOAD); 3277 SDValue OutChain = Load.getValue(1); 3278 DAG.setRoot(OutChain); 3279 setValue(&I, Load); 3280 } 3281 3282 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3283 SDLoc sdl = getCurSDLoc(); 3284 3285 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3286 Value *Ptr = I.getArgOperand(0); 3287 SDValue Src0 = getValue(I.getArgOperand(3)); 3288 SDValue Mask = getValue(I.getArgOperand(2)); 3289 3290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3291 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3292 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3293 if (!Alignment) 3294 Alignment = DAG.getEVTAlignment(VT); 3295 3296 AAMDNodes AAInfo; 3297 I.getAAMetadata(AAInfo); 3298 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3299 3300 SDValue Root = DAG.getRoot(); 3301 SDValue Base; 3302 SDValue Index; 3303 Value *BasePtr = Ptr; 3304 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3305 bool ConstantMemory = false; 3306 if (UniformBase && 3307 AA->pointsToConstantMemory(MemoryLocation( 3308 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3309 AAInfo))) { 3310 // Do not serialize (non-volatile) loads of constant memory with anything. 3311 Root = DAG.getEntryNode(); 3312 ConstantMemory = true; 3313 } 3314 3315 MachineMemOperand *MMO = 3316 DAG.getMachineFunction(). 3317 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3318 MachineMemOperand::MOLoad, VT.getStoreSize(), 3319 Alignment, AAInfo, Ranges); 3320 3321 if (!UniformBase) { 3322 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3323 Index = getValue(Ptr); 3324 } 3325 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3326 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3327 Ops, MMO); 3328 3329 SDValue OutChain = Gather.getValue(1); 3330 if (!ConstantMemory) 3331 PendingLoads.push_back(OutChain); 3332 setValue(&I, Gather); 3333 } 3334 3335 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3336 SDLoc dl = getCurSDLoc(); 3337 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3338 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3339 SynchronizationScope Scope = I.getSynchScope(); 3340 3341 SDValue InChain = getRoot(); 3342 3343 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3344 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3345 SDValue L = DAG.getAtomicCmpSwap( 3346 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3347 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3348 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3349 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3350 3351 SDValue OutChain = L.getValue(2); 3352 3353 setValue(&I, L); 3354 DAG.setRoot(OutChain); 3355 } 3356 3357 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3358 SDLoc dl = getCurSDLoc(); 3359 ISD::NodeType NT; 3360 switch (I.getOperation()) { 3361 default: llvm_unreachable("Unknown atomicrmw operation"); 3362 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3363 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3364 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3365 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3366 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3367 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3368 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3369 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3370 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3371 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3372 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3373 } 3374 AtomicOrdering Order = I.getOrdering(); 3375 SynchronizationScope Scope = I.getSynchScope(); 3376 3377 SDValue InChain = getRoot(); 3378 3379 SDValue L = 3380 DAG.getAtomic(NT, dl, 3381 getValue(I.getValOperand()).getSimpleValueType(), 3382 InChain, 3383 getValue(I.getPointerOperand()), 3384 getValue(I.getValOperand()), 3385 I.getPointerOperand(), 3386 /* Alignment=*/ 0, Order, Scope); 3387 3388 SDValue OutChain = L.getValue(1); 3389 3390 setValue(&I, L); 3391 DAG.setRoot(OutChain); 3392 } 3393 3394 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3395 SDLoc dl = getCurSDLoc(); 3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3397 SDValue Ops[3]; 3398 Ops[0] = getRoot(); 3399 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3400 TLI.getPointerTy(DAG.getDataLayout())); 3401 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3402 TLI.getPointerTy(DAG.getDataLayout())); 3403 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3404 } 3405 3406 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3407 SDLoc dl = getCurSDLoc(); 3408 AtomicOrdering Order = I.getOrdering(); 3409 SynchronizationScope Scope = I.getSynchScope(); 3410 3411 SDValue InChain = getRoot(); 3412 3413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3414 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3415 3416 if (I.getAlignment() < VT.getSizeInBits() / 8) 3417 report_fatal_error("Cannot generate unaligned atomic load"); 3418 3419 MachineMemOperand *MMO = 3420 DAG.getMachineFunction(). 3421 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3422 MachineMemOperand::MOVolatile | 3423 MachineMemOperand::MOLoad, 3424 VT.getStoreSize(), 3425 I.getAlignment() ? I.getAlignment() : 3426 DAG.getEVTAlignment(VT)); 3427 3428 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3429 SDValue L = 3430 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3431 getValue(I.getPointerOperand()), MMO, 3432 Order, Scope); 3433 3434 SDValue OutChain = L.getValue(1); 3435 3436 setValue(&I, L); 3437 DAG.setRoot(OutChain); 3438 } 3439 3440 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3441 SDLoc dl = getCurSDLoc(); 3442 3443 AtomicOrdering Order = I.getOrdering(); 3444 SynchronizationScope Scope = I.getSynchScope(); 3445 3446 SDValue InChain = getRoot(); 3447 3448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3449 EVT VT = 3450 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3451 3452 if (I.getAlignment() < VT.getSizeInBits() / 8) 3453 report_fatal_error("Cannot generate unaligned atomic store"); 3454 3455 SDValue OutChain = 3456 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3457 InChain, 3458 getValue(I.getPointerOperand()), 3459 getValue(I.getValueOperand()), 3460 I.getPointerOperand(), I.getAlignment(), 3461 Order, Scope); 3462 3463 DAG.setRoot(OutChain); 3464 } 3465 3466 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3467 /// node. 3468 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3469 unsigned Intrinsic) { 3470 bool HasChain = !I.doesNotAccessMemory(); 3471 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3472 3473 // Build the operand list. 3474 SmallVector<SDValue, 8> Ops; 3475 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3476 if (OnlyLoad) { 3477 // We don't need to serialize loads against other loads. 3478 Ops.push_back(DAG.getRoot()); 3479 } else { 3480 Ops.push_back(getRoot()); 3481 } 3482 } 3483 3484 // Info is set by getTgtMemInstrinsic 3485 TargetLowering::IntrinsicInfo Info; 3486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3487 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3488 3489 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3490 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3491 Info.opc == ISD::INTRINSIC_W_CHAIN) 3492 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3493 TLI.getPointerTy(DAG.getDataLayout()))); 3494 3495 // Add all operands of the call to the operand list. 3496 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3497 SDValue Op = getValue(I.getArgOperand(i)); 3498 Ops.push_back(Op); 3499 } 3500 3501 SmallVector<EVT, 4> ValueVTs; 3502 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3503 3504 if (HasChain) 3505 ValueVTs.push_back(MVT::Other); 3506 3507 SDVTList VTs = DAG.getVTList(ValueVTs); 3508 3509 // Create the node. 3510 SDValue Result; 3511 if (IsTgtIntrinsic) { 3512 // This is target intrinsic that touches memory 3513 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3514 VTs, Ops, Info.memVT, 3515 MachinePointerInfo(Info.ptrVal, Info.offset), 3516 Info.align, Info.vol, 3517 Info.readMem, Info.writeMem, Info.size); 3518 } else if (!HasChain) { 3519 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3520 } else if (!I.getType()->isVoidTy()) { 3521 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3522 } else { 3523 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3524 } 3525 3526 if (HasChain) { 3527 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3528 if (OnlyLoad) 3529 PendingLoads.push_back(Chain); 3530 else 3531 DAG.setRoot(Chain); 3532 } 3533 3534 if (!I.getType()->isVoidTy()) { 3535 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3536 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3537 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3538 } 3539 3540 setValue(&I, Result); 3541 } 3542 } 3543 3544 /// GetSignificand - Get the significand and build it into a floating-point 3545 /// number with exponent of 1: 3546 /// 3547 /// Op = (Op & 0x007fffff) | 0x3f800000; 3548 /// 3549 /// where Op is the hexadecimal representation of floating point value. 3550 static SDValue 3551 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3552 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3553 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3554 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3555 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3556 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3557 } 3558 3559 /// GetExponent - Get the exponent: 3560 /// 3561 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3562 /// 3563 /// where Op is the hexadecimal representation of floating point value. 3564 static SDValue 3565 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3566 SDLoc dl) { 3567 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3568 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3569 SDValue t1 = DAG.getNode( 3570 ISD::SRL, dl, MVT::i32, t0, 3571 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3572 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3573 DAG.getConstant(127, dl, MVT::i32)); 3574 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3575 } 3576 3577 /// getF32Constant - Get 32-bit floating point constant. 3578 static SDValue 3579 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3580 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3581 MVT::f32); 3582 } 3583 3584 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3585 SelectionDAG &DAG) { 3586 // IntegerPartOfX = ((int32_t)(t0); 3587 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3588 3589 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3590 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3591 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3592 3593 // IntegerPartOfX <<= 23; 3594 IntegerPartOfX = DAG.getNode( 3595 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3596 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3597 DAG.getDataLayout()))); 3598 3599 SDValue TwoToFractionalPartOfX; 3600 if (LimitFloatPrecision <= 6) { 3601 // For floating-point precision of 6: 3602 // 3603 // TwoToFractionalPartOfX = 3604 // 0.997535578f + 3605 // (0.735607626f + 0.252464424f * x) * x; 3606 // 3607 // error 0.0144103317, which is 6 bits 3608 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3609 getF32Constant(DAG, 0x3e814304, dl)); 3610 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3611 getF32Constant(DAG, 0x3f3c50c8, dl)); 3612 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3613 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3614 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3615 } else if (LimitFloatPrecision <= 12) { 3616 // For floating-point precision of 12: 3617 // 3618 // TwoToFractionalPartOfX = 3619 // 0.999892986f + 3620 // (0.696457318f + 3621 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3622 // 3623 // error 0.000107046256, which is 13 to 14 bits 3624 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3625 getF32Constant(DAG, 0x3da235e3, dl)); 3626 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3627 getF32Constant(DAG, 0x3e65b8f3, dl)); 3628 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3629 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3630 getF32Constant(DAG, 0x3f324b07, dl)); 3631 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3632 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3633 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3634 } else { // LimitFloatPrecision <= 18 3635 // For floating-point precision of 18: 3636 // 3637 // TwoToFractionalPartOfX = 3638 // 0.999999982f + 3639 // (0.693148872f + 3640 // (0.240227044f + 3641 // (0.554906021e-1f + 3642 // (0.961591928e-2f + 3643 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3644 // error 2.47208000*10^(-7), which is better than 18 bits 3645 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3646 getF32Constant(DAG, 0x3924b03e, dl)); 3647 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3648 getF32Constant(DAG, 0x3ab24b87, dl)); 3649 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3650 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3651 getF32Constant(DAG, 0x3c1d8c17, dl)); 3652 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3653 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3654 getF32Constant(DAG, 0x3d634a1d, dl)); 3655 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3656 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3657 getF32Constant(DAG, 0x3e75fe14, dl)); 3658 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3659 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3660 getF32Constant(DAG, 0x3f317234, dl)); 3661 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3662 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3663 getF32Constant(DAG, 0x3f800000, dl)); 3664 } 3665 3666 // Add the exponent into the result in integer domain. 3667 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3668 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3669 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3670 } 3671 3672 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3673 /// limited-precision mode. 3674 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3675 const TargetLowering &TLI) { 3676 if (Op.getValueType() == MVT::f32 && 3677 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3678 3679 // Put the exponent in the right bit position for later addition to the 3680 // final result: 3681 // 3682 // #define LOG2OFe 1.4426950f 3683 // t0 = Op * LOG2OFe 3684 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3685 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3686 return getLimitedPrecisionExp2(t0, dl, DAG); 3687 } 3688 3689 // No special expansion. 3690 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3691 } 3692 3693 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3694 /// limited-precision mode. 3695 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3696 const TargetLowering &TLI) { 3697 if (Op.getValueType() == MVT::f32 && 3698 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3699 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3700 3701 // Scale the exponent by log(2) [0.69314718f]. 3702 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3703 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3704 getF32Constant(DAG, 0x3f317218, dl)); 3705 3706 // Get the significand and build it into a floating-point number with 3707 // exponent of 1. 3708 SDValue X = GetSignificand(DAG, Op1, dl); 3709 3710 SDValue LogOfMantissa; 3711 if (LimitFloatPrecision <= 6) { 3712 // For floating-point precision of 6: 3713 // 3714 // LogofMantissa = 3715 // -1.1609546f + 3716 // (1.4034025f - 0.23903021f * x) * x; 3717 // 3718 // error 0.0034276066, which is better than 8 bits 3719 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3720 getF32Constant(DAG, 0xbe74c456, dl)); 3721 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3722 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3723 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3724 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3725 getF32Constant(DAG, 0x3f949a29, dl)); 3726 } else if (LimitFloatPrecision <= 12) { 3727 // For floating-point precision of 12: 3728 // 3729 // LogOfMantissa = 3730 // -1.7417939f + 3731 // (2.8212026f + 3732 // (-1.4699568f + 3733 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3734 // 3735 // error 0.000061011436, which is 14 bits 3736 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3737 getF32Constant(DAG, 0xbd67b6d6, dl)); 3738 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3739 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3740 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3741 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3742 getF32Constant(DAG, 0x3fbc278b, dl)); 3743 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3744 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3745 getF32Constant(DAG, 0x40348e95, dl)); 3746 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3747 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3748 getF32Constant(DAG, 0x3fdef31a, dl)); 3749 } else { // LimitFloatPrecision <= 18 3750 // For floating-point precision of 18: 3751 // 3752 // LogOfMantissa = 3753 // -2.1072184f + 3754 // (4.2372794f + 3755 // (-3.7029485f + 3756 // (2.2781945f + 3757 // (-0.87823314f + 3758 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3759 // 3760 // error 0.0000023660568, which is better than 18 bits 3761 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3762 getF32Constant(DAG, 0xbc91e5ac, dl)); 3763 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3764 getF32Constant(DAG, 0x3e4350aa, dl)); 3765 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3766 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3767 getF32Constant(DAG, 0x3f60d3e3, dl)); 3768 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3769 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3770 getF32Constant(DAG, 0x4011cdf0, dl)); 3771 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3772 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3773 getF32Constant(DAG, 0x406cfd1c, dl)); 3774 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3775 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3776 getF32Constant(DAG, 0x408797cb, dl)); 3777 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3778 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3779 getF32Constant(DAG, 0x4006dcab, dl)); 3780 } 3781 3782 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3783 } 3784 3785 // No special expansion. 3786 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3787 } 3788 3789 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3790 /// limited-precision mode. 3791 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3792 const TargetLowering &TLI) { 3793 if (Op.getValueType() == MVT::f32 && 3794 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3795 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3796 3797 // Get the exponent. 3798 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3799 3800 // Get the significand and build it into a floating-point number with 3801 // exponent of 1. 3802 SDValue X = GetSignificand(DAG, Op1, dl); 3803 3804 // Different possible minimax approximations of significand in 3805 // floating-point for various degrees of accuracy over [1,2]. 3806 SDValue Log2ofMantissa; 3807 if (LimitFloatPrecision <= 6) { 3808 // For floating-point precision of 6: 3809 // 3810 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3811 // 3812 // error 0.0049451742, which is more than 7 bits 3813 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3814 getF32Constant(DAG, 0xbeb08fe0, dl)); 3815 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3816 getF32Constant(DAG, 0x40019463, dl)); 3817 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3818 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3819 getF32Constant(DAG, 0x3fd6633d, dl)); 3820 } else if (LimitFloatPrecision <= 12) { 3821 // For floating-point precision of 12: 3822 // 3823 // Log2ofMantissa = 3824 // -2.51285454f + 3825 // (4.07009056f + 3826 // (-2.12067489f + 3827 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3828 // 3829 // error 0.0000876136000, which is better than 13 bits 3830 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3831 getF32Constant(DAG, 0xbda7262e, dl)); 3832 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3833 getF32Constant(DAG, 0x3f25280b, dl)); 3834 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3835 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3836 getF32Constant(DAG, 0x4007b923, dl)); 3837 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3838 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3839 getF32Constant(DAG, 0x40823e2f, dl)); 3840 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3841 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3842 getF32Constant(DAG, 0x4020d29c, dl)); 3843 } else { // LimitFloatPrecision <= 18 3844 // For floating-point precision of 18: 3845 // 3846 // Log2ofMantissa = 3847 // -3.0400495f + 3848 // (6.1129976f + 3849 // (-5.3420409f + 3850 // (3.2865683f + 3851 // (-1.2669343f + 3852 // (0.27515199f - 3853 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3854 // 3855 // error 0.0000018516, which is better than 18 bits 3856 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3857 getF32Constant(DAG, 0xbcd2769e, dl)); 3858 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3859 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3860 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3861 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3862 getF32Constant(DAG, 0x3fa22ae7, dl)); 3863 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3864 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3865 getF32Constant(DAG, 0x40525723, dl)); 3866 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3867 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3868 getF32Constant(DAG, 0x40aaf200, dl)); 3869 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3870 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3871 getF32Constant(DAG, 0x40c39dad, dl)); 3872 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3873 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3874 getF32Constant(DAG, 0x4042902c, dl)); 3875 } 3876 3877 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3878 } 3879 3880 // No special expansion. 3881 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3882 } 3883 3884 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3885 /// limited-precision mode. 3886 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3887 const TargetLowering &TLI) { 3888 if (Op.getValueType() == MVT::f32 && 3889 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3890 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3891 3892 // Scale the exponent by log10(2) [0.30102999f]. 3893 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3894 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3895 getF32Constant(DAG, 0x3e9a209a, dl)); 3896 3897 // Get the significand and build it into a floating-point number with 3898 // exponent of 1. 3899 SDValue X = GetSignificand(DAG, Op1, dl); 3900 3901 SDValue Log10ofMantissa; 3902 if (LimitFloatPrecision <= 6) { 3903 // For floating-point precision of 6: 3904 // 3905 // Log10ofMantissa = 3906 // -0.50419619f + 3907 // (0.60948995f - 0.10380950f * x) * x; 3908 // 3909 // error 0.0014886165, which is 6 bits 3910 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3911 getF32Constant(DAG, 0xbdd49a13, dl)); 3912 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3913 getF32Constant(DAG, 0x3f1c0789, dl)); 3914 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3915 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3916 getF32Constant(DAG, 0x3f011300, dl)); 3917 } else if (LimitFloatPrecision <= 12) { 3918 // For floating-point precision of 12: 3919 // 3920 // Log10ofMantissa = 3921 // -0.64831180f + 3922 // (0.91751397f + 3923 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3924 // 3925 // error 0.00019228036, which is better than 12 bits 3926 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3927 getF32Constant(DAG, 0x3d431f31, dl)); 3928 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3929 getF32Constant(DAG, 0x3ea21fb2, dl)); 3930 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3931 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3932 getF32Constant(DAG, 0x3f6ae232, dl)); 3933 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3934 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3935 getF32Constant(DAG, 0x3f25f7c3, dl)); 3936 } else { // LimitFloatPrecision <= 18 3937 // For floating-point precision of 18: 3938 // 3939 // Log10ofMantissa = 3940 // -0.84299375f + 3941 // (1.5327582f + 3942 // (-1.0688956f + 3943 // (0.49102474f + 3944 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3945 // 3946 // error 0.0000037995730, which is better than 18 bits 3947 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3948 getF32Constant(DAG, 0x3c5d51ce, dl)); 3949 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3950 getF32Constant(DAG, 0x3e00685a, dl)); 3951 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3952 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3953 getF32Constant(DAG, 0x3efb6798, dl)); 3954 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3955 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3956 getF32Constant(DAG, 0x3f88d192, dl)); 3957 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3958 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3959 getF32Constant(DAG, 0x3fc4316c, dl)); 3960 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3961 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3962 getF32Constant(DAG, 0x3f57ce70, dl)); 3963 } 3964 3965 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3966 } 3967 3968 // No special expansion. 3969 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3970 } 3971 3972 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3973 /// limited-precision mode. 3974 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3975 const TargetLowering &TLI) { 3976 if (Op.getValueType() == MVT::f32 && 3977 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3978 return getLimitedPrecisionExp2(Op, dl, DAG); 3979 3980 // No special expansion. 3981 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3982 } 3983 3984 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3985 /// limited-precision mode with x == 10.0f. 3986 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3987 SelectionDAG &DAG, const TargetLowering &TLI) { 3988 bool IsExp10 = false; 3989 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3990 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3991 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3992 APFloat Ten(10.0f); 3993 IsExp10 = LHSC->isExactlyValue(Ten); 3994 } 3995 } 3996 3997 if (IsExp10) { 3998 // Put the exponent in the right bit position for later addition to the 3999 // final result: 4000 // 4001 // #define LOG2OF10 3.3219281f 4002 // t0 = Op * LOG2OF10; 4003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4004 getF32Constant(DAG, 0x40549a78, dl)); 4005 return getLimitedPrecisionExp2(t0, dl, DAG); 4006 } 4007 4008 // No special expansion. 4009 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4010 } 4011 4012 4013 /// ExpandPowI - Expand a llvm.powi intrinsic. 4014 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4015 SelectionDAG &DAG) { 4016 // If RHS is a constant, we can expand this out to a multiplication tree, 4017 // otherwise we end up lowering to a call to __powidf2 (for example). When 4018 // optimizing for size, we only want to do this if the expansion would produce 4019 // a small number of multiplies, otherwise we do the full expansion. 4020 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4021 // Get the exponent as a positive value. 4022 unsigned Val = RHSC->getSExtValue(); 4023 if ((int)Val < 0) Val = -Val; 4024 4025 // powi(x, 0) -> 1.0 4026 if (Val == 0) 4027 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4028 4029 const Function *F = DAG.getMachineFunction().getFunction(); 4030 if (!F->optForSize() || 4031 // If optimizing for size, don't insert too many multiplies. 4032 // This inserts up to 5 multiplies. 4033 countPopulation(Val) + Log2_32(Val) < 7) { 4034 // We use the simple binary decomposition method to generate the multiply 4035 // sequence. There are more optimal ways to do this (for example, 4036 // powi(x,15) generates one more multiply than it should), but this has 4037 // the benefit of being both really simple and much better than a libcall. 4038 SDValue Res; // Logically starts equal to 1.0 4039 SDValue CurSquare = LHS; 4040 while (Val) { 4041 if (Val & 1) { 4042 if (Res.getNode()) 4043 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4044 else 4045 Res = CurSquare; // 1.0*CurSquare. 4046 } 4047 4048 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4049 CurSquare, CurSquare); 4050 Val >>= 1; 4051 } 4052 4053 // If the original was negative, invert the result, producing 1/(x*x*x). 4054 if (RHSC->getSExtValue() < 0) 4055 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4056 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4057 return Res; 4058 } 4059 } 4060 4061 // Otherwise, expand to a libcall. 4062 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4063 } 4064 4065 // getTruncatedArgReg - Find underlying register used for an truncated 4066 // argument. 4067 static unsigned getTruncatedArgReg(const SDValue &N) { 4068 if (N.getOpcode() != ISD::TRUNCATE) 4069 return 0; 4070 4071 const SDValue &Ext = N.getOperand(0); 4072 if (Ext.getOpcode() == ISD::AssertZext || 4073 Ext.getOpcode() == ISD::AssertSext) { 4074 const SDValue &CFR = Ext.getOperand(0); 4075 if (CFR.getOpcode() == ISD::CopyFromReg) 4076 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4077 if (CFR.getOpcode() == ISD::TRUNCATE) 4078 return getTruncatedArgReg(CFR); 4079 } 4080 return 0; 4081 } 4082 4083 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4084 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4085 /// At the end of instruction selection, they will be inserted to the entry BB. 4086 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4087 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4088 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4089 const Argument *Arg = dyn_cast<Argument>(V); 4090 if (!Arg) 4091 return false; 4092 4093 MachineFunction &MF = DAG.getMachineFunction(); 4094 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4095 4096 // Ignore inlined function arguments here. 4097 // 4098 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4099 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4100 return false; 4101 4102 Optional<MachineOperand> Op; 4103 // Some arguments' frame index is recorded during argument lowering. 4104 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4105 Op = MachineOperand::CreateFI(FI); 4106 4107 if (!Op && N.getNode()) { 4108 unsigned Reg; 4109 if (N.getOpcode() == ISD::CopyFromReg) 4110 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4111 else 4112 Reg = getTruncatedArgReg(N); 4113 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4114 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4115 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4116 if (PR) 4117 Reg = PR; 4118 } 4119 if (Reg) 4120 Op = MachineOperand::CreateReg(Reg, false); 4121 } 4122 4123 if (!Op) { 4124 // Check if ValueMap has reg number. 4125 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4126 if (VMI != FuncInfo.ValueMap.end()) 4127 Op = MachineOperand::CreateReg(VMI->second, false); 4128 } 4129 4130 if (!Op && N.getNode()) 4131 // Check if frame index is available. 4132 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4133 if (FrameIndexSDNode *FINode = 4134 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4135 Op = MachineOperand::CreateFI(FINode->getIndex()); 4136 4137 if (!Op) 4138 return false; 4139 4140 assert(Variable->isValidLocationForIntrinsic(DL) && 4141 "Expected inlined-at fields to agree"); 4142 if (Op->isReg()) 4143 FuncInfo.ArgDbgValues.push_back( 4144 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4145 Op->getReg(), Offset, Variable, Expr)); 4146 else 4147 FuncInfo.ArgDbgValues.push_back( 4148 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4149 .addOperand(*Op) 4150 .addImm(Offset) 4151 .addMetadata(Variable) 4152 .addMetadata(Expr)); 4153 4154 return true; 4155 } 4156 4157 // VisualStudio defines setjmp as _setjmp 4158 #if defined(_MSC_VER) && defined(setjmp) && \ 4159 !defined(setjmp_undefined_for_msvc) 4160 # pragma push_macro("setjmp") 4161 # undef setjmp 4162 # define setjmp_undefined_for_msvc 4163 #endif 4164 4165 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4166 /// we want to emit this as a call to a named external function, return the name 4167 /// otherwise lower it and return null. 4168 const char * 4169 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4171 SDLoc sdl = getCurSDLoc(); 4172 DebugLoc dl = getCurDebugLoc(); 4173 SDValue Res; 4174 4175 switch (Intrinsic) { 4176 default: 4177 // By default, turn this into a target intrinsic node. 4178 visitTargetIntrinsic(I, Intrinsic); 4179 return nullptr; 4180 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4181 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4182 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4183 case Intrinsic::returnaddress: 4184 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4185 TLI.getPointerTy(DAG.getDataLayout()), 4186 getValue(I.getArgOperand(0)))); 4187 return nullptr; 4188 case Intrinsic::frameaddress: 4189 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4190 TLI.getPointerTy(DAG.getDataLayout()), 4191 getValue(I.getArgOperand(0)))); 4192 return nullptr; 4193 case Intrinsic::read_register: { 4194 Value *Reg = I.getArgOperand(0); 4195 SDValue Chain = getRoot(); 4196 SDValue RegName = 4197 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4198 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4199 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4200 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4201 setValue(&I, Res); 4202 DAG.setRoot(Res.getValue(1)); 4203 return nullptr; 4204 } 4205 case Intrinsic::write_register: { 4206 Value *Reg = I.getArgOperand(0); 4207 Value *RegValue = I.getArgOperand(1); 4208 SDValue Chain = getRoot(); 4209 SDValue RegName = 4210 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4211 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4212 RegName, getValue(RegValue))); 4213 return nullptr; 4214 } 4215 case Intrinsic::setjmp: 4216 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4217 case Intrinsic::longjmp: 4218 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4219 case Intrinsic::memcpy: { 4220 // FIXME: this definition of "user defined address space" is x86-specific 4221 // Assert for address < 256 since we support only user defined address 4222 // spaces. 4223 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4224 < 256 && 4225 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4226 < 256 && 4227 "Unknown address space"); 4228 SDValue Op1 = getValue(I.getArgOperand(0)); 4229 SDValue Op2 = getValue(I.getArgOperand(1)); 4230 SDValue Op3 = getValue(I.getArgOperand(2)); 4231 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4232 if (!Align) 4233 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4234 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4235 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4236 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4237 false, isTC, 4238 MachinePointerInfo(I.getArgOperand(0)), 4239 MachinePointerInfo(I.getArgOperand(1))); 4240 updateDAGForMaybeTailCall(MC); 4241 return nullptr; 4242 } 4243 case Intrinsic::memset: { 4244 // FIXME: this definition of "user defined address space" is x86-specific 4245 // Assert for address < 256 since we support only user defined address 4246 // spaces. 4247 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4248 < 256 && 4249 "Unknown address space"); 4250 SDValue Op1 = getValue(I.getArgOperand(0)); 4251 SDValue Op2 = getValue(I.getArgOperand(1)); 4252 SDValue Op3 = getValue(I.getArgOperand(2)); 4253 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4254 if (!Align) 4255 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4256 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4257 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4258 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4259 isTC, MachinePointerInfo(I.getArgOperand(0))); 4260 updateDAGForMaybeTailCall(MS); 4261 return nullptr; 4262 } 4263 case Intrinsic::memmove: { 4264 // FIXME: this definition of "user defined address space" is x86-specific 4265 // Assert for address < 256 since we support only user defined address 4266 // spaces. 4267 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4268 < 256 && 4269 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4270 < 256 && 4271 "Unknown address space"); 4272 SDValue Op1 = getValue(I.getArgOperand(0)); 4273 SDValue Op2 = getValue(I.getArgOperand(1)); 4274 SDValue Op3 = getValue(I.getArgOperand(2)); 4275 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4276 if (!Align) 4277 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4278 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4279 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4280 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4281 isTC, MachinePointerInfo(I.getArgOperand(0)), 4282 MachinePointerInfo(I.getArgOperand(1))); 4283 updateDAGForMaybeTailCall(MM); 4284 return nullptr; 4285 } 4286 case Intrinsic::dbg_declare: { 4287 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4288 DILocalVariable *Variable = DI.getVariable(); 4289 DIExpression *Expression = DI.getExpression(); 4290 const Value *Address = DI.getAddress(); 4291 assert(Variable && "Missing variable"); 4292 if (!Address) { 4293 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4294 return nullptr; 4295 } 4296 4297 // Check if address has undef value. 4298 if (isa<UndefValue>(Address) || 4299 (Address->use_empty() && !isa<Argument>(Address))) { 4300 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4301 return nullptr; 4302 } 4303 4304 SDValue &N = NodeMap[Address]; 4305 if (!N.getNode() && isa<Argument>(Address)) 4306 // Check unused arguments map. 4307 N = UnusedArgNodeMap[Address]; 4308 SDDbgValue *SDV; 4309 if (N.getNode()) { 4310 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4311 Address = BCI->getOperand(0); 4312 // Parameters are handled specially. 4313 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4314 4315 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4316 4317 if (isParameter && !AI) { 4318 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4319 if (FINode) 4320 // Byval parameter. We have a frame index at this point. 4321 SDV = DAG.getFrameIndexDbgValue( 4322 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4323 else { 4324 // Address is an argument, so try to emit its dbg value using 4325 // virtual register info from the FuncInfo.ValueMap. 4326 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4327 N); 4328 return nullptr; 4329 } 4330 } else if (AI) 4331 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4332 true, 0, dl, SDNodeOrder); 4333 else { 4334 // Can't do anything with other non-AI cases yet. 4335 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4336 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4337 DEBUG(Address->dump()); 4338 return nullptr; 4339 } 4340 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4341 } else { 4342 // If Address is an argument then try to emit its dbg value using 4343 // virtual register info from the FuncInfo.ValueMap. 4344 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4345 N)) { 4346 // If variable is pinned by a alloca in dominating bb then 4347 // use StaticAllocaMap. 4348 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4349 if (AI->getParent() != DI.getParent()) { 4350 DenseMap<const AllocaInst*, int>::iterator SI = 4351 FuncInfo.StaticAllocaMap.find(AI); 4352 if (SI != FuncInfo.StaticAllocaMap.end()) { 4353 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4354 0, dl, SDNodeOrder); 4355 DAG.AddDbgValue(SDV, nullptr, false); 4356 return nullptr; 4357 } 4358 } 4359 } 4360 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4361 } 4362 } 4363 return nullptr; 4364 } 4365 case Intrinsic::dbg_value: { 4366 const DbgValueInst &DI = cast<DbgValueInst>(I); 4367 assert(DI.getVariable() && "Missing variable"); 4368 4369 DILocalVariable *Variable = DI.getVariable(); 4370 DIExpression *Expression = DI.getExpression(); 4371 uint64_t Offset = DI.getOffset(); 4372 const Value *V = DI.getValue(); 4373 if (!V) 4374 return nullptr; 4375 4376 SDDbgValue *SDV; 4377 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4378 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4379 SDNodeOrder); 4380 DAG.AddDbgValue(SDV, nullptr, false); 4381 } else { 4382 // Do not use getValue() in here; we don't want to generate code at 4383 // this point if it hasn't been done yet. 4384 SDValue N = NodeMap[V]; 4385 if (!N.getNode() && isa<Argument>(V)) 4386 // Check unused arguments map. 4387 N = UnusedArgNodeMap[V]; 4388 if (N.getNode()) { 4389 // A dbg.value for an alloca is always indirect. 4390 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4391 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4392 IsIndirect, N)) { 4393 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4394 IsIndirect, Offset, dl, SDNodeOrder); 4395 DAG.AddDbgValue(SDV, N.getNode(), false); 4396 } 4397 } else if (!V->use_empty() ) { 4398 // Do not call getValue(V) yet, as we don't want to generate code. 4399 // Remember it for later. 4400 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4401 DanglingDebugInfoMap[V] = DDI; 4402 } else { 4403 // We may expand this to cover more cases. One case where we have no 4404 // data available is an unreferenced parameter. 4405 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4406 } 4407 } 4408 4409 // Build a debug info table entry. 4410 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4411 V = BCI->getOperand(0); 4412 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4413 // Don't handle byval struct arguments or VLAs, for example. 4414 if (!AI) { 4415 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4416 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4417 return nullptr; 4418 } 4419 DenseMap<const AllocaInst*, int>::iterator SI = 4420 FuncInfo.StaticAllocaMap.find(AI); 4421 if (SI == FuncInfo.StaticAllocaMap.end()) 4422 return nullptr; // VLAs. 4423 return nullptr; 4424 } 4425 4426 case Intrinsic::eh_typeid_for: { 4427 // Find the type id for the given typeinfo. 4428 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4429 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4430 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4431 setValue(&I, Res); 4432 return nullptr; 4433 } 4434 4435 case Intrinsic::eh_return_i32: 4436 case Intrinsic::eh_return_i64: 4437 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4438 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4439 MVT::Other, 4440 getControlRoot(), 4441 getValue(I.getArgOperand(0)), 4442 getValue(I.getArgOperand(1)))); 4443 return nullptr; 4444 case Intrinsic::eh_unwind_init: 4445 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4446 return nullptr; 4447 case Intrinsic::eh_dwarf_cfa: { 4448 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4449 TLI.getPointerTy(DAG.getDataLayout())); 4450 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4451 CfaArg.getValueType(), 4452 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4453 CfaArg.getValueType()), 4454 CfaArg); 4455 SDValue FA = DAG.getNode( 4456 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4457 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4458 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4459 FA, Offset)); 4460 return nullptr; 4461 } 4462 case Intrinsic::eh_sjlj_callsite: { 4463 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4464 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4465 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4466 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4467 4468 MMI.setCurrentCallSite(CI->getZExtValue()); 4469 return nullptr; 4470 } 4471 case Intrinsic::eh_sjlj_functioncontext: { 4472 // Get and store the index of the function context. 4473 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4474 AllocaInst *FnCtx = 4475 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4476 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4477 MFI->setFunctionContextIndex(FI); 4478 return nullptr; 4479 } 4480 case Intrinsic::eh_sjlj_setjmp: { 4481 SDValue Ops[2]; 4482 Ops[0] = getRoot(); 4483 Ops[1] = getValue(I.getArgOperand(0)); 4484 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4485 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4486 setValue(&I, Op.getValue(0)); 4487 DAG.setRoot(Op.getValue(1)); 4488 return nullptr; 4489 } 4490 case Intrinsic::eh_sjlj_longjmp: { 4491 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4492 getRoot(), getValue(I.getArgOperand(0)))); 4493 return nullptr; 4494 } 4495 case Intrinsic::eh_sjlj_setup_dispatch: { 4496 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4497 getRoot())); 4498 return nullptr; 4499 } 4500 4501 case Intrinsic::masked_gather: 4502 visitMaskedGather(I); 4503 return nullptr; 4504 case Intrinsic::masked_load: 4505 visitMaskedLoad(I); 4506 return nullptr; 4507 case Intrinsic::masked_scatter: 4508 visitMaskedScatter(I); 4509 return nullptr; 4510 case Intrinsic::masked_store: 4511 visitMaskedStore(I); 4512 return nullptr; 4513 case Intrinsic::x86_mmx_pslli_w: 4514 case Intrinsic::x86_mmx_pslli_d: 4515 case Intrinsic::x86_mmx_pslli_q: 4516 case Intrinsic::x86_mmx_psrli_w: 4517 case Intrinsic::x86_mmx_psrli_d: 4518 case Intrinsic::x86_mmx_psrli_q: 4519 case Intrinsic::x86_mmx_psrai_w: 4520 case Intrinsic::x86_mmx_psrai_d: { 4521 SDValue ShAmt = getValue(I.getArgOperand(1)); 4522 if (isa<ConstantSDNode>(ShAmt)) { 4523 visitTargetIntrinsic(I, Intrinsic); 4524 return nullptr; 4525 } 4526 unsigned NewIntrinsic = 0; 4527 EVT ShAmtVT = MVT::v2i32; 4528 switch (Intrinsic) { 4529 case Intrinsic::x86_mmx_pslli_w: 4530 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4531 break; 4532 case Intrinsic::x86_mmx_pslli_d: 4533 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4534 break; 4535 case Intrinsic::x86_mmx_pslli_q: 4536 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4537 break; 4538 case Intrinsic::x86_mmx_psrli_w: 4539 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4540 break; 4541 case Intrinsic::x86_mmx_psrli_d: 4542 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4543 break; 4544 case Intrinsic::x86_mmx_psrli_q: 4545 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4546 break; 4547 case Intrinsic::x86_mmx_psrai_w: 4548 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4549 break; 4550 case Intrinsic::x86_mmx_psrai_d: 4551 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4552 break; 4553 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4554 } 4555 4556 // The vector shift intrinsics with scalars uses 32b shift amounts but 4557 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4558 // to be zero. 4559 // We must do this early because v2i32 is not a legal type. 4560 SDValue ShOps[2]; 4561 ShOps[0] = ShAmt; 4562 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4563 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4564 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4565 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4566 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4567 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4568 getValue(I.getArgOperand(0)), ShAmt); 4569 setValue(&I, Res); 4570 return nullptr; 4571 } 4572 case Intrinsic::convertff: 4573 case Intrinsic::convertfsi: 4574 case Intrinsic::convertfui: 4575 case Intrinsic::convertsif: 4576 case Intrinsic::convertuif: 4577 case Intrinsic::convertss: 4578 case Intrinsic::convertsu: 4579 case Intrinsic::convertus: 4580 case Intrinsic::convertuu: { 4581 ISD::CvtCode Code = ISD::CVT_INVALID; 4582 switch (Intrinsic) { 4583 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4584 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4585 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4586 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4587 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4588 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4589 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4590 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4591 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4592 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4593 } 4594 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4595 const Value *Op1 = I.getArgOperand(0); 4596 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4597 DAG.getValueType(DestVT), 4598 DAG.getValueType(getValue(Op1).getValueType()), 4599 getValue(I.getArgOperand(1)), 4600 getValue(I.getArgOperand(2)), 4601 Code); 4602 setValue(&I, Res); 4603 return nullptr; 4604 } 4605 case Intrinsic::powi: 4606 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4607 getValue(I.getArgOperand(1)), DAG)); 4608 return nullptr; 4609 case Intrinsic::log: 4610 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4611 return nullptr; 4612 case Intrinsic::log2: 4613 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4614 return nullptr; 4615 case Intrinsic::log10: 4616 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4617 return nullptr; 4618 case Intrinsic::exp: 4619 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4620 return nullptr; 4621 case Intrinsic::exp2: 4622 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4623 return nullptr; 4624 case Intrinsic::pow: 4625 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4626 getValue(I.getArgOperand(1)), DAG, TLI)); 4627 return nullptr; 4628 case Intrinsic::sqrt: 4629 case Intrinsic::fabs: 4630 case Intrinsic::sin: 4631 case Intrinsic::cos: 4632 case Intrinsic::floor: 4633 case Intrinsic::ceil: 4634 case Intrinsic::trunc: 4635 case Intrinsic::rint: 4636 case Intrinsic::nearbyint: 4637 case Intrinsic::round: { 4638 unsigned Opcode; 4639 switch (Intrinsic) { 4640 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4641 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4642 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4643 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4644 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4645 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4646 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4647 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4648 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4649 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4650 case Intrinsic::round: Opcode = ISD::FROUND; break; 4651 } 4652 4653 setValue(&I, DAG.getNode(Opcode, sdl, 4654 getValue(I.getArgOperand(0)).getValueType(), 4655 getValue(I.getArgOperand(0)))); 4656 return nullptr; 4657 } 4658 case Intrinsic::minnum: 4659 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4660 getValue(I.getArgOperand(0)).getValueType(), 4661 getValue(I.getArgOperand(0)), 4662 getValue(I.getArgOperand(1)))); 4663 return nullptr; 4664 case Intrinsic::maxnum: 4665 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4666 getValue(I.getArgOperand(0)).getValueType(), 4667 getValue(I.getArgOperand(0)), 4668 getValue(I.getArgOperand(1)))); 4669 return nullptr; 4670 case Intrinsic::copysign: 4671 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4672 getValue(I.getArgOperand(0)).getValueType(), 4673 getValue(I.getArgOperand(0)), 4674 getValue(I.getArgOperand(1)))); 4675 return nullptr; 4676 case Intrinsic::fma: 4677 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4678 getValue(I.getArgOperand(0)).getValueType(), 4679 getValue(I.getArgOperand(0)), 4680 getValue(I.getArgOperand(1)), 4681 getValue(I.getArgOperand(2)))); 4682 return nullptr; 4683 case Intrinsic::fmuladd: { 4684 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4685 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4686 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4687 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4688 getValue(I.getArgOperand(0)).getValueType(), 4689 getValue(I.getArgOperand(0)), 4690 getValue(I.getArgOperand(1)), 4691 getValue(I.getArgOperand(2)))); 4692 } else { 4693 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4694 getValue(I.getArgOperand(0)).getValueType(), 4695 getValue(I.getArgOperand(0)), 4696 getValue(I.getArgOperand(1))); 4697 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4698 getValue(I.getArgOperand(0)).getValueType(), 4699 Mul, 4700 getValue(I.getArgOperand(2))); 4701 setValue(&I, Add); 4702 } 4703 return nullptr; 4704 } 4705 case Intrinsic::convert_to_fp16: 4706 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4707 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4708 getValue(I.getArgOperand(0)), 4709 DAG.getTargetConstant(0, sdl, 4710 MVT::i32)))); 4711 return nullptr; 4712 case Intrinsic::convert_from_fp16: 4713 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4714 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4715 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4716 getValue(I.getArgOperand(0))))); 4717 return nullptr; 4718 case Intrinsic::pcmarker: { 4719 SDValue Tmp = getValue(I.getArgOperand(0)); 4720 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4721 return nullptr; 4722 } 4723 case Intrinsic::readcyclecounter: { 4724 SDValue Op = getRoot(); 4725 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4726 DAG.getVTList(MVT::i64, MVT::Other), Op); 4727 setValue(&I, Res); 4728 DAG.setRoot(Res.getValue(1)); 4729 return nullptr; 4730 } 4731 case Intrinsic::bswap: 4732 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4733 getValue(I.getArgOperand(0)).getValueType(), 4734 getValue(I.getArgOperand(0)))); 4735 return nullptr; 4736 case Intrinsic::uabsdiff: 4737 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4738 getValue(I.getArgOperand(0)).getValueType(), 4739 getValue(I.getArgOperand(0)), 4740 getValue(I.getArgOperand(1)))); 4741 return nullptr; 4742 case Intrinsic::sabsdiff: 4743 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4744 getValue(I.getArgOperand(0)).getValueType(), 4745 getValue(I.getArgOperand(0)), 4746 getValue(I.getArgOperand(1)))); 4747 return nullptr; 4748 case Intrinsic::cttz: { 4749 SDValue Arg = getValue(I.getArgOperand(0)); 4750 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4751 EVT Ty = Arg.getValueType(); 4752 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4753 sdl, Ty, Arg)); 4754 return nullptr; 4755 } 4756 case Intrinsic::ctlz: { 4757 SDValue Arg = getValue(I.getArgOperand(0)); 4758 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4759 EVT Ty = Arg.getValueType(); 4760 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4761 sdl, Ty, Arg)); 4762 return nullptr; 4763 } 4764 case Intrinsic::ctpop: { 4765 SDValue Arg = getValue(I.getArgOperand(0)); 4766 EVT Ty = Arg.getValueType(); 4767 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4768 return nullptr; 4769 } 4770 case Intrinsic::stacksave: { 4771 SDValue Op = getRoot(); 4772 Res = DAG.getNode( 4773 ISD::STACKSAVE, sdl, 4774 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4775 setValue(&I, Res); 4776 DAG.setRoot(Res.getValue(1)); 4777 return nullptr; 4778 } 4779 case Intrinsic::stackrestore: { 4780 Res = getValue(I.getArgOperand(0)); 4781 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4782 return nullptr; 4783 } 4784 case Intrinsic::stackprotector: { 4785 // Emit code into the DAG to store the stack guard onto the stack. 4786 MachineFunction &MF = DAG.getMachineFunction(); 4787 MachineFrameInfo *MFI = MF.getFrameInfo(); 4788 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4789 SDValue Src, Chain = getRoot(); 4790 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4791 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4792 4793 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4794 // global variable __stack_chk_guard. 4795 if (!GV) 4796 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4797 if (BC->getOpcode() == Instruction::BitCast) 4798 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4799 4800 if (GV && TLI.useLoadStackGuardNode()) { 4801 // Emit a LOAD_STACK_GUARD node. 4802 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4803 sdl, PtrTy, Chain); 4804 MachinePointerInfo MPInfo(GV); 4805 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4806 unsigned Flags = MachineMemOperand::MOLoad | 4807 MachineMemOperand::MOInvariant; 4808 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4809 PtrTy.getSizeInBits() / 8, 4810 DAG.getEVTAlignment(PtrTy)); 4811 Node->setMemRefs(MemRefs, MemRefs + 1); 4812 4813 // Copy the guard value to a virtual register so that it can be 4814 // retrieved in the epilogue. 4815 Src = SDValue(Node, 0); 4816 const TargetRegisterClass *RC = 4817 TLI.getRegClassFor(Src.getSimpleValueType()); 4818 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4819 4820 SPDescriptor.setGuardReg(Reg); 4821 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4822 } else { 4823 Src = getValue(I.getArgOperand(0)); // The guard's value. 4824 } 4825 4826 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4827 4828 int FI = FuncInfo.StaticAllocaMap[Slot]; 4829 MFI->setStackProtectorIndex(FI); 4830 4831 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4832 4833 // Store the stack protector onto the stack. 4834 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4835 DAG.getMachineFunction(), FI), 4836 true, false, 0); 4837 setValue(&I, Res); 4838 DAG.setRoot(Res); 4839 return nullptr; 4840 } 4841 case Intrinsic::objectsize: { 4842 // If we don't know by now, we're never going to know. 4843 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4844 4845 assert(CI && "Non-constant type in __builtin_object_size?"); 4846 4847 SDValue Arg = getValue(I.getCalledValue()); 4848 EVT Ty = Arg.getValueType(); 4849 4850 if (CI->isZero()) 4851 Res = DAG.getConstant(-1ULL, sdl, Ty); 4852 else 4853 Res = DAG.getConstant(0, sdl, Ty); 4854 4855 setValue(&I, Res); 4856 return nullptr; 4857 } 4858 case Intrinsic::annotation: 4859 case Intrinsic::ptr_annotation: 4860 // Drop the intrinsic, but forward the value 4861 setValue(&I, getValue(I.getOperand(0))); 4862 return nullptr; 4863 case Intrinsic::assume: 4864 case Intrinsic::var_annotation: 4865 // Discard annotate attributes and assumptions 4866 return nullptr; 4867 4868 case Intrinsic::init_trampoline: { 4869 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4870 4871 SDValue Ops[6]; 4872 Ops[0] = getRoot(); 4873 Ops[1] = getValue(I.getArgOperand(0)); 4874 Ops[2] = getValue(I.getArgOperand(1)); 4875 Ops[3] = getValue(I.getArgOperand(2)); 4876 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4877 Ops[5] = DAG.getSrcValue(F); 4878 4879 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4880 4881 DAG.setRoot(Res); 4882 return nullptr; 4883 } 4884 case Intrinsic::adjust_trampoline: { 4885 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4886 TLI.getPointerTy(DAG.getDataLayout()), 4887 getValue(I.getArgOperand(0)))); 4888 return nullptr; 4889 } 4890 case Intrinsic::gcroot: 4891 if (GFI) { 4892 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4893 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4894 4895 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4896 GFI->addStackRoot(FI->getIndex(), TypeMap); 4897 } 4898 return nullptr; 4899 case Intrinsic::gcread: 4900 case Intrinsic::gcwrite: 4901 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4902 case Intrinsic::flt_rounds: 4903 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4904 return nullptr; 4905 4906 case Intrinsic::expect: { 4907 // Just replace __builtin_expect(exp, c) with EXP. 4908 setValue(&I, getValue(I.getArgOperand(0))); 4909 return nullptr; 4910 } 4911 4912 case Intrinsic::debugtrap: 4913 case Intrinsic::trap: { 4914 StringRef TrapFuncName = 4915 I.getAttributes() 4916 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4917 .getValueAsString(); 4918 if (TrapFuncName.empty()) { 4919 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4920 ISD::TRAP : ISD::DEBUGTRAP; 4921 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4922 return nullptr; 4923 } 4924 TargetLowering::ArgListTy Args; 4925 4926 TargetLowering::CallLoweringInfo CLI(DAG); 4927 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4928 CallingConv::C, I.getType(), 4929 DAG.getExternalSymbol(TrapFuncName.data(), 4930 TLI.getPointerTy(DAG.getDataLayout())), 4931 std::move(Args), 0); 4932 4933 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4934 DAG.setRoot(Result.second); 4935 return nullptr; 4936 } 4937 4938 case Intrinsic::uadd_with_overflow: 4939 case Intrinsic::sadd_with_overflow: 4940 case Intrinsic::usub_with_overflow: 4941 case Intrinsic::ssub_with_overflow: 4942 case Intrinsic::umul_with_overflow: 4943 case Intrinsic::smul_with_overflow: { 4944 ISD::NodeType Op; 4945 switch (Intrinsic) { 4946 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4947 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4948 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4949 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4950 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4951 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4952 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4953 } 4954 SDValue Op1 = getValue(I.getArgOperand(0)); 4955 SDValue Op2 = getValue(I.getArgOperand(1)); 4956 4957 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4958 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4959 return nullptr; 4960 } 4961 case Intrinsic::prefetch: { 4962 SDValue Ops[5]; 4963 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4964 Ops[0] = getRoot(); 4965 Ops[1] = getValue(I.getArgOperand(0)); 4966 Ops[2] = getValue(I.getArgOperand(1)); 4967 Ops[3] = getValue(I.getArgOperand(2)); 4968 Ops[4] = getValue(I.getArgOperand(3)); 4969 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4970 DAG.getVTList(MVT::Other), Ops, 4971 EVT::getIntegerVT(*Context, 8), 4972 MachinePointerInfo(I.getArgOperand(0)), 4973 0, /* align */ 4974 false, /* volatile */ 4975 rw==0, /* read */ 4976 rw==1)); /* write */ 4977 return nullptr; 4978 } 4979 case Intrinsic::lifetime_start: 4980 case Intrinsic::lifetime_end: { 4981 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4982 // Stack coloring is not enabled in O0, discard region information. 4983 if (TM.getOptLevel() == CodeGenOpt::None) 4984 return nullptr; 4985 4986 SmallVector<Value *, 4> Allocas; 4987 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4988 4989 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4990 E = Allocas.end(); Object != E; ++Object) { 4991 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4992 4993 // Could not find an Alloca. 4994 if (!LifetimeObject) 4995 continue; 4996 4997 // First check that the Alloca is static, otherwise it won't have a 4998 // valid frame index. 4999 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5000 if (SI == FuncInfo.StaticAllocaMap.end()) 5001 return nullptr; 5002 5003 int FI = SI->second; 5004 5005 SDValue Ops[2]; 5006 Ops[0] = getRoot(); 5007 Ops[1] = 5008 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5009 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5010 5011 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5012 DAG.setRoot(Res); 5013 } 5014 return nullptr; 5015 } 5016 case Intrinsic::invariant_start: 5017 // Discard region information. 5018 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5019 return nullptr; 5020 case Intrinsic::invariant_end: 5021 // Discard region information. 5022 return nullptr; 5023 case Intrinsic::stackprotectorcheck: { 5024 // Do not actually emit anything for this basic block. Instead we initialize 5025 // the stack protector descriptor and export the guard variable so we can 5026 // access it in FinishBasicBlock. 5027 const BasicBlock *BB = I.getParent(); 5028 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5029 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5030 5031 // Flush our exports since we are going to process a terminator. 5032 (void)getControlRoot(); 5033 return nullptr; 5034 } 5035 case Intrinsic::clear_cache: 5036 return TLI.getClearCacheBuiltinName(); 5037 case Intrinsic::eh_actions: 5038 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5039 return nullptr; 5040 case Intrinsic::donothing: 5041 // ignore 5042 return nullptr; 5043 case Intrinsic::experimental_stackmap: { 5044 visitStackmap(I); 5045 return nullptr; 5046 } 5047 case Intrinsic::experimental_patchpoint_void: 5048 case Intrinsic::experimental_patchpoint_i64: { 5049 visitPatchpoint(&I); 5050 return nullptr; 5051 } 5052 case Intrinsic::experimental_gc_statepoint: { 5053 visitStatepoint(I); 5054 return nullptr; 5055 } 5056 case Intrinsic::experimental_gc_result_int: 5057 case Intrinsic::experimental_gc_result_float: 5058 case Intrinsic::experimental_gc_result_ptr: 5059 case Intrinsic::experimental_gc_result: { 5060 visitGCResult(I); 5061 return nullptr; 5062 } 5063 case Intrinsic::experimental_gc_relocate: { 5064 visitGCRelocate(I); 5065 return nullptr; 5066 } 5067 case Intrinsic::instrprof_increment: 5068 llvm_unreachable("instrprof failed to lower an increment"); 5069 5070 case Intrinsic::localescape: { 5071 MachineFunction &MF = DAG.getMachineFunction(); 5072 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5073 5074 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5075 // is the same on all targets. 5076 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5077 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5078 if (isa<ConstantPointerNull>(Arg)) 5079 continue; // Skip null pointers. They represent a hole in index space. 5080 AllocaInst *Slot = cast<AllocaInst>(Arg); 5081 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5082 "can only escape static allocas"); 5083 int FI = FuncInfo.StaticAllocaMap[Slot]; 5084 MCSymbol *FrameAllocSym = 5085 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5086 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5087 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5088 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5089 .addSym(FrameAllocSym) 5090 .addFrameIndex(FI); 5091 } 5092 5093 return nullptr; 5094 } 5095 5096 case Intrinsic::localrecover: { 5097 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5098 MachineFunction &MF = DAG.getMachineFunction(); 5099 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5100 5101 // Get the symbol that defines the frame offset. 5102 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5103 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5104 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5105 MCSymbol *FrameAllocSym = 5106 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5107 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5108 5109 // Create a MCSymbol for the label to avoid any target lowering 5110 // that would make this PC relative. 5111 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5112 SDValue OffsetVal = 5113 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5114 5115 // Add the offset to the FP. 5116 Value *FP = I.getArgOperand(1); 5117 SDValue FPVal = getValue(FP); 5118 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5119 setValue(&I, Add); 5120 5121 return nullptr; 5122 } 5123 case Intrinsic::eh_begincatch: 5124 case Intrinsic::eh_endcatch: 5125 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5126 case Intrinsic::eh_exceptioncode: { 5127 unsigned Reg = TLI.getExceptionPointerRegister(); 5128 assert(Reg && "cannot get exception code on this platform"); 5129 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5130 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5131 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5132 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5133 SDValue N = 5134 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5135 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5136 setValue(&I, N); 5137 return nullptr; 5138 } 5139 } 5140 } 5141 5142 std::pair<SDValue, SDValue> 5143 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5144 MachineBasicBlock *LandingPad) { 5145 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5146 MCSymbol *BeginLabel = nullptr; 5147 5148 if (LandingPad) { 5149 // Insert a label before the invoke call to mark the try range. This can be 5150 // used to detect deletion of the invoke via the MachineModuleInfo. 5151 BeginLabel = MMI.getContext().createTempSymbol(); 5152 5153 // For SjLj, keep track of which landing pads go with which invokes 5154 // so as to maintain the ordering of pads in the LSDA. 5155 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5156 if (CallSiteIndex) { 5157 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5158 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5159 5160 // Now that the call site is handled, stop tracking it. 5161 MMI.setCurrentCallSite(0); 5162 } 5163 5164 // Both PendingLoads and PendingExports must be flushed here; 5165 // this call might not return. 5166 (void)getRoot(); 5167 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5168 5169 CLI.setChain(getRoot()); 5170 } 5171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5172 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5173 5174 assert((CLI.IsTailCall || Result.second.getNode()) && 5175 "Non-null chain expected with non-tail call!"); 5176 assert((Result.second.getNode() || !Result.first.getNode()) && 5177 "Null value expected with tail call!"); 5178 5179 if (!Result.second.getNode()) { 5180 // As a special case, a null chain means that a tail call has been emitted 5181 // and the DAG root is already updated. 5182 HasTailCall = true; 5183 5184 // Since there's no actual continuation from this block, nothing can be 5185 // relying on us setting vregs for them. 5186 PendingExports.clear(); 5187 } else { 5188 DAG.setRoot(Result.second); 5189 } 5190 5191 if (LandingPad) { 5192 // Insert a label at the end of the invoke call to mark the try range. This 5193 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5194 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5195 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5196 5197 // Inform MachineModuleInfo of range. 5198 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5199 } 5200 5201 return Result; 5202 } 5203 5204 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5205 bool isTailCall, 5206 MachineBasicBlock *LandingPad) { 5207 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5208 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5209 Type *RetTy = FTy->getReturnType(); 5210 5211 TargetLowering::ArgListTy Args; 5212 TargetLowering::ArgListEntry Entry; 5213 Args.reserve(CS.arg_size()); 5214 5215 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5216 i != e; ++i) { 5217 const Value *V = *i; 5218 5219 // Skip empty types 5220 if (V->getType()->isEmptyTy()) 5221 continue; 5222 5223 SDValue ArgNode = getValue(V); 5224 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5225 5226 // Skip the first return-type Attribute to get to params. 5227 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5228 Args.push_back(Entry); 5229 5230 // If we have an explicit sret argument that is an Instruction, (i.e., it 5231 // might point to function-local memory), we can't meaningfully tail-call. 5232 if (Entry.isSRet && isa<Instruction>(V)) 5233 isTailCall = false; 5234 } 5235 5236 // Check if target-independent constraints permit a tail call here. 5237 // Target-dependent constraints are checked within TLI->LowerCallTo. 5238 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5239 isTailCall = false; 5240 5241 TargetLowering::CallLoweringInfo CLI(DAG); 5242 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5243 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5244 .setTailCall(isTailCall); 5245 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5246 5247 if (Result.first.getNode()) 5248 setValue(CS.getInstruction(), Result.first); 5249 } 5250 5251 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5252 /// value is equal or not-equal to zero. 5253 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5254 for (const User *U : V->users()) { 5255 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5256 if (IC->isEquality()) 5257 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5258 if (C->isNullValue()) 5259 continue; 5260 // Unknown instruction. 5261 return false; 5262 } 5263 return true; 5264 } 5265 5266 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5267 Type *LoadTy, 5268 SelectionDAGBuilder &Builder) { 5269 5270 // Check to see if this load can be trivially constant folded, e.g. if the 5271 // input is from a string literal. 5272 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5273 // Cast pointer to the type we really want to load. 5274 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5275 PointerType::getUnqual(LoadTy)); 5276 5277 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5278 const_cast<Constant *>(LoadInput), *Builder.DL)) 5279 return Builder.getValue(LoadCst); 5280 } 5281 5282 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5283 // still constant memory, the input chain can be the entry node. 5284 SDValue Root; 5285 bool ConstantMemory = false; 5286 5287 // Do not serialize (non-volatile) loads of constant memory with anything. 5288 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5289 Root = Builder.DAG.getEntryNode(); 5290 ConstantMemory = true; 5291 } else { 5292 // Do not serialize non-volatile loads against each other. 5293 Root = Builder.DAG.getRoot(); 5294 } 5295 5296 SDValue Ptr = Builder.getValue(PtrVal); 5297 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5298 Ptr, MachinePointerInfo(PtrVal), 5299 false /*volatile*/, 5300 false /*nontemporal*/, 5301 false /*isinvariant*/, 1 /* align=1 */); 5302 5303 if (!ConstantMemory) 5304 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5305 return LoadVal; 5306 } 5307 5308 /// processIntegerCallValue - Record the value for an instruction that 5309 /// produces an integer result, converting the type where necessary. 5310 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5311 SDValue Value, 5312 bool IsSigned) { 5313 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5314 I.getType(), true); 5315 if (IsSigned) 5316 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5317 else 5318 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5319 setValue(&I, Value); 5320 } 5321 5322 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5323 /// If so, return true and lower it, otherwise return false and it will be 5324 /// lowered like a normal call. 5325 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5326 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5327 if (I.getNumArgOperands() != 3) 5328 return false; 5329 5330 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5331 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5332 !I.getArgOperand(2)->getType()->isIntegerTy() || 5333 !I.getType()->isIntegerTy()) 5334 return false; 5335 5336 const Value *Size = I.getArgOperand(2); 5337 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5338 if (CSize && CSize->getZExtValue() == 0) { 5339 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5340 I.getType(), true); 5341 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5342 return true; 5343 } 5344 5345 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5346 std::pair<SDValue, SDValue> Res = 5347 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5348 getValue(LHS), getValue(RHS), getValue(Size), 5349 MachinePointerInfo(LHS), 5350 MachinePointerInfo(RHS)); 5351 if (Res.first.getNode()) { 5352 processIntegerCallValue(I, Res.first, true); 5353 PendingLoads.push_back(Res.second); 5354 return true; 5355 } 5356 5357 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5358 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5359 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5360 bool ActuallyDoIt = true; 5361 MVT LoadVT; 5362 Type *LoadTy; 5363 switch (CSize->getZExtValue()) { 5364 default: 5365 LoadVT = MVT::Other; 5366 LoadTy = nullptr; 5367 ActuallyDoIt = false; 5368 break; 5369 case 2: 5370 LoadVT = MVT::i16; 5371 LoadTy = Type::getInt16Ty(CSize->getContext()); 5372 break; 5373 case 4: 5374 LoadVT = MVT::i32; 5375 LoadTy = Type::getInt32Ty(CSize->getContext()); 5376 break; 5377 case 8: 5378 LoadVT = MVT::i64; 5379 LoadTy = Type::getInt64Ty(CSize->getContext()); 5380 break; 5381 /* 5382 case 16: 5383 LoadVT = MVT::v4i32; 5384 LoadTy = Type::getInt32Ty(CSize->getContext()); 5385 LoadTy = VectorType::get(LoadTy, 4); 5386 break; 5387 */ 5388 } 5389 5390 // This turns into unaligned loads. We only do this if the target natively 5391 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5392 // we'll only produce a small number of byte loads. 5393 5394 // Require that we can find a legal MVT, and only do this if the target 5395 // supports unaligned loads of that type. Expanding into byte loads would 5396 // bloat the code. 5397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5398 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5399 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5400 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5401 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5402 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5403 // TODO: Check alignment of src and dest ptrs. 5404 if (!TLI.isTypeLegal(LoadVT) || 5405 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5406 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5407 ActuallyDoIt = false; 5408 } 5409 5410 if (ActuallyDoIt) { 5411 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5412 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5413 5414 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5415 ISD::SETNE); 5416 processIntegerCallValue(I, Res, false); 5417 return true; 5418 } 5419 } 5420 5421 5422 return false; 5423 } 5424 5425 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5426 /// form. If so, return true and lower it, otherwise return false and it 5427 /// will be lowered like a normal call. 5428 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5429 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5430 if (I.getNumArgOperands() != 3) 5431 return false; 5432 5433 const Value *Src = I.getArgOperand(0); 5434 const Value *Char = I.getArgOperand(1); 5435 const Value *Length = I.getArgOperand(2); 5436 if (!Src->getType()->isPointerTy() || 5437 !Char->getType()->isIntegerTy() || 5438 !Length->getType()->isIntegerTy() || 5439 !I.getType()->isPointerTy()) 5440 return false; 5441 5442 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5443 std::pair<SDValue, SDValue> Res = 5444 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5445 getValue(Src), getValue(Char), getValue(Length), 5446 MachinePointerInfo(Src)); 5447 if (Res.first.getNode()) { 5448 setValue(&I, Res.first); 5449 PendingLoads.push_back(Res.second); 5450 return true; 5451 } 5452 5453 return false; 5454 } 5455 5456 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5457 /// optimized form. If so, return true and lower it, otherwise return false 5458 /// and it will be lowered like a normal call. 5459 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5460 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5461 if (I.getNumArgOperands() != 2) 5462 return false; 5463 5464 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5465 if (!Arg0->getType()->isPointerTy() || 5466 !Arg1->getType()->isPointerTy() || 5467 !I.getType()->isPointerTy()) 5468 return false; 5469 5470 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5471 std::pair<SDValue, SDValue> Res = 5472 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5473 getValue(Arg0), getValue(Arg1), 5474 MachinePointerInfo(Arg0), 5475 MachinePointerInfo(Arg1), isStpcpy); 5476 if (Res.first.getNode()) { 5477 setValue(&I, Res.first); 5478 DAG.setRoot(Res.second); 5479 return true; 5480 } 5481 5482 return false; 5483 } 5484 5485 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5486 /// If so, return true and lower it, otherwise return false and it will be 5487 /// lowered like a normal call. 5488 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5489 // Verify that the prototype makes sense. int strcmp(void*,void*) 5490 if (I.getNumArgOperands() != 2) 5491 return false; 5492 5493 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5494 if (!Arg0->getType()->isPointerTy() || 5495 !Arg1->getType()->isPointerTy() || 5496 !I.getType()->isIntegerTy()) 5497 return false; 5498 5499 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5500 std::pair<SDValue, SDValue> Res = 5501 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5502 getValue(Arg0), getValue(Arg1), 5503 MachinePointerInfo(Arg0), 5504 MachinePointerInfo(Arg1)); 5505 if (Res.first.getNode()) { 5506 processIntegerCallValue(I, Res.first, true); 5507 PendingLoads.push_back(Res.second); 5508 return true; 5509 } 5510 5511 return false; 5512 } 5513 5514 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5515 /// form. If so, return true and lower it, otherwise return false and it 5516 /// will be lowered like a normal call. 5517 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5518 // Verify that the prototype makes sense. size_t strlen(char *) 5519 if (I.getNumArgOperands() != 1) 5520 return false; 5521 5522 const Value *Arg0 = I.getArgOperand(0); 5523 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5524 return false; 5525 5526 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5527 std::pair<SDValue, SDValue> Res = 5528 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5529 getValue(Arg0), MachinePointerInfo(Arg0)); 5530 if (Res.first.getNode()) { 5531 processIntegerCallValue(I, Res.first, false); 5532 PendingLoads.push_back(Res.second); 5533 return true; 5534 } 5535 5536 return false; 5537 } 5538 5539 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5540 /// form. If so, return true and lower it, otherwise return false and it 5541 /// will be lowered like a normal call. 5542 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5543 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5544 if (I.getNumArgOperands() != 2) 5545 return false; 5546 5547 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5548 if (!Arg0->getType()->isPointerTy() || 5549 !Arg1->getType()->isIntegerTy() || 5550 !I.getType()->isIntegerTy()) 5551 return false; 5552 5553 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5554 std::pair<SDValue, SDValue> Res = 5555 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5556 getValue(Arg0), getValue(Arg1), 5557 MachinePointerInfo(Arg0)); 5558 if (Res.first.getNode()) { 5559 processIntegerCallValue(I, Res.first, false); 5560 PendingLoads.push_back(Res.second); 5561 return true; 5562 } 5563 5564 return false; 5565 } 5566 5567 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5568 /// operation (as expected), translate it to an SDNode with the specified opcode 5569 /// and return true. 5570 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5571 unsigned Opcode) { 5572 // Sanity check that it really is a unary floating-point call. 5573 if (I.getNumArgOperands() != 1 || 5574 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5575 I.getType() != I.getArgOperand(0)->getType() || 5576 !I.onlyReadsMemory()) 5577 return false; 5578 5579 SDValue Tmp = getValue(I.getArgOperand(0)); 5580 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5581 return true; 5582 } 5583 5584 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5585 /// operation (as expected), translate it to an SDNode with the specified opcode 5586 /// and return true. 5587 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5588 unsigned Opcode) { 5589 // Sanity check that it really is a binary floating-point call. 5590 if (I.getNumArgOperands() != 2 || 5591 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5592 I.getType() != I.getArgOperand(0)->getType() || 5593 I.getType() != I.getArgOperand(1)->getType() || 5594 !I.onlyReadsMemory()) 5595 return false; 5596 5597 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5598 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5599 EVT VT = Tmp0.getValueType(); 5600 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5601 return true; 5602 } 5603 5604 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5605 // Handle inline assembly differently. 5606 if (isa<InlineAsm>(I.getCalledValue())) { 5607 visitInlineAsm(&I); 5608 return; 5609 } 5610 5611 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5612 ComputeUsesVAFloatArgument(I, &MMI); 5613 5614 const char *RenameFn = nullptr; 5615 if (Function *F = I.getCalledFunction()) { 5616 if (F->isDeclaration()) { 5617 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5618 if (unsigned IID = II->getIntrinsicID(F)) { 5619 RenameFn = visitIntrinsicCall(I, IID); 5620 if (!RenameFn) 5621 return; 5622 } 5623 } 5624 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5625 RenameFn = visitIntrinsicCall(I, IID); 5626 if (!RenameFn) 5627 return; 5628 } 5629 } 5630 5631 // Check for well-known libc/libm calls. If the function is internal, it 5632 // can't be a library call. 5633 LibFunc::Func Func; 5634 if (!F->hasLocalLinkage() && F->hasName() && 5635 LibInfo->getLibFunc(F->getName(), Func) && 5636 LibInfo->hasOptimizedCodeGen(Func)) { 5637 switch (Func) { 5638 default: break; 5639 case LibFunc::copysign: 5640 case LibFunc::copysignf: 5641 case LibFunc::copysignl: 5642 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5643 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5644 I.getType() == I.getArgOperand(0)->getType() && 5645 I.getType() == I.getArgOperand(1)->getType() && 5646 I.onlyReadsMemory()) { 5647 SDValue LHS = getValue(I.getArgOperand(0)); 5648 SDValue RHS = getValue(I.getArgOperand(1)); 5649 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5650 LHS.getValueType(), LHS, RHS)); 5651 return; 5652 } 5653 break; 5654 case LibFunc::fabs: 5655 case LibFunc::fabsf: 5656 case LibFunc::fabsl: 5657 if (visitUnaryFloatCall(I, ISD::FABS)) 5658 return; 5659 break; 5660 case LibFunc::fmin: 5661 case LibFunc::fminf: 5662 case LibFunc::fminl: 5663 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5664 return; 5665 break; 5666 case LibFunc::fmax: 5667 case LibFunc::fmaxf: 5668 case LibFunc::fmaxl: 5669 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5670 return; 5671 break; 5672 case LibFunc::sin: 5673 case LibFunc::sinf: 5674 case LibFunc::sinl: 5675 if (visitUnaryFloatCall(I, ISD::FSIN)) 5676 return; 5677 break; 5678 case LibFunc::cos: 5679 case LibFunc::cosf: 5680 case LibFunc::cosl: 5681 if (visitUnaryFloatCall(I, ISD::FCOS)) 5682 return; 5683 break; 5684 case LibFunc::sqrt: 5685 case LibFunc::sqrtf: 5686 case LibFunc::sqrtl: 5687 case LibFunc::sqrt_finite: 5688 case LibFunc::sqrtf_finite: 5689 case LibFunc::sqrtl_finite: 5690 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5691 return; 5692 break; 5693 case LibFunc::floor: 5694 case LibFunc::floorf: 5695 case LibFunc::floorl: 5696 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5697 return; 5698 break; 5699 case LibFunc::nearbyint: 5700 case LibFunc::nearbyintf: 5701 case LibFunc::nearbyintl: 5702 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5703 return; 5704 break; 5705 case LibFunc::ceil: 5706 case LibFunc::ceilf: 5707 case LibFunc::ceill: 5708 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5709 return; 5710 break; 5711 case LibFunc::rint: 5712 case LibFunc::rintf: 5713 case LibFunc::rintl: 5714 if (visitUnaryFloatCall(I, ISD::FRINT)) 5715 return; 5716 break; 5717 case LibFunc::round: 5718 case LibFunc::roundf: 5719 case LibFunc::roundl: 5720 if (visitUnaryFloatCall(I, ISD::FROUND)) 5721 return; 5722 break; 5723 case LibFunc::trunc: 5724 case LibFunc::truncf: 5725 case LibFunc::truncl: 5726 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5727 return; 5728 break; 5729 case LibFunc::log2: 5730 case LibFunc::log2f: 5731 case LibFunc::log2l: 5732 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5733 return; 5734 break; 5735 case LibFunc::exp2: 5736 case LibFunc::exp2f: 5737 case LibFunc::exp2l: 5738 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5739 return; 5740 break; 5741 case LibFunc::memcmp: 5742 if (visitMemCmpCall(I)) 5743 return; 5744 break; 5745 case LibFunc::memchr: 5746 if (visitMemChrCall(I)) 5747 return; 5748 break; 5749 case LibFunc::strcpy: 5750 if (visitStrCpyCall(I, false)) 5751 return; 5752 break; 5753 case LibFunc::stpcpy: 5754 if (visitStrCpyCall(I, true)) 5755 return; 5756 break; 5757 case LibFunc::strcmp: 5758 if (visitStrCmpCall(I)) 5759 return; 5760 break; 5761 case LibFunc::strlen: 5762 if (visitStrLenCall(I)) 5763 return; 5764 break; 5765 case LibFunc::strnlen: 5766 if (visitStrNLenCall(I)) 5767 return; 5768 break; 5769 } 5770 } 5771 } 5772 5773 SDValue Callee; 5774 if (!RenameFn) 5775 Callee = getValue(I.getCalledValue()); 5776 else 5777 Callee = DAG.getExternalSymbol( 5778 RenameFn, 5779 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5780 5781 // Check if we can potentially perform a tail call. More detailed checking is 5782 // be done within LowerCallTo, after more information about the call is known. 5783 LowerCallTo(&I, Callee, I.isTailCall()); 5784 } 5785 5786 namespace { 5787 5788 /// AsmOperandInfo - This contains information for each constraint that we are 5789 /// lowering. 5790 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5791 public: 5792 /// CallOperand - If this is the result output operand or a clobber 5793 /// this is null, otherwise it is the incoming operand to the CallInst. 5794 /// This gets modified as the asm is processed. 5795 SDValue CallOperand; 5796 5797 /// AssignedRegs - If this is a register or register class operand, this 5798 /// contains the set of register corresponding to the operand. 5799 RegsForValue AssignedRegs; 5800 5801 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5802 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5803 } 5804 5805 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5806 /// corresponds to. If there is no Value* for this operand, it returns 5807 /// MVT::Other. 5808 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5809 const DataLayout &DL) const { 5810 if (!CallOperandVal) return MVT::Other; 5811 5812 if (isa<BasicBlock>(CallOperandVal)) 5813 return TLI.getPointerTy(DL); 5814 5815 llvm::Type *OpTy = CallOperandVal->getType(); 5816 5817 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5818 // If this is an indirect operand, the operand is a pointer to the 5819 // accessed type. 5820 if (isIndirect) { 5821 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5822 if (!PtrTy) 5823 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5824 OpTy = PtrTy->getElementType(); 5825 } 5826 5827 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5828 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5829 if (STy->getNumElements() == 1) 5830 OpTy = STy->getElementType(0); 5831 5832 // If OpTy is not a single value, it may be a struct/union that we 5833 // can tile with integers. 5834 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5835 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5836 switch (BitSize) { 5837 default: break; 5838 case 1: 5839 case 8: 5840 case 16: 5841 case 32: 5842 case 64: 5843 case 128: 5844 OpTy = IntegerType::get(Context, BitSize); 5845 break; 5846 } 5847 } 5848 5849 return TLI.getValueType(DL, OpTy, true); 5850 } 5851 }; 5852 5853 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5854 5855 } // end anonymous namespace 5856 5857 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5858 /// specified operand. We prefer to assign virtual registers, to allow the 5859 /// register allocator to handle the assignment process. However, if the asm 5860 /// uses features that we can't model on machineinstrs, we have SDISel do the 5861 /// allocation. This produces generally horrible, but correct, code. 5862 /// 5863 /// OpInfo describes the operand. 5864 /// 5865 static void GetRegistersForValue(SelectionDAG &DAG, 5866 const TargetLowering &TLI, 5867 SDLoc DL, 5868 SDISelAsmOperandInfo &OpInfo) { 5869 LLVMContext &Context = *DAG.getContext(); 5870 5871 MachineFunction &MF = DAG.getMachineFunction(); 5872 SmallVector<unsigned, 4> Regs; 5873 5874 // If this is a constraint for a single physreg, or a constraint for a 5875 // register class, find it. 5876 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5877 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5878 OpInfo.ConstraintCode, 5879 OpInfo.ConstraintVT); 5880 5881 unsigned NumRegs = 1; 5882 if (OpInfo.ConstraintVT != MVT::Other) { 5883 // If this is a FP input in an integer register (or visa versa) insert a bit 5884 // cast of the input value. More generally, handle any case where the input 5885 // value disagrees with the register class we plan to stick this in. 5886 if (OpInfo.Type == InlineAsm::isInput && 5887 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5888 // Try to convert to the first EVT that the reg class contains. If the 5889 // types are identical size, use a bitcast to convert (e.g. two differing 5890 // vector types). 5891 MVT RegVT = *PhysReg.second->vt_begin(); 5892 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5893 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5894 RegVT, OpInfo.CallOperand); 5895 OpInfo.ConstraintVT = RegVT; 5896 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5897 // If the input is a FP value and we want it in FP registers, do a 5898 // bitcast to the corresponding integer type. This turns an f64 value 5899 // into i64, which can be passed with two i32 values on a 32-bit 5900 // machine. 5901 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5902 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5903 RegVT, OpInfo.CallOperand); 5904 OpInfo.ConstraintVT = RegVT; 5905 } 5906 } 5907 5908 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5909 } 5910 5911 MVT RegVT; 5912 EVT ValueVT = OpInfo.ConstraintVT; 5913 5914 // If this is a constraint for a specific physical register, like {r17}, 5915 // assign it now. 5916 if (unsigned AssignedReg = PhysReg.first) { 5917 const TargetRegisterClass *RC = PhysReg.second; 5918 if (OpInfo.ConstraintVT == MVT::Other) 5919 ValueVT = *RC->vt_begin(); 5920 5921 // Get the actual register value type. This is important, because the user 5922 // may have asked for (e.g.) the AX register in i32 type. We need to 5923 // remember that AX is actually i16 to get the right extension. 5924 RegVT = *RC->vt_begin(); 5925 5926 // This is a explicit reference to a physical register. 5927 Regs.push_back(AssignedReg); 5928 5929 // If this is an expanded reference, add the rest of the regs to Regs. 5930 if (NumRegs != 1) { 5931 TargetRegisterClass::iterator I = RC->begin(); 5932 for (; *I != AssignedReg; ++I) 5933 assert(I != RC->end() && "Didn't find reg!"); 5934 5935 // Already added the first reg. 5936 --NumRegs; ++I; 5937 for (; NumRegs; --NumRegs, ++I) { 5938 assert(I != RC->end() && "Ran out of registers to allocate!"); 5939 Regs.push_back(*I); 5940 } 5941 } 5942 5943 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5944 return; 5945 } 5946 5947 // Otherwise, if this was a reference to an LLVM register class, create vregs 5948 // for this reference. 5949 if (const TargetRegisterClass *RC = PhysReg.second) { 5950 RegVT = *RC->vt_begin(); 5951 if (OpInfo.ConstraintVT == MVT::Other) 5952 ValueVT = RegVT; 5953 5954 // Create the appropriate number of virtual registers. 5955 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5956 for (; NumRegs; --NumRegs) 5957 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5958 5959 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5960 return; 5961 } 5962 5963 // Otherwise, we couldn't allocate enough registers for this. 5964 } 5965 5966 /// visitInlineAsm - Handle a call to an InlineAsm object. 5967 /// 5968 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5969 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5970 5971 /// ConstraintOperands - Information about all of the constraints. 5972 SDISelAsmOperandInfoVector ConstraintOperands; 5973 5974 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5975 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5976 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5977 5978 bool hasMemory = false; 5979 5980 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5981 unsigned ResNo = 0; // ResNo - The result number of the next output. 5982 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5983 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5984 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5985 5986 MVT OpVT = MVT::Other; 5987 5988 // Compute the value type for each operand. 5989 switch (OpInfo.Type) { 5990 case InlineAsm::isOutput: 5991 // Indirect outputs just consume an argument. 5992 if (OpInfo.isIndirect) { 5993 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5994 break; 5995 } 5996 5997 // The return value of the call is this value. As such, there is no 5998 // corresponding argument. 5999 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6000 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6001 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6002 STy->getElementType(ResNo)); 6003 } else { 6004 assert(ResNo == 0 && "Asm only has one result!"); 6005 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6006 } 6007 ++ResNo; 6008 break; 6009 case InlineAsm::isInput: 6010 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6011 break; 6012 case InlineAsm::isClobber: 6013 // Nothing to do. 6014 break; 6015 } 6016 6017 // If this is an input or an indirect output, process the call argument. 6018 // BasicBlocks are labels, currently appearing only in asm's. 6019 if (OpInfo.CallOperandVal) { 6020 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6021 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6022 } else { 6023 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6024 } 6025 6026 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6027 DAG.getDataLayout()).getSimpleVT(); 6028 } 6029 6030 OpInfo.ConstraintVT = OpVT; 6031 6032 // Indirect operand accesses access memory. 6033 if (OpInfo.isIndirect) 6034 hasMemory = true; 6035 else { 6036 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6037 TargetLowering::ConstraintType 6038 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6039 if (CType == TargetLowering::C_Memory) { 6040 hasMemory = true; 6041 break; 6042 } 6043 } 6044 } 6045 } 6046 6047 SDValue Chain, Flag; 6048 6049 // We won't need to flush pending loads if this asm doesn't touch 6050 // memory and is nonvolatile. 6051 if (hasMemory || IA->hasSideEffects()) 6052 Chain = getRoot(); 6053 else 6054 Chain = DAG.getRoot(); 6055 6056 // Second pass over the constraints: compute which constraint option to use 6057 // and assign registers to constraints that want a specific physreg. 6058 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6059 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6060 6061 // If this is an output operand with a matching input operand, look up the 6062 // matching input. If their types mismatch, e.g. one is an integer, the 6063 // other is floating point, or their sizes are different, flag it as an 6064 // error. 6065 if (OpInfo.hasMatchingInput()) { 6066 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6067 6068 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6069 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6070 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6071 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6072 OpInfo.ConstraintVT); 6073 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6074 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6075 Input.ConstraintVT); 6076 if ((OpInfo.ConstraintVT.isInteger() != 6077 Input.ConstraintVT.isInteger()) || 6078 (MatchRC.second != InputRC.second)) { 6079 report_fatal_error("Unsupported asm: input constraint" 6080 " with a matching output constraint of" 6081 " incompatible type!"); 6082 } 6083 Input.ConstraintVT = OpInfo.ConstraintVT; 6084 } 6085 } 6086 6087 // Compute the constraint code and ConstraintType to use. 6088 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6089 6090 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6091 OpInfo.Type == InlineAsm::isClobber) 6092 continue; 6093 6094 // If this is a memory input, and if the operand is not indirect, do what we 6095 // need to to provide an address for the memory input. 6096 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6097 !OpInfo.isIndirect) { 6098 assert((OpInfo.isMultipleAlternative || 6099 (OpInfo.Type == InlineAsm::isInput)) && 6100 "Can only indirectify direct input operands!"); 6101 6102 // Memory operands really want the address of the value. If we don't have 6103 // an indirect input, put it in the constpool if we can, otherwise spill 6104 // it to a stack slot. 6105 // TODO: This isn't quite right. We need to handle these according to 6106 // the addressing mode that the constraint wants. Also, this may take 6107 // an additional register for the computation and we don't want that 6108 // either. 6109 6110 // If the operand is a float, integer, or vector constant, spill to a 6111 // constant pool entry to get its address. 6112 const Value *OpVal = OpInfo.CallOperandVal; 6113 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6114 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6115 OpInfo.CallOperand = DAG.getConstantPool( 6116 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6117 } else { 6118 // Otherwise, create a stack slot and emit a store to it before the 6119 // asm. 6120 Type *Ty = OpVal->getType(); 6121 auto &DL = DAG.getDataLayout(); 6122 uint64_t TySize = DL.getTypeAllocSize(Ty); 6123 unsigned Align = DL.getPrefTypeAlignment(Ty); 6124 MachineFunction &MF = DAG.getMachineFunction(); 6125 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6126 SDValue StackSlot = 6127 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6128 Chain = DAG.getStore( 6129 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6130 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6131 false, false, 0); 6132 OpInfo.CallOperand = StackSlot; 6133 } 6134 6135 // There is no longer a Value* corresponding to this operand. 6136 OpInfo.CallOperandVal = nullptr; 6137 6138 // It is now an indirect operand. 6139 OpInfo.isIndirect = true; 6140 } 6141 6142 // If this constraint is for a specific register, allocate it before 6143 // anything else. 6144 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6145 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6146 } 6147 6148 // Second pass - Loop over all of the operands, assigning virtual or physregs 6149 // to register class operands. 6150 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6151 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6152 6153 // C_Register operands have already been allocated, Other/Memory don't need 6154 // to be. 6155 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6156 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6157 } 6158 6159 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6160 std::vector<SDValue> AsmNodeOperands; 6161 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6162 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6163 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6164 6165 // If we have a !srcloc metadata node associated with it, we want to attach 6166 // this to the ultimately generated inline asm machineinstr. To do this, we 6167 // pass in the third operand as this (potentially null) inline asm MDNode. 6168 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6169 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6170 6171 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6172 // bits as operand 3. 6173 unsigned ExtraInfo = 0; 6174 if (IA->hasSideEffects()) 6175 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6176 if (IA->isAlignStack()) 6177 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6178 // Set the asm dialect. 6179 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6180 6181 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6182 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6183 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6184 6185 // Compute the constraint code and ConstraintType to use. 6186 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6187 6188 // Ideally, we would only check against memory constraints. However, the 6189 // meaning of an other constraint can be target-specific and we can't easily 6190 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6191 // for other constriants as well. 6192 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6193 OpInfo.ConstraintType == TargetLowering::C_Other) { 6194 if (OpInfo.Type == InlineAsm::isInput) 6195 ExtraInfo |= InlineAsm::Extra_MayLoad; 6196 else if (OpInfo.Type == InlineAsm::isOutput) 6197 ExtraInfo |= InlineAsm::Extra_MayStore; 6198 else if (OpInfo.Type == InlineAsm::isClobber) 6199 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6200 } 6201 } 6202 6203 AsmNodeOperands.push_back(DAG.getTargetConstant( 6204 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6205 6206 // Loop over all of the inputs, copying the operand values into the 6207 // appropriate registers and processing the output regs. 6208 RegsForValue RetValRegs; 6209 6210 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6211 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6212 6213 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6214 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6215 6216 switch (OpInfo.Type) { 6217 case InlineAsm::isOutput: { 6218 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6219 OpInfo.ConstraintType != TargetLowering::C_Register) { 6220 // Memory output, or 'other' output (e.g. 'X' constraint). 6221 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6222 6223 unsigned ConstraintID = 6224 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6225 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6226 "Failed to convert memory constraint code to constraint id."); 6227 6228 // Add information to the INLINEASM node to know about this output. 6229 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6230 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6231 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6232 MVT::i32)); 6233 AsmNodeOperands.push_back(OpInfo.CallOperand); 6234 break; 6235 } 6236 6237 // Otherwise, this is a register or register class output. 6238 6239 // Copy the output from the appropriate register. Find a register that 6240 // we can use. 6241 if (OpInfo.AssignedRegs.Regs.empty()) { 6242 LLVMContext &Ctx = *DAG.getContext(); 6243 Ctx.emitError(CS.getInstruction(), 6244 "couldn't allocate output register for constraint '" + 6245 Twine(OpInfo.ConstraintCode) + "'"); 6246 return; 6247 } 6248 6249 // If this is an indirect operand, store through the pointer after the 6250 // asm. 6251 if (OpInfo.isIndirect) { 6252 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6253 OpInfo.CallOperandVal)); 6254 } else { 6255 // This is the result value of the call. 6256 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6257 // Concatenate this output onto the outputs list. 6258 RetValRegs.append(OpInfo.AssignedRegs); 6259 } 6260 6261 // Add information to the INLINEASM node to know that this register is 6262 // set. 6263 OpInfo.AssignedRegs 6264 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6265 ? InlineAsm::Kind_RegDefEarlyClobber 6266 : InlineAsm::Kind_RegDef, 6267 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6268 break; 6269 } 6270 case InlineAsm::isInput: { 6271 SDValue InOperandVal = OpInfo.CallOperand; 6272 6273 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6274 // If this is required to match an output register we have already set, 6275 // just use its register. 6276 unsigned OperandNo = OpInfo.getMatchedOperand(); 6277 6278 // Scan until we find the definition we already emitted of this operand. 6279 // When we find it, create a RegsForValue operand. 6280 unsigned CurOp = InlineAsm::Op_FirstOperand; 6281 for (; OperandNo; --OperandNo) { 6282 // Advance to the next operand. 6283 unsigned OpFlag = 6284 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6285 assert((InlineAsm::isRegDefKind(OpFlag) || 6286 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6287 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6288 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6289 } 6290 6291 unsigned OpFlag = 6292 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6293 if (InlineAsm::isRegDefKind(OpFlag) || 6294 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6295 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6296 if (OpInfo.isIndirect) { 6297 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6298 LLVMContext &Ctx = *DAG.getContext(); 6299 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6300 " don't know how to handle tied " 6301 "indirect register inputs"); 6302 return; 6303 } 6304 6305 RegsForValue MatchedRegs; 6306 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6307 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6308 MatchedRegs.RegVTs.push_back(RegVT); 6309 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6310 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6311 i != e; ++i) { 6312 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6313 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6314 else { 6315 LLVMContext &Ctx = *DAG.getContext(); 6316 Ctx.emitError(CS.getInstruction(), 6317 "inline asm error: This value" 6318 " type register class is not natively supported!"); 6319 return; 6320 } 6321 } 6322 SDLoc dl = getCurSDLoc(); 6323 // Use the produced MatchedRegs object to 6324 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6325 Chain, &Flag, CS.getInstruction()); 6326 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6327 true, OpInfo.getMatchedOperand(), dl, 6328 DAG, AsmNodeOperands); 6329 break; 6330 } 6331 6332 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6333 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6334 "Unexpected number of operands"); 6335 // Add information to the INLINEASM node to know about this input. 6336 // See InlineAsm.h isUseOperandTiedToDef. 6337 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6338 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6339 OpInfo.getMatchedOperand()); 6340 AsmNodeOperands.push_back(DAG.getTargetConstant( 6341 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6342 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6343 break; 6344 } 6345 6346 // Treat indirect 'X' constraint as memory. 6347 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6348 OpInfo.isIndirect) 6349 OpInfo.ConstraintType = TargetLowering::C_Memory; 6350 6351 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6352 std::vector<SDValue> Ops; 6353 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6354 Ops, DAG); 6355 if (Ops.empty()) { 6356 LLVMContext &Ctx = *DAG.getContext(); 6357 Ctx.emitError(CS.getInstruction(), 6358 "invalid operand for inline asm constraint '" + 6359 Twine(OpInfo.ConstraintCode) + "'"); 6360 return; 6361 } 6362 6363 // Add information to the INLINEASM node to know about this input. 6364 unsigned ResOpType = 6365 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6366 AsmNodeOperands.push_back(DAG.getTargetConstant( 6367 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6368 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6369 break; 6370 } 6371 6372 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6373 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6374 assert(InOperandVal.getValueType() == 6375 TLI.getPointerTy(DAG.getDataLayout()) && 6376 "Memory operands expect pointer values"); 6377 6378 unsigned ConstraintID = 6379 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6380 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6381 "Failed to convert memory constraint code to constraint id."); 6382 6383 // Add information to the INLINEASM node to know about this input. 6384 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6385 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6386 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6387 getCurSDLoc(), 6388 MVT::i32)); 6389 AsmNodeOperands.push_back(InOperandVal); 6390 break; 6391 } 6392 6393 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6394 OpInfo.ConstraintType == TargetLowering::C_Register) && 6395 "Unknown constraint type!"); 6396 6397 // TODO: Support this. 6398 if (OpInfo.isIndirect) { 6399 LLVMContext &Ctx = *DAG.getContext(); 6400 Ctx.emitError(CS.getInstruction(), 6401 "Don't know how to handle indirect register inputs yet " 6402 "for constraint '" + 6403 Twine(OpInfo.ConstraintCode) + "'"); 6404 return; 6405 } 6406 6407 // Copy the input into the appropriate registers. 6408 if (OpInfo.AssignedRegs.Regs.empty()) { 6409 LLVMContext &Ctx = *DAG.getContext(); 6410 Ctx.emitError(CS.getInstruction(), 6411 "couldn't allocate input reg for constraint '" + 6412 Twine(OpInfo.ConstraintCode) + "'"); 6413 return; 6414 } 6415 6416 SDLoc dl = getCurSDLoc(); 6417 6418 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6419 Chain, &Flag, CS.getInstruction()); 6420 6421 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6422 dl, DAG, AsmNodeOperands); 6423 break; 6424 } 6425 case InlineAsm::isClobber: { 6426 // Add the clobbered value to the operand list, so that the register 6427 // allocator is aware that the physreg got clobbered. 6428 if (!OpInfo.AssignedRegs.Regs.empty()) 6429 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6430 false, 0, getCurSDLoc(), DAG, 6431 AsmNodeOperands); 6432 break; 6433 } 6434 } 6435 } 6436 6437 // Finish up input operands. Set the input chain and add the flag last. 6438 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6439 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6440 6441 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6442 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6443 Flag = Chain.getValue(1); 6444 6445 // If this asm returns a register value, copy the result from that register 6446 // and set it as the value of the call. 6447 if (!RetValRegs.Regs.empty()) { 6448 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6449 Chain, &Flag, CS.getInstruction()); 6450 6451 // FIXME: Why don't we do this for inline asms with MRVs? 6452 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6453 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6454 6455 // If any of the results of the inline asm is a vector, it may have the 6456 // wrong width/num elts. This can happen for register classes that can 6457 // contain multiple different value types. The preg or vreg allocated may 6458 // not have the same VT as was expected. Convert it to the right type 6459 // with bit_convert. 6460 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6461 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6462 ResultType, Val); 6463 6464 } else if (ResultType != Val.getValueType() && 6465 ResultType.isInteger() && Val.getValueType().isInteger()) { 6466 // If a result value was tied to an input value, the computed result may 6467 // have a wider width than the expected result. Extract the relevant 6468 // portion. 6469 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6470 } 6471 6472 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6473 } 6474 6475 setValue(CS.getInstruction(), Val); 6476 // Don't need to use this as a chain in this case. 6477 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6478 return; 6479 } 6480 6481 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6482 6483 // Process indirect outputs, first output all of the flagged copies out of 6484 // physregs. 6485 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6486 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6487 const Value *Ptr = IndirectStoresToEmit[i].second; 6488 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6489 Chain, &Flag, IA); 6490 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6491 } 6492 6493 // Emit the non-flagged stores from the physregs. 6494 SmallVector<SDValue, 8> OutChains; 6495 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6496 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6497 StoresToEmit[i].first, 6498 getValue(StoresToEmit[i].second), 6499 MachinePointerInfo(StoresToEmit[i].second), 6500 false, false, 0); 6501 OutChains.push_back(Val); 6502 } 6503 6504 if (!OutChains.empty()) 6505 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6506 6507 DAG.setRoot(Chain); 6508 } 6509 6510 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6511 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6512 MVT::Other, getRoot(), 6513 getValue(I.getArgOperand(0)), 6514 DAG.getSrcValue(I.getArgOperand(0)))); 6515 } 6516 6517 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6519 const DataLayout &DL = DAG.getDataLayout(); 6520 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6521 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6522 DAG.getSrcValue(I.getOperand(0)), 6523 DL.getABITypeAlignment(I.getType())); 6524 setValue(&I, V); 6525 DAG.setRoot(V.getValue(1)); 6526 } 6527 6528 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6529 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6530 MVT::Other, getRoot(), 6531 getValue(I.getArgOperand(0)), 6532 DAG.getSrcValue(I.getArgOperand(0)))); 6533 } 6534 6535 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6536 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6537 MVT::Other, getRoot(), 6538 getValue(I.getArgOperand(0)), 6539 getValue(I.getArgOperand(1)), 6540 DAG.getSrcValue(I.getArgOperand(0)), 6541 DAG.getSrcValue(I.getArgOperand(1)))); 6542 } 6543 6544 /// \brief Lower an argument list according to the target calling convention. 6545 /// 6546 /// \return A tuple of <return-value, token-chain> 6547 /// 6548 /// This is a helper for lowering intrinsics that follow a target calling 6549 /// convention or require stack pointer adjustment. Only a subset of the 6550 /// intrinsic's operands need to participate in the calling convention. 6551 std::pair<SDValue, SDValue> 6552 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6553 unsigned NumArgs, SDValue Callee, 6554 Type *ReturnTy, 6555 MachineBasicBlock *LandingPad, 6556 bool IsPatchPoint) { 6557 TargetLowering::ArgListTy Args; 6558 Args.reserve(NumArgs); 6559 6560 // Populate the argument list. 6561 // Attributes for args start at offset 1, after the return attribute. 6562 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6563 ArgI != ArgE; ++ArgI) { 6564 const Value *V = CS->getOperand(ArgI); 6565 6566 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6567 6568 TargetLowering::ArgListEntry Entry; 6569 Entry.Node = getValue(V); 6570 Entry.Ty = V->getType(); 6571 Entry.setAttributes(&CS, AttrI); 6572 Args.push_back(Entry); 6573 } 6574 6575 TargetLowering::CallLoweringInfo CLI(DAG); 6576 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6577 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6578 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6579 6580 return lowerInvokable(CLI, LandingPad); 6581 } 6582 6583 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6584 /// or patchpoint target node's operand list. 6585 /// 6586 /// Constants are converted to TargetConstants purely as an optimization to 6587 /// avoid constant materialization and register allocation. 6588 /// 6589 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6590 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6591 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6592 /// address materialization and register allocation, but may also be required 6593 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6594 /// alloca in the entry block, then the runtime may assume that the alloca's 6595 /// StackMap location can be read immediately after compilation and that the 6596 /// location is valid at any point during execution (this is similar to the 6597 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6598 /// only available in a register, then the runtime would need to trap when 6599 /// execution reaches the StackMap in order to read the alloca's location. 6600 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6601 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6602 SelectionDAGBuilder &Builder) { 6603 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6604 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6605 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6606 Ops.push_back( 6607 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6608 Ops.push_back( 6609 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6610 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6611 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6612 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6613 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6614 } else 6615 Ops.push_back(OpVal); 6616 } 6617 } 6618 6619 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6620 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6621 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6622 // [live variables...]) 6623 6624 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6625 6626 SDValue Chain, InFlag, Callee, NullPtr; 6627 SmallVector<SDValue, 32> Ops; 6628 6629 SDLoc DL = getCurSDLoc(); 6630 Callee = getValue(CI.getCalledValue()); 6631 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6632 6633 // The stackmap intrinsic only records the live variables (the arguemnts 6634 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6635 // intrinsic, this won't be lowered to a function call. This means we don't 6636 // have to worry about calling conventions and target specific lowering code. 6637 // Instead we perform the call lowering right here. 6638 // 6639 // chain, flag = CALLSEQ_START(chain, 0) 6640 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6641 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6642 // 6643 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6644 InFlag = Chain.getValue(1); 6645 6646 // Add the <id> and <numBytes> constants. 6647 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6648 Ops.push_back(DAG.getTargetConstant( 6649 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6650 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6651 Ops.push_back(DAG.getTargetConstant( 6652 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6653 MVT::i32)); 6654 6655 // Push live variables for the stack map. 6656 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6657 6658 // We are not pushing any register mask info here on the operands list, 6659 // because the stackmap doesn't clobber anything. 6660 6661 // Push the chain and the glue flag. 6662 Ops.push_back(Chain); 6663 Ops.push_back(InFlag); 6664 6665 // Create the STACKMAP node. 6666 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6667 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6668 Chain = SDValue(SM, 0); 6669 InFlag = Chain.getValue(1); 6670 6671 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6672 6673 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6674 6675 // Set the root to the target-lowered call chain. 6676 DAG.setRoot(Chain); 6677 6678 // Inform the Frame Information that we have a stackmap in this function. 6679 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6680 } 6681 6682 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6683 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6684 MachineBasicBlock *LandingPad) { 6685 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6686 // i32 <numBytes>, 6687 // i8* <target>, 6688 // i32 <numArgs>, 6689 // [Args...], 6690 // [live variables...]) 6691 6692 CallingConv::ID CC = CS.getCallingConv(); 6693 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6694 bool HasDef = !CS->getType()->isVoidTy(); 6695 SDLoc dl = getCurSDLoc(); 6696 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6697 6698 // Handle immediate and symbolic callees. 6699 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6700 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6701 /*isTarget=*/true); 6702 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6703 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6704 SDLoc(SymbolicCallee), 6705 SymbolicCallee->getValueType(0)); 6706 6707 // Get the real number of arguments participating in the call <numArgs> 6708 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6709 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6710 6711 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6712 // Intrinsics include all meta-operands up to but not including CC. 6713 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6714 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6715 "Not enough arguments provided to the patchpoint intrinsic"); 6716 6717 // For AnyRegCC the arguments are lowered later on manually. 6718 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6719 Type *ReturnTy = 6720 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6721 std::pair<SDValue, SDValue> Result = 6722 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6723 LandingPad, true); 6724 6725 SDNode *CallEnd = Result.second.getNode(); 6726 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6727 CallEnd = CallEnd->getOperand(0).getNode(); 6728 6729 /// Get a call instruction from the call sequence chain. 6730 /// Tail calls are not allowed. 6731 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6732 "Expected a callseq node."); 6733 SDNode *Call = CallEnd->getOperand(0).getNode(); 6734 bool HasGlue = Call->getGluedNode(); 6735 6736 // Replace the target specific call node with the patchable intrinsic. 6737 SmallVector<SDValue, 8> Ops; 6738 6739 // Add the <id> and <numBytes> constants. 6740 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6741 Ops.push_back(DAG.getTargetConstant( 6742 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6743 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6744 Ops.push_back(DAG.getTargetConstant( 6745 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6746 MVT::i32)); 6747 6748 // Add the callee. 6749 Ops.push_back(Callee); 6750 6751 // Adjust <numArgs> to account for any arguments that have been passed on the 6752 // stack instead. 6753 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6754 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6755 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6756 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6757 6758 // Add the calling convention 6759 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6760 6761 // Add the arguments we omitted previously. The register allocator should 6762 // place these in any free register. 6763 if (IsAnyRegCC) 6764 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6765 Ops.push_back(getValue(CS.getArgument(i))); 6766 6767 // Push the arguments from the call instruction up to the register mask. 6768 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6769 Ops.append(Call->op_begin() + 2, e); 6770 6771 // Push live variables for the stack map. 6772 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6773 6774 // Push the register mask info. 6775 if (HasGlue) 6776 Ops.push_back(*(Call->op_end()-2)); 6777 else 6778 Ops.push_back(*(Call->op_end()-1)); 6779 6780 // Push the chain (this is originally the first operand of the call, but 6781 // becomes now the last or second to last operand). 6782 Ops.push_back(*(Call->op_begin())); 6783 6784 // Push the glue flag (last operand). 6785 if (HasGlue) 6786 Ops.push_back(*(Call->op_end()-1)); 6787 6788 SDVTList NodeTys; 6789 if (IsAnyRegCC && HasDef) { 6790 // Create the return types based on the intrinsic definition 6791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6792 SmallVector<EVT, 3> ValueVTs; 6793 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6794 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6795 6796 // There is always a chain and a glue type at the end 6797 ValueVTs.push_back(MVT::Other); 6798 ValueVTs.push_back(MVT::Glue); 6799 NodeTys = DAG.getVTList(ValueVTs); 6800 } else 6801 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6802 6803 // Replace the target specific call node with a PATCHPOINT node. 6804 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6805 dl, NodeTys, Ops); 6806 6807 // Update the NodeMap. 6808 if (HasDef) { 6809 if (IsAnyRegCC) 6810 setValue(CS.getInstruction(), SDValue(MN, 0)); 6811 else 6812 setValue(CS.getInstruction(), Result.first); 6813 } 6814 6815 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6816 // call sequence. Furthermore the location of the chain and glue can change 6817 // when the AnyReg calling convention is used and the intrinsic returns a 6818 // value. 6819 if (IsAnyRegCC && HasDef) { 6820 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6821 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6822 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6823 } else 6824 DAG.ReplaceAllUsesWith(Call, MN); 6825 DAG.DeleteNode(Call); 6826 6827 // Inform the Frame Information that we have a patchpoint in this function. 6828 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6829 } 6830 6831 /// Returns an AttributeSet representing the attributes applied to the return 6832 /// value of the given call. 6833 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6834 SmallVector<Attribute::AttrKind, 2> Attrs; 6835 if (CLI.RetSExt) 6836 Attrs.push_back(Attribute::SExt); 6837 if (CLI.RetZExt) 6838 Attrs.push_back(Attribute::ZExt); 6839 if (CLI.IsInReg) 6840 Attrs.push_back(Attribute::InReg); 6841 6842 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6843 Attrs); 6844 } 6845 6846 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6847 /// implementation, which just calls LowerCall. 6848 /// FIXME: When all targets are 6849 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6850 std::pair<SDValue, SDValue> 6851 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6852 // Handle the incoming return values from the call. 6853 CLI.Ins.clear(); 6854 Type *OrigRetTy = CLI.RetTy; 6855 SmallVector<EVT, 4> RetTys; 6856 SmallVector<uint64_t, 4> Offsets; 6857 auto &DL = CLI.DAG.getDataLayout(); 6858 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6859 6860 SmallVector<ISD::OutputArg, 4> Outs; 6861 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6862 6863 bool CanLowerReturn = 6864 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6865 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6866 6867 SDValue DemoteStackSlot; 6868 int DemoteStackIdx = -100; 6869 if (!CanLowerReturn) { 6870 // FIXME: equivalent assert? 6871 // assert(!CS.hasInAllocaArgument() && 6872 // "sret demotion is incompatible with inalloca"); 6873 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6874 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6875 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6876 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6877 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6878 6879 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6880 ArgListEntry Entry; 6881 Entry.Node = DemoteStackSlot; 6882 Entry.Ty = StackSlotPtrType; 6883 Entry.isSExt = false; 6884 Entry.isZExt = false; 6885 Entry.isInReg = false; 6886 Entry.isSRet = true; 6887 Entry.isNest = false; 6888 Entry.isByVal = false; 6889 Entry.isReturned = false; 6890 Entry.Alignment = Align; 6891 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6892 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6893 6894 // sret demotion isn't compatible with tail-calls, since the sret argument 6895 // points into the callers stack frame. 6896 CLI.IsTailCall = false; 6897 } else { 6898 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6899 EVT VT = RetTys[I]; 6900 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6901 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6902 for (unsigned i = 0; i != NumRegs; ++i) { 6903 ISD::InputArg MyFlags; 6904 MyFlags.VT = RegisterVT; 6905 MyFlags.ArgVT = VT; 6906 MyFlags.Used = CLI.IsReturnValueUsed; 6907 if (CLI.RetSExt) 6908 MyFlags.Flags.setSExt(); 6909 if (CLI.RetZExt) 6910 MyFlags.Flags.setZExt(); 6911 if (CLI.IsInReg) 6912 MyFlags.Flags.setInReg(); 6913 CLI.Ins.push_back(MyFlags); 6914 } 6915 } 6916 } 6917 6918 // Handle all of the outgoing arguments. 6919 CLI.Outs.clear(); 6920 CLI.OutVals.clear(); 6921 ArgListTy &Args = CLI.getArgs(); 6922 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6923 SmallVector<EVT, 4> ValueVTs; 6924 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6925 Type *FinalType = Args[i].Ty; 6926 if (Args[i].isByVal) 6927 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6928 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6929 FinalType, CLI.CallConv, CLI.IsVarArg); 6930 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6931 ++Value) { 6932 EVT VT = ValueVTs[Value]; 6933 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6934 SDValue Op = SDValue(Args[i].Node.getNode(), 6935 Args[i].Node.getResNo() + Value); 6936 ISD::ArgFlagsTy Flags; 6937 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6938 6939 if (Args[i].isZExt) 6940 Flags.setZExt(); 6941 if (Args[i].isSExt) 6942 Flags.setSExt(); 6943 if (Args[i].isInReg) 6944 Flags.setInReg(); 6945 if (Args[i].isSRet) 6946 Flags.setSRet(); 6947 if (Args[i].isByVal) 6948 Flags.setByVal(); 6949 if (Args[i].isInAlloca) { 6950 Flags.setInAlloca(); 6951 // Set the byval flag for CCAssignFn callbacks that don't know about 6952 // inalloca. This way we can know how many bytes we should've allocated 6953 // and how many bytes a callee cleanup function will pop. If we port 6954 // inalloca to more targets, we'll have to add custom inalloca handling 6955 // in the various CC lowering callbacks. 6956 Flags.setByVal(); 6957 } 6958 if (Args[i].isByVal || Args[i].isInAlloca) { 6959 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6960 Type *ElementTy = Ty->getElementType(); 6961 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6962 // For ByVal, alignment should come from FE. BE will guess if this 6963 // info is not there but there are cases it cannot get right. 6964 unsigned FrameAlign; 6965 if (Args[i].Alignment) 6966 FrameAlign = Args[i].Alignment; 6967 else 6968 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6969 Flags.setByValAlign(FrameAlign); 6970 } 6971 if (Args[i].isNest) 6972 Flags.setNest(); 6973 if (NeedsRegBlock) 6974 Flags.setInConsecutiveRegs(); 6975 Flags.setOrigAlign(OriginalAlignment); 6976 6977 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6978 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6979 SmallVector<SDValue, 4> Parts(NumParts); 6980 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6981 6982 if (Args[i].isSExt) 6983 ExtendKind = ISD::SIGN_EXTEND; 6984 else if (Args[i].isZExt) 6985 ExtendKind = ISD::ZERO_EXTEND; 6986 6987 // Conservatively only handle 'returned' on non-vectors for now 6988 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6989 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6990 "unexpected use of 'returned'"); 6991 // Before passing 'returned' to the target lowering code, ensure that 6992 // either the register MVT and the actual EVT are the same size or that 6993 // the return value and argument are extended in the same way; in these 6994 // cases it's safe to pass the argument register value unchanged as the 6995 // return register value (although it's at the target's option whether 6996 // to do so) 6997 // TODO: allow code generation to take advantage of partially preserved 6998 // registers rather than clobbering the entire register when the 6999 // parameter extension method is not compatible with the return 7000 // extension method 7001 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7002 (ExtendKind != ISD::ANY_EXTEND && 7003 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7004 Flags.setReturned(); 7005 } 7006 7007 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7008 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7009 7010 for (unsigned j = 0; j != NumParts; ++j) { 7011 // if it isn't first piece, alignment must be 1 7012 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7013 i < CLI.NumFixedArgs, 7014 i, j*Parts[j].getValueType().getStoreSize()); 7015 if (NumParts > 1 && j == 0) 7016 MyFlags.Flags.setSplit(); 7017 else if (j != 0) 7018 MyFlags.Flags.setOrigAlign(1); 7019 7020 CLI.Outs.push_back(MyFlags); 7021 CLI.OutVals.push_back(Parts[j]); 7022 } 7023 7024 if (NeedsRegBlock && Value == NumValues - 1) 7025 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7026 } 7027 } 7028 7029 SmallVector<SDValue, 4> InVals; 7030 CLI.Chain = LowerCall(CLI, InVals); 7031 7032 // Verify that the target's LowerCall behaved as expected. 7033 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7034 "LowerCall didn't return a valid chain!"); 7035 assert((!CLI.IsTailCall || InVals.empty()) && 7036 "LowerCall emitted a return value for a tail call!"); 7037 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7038 "LowerCall didn't emit the correct number of values!"); 7039 7040 // For a tail call, the return value is merely live-out and there aren't 7041 // any nodes in the DAG representing it. Return a special value to 7042 // indicate that a tail call has been emitted and no more Instructions 7043 // should be processed in the current block. 7044 if (CLI.IsTailCall) { 7045 CLI.DAG.setRoot(CLI.Chain); 7046 return std::make_pair(SDValue(), SDValue()); 7047 } 7048 7049 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7050 assert(InVals[i].getNode() && 7051 "LowerCall emitted a null value!"); 7052 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7053 "LowerCall emitted a value with the wrong type!"); 7054 }); 7055 7056 SmallVector<SDValue, 4> ReturnValues; 7057 if (!CanLowerReturn) { 7058 // The instruction result is the result of loading from the 7059 // hidden sret parameter. 7060 SmallVector<EVT, 1> PVTs; 7061 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7062 7063 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7064 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7065 EVT PtrVT = PVTs[0]; 7066 7067 unsigned NumValues = RetTys.size(); 7068 ReturnValues.resize(NumValues); 7069 SmallVector<SDValue, 4> Chains(NumValues); 7070 7071 for (unsigned i = 0; i < NumValues; ++i) { 7072 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7073 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7074 PtrVT)); 7075 SDValue L = CLI.DAG.getLoad( 7076 RetTys[i], CLI.DL, CLI.Chain, Add, 7077 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7078 DemoteStackIdx, Offsets[i]), 7079 false, false, false, 1); 7080 ReturnValues[i] = L; 7081 Chains[i] = L.getValue(1); 7082 } 7083 7084 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7085 } else { 7086 // Collect the legal value parts into potentially illegal values 7087 // that correspond to the original function's return values. 7088 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7089 if (CLI.RetSExt) 7090 AssertOp = ISD::AssertSext; 7091 else if (CLI.RetZExt) 7092 AssertOp = ISD::AssertZext; 7093 unsigned CurReg = 0; 7094 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7095 EVT VT = RetTys[I]; 7096 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7097 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7098 7099 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7100 NumRegs, RegisterVT, VT, nullptr, 7101 AssertOp)); 7102 CurReg += NumRegs; 7103 } 7104 7105 // For a function returning void, there is no return value. We can't create 7106 // such a node, so we just return a null return value in that case. In 7107 // that case, nothing will actually look at the value. 7108 if (ReturnValues.empty()) 7109 return std::make_pair(SDValue(), CLI.Chain); 7110 } 7111 7112 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7113 CLI.DAG.getVTList(RetTys), ReturnValues); 7114 return std::make_pair(Res, CLI.Chain); 7115 } 7116 7117 void TargetLowering::LowerOperationWrapper(SDNode *N, 7118 SmallVectorImpl<SDValue> &Results, 7119 SelectionDAG &DAG) const { 7120 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7121 if (Res.getNode()) 7122 Results.push_back(Res); 7123 } 7124 7125 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7126 llvm_unreachable("LowerOperation not implemented for this target!"); 7127 } 7128 7129 void 7130 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7131 SDValue Op = getNonRegisterValue(V); 7132 assert((Op.getOpcode() != ISD::CopyFromReg || 7133 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7134 "Copy from a reg to the same reg!"); 7135 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7136 7137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7138 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7139 V->getType()); 7140 SDValue Chain = DAG.getEntryNode(); 7141 7142 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7143 FuncInfo.PreferredExtendType.end()) 7144 ? ISD::ANY_EXTEND 7145 : FuncInfo.PreferredExtendType[V]; 7146 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7147 PendingExports.push_back(Chain); 7148 } 7149 7150 #include "llvm/CodeGen/SelectionDAGISel.h" 7151 7152 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7153 /// entry block, return true. This includes arguments used by switches, since 7154 /// the switch may expand into multiple basic blocks. 7155 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7156 // With FastISel active, we may be splitting blocks, so force creation 7157 // of virtual registers for all non-dead arguments. 7158 if (FastISel) 7159 return A->use_empty(); 7160 7161 const BasicBlock *Entry = A->getParent()->begin(); 7162 for (const User *U : A->users()) 7163 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7164 return false; // Use not in entry block. 7165 7166 return true; 7167 } 7168 7169 void SelectionDAGISel::LowerArguments(const Function &F) { 7170 SelectionDAG &DAG = SDB->DAG; 7171 SDLoc dl = SDB->getCurSDLoc(); 7172 const DataLayout &DL = DAG.getDataLayout(); 7173 SmallVector<ISD::InputArg, 16> Ins; 7174 7175 if (!FuncInfo->CanLowerReturn) { 7176 // Put in an sret pointer parameter before all the other parameters. 7177 SmallVector<EVT, 1> ValueVTs; 7178 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7179 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7180 7181 // NOTE: Assuming that a pointer will never break down to more than one VT 7182 // or one register. 7183 ISD::ArgFlagsTy Flags; 7184 Flags.setSRet(); 7185 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7186 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7187 ISD::InputArg::NoArgIndex, 0); 7188 Ins.push_back(RetArg); 7189 } 7190 7191 // Set up the incoming argument description vector. 7192 unsigned Idx = 1; 7193 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7194 I != E; ++I, ++Idx) { 7195 SmallVector<EVT, 4> ValueVTs; 7196 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7197 bool isArgValueUsed = !I->use_empty(); 7198 unsigned PartBase = 0; 7199 Type *FinalType = I->getType(); 7200 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7201 FinalType = cast<PointerType>(FinalType)->getElementType(); 7202 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7203 FinalType, F.getCallingConv(), F.isVarArg()); 7204 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7205 Value != NumValues; ++Value) { 7206 EVT VT = ValueVTs[Value]; 7207 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7208 ISD::ArgFlagsTy Flags; 7209 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7210 7211 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7212 Flags.setZExt(); 7213 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7214 Flags.setSExt(); 7215 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7216 Flags.setInReg(); 7217 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7218 Flags.setSRet(); 7219 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7220 Flags.setByVal(); 7221 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7222 Flags.setInAlloca(); 7223 // Set the byval flag for CCAssignFn callbacks that don't know about 7224 // inalloca. This way we can know how many bytes we should've allocated 7225 // and how many bytes a callee cleanup function will pop. If we port 7226 // inalloca to more targets, we'll have to add custom inalloca handling 7227 // in the various CC lowering callbacks. 7228 Flags.setByVal(); 7229 } 7230 if (Flags.isByVal() || Flags.isInAlloca()) { 7231 PointerType *Ty = cast<PointerType>(I->getType()); 7232 Type *ElementTy = Ty->getElementType(); 7233 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7234 // For ByVal, alignment should be passed from FE. BE will guess if 7235 // this info is not there but there are cases it cannot get right. 7236 unsigned FrameAlign; 7237 if (F.getParamAlignment(Idx)) 7238 FrameAlign = F.getParamAlignment(Idx); 7239 else 7240 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7241 Flags.setByValAlign(FrameAlign); 7242 } 7243 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7244 Flags.setNest(); 7245 if (NeedsRegBlock) 7246 Flags.setInConsecutiveRegs(); 7247 Flags.setOrigAlign(OriginalAlignment); 7248 7249 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7250 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7251 for (unsigned i = 0; i != NumRegs; ++i) { 7252 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7253 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7254 if (NumRegs > 1 && i == 0) 7255 MyFlags.Flags.setSplit(); 7256 // if it isn't first piece, alignment must be 1 7257 else if (i > 0) 7258 MyFlags.Flags.setOrigAlign(1); 7259 Ins.push_back(MyFlags); 7260 } 7261 if (NeedsRegBlock && Value == NumValues - 1) 7262 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7263 PartBase += VT.getStoreSize(); 7264 } 7265 } 7266 7267 // Call the target to set up the argument values. 7268 SmallVector<SDValue, 8> InVals; 7269 SDValue NewRoot = TLI->LowerFormalArguments( 7270 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7271 7272 // Verify that the target's LowerFormalArguments behaved as expected. 7273 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7274 "LowerFormalArguments didn't return a valid chain!"); 7275 assert(InVals.size() == Ins.size() && 7276 "LowerFormalArguments didn't emit the correct number of values!"); 7277 DEBUG({ 7278 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7279 assert(InVals[i].getNode() && 7280 "LowerFormalArguments emitted a null value!"); 7281 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7282 "LowerFormalArguments emitted a value with the wrong type!"); 7283 } 7284 }); 7285 7286 // Update the DAG with the new chain value resulting from argument lowering. 7287 DAG.setRoot(NewRoot); 7288 7289 // Set up the argument values. 7290 unsigned i = 0; 7291 Idx = 1; 7292 if (!FuncInfo->CanLowerReturn) { 7293 // Create a virtual register for the sret pointer, and put in a copy 7294 // from the sret argument into it. 7295 SmallVector<EVT, 1> ValueVTs; 7296 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7297 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7298 MVT VT = ValueVTs[0].getSimpleVT(); 7299 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7300 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7301 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7302 RegVT, VT, nullptr, AssertOp); 7303 7304 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7305 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7306 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7307 FuncInfo->DemoteRegister = SRetReg; 7308 NewRoot = 7309 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7310 DAG.setRoot(NewRoot); 7311 7312 // i indexes lowered arguments. Bump it past the hidden sret argument. 7313 // Idx indexes LLVM arguments. Don't touch it. 7314 ++i; 7315 } 7316 7317 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7318 ++I, ++Idx) { 7319 SmallVector<SDValue, 4> ArgValues; 7320 SmallVector<EVT, 4> ValueVTs; 7321 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7322 unsigned NumValues = ValueVTs.size(); 7323 7324 // If this argument is unused then remember its value. It is used to generate 7325 // debugging information. 7326 if (I->use_empty() && NumValues) { 7327 SDB->setUnusedArgValue(I, InVals[i]); 7328 7329 // Also remember any frame index for use in FastISel. 7330 if (FrameIndexSDNode *FI = 7331 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7332 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7333 } 7334 7335 for (unsigned Val = 0; Val != NumValues; ++Val) { 7336 EVT VT = ValueVTs[Val]; 7337 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7338 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7339 7340 if (!I->use_empty()) { 7341 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7342 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7343 AssertOp = ISD::AssertSext; 7344 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7345 AssertOp = ISD::AssertZext; 7346 7347 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7348 NumParts, PartVT, VT, 7349 nullptr, AssertOp)); 7350 } 7351 7352 i += NumParts; 7353 } 7354 7355 // We don't need to do anything else for unused arguments. 7356 if (ArgValues.empty()) 7357 continue; 7358 7359 // Note down frame index. 7360 if (FrameIndexSDNode *FI = 7361 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7362 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7363 7364 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7365 SDB->getCurSDLoc()); 7366 7367 SDB->setValue(I, Res); 7368 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7369 if (LoadSDNode *LNode = 7370 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7371 if (FrameIndexSDNode *FI = 7372 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7373 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7374 } 7375 7376 // If this argument is live outside of the entry block, insert a copy from 7377 // wherever we got it to the vreg that other BB's will reference it as. 7378 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7379 // If we can, though, try to skip creating an unnecessary vreg. 7380 // FIXME: This isn't very clean... it would be nice to make this more 7381 // general. It's also subtly incompatible with the hacks FastISel 7382 // uses with vregs. 7383 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7384 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7385 FuncInfo->ValueMap[I] = Reg; 7386 continue; 7387 } 7388 } 7389 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7390 FuncInfo->InitializeRegForValue(I); 7391 SDB->CopyToExportRegsIfNeeded(I); 7392 } 7393 } 7394 7395 assert(i == InVals.size() && "Argument register count mismatch!"); 7396 7397 // Finally, if the target has anything special to do, allow it to do so. 7398 EmitFunctionEntryCode(); 7399 } 7400 7401 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7402 /// ensure constants are generated when needed. Remember the virtual registers 7403 /// that need to be added to the Machine PHI nodes as input. We cannot just 7404 /// directly add them, because expansion might result in multiple MBB's for one 7405 /// BB. As such, the start of the BB might correspond to a different MBB than 7406 /// the end. 7407 /// 7408 void 7409 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7410 const TerminatorInst *TI = LLVMBB->getTerminator(); 7411 7412 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7413 7414 // Check PHI nodes in successors that expect a value to be available from this 7415 // block. 7416 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7417 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7418 if (!isa<PHINode>(SuccBB->begin())) continue; 7419 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7420 7421 // If this terminator has multiple identical successors (common for 7422 // switches), only handle each succ once. 7423 if (!SuccsHandled.insert(SuccMBB).second) 7424 continue; 7425 7426 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7427 7428 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7429 // nodes and Machine PHI nodes, but the incoming operands have not been 7430 // emitted yet. 7431 for (BasicBlock::const_iterator I = SuccBB->begin(); 7432 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7433 // Ignore dead phi's. 7434 if (PN->use_empty()) continue; 7435 7436 // Skip empty types 7437 if (PN->getType()->isEmptyTy()) 7438 continue; 7439 7440 unsigned Reg; 7441 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7442 7443 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7444 unsigned &RegOut = ConstantsOut[C]; 7445 if (RegOut == 0) { 7446 RegOut = FuncInfo.CreateRegs(C->getType()); 7447 CopyValueToVirtualRegister(C, RegOut); 7448 } 7449 Reg = RegOut; 7450 } else { 7451 DenseMap<const Value *, unsigned>::iterator I = 7452 FuncInfo.ValueMap.find(PHIOp); 7453 if (I != FuncInfo.ValueMap.end()) 7454 Reg = I->second; 7455 else { 7456 assert(isa<AllocaInst>(PHIOp) && 7457 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7458 "Didn't codegen value into a register!??"); 7459 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7460 CopyValueToVirtualRegister(PHIOp, Reg); 7461 } 7462 } 7463 7464 // Remember that this register needs to added to the machine PHI node as 7465 // the input for this MBB. 7466 SmallVector<EVT, 4> ValueVTs; 7467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7468 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7469 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7470 EVT VT = ValueVTs[vti]; 7471 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7472 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7473 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7474 Reg += NumRegisters; 7475 } 7476 } 7477 } 7478 7479 ConstantsOut.clear(); 7480 } 7481 7482 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7483 /// is 0. 7484 MachineBasicBlock * 7485 SelectionDAGBuilder::StackProtectorDescriptor:: 7486 AddSuccessorMBB(const BasicBlock *BB, 7487 MachineBasicBlock *ParentMBB, 7488 bool IsLikely, 7489 MachineBasicBlock *SuccMBB) { 7490 // If SuccBB has not been created yet, create it. 7491 if (!SuccMBB) { 7492 MachineFunction *MF = ParentMBB->getParent(); 7493 MachineFunction::iterator BBI = ParentMBB; 7494 SuccMBB = MF->CreateMachineBasicBlock(BB); 7495 MF->insert(++BBI, SuccMBB); 7496 } 7497 // Add it as a successor of ParentMBB. 7498 ParentMBB->addSuccessor( 7499 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7500 return SuccMBB; 7501 } 7502 7503 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7504 MachineFunction::iterator I = MBB; 7505 if (++I == FuncInfo.MF->end()) 7506 return nullptr; 7507 return I; 7508 } 7509 7510 /// During lowering new call nodes can be created (such as memset, etc.). 7511 /// Those will become new roots of the current DAG, but complications arise 7512 /// when they are tail calls. In such cases, the call lowering will update 7513 /// the root, but the builder still needs to know that a tail call has been 7514 /// lowered in order to avoid generating an additional return. 7515 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7516 // If the node is null, we do have a tail call. 7517 if (MaybeTC.getNode() != nullptr) 7518 DAG.setRoot(MaybeTC); 7519 else 7520 HasTailCall = true; 7521 } 7522 7523 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7524 unsigned *TotalCases, unsigned First, 7525 unsigned Last) { 7526 assert(Last >= First); 7527 assert(TotalCases[Last] >= TotalCases[First]); 7528 7529 APInt LowCase = Clusters[First].Low->getValue(); 7530 APInt HighCase = Clusters[Last].High->getValue(); 7531 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7532 7533 // FIXME: A range of consecutive cases has 100% density, but only requires one 7534 // comparison to lower. We should discriminate against such consecutive ranges 7535 // in jump tables. 7536 7537 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7538 uint64_t Range = Diff + 1; 7539 7540 uint64_t NumCases = 7541 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7542 7543 assert(NumCases < UINT64_MAX / 100); 7544 assert(Range >= NumCases); 7545 7546 return NumCases * 100 >= Range * MinJumpTableDensity; 7547 } 7548 7549 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7550 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7551 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7552 } 7553 7554 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7555 unsigned First, unsigned Last, 7556 const SwitchInst *SI, 7557 MachineBasicBlock *DefaultMBB, 7558 CaseCluster &JTCluster) { 7559 assert(First <= Last); 7560 7561 uint32_t Weight = 0; 7562 unsigned NumCmps = 0; 7563 std::vector<MachineBasicBlock*> Table; 7564 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7565 for (unsigned I = First; I <= Last; ++I) { 7566 assert(Clusters[I].Kind == CC_Range); 7567 Weight += Clusters[I].Weight; 7568 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7569 APInt Low = Clusters[I].Low->getValue(); 7570 APInt High = Clusters[I].High->getValue(); 7571 NumCmps += (Low == High) ? 1 : 2; 7572 if (I != First) { 7573 // Fill the gap between this and the previous cluster. 7574 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7575 assert(PreviousHigh.slt(Low)); 7576 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7577 for (uint64_t J = 0; J < Gap; J++) 7578 Table.push_back(DefaultMBB); 7579 } 7580 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7581 for (uint64_t J = 0; J < ClusterSize; ++J) 7582 Table.push_back(Clusters[I].MBB); 7583 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7584 } 7585 7586 unsigned NumDests = JTWeights.size(); 7587 if (isSuitableForBitTests(NumDests, NumCmps, 7588 Clusters[First].Low->getValue(), 7589 Clusters[Last].High->getValue())) { 7590 // Clusters[First..Last] should be lowered as bit tests instead. 7591 return false; 7592 } 7593 7594 // Create the MBB that will load from and jump through the table. 7595 // Note: We create it here, but it's not inserted into the function yet. 7596 MachineFunction *CurMF = FuncInfo.MF; 7597 MachineBasicBlock *JumpTableMBB = 7598 CurMF->CreateMachineBasicBlock(SI->getParent()); 7599 7600 // Add successors. Note: use table order for determinism. 7601 SmallPtrSet<MachineBasicBlock *, 8> Done; 7602 for (MachineBasicBlock *Succ : Table) { 7603 if (Done.count(Succ)) 7604 continue; 7605 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7606 Done.insert(Succ); 7607 } 7608 7609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7610 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7611 ->createJumpTableIndex(Table); 7612 7613 // Set up the jump table info. 7614 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7615 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7616 Clusters[Last].High->getValue(), SI->getCondition(), 7617 nullptr, false); 7618 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7619 7620 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7621 JTCases.size() - 1, Weight); 7622 return true; 7623 } 7624 7625 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7626 const SwitchInst *SI, 7627 MachineBasicBlock *DefaultMBB) { 7628 #ifndef NDEBUG 7629 // Clusters must be non-empty, sorted, and only contain Range clusters. 7630 assert(!Clusters.empty()); 7631 for (CaseCluster &C : Clusters) 7632 assert(C.Kind == CC_Range); 7633 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7634 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7635 #endif 7636 7637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7638 if (!areJTsAllowed(TLI)) 7639 return; 7640 7641 const int64_t N = Clusters.size(); 7642 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7643 7644 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7645 SmallVector<unsigned, 8> TotalCases(N); 7646 7647 for (unsigned i = 0; i < N; ++i) { 7648 APInt Hi = Clusters[i].High->getValue(); 7649 APInt Lo = Clusters[i].Low->getValue(); 7650 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7651 if (i != 0) 7652 TotalCases[i] += TotalCases[i - 1]; 7653 } 7654 7655 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7656 // Cheap case: the whole range might be suitable for jump table. 7657 CaseCluster JTCluster; 7658 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7659 Clusters[0] = JTCluster; 7660 Clusters.resize(1); 7661 return; 7662 } 7663 } 7664 7665 // The algorithm below is not suitable for -O0. 7666 if (TM.getOptLevel() == CodeGenOpt::None) 7667 return; 7668 7669 // Split Clusters into minimum number of dense partitions. The algorithm uses 7670 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7671 // for the Case Statement'" (1994), but builds the MinPartitions array in 7672 // reverse order to make it easier to reconstruct the partitions in ascending 7673 // order. In the choice between two optimal partitionings, it picks the one 7674 // which yields more jump tables. 7675 7676 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7677 SmallVector<unsigned, 8> MinPartitions(N); 7678 // LastElement[i] is the last element of the partition starting at i. 7679 SmallVector<unsigned, 8> LastElement(N); 7680 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7681 SmallVector<unsigned, 8> NumTables(N); 7682 7683 // Base case: There is only one way to partition Clusters[N-1]. 7684 MinPartitions[N - 1] = 1; 7685 LastElement[N - 1] = N - 1; 7686 assert(MinJumpTableSize > 1); 7687 NumTables[N - 1] = 0; 7688 7689 // Note: loop indexes are signed to avoid underflow. 7690 for (int64_t i = N - 2; i >= 0; i--) { 7691 // Find optimal partitioning of Clusters[i..N-1]. 7692 // Baseline: Put Clusters[i] into a partition on its own. 7693 MinPartitions[i] = MinPartitions[i + 1] + 1; 7694 LastElement[i] = i; 7695 NumTables[i] = NumTables[i + 1]; 7696 7697 // Search for a solution that results in fewer partitions. 7698 for (int64_t j = N - 1; j > i; j--) { 7699 // Try building a partition from Clusters[i..j]. 7700 if (isDense(Clusters, &TotalCases[0], i, j)) { 7701 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7702 bool IsTable = j - i + 1 >= MinJumpTableSize; 7703 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7704 7705 // If this j leads to fewer partitions, or same number of partitions 7706 // with more lookup tables, it is a better partitioning. 7707 if (NumPartitions < MinPartitions[i] || 7708 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7709 MinPartitions[i] = NumPartitions; 7710 LastElement[i] = j; 7711 NumTables[i] = Tables; 7712 } 7713 } 7714 } 7715 } 7716 7717 // Iterate over the partitions, replacing some with jump tables in-place. 7718 unsigned DstIndex = 0; 7719 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7720 Last = LastElement[First]; 7721 assert(Last >= First); 7722 assert(DstIndex <= First); 7723 unsigned NumClusters = Last - First + 1; 7724 7725 CaseCluster JTCluster; 7726 if (NumClusters >= MinJumpTableSize && 7727 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7728 Clusters[DstIndex++] = JTCluster; 7729 } else { 7730 for (unsigned I = First; I <= Last; ++I) 7731 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7732 } 7733 } 7734 Clusters.resize(DstIndex); 7735 } 7736 7737 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7738 // FIXME: Using the pointer type doesn't seem ideal. 7739 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7740 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7741 return Range <= BW; 7742 } 7743 7744 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7745 unsigned NumCmps, 7746 const APInt &Low, 7747 const APInt &High) { 7748 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7749 // range of cases both require only one branch to lower. Just looking at the 7750 // number of clusters and destinations should be enough to decide whether to 7751 // build bit tests. 7752 7753 // To lower a range with bit tests, the range must fit the bitwidth of a 7754 // machine word. 7755 if (!rangeFitsInWord(Low, High)) 7756 return false; 7757 7758 // Decide whether it's profitable to lower this range with bit tests. Each 7759 // destination requires a bit test and branch, and there is an overall range 7760 // check branch. For a small number of clusters, separate comparisons might be 7761 // cheaper, and for many destinations, splitting the range might be better. 7762 return (NumDests == 1 && NumCmps >= 3) || 7763 (NumDests == 2 && NumCmps >= 5) || 7764 (NumDests == 3 && NumCmps >= 6); 7765 } 7766 7767 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7768 unsigned First, unsigned Last, 7769 const SwitchInst *SI, 7770 CaseCluster &BTCluster) { 7771 assert(First <= Last); 7772 if (First == Last) 7773 return false; 7774 7775 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7776 unsigned NumCmps = 0; 7777 for (int64_t I = First; I <= Last; ++I) { 7778 assert(Clusters[I].Kind == CC_Range); 7779 Dests.set(Clusters[I].MBB->getNumber()); 7780 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7781 } 7782 unsigned NumDests = Dests.count(); 7783 7784 APInt Low = Clusters[First].Low->getValue(); 7785 APInt High = Clusters[Last].High->getValue(); 7786 assert(Low.slt(High)); 7787 7788 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7789 return false; 7790 7791 APInt LowBound; 7792 APInt CmpRange; 7793 7794 const int BitWidth = DAG.getTargetLoweringInfo() 7795 .getPointerTy(DAG.getDataLayout()) 7796 .getSizeInBits(); 7797 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7798 7799 // Check if the clusters cover a contiguous range such that no value in the 7800 // range will jump to the default statement. 7801 bool ContiguousRange = true; 7802 for (int64_t I = First + 1; I <= Last; ++I) { 7803 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7804 ContiguousRange = false; 7805 break; 7806 } 7807 } 7808 7809 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7810 // Optimize the case where all the case values fit in a word without having 7811 // to subtract minValue. In this case, we can optimize away the subtraction. 7812 LowBound = APInt::getNullValue(Low.getBitWidth()); 7813 CmpRange = High; 7814 ContiguousRange = false; 7815 } else { 7816 LowBound = Low; 7817 CmpRange = High - Low; 7818 } 7819 7820 CaseBitsVector CBV; 7821 uint32_t TotalWeight = 0; 7822 for (unsigned i = First; i <= Last; ++i) { 7823 // Find the CaseBits for this destination. 7824 unsigned j; 7825 for (j = 0; j < CBV.size(); ++j) 7826 if (CBV[j].BB == Clusters[i].MBB) 7827 break; 7828 if (j == CBV.size()) 7829 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7830 CaseBits *CB = &CBV[j]; 7831 7832 // Update Mask, Bits and ExtraWeight. 7833 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7834 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7835 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7836 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7837 CB->Bits += Hi - Lo + 1; 7838 CB->ExtraWeight += Clusters[i].Weight; 7839 TotalWeight += Clusters[i].Weight; 7840 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7841 } 7842 7843 BitTestInfo BTI; 7844 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7845 // Sort by weight first, number of bits second. 7846 if (a.ExtraWeight != b.ExtraWeight) 7847 return a.ExtraWeight > b.ExtraWeight; 7848 return a.Bits > b.Bits; 7849 }); 7850 7851 for (auto &CB : CBV) { 7852 MachineBasicBlock *BitTestBB = 7853 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7854 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7855 } 7856 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7857 SI->getCondition(), -1U, MVT::Other, false, 7858 ContiguousRange, nullptr, nullptr, std::move(BTI), 7859 TotalWeight); 7860 7861 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7862 BitTestCases.size() - 1, TotalWeight); 7863 return true; 7864 } 7865 7866 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7867 const SwitchInst *SI) { 7868 // Partition Clusters into as few subsets as possible, where each subset has a 7869 // range that fits in a machine word and has <= 3 unique destinations. 7870 7871 #ifndef NDEBUG 7872 // Clusters must be sorted and contain Range or JumpTable clusters. 7873 assert(!Clusters.empty()); 7874 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7875 for (const CaseCluster &C : Clusters) 7876 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7877 for (unsigned i = 1; i < Clusters.size(); ++i) 7878 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7879 #endif 7880 7881 // The algorithm below is not suitable for -O0. 7882 if (TM.getOptLevel() == CodeGenOpt::None) 7883 return; 7884 7885 // If target does not have legal shift left, do not emit bit tests at all. 7886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7887 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7888 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7889 return; 7890 7891 int BitWidth = PTy.getSizeInBits(); 7892 const int64_t N = Clusters.size(); 7893 7894 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7895 SmallVector<unsigned, 8> MinPartitions(N); 7896 // LastElement[i] is the last element of the partition starting at i. 7897 SmallVector<unsigned, 8> LastElement(N); 7898 7899 // FIXME: This might not be the best algorithm for finding bit test clusters. 7900 7901 // Base case: There is only one way to partition Clusters[N-1]. 7902 MinPartitions[N - 1] = 1; 7903 LastElement[N - 1] = N - 1; 7904 7905 // Note: loop indexes are signed to avoid underflow. 7906 for (int64_t i = N - 2; i >= 0; --i) { 7907 // Find optimal partitioning of Clusters[i..N-1]. 7908 // Baseline: Put Clusters[i] into a partition on its own. 7909 MinPartitions[i] = MinPartitions[i + 1] + 1; 7910 LastElement[i] = i; 7911 7912 // Search for a solution that results in fewer partitions. 7913 // Note: the search is limited by BitWidth, reducing time complexity. 7914 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7915 // Try building a partition from Clusters[i..j]. 7916 7917 // Check the range. 7918 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7919 Clusters[j].High->getValue())) 7920 continue; 7921 7922 // Check nbr of destinations and cluster types. 7923 // FIXME: This works, but doesn't seem very efficient. 7924 bool RangesOnly = true; 7925 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7926 for (int64_t k = i; k <= j; k++) { 7927 if (Clusters[k].Kind != CC_Range) { 7928 RangesOnly = false; 7929 break; 7930 } 7931 Dests.set(Clusters[k].MBB->getNumber()); 7932 } 7933 if (!RangesOnly || Dests.count() > 3) 7934 break; 7935 7936 // Check if it's a better partition. 7937 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7938 if (NumPartitions < MinPartitions[i]) { 7939 // Found a better partition. 7940 MinPartitions[i] = NumPartitions; 7941 LastElement[i] = j; 7942 } 7943 } 7944 } 7945 7946 // Iterate over the partitions, replacing with bit-test clusters in-place. 7947 unsigned DstIndex = 0; 7948 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7949 Last = LastElement[First]; 7950 assert(First <= Last); 7951 assert(DstIndex <= First); 7952 7953 CaseCluster BitTestCluster; 7954 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7955 Clusters[DstIndex++] = BitTestCluster; 7956 } else { 7957 size_t NumClusters = Last - First + 1; 7958 std::memmove(&Clusters[DstIndex], &Clusters[First], 7959 sizeof(Clusters[0]) * NumClusters); 7960 DstIndex += NumClusters; 7961 } 7962 } 7963 Clusters.resize(DstIndex); 7964 } 7965 7966 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7967 MachineBasicBlock *SwitchMBB, 7968 MachineBasicBlock *DefaultMBB) { 7969 MachineFunction *CurMF = FuncInfo.MF; 7970 MachineBasicBlock *NextMBB = nullptr; 7971 MachineFunction::iterator BBI = W.MBB; 7972 if (++BBI != FuncInfo.MF->end()) 7973 NextMBB = BBI; 7974 7975 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7976 7977 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7978 7979 if (Size == 2 && W.MBB == SwitchMBB) { 7980 // If any two of the cases has the same destination, and if one value 7981 // is the same as the other, but has one bit unset that the other has set, 7982 // use bit manipulation to do two compares at once. For example: 7983 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7984 // TODO: This could be extended to merge any 2 cases in switches with 3 7985 // cases. 7986 // TODO: Handle cases where W.CaseBB != SwitchBB. 7987 CaseCluster &Small = *W.FirstCluster; 7988 CaseCluster &Big = *W.LastCluster; 7989 7990 if (Small.Low == Small.High && Big.Low == Big.High && 7991 Small.MBB == Big.MBB) { 7992 const APInt &SmallValue = Small.Low->getValue(); 7993 const APInt &BigValue = Big.Low->getValue(); 7994 7995 // Check that there is only one bit different. 7996 APInt CommonBit = BigValue ^ SmallValue; 7997 if (CommonBit.isPowerOf2()) { 7998 SDValue CondLHS = getValue(Cond); 7999 EVT VT = CondLHS.getValueType(); 8000 SDLoc DL = getCurSDLoc(); 8001 8002 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8003 DAG.getConstant(CommonBit, DL, VT)); 8004 SDValue Cond = DAG.getSetCC( 8005 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8006 ISD::SETEQ); 8007 8008 // Update successor info. 8009 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8010 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8011 addSuccessorWithWeight( 8012 SwitchMBB, DefaultMBB, 8013 // The default destination is the first successor in IR. 8014 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8015 : 0); 8016 8017 // Insert the true branch. 8018 SDValue BrCond = 8019 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8020 DAG.getBasicBlock(Small.MBB)); 8021 // Insert the false branch. 8022 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8023 DAG.getBasicBlock(DefaultMBB)); 8024 8025 DAG.setRoot(BrCond); 8026 return; 8027 } 8028 } 8029 } 8030 8031 if (TM.getOptLevel() != CodeGenOpt::None) { 8032 // Order cases by weight so the most likely case will be checked first. 8033 std::sort(W.FirstCluster, W.LastCluster + 1, 8034 [](const CaseCluster &a, const CaseCluster &b) { 8035 return a.Weight > b.Weight; 8036 }); 8037 8038 // Rearrange the case blocks so that the last one falls through if possible 8039 // without without changing the order of weights. 8040 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8041 --I; 8042 if (I->Weight > W.LastCluster->Weight) 8043 break; 8044 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8045 std::swap(*I, *W.LastCluster); 8046 break; 8047 } 8048 } 8049 } 8050 8051 // Compute total weight. 8052 uint32_t DefaultWeight = W.DefaultWeight; 8053 uint32_t UnhandledWeights = DefaultWeight; 8054 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8055 UnhandledWeights += I->Weight; 8056 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8057 } 8058 8059 MachineBasicBlock *CurMBB = W.MBB; 8060 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8061 MachineBasicBlock *Fallthrough; 8062 if (I == W.LastCluster) { 8063 // For the last cluster, fall through to the default destination. 8064 Fallthrough = DefaultMBB; 8065 } else { 8066 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8067 CurMF->insert(BBI, Fallthrough); 8068 // Put Cond in a virtual register to make it available from the new blocks. 8069 ExportFromCurrentBlock(Cond); 8070 } 8071 UnhandledWeights -= I->Weight; 8072 8073 switch (I->Kind) { 8074 case CC_JumpTable: { 8075 // FIXME: Optimize away range check based on pivot comparisons. 8076 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8077 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8078 8079 // The jump block hasn't been inserted yet; insert it here. 8080 MachineBasicBlock *JumpMBB = JT->MBB; 8081 CurMF->insert(BBI, JumpMBB); 8082 8083 uint32_t JumpWeight = I->Weight; 8084 uint32_t FallthroughWeight = UnhandledWeights; 8085 8086 // If Fallthrough is a target of the jump table, we evenly distribute 8087 // the weight on the edge to Fallthrough to successors of CurMBB. 8088 // Also update the weight on the edge from JumpMBB to Fallthrough. 8089 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8090 SE = JumpMBB->succ_end(); 8091 SI != SE; ++SI) { 8092 if (*SI == Fallthrough) { 8093 JumpWeight += DefaultWeight / 2; 8094 FallthroughWeight -= DefaultWeight / 2; 8095 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8096 break; 8097 } 8098 } 8099 8100 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8101 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8102 8103 // The jump table header will be inserted in our current block, do the 8104 // range check, and fall through to our fallthrough block. 8105 JTH->HeaderBB = CurMBB; 8106 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8107 8108 // If we're in the right place, emit the jump table header right now. 8109 if (CurMBB == SwitchMBB) { 8110 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8111 JTH->Emitted = true; 8112 } 8113 break; 8114 } 8115 case CC_BitTests: { 8116 // FIXME: Optimize away range check based on pivot comparisons. 8117 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8118 8119 // The bit test blocks haven't been inserted yet; insert them here. 8120 for (BitTestCase &BTC : BTB->Cases) 8121 CurMF->insert(BBI, BTC.ThisBB); 8122 8123 // Fill in fields of the BitTestBlock. 8124 BTB->Parent = CurMBB; 8125 BTB->Default = Fallthrough; 8126 8127 BTB->DefaultWeight = UnhandledWeights; 8128 // If the cases in bit test don't form a contiguous range, we evenly 8129 // distribute the weight on the edge to Fallthrough to two successors 8130 // of CurMBB. 8131 if (!BTB->ContiguousRange) { 8132 BTB->Weight += DefaultWeight / 2; 8133 BTB->DefaultWeight -= DefaultWeight / 2; 8134 } 8135 8136 // If we're in the right place, emit the bit test header right now. 8137 if (CurMBB == SwitchMBB) { 8138 visitBitTestHeader(*BTB, SwitchMBB); 8139 BTB->Emitted = true; 8140 } 8141 break; 8142 } 8143 case CC_Range: { 8144 const Value *RHS, *LHS, *MHS; 8145 ISD::CondCode CC; 8146 if (I->Low == I->High) { 8147 // Check Cond == I->Low. 8148 CC = ISD::SETEQ; 8149 LHS = Cond; 8150 RHS=I->Low; 8151 MHS = nullptr; 8152 } else { 8153 // Check I->Low <= Cond <= I->High. 8154 CC = ISD::SETLE; 8155 LHS = I->Low; 8156 MHS = Cond; 8157 RHS = I->High; 8158 } 8159 8160 // The false weight is the sum of all unhandled cases. 8161 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8162 UnhandledWeights); 8163 8164 if (CurMBB == SwitchMBB) 8165 visitSwitchCase(CB, SwitchMBB); 8166 else 8167 SwitchCases.push_back(CB); 8168 8169 break; 8170 } 8171 } 8172 CurMBB = Fallthrough; 8173 } 8174 } 8175 8176 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8177 CaseClusterIt First, 8178 CaseClusterIt Last) { 8179 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8180 if (X.Weight != CC.Weight) 8181 return X.Weight > CC.Weight; 8182 8183 // Ties are broken by comparing the case value. 8184 return X.Low->getValue().slt(CC.Low->getValue()); 8185 }); 8186 } 8187 8188 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8189 const SwitchWorkListItem &W, 8190 Value *Cond, 8191 MachineBasicBlock *SwitchMBB) { 8192 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8193 "Clusters not sorted?"); 8194 8195 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8196 8197 // Balance the tree based on branch weights to create a near-optimal (in terms 8198 // of search time given key frequency) binary search tree. See e.g. Kurt 8199 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8200 CaseClusterIt LastLeft = W.FirstCluster; 8201 CaseClusterIt FirstRight = W.LastCluster; 8202 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8203 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8204 8205 // Move LastLeft and FirstRight towards each other from opposite directions to 8206 // find a partitioning of the clusters which balances the weight on both 8207 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8208 // taken to ensure 0-weight nodes are distributed evenly. 8209 unsigned I = 0; 8210 while (LastLeft + 1 < FirstRight) { 8211 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8212 LeftWeight += (++LastLeft)->Weight; 8213 else 8214 RightWeight += (--FirstRight)->Weight; 8215 I++; 8216 } 8217 8218 for (;;) { 8219 // Our binary search tree differs from a typical BST in that ours can have up 8220 // to three values in each leaf. The pivot selection above doesn't take that 8221 // into account, which means the tree might require more nodes and be less 8222 // efficient. We compensate for this here. 8223 8224 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8225 unsigned NumRight = W.LastCluster - FirstRight + 1; 8226 8227 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8228 // If one side has less than 3 clusters, and the other has more than 3, 8229 // consider taking a cluster from the other side. 8230 8231 if (NumLeft < NumRight) { 8232 // Consider moving the first cluster on the right to the left side. 8233 CaseCluster &CC = *FirstRight; 8234 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8235 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8236 if (LeftSideRank <= RightSideRank) { 8237 // Moving the cluster to the left does not demote it. 8238 ++LastLeft; 8239 ++FirstRight; 8240 continue; 8241 } 8242 } else { 8243 assert(NumRight < NumLeft); 8244 // Consider moving the last element on the left to the right side. 8245 CaseCluster &CC = *LastLeft; 8246 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8247 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8248 if (RightSideRank <= LeftSideRank) { 8249 // Moving the cluster to the right does not demot it. 8250 --LastLeft; 8251 --FirstRight; 8252 continue; 8253 } 8254 } 8255 } 8256 break; 8257 } 8258 8259 assert(LastLeft + 1 == FirstRight); 8260 assert(LastLeft >= W.FirstCluster); 8261 assert(FirstRight <= W.LastCluster); 8262 8263 // Use the first element on the right as pivot since we will make less-than 8264 // comparisons against it. 8265 CaseClusterIt PivotCluster = FirstRight; 8266 assert(PivotCluster > W.FirstCluster); 8267 assert(PivotCluster <= W.LastCluster); 8268 8269 CaseClusterIt FirstLeft = W.FirstCluster; 8270 CaseClusterIt LastRight = W.LastCluster; 8271 8272 const ConstantInt *Pivot = PivotCluster->Low; 8273 8274 // New blocks will be inserted immediately after the current one. 8275 MachineFunction::iterator BBI = W.MBB; 8276 ++BBI; 8277 8278 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8279 // we can branch to its destination directly if it's squeezed exactly in 8280 // between the known lower bound and Pivot - 1. 8281 MachineBasicBlock *LeftMBB; 8282 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8283 FirstLeft->Low == W.GE && 8284 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8285 LeftMBB = FirstLeft->MBB; 8286 } else { 8287 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8288 FuncInfo.MF->insert(BBI, LeftMBB); 8289 WorkList.push_back( 8290 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8291 // Put Cond in a virtual register to make it available from the new blocks. 8292 ExportFromCurrentBlock(Cond); 8293 } 8294 8295 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8296 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8297 // directly if RHS.High equals the current upper bound. 8298 MachineBasicBlock *RightMBB; 8299 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8300 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8301 RightMBB = FirstRight->MBB; 8302 } else { 8303 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8304 FuncInfo.MF->insert(BBI, RightMBB); 8305 WorkList.push_back( 8306 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8307 // Put Cond in a virtual register to make it available from the new blocks. 8308 ExportFromCurrentBlock(Cond); 8309 } 8310 8311 // Create the CaseBlock record that will be used to lower the branch. 8312 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8313 LeftWeight, RightWeight); 8314 8315 if (W.MBB == SwitchMBB) 8316 visitSwitchCase(CB, SwitchMBB); 8317 else 8318 SwitchCases.push_back(CB); 8319 } 8320 8321 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8322 // Extract cases from the switch. 8323 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8324 CaseClusterVector Clusters; 8325 Clusters.reserve(SI.getNumCases()); 8326 for (auto I : SI.cases()) { 8327 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8328 const ConstantInt *CaseVal = I.getCaseValue(); 8329 uint32_t Weight = 8330 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8331 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8332 } 8333 8334 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8335 8336 // Cluster adjacent cases with the same destination. We do this at all 8337 // optimization levels because it's cheap to do and will make codegen faster 8338 // if there are many clusters. 8339 sortAndRangeify(Clusters); 8340 8341 if (TM.getOptLevel() != CodeGenOpt::None) { 8342 // Replace an unreachable default with the most popular destination. 8343 // FIXME: Exploit unreachable default more aggressively. 8344 bool UnreachableDefault = 8345 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8346 if (UnreachableDefault && !Clusters.empty()) { 8347 DenseMap<const BasicBlock *, unsigned> Popularity; 8348 unsigned MaxPop = 0; 8349 const BasicBlock *MaxBB = nullptr; 8350 for (auto I : SI.cases()) { 8351 const BasicBlock *BB = I.getCaseSuccessor(); 8352 if (++Popularity[BB] > MaxPop) { 8353 MaxPop = Popularity[BB]; 8354 MaxBB = BB; 8355 } 8356 } 8357 // Set new default. 8358 assert(MaxPop > 0 && MaxBB); 8359 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8360 8361 // Remove cases that were pointing to the destination that is now the 8362 // default. 8363 CaseClusterVector New; 8364 New.reserve(Clusters.size()); 8365 for (CaseCluster &CC : Clusters) { 8366 if (CC.MBB != DefaultMBB) 8367 New.push_back(CC); 8368 } 8369 Clusters = std::move(New); 8370 } 8371 } 8372 8373 // If there is only the default destination, jump there directly. 8374 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8375 if (Clusters.empty()) { 8376 SwitchMBB->addSuccessor(DefaultMBB); 8377 if (DefaultMBB != NextBlock(SwitchMBB)) { 8378 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8379 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8380 } 8381 return; 8382 } 8383 8384 findJumpTables(Clusters, &SI, DefaultMBB); 8385 findBitTestClusters(Clusters, &SI); 8386 8387 DEBUG({ 8388 dbgs() << "Case clusters: "; 8389 for (const CaseCluster &C : Clusters) { 8390 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8391 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8392 8393 C.Low->getValue().print(dbgs(), true); 8394 if (C.Low != C.High) { 8395 dbgs() << '-'; 8396 C.High->getValue().print(dbgs(), true); 8397 } 8398 dbgs() << ' '; 8399 } 8400 dbgs() << '\n'; 8401 }); 8402 8403 assert(!Clusters.empty()); 8404 SwitchWorkList WorkList; 8405 CaseClusterIt First = Clusters.begin(); 8406 CaseClusterIt Last = Clusters.end() - 1; 8407 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8408 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8409 8410 while (!WorkList.empty()) { 8411 SwitchWorkListItem W = WorkList.back(); 8412 WorkList.pop_back(); 8413 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8414 8415 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8416 // For optimized builds, lower large range as a balanced binary tree. 8417 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8418 continue; 8419 } 8420 8421 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8422 } 8423 } 8424