1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/MachineValueType.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/CodeGen/WinEHFuncInfo.h" 62 #include "llvm/IR/Argument.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Constant.h" 69 #include "llvm/IR/ConstantRange.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include "llvm/IR/DebugLoc.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/GetElementPtrTypeIterator.h" 77 #include "llvm/IR/InlineAsm.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/IntrinsicInst.h" 82 #include "llvm/IR/Intrinsics.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/Casting.h" 96 #include "llvm/Support/CodeGen.h" 97 #include "llvm/Support/CommandLine.h" 98 #include "llvm/Support/Compiler.h" 99 #include "llvm/Support/Debug.h" 100 #include "llvm/Support/ErrorHandling.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetIntrinsicInfo.h" 104 #include "llvm/Target/TargetLowering.h" 105 #include "llvm/Target/TargetMachine.h" 106 #include "llvm/Target/TargetOpcodes.h" 107 #include "llvm/Target/TargetOptions.h" 108 #include "llvm/Target/TargetRegisterInfo.h" 109 #include "llvm/Target/TargetSubtargetInfo.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstring> 115 #include <iterator> 116 #include <limits> 117 #include <numeric> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "isel" 125 126 /// LimitFloatPrecision - Generate low-precision inline sequences for 127 /// some float libcalls (6, 8 or 12 bits). 128 static unsigned LimitFloatPrecision; 129 130 static cl::opt<unsigned, true> 131 LimitFPPrecision("limit-float-precision", 132 cl::desc("Generate low-precision inline sequences " 133 "for some float libcalls"), 134 cl::location(LimitFloatPrecision), 135 cl::init(0)); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 // True if the Value passed requires ABI mangling as it is a parameter to a 154 // function or a return value from a function which is not an intrinsic. 155 static bool isABIRegCopy(const Value *V) { 156 const bool IsRetInst = V && isa<ReturnInst>(V); 157 const bool IsCallInst = V && isa<CallInst>(V); 158 const bool IsInLineAsm = 159 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 160 const bool IsIndirectFunctionCall = 161 IsCallInst && !IsInLineAsm && 162 !static_cast<const CallInst *>(V)->getCalledFunction(); 163 // It is possible that the call instruction is an inline asm statement or an 164 // indirect function call in which case the return value of 165 // getCalledFunction() would be nullptr. 166 const bool IsInstrinsicCall = 167 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 168 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 169 Intrinsic::not_intrinsic; 170 171 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 172 } 173 174 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 175 const SDValue *Parts, unsigned NumParts, 176 MVT PartVT, EVT ValueVT, const Value *V, 177 bool IsABIRegCopy); 178 179 /// getCopyFromParts - Create a value that contains the specified legal parts 180 /// combined into the value they represent. If the parts combine to a type 181 /// larger than ValueVT then AssertOp can be used to specify whether the extra 182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 183 /// (ISD::AssertSext). 184 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 185 const SDValue *Parts, unsigned NumParts, 186 MVT PartVT, EVT ValueVT, const Value *V, 187 Optional<ISD::NodeType> AssertOp = None, 188 bool IsABIRegCopy = false) { 189 if (ValueVT.isVector()) 190 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 191 PartVT, ValueVT, V, IsABIRegCopy); 192 193 assert(NumParts > 0 && "No parts to assemble!"); 194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 195 SDValue Val = Parts[0]; 196 197 if (NumParts > 1) { 198 // Assemble the value from multiple parts. 199 if (ValueVT.isInteger()) { 200 unsigned PartBits = PartVT.getSizeInBits(); 201 unsigned ValueBits = ValueVT.getSizeInBits(); 202 203 // Assemble the power of 2 part. 204 unsigned RoundParts = NumParts & (NumParts - 1) ? 205 1 << Log2_32(NumParts) : NumParts; 206 unsigned RoundBits = PartBits * RoundParts; 207 EVT RoundVT = RoundBits == ValueBits ? 208 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 209 SDValue Lo, Hi; 210 211 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 212 213 if (RoundParts > 2) { 214 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 215 PartVT, HalfVT, V); 216 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 217 RoundParts / 2, PartVT, HalfVT, V); 218 } else { 219 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 220 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 221 } 222 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 226 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 227 228 if (RoundParts < NumParts) { 229 // Assemble the trailing non-power-of-2 part. 230 unsigned OddParts = NumParts - RoundParts; 231 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 232 Hi = getCopyFromParts(DAG, DL, 233 Parts + RoundParts, OddParts, PartVT, OddVT, V); 234 235 // Combine the round and odd parts. 236 Lo = Val; 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 240 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 241 Hi = 242 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 243 DAG.getConstant(Lo.getValueSizeInBits(), DL, 244 TLI.getPointerTy(DAG.getDataLayout()))); 245 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 246 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 247 } 248 } else if (PartVT.isFloatingPoint()) { 249 // FP split into multiple FP parts (for ppcf128) 250 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 251 "Unexpected split"); 252 SDValue Lo, Hi; 253 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 254 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 255 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 256 std::swap(Lo, Hi); 257 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 258 } else { 259 // FP split into integer parts (soft fp) 260 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 261 !PartVT.isVector() && "Unexpected split"); 262 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 263 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 264 } 265 } 266 267 // There is now one part, held in Val. Correct it to match ValueVT. 268 // PartEVT is the type of the register class that holds the value. 269 // ValueVT is the type of the inline asm operation. 270 EVT PartEVT = Val.getValueType(); 271 272 if (PartEVT == ValueVT) 273 return Val; 274 275 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 276 ValueVT.bitsLT(PartEVT)) { 277 // For an FP value in an integer part, we need to truncate to the right 278 // width first. 279 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 280 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 281 } 282 283 // Handle types that have the same size. 284 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 285 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 286 287 // Handle types with different sizes. 288 if (PartEVT.isInteger() && ValueVT.isInteger()) { 289 if (ValueVT.bitsLT(PartEVT)) { 290 // For a truncate, see if we have any information to 291 // indicate whether the truncated bits will always be 292 // zero or sign-extension. 293 if (AssertOp.hasValue()) 294 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 295 DAG.getValueType(ValueVT)); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 299 } 300 301 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 302 // FP_ROUND's are always exact here. 303 if (ValueVT.bitsLT(Val.getValueType())) 304 return DAG.getNode( 305 ISD::FP_ROUND, DL, ValueVT, Val, 306 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 llvm_unreachable("Unknown mismatch!"); 312 } 313 314 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 315 const Twine &ErrMsg) { 316 const Instruction *I = dyn_cast_or_null<Instruction>(V); 317 if (!V) 318 return Ctx.emitError(ErrMsg); 319 320 const char *AsmError = ", possible invalid constraint for vector type"; 321 if (const CallInst *CI = dyn_cast<CallInst>(I)) 322 if (isa<InlineAsm>(CI->getCalledValue())) 323 return Ctx.emitError(I, ErrMsg + AsmError); 324 325 return Ctx.emitError(I, ErrMsg); 326 } 327 328 /// getCopyFromPartsVector - Create a value that contains the specified legal 329 /// parts combined into the value they represent. If the parts combine to a 330 /// type larger than ValueVT then AssertOp can be used to specify whether the 331 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 332 /// ValueVT (ISD::AssertSext). 333 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 334 const SDValue *Parts, unsigned NumParts, 335 MVT PartVT, EVT ValueVT, const Value *V, 336 bool IsABIRegCopy) { 337 assert(ValueVT.isVector() && "Not a vector value"); 338 assert(NumParts > 0 && "No parts to assemble!"); 339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 340 SDValue Val = Parts[0]; 341 342 // Handle a multi-element vector. 343 if (NumParts > 1) { 344 EVT IntermediateVT; 345 MVT RegisterVT; 346 unsigned NumIntermediates; 347 unsigned NumRegs; 348 349 if (IsABIRegCopy) { 350 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 351 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 352 RegisterVT); 353 } else { 354 NumRegs = 355 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 356 NumIntermediates, RegisterVT); 357 } 358 359 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 360 NumParts = NumRegs; // Silence a compiler warning. 361 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 362 assert(RegisterVT.getSizeInBits() == 363 Parts[0].getSimpleValueType().getSizeInBits() && 364 "Part type sizes don't match!"); 365 366 // Assemble the parts into intermediate operands. 367 SmallVector<SDValue, 8> Ops(NumIntermediates); 368 if (NumIntermediates == NumParts) { 369 // If the register was not expanded, truncate or copy the value, 370 // as appropriate. 371 for (unsigned i = 0; i != NumParts; ++i) 372 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 373 PartVT, IntermediateVT, V); 374 } else if (NumParts > 0) { 375 // If the intermediate type was expanded, build the intermediate 376 // operands from the parts. 377 assert(NumParts % NumIntermediates == 0 && 378 "Must expand into a divisible number of parts!"); 379 unsigned Factor = NumParts / NumIntermediates; 380 for (unsigned i = 0; i != NumIntermediates; ++i) 381 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 382 PartVT, IntermediateVT, V); 383 } 384 385 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 386 // intermediate operands. 387 EVT BuiltVectorTy = 388 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 389 (IntermediateVT.isVector() 390 ? IntermediateVT.getVectorNumElements() * NumParts 391 : NumIntermediates)); 392 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 393 : ISD::BUILD_VECTOR, 394 DL, BuiltVectorTy, Ops); 395 } 396 397 // There is now one part, held in Val. Correct it to match ValueVT. 398 EVT PartEVT = Val.getValueType(); 399 400 if (PartEVT == ValueVT) 401 return Val; 402 403 if (PartEVT.isVector()) { 404 // If the element type of the source/dest vectors are the same, but the 405 // parts vector has more elements than the value vector, then we have a 406 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 407 // elements we want. 408 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 409 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 410 "Cannot narrow, it would be a lossy transformation"); 411 return DAG.getNode( 412 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode( 446 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 447 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 458 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 459 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 460 461 return DAG.getBuildVector(ValueVT, DL, Val); 462 } 463 464 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 465 SDValue Val, SDValue *Parts, unsigned NumParts, 466 MVT PartVT, const Value *V, bool IsABIRegCopy); 467 468 /// getCopyToParts - Create a series of nodes that contain the specified value 469 /// split into legal parts. If the parts contain more bits than Val, then, for 470 /// integers, ExtendKind can be used to specify how to generate the extra bits. 471 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 472 SDValue *Parts, unsigned NumParts, MVT PartVT, 473 const Value *V, 474 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 475 bool IsABIRegCopy = false) { 476 EVT ValueVT = Val.getValueType(); 477 478 // Handle the vector case separately. 479 if (ValueVT.isVector()) 480 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 481 IsABIRegCopy); 482 483 unsigned PartBits = PartVT.getSizeInBits(); 484 unsigned OrigNumParts = NumParts; 485 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 486 "Copying to an illegal type!"); 487 488 if (NumParts == 0) 489 return; 490 491 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 492 EVT PartEVT = PartVT; 493 if (PartEVT == ValueVT) { 494 assert(NumParts == 1 && "No-op copy with multiple parts!"); 495 Parts[0] = Val; 496 return; 497 } 498 499 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 500 // If the parts cover more bits than the value has, promote the value. 501 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 502 assert(NumParts == 1 && "Do not know what to promote to!"); 503 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 504 } else { 505 if (ValueVT.isFloatingPoint()) { 506 // FP values need to be bitcast, then extended if they are being put 507 // into a larger container. 508 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 509 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 510 } 511 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 512 ValueVT.isInteger() && 513 "Unknown mismatch!"); 514 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 515 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 516 if (PartVT == MVT::x86mmx) 517 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 518 } 519 } else if (PartBits == ValueVT.getSizeInBits()) { 520 // Different types of the same size. 521 assert(NumParts == 1 && PartEVT != ValueVT); 522 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 523 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 524 // If the parts cover less bits than value has, truncate the value. 525 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 526 ValueVT.isInteger() && 527 "Unknown mismatch!"); 528 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 529 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 530 if (PartVT == MVT::x86mmx) 531 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 532 } 533 534 // The value may have changed - recompute ValueVT. 535 ValueVT = Val.getValueType(); 536 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 537 "Failed to tile the value with PartVT!"); 538 539 if (NumParts == 1) { 540 if (PartEVT != ValueVT) { 541 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 542 "scalar-to-vector conversion failed"); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Expand the value into multiple parts. 551 if (NumParts & (NumParts - 1)) { 552 // The number of parts is not a power of 2. Split off and copy the tail. 553 assert(PartVT.isInteger() && ValueVT.isInteger() && 554 "Do not know what to expand to!"); 555 unsigned RoundParts = 1 << Log2_32(NumParts); 556 unsigned RoundBits = RoundParts * PartBits; 557 unsigned OddParts = NumParts - RoundParts; 558 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 559 DAG.getIntPtrConstant(RoundBits, DL)); 560 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 561 562 if (DAG.getDataLayout().isBigEndian()) 563 // The odd parts were reversed by getCopyToParts - unreverse them. 564 std::reverse(Parts + RoundParts, Parts + NumParts); 565 566 NumParts = RoundParts; 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 } 570 571 // The number of parts is a power of 2. Repeatedly bisect the value using 572 // EXTRACT_ELEMENT. 573 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 574 EVT::getIntegerVT(*DAG.getContext(), 575 ValueVT.getSizeInBits()), 576 Val); 577 578 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 579 for (unsigned i = 0; i < NumParts; i += StepSize) { 580 unsigned ThisBits = StepSize * PartBits / 2; 581 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 582 SDValue &Part0 = Parts[i]; 583 SDValue &Part1 = Parts[i+StepSize/2]; 584 585 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 586 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 587 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 588 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 589 590 if (ThisBits == PartBits && ThisVT != PartVT) { 591 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 592 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 593 } 594 } 595 } 596 597 if (DAG.getDataLayout().isBigEndian()) 598 std::reverse(Parts, Parts + OrigNumParts); 599 } 600 601 602 /// getCopyToPartsVector - Create a series of nodes that contain the specified 603 /// value split into legal parts. 604 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 605 SDValue Val, SDValue *Parts, unsigned NumParts, 606 MVT PartVT, const Value *V, 607 bool IsABIRegCopy) { 608 EVT ValueVT = Val.getValueType(); 609 assert(ValueVT.isVector() && "Not a vector"); 610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 611 612 if (NumParts == 1) { 613 EVT PartEVT = PartVT; 614 if (PartEVT == ValueVT) { 615 // Nothing to do. 616 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 617 // Bitconvert vector->vector case. 618 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 619 } else if (PartVT.isVector() && 620 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 621 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 622 EVT ElementVT = PartVT.getVectorElementType(); 623 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 624 // undef elements. 625 SmallVector<SDValue, 16> Ops; 626 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 627 Ops.push_back(DAG.getNode( 628 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 629 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 630 631 for (unsigned i = ValueVT.getVectorNumElements(), 632 e = PartVT.getVectorNumElements(); i != e; ++i) 633 Ops.push_back(DAG.getUNDEF(ElementVT)); 634 635 Val = DAG.getBuildVector(PartVT, DL, Ops); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 639 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 640 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 641 } else if (PartVT.isVector() && 642 PartEVT.getVectorElementType().bitsGE( 643 ValueVT.getVectorElementType()) && 644 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 645 646 // Promoted vector extract 647 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 648 } else { 649 if (ValueVT.getVectorNumElements() == 1) { 650 Val = DAG.getNode( 651 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 652 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 653 } else { 654 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 655 "lossy conversion of vector to scalar type"); 656 EVT IntermediateType = 657 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 658 Val = DAG.getBitcast(IntermediateType, Val); 659 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 660 } 661 } 662 663 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 664 Parts[0] = Val; 665 return; 666 } 667 668 // Handle a multi-element vector. 669 EVT IntermediateVT; 670 MVT RegisterVT; 671 unsigned NumIntermediates; 672 unsigned NumRegs; 673 if (IsABIRegCopy) { 674 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 675 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 676 RegisterVT); 677 } else { 678 NumRegs = 679 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 680 NumIntermediates, RegisterVT); 681 } 682 unsigned NumElements = ValueVT.getVectorNumElements(); 683 684 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 685 NumParts = NumRegs; // Silence a compiler warning. 686 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 687 688 // Convert the vector to the appropiate type if necessary. 689 unsigned DestVectorNoElts = 690 NumIntermediates * 691 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 692 EVT BuiltVectorTy = EVT::getVectorVT( 693 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 694 if (Val.getValueType() != BuiltVectorTy) 695 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 696 697 // Split the vector into intermediate operands. 698 SmallVector<SDValue, 8> Ops(NumIntermediates); 699 for (unsigned i = 0; i != NumIntermediates; ++i) { 700 if (IntermediateVT.isVector()) 701 Ops[i] = 702 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 703 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 704 TLI.getVectorIdxTy(DAG.getDataLayout()))); 705 else 706 Ops[i] = DAG.getNode( 707 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 708 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 709 } 710 711 // Split the intermediate operands into legal parts. 712 if (NumParts == NumIntermediates) { 713 // If the register was not expanded, promote or copy the value, 714 // as appropriate. 715 for (unsigned i = 0; i != NumParts; ++i) 716 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 717 } else if (NumParts > 0) { 718 // If the intermediate type was expanded, split each the value into 719 // legal parts. 720 assert(NumIntermediates != 0 && "division by zero"); 721 assert(NumParts % NumIntermediates == 0 && 722 "Must expand into a divisible number of parts!"); 723 unsigned Factor = NumParts / NumIntermediates; 724 for (unsigned i = 0; i != NumIntermediates; ++i) 725 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 726 } 727 } 728 729 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 730 EVT valuevt, bool IsABIMangledValue) 731 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 732 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 733 734 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 735 const DataLayout &DL, unsigned Reg, Type *Ty, 736 bool IsABIMangledValue) { 737 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 738 739 IsABIMangled = IsABIMangledValue; 740 741 for (EVT ValueVT : ValueVTs) { 742 unsigned NumRegs = IsABIMangledValue 743 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 744 : TLI.getNumRegisters(Context, ValueVT); 745 MVT RegisterVT = IsABIMangledValue 746 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 747 : TLI.getRegisterType(Context, ValueVT); 748 for (unsigned i = 0; i != NumRegs; ++i) 749 Regs.push_back(Reg + i); 750 RegVTs.push_back(RegisterVT); 751 RegCount.push_back(NumRegs); 752 Reg += NumRegs; 753 } 754 } 755 756 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 757 FunctionLoweringInfo &FuncInfo, 758 const SDLoc &dl, SDValue &Chain, 759 SDValue *Flag, const Value *V) const { 760 // A Value with type {} or [0 x %t] needs no registers. 761 if (ValueVTs.empty()) 762 return SDValue(); 763 764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 765 766 // Assemble the legal parts into the final values. 767 SmallVector<SDValue, 4> Values(ValueVTs.size()); 768 SmallVector<SDValue, 8> Parts; 769 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 770 // Copy the legal parts from the registers. 771 EVT ValueVT = ValueVTs[Value]; 772 unsigned NumRegs = RegCount[Value]; 773 MVT RegisterVT = IsABIMangled 774 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 775 : RegVTs[Value]; 776 777 Parts.resize(NumRegs); 778 for (unsigned i = 0; i != NumRegs; ++i) { 779 SDValue P; 780 if (!Flag) { 781 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 782 } else { 783 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 784 *Flag = P.getValue(2); 785 } 786 787 Chain = P.getValue(1); 788 Parts[i] = P; 789 790 // If the source register was virtual and if we know something about it, 791 // add an assert node. 792 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 793 !RegisterVT.isInteger() || RegisterVT.isVector()) 794 continue; 795 796 const FunctionLoweringInfo::LiveOutInfo *LOI = 797 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 798 if (!LOI) 799 continue; 800 801 unsigned RegSize = RegisterVT.getSizeInBits(); 802 unsigned NumSignBits = LOI->NumSignBits; 803 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 804 805 if (NumZeroBits == RegSize) { 806 // The current value is a zero. 807 // Explicitly express that as it would be easier for 808 // optimizations to kick in. 809 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 810 continue; 811 } 812 813 // FIXME: We capture more information than the dag can represent. For 814 // now, just use the tightest assertzext/assertsext possible. 815 bool isSExt = true; 816 EVT FromVT(MVT::Other); 817 if (NumSignBits == RegSize) { 818 isSExt = true; // ASSERT SEXT 1 819 FromVT = MVT::i1; 820 } else if (NumZeroBits >= RegSize - 1) { 821 isSExt = false; // ASSERT ZEXT 1 822 FromVT = MVT::i1; 823 } else if (NumSignBits > RegSize - 8) { 824 isSExt = true; // ASSERT SEXT 8 825 FromVT = MVT::i8; 826 } else if (NumZeroBits >= RegSize - 8) { 827 isSExt = false; // ASSERT ZEXT 8 828 FromVT = MVT::i8; 829 } else if (NumSignBits > RegSize - 16) { 830 isSExt = true; // ASSERT SEXT 16 831 FromVT = MVT::i16; 832 } else if (NumZeroBits >= RegSize - 16) { 833 isSExt = false; // ASSERT ZEXT 16 834 FromVT = MVT::i16; 835 } else if (NumSignBits > RegSize - 32) { 836 isSExt = true; // ASSERT SEXT 32 837 FromVT = MVT::i32; 838 } else if (NumZeroBits >= RegSize - 32) { 839 isSExt = false; // ASSERT ZEXT 32 840 FromVT = MVT::i32; 841 } else { 842 continue; 843 } 844 // Add an assertion node. 845 assert(FromVT != MVT::Other); 846 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 847 RegisterVT, P, DAG.getValueType(FromVT)); 848 } 849 850 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 851 NumRegs, RegisterVT, ValueVT, V); 852 Part += NumRegs; 853 Parts.clear(); 854 } 855 856 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 857 } 858 859 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 860 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 861 const Value *V, 862 ISD::NodeType PreferredExtendType) const { 863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 864 ISD::NodeType ExtendKind = PreferredExtendType; 865 866 // Get the list of the values's legal parts. 867 unsigned NumRegs = Regs.size(); 868 SmallVector<SDValue, 8> Parts(NumRegs); 869 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 870 unsigned NumParts = RegCount[Value]; 871 872 MVT RegisterVT = IsABIMangled 873 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 874 : RegVTs[Value]; 875 876 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 877 ExtendKind = ISD::ZERO_EXTEND; 878 879 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 880 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 881 Part += NumParts; 882 } 883 884 // Copy the parts into the registers. 885 SmallVector<SDValue, 8> Chains(NumRegs); 886 for (unsigned i = 0; i != NumRegs; ++i) { 887 SDValue Part; 888 if (!Flag) { 889 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 890 } else { 891 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 892 *Flag = Part.getValue(1); 893 } 894 895 Chains[i] = Part.getValue(0); 896 } 897 898 if (NumRegs == 1 || Flag) 899 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 900 // flagged to it. That is the CopyToReg nodes and the user are considered 901 // a single scheduling unit. If we create a TokenFactor and return it as 902 // chain, then the TokenFactor is both a predecessor (operand) of the 903 // user as well as a successor (the TF operands are flagged to the user). 904 // c1, f1 = CopyToReg 905 // c2, f2 = CopyToReg 906 // c3 = TokenFactor c1, c2 907 // ... 908 // = op c3, ..., f2 909 Chain = Chains[NumRegs-1]; 910 else 911 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 912 } 913 914 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 915 unsigned MatchingIdx, const SDLoc &dl, 916 SelectionDAG &DAG, 917 std::vector<SDValue> &Ops) const { 918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 919 920 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 921 if (HasMatching) 922 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 923 else if (!Regs.empty() && 924 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 925 // Put the register class of the virtual registers in the flag word. That 926 // way, later passes can recompute register class constraints for inline 927 // assembly as well as normal instructions. 928 // Don't do this for tied operands that can use the regclass information 929 // from the def. 930 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 931 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 932 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 933 } 934 935 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 936 Ops.push_back(Res); 937 938 if (Code == InlineAsm::Kind_Clobber) { 939 // Clobbers should always have a 1:1 mapping with registers, and may 940 // reference registers that have illegal (e.g. vector) types. Hence, we 941 // shouldn't try to apply any sort of splitting logic to them. 942 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 943 "No 1:1 mapping from clobbers to regs?"); 944 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 945 (void)SP; 946 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 947 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 948 assert( 949 (Regs[I] != SP || 950 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 951 "If we clobbered the stack pointer, MFI should know about it."); 952 } 953 return; 954 } 955 956 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 957 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 958 MVT RegisterVT = RegVTs[Value]; 959 for (unsigned i = 0; i != NumRegs; ++i) { 960 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 961 unsigned TheReg = Regs[Reg++]; 962 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 963 } 964 } 965 } 966 967 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 968 const TargetLibraryInfo *li) { 969 AA = aa; 970 GFI = gfi; 971 LibInfo = li; 972 DL = &DAG.getDataLayout(); 973 Context = DAG.getContext(); 974 LPadToCallSiteMap.clear(); 975 } 976 977 void SelectionDAGBuilder::clear() { 978 NodeMap.clear(); 979 UnusedArgNodeMap.clear(); 980 PendingLoads.clear(); 981 PendingExports.clear(); 982 CurInst = nullptr; 983 HasTailCall = false; 984 SDNodeOrder = LowestSDNodeOrder; 985 StatepointLowering.clear(); 986 } 987 988 void SelectionDAGBuilder::clearDanglingDebugInfo() { 989 DanglingDebugInfoMap.clear(); 990 } 991 992 SDValue SelectionDAGBuilder::getRoot() { 993 if (PendingLoads.empty()) 994 return DAG.getRoot(); 995 996 if (PendingLoads.size() == 1) { 997 SDValue Root = PendingLoads[0]; 998 DAG.setRoot(Root); 999 PendingLoads.clear(); 1000 return Root; 1001 } 1002 1003 // Otherwise, we have to make a token factor node. 1004 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1005 PendingLoads); 1006 PendingLoads.clear(); 1007 DAG.setRoot(Root); 1008 return Root; 1009 } 1010 1011 SDValue SelectionDAGBuilder::getControlRoot() { 1012 SDValue Root = DAG.getRoot(); 1013 1014 if (PendingExports.empty()) 1015 return Root; 1016 1017 // Turn all of the CopyToReg chains into one factored node. 1018 if (Root.getOpcode() != ISD::EntryToken) { 1019 unsigned i = 0, e = PendingExports.size(); 1020 for (; i != e; ++i) { 1021 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1022 if (PendingExports[i].getNode()->getOperand(0) == Root) 1023 break; // Don't add the root if we already indirectly depend on it. 1024 } 1025 1026 if (i == e) 1027 PendingExports.push_back(Root); 1028 } 1029 1030 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1031 PendingExports); 1032 PendingExports.clear(); 1033 DAG.setRoot(Root); 1034 return Root; 1035 } 1036 1037 void SelectionDAGBuilder::visit(const Instruction &I) { 1038 // Set up outgoing PHI node register values before emitting the terminator. 1039 if (isa<TerminatorInst>(&I)) { 1040 HandlePHINodesInSuccessorBlocks(I.getParent()); 1041 } 1042 1043 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1044 if (!isa<DbgInfoIntrinsic>(I)) 1045 ++SDNodeOrder; 1046 1047 CurInst = &I; 1048 1049 visit(I.getOpcode(), I); 1050 1051 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1052 !isStatepoint(&I)) // statepoints handle their exports internally 1053 CopyToExportRegsIfNeeded(&I); 1054 1055 CurInst = nullptr; 1056 } 1057 1058 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1059 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1060 } 1061 1062 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1063 // Note: this doesn't use InstVisitor, because it has to work with 1064 // ConstantExpr's in addition to instructions. 1065 switch (Opcode) { 1066 default: llvm_unreachable("Unknown instruction type encountered!"); 1067 // Build the switch statement using the Instruction.def file. 1068 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1069 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1070 #include "llvm/IR/Instruction.def" 1071 } 1072 } 1073 1074 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1075 // generate the debug data structures now that we've seen its definition. 1076 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1077 SDValue Val) { 1078 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1079 if (DDI.getDI()) { 1080 const DbgValueInst *DI = DDI.getDI(); 1081 DebugLoc dl = DDI.getdl(); 1082 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1083 DILocalVariable *Variable = DI->getVariable(); 1084 DIExpression *Expr = DI->getExpression(); 1085 assert(Variable->isValidLocationForIntrinsic(dl) && 1086 "Expected inlined-at fields to agree"); 1087 SDDbgValue *SDV; 1088 if (Val.getNode()) { 1089 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1090 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1091 DAG.AddDbgValue(SDV, Val.getNode(), false); 1092 } 1093 } else 1094 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1095 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1096 } 1097 } 1098 1099 /// getCopyFromRegs - If there was virtual register allocated for the value V 1100 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1101 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1102 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1103 SDValue Result; 1104 1105 if (It != FuncInfo.ValueMap.end()) { 1106 unsigned InReg = It->second; 1107 1108 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1109 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1110 SDValue Chain = DAG.getEntryNode(); 1111 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1112 V); 1113 resolveDanglingDebugInfo(V, Result); 1114 } 1115 1116 return Result; 1117 } 1118 1119 /// getValue - Return an SDValue for the given Value. 1120 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1121 // If we already have an SDValue for this value, use it. It's important 1122 // to do this first, so that we don't create a CopyFromReg if we already 1123 // have a regular SDValue. 1124 SDValue &N = NodeMap[V]; 1125 if (N.getNode()) return N; 1126 1127 // If there's a virtual register allocated and initialized for this 1128 // value, use it. 1129 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1130 return copyFromReg; 1131 1132 // Otherwise create a new SDValue and remember it. 1133 SDValue Val = getValueImpl(V); 1134 NodeMap[V] = Val; 1135 resolveDanglingDebugInfo(V, Val); 1136 return Val; 1137 } 1138 1139 // Return true if SDValue exists for the given Value 1140 bool SelectionDAGBuilder::findValue(const Value *V) const { 1141 return (NodeMap.find(V) != NodeMap.end()) || 1142 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1143 } 1144 1145 /// getNonRegisterValue - Return an SDValue for the given Value, but 1146 /// don't look in FuncInfo.ValueMap for a virtual register. 1147 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1148 // If we already have an SDValue for this value, use it. 1149 SDValue &N = NodeMap[V]; 1150 if (N.getNode()) { 1151 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1152 // Remove the debug location from the node as the node is about to be used 1153 // in a location which may differ from the original debug location. This 1154 // is relevant to Constant and ConstantFP nodes because they can appear 1155 // as constant expressions inside PHI nodes. 1156 N->setDebugLoc(DebugLoc()); 1157 } 1158 return N; 1159 } 1160 1161 // Otherwise create a new SDValue and remember it. 1162 SDValue Val = getValueImpl(V); 1163 NodeMap[V] = Val; 1164 resolveDanglingDebugInfo(V, Val); 1165 return Val; 1166 } 1167 1168 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1169 /// Create an SDValue for the given value. 1170 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1172 1173 if (const Constant *C = dyn_cast<Constant>(V)) { 1174 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1175 1176 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1177 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1178 1179 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1180 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1181 1182 if (isa<ConstantPointerNull>(C)) { 1183 unsigned AS = V->getType()->getPointerAddressSpace(); 1184 return DAG.getConstant(0, getCurSDLoc(), 1185 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1186 } 1187 1188 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1189 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1190 1191 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1192 return DAG.getUNDEF(VT); 1193 1194 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1195 visit(CE->getOpcode(), *CE); 1196 SDValue N1 = NodeMap[V]; 1197 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1198 return N1; 1199 } 1200 1201 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1202 SmallVector<SDValue, 4> Constants; 1203 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1204 OI != OE; ++OI) { 1205 SDNode *Val = getValue(*OI).getNode(); 1206 // If the operand is an empty aggregate, there are no values. 1207 if (!Val) continue; 1208 // Add each leaf value from the operand to the Constants list 1209 // to form a flattened list of all the values. 1210 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1211 Constants.push_back(SDValue(Val, i)); 1212 } 1213 1214 return DAG.getMergeValues(Constants, getCurSDLoc()); 1215 } 1216 1217 if (const ConstantDataSequential *CDS = 1218 dyn_cast<ConstantDataSequential>(C)) { 1219 SmallVector<SDValue, 4> Ops; 1220 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1221 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1222 // Add each leaf value from the operand to the Constants list 1223 // to form a flattened list of all the values. 1224 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1225 Ops.push_back(SDValue(Val, i)); 1226 } 1227 1228 if (isa<ArrayType>(CDS->getType())) 1229 return DAG.getMergeValues(Ops, getCurSDLoc()); 1230 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1231 } 1232 1233 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1234 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1235 "Unknown struct or array constant!"); 1236 1237 SmallVector<EVT, 4> ValueVTs; 1238 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1239 unsigned NumElts = ValueVTs.size(); 1240 if (NumElts == 0) 1241 return SDValue(); // empty struct 1242 SmallVector<SDValue, 4> Constants(NumElts); 1243 for (unsigned i = 0; i != NumElts; ++i) { 1244 EVT EltVT = ValueVTs[i]; 1245 if (isa<UndefValue>(C)) 1246 Constants[i] = DAG.getUNDEF(EltVT); 1247 else if (EltVT.isFloatingPoint()) 1248 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1249 else 1250 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1251 } 1252 1253 return DAG.getMergeValues(Constants, getCurSDLoc()); 1254 } 1255 1256 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1257 return DAG.getBlockAddress(BA, VT); 1258 1259 VectorType *VecTy = cast<VectorType>(V->getType()); 1260 unsigned NumElements = VecTy->getNumElements(); 1261 1262 // Now that we know the number and type of the elements, get that number of 1263 // elements into the Ops array based on what kind of constant it is. 1264 SmallVector<SDValue, 16> Ops; 1265 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1266 for (unsigned i = 0; i != NumElements; ++i) 1267 Ops.push_back(getValue(CV->getOperand(i))); 1268 } else { 1269 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1270 EVT EltVT = 1271 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1272 1273 SDValue Op; 1274 if (EltVT.isFloatingPoint()) 1275 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1276 else 1277 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1278 Ops.assign(NumElements, Op); 1279 } 1280 1281 // Create a BUILD_VECTOR node. 1282 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1283 } 1284 1285 // If this is a static alloca, generate it as the frameindex instead of 1286 // computation. 1287 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1288 DenseMap<const AllocaInst*, int>::iterator SI = 1289 FuncInfo.StaticAllocaMap.find(AI); 1290 if (SI != FuncInfo.StaticAllocaMap.end()) 1291 return DAG.getFrameIndex(SI->second, 1292 TLI.getFrameIndexTy(DAG.getDataLayout())); 1293 } 1294 1295 // If this is an instruction which fast-isel has deferred, select it now. 1296 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1297 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1298 1299 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1300 Inst->getType(), isABIRegCopy(V)); 1301 SDValue Chain = DAG.getEntryNode(); 1302 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1303 } 1304 1305 llvm_unreachable("Can't get register for value!"); 1306 } 1307 1308 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1309 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1310 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1311 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1312 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1313 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1314 if (IsMSVCCXX || IsCoreCLR) 1315 CatchPadMBB->setIsEHFuncletEntry(); 1316 1317 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1318 } 1319 1320 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1321 // Update machine-CFG edge. 1322 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1323 FuncInfo.MBB->addSuccessor(TargetMBB); 1324 1325 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1326 bool IsSEH = isAsynchronousEHPersonality(Pers); 1327 if (IsSEH) { 1328 // If this is not a fall-through branch or optimizations are switched off, 1329 // emit the branch. 1330 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1331 TM.getOptLevel() == CodeGenOpt::None) 1332 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1333 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1334 return; 1335 } 1336 1337 // Figure out the funclet membership for the catchret's successor. 1338 // This will be used by the FuncletLayout pass to determine how to order the 1339 // BB's. 1340 // A 'catchret' returns to the outer scope's color. 1341 Value *ParentPad = I.getCatchSwitchParentPad(); 1342 const BasicBlock *SuccessorColor; 1343 if (isa<ConstantTokenNone>(ParentPad)) 1344 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1345 else 1346 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1347 assert(SuccessorColor && "No parent funclet for catchret!"); 1348 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1349 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1350 1351 // Create the terminator node. 1352 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1353 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1354 DAG.getBasicBlock(SuccessorColorMBB)); 1355 DAG.setRoot(Ret); 1356 } 1357 1358 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1359 // Don't emit any special code for the cleanuppad instruction. It just marks 1360 // the start of a funclet. 1361 FuncInfo.MBB->setIsEHFuncletEntry(); 1362 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1363 } 1364 1365 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1366 /// many places it could ultimately go. In the IR, we have a single unwind 1367 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1368 /// This function skips over imaginary basic blocks that hold catchswitch 1369 /// instructions, and finds all the "real" machine 1370 /// basic block destinations. As those destinations may not be successors of 1371 /// EHPadBB, here we also calculate the edge probability to those destinations. 1372 /// The passed-in Prob is the edge probability to EHPadBB. 1373 static void findUnwindDestinations( 1374 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1375 BranchProbability Prob, 1376 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1377 &UnwindDests) { 1378 EHPersonality Personality = 1379 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1380 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1381 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1382 1383 while (EHPadBB) { 1384 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1385 BasicBlock *NewEHPadBB = nullptr; 1386 if (isa<LandingPadInst>(Pad)) { 1387 // Stop on landingpads. They are not funclets. 1388 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1389 break; 1390 } else if (isa<CleanupPadInst>(Pad)) { 1391 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1392 // personalities. 1393 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1394 UnwindDests.back().first->setIsEHFuncletEntry(); 1395 break; 1396 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1397 // Add the catchpad handlers to the possible destinations. 1398 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1399 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1400 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1401 if (IsMSVCCXX || IsCoreCLR) 1402 UnwindDests.back().first->setIsEHFuncletEntry(); 1403 } 1404 NewEHPadBB = CatchSwitch->getUnwindDest(); 1405 } else { 1406 continue; 1407 } 1408 1409 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1410 if (BPI && NewEHPadBB) 1411 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1412 EHPadBB = NewEHPadBB; 1413 } 1414 } 1415 1416 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1417 // Update successor info. 1418 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1419 auto UnwindDest = I.getUnwindDest(); 1420 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1421 BranchProbability UnwindDestProb = 1422 (BPI && UnwindDest) 1423 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1424 : BranchProbability::getZero(); 1425 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1426 for (auto &UnwindDest : UnwindDests) { 1427 UnwindDest.first->setIsEHPad(); 1428 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1429 } 1430 FuncInfo.MBB->normalizeSuccProbs(); 1431 1432 // Create the terminator node. 1433 SDValue Ret = 1434 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1435 DAG.setRoot(Ret); 1436 } 1437 1438 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1439 report_fatal_error("visitCatchSwitch not yet implemented!"); 1440 } 1441 1442 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1444 auto &DL = DAG.getDataLayout(); 1445 SDValue Chain = getControlRoot(); 1446 SmallVector<ISD::OutputArg, 8> Outs; 1447 SmallVector<SDValue, 8> OutVals; 1448 1449 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1450 // lower 1451 // 1452 // %val = call <ty> @llvm.experimental.deoptimize() 1453 // ret <ty> %val 1454 // 1455 // differently. 1456 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1457 LowerDeoptimizingReturn(); 1458 return; 1459 } 1460 1461 if (!FuncInfo.CanLowerReturn) { 1462 unsigned DemoteReg = FuncInfo.DemoteRegister; 1463 const Function *F = I.getParent()->getParent(); 1464 1465 // Emit a store of the return value through the virtual register. 1466 // Leave Outs empty so that LowerReturn won't try to load return 1467 // registers the usual way. 1468 SmallVector<EVT, 1> PtrValueVTs; 1469 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1470 PtrValueVTs); 1471 1472 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1473 DemoteReg, PtrValueVTs[0]); 1474 SDValue RetOp = getValue(I.getOperand(0)); 1475 1476 SmallVector<EVT, 4> ValueVTs; 1477 SmallVector<uint64_t, 4> Offsets; 1478 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1479 unsigned NumValues = ValueVTs.size(); 1480 1481 // An aggregate return value cannot wrap around the address space, so 1482 // offsets to its parts don't wrap either. 1483 SDNodeFlags Flags; 1484 Flags.setNoUnsignedWrap(true); 1485 1486 SmallVector<SDValue, 4> Chains(NumValues); 1487 for (unsigned i = 0; i != NumValues; ++i) { 1488 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1489 RetPtr.getValueType(), RetPtr, 1490 DAG.getIntPtrConstant(Offsets[i], 1491 getCurSDLoc()), 1492 Flags); 1493 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1494 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1495 // FIXME: better loc info would be nice. 1496 Add, MachinePointerInfo()); 1497 } 1498 1499 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1500 MVT::Other, Chains); 1501 } else if (I.getNumOperands() != 0) { 1502 SmallVector<EVT, 4> ValueVTs; 1503 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1504 unsigned NumValues = ValueVTs.size(); 1505 if (NumValues) { 1506 SDValue RetOp = getValue(I.getOperand(0)); 1507 1508 const Function *F = I.getParent()->getParent(); 1509 1510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1511 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1512 Attribute::SExt)) 1513 ExtendKind = ISD::SIGN_EXTEND; 1514 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1515 Attribute::ZExt)) 1516 ExtendKind = ISD::ZERO_EXTEND; 1517 1518 LLVMContext &Context = F->getContext(); 1519 bool RetInReg = F->getAttributes().hasAttribute( 1520 AttributeList::ReturnIndex, Attribute::InReg); 1521 1522 for (unsigned j = 0; j != NumValues; ++j) { 1523 EVT VT = ValueVTs[j]; 1524 1525 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1526 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1527 1528 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1529 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1530 SmallVector<SDValue, 4> Parts(NumParts); 1531 getCopyToParts(DAG, getCurSDLoc(), 1532 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1533 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1534 1535 // 'inreg' on function refers to return value 1536 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1537 if (RetInReg) 1538 Flags.setInReg(); 1539 1540 // Propagate extension type if any 1541 if (ExtendKind == ISD::SIGN_EXTEND) 1542 Flags.setSExt(); 1543 else if (ExtendKind == ISD::ZERO_EXTEND) 1544 Flags.setZExt(); 1545 1546 for (unsigned i = 0; i < NumParts; ++i) { 1547 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1548 VT, /*isfixed=*/true, 0, 0)); 1549 OutVals.push_back(Parts[i]); 1550 } 1551 } 1552 } 1553 } 1554 1555 // Push in swifterror virtual register as the last element of Outs. This makes 1556 // sure swifterror virtual register will be returned in the swifterror 1557 // physical register. 1558 const Function *F = I.getParent()->getParent(); 1559 if (TLI.supportSwiftError() && 1560 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1561 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1562 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1563 Flags.setSwiftError(); 1564 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1565 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1566 true /*isfixed*/, 1 /*origidx*/, 1567 0 /*partOffs*/)); 1568 // Create SDNode for the swifterror virtual register. 1569 OutVals.push_back( 1570 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1571 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1572 EVT(TLI.getPointerTy(DL)))); 1573 } 1574 1575 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1576 CallingConv::ID CallConv = 1577 DAG.getMachineFunction().getFunction()->getCallingConv(); 1578 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1579 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1580 1581 // Verify that the target's LowerReturn behaved as expected. 1582 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1583 "LowerReturn didn't return a valid chain!"); 1584 1585 // Update the DAG with the new chain value resulting from return lowering. 1586 DAG.setRoot(Chain); 1587 } 1588 1589 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1590 /// created for it, emit nodes to copy the value into the virtual 1591 /// registers. 1592 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1593 // Skip empty types 1594 if (V->getType()->isEmptyTy()) 1595 return; 1596 1597 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1598 if (VMI != FuncInfo.ValueMap.end()) { 1599 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1600 CopyValueToVirtualRegister(V, VMI->second); 1601 } 1602 } 1603 1604 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1605 /// the current basic block, add it to ValueMap now so that we'll get a 1606 /// CopyTo/FromReg. 1607 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1608 // No need to export constants. 1609 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1610 1611 // Already exported? 1612 if (FuncInfo.isExportedInst(V)) return; 1613 1614 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1615 CopyValueToVirtualRegister(V, Reg); 1616 } 1617 1618 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1619 const BasicBlock *FromBB) { 1620 // The operands of the setcc have to be in this block. We don't know 1621 // how to export them from some other block. 1622 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1623 // Can export from current BB. 1624 if (VI->getParent() == FromBB) 1625 return true; 1626 1627 // Is already exported, noop. 1628 return FuncInfo.isExportedInst(V); 1629 } 1630 1631 // If this is an argument, we can export it if the BB is the entry block or 1632 // if it is already exported. 1633 if (isa<Argument>(V)) { 1634 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1635 return true; 1636 1637 // Otherwise, can only export this if it is already exported. 1638 return FuncInfo.isExportedInst(V); 1639 } 1640 1641 // Otherwise, constants can always be exported. 1642 return true; 1643 } 1644 1645 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1646 BranchProbability 1647 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1648 const MachineBasicBlock *Dst) const { 1649 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1650 const BasicBlock *SrcBB = Src->getBasicBlock(); 1651 const BasicBlock *DstBB = Dst->getBasicBlock(); 1652 if (!BPI) { 1653 // If BPI is not available, set the default probability as 1 / N, where N is 1654 // the number of successors. 1655 auto SuccSize = std::max<uint32_t>( 1656 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1657 return BranchProbability(1, SuccSize); 1658 } 1659 return BPI->getEdgeProbability(SrcBB, DstBB); 1660 } 1661 1662 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1663 MachineBasicBlock *Dst, 1664 BranchProbability Prob) { 1665 if (!FuncInfo.BPI) 1666 Src->addSuccessorWithoutProb(Dst); 1667 else { 1668 if (Prob.isUnknown()) 1669 Prob = getEdgeProbability(Src, Dst); 1670 Src->addSuccessor(Dst, Prob); 1671 } 1672 } 1673 1674 static bool InBlock(const Value *V, const BasicBlock *BB) { 1675 if (const Instruction *I = dyn_cast<Instruction>(V)) 1676 return I->getParent() == BB; 1677 return true; 1678 } 1679 1680 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1681 /// This function emits a branch and is used at the leaves of an OR or an 1682 /// AND operator tree. 1683 void 1684 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1685 MachineBasicBlock *TBB, 1686 MachineBasicBlock *FBB, 1687 MachineBasicBlock *CurBB, 1688 MachineBasicBlock *SwitchBB, 1689 BranchProbability TProb, 1690 BranchProbability FProb, 1691 bool InvertCond) { 1692 const BasicBlock *BB = CurBB->getBasicBlock(); 1693 1694 // If the leaf of the tree is a comparison, merge the condition into 1695 // the caseblock. 1696 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1697 // The operands of the cmp have to be in this block. We don't know 1698 // how to export them from some other block. If this is the first block 1699 // of the sequence, no exporting is needed. 1700 if (CurBB == SwitchBB || 1701 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1702 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1703 ISD::CondCode Condition; 1704 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1705 ICmpInst::Predicate Pred = 1706 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1707 Condition = getICmpCondCode(Pred); 1708 } else { 1709 const FCmpInst *FC = cast<FCmpInst>(Cond); 1710 FCmpInst::Predicate Pred = 1711 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1712 Condition = getFCmpCondCode(Pred); 1713 if (TM.Options.NoNaNsFPMath) 1714 Condition = getFCmpCodeWithoutNaN(Condition); 1715 } 1716 1717 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1718 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1719 SwitchCases.push_back(CB); 1720 return; 1721 } 1722 } 1723 1724 // Create a CaseBlock record representing this branch. 1725 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1726 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1727 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1728 SwitchCases.push_back(CB); 1729 } 1730 1731 /// FindMergedConditions - If Cond is an expression like 1732 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1733 MachineBasicBlock *TBB, 1734 MachineBasicBlock *FBB, 1735 MachineBasicBlock *CurBB, 1736 MachineBasicBlock *SwitchBB, 1737 Instruction::BinaryOps Opc, 1738 BranchProbability TProb, 1739 BranchProbability FProb, 1740 bool InvertCond) { 1741 // Skip over not part of the tree and remember to invert op and operands at 1742 // next level. 1743 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1744 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1745 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1746 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1747 !InvertCond); 1748 return; 1749 } 1750 } 1751 1752 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1753 // Compute the effective opcode for Cond, taking into account whether it needs 1754 // to be inverted, e.g. 1755 // and (not (or A, B)), C 1756 // gets lowered as 1757 // and (and (not A, not B), C) 1758 unsigned BOpc = 0; 1759 if (BOp) { 1760 BOpc = BOp->getOpcode(); 1761 if (InvertCond) { 1762 if (BOpc == Instruction::And) 1763 BOpc = Instruction::Or; 1764 else if (BOpc == Instruction::Or) 1765 BOpc = Instruction::And; 1766 } 1767 } 1768 1769 // If this node is not part of the or/and tree, emit it as a branch. 1770 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1771 BOpc != Opc || !BOp->hasOneUse() || 1772 BOp->getParent() != CurBB->getBasicBlock() || 1773 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1774 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1775 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1776 TProb, FProb, InvertCond); 1777 return; 1778 } 1779 1780 // Create TmpBB after CurBB. 1781 MachineFunction::iterator BBI(CurBB); 1782 MachineFunction &MF = DAG.getMachineFunction(); 1783 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1784 CurBB->getParent()->insert(++BBI, TmpBB); 1785 1786 if (Opc == Instruction::Or) { 1787 // Codegen X | Y as: 1788 // BB1: 1789 // jmp_if_X TBB 1790 // jmp TmpBB 1791 // TmpBB: 1792 // jmp_if_Y TBB 1793 // jmp FBB 1794 // 1795 1796 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1797 // The requirement is that 1798 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1799 // = TrueProb for original BB. 1800 // Assuming the original probabilities are A and B, one choice is to set 1801 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1802 // A/(1+B) and 2B/(1+B). This choice assumes that 1803 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1804 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1805 // TmpBB, but the math is more complicated. 1806 1807 auto NewTrueProb = TProb / 2; 1808 auto NewFalseProb = TProb / 2 + FProb; 1809 // Emit the LHS condition. 1810 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1811 NewTrueProb, NewFalseProb, InvertCond); 1812 1813 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1814 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1815 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1816 // Emit the RHS condition into TmpBB. 1817 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1818 Probs[0], Probs[1], InvertCond); 1819 } else { 1820 assert(Opc == Instruction::And && "Unknown merge op!"); 1821 // Codegen X & Y as: 1822 // BB1: 1823 // jmp_if_X TmpBB 1824 // jmp FBB 1825 // TmpBB: 1826 // jmp_if_Y TBB 1827 // jmp FBB 1828 // 1829 // This requires creation of TmpBB after CurBB. 1830 1831 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1832 // The requirement is that 1833 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1834 // = FalseProb for original BB. 1835 // Assuming the original probabilities are A and B, one choice is to set 1836 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1837 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1838 // TrueProb for BB1 * FalseProb for TmpBB. 1839 1840 auto NewTrueProb = TProb + FProb / 2; 1841 auto NewFalseProb = FProb / 2; 1842 // Emit the LHS condition. 1843 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1844 NewTrueProb, NewFalseProb, InvertCond); 1845 1846 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1847 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1848 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1849 // Emit the RHS condition into TmpBB. 1850 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1851 Probs[0], Probs[1], InvertCond); 1852 } 1853 } 1854 1855 /// If the set of cases should be emitted as a series of branches, return true. 1856 /// If we should emit this as a bunch of and/or'd together conditions, return 1857 /// false. 1858 bool 1859 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1860 if (Cases.size() != 2) return true; 1861 1862 // If this is two comparisons of the same values or'd or and'd together, they 1863 // will get folded into a single comparison, so don't emit two blocks. 1864 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1865 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1866 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1867 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1868 return false; 1869 } 1870 1871 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1872 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1873 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1874 Cases[0].CC == Cases[1].CC && 1875 isa<Constant>(Cases[0].CmpRHS) && 1876 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1877 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1878 return false; 1879 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1880 return false; 1881 } 1882 1883 return true; 1884 } 1885 1886 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1887 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1888 1889 // Update machine-CFG edges. 1890 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1891 1892 if (I.isUnconditional()) { 1893 // Update machine-CFG edges. 1894 BrMBB->addSuccessor(Succ0MBB); 1895 1896 // If this is not a fall-through branch or optimizations are switched off, 1897 // emit the branch. 1898 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1899 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1900 MVT::Other, getControlRoot(), 1901 DAG.getBasicBlock(Succ0MBB))); 1902 1903 return; 1904 } 1905 1906 // If this condition is one of the special cases we handle, do special stuff 1907 // now. 1908 const Value *CondVal = I.getCondition(); 1909 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1910 1911 // If this is a series of conditions that are or'd or and'd together, emit 1912 // this as a sequence of branches instead of setcc's with and/or operations. 1913 // As long as jumps are not expensive, this should improve performance. 1914 // For example, instead of something like: 1915 // cmp A, B 1916 // C = seteq 1917 // cmp D, E 1918 // F = setle 1919 // or C, F 1920 // jnz foo 1921 // Emit: 1922 // cmp A, B 1923 // je foo 1924 // cmp D, E 1925 // jle foo 1926 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1927 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1928 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1929 !I.getMetadata(LLVMContext::MD_unpredictable) && 1930 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1931 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1932 Opcode, 1933 getEdgeProbability(BrMBB, Succ0MBB), 1934 getEdgeProbability(BrMBB, Succ1MBB), 1935 /*InvertCond=*/false); 1936 // If the compares in later blocks need to use values not currently 1937 // exported from this block, export them now. This block should always 1938 // be the first entry. 1939 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1940 1941 // Allow some cases to be rejected. 1942 if (ShouldEmitAsBranches(SwitchCases)) { 1943 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1944 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1945 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1946 } 1947 1948 // Emit the branch for this block. 1949 visitSwitchCase(SwitchCases[0], BrMBB); 1950 SwitchCases.erase(SwitchCases.begin()); 1951 return; 1952 } 1953 1954 // Okay, we decided not to do this, remove any inserted MBB's and clear 1955 // SwitchCases. 1956 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1957 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1958 1959 SwitchCases.clear(); 1960 } 1961 } 1962 1963 // Create a CaseBlock record representing this branch. 1964 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1965 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 1966 1967 // Use visitSwitchCase to actually insert the fast branch sequence for this 1968 // cond branch. 1969 visitSwitchCase(CB, BrMBB); 1970 } 1971 1972 /// visitSwitchCase - Emits the necessary code to represent a single node in 1973 /// the binary search tree resulting from lowering a switch instruction. 1974 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1975 MachineBasicBlock *SwitchBB) { 1976 SDValue Cond; 1977 SDValue CondLHS = getValue(CB.CmpLHS); 1978 SDLoc dl = CB.DL; 1979 1980 // Build the setcc now. 1981 if (!CB.CmpMHS) { 1982 // Fold "(X == true)" to X and "(X == false)" to !X to 1983 // handle common cases produced by branch lowering. 1984 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1985 CB.CC == ISD::SETEQ) 1986 Cond = CondLHS; 1987 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1988 CB.CC == ISD::SETEQ) { 1989 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1990 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1991 } else 1992 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1993 } else { 1994 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1995 1996 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1997 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1998 1999 SDValue CmpOp = getValue(CB.CmpMHS); 2000 EVT VT = CmpOp.getValueType(); 2001 2002 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2003 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2004 ISD::SETLE); 2005 } else { 2006 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2007 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2008 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2009 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2010 } 2011 } 2012 2013 // Update successor info 2014 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2015 // TrueBB and FalseBB are always different unless the incoming IR is 2016 // degenerate. This only happens when running llc on weird IR. 2017 if (CB.TrueBB != CB.FalseBB) 2018 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2019 SwitchBB->normalizeSuccProbs(); 2020 2021 // If the lhs block is the next block, invert the condition so that we can 2022 // fall through to the lhs instead of the rhs block. 2023 if (CB.TrueBB == NextBlock(SwitchBB)) { 2024 std::swap(CB.TrueBB, CB.FalseBB); 2025 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2026 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2027 } 2028 2029 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2030 MVT::Other, getControlRoot(), Cond, 2031 DAG.getBasicBlock(CB.TrueBB)); 2032 2033 // Insert the false branch. Do this even if it's a fall through branch, 2034 // this makes it easier to do DAG optimizations which require inverting 2035 // the branch condition. 2036 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2037 DAG.getBasicBlock(CB.FalseBB)); 2038 2039 DAG.setRoot(BrCond); 2040 } 2041 2042 /// visitJumpTable - Emit JumpTable node in the current MBB 2043 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2044 // Emit the code for the jump table 2045 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2046 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2047 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2048 JT.Reg, PTy); 2049 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2050 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2051 MVT::Other, Index.getValue(1), 2052 Table, Index); 2053 DAG.setRoot(BrJumpTable); 2054 } 2055 2056 /// visitJumpTableHeader - This function emits necessary code to produce index 2057 /// in the JumpTable from switch case. 2058 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2059 JumpTableHeader &JTH, 2060 MachineBasicBlock *SwitchBB) { 2061 SDLoc dl = getCurSDLoc(); 2062 2063 // Subtract the lowest switch case value from the value being switched on and 2064 // conditional branch to default mbb if the result is greater than the 2065 // difference between smallest and largest cases. 2066 SDValue SwitchOp = getValue(JTH.SValue); 2067 EVT VT = SwitchOp.getValueType(); 2068 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2069 DAG.getConstant(JTH.First, dl, VT)); 2070 2071 // The SDNode we just created, which holds the value being switched on minus 2072 // the smallest case value, needs to be copied to a virtual register so it 2073 // can be used as an index into the jump table in a subsequent basic block. 2074 // This value may be smaller or larger than the target's pointer type, and 2075 // therefore require extension or truncating. 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2078 2079 unsigned JumpTableReg = 2080 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2081 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2082 JumpTableReg, SwitchOp); 2083 JT.Reg = JumpTableReg; 2084 2085 // Emit the range check for the jump table, and branch to the default block 2086 // for the switch statement if the value being switched on exceeds the largest 2087 // case in the switch. 2088 SDValue CMP = DAG.getSetCC( 2089 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2090 Sub.getValueType()), 2091 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2092 2093 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, CopyTo, CMP, 2095 DAG.getBasicBlock(JT.Default)); 2096 2097 // Avoid emitting unnecessary branches to the next block. 2098 if (JT.MBB != NextBlock(SwitchBB)) 2099 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2100 DAG.getBasicBlock(JT.MBB)); 2101 2102 DAG.setRoot(BrCond); 2103 } 2104 2105 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2106 /// variable if there exists one. 2107 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2108 SDValue &Chain) { 2109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2110 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2111 MachineFunction &MF = DAG.getMachineFunction(); 2112 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2113 MachineSDNode *Node = 2114 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2115 if (Global) { 2116 MachinePointerInfo MPInfo(Global); 2117 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2118 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2119 MachineMemOperand::MODereferenceable; 2120 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2121 DAG.getEVTAlignment(PtrTy)); 2122 Node->setMemRefs(MemRefs, MemRefs + 1); 2123 } 2124 return SDValue(Node, 0); 2125 } 2126 2127 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2128 /// tail spliced into a stack protector check success bb. 2129 /// 2130 /// For a high level explanation of how this fits into the stack protector 2131 /// generation see the comment on the declaration of class 2132 /// StackProtectorDescriptor. 2133 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2134 MachineBasicBlock *ParentBB) { 2135 2136 // First create the loads to the guard/stack slot for the comparison. 2137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2138 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2139 2140 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2141 int FI = MFI.getStackProtectorIndex(); 2142 2143 SDValue Guard; 2144 SDLoc dl = getCurSDLoc(); 2145 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2146 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2147 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2148 2149 // Generate code to load the content of the guard slot. 2150 SDValue StackSlot = DAG.getLoad( 2151 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2152 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2153 MachineMemOperand::MOVolatile); 2154 2155 // Retrieve guard check function, nullptr if instrumentation is inlined. 2156 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2157 // The target provides a guard check function to validate the guard value. 2158 // Generate a call to that function with the content of the guard slot as 2159 // argument. 2160 auto *Fn = cast<Function>(GuardCheck); 2161 FunctionType *FnTy = Fn->getFunctionType(); 2162 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2163 2164 TargetLowering::ArgListTy Args; 2165 TargetLowering::ArgListEntry Entry; 2166 Entry.Node = StackSlot; 2167 Entry.Ty = FnTy->getParamType(0); 2168 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2169 Entry.IsInReg = true; 2170 Args.push_back(Entry); 2171 2172 TargetLowering::CallLoweringInfo CLI(DAG); 2173 CLI.setDebugLoc(getCurSDLoc()) 2174 .setChain(DAG.getEntryNode()) 2175 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2176 getValue(GuardCheck), std::move(Args)); 2177 2178 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2179 DAG.setRoot(Result.second); 2180 return; 2181 } 2182 2183 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2184 // Otherwise, emit a volatile load to retrieve the stack guard value. 2185 SDValue Chain = DAG.getEntryNode(); 2186 if (TLI.useLoadStackGuardNode()) { 2187 Guard = getLoadStackGuard(DAG, dl, Chain); 2188 } else { 2189 const Value *IRGuard = TLI.getSDagStackGuard(M); 2190 SDValue GuardPtr = getValue(IRGuard); 2191 2192 Guard = 2193 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2194 Align, MachineMemOperand::MOVolatile); 2195 } 2196 2197 // Perform the comparison via a subtract/getsetcc. 2198 EVT VT = Guard.getValueType(); 2199 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2200 2201 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2202 *DAG.getContext(), 2203 Sub.getValueType()), 2204 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2205 2206 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2207 // branch to failure MBB. 2208 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2209 MVT::Other, StackSlot.getOperand(0), 2210 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2211 // Otherwise branch to success MBB. 2212 SDValue Br = DAG.getNode(ISD::BR, dl, 2213 MVT::Other, BrCond, 2214 DAG.getBasicBlock(SPD.getSuccessMBB())); 2215 2216 DAG.setRoot(Br); 2217 } 2218 2219 /// Codegen the failure basic block for a stack protector check. 2220 /// 2221 /// A failure stack protector machine basic block consists simply of a call to 2222 /// __stack_chk_fail(). 2223 /// 2224 /// For a high level explanation of how this fits into the stack protector 2225 /// generation see the comment on the declaration of class 2226 /// StackProtectorDescriptor. 2227 void 2228 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2230 SDValue Chain = 2231 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2232 None, false, getCurSDLoc(), false, false).second; 2233 DAG.setRoot(Chain); 2234 } 2235 2236 /// visitBitTestHeader - This function emits necessary code to produce value 2237 /// suitable for "bit tests" 2238 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2239 MachineBasicBlock *SwitchBB) { 2240 SDLoc dl = getCurSDLoc(); 2241 2242 // Subtract the minimum value 2243 SDValue SwitchOp = getValue(B.SValue); 2244 EVT VT = SwitchOp.getValueType(); 2245 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2246 DAG.getConstant(B.First, dl, VT)); 2247 2248 // Check range 2249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2250 SDValue RangeCmp = DAG.getSetCC( 2251 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2252 Sub.getValueType()), 2253 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2254 2255 // Determine the type of the test operands. 2256 bool UsePtrType = false; 2257 if (!TLI.isTypeLegal(VT)) 2258 UsePtrType = true; 2259 else { 2260 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2261 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2262 // Switch table case range are encoded into series of masks. 2263 // Just use pointer type, it's guaranteed to fit. 2264 UsePtrType = true; 2265 break; 2266 } 2267 } 2268 if (UsePtrType) { 2269 VT = TLI.getPointerTy(DAG.getDataLayout()); 2270 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2271 } 2272 2273 B.RegVT = VT.getSimpleVT(); 2274 B.Reg = FuncInfo.CreateReg(B.RegVT); 2275 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2276 2277 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2278 2279 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2280 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2281 SwitchBB->normalizeSuccProbs(); 2282 2283 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2284 MVT::Other, CopyTo, RangeCmp, 2285 DAG.getBasicBlock(B.Default)); 2286 2287 // Avoid emitting unnecessary branches to the next block. 2288 if (MBB != NextBlock(SwitchBB)) 2289 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2290 DAG.getBasicBlock(MBB)); 2291 2292 DAG.setRoot(BrRange); 2293 } 2294 2295 /// visitBitTestCase - this function produces one "bit test" 2296 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2297 MachineBasicBlock* NextMBB, 2298 BranchProbability BranchProbToNext, 2299 unsigned Reg, 2300 BitTestCase &B, 2301 MachineBasicBlock *SwitchBB) { 2302 SDLoc dl = getCurSDLoc(); 2303 MVT VT = BB.RegVT; 2304 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2305 SDValue Cmp; 2306 unsigned PopCount = countPopulation(B.Mask); 2307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2308 if (PopCount == 1) { 2309 // Testing for a single bit; just compare the shift count with what it 2310 // would need to be to shift a 1 bit in that position. 2311 Cmp = DAG.getSetCC( 2312 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2313 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2314 ISD::SETEQ); 2315 } else if (PopCount == BB.Range) { 2316 // There is only one zero bit in the range, test for it directly. 2317 Cmp = DAG.getSetCC( 2318 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2319 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2320 ISD::SETNE); 2321 } else { 2322 // Make desired shift 2323 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2324 DAG.getConstant(1, dl, VT), ShiftOp); 2325 2326 // Emit bit tests and jumps 2327 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2328 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2329 Cmp = DAG.getSetCC( 2330 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2331 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2332 } 2333 2334 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2335 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2336 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2337 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2338 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2339 // one as they are relative probabilities (and thus work more like weights), 2340 // and hence we need to normalize them to let the sum of them become one. 2341 SwitchBB->normalizeSuccProbs(); 2342 2343 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2344 MVT::Other, getControlRoot(), 2345 Cmp, DAG.getBasicBlock(B.TargetBB)); 2346 2347 // Avoid emitting unnecessary branches to the next block. 2348 if (NextMBB != NextBlock(SwitchBB)) 2349 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2350 DAG.getBasicBlock(NextMBB)); 2351 2352 DAG.setRoot(BrAnd); 2353 } 2354 2355 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2356 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2357 2358 // Retrieve successors. Look through artificial IR level blocks like 2359 // catchswitch for successors. 2360 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2361 const BasicBlock *EHPadBB = I.getSuccessor(1); 2362 2363 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2364 // have to do anything here to lower funclet bundles. 2365 assert(!I.hasOperandBundlesOtherThan( 2366 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2367 "Cannot lower invokes with arbitrary operand bundles yet!"); 2368 2369 const Value *Callee(I.getCalledValue()); 2370 const Function *Fn = dyn_cast<Function>(Callee); 2371 if (isa<InlineAsm>(Callee)) 2372 visitInlineAsm(&I); 2373 else if (Fn && Fn->isIntrinsic()) { 2374 switch (Fn->getIntrinsicID()) { 2375 default: 2376 llvm_unreachable("Cannot invoke this intrinsic"); 2377 case Intrinsic::donothing: 2378 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2379 break; 2380 case Intrinsic::experimental_patchpoint_void: 2381 case Intrinsic::experimental_patchpoint_i64: 2382 visitPatchpoint(&I, EHPadBB); 2383 break; 2384 case Intrinsic::experimental_gc_statepoint: 2385 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2386 break; 2387 } 2388 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2389 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2390 // Eventually we will support lowering the @llvm.experimental.deoptimize 2391 // intrinsic, and right now there are no plans to support other intrinsics 2392 // with deopt state. 2393 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2394 } else { 2395 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2396 } 2397 2398 // If the value of the invoke is used outside of its defining block, make it 2399 // available as a virtual register. 2400 // We already took care of the exported value for the statepoint instruction 2401 // during call to the LowerStatepoint. 2402 if (!isStatepoint(I)) { 2403 CopyToExportRegsIfNeeded(&I); 2404 } 2405 2406 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2407 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2408 BranchProbability EHPadBBProb = 2409 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2410 : BranchProbability::getZero(); 2411 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2412 2413 // Update successor info. 2414 addSuccessorWithProb(InvokeMBB, Return); 2415 for (auto &UnwindDest : UnwindDests) { 2416 UnwindDest.first->setIsEHPad(); 2417 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2418 } 2419 InvokeMBB->normalizeSuccProbs(); 2420 2421 // Drop into normal successor. 2422 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2423 MVT::Other, getControlRoot(), 2424 DAG.getBasicBlock(Return))); 2425 } 2426 2427 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2428 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2429 } 2430 2431 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2432 assert(FuncInfo.MBB->isEHPad() && 2433 "Call to landingpad not in landing pad!"); 2434 2435 MachineBasicBlock *MBB = FuncInfo.MBB; 2436 addLandingPadInfo(LP, *MBB); 2437 2438 // If there aren't registers to copy the values into (e.g., during SjLj 2439 // exceptions), then don't bother to create these DAG nodes. 2440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2441 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2442 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2443 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2444 return; 2445 2446 // If landingpad's return type is token type, we don't create DAG nodes 2447 // for its exception pointer and selector value. The extraction of exception 2448 // pointer or selector value from token type landingpads is not currently 2449 // supported. 2450 if (LP.getType()->isTokenTy()) 2451 return; 2452 2453 SmallVector<EVT, 2> ValueVTs; 2454 SDLoc dl = getCurSDLoc(); 2455 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2456 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2457 2458 // Get the two live-in registers as SDValues. The physregs have already been 2459 // copied into virtual registers. 2460 SDValue Ops[2]; 2461 if (FuncInfo.ExceptionPointerVirtReg) { 2462 Ops[0] = DAG.getZExtOrTrunc( 2463 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2464 FuncInfo.ExceptionPointerVirtReg, 2465 TLI.getPointerTy(DAG.getDataLayout())), 2466 dl, ValueVTs[0]); 2467 } else { 2468 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2469 } 2470 Ops[1] = DAG.getZExtOrTrunc( 2471 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2472 FuncInfo.ExceptionSelectorVirtReg, 2473 TLI.getPointerTy(DAG.getDataLayout())), 2474 dl, ValueVTs[1]); 2475 2476 // Merge into one. 2477 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2478 DAG.getVTList(ValueVTs), Ops); 2479 setValue(&LP, Res); 2480 } 2481 2482 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2483 #ifndef NDEBUG 2484 for (const CaseCluster &CC : Clusters) 2485 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2486 #endif 2487 2488 std::sort(Clusters.begin(), Clusters.end(), 2489 [](const CaseCluster &a, const CaseCluster &b) { 2490 return a.Low->getValue().slt(b.Low->getValue()); 2491 }); 2492 2493 // Merge adjacent clusters with the same destination. 2494 const unsigned N = Clusters.size(); 2495 unsigned DstIndex = 0; 2496 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2497 CaseCluster &CC = Clusters[SrcIndex]; 2498 const ConstantInt *CaseVal = CC.Low; 2499 MachineBasicBlock *Succ = CC.MBB; 2500 2501 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2502 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2503 // If this case has the same successor and is a neighbour, merge it into 2504 // the previous cluster. 2505 Clusters[DstIndex - 1].High = CaseVal; 2506 Clusters[DstIndex - 1].Prob += CC.Prob; 2507 } else { 2508 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2509 sizeof(Clusters[SrcIndex])); 2510 } 2511 } 2512 Clusters.resize(DstIndex); 2513 } 2514 2515 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2516 MachineBasicBlock *Last) { 2517 // Update JTCases. 2518 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2519 if (JTCases[i].first.HeaderBB == First) 2520 JTCases[i].first.HeaderBB = Last; 2521 2522 // Update BitTestCases. 2523 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2524 if (BitTestCases[i].Parent == First) 2525 BitTestCases[i].Parent = Last; 2526 } 2527 2528 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2529 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2530 2531 // Update machine-CFG edges with unique successors. 2532 SmallSet<BasicBlock*, 32> Done; 2533 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2534 BasicBlock *BB = I.getSuccessor(i); 2535 bool Inserted = Done.insert(BB).second; 2536 if (!Inserted) 2537 continue; 2538 2539 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2540 addSuccessorWithProb(IndirectBrMBB, Succ); 2541 } 2542 IndirectBrMBB->normalizeSuccProbs(); 2543 2544 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2545 MVT::Other, getControlRoot(), 2546 getValue(I.getAddress()))); 2547 } 2548 2549 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2550 if (DAG.getTarget().Options.TrapUnreachable) 2551 DAG.setRoot( 2552 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2553 } 2554 2555 void SelectionDAGBuilder::visitFSub(const User &I) { 2556 // -0.0 - X --> fneg 2557 Type *Ty = I.getType(); 2558 if (isa<Constant>(I.getOperand(0)) && 2559 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2562 Op2.getValueType(), Op2)); 2563 return; 2564 } 2565 2566 visitBinary(I, ISD::FSUB); 2567 } 2568 2569 /// Checks if the given instruction performs a vector reduction, in which case 2570 /// we have the freedom to alter the elements in the result as long as the 2571 /// reduction of them stays unchanged. 2572 static bool isVectorReductionOp(const User *I) { 2573 const Instruction *Inst = dyn_cast<Instruction>(I); 2574 if (!Inst || !Inst->getType()->isVectorTy()) 2575 return false; 2576 2577 auto OpCode = Inst->getOpcode(); 2578 switch (OpCode) { 2579 case Instruction::Add: 2580 case Instruction::Mul: 2581 case Instruction::And: 2582 case Instruction::Or: 2583 case Instruction::Xor: 2584 break; 2585 case Instruction::FAdd: 2586 case Instruction::FMul: 2587 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2588 if (FPOp->getFastMathFlags().isFast()) 2589 break; 2590 LLVM_FALLTHROUGH; 2591 default: 2592 return false; 2593 } 2594 2595 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2596 unsigned ElemNumToReduce = ElemNum; 2597 2598 // Do DFS search on the def-use chain from the given instruction. We only 2599 // allow four kinds of operations during the search until we reach the 2600 // instruction that extracts the first element from the vector: 2601 // 2602 // 1. The reduction operation of the same opcode as the given instruction. 2603 // 2604 // 2. PHI node. 2605 // 2606 // 3. ShuffleVector instruction together with a reduction operation that 2607 // does a partial reduction. 2608 // 2609 // 4. ExtractElement that extracts the first element from the vector, and we 2610 // stop searching the def-use chain here. 2611 // 2612 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2613 // from 1-3 to the stack to continue the DFS. The given instruction is not 2614 // a reduction operation if we meet any other instructions other than those 2615 // listed above. 2616 2617 SmallVector<const User *, 16> UsersToVisit{Inst}; 2618 SmallPtrSet<const User *, 16> Visited; 2619 bool ReduxExtracted = false; 2620 2621 while (!UsersToVisit.empty()) { 2622 auto User = UsersToVisit.back(); 2623 UsersToVisit.pop_back(); 2624 if (!Visited.insert(User).second) 2625 continue; 2626 2627 for (const auto &U : User->users()) { 2628 auto Inst = dyn_cast<Instruction>(U); 2629 if (!Inst) 2630 return false; 2631 2632 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2633 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2634 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2635 return false; 2636 UsersToVisit.push_back(U); 2637 } else if (const ShuffleVectorInst *ShufInst = 2638 dyn_cast<ShuffleVectorInst>(U)) { 2639 // Detect the following pattern: A ShuffleVector instruction together 2640 // with a reduction that do partial reduction on the first and second 2641 // ElemNumToReduce / 2 elements, and store the result in 2642 // ElemNumToReduce / 2 elements in another vector. 2643 2644 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2645 if (ResultElements < ElemNum) 2646 return false; 2647 2648 if (ElemNumToReduce == 1) 2649 return false; 2650 if (!isa<UndefValue>(U->getOperand(1))) 2651 return false; 2652 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2653 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2654 return false; 2655 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2656 if (ShufInst->getMaskValue(i) != -1) 2657 return false; 2658 2659 // There is only one user of this ShuffleVector instruction, which 2660 // must be a reduction operation. 2661 if (!U->hasOneUse()) 2662 return false; 2663 2664 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2665 if (!U2 || U2->getOpcode() != OpCode) 2666 return false; 2667 2668 // Check operands of the reduction operation. 2669 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2670 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2671 UsersToVisit.push_back(U2); 2672 ElemNumToReduce /= 2; 2673 } else 2674 return false; 2675 } else if (isa<ExtractElementInst>(U)) { 2676 // At this moment we should have reduced all elements in the vector. 2677 if (ElemNumToReduce != 1) 2678 return false; 2679 2680 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2681 if (!Val || Val->getZExtValue() != 0) 2682 return false; 2683 2684 ReduxExtracted = true; 2685 } else 2686 return false; 2687 } 2688 } 2689 return ReduxExtracted; 2690 } 2691 2692 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2693 SDValue Op1 = getValue(I.getOperand(0)); 2694 SDValue Op2 = getValue(I.getOperand(1)); 2695 2696 bool nuw = false; 2697 bool nsw = false; 2698 bool exact = false; 2699 bool vec_redux = false; 2700 FastMathFlags FMF; 2701 2702 if (const OverflowingBinaryOperator *OFBinOp = 2703 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2704 nuw = OFBinOp->hasNoUnsignedWrap(); 2705 nsw = OFBinOp->hasNoSignedWrap(); 2706 } 2707 if (const PossiblyExactOperator *ExactOp = 2708 dyn_cast<const PossiblyExactOperator>(&I)) 2709 exact = ExactOp->isExact(); 2710 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2711 FMF = FPOp->getFastMathFlags(); 2712 2713 if (isVectorReductionOp(&I)) { 2714 vec_redux = true; 2715 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2716 } 2717 2718 SDNodeFlags Flags; 2719 Flags.setExact(exact); 2720 Flags.setNoSignedWrap(nsw); 2721 Flags.setNoUnsignedWrap(nuw); 2722 Flags.setVectorReduction(vec_redux); 2723 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2724 Flags.setAllowContract(FMF.allowContract()); 2725 Flags.setNoInfs(FMF.noInfs()); 2726 Flags.setNoNaNs(FMF.noNaNs()); 2727 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2728 Flags.setUnsafeAlgebra(FMF.isFast()); 2729 2730 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2731 Op1, Op2, Flags); 2732 setValue(&I, BinNodeValue); 2733 } 2734 2735 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2736 SDValue Op1 = getValue(I.getOperand(0)); 2737 SDValue Op2 = getValue(I.getOperand(1)); 2738 2739 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2740 Op2.getValueType(), DAG.getDataLayout()); 2741 2742 // Coerce the shift amount to the right type if we can. 2743 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2744 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2745 unsigned Op2Size = Op2.getValueSizeInBits(); 2746 SDLoc DL = getCurSDLoc(); 2747 2748 // If the operand is smaller than the shift count type, promote it. 2749 if (ShiftSize > Op2Size) 2750 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2751 2752 // If the operand is larger than the shift count type but the shift 2753 // count type has enough bits to represent any shift value, truncate 2754 // it now. This is a common case and it exposes the truncate to 2755 // optimization early. 2756 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2757 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2758 // Otherwise we'll need to temporarily settle for some other convenient 2759 // type. Type legalization will make adjustments once the shiftee is split. 2760 else 2761 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2762 } 2763 2764 bool nuw = false; 2765 bool nsw = false; 2766 bool exact = false; 2767 2768 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2769 2770 if (const OverflowingBinaryOperator *OFBinOp = 2771 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2772 nuw = OFBinOp->hasNoUnsignedWrap(); 2773 nsw = OFBinOp->hasNoSignedWrap(); 2774 } 2775 if (const PossiblyExactOperator *ExactOp = 2776 dyn_cast<const PossiblyExactOperator>(&I)) 2777 exact = ExactOp->isExact(); 2778 } 2779 SDNodeFlags Flags; 2780 Flags.setExact(exact); 2781 Flags.setNoSignedWrap(nsw); 2782 Flags.setNoUnsignedWrap(nuw); 2783 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2784 Flags); 2785 setValue(&I, Res); 2786 } 2787 2788 void SelectionDAGBuilder::visitSDiv(const User &I) { 2789 SDValue Op1 = getValue(I.getOperand(0)); 2790 SDValue Op2 = getValue(I.getOperand(1)); 2791 2792 SDNodeFlags Flags; 2793 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2794 cast<PossiblyExactOperator>(&I)->isExact()); 2795 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2796 Op2, Flags)); 2797 } 2798 2799 void SelectionDAGBuilder::visitICmp(const User &I) { 2800 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2801 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2802 predicate = IC->getPredicate(); 2803 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2804 predicate = ICmpInst::Predicate(IC->getPredicate()); 2805 SDValue Op1 = getValue(I.getOperand(0)); 2806 SDValue Op2 = getValue(I.getOperand(1)); 2807 ISD::CondCode Opcode = getICmpCondCode(predicate); 2808 2809 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2810 I.getType()); 2811 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2812 } 2813 2814 void SelectionDAGBuilder::visitFCmp(const User &I) { 2815 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2816 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2817 predicate = FC->getPredicate(); 2818 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2819 predicate = FCmpInst::Predicate(FC->getPredicate()); 2820 SDValue Op1 = getValue(I.getOperand(0)); 2821 SDValue Op2 = getValue(I.getOperand(1)); 2822 ISD::CondCode Condition = getFCmpCondCode(predicate); 2823 2824 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2825 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2826 // further optimization, but currently FMF is only applicable to binary nodes. 2827 if (TM.Options.NoNaNsFPMath) 2828 Condition = getFCmpCodeWithoutNaN(Condition); 2829 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2830 I.getType()); 2831 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2832 } 2833 2834 // Check if the condition of the select has one use or two users that are both 2835 // selects with the same condition. 2836 static bool hasOnlySelectUsers(const Value *Cond) { 2837 return llvm::all_of(Cond->users(), [](const Value *V) { 2838 return isa<SelectInst>(V); 2839 }); 2840 } 2841 2842 void SelectionDAGBuilder::visitSelect(const User &I) { 2843 SmallVector<EVT, 4> ValueVTs; 2844 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2845 ValueVTs); 2846 unsigned NumValues = ValueVTs.size(); 2847 if (NumValues == 0) return; 2848 2849 SmallVector<SDValue, 4> Values(NumValues); 2850 SDValue Cond = getValue(I.getOperand(0)); 2851 SDValue LHSVal = getValue(I.getOperand(1)); 2852 SDValue RHSVal = getValue(I.getOperand(2)); 2853 auto BaseOps = {Cond}; 2854 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2855 ISD::VSELECT : ISD::SELECT; 2856 2857 // Min/max matching is only viable if all output VTs are the same. 2858 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2859 EVT VT = ValueVTs[0]; 2860 LLVMContext &Ctx = *DAG.getContext(); 2861 auto &TLI = DAG.getTargetLoweringInfo(); 2862 2863 // We care about the legality of the operation after it has been type 2864 // legalized. 2865 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2866 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2867 VT = TLI.getTypeToTransformTo(Ctx, VT); 2868 2869 // If the vselect is legal, assume we want to leave this as a vector setcc + 2870 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2871 // min/max is legal on the scalar type. 2872 bool UseScalarMinMax = VT.isVector() && 2873 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2874 2875 Value *LHS, *RHS; 2876 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2877 ISD::NodeType Opc = ISD::DELETED_NODE; 2878 switch (SPR.Flavor) { 2879 case SPF_UMAX: Opc = ISD::UMAX; break; 2880 case SPF_UMIN: Opc = ISD::UMIN; break; 2881 case SPF_SMAX: Opc = ISD::SMAX; break; 2882 case SPF_SMIN: Opc = ISD::SMIN; break; 2883 case SPF_FMINNUM: 2884 switch (SPR.NaNBehavior) { 2885 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2886 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2887 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2888 case SPNB_RETURNS_ANY: { 2889 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2890 Opc = ISD::FMINNUM; 2891 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2892 Opc = ISD::FMINNAN; 2893 else if (UseScalarMinMax) 2894 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2895 ISD::FMINNUM : ISD::FMINNAN; 2896 break; 2897 } 2898 } 2899 break; 2900 case SPF_FMAXNUM: 2901 switch (SPR.NaNBehavior) { 2902 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2903 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2904 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2905 case SPNB_RETURNS_ANY: 2906 2907 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2908 Opc = ISD::FMAXNUM; 2909 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2910 Opc = ISD::FMAXNAN; 2911 else if (UseScalarMinMax) 2912 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2913 ISD::FMAXNUM : ISD::FMAXNAN; 2914 break; 2915 } 2916 break; 2917 default: break; 2918 } 2919 2920 if (Opc != ISD::DELETED_NODE && 2921 (TLI.isOperationLegalOrCustom(Opc, VT) || 2922 (UseScalarMinMax && 2923 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2924 // If the underlying comparison instruction is used by any other 2925 // instruction, the consumed instructions won't be destroyed, so it is 2926 // not profitable to convert to a min/max. 2927 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2928 OpCode = Opc; 2929 LHSVal = getValue(LHS); 2930 RHSVal = getValue(RHS); 2931 BaseOps = {}; 2932 } 2933 } 2934 2935 for (unsigned i = 0; i != NumValues; ++i) { 2936 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2937 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2938 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2939 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2940 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2941 Ops); 2942 } 2943 2944 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2945 DAG.getVTList(ValueVTs), Values)); 2946 } 2947 2948 void SelectionDAGBuilder::visitTrunc(const User &I) { 2949 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2950 SDValue N = getValue(I.getOperand(0)); 2951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2952 I.getType()); 2953 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitZExt(const User &I) { 2957 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2958 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2959 SDValue N = getValue(I.getOperand(0)); 2960 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2961 I.getType()); 2962 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2963 } 2964 2965 void SelectionDAGBuilder::visitSExt(const User &I) { 2966 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2967 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2970 I.getType()); 2971 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2972 } 2973 2974 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2975 // FPTrunc is never a no-op cast, no need to check 2976 SDValue N = getValue(I.getOperand(0)); 2977 SDLoc dl = getCurSDLoc(); 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2980 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2981 DAG.getTargetConstant( 2982 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2983 } 2984 2985 void SelectionDAGBuilder::visitFPExt(const User &I) { 2986 // FPExt is never a no-op cast, no need to check 2987 SDValue N = getValue(I.getOperand(0)); 2988 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2989 I.getType()); 2990 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2994 // FPToUI is never a no-op cast, no need to check 2995 SDValue N = getValue(I.getOperand(0)); 2996 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2997 I.getType()); 2998 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2999 } 3000 3001 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3002 // FPToSI is never a no-op cast, no need to check 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3005 I.getType()); 3006 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3007 } 3008 3009 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3010 // UIToFP is never a no-op cast, no need to check 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3013 I.getType()); 3014 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3018 // SIToFP is never a no-op cast, no need to check 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3021 I.getType()); 3022 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3023 } 3024 3025 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3026 // What to do depends on the size of the integer and the size of the pointer. 3027 // We can either truncate, zero extend, or no-op, accordingly. 3028 SDValue N = getValue(I.getOperand(0)); 3029 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3030 I.getType()); 3031 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3032 } 3033 3034 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3035 // What to do depends on the size of the integer and the size of the pointer. 3036 // We can either truncate, zero extend, or no-op, accordingly. 3037 SDValue N = getValue(I.getOperand(0)); 3038 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3039 I.getType()); 3040 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3041 } 3042 3043 void SelectionDAGBuilder::visitBitCast(const User &I) { 3044 SDValue N = getValue(I.getOperand(0)); 3045 SDLoc dl = getCurSDLoc(); 3046 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3047 I.getType()); 3048 3049 // BitCast assures us that source and destination are the same size so this is 3050 // either a BITCAST or a no-op. 3051 if (DestVT != N.getValueType()) 3052 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3053 DestVT, N)); // convert types. 3054 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3055 // might fold any kind of constant expression to an integer constant and that 3056 // is not what we are looking for. Only recognize a bitcast of a genuine 3057 // constant integer as an opaque constant. 3058 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3059 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3060 /*isOpaque*/true)); 3061 else 3062 setValue(&I, N); // noop cast. 3063 } 3064 3065 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3067 const Value *SV = I.getOperand(0); 3068 SDValue N = getValue(SV); 3069 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3070 3071 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3072 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3073 3074 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3075 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3076 3077 setValue(&I, N); 3078 } 3079 3080 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3082 SDValue InVec = getValue(I.getOperand(0)); 3083 SDValue InVal = getValue(I.getOperand(1)); 3084 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3085 TLI.getVectorIdxTy(DAG.getDataLayout())); 3086 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3087 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3088 InVec, InVal, InIdx)); 3089 } 3090 3091 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3093 SDValue InVec = getValue(I.getOperand(0)); 3094 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3095 TLI.getVectorIdxTy(DAG.getDataLayout())); 3096 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3097 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3098 InVec, InIdx)); 3099 } 3100 3101 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3102 SDValue Src1 = getValue(I.getOperand(0)); 3103 SDValue Src2 = getValue(I.getOperand(1)); 3104 SDLoc DL = getCurSDLoc(); 3105 3106 SmallVector<int, 8> Mask; 3107 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3108 unsigned MaskNumElts = Mask.size(); 3109 3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3111 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3112 EVT SrcVT = Src1.getValueType(); 3113 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3114 3115 if (SrcNumElts == MaskNumElts) { 3116 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3117 return; 3118 } 3119 3120 // Normalize the shuffle vector since mask and vector length don't match. 3121 if (SrcNumElts < MaskNumElts) { 3122 // Mask is longer than the source vectors. We can use concatenate vector to 3123 // make the mask and vectors lengths match. 3124 3125 if (MaskNumElts % SrcNumElts == 0) { 3126 // Mask length is a multiple of the source vector length. 3127 // Check if the shuffle is some kind of concatenation of the input 3128 // vectors. 3129 unsigned NumConcat = MaskNumElts / SrcNumElts; 3130 bool IsConcat = true; 3131 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3132 for (unsigned i = 0; i != MaskNumElts; ++i) { 3133 int Idx = Mask[i]; 3134 if (Idx < 0) 3135 continue; 3136 // Ensure the indices in each SrcVT sized piece are sequential and that 3137 // the same source is used for the whole piece. 3138 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3139 (ConcatSrcs[i / SrcNumElts] >= 0 && 3140 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3141 IsConcat = false; 3142 break; 3143 } 3144 // Remember which source this index came from. 3145 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3146 } 3147 3148 // The shuffle is concatenating multiple vectors together. Just emit 3149 // a CONCAT_VECTORS operation. 3150 if (IsConcat) { 3151 SmallVector<SDValue, 8> ConcatOps; 3152 for (auto Src : ConcatSrcs) { 3153 if (Src < 0) 3154 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3155 else if (Src == 0) 3156 ConcatOps.push_back(Src1); 3157 else 3158 ConcatOps.push_back(Src2); 3159 } 3160 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3161 return; 3162 } 3163 } 3164 3165 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3166 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3167 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3168 PaddedMaskNumElts); 3169 3170 // Pad both vectors with undefs to make them the same length as the mask. 3171 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3172 3173 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3174 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3175 MOps1[0] = Src1; 3176 MOps2[0] = Src2; 3177 3178 Src1 = Src1.isUndef() 3179 ? DAG.getUNDEF(PaddedVT) 3180 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3181 Src2 = Src2.isUndef() 3182 ? DAG.getUNDEF(PaddedVT) 3183 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3184 3185 // Readjust mask for new input vector length. 3186 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3187 for (unsigned i = 0; i != MaskNumElts; ++i) { 3188 int Idx = Mask[i]; 3189 if (Idx >= (int)SrcNumElts) 3190 Idx -= SrcNumElts - PaddedMaskNumElts; 3191 MappedOps[i] = Idx; 3192 } 3193 3194 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3195 3196 // If the concatenated vector was padded, extract a subvector with the 3197 // correct number of elements. 3198 if (MaskNumElts != PaddedMaskNumElts) 3199 Result = DAG.getNode( 3200 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3201 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3202 3203 setValue(&I, Result); 3204 return; 3205 } 3206 3207 if (SrcNumElts > MaskNumElts) { 3208 // Analyze the access pattern of the vector to see if we can extract 3209 // two subvectors and do the shuffle. 3210 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3211 bool CanExtract = true; 3212 for (int Idx : Mask) { 3213 unsigned Input = 0; 3214 if (Idx < 0) 3215 continue; 3216 3217 if (Idx >= (int)SrcNumElts) { 3218 Input = 1; 3219 Idx -= SrcNumElts; 3220 } 3221 3222 // If all the indices come from the same MaskNumElts sized portion of 3223 // the sources we can use extract. Also make sure the extract wouldn't 3224 // extract past the end of the source. 3225 int NewStartIdx = alignDown(Idx, MaskNumElts); 3226 if (NewStartIdx + MaskNumElts > SrcNumElts || 3227 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3228 CanExtract = false; 3229 // Make sure we always update StartIdx as we use it to track if all 3230 // elements are undef. 3231 StartIdx[Input] = NewStartIdx; 3232 } 3233 3234 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3235 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3236 return; 3237 } 3238 if (CanExtract) { 3239 // Extract appropriate subvector and generate a vector shuffle 3240 for (unsigned Input = 0; Input < 2; ++Input) { 3241 SDValue &Src = Input == 0 ? Src1 : Src2; 3242 if (StartIdx[Input] < 0) 3243 Src = DAG.getUNDEF(VT); 3244 else { 3245 Src = DAG.getNode( 3246 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3247 DAG.getConstant(StartIdx[Input], DL, 3248 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3249 } 3250 } 3251 3252 // Calculate new mask. 3253 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3254 for (int &Idx : MappedOps) { 3255 if (Idx >= (int)SrcNumElts) 3256 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3257 else if (Idx >= 0) 3258 Idx -= StartIdx[0]; 3259 } 3260 3261 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3262 return; 3263 } 3264 } 3265 3266 // We can't use either concat vectors or extract subvectors so fall back to 3267 // replacing the shuffle with extract and build vector. 3268 // to insert and build vector. 3269 EVT EltVT = VT.getVectorElementType(); 3270 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3271 SmallVector<SDValue,8> Ops; 3272 for (int Idx : Mask) { 3273 SDValue Res; 3274 3275 if (Idx < 0) { 3276 Res = DAG.getUNDEF(EltVT); 3277 } else { 3278 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3279 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3280 3281 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3282 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3283 } 3284 3285 Ops.push_back(Res); 3286 } 3287 3288 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3289 } 3290 3291 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3292 ArrayRef<unsigned> Indices; 3293 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3294 Indices = IV->getIndices(); 3295 else 3296 Indices = cast<ConstantExpr>(&I)->getIndices(); 3297 3298 const Value *Op0 = I.getOperand(0); 3299 const Value *Op1 = I.getOperand(1); 3300 Type *AggTy = I.getType(); 3301 Type *ValTy = Op1->getType(); 3302 bool IntoUndef = isa<UndefValue>(Op0); 3303 bool FromUndef = isa<UndefValue>(Op1); 3304 3305 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3306 3307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3308 SmallVector<EVT, 4> AggValueVTs; 3309 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3310 SmallVector<EVT, 4> ValValueVTs; 3311 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3312 3313 unsigned NumAggValues = AggValueVTs.size(); 3314 unsigned NumValValues = ValValueVTs.size(); 3315 SmallVector<SDValue, 4> Values(NumAggValues); 3316 3317 // Ignore an insertvalue that produces an empty object 3318 if (!NumAggValues) { 3319 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3320 return; 3321 } 3322 3323 SDValue Agg = getValue(Op0); 3324 unsigned i = 0; 3325 // Copy the beginning value(s) from the original aggregate. 3326 for (; i != LinearIndex; ++i) 3327 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3328 SDValue(Agg.getNode(), Agg.getResNo() + i); 3329 // Copy values from the inserted value(s). 3330 if (NumValValues) { 3331 SDValue Val = getValue(Op1); 3332 for (; i != LinearIndex + NumValValues; ++i) 3333 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3334 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3335 } 3336 // Copy remaining value(s) from the original aggregate. 3337 for (; i != NumAggValues; ++i) 3338 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3339 SDValue(Agg.getNode(), Agg.getResNo() + i); 3340 3341 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3342 DAG.getVTList(AggValueVTs), Values)); 3343 } 3344 3345 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3346 ArrayRef<unsigned> Indices; 3347 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3348 Indices = EV->getIndices(); 3349 else 3350 Indices = cast<ConstantExpr>(&I)->getIndices(); 3351 3352 const Value *Op0 = I.getOperand(0); 3353 Type *AggTy = Op0->getType(); 3354 Type *ValTy = I.getType(); 3355 bool OutOfUndef = isa<UndefValue>(Op0); 3356 3357 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3358 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 SmallVector<EVT, 4> ValValueVTs; 3361 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3362 3363 unsigned NumValValues = ValValueVTs.size(); 3364 3365 // Ignore a extractvalue that produces an empty object 3366 if (!NumValValues) { 3367 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3368 return; 3369 } 3370 3371 SmallVector<SDValue, 4> Values(NumValValues); 3372 3373 SDValue Agg = getValue(Op0); 3374 // Copy out the selected value(s). 3375 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3376 Values[i - LinearIndex] = 3377 OutOfUndef ? 3378 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3379 SDValue(Agg.getNode(), Agg.getResNo() + i); 3380 3381 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3382 DAG.getVTList(ValValueVTs), Values)); 3383 } 3384 3385 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3386 Value *Op0 = I.getOperand(0); 3387 // Note that the pointer operand may be a vector of pointers. Take the scalar 3388 // element which holds a pointer. 3389 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3390 SDValue N = getValue(Op0); 3391 SDLoc dl = getCurSDLoc(); 3392 3393 // Normalize Vector GEP - all scalar operands should be converted to the 3394 // splat vector. 3395 unsigned VectorWidth = I.getType()->isVectorTy() ? 3396 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3397 3398 if (VectorWidth && !N.getValueType().isVector()) { 3399 LLVMContext &Context = *DAG.getContext(); 3400 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3401 N = DAG.getSplatBuildVector(VT, dl, N); 3402 } 3403 3404 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3405 GTI != E; ++GTI) { 3406 const Value *Idx = GTI.getOperand(); 3407 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3408 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3409 if (Field) { 3410 // N = N + Offset 3411 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3412 3413 // In an inbounds GEP with an offset that is nonnegative even when 3414 // interpreted as signed, assume there is no unsigned overflow. 3415 SDNodeFlags Flags; 3416 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3417 Flags.setNoUnsignedWrap(true); 3418 3419 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3420 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3421 } 3422 } else { 3423 MVT PtrTy = 3424 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3425 unsigned PtrSize = PtrTy.getSizeInBits(); 3426 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3427 3428 // If this is a scalar constant or a splat vector of constants, 3429 // handle it quickly. 3430 const auto *CI = dyn_cast<ConstantInt>(Idx); 3431 if (!CI && isa<ConstantDataVector>(Idx) && 3432 cast<ConstantDataVector>(Idx)->getSplatValue()) 3433 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3434 3435 if (CI) { 3436 if (CI->isZero()) 3437 continue; 3438 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3439 LLVMContext &Context = *DAG.getContext(); 3440 SDValue OffsVal = VectorWidth ? 3441 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3442 DAG.getConstant(Offs, dl, PtrTy); 3443 3444 // In an inbouds GEP with an offset that is nonnegative even when 3445 // interpreted as signed, assume there is no unsigned overflow. 3446 SDNodeFlags Flags; 3447 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3448 Flags.setNoUnsignedWrap(true); 3449 3450 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3451 continue; 3452 } 3453 3454 // N = N + Idx * ElementSize; 3455 SDValue IdxN = getValue(Idx); 3456 3457 if (!IdxN.getValueType().isVector() && VectorWidth) { 3458 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3459 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3460 } 3461 3462 // If the index is smaller or larger than intptr_t, truncate or extend 3463 // it. 3464 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3465 3466 // If this is a multiply by a power of two, turn it into a shl 3467 // immediately. This is a very common case. 3468 if (ElementSize != 1) { 3469 if (ElementSize.isPowerOf2()) { 3470 unsigned Amt = ElementSize.logBase2(); 3471 IdxN = DAG.getNode(ISD::SHL, dl, 3472 N.getValueType(), IdxN, 3473 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3474 } else { 3475 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3476 IdxN = DAG.getNode(ISD::MUL, dl, 3477 N.getValueType(), IdxN, Scale); 3478 } 3479 } 3480 3481 N = DAG.getNode(ISD::ADD, dl, 3482 N.getValueType(), N, IdxN); 3483 } 3484 } 3485 3486 setValue(&I, N); 3487 } 3488 3489 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3490 // If this is a fixed sized alloca in the entry block of the function, 3491 // allocate it statically on the stack. 3492 if (FuncInfo.StaticAllocaMap.count(&I)) 3493 return; // getValue will auto-populate this. 3494 3495 SDLoc dl = getCurSDLoc(); 3496 Type *Ty = I.getAllocatedType(); 3497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3498 auto &DL = DAG.getDataLayout(); 3499 uint64_t TySize = DL.getTypeAllocSize(Ty); 3500 unsigned Align = 3501 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3502 3503 SDValue AllocSize = getValue(I.getArraySize()); 3504 3505 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3506 if (AllocSize.getValueType() != IntPtr) 3507 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3508 3509 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3510 AllocSize, 3511 DAG.getConstant(TySize, dl, IntPtr)); 3512 3513 // Handle alignment. If the requested alignment is less than or equal to 3514 // the stack alignment, ignore it. If the size is greater than or equal to 3515 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3516 unsigned StackAlign = 3517 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3518 if (Align <= StackAlign) 3519 Align = 0; 3520 3521 // Round the size of the allocation up to the stack alignment size 3522 // by add SA-1 to the size. This doesn't overflow because we're computing 3523 // an address inside an alloca. 3524 SDNodeFlags Flags; 3525 Flags.setNoUnsignedWrap(true); 3526 AllocSize = DAG.getNode(ISD::ADD, dl, 3527 AllocSize.getValueType(), AllocSize, 3528 DAG.getIntPtrConstant(StackAlign - 1, dl), Flags); 3529 3530 // Mask out the low bits for alignment purposes. 3531 AllocSize = DAG.getNode(ISD::AND, dl, 3532 AllocSize.getValueType(), AllocSize, 3533 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3534 dl)); 3535 3536 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3537 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3538 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3539 setValue(&I, DSA); 3540 DAG.setRoot(DSA.getValue(1)); 3541 3542 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3543 } 3544 3545 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3546 if (I.isAtomic()) 3547 return visitAtomicLoad(I); 3548 3549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3550 const Value *SV = I.getOperand(0); 3551 if (TLI.supportSwiftError()) { 3552 // Swifterror values can come from either a function parameter with 3553 // swifterror attribute or an alloca with swifterror attribute. 3554 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3555 if (Arg->hasSwiftErrorAttr()) 3556 return visitLoadFromSwiftError(I); 3557 } 3558 3559 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3560 if (Alloca->isSwiftError()) 3561 return visitLoadFromSwiftError(I); 3562 } 3563 } 3564 3565 SDValue Ptr = getValue(SV); 3566 3567 Type *Ty = I.getType(); 3568 3569 bool isVolatile = I.isVolatile(); 3570 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3571 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3572 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3573 unsigned Alignment = I.getAlignment(); 3574 3575 AAMDNodes AAInfo; 3576 I.getAAMetadata(AAInfo); 3577 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3578 3579 SmallVector<EVT, 4> ValueVTs; 3580 SmallVector<uint64_t, 4> Offsets; 3581 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3582 unsigned NumValues = ValueVTs.size(); 3583 if (NumValues == 0) 3584 return; 3585 3586 SDValue Root; 3587 bool ConstantMemory = false; 3588 if (isVolatile || NumValues > MaxParallelChains) 3589 // Serialize volatile loads with other side effects. 3590 Root = getRoot(); 3591 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3592 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3593 // Do not serialize (non-volatile) loads of constant memory with anything. 3594 Root = DAG.getEntryNode(); 3595 ConstantMemory = true; 3596 } else { 3597 // Do not serialize non-volatile loads against each other. 3598 Root = DAG.getRoot(); 3599 } 3600 3601 SDLoc dl = getCurSDLoc(); 3602 3603 if (isVolatile) 3604 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3605 3606 // An aggregate load cannot wrap around the address space, so offsets to its 3607 // parts don't wrap either. 3608 SDNodeFlags Flags; 3609 Flags.setNoUnsignedWrap(true); 3610 3611 SmallVector<SDValue, 4> Values(NumValues); 3612 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3613 EVT PtrVT = Ptr.getValueType(); 3614 unsigned ChainI = 0; 3615 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3616 // Serializing loads here may result in excessive register pressure, and 3617 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3618 // could recover a bit by hoisting nodes upward in the chain by recognizing 3619 // they are side-effect free or do not alias. The optimizer should really 3620 // avoid this case by converting large object/array copies to llvm.memcpy 3621 // (MaxParallelChains should always remain as failsafe). 3622 if (ChainI == MaxParallelChains) { 3623 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3624 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3625 makeArrayRef(Chains.data(), ChainI)); 3626 Root = Chain; 3627 ChainI = 0; 3628 } 3629 SDValue A = DAG.getNode(ISD::ADD, dl, 3630 PtrVT, Ptr, 3631 DAG.getConstant(Offsets[i], dl, PtrVT), 3632 Flags); 3633 auto MMOFlags = MachineMemOperand::MONone; 3634 if (isVolatile) 3635 MMOFlags |= MachineMemOperand::MOVolatile; 3636 if (isNonTemporal) 3637 MMOFlags |= MachineMemOperand::MONonTemporal; 3638 if (isInvariant) 3639 MMOFlags |= MachineMemOperand::MOInvariant; 3640 if (isDereferenceable) 3641 MMOFlags |= MachineMemOperand::MODereferenceable; 3642 MMOFlags |= TLI.getMMOFlags(I); 3643 3644 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3645 MachinePointerInfo(SV, Offsets[i]), Alignment, 3646 MMOFlags, AAInfo, Ranges); 3647 3648 Values[i] = L; 3649 Chains[ChainI] = L.getValue(1); 3650 } 3651 3652 if (!ConstantMemory) { 3653 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3654 makeArrayRef(Chains.data(), ChainI)); 3655 if (isVolatile) 3656 DAG.setRoot(Chain); 3657 else 3658 PendingLoads.push_back(Chain); 3659 } 3660 3661 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3662 DAG.getVTList(ValueVTs), Values)); 3663 } 3664 3665 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3666 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3667 "call visitStoreToSwiftError when backend supports swifterror"); 3668 3669 SmallVector<EVT, 4> ValueVTs; 3670 SmallVector<uint64_t, 4> Offsets; 3671 const Value *SrcV = I.getOperand(0); 3672 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3673 SrcV->getType(), ValueVTs, &Offsets); 3674 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3675 "expect a single EVT for swifterror"); 3676 3677 SDValue Src = getValue(SrcV); 3678 // Create a virtual register, then update the virtual register. 3679 unsigned VReg; bool CreatedVReg; 3680 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3681 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3682 // Chain can be getRoot or getControlRoot. 3683 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3684 SDValue(Src.getNode(), Src.getResNo())); 3685 DAG.setRoot(CopyNode); 3686 if (CreatedVReg) 3687 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3688 } 3689 3690 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3691 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3692 "call visitLoadFromSwiftError when backend supports swifterror"); 3693 3694 assert(!I.isVolatile() && 3695 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3696 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3697 "Support volatile, non temporal, invariant for load_from_swift_error"); 3698 3699 const Value *SV = I.getOperand(0); 3700 Type *Ty = I.getType(); 3701 AAMDNodes AAInfo; 3702 I.getAAMetadata(AAInfo); 3703 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3704 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3705 "load_from_swift_error should not be constant memory"); 3706 3707 SmallVector<EVT, 4> ValueVTs; 3708 SmallVector<uint64_t, 4> Offsets; 3709 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3710 ValueVTs, &Offsets); 3711 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3712 "expect a single EVT for swifterror"); 3713 3714 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3715 SDValue L = DAG.getCopyFromReg( 3716 getRoot(), getCurSDLoc(), 3717 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3718 ValueVTs[0]); 3719 3720 setValue(&I, L); 3721 } 3722 3723 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3724 if (I.isAtomic()) 3725 return visitAtomicStore(I); 3726 3727 const Value *SrcV = I.getOperand(0); 3728 const Value *PtrV = I.getOperand(1); 3729 3730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3731 if (TLI.supportSwiftError()) { 3732 // Swifterror values can come from either a function parameter with 3733 // swifterror attribute or an alloca with swifterror attribute. 3734 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3735 if (Arg->hasSwiftErrorAttr()) 3736 return visitStoreToSwiftError(I); 3737 } 3738 3739 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3740 if (Alloca->isSwiftError()) 3741 return visitStoreToSwiftError(I); 3742 } 3743 } 3744 3745 SmallVector<EVT, 4> ValueVTs; 3746 SmallVector<uint64_t, 4> Offsets; 3747 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3748 SrcV->getType(), ValueVTs, &Offsets); 3749 unsigned NumValues = ValueVTs.size(); 3750 if (NumValues == 0) 3751 return; 3752 3753 // Get the lowered operands. Note that we do this after 3754 // checking if NumResults is zero, because with zero results 3755 // the operands won't have values in the map. 3756 SDValue Src = getValue(SrcV); 3757 SDValue Ptr = getValue(PtrV); 3758 3759 SDValue Root = getRoot(); 3760 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3761 SDLoc dl = getCurSDLoc(); 3762 EVT PtrVT = Ptr.getValueType(); 3763 unsigned Alignment = I.getAlignment(); 3764 AAMDNodes AAInfo; 3765 I.getAAMetadata(AAInfo); 3766 3767 auto MMOFlags = MachineMemOperand::MONone; 3768 if (I.isVolatile()) 3769 MMOFlags |= MachineMemOperand::MOVolatile; 3770 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3771 MMOFlags |= MachineMemOperand::MONonTemporal; 3772 MMOFlags |= TLI.getMMOFlags(I); 3773 3774 // An aggregate load cannot wrap around the address space, so offsets to its 3775 // parts don't wrap either. 3776 SDNodeFlags Flags; 3777 Flags.setNoUnsignedWrap(true); 3778 3779 unsigned ChainI = 0; 3780 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3781 // See visitLoad comments. 3782 if (ChainI == MaxParallelChains) { 3783 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3784 makeArrayRef(Chains.data(), ChainI)); 3785 Root = Chain; 3786 ChainI = 0; 3787 } 3788 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3789 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3790 SDValue St = DAG.getStore( 3791 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3792 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3793 Chains[ChainI] = St; 3794 } 3795 3796 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3797 makeArrayRef(Chains.data(), ChainI)); 3798 DAG.setRoot(StoreNode); 3799 } 3800 3801 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3802 bool IsCompressing) { 3803 SDLoc sdl = getCurSDLoc(); 3804 3805 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3806 unsigned& Alignment) { 3807 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3808 Src0 = I.getArgOperand(0); 3809 Ptr = I.getArgOperand(1); 3810 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3811 Mask = I.getArgOperand(3); 3812 }; 3813 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3814 unsigned& Alignment) { 3815 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3816 Src0 = I.getArgOperand(0); 3817 Ptr = I.getArgOperand(1); 3818 Mask = I.getArgOperand(2); 3819 Alignment = 0; 3820 }; 3821 3822 Value *PtrOperand, *MaskOperand, *Src0Operand; 3823 unsigned Alignment; 3824 if (IsCompressing) 3825 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3826 else 3827 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3828 3829 SDValue Ptr = getValue(PtrOperand); 3830 SDValue Src0 = getValue(Src0Operand); 3831 SDValue Mask = getValue(MaskOperand); 3832 3833 EVT VT = Src0.getValueType(); 3834 if (!Alignment) 3835 Alignment = DAG.getEVTAlignment(VT); 3836 3837 AAMDNodes AAInfo; 3838 I.getAAMetadata(AAInfo); 3839 3840 MachineMemOperand *MMO = 3841 DAG.getMachineFunction(). 3842 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3843 MachineMemOperand::MOStore, VT.getStoreSize(), 3844 Alignment, AAInfo); 3845 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3846 MMO, false /* Truncating */, 3847 IsCompressing); 3848 DAG.setRoot(StoreNode); 3849 setValue(&I, StoreNode); 3850 } 3851 3852 // Get a uniform base for the Gather/Scatter intrinsic. 3853 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3854 // We try to represent it as a base pointer + vector of indices. 3855 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3856 // The first operand of the GEP may be a single pointer or a vector of pointers 3857 // Example: 3858 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3859 // or 3860 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3861 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3862 // 3863 // When the first GEP operand is a single pointer - it is the uniform base we 3864 // are looking for. If first operand of the GEP is a splat vector - we 3865 // extract the splat value and use it as a uniform base. 3866 // In all other cases the function returns 'false'. 3867 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3868 SelectionDAGBuilder* SDB) { 3869 SelectionDAG& DAG = SDB->DAG; 3870 LLVMContext &Context = *DAG.getContext(); 3871 3872 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3873 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3874 if (!GEP) 3875 return false; 3876 3877 const Value *GEPPtr = GEP->getPointerOperand(); 3878 if (!GEPPtr->getType()->isVectorTy()) 3879 Ptr = GEPPtr; 3880 else if (!(Ptr = getSplatValue(GEPPtr))) 3881 return false; 3882 3883 unsigned FinalIndex = GEP->getNumOperands() - 1; 3884 Value *IndexVal = GEP->getOperand(FinalIndex); 3885 3886 // Ensure all the other indices are 0. 3887 for (unsigned i = 1; i < FinalIndex; ++i) 3888 if (auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i))) 3889 if (!C->isZero()) 3890 return false; 3891 3892 // The operands of the GEP may be defined in another basic block. 3893 // In this case we'll not find nodes for the operands. 3894 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3895 return false; 3896 3897 Base = SDB->getValue(Ptr); 3898 Index = SDB->getValue(IndexVal); 3899 3900 // Suppress sign extension. 3901 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3902 if (SDB->findValue(Sext->getOperand(0))) { 3903 IndexVal = Sext->getOperand(0); 3904 Index = SDB->getValue(IndexVal); 3905 } 3906 } 3907 if (!Index.getValueType().isVector()) { 3908 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3909 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3910 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3911 } 3912 return true; 3913 } 3914 3915 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3916 SDLoc sdl = getCurSDLoc(); 3917 3918 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3919 const Value *Ptr = I.getArgOperand(1); 3920 SDValue Src0 = getValue(I.getArgOperand(0)); 3921 SDValue Mask = getValue(I.getArgOperand(3)); 3922 EVT VT = Src0.getValueType(); 3923 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3924 if (!Alignment) 3925 Alignment = DAG.getEVTAlignment(VT); 3926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3927 3928 AAMDNodes AAInfo; 3929 I.getAAMetadata(AAInfo); 3930 3931 SDValue Base; 3932 SDValue Index; 3933 const Value *BasePtr = Ptr; 3934 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3935 3936 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3937 MachineMemOperand *MMO = DAG.getMachineFunction(). 3938 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3939 MachineMemOperand::MOStore, VT.getStoreSize(), 3940 Alignment, AAInfo); 3941 if (!UniformBase) { 3942 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3943 Index = getValue(Ptr); 3944 } 3945 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3946 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3947 Ops, MMO); 3948 DAG.setRoot(Scatter); 3949 setValue(&I, Scatter); 3950 } 3951 3952 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3953 SDLoc sdl = getCurSDLoc(); 3954 3955 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3956 unsigned& Alignment) { 3957 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3958 Ptr = I.getArgOperand(0); 3959 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3960 Mask = I.getArgOperand(2); 3961 Src0 = I.getArgOperand(3); 3962 }; 3963 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3964 unsigned& Alignment) { 3965 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3966 Ptr = I.getArgOperand(0); 3967 Alignment = 0; 3968 Mask = I.getArgOperand(1); 3969 Src0 = I.getArgOperand(2); 3970 }; 3971 3972 Value *PtrOperand, *MaskOperand, *Src0Operand; 3973 unsigned Alignment; 3974 if (IsExpanding) 3975 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3976 else 3977 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3978 3979 SDValue Ptr = getValue(PtrOperand); 3980 SDValue Src0 = getValue(Src0Operand); 3981 SDValue Mask = getValue(MaskOperand); 3982 3983 EVT VT = Src0.getValueType(); 3984 if (!Alignment) 3985 Alignment = DAG.getEVTAlignment(VT); 3986 3987 AAMDNodes AAInfo; 3988 I.getAAMetadata(AAInfo); 3989 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3990 3991 // Do not serialize masked loads of constant memory with anything. 3992 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3993 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3994 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3995 3996 MachineMemOperand *MMO = 3997 DAG.getMachineFunction(). 3998 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3999 MachineMemOperand::MOLoad, VT.getStoreSize(), 4000 Alignment, AAInfo, Ranges); 4001 4002 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4003 ISD::NON_EXTLOAD, IsExpanding); 4004 if (AddToChain) { 4005 SDValue OutChain = Load.getValue(1); 4006 DAG.setRoot(OutChain); 4007 } 4008 setValue(&I, Load); 4009 } 4010 4011 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4012 SDLoc sdl = getCurSDLoc(); 4013 4014 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4015 const Value *Ptr = I.getArgOperand(0); 4016 SDValue Src0 = getValue(I.getArgOperand(3)); 4017 SDValue Mask = getValue(I.getArgOperand(2)); 4018 4019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4020 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4021 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4022 if (!Alignment) 4023 Alignment = DAG.getEVTAlignment(VT); 4024 4025 AAMDNodes AAInfo; 4026 I.getAAMetadata(AAInfo); 4027 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4028 4029 SDValue Root = DAG.getRoot(); 4030 SDValue Base; 4031 SDValue Index; 4032 const Value *BasePtr = Ptr; 4033 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 4034 bool ConstantMemory = false; 4035 if (UniformBase && 4036 AA && AA->pointsToConstantMemory(MemoryLocation( 4037 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4038 AAInfo))) { 4039 // Do not serialize (non-volatile) loads of constant memory with anything. 4040 Root = DAG.getEntryNode(); 4041 ConstantMemory = true; 4042 } 4043 4044 MachineMemOperand *MMO = 4045 DAG.getMachineFunction(). 4046 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4047 MachineMemOperand::MOLoad, VT.getStoreSize(), 4048 Alignment, AAInfo, Ranges); 4049 4050 if (!UniformBase) { 4051 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4052 Index = getValue(Ptr); 4053 } 4054 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 4055 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4056 Ops, MMO); 4057 4058 SDValue OutChain = Gather.getValue(1); 4059 if (!ConstantMemory) 4060 PendingLoads.push_back(OutChain); 4061 setValue(&I, Gather); 4062 } 4063 4064 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4065 SDLoc dl = getCurSDLoc(); 4066 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4067 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4068 SyncScope::ID SSID = I.getSyncScopeID(); 4069 4070 SDValue InChain = getRoot(); 4071 4072 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4073 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4074 SDValue L = DAG.getAtomicCmpSwap( 4075 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4076 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4077 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4078 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4079 4080 SDValue OutChain = L.getValue(2); 4081 4082 setValue(&I, L); 4083 DAG.setRoot(OutChain); 4084 } 4085 4086 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4087 SDLoc dl = getCurSDLoc(); 4088 ISD::NodeType NT; 4089 switch (I.getOperation()) { 4090 default: llvm_unreachable("Unknown atomicrmw operation"); 4091 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4092 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4093 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4094 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4095 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4096 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4097 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4098 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4099 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4100 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4101 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4102 } 4103 AtomicOrdering Order = I.getOrdering(); 4104 SyncScope::ID SSID = I.getSyncScopeID(); 4105 4106 SDValue InChain = getRoot(); 4107 4108 SDValue L = 4109 DAG.getAtomic(NT, dl, 4110 getValue(I.getValOperand()).getSimpleValueType(), 4111 InChain, 4112 getValue(I.getPointerOperand()), 4113 getValue(I.getValOperand()), 4114 I.getPointerOperand(), 4115 /* Alignment=*/ 0, Order, SSID); 4116 4117 SDValue OutChain = L.getValue(1); 4118 4119 setValue(&I, L); 4120 DAG.setRoot(OutChain); 4121 } 4122 4123 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4124 SDLoc dl = getCurSDLoc(); 4125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4126 SDValue Ops[3]; 4127 Ops[0] = getRoot(); 4128 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4129 TLI.getFenceOperandTy(DAG.getDataLayout())); 4130 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4131 TLI.getFenceOperandTy(DAG.getDataLayout())); 4132 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4133 } 4134 4135 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4136 SDLoc dl = getCurSDLoc(); 4137 AtomicOrdering Order = I.getOrdering(); 4138 SyncScope::ID SSID = I.getSyncScopeID(); 4139 4140 SDValue InChain = getRoot(); 4141 4142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4143 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4144 4145 if (I.getAlignment() < VT.getSizeInBits() / 8) 4146 report_fatal_error("Cannot generate unaligned atomic load"); 4147 4148 MachineMemOperand *MMO = 4149 DAG.getMachineFunction(). 4150 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4151 MachineMemOperand::MOVolatile | 4152 MachineMemOperand::MOLoad, 4153 VT.getStoreSize(), 4154 I.getAlignment() ? I.getAlignment() : 4155 DAG.getEVTAlignment(VT), 4156 AAMDNodes(), nullptr, SSID, Order); 4157 4158 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4159 SDValue L = 4160 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4161 getValue(I.getPointerOperand()), MMO); 4162 4163 SDValue OutChain = L.getValue(1); 4164 4165 setValue(&I, L); 4166 DAG.setRoot(OutChain); 4167 } 4168 4169 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4170 SDLoc dl = getCurSDLoc(); 4171 4172 AtomicOrdering Order = I.getOrdering(); 4173 SyncScope::ID SSID = I.getSyncScopeID(); 4174 4175 SDValue InChain = getRoot(); 4176 4177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4178 EVT VT = 4179 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4180 4181 if (I.getAlignment() < VT.getSizeInBits() / 8) 4182 report_fatal_error("Cannot generate unaligned atomic store"); 4183 4184 SDValue OutChain = 4185 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4186 InChain, 4187 getValue(I.getPointerOperand()), 4188 getValue(I.getValueOperand()), 4189 I.getPointerOperand(), I.getAlignment(), 4190 Order, SSID); 4191 4192 DAG.setRoot(OutChain); 4193 } 4194 4195 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4196 /// node. 4197 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4198 unsigned Intrinsic) { 4199 // Ignore the callsite's attributes. A specific call site may be marked with 4200 // readnone, but the lowering code will expect the chain based on the 4201 // definition. 4202 const Function *F = I.getCalledFunction(); 4203 bool HasChain = !F->doesNotAccessMemory(); 4204 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4205 4206 // Build the operand list. 4207 SmallVector<SDValue, 8> Ops; 4208 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4209 if (OnlyLoad) { 4210 // We don't need to serialize loads against other loads. 4211 Ops.push_back(DAG.getRoot()); 4212 } else { 4213 Ops.push_back(getRoot()); 4214 } 4215 } 4216 4217 // Info is set by getTgtMemInstrinsic 4218 TargetLowering::IntrinsicInfo Info; 4219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4220 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4221 4222 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4223 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4224 Info.opc == ISD::INTRINSIC_W_CHAIN) 4225 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4226 TLI.getPointerTy(DAG.getDataLayout()))); 4227 4228 // Add all operands of the call to the operand list. 4229 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4230 SDValue Op = getValue(I.getArgOperand(i)); 4231 Ops.push_back(Op); 4232 } 4233 4234 SmallVector<EVT, 4> ValueVTs; 4235 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4236 4237 if (HasChain) 4238 ValueVTs.push_back(MVT::Other); 4239 4240 SDVTList VTs = DAG.getVTList(ValueVTs); 4241 4242 // Create the node. 4243 SDValue Result; 4244 if (IsTgtIntrinsic) { 4245 // This is target intrinsic that touches memory 4246 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4247 VTs, Ops, Info.memVT, 4248 MachinePointerInfo(Info.ptrVal, Info.offset), 4249 Info.align, Info.vol, 4250 Info.readMem, Info.writeMem, Info.size); 4251 } else if (!HasChain) { 4252 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4253 } else if (!I.getType()->isVoidTy()) { 4254 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4255 } else { 4256 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4257 } 4258 4259 if (HasChain) { 4260 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4261 if (OnlyLoad) 4262 PendingLoads.push_back(Chain); 4263 else 4264 DAG.setRoot(Chain); 4265 } 4266 4267 if (!I.getType()->isVoidTy()) { 4268 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4269 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4270 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4271 } else 4272 Result = lowerRangeToAssertZExt(DAG, I, Result); 4273 4274 setValue(&I, Result); 4275 } 4276 } 4277 4278 /// GetSignificand - Get the significand and build it into a floating-point 4279 /// number with exponent of 1: 4280 /// 4281 /// Op = (Op & 0x007fffff) | 0x3f800000; 4282 /// 4283 /// where Op is the hexadecimal representation of floating point value. 4284 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4285 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4286 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4287 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4288 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4289 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4290 } 4291 4292 /// GetExponent - Get the exponent: 4293 /// 4294 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4295 /// 4296 /// where Op is the hexadecimal representation of floating point value. 4297 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4298 const TargetLowering &TLI, const SDLoc &dl) { 4299 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4300 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4301 SDValue t1 = DAG.getNode( 4302 ISD::SRL, dl, MVT::i32, t0, 4303 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4304 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4305 DAG.getConstant(127, dl, MVT::i32)); 4306 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4307 } 4308 4309 /// getF32Constant - Get 32-bit floating point constant. 4310 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4311 const SDLoc &dl) { 4312 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4313 MVT::f32); 4314 } 4315 4316 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4317 SelectionDAG &DAG) { 4318 // TODO: What fast-math-flags should be set on the floating-point nodes? 4319 4320 // IntegerPartOfX = ((int32_t)(t0); 4321 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4322 4323 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4324 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4325 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4326 4327 // IntegerPartOfX <<= 23; 4328 IntegerPartOfX = DAG.getNode( 4329 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4330 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4331 DAG.getDataLayout()))); 4332 4333 SDValue TwoToFractionalPartOfX; 4334 if (LimitFloatPrecision <= 6) { 4335 // For floating-point precision of 6: 4336 // 4337 // TwoToFractionalPartOfX = 4338 // 0.997535578f + 4339 // (0.735607626f + 0.252464424f * x) * x; 4340 // 4341 // error 0.0144103317, which is 6 bits 4342 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4343 getF32Constant(DAG, 0x3e814304, dl)); 4344 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4345 getF32Constant(DAG, 0x3f3c50c8, dl)); 4346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4347 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4348 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4349 } else if (LimitFloatPrecision <= 12) { 4350 // For floating-point precision of 12: 4351 // 4352 // TwoToFractionalPartOfX = 4353 // 0.999892986f + 4354 // (0.696457318f + 4355 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4356 // 4357 // error 0.000107046256, which is 13 to 14 bits 4358 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4359 getF32Constant(DAG, 0x3da235e3, dl)); 4360 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4361 getF32Constant(DAG, 0x3e65b8f3, dl)); 4362 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4363 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4364 getF32Constant(DAG, 0x3f324b07, dl)); 4365 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4366 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4367 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4368 } else { // LimitFloatPrecision <= 18 4369 // For floating-point precision of 18: 4370 // 4371 // TwoToFractionalPartOfX = 4372 // 0.999999982f + 4373 // (0.693148872f + 4374 // (0.240227044f + 4375 // (0.554906021e-1f + 4376 // (0.961591928e-2f + 4377 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4378 // error 2.47208000*10^(-7), which is better than 18 bits 4379 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4380 getF32Constant(DAG, 0x3924b03e, dl)); 4381 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4382 getF32Constant(DAG, 0x3ab24b87, dl)); 4383 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4384 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4385 getF32Constant(DAG, 0x3c1d8c17, dl)); 4386 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4387 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4388 getF32Constant(DAG, 0x3d634a1d, dl)); 4389 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4390 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4391 getF32Constant(DAG, 0x3e75fe14, dl)); 4392 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4393 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4394 getF32Constant(DAG, 0x3f317234, dl)); 4395 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4396 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4397 getF32Constant(DAG, 0x3f800000, dl)); 4398 } 4399 4400 // Add the exponent into the result in integer domain. 4401 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4402 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4403 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4404 } 4405 4406 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4407 /// limited-precision mode. 4408 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4409 const TargetLowering &TLI) { 4410 if (Op.getValueType() == MVT::f32 && 4411 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4412 4413 // Put the exponent in the right bit position for later addition to the 4414 // final result: 4415 // 4416 // #define LOG2OFe 1.4426950f 4417 // t0 = Op * LOG2OFe 4418 4419 // TODO: What fast-math-flags should be set here? 4420 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4421 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4422 return getLimitedPrecisionExp2(t0, dl, DAG); 4423 } 4424 4425 // No special expansion. 4426 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4427 } 4428 4429 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4430 /// limited-precision mode. 4431 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4432 const TargetLowering &TLI) { 4433 // TODO: What fast-math-flags should be set on the floating-point nodes? 4434 4435 if (Op.getValueType() == MVT::f32 && 4436 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4437 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4438 4439 // Scale the exponent by log(2) [0.69314718f]. 4440 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4441 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4442 getF32Constant(DAG, 0x3f317218, dl)); 4443 4444 // Get the significand and build it into a floating-point number with 4445 // exponent of 1. 4446 SDValue X = GetSignificand(DAG, Op1, dl); 4447 4448 SDValue LogOfMantissa; 4449 if (LimitFloatPrecision <= 6) { 4450 // For floating-point precision of 6: 4451 // 4452 // LogofMantissa = 4453 // -1.1609546f + 4454 // (1.4034025f - 0.23903021f * x) * x; 4455 // 4456 // error 0.0034276066, which is better than 8 bits 4457 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4458 getF32Constant(DAG, 0xbe74c456, dl)); 4459 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4460 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4461 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4462 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4463 getF32Constant(DAG, 0x3f949a29, dl)); 4464 } else if (LimitFloatPrecision <= 12) { 4465 // For floating-point precision of 12: 4466 // 4467 // LogOfMantissa = 4468 // -1.7417939f + 4469 // (2.8212026f + 4470 // (-1.4699568f + 4471 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4472 // 4473 // error 0.000061011436, which is 14 bits 4474 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4475 getF32Constant(DAG, 0xbd67b6d6, dl)); 4476 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4477 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4478 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4479 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4480 getF32Constant(DAG, 0x3fbc278b, dl)); 4481 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4482 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4483 getF32Constant(DAG, 0x40348e95, dl)); 4484 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4485 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4486 getF32Constant(DAG, 0x3fdef31a, dl)); 4487 } else { // LimitFloatPrecision <= 18 4488 // For floating-point precision of 18: 4489 // 4490 // LogOfMantissa = 4491 // -2.1072184f + 4492 // (4.2372794f + 4493 // (-3.7029485f + 4494 // (2.2781945f + 4495 // (-0.87823314f + 4496 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4497 // 4498 // error 0.0000023660568, which is better than 18 bits 4499 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4500 getF32Constant(DAG, 0xbc91e5ac, dl)); 4501 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4502 getF32Constant(DAG, 0x3e4350aa, dl)); 4503 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4504 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4505 getF32Constant(DAG, 0x3f60d3e3, dl)); 4506 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4507 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4508 getF32Constant(DAG, 0x4011cdf0, dl)); 4509 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4510 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4511 getF32Constant(DAG, 0x406cfd1c, dl)); 4512 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4513 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4514 getF32Constant(DAG, 0x408797cb, dl)); 4515 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4516 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4517 getF32Constant(DAG, 0x4006dcab, dl)); 4518 } 4519 4520 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4521 } 4522 4523 // No special expansion. 4524 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4525 } 4526 4527 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4528 /// limited-precision mode. 4529 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4530 const TargetLowering &TLI) { 4531 // TODO: What fast-math-flags should be set on the floating-point nodes? 4532 4533 if (Op.getValueType() == MVT::f32 && 4534 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4535 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4536 4537 // Get the exponent. 4538 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4539 4540 // Get the significand and build it into a floating-point number with 4541 // exponent of 1. 4542 SDValue X = GetSignificand(DAG, Op1, dl); 4543 4544 // Different possible minimax approximations of significand in 4545 // floating-point for various degrees of accuracy over [1,2]. 4546 SDValue Log2ofMantissa; 4547 if (LimitFloatPrecision <= 6) { 4548 // For floating-point precision of 6: 4549 // 4550 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4551 // 4552 // error 0.0049451742, which is more than 7 bits 4553 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4554 getF32Constant(DAG, 0xbeb08fe0, dl)); 4555 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4556 getF32Constant(DAG, 0x40019463, dl)); 4557 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4558 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4559 getF32Constant(DAG, 0x3fd6633d, dl)); 4560 } else if (LimitFloatPrecision <= 12) { 4561 // For floating-point precision of 12: 4562 // 4563 // Log2ofMantissa = 4564 // -2.51285454f + 4565 // (4.07009056f + 4566 // (-2.12067489f + 4567 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4568 // 4569 // error 0.0000876136000, which is better than 13 bits 4570 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4571 getF32Constant(DAG, 0xbda7262e, dl)); 4572 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4573 getF32Constant(DAG, 0x3f25280b, dl)); 4574 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4575 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4576 getF32Constant(DAG, 0x4007b923, dl)); 4577 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4578 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4579 getF32Constant(DAG, 0x40823e2f, dl)); 4580 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4581 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4582 getF32Constant(DAG, 0x4020d29c, dl)); 4583 } else { // LimitFloatPrecision <= 18 4584 // For floating-point precision of 18: 4585 // 4586 // Log2ofMantissa = 4587 // -3.0400495f + 4588 // (6.1129976f + 4589 // (-5.3420409f + 4590 // (3.2865683f + 4591 // (-1.2669343f + 4592 // (0.27515199f - 4593 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4594 // 4595 // error 0.0000018516, which is better than 18 bits 4596 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4597 getF32Constant(DAG, 0xbcd2769e, dl)); 4598 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4599 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4600 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4601 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4602 getF32Constant(DAG, 0x3fa22ae7, dl)); 4603 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4604 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4605 getF32Constant(DAG, 0x40525723, dl)); 4606 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4607 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4608 getF32Constant(DAG, 0x40aaf200, dl)); 4609 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4610 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4611 getF32Constant(DAG, 0x40c39dad, dl)); 4612 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4613 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4614 getF32Constant(DAG, 0x4042902c, dl)); 4615 } 4616 4617 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4618 } 4619 4620 // No special expansion. 4621 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4622 } 4623 4624 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4625 /// limited-precision mode. 4626 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4627 const TargetLowering &TLI) { 4628 // TODO: What fast-math-flags should be set on the floating-point nodes? 4629 4630 if (Op.getValueType() == MVT::f32 && 4631 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4632 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4633 4634 // Scale the exponent by log10(2) [0.30102999f]. 4635 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4636 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4637 getF32Constant(DAG, 0x3e9a209a, dl)); 4638 4639 // Get the significand and build it into a floating-point number with 4640 // exponent of 1. 4641 SDValue X = GetSignificand(DAG, Op1, dl); 4642 4643 SDValue Log10ofMantissa; 4644 if (LimitFloatPrecision <= 6) { 4645 // For floating-point precision of 6: 4646 // 4647 // Log10ofMantissa = 4648 // -0.50419619f + 4649 // (0.60948995f - 0.10380950f * x) * x; 4650 // 4651 // error 0.0014886165, which is 6 bits 4652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4653 getF32Constant(DAG, 0xbdd49a13, dl)); 4654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4655 getF32Constant(DAG, 0x3f1c0789, dl)); 4656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4657 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4658 getF32Constant(DAG, 0x3f011300, dl)); 4659 } else if (LimitFloatPrecision <= 12) { 4660 // For floating-point precision of 12: 4661 // 4662 // Log10ofMantissa = 4663 // -0.64831180f + 4664 // (0.91751397f + 4665 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4666 // 4667 // error 0.00019228036, which is better than 12 bits 4668 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4669 getF32Constant(DAG, 0x3d431f31, dl)); 4670 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4671 getF32Constant(DAG, 0x3ea21fb2, dl)); 4672 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4673 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4674 getF32Constant(DAG, 0x3f6ae232, dl)); 4675 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4676 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4677 getF32Constant(DAG, 0x3f25f7c3, dl)); 4678 } else { // LimitFloatPrecision <= 18 4679 // For floating-point precision of 18: 4680 // 4681 // Log10ofMantissa = 4682 // -0.84299375f + 4683 // (1.5327582f + 4684 // (-1.0688956f + 4685 // (0.49102474f + 4686 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4687 // 4688 // error 0.0000037995730, which is better than 18 bits 4689 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4690 getF32Constant(DAG, 0x3c5d51ce, dl)); 4691 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4692 getF32Constant(DAG, 0x3e00685a, dl)); 4693 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4694 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4695 getF32Constant(DAG, 0x3efb6798, dl)); 4696 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4697 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4698 getF32Constant(DAG, 0x3f88d192, dl)); 4699 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4700 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4701 getF32Constant(DAG, 0x3fc4316c, dl)); 4702 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4703 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4704 getF32Constant(DAG, 0x3f57ce70, dl)); 4705 } 4706 4707 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4708 } 4709 4710 // No special expansion. 4711 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4712 } 4713 4714 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4715 /// limited-precision mode. 4716 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4717 const TargetLowering &TLI) { 4718 if (Op.getValueType() == MVT::f32 && 4719 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4720 return getLimitedPrecisionExp2(Op, dl, DAG); 4721 4722 // No special expansion. 4723 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4724 } 4725 4726 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4727 /// limited-precision mode with x == 10.0f. 4728 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4729 SelectionDAG &DAG, const TargetLowering &TLI) { 4730 bool IsExp10 = false; 4731 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4732 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4733 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4734 APFloat Ten(10.0f); 4735 IsExp10 = LHSC->isExactlyValue(Ten); 4736 } 4737 } 4738 4739 // TODO: What fast-math-flags should be set on the FMUL node? 4740 if (IsExp10) { 4741 // Put the exponent in the right bit position for later addition to the 4742 // final result: 4743 // 4744 // #define LOG2OF10 3.3219281f 4745 // t0 = Op * LOG2OF10; 4746 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4747 getF32Constant(DAG, 0x40549a78, dl)); 4748 return getLimitedPrecisionExp2(t0, dl, DAG); 4749 } 4750 4751 // No special expansion. 4752 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4753 } 4754 4755 /// ExpandPowI - Expand a llvm.powi intrinsic. 4756 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4757 SelectionDAG &DAG) { 4758 // If RHS is a constant, we can expand this out to a multiplication tree, 4759 // otherwise we end up lowering to a call to __powidf2 (for example). When 4760 // optimizing for size, we only want to do this if the expansion would produce 4761 // a small number of multiplies, otherwise we do the full expansion. 4762 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4763 // Get the exponent as a positive value. 4764 unsigned Val = RHSC->getSExtValue(); 4765 if ((int)Val < 0) Val = -Val; 4766 4767 // powi(x, 0) -> 1.0 4768 if (Val == 0) 4769 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4770 4771 const Function *F = DAG.getMachineFunction().getFunction(); 4772 if (!F->optForSize() || 4773 // If optimizing for size, don't insert too many multiplies. 4774 // This inserts up to 5 multiplies. 4775 countPopulation(Val) + Log2_32(Val) < 7) { 4776 // We use the simple binary decomposition method to generate the multiply 4777 // sequence. There are more optimal ways to do this (for example, 4778 // powi(x,15) generates one more multiply than it should), but this has 4779 // the benefit of being both really simple and much better than a libcall. 4780 SDValue Res; // Logically starts equal to 1.0 4781 SDValue CurSquare = LHS; 4782 // TODO: Intrinsics should have fast-math-flags that propagate to these 4783 // nodes. 4784 while (Val) { 4785 if (Val & 1) { 4786 if (Res.getNode()) 4787 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4788 else 4789 Res = CurSquare; // 1.0*CurSquare. 4790 } 4791 4792 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4793 CurSquare, CurSquare); 4794 Val >>= 1; 4795 } 4796 4797 // If the original was negative, invert the result, producing 1/(x*x*x). 4798 if (RHSC->getSExtValue() < 0) 4799 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4800 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4801 return Res; 4802 } 4803 } 4804 4805 // Otherwise, expand to a libcall. 4806 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4807 } 4808 4809 // getUnderlyingArgReg - Find underlying register used for a truncated or 4810 // bitcasted argument. 4811 static unsigned getUnderlyingArgReg(const SDValue &N) { 4812 switch (N.getOpcode()) { 4813 case ISD::CopyFromReg: 4814 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4815 case ISD::BITCAST: 4816 case ISD::AssertZext: 4817 case ISD::AssertSext: 4818 case ISD::TRUNCATE: 4819 return getUnderlyingArgReg(N.getOperand(0)); 4820 default: 4821 return 0; 4822 } 4823 } 4824 4825 /// If the DbgValueInst is a dbg_value of a function argument, create the 4826 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4827 /// instruction selection, they will be inserted to the entry BB. 4828 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4829 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4830 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4831 const Argument *Arg = dyn_cast<Argument>(V); 4832 if (!Arg) 4833 return false; 4834 4835 MachineFunction &MF = DAG.getMachineFunction(); 4836 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4837 4838 bool IsIndirect = false; 4839 Optional<MachineOperand> Op; 4840 // Some arguments' frame index is recorded during argument lowering. 4841 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4842 if (FI != std::numeric_limits<int>::max()) 4843 Op = MachineOperand::CreateFI(FI); 4844 4845 if (!Op && N.getNode()) { 4846 unsigned Reg = getUnderlyingArgReg(N); 4847 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4848 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4849 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4850 if (PR) 4851 Reg = PR; 4852 } 4853 if (Reg) { 4854 Op = MachineOperand::CreateReg(Reg, false); 4855 IsIndirect = IsDbgDeclare; 4856 } 4857 } 4858 4859 if (!Op) { 4860 // Check if ValueMap has reg number. 4861 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4862 if (VMI != FuncInfo.ValueMap.end()) { 4863 const auto &TLI = DAG.getTargetLoweringInfo(); 4864 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4865 V->getType(), isABIRegCopy(V)); 4866 unsigned NumRegs = 4867 std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0); 4868 if (NumRegs > 1) { 4869 unsigned I = 0; 4870 unsigned Offset = 0; 4871 auto RegisterVT = RFV.RegVTs.begin(); 4872 for (auto RegCount : RFV.RegCount) { 4873 unsigned RegisterSize = (RegisterVT++)->getSizeInBits(); 4874 for (unsigned E = I + RegCount; I != E; ++I) { 4875 // The vregs are guaranteed to be allocated in sequence. 4876 Op = MachineOperand::CreateReg(VMI->second + I, false); 4877 auto FragmentExpr = DIExpression::createFragmentExpression( 4878 Expr, Offset, RegisterSize); 4879 if (!FragmentExpr) 4880 continue; 4881 FuncInfo.ArgDbgValues.push_back( 4882 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4883 Op->getReg(), Variable, *FragmentExpr)); 4884 Offset += RegisterSize; 4885 } 4886 } 4887 return true; 4888 } 4889 Op = MachineOperand::CreateReg(VMI->second, false); 4890 IsIndirect = IsDbgDeclare; 4891 } 4892 } 4893 4894 if (!Op && N.getNode()) 4895 // Check if frame index is available. 4896 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4897 if (FrameIndexSDNode *FINode = 4898 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4899 Op = MachineOperand::CreateFI(FINode->getIndex()); 4900 4901 if (!Op) 4902 return false; 4903 4904 assert(Variable->isValidLocationForIntrinsic(DL) && 4905 "Expected inlined-at fields to agree"); 4906 if (Op->isReg()) 4907 FuncInfo.ArgDbgValues.push_back( 4908 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4909 Op->getReg(), Variable, Expr)); 4910 else 4911 FuncInfo.ArgDbgValues.push_back( 4912 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4913 .add(*Op) 4914 .addImm(0) 4915 .addMetadata(Variable) 4916 .addMetadata(Expr)); 4917 4918 return true; 4919 } 4920 4921 /// Return the appropriate SDDbgValue based on N. 4922 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4923 DILocalVariable *Variable, 4924 DIExpression *Expr, 4925 const DebugLoc &dl, 4926 unsigned DbgSDNodeOrder) { 4927 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4928 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4929 // stack slot locations as such instead of as indirectly addressed 4930 // locations. 4931 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4932 DbgSDNodeOrder); 4933 } 4934 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4935 DbgSDNodeOrder); 4936 } 4937 4938 // VisualStudio defines setjmp as _setjmp 4939 #if defined(_MSC_VER) && defined(setjmp) && \ 4940 !defined(setjmp_undefined_for_msvc) 4941 # pragma push_macro("setjmp") 4942 # undef setjmp 4943 # define setjmp_undefined_for_msvc 4944 #endif 4945 4946 /// Lower the call to the specified intrinsic function. If we want to emit this 4947 /// as a call to a named external function, return the name. Otherwise, lower it 4948 /// and return null. 4949 const char * 4950 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4952 SDLoc sdl = getCurSDLoc(); 4953 DebugLoc dl = getCurDebugLoc(); 4954 SDValue Res; 4955 4956 switch (Intrinsic) { 4957 default: 4958 // By default, turn this into a target intrinsic node. 4959 visitTargetIntrinsic(I, Intrinsic); 4960 return nullptr; 4961 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4962 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4963 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4964 case Intrinsic::returnaddress: 4965 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4966 TLI.getPointerTy(DAG.getDataLayout()), 4967 getValue(I.getArgOperand(0)))); 4968 return nullptr; 4969 case Intrinsic::addressofreturnaddress: 4970 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4971 TLI.getPointerTy(DAG.getDataLayout()))); 4972 return nullptr; 4973 case Intrinsic::frameaddress: 4974 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4975 TLI.getPointerTy(DAG.getDataLayout()), 4976 getValue(I.getArgOperand(0)))); 4977 return nullptr; 4978 case Intrinsic::read_register: { 4979 Value *Reg = I.getArgOperand(0); 4980 SDValue Chain = getRoot(); 4981 SDValue RegName = 4982 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4983 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4984 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4985 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4986 setValue(&I, Res); 4987 DAG.setRoot(Res.getValue(1)); 4988 return nullptr; 4989 } 4990 case Intrinsic::write_register: { 4991 Value *Reg = I.getArgOperand(0); 4992 Value *RegValue = I.getArgOperand(1); 4993 SDValue Chain = getRoot(); 4994 SDValue RegName = 4995 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4996 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4997 RegName, getValue(RegValue))); 4998 return nullptr; 4999 } 5000 case Intrinsic::setjmp: 5001 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5002 case Intrinsic::longjmp: 5003 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5004 case Intrinsic::memcpy: { 5005 SDValue Op1 = getValue(I.getArgOperand(0)); 5006 SDValue Op2 = getValue(I.getArgOperand(1)); 5007 SDValue Op3 = getValue(I.getArgOperand(2)); 5008 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5009 if (!Align) 5010 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5011 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5012 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5013 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5014 false, isTC, 5015 MachinePointerInfo(I.getArgOperand(0)), 5016 MachinePointerInfo(I.getArgOperand(1))); 5017 updateDAGForMaybeTailCall(MC); 5018 return nullptr; 5019 } 5020 case Intrinsic::memset: { 5021 SDValue Op1 = getValue(I.getArgOperand(0)); 5022 SDValue Op2 = getValue(I.getArgOperand(1)); 5023 SDValue Op3 = getValue(I.getArgOperand(2)); 5024 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5025 if (!Align) 5026 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 5027 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5028 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5029 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5030 isTC, MachinePointerInfo(I.getArgOperand(0))); 5031 updateDAGForMaybeTailCall(MS); 5032 return nullptr; 5033 } 5034 case Intrinsic::memmove: { 5035 SDValue Op1 = getValue(I.getArgOperand(0)); 5036 SDValue Op2 = getValue(I.getArgOperand(1)); 5037 SDValue Op3 = getValue(I.getArgOperand(2)); 5038 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 5039 if (!Align) 5040 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 5041 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 5042 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5043 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5044 isTC, MachinePointerInfo(I.getArgOperand(0)), 5045 MachinePointerInfo(I.getArgOperand(1))); 5046 updateDAGForMaybeTailCall(MM); 5047 return nullptr; 5048 } 5049 case Intrinsic::memcpy_element_unordered_atomic: { 5050 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5051 SDValue Dst = getValue(MI.getRawDest()); 5052 SDValue Src = getValue(MI.getRawSource()); 5053 SDValue Length = getValue(MI.getLength()); 5054 5055 // Emit a library call. 5056 TargetLowering::ArgListTy Args; 5057 TargetLowering::ArgListEntry Entry; 5058 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5059 Entry.Node = Dst; 5060 Args.push_back(Entry); 5061 5062 Entry.Node = Src; 5063 Args.push_back(Entry); 5064 5065 Entry.Ty = MI.getLength()->getType(); 5066 Entry.Node = Length; 5067 Args.push_back(Entry); 5068 5069 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5070 RTLIB::Libcall LibraryCall = 5071 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5072 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5073 report_fatal_error("Unsupported element size"); 5074 5075 TargetLowering::CallLoweringInfo CLI(DAG); 5076 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5077 TLI.getLibcallCallingConv(LibraryCall), 5078 Type::getVoidTy(*DAG.getContext()), 5079 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5080 TLI.getPointerTy(DAG.getDataLayout())), 5081 std::move(Args)); 5082 5083 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5084 DAG.setRoot(CallResult.second); 5085 return nullptr; 5086 } 5087 case Intrinsic::memmove_element_unordered_atomic: { 5088 auto &MI = cast<AtomicMemMoveInst>(I); 5089 SDValue Dst = getValue(MI.getRawDest()); 5090 SDValue Src = getValue(MI.getRawSource()); 5091 SDValue Length = getValue(MI.getLength()); 5092 5093 // Emit a library call. 5094 TargetLowering::ArgListTy Args; 5095 TargetLowering::ArgListEntry Entry; 5096 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5097 Entry.Node = Dst; 5098 Args.push_back(Entry); 5099 5100 Entry.Node = Src; 5101 Args.push_back(Entry); 5102 5103 Entry.Ty = MI.getLength()->getType(); 5104 Entry.Node = Length; 5105 Args.push_back(Entry); 5106 5107 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5108 RTLIB::Libcall LibraryCall = 5109 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5110 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5111 report_fatal_error("Unsupported element size"); 5112 5113 TargetLowering::CallLoweringInfo CLI(DAG); 5114 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5115 TLI.getLibcallCallingConv(LibraryCall), 5116 Type::getVoidTy(*DAG.getContext()), 5117 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5118 TLI.getPointerTy(DAG.getDataLayout())), 5119 std::move(Args)); 5120 5121 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5122 DAG.setRoot(CallResult.second); 5123 return nullptr; 5124 } 5125 case Intrinsic::memset_element_unordered_atomic: { 5126 auto &MI = cast<AtomicMemSetInst>(I); 5127 SDValue Dst = getValue(MI.getRawDest()); 5128 SDValue Val = getValue(MI.getValue()); 5129 SDValue Length = getValue(MI.getLength()); 5130 5131 // Emit a library call. 5132 TargetLowering::ArgListTy Args; 5133 TargetLowering::ArgListEntry Entry; 5134 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5135 Entry.Node = Dst; 5136 Args.push_back(Entry); 5137 5138 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5139 Entry.Node = Val; 5140 Args.push_back(Entry); 5141 5142 Entry.Ty = MI.getLength()->getType(); 5143 Entry.Node = Length; 5144 Args.push_back(Entry); 5145 5146 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5147 RTLIB::Libcall LibraryCall = 5148 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5149 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5150 report_fatal_error("Unsupported element size"); 5151 5152 TargetLowering::CallLoweringInfo CLI(DAG); 5153 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5154 TLI.getLibcallCallingConv(LibraryCall), 5155 Type::getVoidTy(*DAG.getContext()), 5156 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5157 TLI.getPointerTy(DAG.getDataLayout())), 5158 std::move(Args)); 5159 5160 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5161 DAG.setRoot(CallResult.second); 5162 return nullptr; 5163 } 5164 case Intrinsic::dbg_addr: 5165 case Intrinsic::dbg_declare: { 5166 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5167 DILocalVariable *Variable = DI.getVariable(); 5168 DIExpression *Expression = DI.getExpression(); 5169 assert(Variable && "Missing variable"); 5170 5171 // Check if address has undef value. 5172 const Value *Address = DI.getVariableLocation(); 5173 if (!Address || isa<UndefValue>(Address) || 5174 (Address->use_empty() && !isa<Argument>(Address))) { 5175 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5176 return nullptr; 5177 } 5178 5179 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5180 5181 // Check if this variable can be described by a frame index, typically 5182 // either as a static alloca or a byval parameter. 5183 int FI = std::numeric_limits<int>::max(); 5184 if (const auto *AI = 5185 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5186 if (AI->isStaticAlloca()) { 5187 auto I = FuncInfo.StaticAllocaMap.find(AI); 5188 if (I != FuncInfo.StaticAllocaMap.end()) 5189 FI = I->second; 5190 } 5191 } else if (const auto *Arg = dyn_cast<Argument>( 5192 Address->stripInBoundsConstantOffsets())) { 5193 FI = FuncInfo.getArgumentFrameIndex(Arg); 5194 } 5195 5196 // llvm.dbg.addr is control dependent and always generates indirect 5197 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5198 // the MachineFunction variable table. 5199 if (FI != std::numeric_limits<int>::max()) { 5200 if (Intrinsic == Intrinsic::dbg_addr) 5201 DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl, 5202 SDNodeOrder), 5203 getRoot().getNode(), isParameter); 5204 return nullptr; 5205 } 5206 5207 SDValue &N = NodeMap[Address]; 5208 if (!N.getNode() && isa<Argument>(Address)) 5209 // Check unused arguments map. 5210 N = UnusedArgNodeMap[Address]; 5211 SDDbgValue *SDV; 5212 if (N.getNode()) { 5213 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5214 Address = BCI->getOperand(0); 5215 // Parameters are handled specially. 5216 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5217 if (isParameter && FINode) { 5218 // Byval parameter. We have a frame index at this point. 5219 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5220 FINode->getIndex(), dl, SDNodeOrder); 5221 } else if (isa<Argument>(Address)) { 5222 // Address is an argument, so try to emit its dbg value using 5223 // virtual register info from the FuncInfo.ValueMap. 5224 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5225 return nullptr; 5226 } else { 5227 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5228 true, dl, SDNodeOrder); 5229 } 5230 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5231 } else { 5232 // If Address is an argument then try to emit its dbg value using 5233 // virtual register info from the FuncInfo.ValueMap. 5234 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5235 N)) { 5236 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5237 } 5238 } 5239 return nullptr; 5240 } 5241 case Intrinsic::dbg_value: { 5242 const DbgValueInst &DI = cast<DbgValueInst>(I); 5243 assert(DI.getVariable() && "Missing variable"); 5244 5245 DILocalVariable *Variable = DI.getVariable(); 5246 DIExpression *Expression = DI.getExpression(); 5247 const Value *V = DI.getValue(); 5248 if (!V) 5249 return nullptr; 5250 5251 SDDbgValue *SDV; 5252 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5253 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5254 DAG.AddDbgValue(SDV, nullptr, false); 5255 return nullptr; 5256 } 5257 5258 // Do not use getValue() in here; we don't want to generate code at 5259 // this point if it hasn't been done yet. 5260 SDValue N = NodeMap[V]; 5261 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5262 N = UnusedArgNodeMap[V]; 5263 if (N.getNode()) { 5264 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5265 return nullptr; 5266 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5267 DAG.AddDbgValue(SDV, N.getNode(), false); 5268 return nullptr; 5269 } 5270 5271 if (!V->use_empty() ) { 5272 // Do not call getValue(V) yet, as we don't want to generate code. 5273 // Remember it for later. 5274 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5275 DanglingDebugInfoMap[V] = DDI; 5276 return nullptr; 5277 } 5278 5279 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5280 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5281 return nullptr; 5282 } 5283 5284 case Intrinsic::eh_typeid_for: { 5285 // Find the type id for the given typeinfo. 5286 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5287 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5288 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5289 setValue(&I, Res); 5290 return nullptr; 5291 } 5292 5293 case Intrinsic::eh_return_i32: 5294 case Intrinsic::eh_return_i64: 5295 DAG.getMachineFunction().setCallsEHReturn(true); 5296 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5297 MVT::Other, 5298 getControlRoot(), 5299 getValue(I.getArgOperand(0)), 5300 getValue(I.getArgOperand(1)))); 5301 return nullptr; 5302 case Intrinsic::eh_unwind_init: 5303 DAG.getMachineFunction().setCallsUnwindInit(true); 5304 return nullptr; 5305 case Intrinsic::eh_dwarf_cfa: 5306 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5307 TLI.getPointerTy(DAG.getDataLayout()), 5308 getValue(I.getArgOperand(0)))); 5309 return nullptr; 5310 case Intrinsic::eh_sjlj_callsite: { 5311 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5312 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5313 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5314 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5315 5316 MMI.setCurrentCallSite(CI->getZExtValue()); 5317 return nullptr; 5318 } 5319 case Intrinsic::eh_sjlj_functioncontext: { 5320 // Get and store the index of the function context. 5321 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5322 AllocaInst *FnCtx = 5323 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5324 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5325 MFI.setFunctionContextIndex(FI); 5326 return nullptr; 5327 } 5328 case Intrinsic::eh_sjlj_setjmp: { 5329 SDValue Ops[2]; 5330 Ops[0] = getRoot(); 5331 Ops[1] = getValue(I.getArgOperand(0)); 5332 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5333 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5334 setValue(&I, Op.getValue(0)); 5335 DAG.setRoot(Op.getValue(1)); 5336 return nullptr; 5337 } 5338 case Intrinsic::eh_sjlj_longjmp: 5339 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5340 getRoot(), getValue(I.getArgOperand(0)))); 5341 return nullptr; 5342 case Intrinsic::eh_sjlj_setup_dispatch: 5343 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5344 getRoot())); 5345 return nullptr; 5346 case Intrinsic::masked_gather: 5347 visitMaskedGather(I); 5348 return nullptr; 5349 case Intrinsic::masked_load: 5350 visitMaskedLoad(I); 5351 return nullptr; 5352 case Intrinsic::masked_scatter: 5353 visitMaskedScatter(I); 5354 return nullptr; 5355 case Intrinsic::masked_store: 5356 visitMaskedStore(I); 5357 return nullptr; 5358 case Intrinsic::masked_expandload: 5359 visitMaskedLoad(I, true /* IsExpanding */); 5360 return nullptr; 5361 case Intrinsic::masked_compressstore: 5362 visitMaskedStore(I, true /* IsCompressing */); 5363 return nullptr; 5364 case Intrinsic::x86_mmx_pslli_w: 5365 case Intrinsic::x86_mmx_pslli_d: 5366 case Intrinsic::x86_mmx_pslli_q: 5367 case Intrinsic::x86_mmx_psrli_w: 5368 case Intrinsic::x86_mmx_psrli_d: 5369 case Intrinsic::x86_mmx_psrli_q: 5370 case Intrinsic::x86_mmx_psrai_w: 5371 case Intrinsic::x86_mmx_psrai_d: { 5372 SDValue ShAmt = getValue(I.getArgOperand(1)); 5373 if (isa<ConstantSDNode>(ShAmt)) { 5374 visitTargetIntrinsic(I, Intrinsic); 5375 return nullptr; 5376 } 5377 unsigned NewIntrinsic = 0; 5378 EVT ShAmtVT = MVT::v2i32; 5379 switch (Intrinsic) { 5380 case Intrinsic::x86_mmx_pslli_w: 5381 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5382 break; 5383 case Intrinsic::x86_mmx_pslli_d: 5384 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5385 break; 5386 case Intrinsic::x86_mmx_pslli_q: 5387 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5388 break; 5389 case Intrinsic::x86_mmx_psrli_w: 5390 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5391 break; 5392 case Intrinsic::x86_mmx_psrli_d: 5393 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5394 break; 5395 case Intrinsic::x86_mmx_psrli_q: 5396 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5397 break; 5398 case Intrinsic::x86_mmx_psrai_w: 5399 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5400 break; 5401 case Intrinsic::x86_mmx_psrai_d: 5402 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5403 break; 5404 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5405 } 5406 5407 // The vector shift intrinsics with scalars uses 32b shift amounts but 5408 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5409 // to be zero. 5410 // We must do this early because v2i32 is not a legal type. 5411 SDValue ShOps[2]; 5412 ShOps[0] = ShAmt; 5413 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5414 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5415 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5416 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5417 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5418 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5419 getValue(I.getArgOperand(0)), ShAmt); 5420 setValue(&I, Res); 5421 return nullptr; 5422 } 5423 case Intrinsic::powi: 5424 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5425 getValue(I.getArgOperand(1)), DAG)); 5426 return nullptr; 5427 case Intrinsic::log: 5428 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5429 return nullptr; 5430 case Intrinsic::log2: 5431 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5432 return nullptr; 5433 case Intrinsic::log10: 5434 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5435 return nullptr; 5436 case Intrinsic::exp: 5437 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5438 return nullptr; 5439 case Intrinsic::exp2: 5440 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5441 return nullptr; 5442 case Intrinsic::pow: 5443 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5444 getValue(I.getArgOperand(1)), DAG, TLI)); 5445 return nullptr; 5446 case Intrinsic::sqrt: 5447 case Intrinsic::fabs: 5448 case Intrinsic::sin: 5449 case Intrinsic::cos: 5450 case Intrinsic::floor: 5451 case Intrinsic::ceil: 5452 case Intrinsic::trunc: 5453 case Intrinsic::rint: 5454 case Intrinsic::nearbyint: 5455 case Intrinsic::round: 5456 case Intrinsic::canonicalize: { 5457 unsigned Opcode; 5458 switch (Intrinsic) { 5459 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5460 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5461 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5462 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5463 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5464 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5465 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5466 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5467 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5468 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5469 case Intrinsic::round: Opcode = ISD::FROUND; break; 5470 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5471 } 5472 5473 setValue(&I, DAG.getNode(Opcode, sdl, 5474 getValue(I.getArgOperand(0)).getValueType(), 5475 getValue(I.getArgOperand(0)))); 5476 return nullptr; 5477 } 5478 case Intrinsic::minnum: { 5479 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5480 unsigned Opc = 5481 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5482 ? ISD::FMINNAN 5483 : ISD::FMINNUM; 5484 setValue(&I, DAG.getNode(Opc, sdl, VT, 5485 getValue(I.getArgOperand(0)), 5486 getValue(I.getArgOperand(1)))); 5487 return nullptr; 5488 } 5489 case Intrinsic::maxnum: { 5490 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5491 unsigned Opc = 5492 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5493 ? ISD::FMAXNAN 5494 : ISD::FMAXNUM; 5495 setValue(&I, DAG.getNode(Opc, sdl, VT, 5496 getValue(I.getArgOperand(0)), 5497 getValue(I.getArgOperand(1)))); 5498 return nullptr; 5499 } 5500 case Intrinsic::copysign: 5501 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5502 getValue(I.getArgOperand(0)).getValueType(), 5503 getValue(I.getArgOperand(0)), 5504 getValue(I.getArgOperand(1)))); 5505 return nullptr; 5506 case Intrinsic::fma: 5507 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5508 getValue(I.getArgOperand(0)).getValueType(), 5509 getValue(I.getArgOperand(0)), 5510 getValue(I.getArgOperand(1)), 5511 getValue(I.getArgOperand(2)))); 5512 return nullptr; 5513 case Intrinsic::experimental_constrained_fadd: 5514 case Intrinsic::experimental_constrained_fsub: 5515 case Intrinsic::experimental_constrained_fmul: 5516 case Intrinsic::experimental_constrained_fdiv: 5517 case Intrinsic::experimental_constrained_frem: 5518 case Intrinsic::experimental_constrained_fma: 5519 case Intrinsic::experimental_constrained_sqrt: 5520 case Intrinsic::experimental_constrained_pow: 5521 case Intrinsic::experimental_constrained_powi: 5522 case Intrinsic::experimental_constrained_sin: 5523 case Intrinsic::experimental_constrained_cos: 5524 case Intrinsic::experimental_constrained_exp: 5525 case Intrinsic::experimental_constrained_exp2: 5526 case Intrinsic::experimental_constrained_log: 5527 case Intrinsic::experimental_constrained_log10: 5528 case Intrinsic::experimental_constrained_log2: 5529 case Intrinsic::experimental_constrained_rint: 5530 case Intrinsic::experimental_constrained_nearbyint: 5531 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5532 return nullptr; 5533 case Intrinsic::fmuladd: { 5534 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5535 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5536 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5537 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5538 getValue(I.getArgOperand(0)).getValueType(), 5539 getValue(I.getArgOperand(0)), 5540 getValue(I.getArgOperand(1)), 5541 getValue(I.getArgOperand(2)))); 5542 } else { 5543 // TODO: Intrinsic calls should have fast-math-flags. 5544 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5545 getValue(I.getArgOperand(0)).getValueType(), 5546 getValue(I.getArgOperand(0)), 5547 getValue(I.getArgOperand(1))); 5548 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5549 getValue(I.getArgOperand(0)).getValueType(), 5550 Mul, 5551 getValue(I.getArgOperand(2))); 5552 setValue(&I, Add); 5553 } 5554 return nullptr; 5555 } 5556 case Intrinsic::convert_to_fp16: 5557 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5558 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5559 getValue(I.getArgOperand(0)), 5560 DAG.getTargetConstant(0, sdl, 5561 MVT::i32)))); 5562 return nullptr; 5563 case Intrinsic::convert_from_fp16: 5564 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5565 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5566 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5567 getValue(I.getArgOperand(0))))); 5568 return nullptr; 5569 case Intrinsic::pcmarker: { 5570 SDValue Tmp = getValue(I.getArgOperand(0)); 5571 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5572 return nullptr; 5573 } 5574 case Intrinsic::readcyclecounter: { 5575 SDValue Op = getRoot(); 5576 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5577 DAG.getVTList(MVT::i64, MVT::Other), Op); 5578 setValue(&I, Res); 5579 DAG.setRoot(Res.getValue(1)); 5580 return nullptr; 5581 } 5582 case Intrinsic::bitreverse: 5583 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5584 getValue(I.getArgOperand(0)).getValueType(), 5585 getValue(I.getArgOperand(0)))); 5586 return nullptr; 5587 case Intrinsic::bswap: 5588 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5589 getValue(I.getArgOperand(0)).getValueType(), 5590 getValue(I.getArgOperand(0)))); 5591 return nullptr; 5592 case Intrinsic::cttz: { 5593 SDValue Arg = getValue(I.getArgOperand(0)); 5594 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5595 EVT Ty = Arg.getValueType(); 5596 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5597 sdl, Ty, Arg)); 5598 return nullptr; 5599 } 5600 case Intrinsic::ctlz: { 5601 SDValue Arg = getValue(I.getArgOperand(0)); 5602 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5603 EVT Ty = Arg.getValueType(); 5604 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5605 sdl, Ty, Arg)); 5606 return nullptr; 5607 } 5608 case Intrinsic::ctpop: { 5609 SDValue Arg = getValue(I.getArgOperand(0)); 5610 EVT Ty = Arg.getValueType(); 5611 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5612 return nullptr; 5613 } 5614 case Intrinsic::stacksave: { 5615 SDValue Op = getRoot(); 5616 Res = DAG.getNode( 5617 ISD::STACKSAVE, sdl, 5618 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5619 setValue(&I, Res); 5620 DAG.setRoot(Res.getValue(1)); 5621 return nullptr; 5622 } 5623 case Intrinsic::stackrestore: 5624 Res = getValue(I.getArgOperand(0)); 5625 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5626 return nullptr; 5627 case Intrinsic::get_dynamic_area_offset: { 5628 SDValue Op = getRoot(); 5629 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5630 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5631 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5632 // target. 5633 if (PtrTy != ResTy) 5634 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5635 " intrinsic!"); 5636 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5637 Op); 5638 DAG.setRoot(Op); 5639 setValue(&I, Res); 5640 return nullptr; 5641 } 5642 case Intrinsic::stackguard: { 5643 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5644 MachineFunction &MF = DAG.getMachineFunction(); 5645 const Module &M = *MF.getFunction()->getParent(); 5646 SDValue Chain = getRoot(); 5647 if (TLI.useLoadStackGuardNode()) { 5648 Res = getLoadStackGuard(DAG, sdl, Chain); 5649 } else { 5650 const Value *Global = TLI.getSDagStackGuard(M); 5651 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5652 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5653 MachinePointerInfo(Global, 0), Align, 5654 MachineMemOperand::MOVolatile); 5655 } 5656 DAG.setRoot(Chain); 5657 setValue(&I, Res); 5658 return nullptr; 5659 } 5660 case Intrinsic::stackprotector: { 5661 // Emit code into the DAG to store the stack guard onto the stack. 5662 MachineFunction &MF = DAG.getMachineFunction(); 5663 MachineFrameInfo &MFI = MF.getFrameInfo(); 5664 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5665 SDValue Src, Chain = getRoot(); 5666 5667 if (TLI.useLoadStackGuardNode()) 5668 Src = getLoadStackGuard(DAG, sdl, Chain); 5669 else 5670 Src = getValue(I.getArgOperand(0)); // The guard's value. 5671 5672 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5673 5674 int FI = FuncInfo.StaticAllocaMap[Slot]; 5675 MFI.setStackProtectorIndex(FI); 5676 5677 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5678 5679 // Store the stack protector onto the stack. 5680 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5681 DAG.getMachineFunction(), FI), 5682 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5683 setValue(&I, Res); 5684 DAG.setRoot(Res); 5685 return nullptr; 5686 } 5687 case Intrinsic::objectsize: { 5688 // If we don't know by now, we're never going to know. 5689 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5690 5691 assert(CI && "Non-constant type in __builtin_object_size?"); 5692 5693 SDValue Arg = getValue(I.getCalledValue()); 5694 EVT Ty = Arg.getValueType(); 5695 5696 if (CI->isZero()) 5697 Res = DAG.getConstant(-1ULL, sdl, Ty); 5698 else 5699 Res = DAG.getConstant(0, sdl, Ty); 5700 5701 setValue(&I, Res); 5702 return nullptr; 5703 } 5704 case Intrinsic::annotation: 5705 case Intrinsic::ptr_annotation: 5706 case Intrinsic::invariant_group_barrier: 5707 // Drop the intrinsic, but forward the value 5708 setValue(&I, getValue(I.getOperand(0))); 5709 return nullptr; 5710 case Intrinsic::assume: 5711 case Intrinsic::var_annotation: 5712 case Intrinsic::sideeffect: 5713 // Discard annotate attributes, assumptions, and artificial side-effects. 5714 return nullptr; 5715 5716 case Intrinsic::codeview_annotation: { 5717 // Emit a label associated with this metadata. 5718 MachineFunction &MF = DAG.getMachineFunction(); 5719 MCSymbol *Label = 5720 MF.getMMI().getContext().createTempSymbol("annotation", true); 5721 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5722 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5723 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5724 DAG.setRoot(Res); 5725 return nullptr; 5726 } 5727 5728 case Intrinsic::init_trampoline: { 5729 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5730 5731 SDValue Ops[6]; 5732 Ops[0] = getRoot(); 5733 Ops[1] = getValue(I.getArgOperand(0)); 5734 Ops[2] = getValue(I.getArgOperand(1)); 5735 Ops[3] = getValue(I.getArgOperand(2)); 5736 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5737 Ops[5] = DAG.getSrcValue(F); 5738 5739 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5740 5741 DAG.setRoot(Res); 5742 return nullptr; 5743 } 5744 case Intrinsic::adjust_trampoline: 5745 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5746 TLI.getPointerTy(DAG.getDataLayout()), 5747 getValue(I.getArgOperand(0)))); 5748 return nullptr; 5749 case Intrinsic::gcroot: { 5750 MachineFunction &MF = DAG.getMachineFunction(); 5751 const Function *F = MF.getFunction(); 5752 (void)F; 5753 assert(F->hasGC() && 5754 "only valid in functions with gc specified, enforced by Verifier"); 5755 assert(GFI && "implied by previous"); 5756 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5757 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5758 5759 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5760 GFI->addStackRoot(FI->getIndex(), TypeMap); 5761 return nullptr; 5762 } 5763 case Intrinsic::gcread: 5764 case Intrinsic::gcwrite: 5765 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5766 case Intrinsic::flt_rounds: 5767 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5768 return nullptr; 5769 5770 case Intrinsic::expect: 5771 // Just replace __builtin_expect(exp, c) with EXP. 5772 setValue(&I, getValue(I.getArgOperand(0))); 5773 return nullptr; 5774 5775 case Intrinsic::debugtrap: 5776 case Intrinsic::trap: { 5777 StringRef TrapFuncName = 5778 I.getAttributes() 5779 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5780 .getValueAsString(); 5781 if (TrapFuncName.empty()) { 5782 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5783 ISD::TRAP : ISD::DEBUGTRAP; 5784 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5785 return nullptr; 5786 } 5787 TargetLowering::ArgListTy Args; 5788 5789 TargetLowering::CallLoweringInfo CLI(DAG); 5790 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5791 CallingConv::C, I.getType(), 5792 DAG.getExternalSymbol(TrapFuncName.data(), 5793 TLI.getPointerTy(DAG.getDataLayout())), 5794 std::move(Args)); 5795 5796 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5797 DAG.setRoot(Result.second); 5798 return nullptr; 5799 } 5800 5801 case Intrinsic::uadd_with_overflow: 5802 case Intrinsic::sadd_with_overflow: 5803 case Intrinsic::usub_with_overflow: 5804 case Intrinsic::ssub_with_overflow: 5805 case Intrinsic::umul_with_overflow: 5806 case Intrinsic::smul_with_overflow: { 5807 ISD::NodeType Op; 5808 switch (Intrinsic) { 5809 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5810 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5811 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5812 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5813 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5814 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5815 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5816 } 5817 SDValue Op1 = getValue(I.getArgOperand(0)); 5818 SDValue Op2 = getValue(I.getArgOperand(1)); 5819 5820 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5821 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5822 return nullptr; 5823 } 5824 case Intrinsic::prefetch: { 5825 SDValue Ops[5]; 5826 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5827 Ops[0] = getRoot(); 5828 Ops[1] = getValue(I.getArgOperand(0)); 5829 Ops[2] = getValue(I.getArgOperand(1)); 5830 Ops[3] = getValue(I.getArgOperand(2)); 5831 Ops[4] = getValue(I.getArgOperand(3)); 5832 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5833 DAG.getVTList(MVT::Other), Ops, 5834 EVT::getIntegerVT(*Context, 8), 5835 MachinePointerInfo(I.getArgOperand(0)), 5836 0, /* align */ 5837 false, /* volatile */ 5838 rw==0, /* read */ 5839 rw==1)); /* write */ 5840 return nullptr; 5841 } 5842 case Intrinsic::lifetime_start: 5843 case Intrinsic::lifetime_end: { 5844 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5845 // Stack coloring is not enabled in O0, discard region information. 5846 if (TM.getOptLevel() == CodeGenOpt::None) 5847 return nullptr; 5848 5849 SmallVector<Value *, 4> Allocas; 5850 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5851 5852 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5853 E = Allocas.end(); Object != E; ++Object) { 5854 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5855 5856 // Could not find an Alloca. 5857 if (!LifetimeObject) 5858 continue; 5859 5860 // First check that the Alloca is static, otherwise it won't have a 5861 // valid frame index. 5862 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5863 if (SI == FuncInfo.StaticAllocaMap.end()) 5864 return nullptr; 5865 5866 int FI = SI->second; 5867 5868 SDValue Ops[2]; 5869 Ops[0] = getRoot(); 5870 Ops[1] = 5871 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5872 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5873 5874 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5875 DAG.setRoot(Res); 5876 } 5877 return nullptr; 5878 } 5879 case Intrinsic::invariant_start: 5880 // Discard region information. 5881 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5882 return nullptr; 5883 case Intrinsic::invariant_end: 5884 // Discard region information. 5885 return nullptr; 5886 case Intrinsic::clear_cache: 5887 return TLI.getClearCacheBuiltinName(); 5888 case Intrinsic::donothing: 5889 // ignore 5890 return nullptr; 5891 case Intrinsic::experimental_stackmap: 5892 visitStackmap(I); 5893 return nullptr; 5894 case Intrinsic::experimental_patchpoint_void: 5895 case Intrinsic::experimental_patchpoint_i64: 5896 visitPatchpoint(&I); 5897 return nullptr; 5898 case Intrinsic::experimental_gc_statepoint: 5899 LowerStatepoint(ImmutableStatepoint(&I)); 5900 return nullptr; 5901 case Intrinsic::experimental_gc_result: 5902 visitGCResult(cast<GCResultInst>(I)); 5903 return nullptr; 5904 case Intrinsic::experimental_gc_relocate: 5905 visitGCRelocate(cast<GCRelocateInst>(I)); 5906 return nullptr; 5907 case Intrinsic::instrprof_increment: 5908 llvm_unreachable("instrprof failed to lower an increment"); 5909 case Intrinsic::instrprof_value_profile: 5910 llvm_unreachable("instrprof failed to lower a value profiling call"); 5911 case Intrinsic::localescape: { 5912 MachineFunction &MF = DAG.getMachineFunction(); 5913 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5914 5915 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5916 // is the same on all targets. 5917 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5918 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5919 if (isa<ConstantPointerNull>(Arg)) 5920 continue; // Skip null pointers. They represent a hole in index space. 5921 AllocaInst *Slot = cast<AllocaInst>(Arg); 5922 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5923 "can only escape static allocas"); 5924 int FI = FuncInfo.StaticAllocaMap[Slot]; 5925 MCSymbol *FrameAllocSym = 5926 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5927 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5928 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5929 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5930 .addSym(FrameAllocSym) 5931 .addFrameIndex(FI); 5932 } 5933 5934 return nullptr; 5935 } 5936 5937 case Intrinsic::localrecover: { 5938 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5939 MachineFunction &MF = DAG.getMachineFunction(); 5940 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5941 5942 // Get the symbol that defines the frame offset. 5943 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5944 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5945 unsigned IdxVal = 5946 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5947 MCSymbol *FrameAllocSym = 5948 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5949 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5950 5951 // Create a MCSymbol for the label to avoid any target lowering 5952 // that would make this PC relative. 5953 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5954 SDValue OffsetVal = 5955 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5956 5957 // Add the offset to the FP. 5958 Value *FP = I.getArgOperand(1); 5959 SDValue FPVal = getValue(FP); 5960 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5961 setValue(&I, Add); 5962 5963 return nullptr; 5964 } 5965 5966 case Intrinsic::eh_exceptionpointer: 5967 case Intrinsic::eh_exceptioncode: { 5968 // Get the exception pointer vreg, copy from it, and resize it to fit. 5969 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5970 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5971 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5972 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5973 SDValue N = 5974 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5975 if (Intrinsic == Intrinsic::eh_exceptioncode) 5976 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5977 setValue(&I, N); 5978 return nullptr; 5979 } 5980 case Intrinsic::xray_customevent: { 5981 // Here we want to make sure that the intrinsic behaves as if it has a 5982 // specific calling convention, and only for x86_64. 5983 // FIXME: Support other platforms later. 5984 const auto &Triple = DAG.getTarget().getTargetTriple(); 5985 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5986 return nullptr; 5987 5988 SDLoc DL = getCurSDLoc(); 5989 SmallVector<SDValue, 8> Ops; 5990 5991 // We want to say that we always want the arguments in registers. 5992 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5993 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5994 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5995 SDValue Chain = getRoot(); 5996 Ops.push_back(LogEntryVal); 5997 Ops.push_back(StrSizeVal); 5998 Ops.push_back(Chain); 5999 6000 // We need to enforce the calling convention for the callsite, so that 6001 // argument ordering is enforced correctly, and that register allocation can 6002 // see that some registers may be assumed clobbered and have to preserve 6003 // them across calls to the intrinsic. 6004 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6005 DL, NodeTys, Ops); 6006 SDValue patchableNode = SDValue(MN, 0); 6007 DAG.setRoot(patchableNode); 6008 setValue(&I, patchableNode); 6009 return nullptr; 6010 } 6011 case Intrinsic::experimental_deoptimize: 6012 LowerDeoptimizeCall(&I); 6013 return nullptr; 6014 6015 case Intrinsic::experimental_vector_reduce_fadd: 6016 case Intrinsic::experimental_vector_reduce_fmul: 6017 case Intrinsic::experimental_vector_reduce_add: 6018 case Intrinsic::experimental_vector_reduce_mul: 6019 case Intrinsic::experimental_vector_reduce_and: 6020 case Intrinsic::experimental_vector_reduce_or: 6021 case Intrinsic::experimental_vector_reduce_xor: 6022 case Intrinsic::experimental_vector_reduce_smax: 6023 case Intrinsic::experimental_vector_reduce_smin: 6024 case Intrinsic::experimental_vector_reduce_umax: 6025 case Intrinsic::experimental_vector_reduce_umin: 6026 case Intrinsic::experimental_vector_reduce_fmax: 6027 case Intrinsic::experimental_vector_reduce_fmin: 6028 visitVectorReduce(I, Intrinsic); 6029 return nullptr; 6030 } 6031 } 6032 6033 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6034 const ConstrainedFPIntrinsic &FPI) { 6035 SDLoc sdl = getCurSDLoc(); 6036 unsigned Opcode; 6037 switch (FPI.getIntrinsicID()) { 6038 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6039 case Intrinsic::experimental_constrained_fadd: 6040 Opcode = ISD::STRICT_FADD; 6041 break; 6042 case Intrinsic::experimental_constrained_fsub: 6043 Opcode = ISD::STRICT_FSUB; 6044 break; 6045 case Intrinsic::experimental_constrained_fmul: 6046 Opcode = ISD::STRICT_FMUL; 6047 break; 6048 case Intrinsic::experimental_constrained_fdiv: 6049 Opcode = ISD::STRICT_FDIV; 6050 break; 6051 case Intrinsic::experimental_constrained_frem: 6052 Opcode = ISD::STRICT_FREM; 6053 break; 6054 case Intrinsic::experimental_constrained_fma: 6055 Opcode = ISD::STRICT_FMA; 6056 break; 6057 case Intrinsic::experimental_constrained_sqrt: 6058 Opcode = ISD::STRICT_FSQRT; 6059 break; 6060 case Intrinsic::experimental_constrained_pow: 6061 Opcode = ISD::STRICT_FPOW; 6062 break; 6063 case Intrinsic::experimental_constrained_powi: 6064 Opcode = ISD::STRICT_FPOWI; 6065 break; 6066 case Intrinsic::experimental_constrained_sin: 6067 Opcode = ISD::STRICT_FSIN; 6068 break; 6069 case Intrinsic::experimental_constrained_cos: 6070 Opcode = ISD::STRICT_FCOS; 6071 break; 6072 case Intrinsic::experimental_constrained_exp: 6073 Opcode = ISD::STRICT_FEXP; 6074 break; 6075 case Intrinsic::experimental_constrained_exp2: 6076 Opcode = ISD::STRICT_FEXP2; 6077 break; 6078 case Intrinsic::experimental_constrained_log: 6079 Opcode = ISD::STRICT_FLOG; 6080 break; 6081 case Intrinsic::experimental_constrained_log10: 6082 Opcode = ISD::STRICT_FLOG10; 6083 break; 6084 case Intrinsic::experimental_constrained_log2: 6085 Opcode = ISD::STRICT_FLOG2; 6086 break; 6087 case Intrinsic::experimental_constrained_rint: 6088 Opcode = ISD::STRICT_FRINT; 6089 break; 6090 case Intrinsic::experimental_constrained_nearbyint: 6091 Opcode = ISD::STRICT_FNEARBYINT; 6092 break; 6093 } 6094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6095 SDValue Chain = getRoot(); 6096 SmallVector<EVT, 4> ValueVTs; 6097 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6098 ValueVTs.push_back(MVT::Other); // Out chain 6099 6100 SDVTList VTs = DAG.getVTList(ValueVTs); 6101 SDValue Result; 6102 if (FPI.isUnaryOp()) 6103 Result = DAG.getNode(Opcode, sdl, VTs, 6104 { Chain, getValue(FPI.getArgOperand(0)) }); 6105 else if (FPI.isTernaryOp()) 6106 Result = DAG.getNode(Opcode, sdl, VTs, 6107 { Chain, getValue(FPI.getArgOperand(0)), 6108 getValue(FPI.getArgOperand(1)), 6109 getValue(FPI.getArgOperand(2)) }); 6110 else 6111 Result = DAG.getNode(Opcode, sdl, VTs, 6112 { Chain, getValue(FPI.getArgOperand(0)), 6113 getValue(FPI.getArgOperand(1)) }); 6114 6115 assert(Result.getNode()->getNumValues() == 2); 6116 SDValue OutChain = Result.getValue(1); 6117 DAG.setRoot(OutChain); 6118 SDValue FPResult = Result.getValue(0); 6119 setValue(&FPI, FPResult); 6120 } 6121 6122 std::pair<SDValue, SDValue> 6123 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6124 const BasicBlock *EHPadBB) { 6125 MachineFunction &MF = DAG.getMachineFunction(); 6126 MachineModuleInfo &MMI = MF.getMMI(); 6127 MCSymbol *BeginLabel = nullptr; 6128 6129 if (EHPadBB) { 6130 // Insert a label before the invoke call to mark the try range. This can be 6131 // used to detect deletion of the invoke via the MachineModuleInfo. 6132 BeginLabel = MMI.getContext().createTempSymbol(); 6133 6134 // For SjLj, keep track of which landing pads go with which invokes 6135 // so as to maintain the ordering of pads in the LSDA. 6136 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6137 if (CallSiteIndex) { 6138 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6139 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6140 6141 // Now that the call site is handled, stop tracking it. 6142 MMI.setCurrentCallSite(0); 6143 } 6144 6145 // Both PendingLoads and PendingExports must be flushed here; 6146 // this call might not return. 6147 (void)getRoot(); 6148 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6149 6150 CLI.setChain(getRoot()); 6151 } 6152 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6153 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6154 6155 assert((CLI.IsTailCall || Result.second.getNode()) && 6156 "Non-null chain expected with non-tail call!"); 6157 assert((Result.second.getNode() || !Result.first.getNode()) && 6158 "Null value expected with tail call!"); 6159 6160 if (!Result.second.getNode()) { 6161 // As a special case, a null chain means that a tail call has been emitted 6162 // and the DAG root is already updated. 6163 HasTailCall = true; 6164 6165 // Since there's no actual continuation from this block, nothing can be 6166 // relying on us setting vregs for them. 6167 PendingExports.clear(); 6168 } else { 6169 DAG.setRoot(Result.second); 6170 } 6171 6172 if (EHPadBB) { 6173 // Insert a label at the end of the invoke call to mark the try range. This 6174 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6175 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6176 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6177 6178 // Inform MachineModuleInfo of range. 6179 if (MF.hasEHFunclets()) { 6180 assert(CLI.CS); 6181 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6182 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6183 BeginLabel, EndLabel); 6184 } else { 6185 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6186 } 6187 } 6188 6189 return Result; 6190 } 6191 6192 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6193 bool isTailCall, 6194 const BasicBlock *EHPadBB) { 6195 auto &DL = DAG.getDataLayout(); 6196 FunctionType *FTy = CS.getFunctionType(); 6197 Type *RetTy = CS.getType(); 6198 6199 TargetLowering::ArgListTy Args; 6200 Args.reserve(CS.arg_size()); 6201 6202 const Value *SwiftErrorVal = nullptr; 6203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6204 6205 // We can't tail call inside a function with a swifterror argument. Lowering 6206 // does not support this yet. It would have to move into the swifterror 6207 // register before the call. 6208 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6209 if (TLI.supportSwiftError() && 6210 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6211 isTailCall = false; 6212 6213 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6214 i != e; ++i) { 6215 TargetLowering::ArgListEntry Entry; 6216 const Value *V = *i; 6217 6218 // Skip empty types 6219 if (V->getType()->isEmptyTy()) 6220 continue; 6221 6222 SDValue ArgNode = getValue(V); 6223 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6224 6225 Entry.setAttributes(&CS, i - CS.arg_begin()); 6226 6227 // Use swifterror virtual register as input to the call. 6228 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6229 SwiftErrorVal = V; 6230 // We find the virtual register for the actual swifterror argument. 6231 // Instead of using the Value, we use the virtual register instead. 6232 Entry.Node = DAG.getRegister(FuncInfo 6233 .getOrCreateSwiftErrorVRegUseAt( 6234 CS.getInstruction(), FuncInfo.MBB, V) 6235 .first, 6236 EVT(TLI.getPointerTy(DL))); 6237 } 6238 6239 Args.push_back(Entry); 6240 6241 // If we have an explicit sret argument that is an Instruction, (i.e., it 6242 // might point to function-local memory), we can't meaningfully tail-call. 6243 if (Entry.IsSRet && isa<Instruction>(V)) 6244 isTailCall = false; 6245 } 6246 6247 // Check if target-independent constraints permit a tail call here. 6248 // Target-dependent constraints are checked within TLI->LowerCallTo. 6249 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6250 isTailCall = false; 6251 6252 // Disable tail calls if there is an swifterror argument. Targets have not 6253 // been updated to support tail calls. 6254 if (TLI.supportSwiftError() && SwiftErrorVal) 6255 isTailCall = false; 6256 6257 TargetLowering::CallLoweringInfo CLI(DAG); 6258 CLI.setDebugLoc(getCurSDLoc()) 6259 .setChain(getRoot()) 6260 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6261 .setTailCall(isTailCall) 6262 .setConvergent(CS.isConvergent()); 6263 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6264 6265 if (Result.first.getNode()) { 6266 const Instruction *Inst = CS.getInstruction(); 6267 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6268 setValue(Inst, Result.first); 6269 } 6270 6271 // The last element of CLI.InVals has the SDValue for swifterror return. 6272 // Here we copy it to a virtual register and update SwiftErrorMap for 6273 // book-keeping. 6274 if (SwiftErrorVal && TLI.supportSwiftError()) { 6275 // Get the last element of InVals. 6276 SDValue Src = CLI.InVals.back(); 6277 unsigned VReg; bool CreatedVReg; 6278 std::tie(VReg, CreatedVReg) = 6279 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6280 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6281 // We update the virtual register for the actual swifterror argument. 6282 if (CreatedVReg) 6283 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6284 DAG.setRoot(CopyNode); 6285 } 6286 } 6287 6288 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6289 SelectionDAGBuilder &Builder) { 6290 // Check to see if this load can be trivially constant folded, e.g. if the 6291 // input is from a string literal. 6292 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6293 // Cast pointer to the type we really want to load. 6294 Type *LoadTy = 6295 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6296 if (LoadVT.isVector()) 6297 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6298 6299 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6300 PointerType::getUnqual(LoadTy)); 6301 6302 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6303 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6304 return Builder.getValue(LoadCst); 6305 } 6306 6307 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6308 // still constant memory, the input chain can be the entry node. 6309 SDValue Root; 6310 bool ConstantMemory = false; 6311 6312 // Do not serialize (non-volatile) loads of constant memory with anything. 6313 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6314 Root = Builder.DAG.getEntryNode(); 6315 ConstantMemory = true; 6316 } else { 6317 // Do not serialize non-volatile loads against each other. 6318 Root = Builder.DAG.getRoot(); 6319 } 6320 6321 SDValue Ptr = Builder.getValue(PtrVal); 6322 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6323 Ptr, MachinePointerInfo(PtrVal), 6324 /* Alignment = */ 1); 6325 6326 if (!ConstantMemory) 6327 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6328 return LoadVal; 6329 } 6330 6331 /// Record the value for an instruction that produces an integer result, 6332 /// converting the type where necessary. 6333 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6334 SDValue Value, 6335 bool IsSigned) { 6336 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6337 I.getType(), true); 6338 if (IsSigned) 6339 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6340 else 6341 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6342 setValue(&I, Value); 6343 } 6344 6345 /// See if we can lower a memcmp call into an optimized form. If so, return 6346 /// true and lower it. Otherwise return false, and it will be lowered like a 6347 /// normal call. 6348 /// The caller already checked that \p I calls the appropriate LibFunc with a 6349 /// correct prototype. 6350 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6351 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6352 const Value *Size = I.getArgOperand(2); 6353 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6354 if (CSize && CSize->getZExtValue() == 0) { 6355 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6356 I.getType(), true); 6357 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6358 return true; 6359 } 6360 6361 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6362 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6363 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6364 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6365 if (Res.first.getNode()) { 6366 processIntegerCallValue(I, Res.first, true); 6367 PendingLoads.push_back(Res.second); 6368 return true; 6369 } 6370 6371 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6372 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6373 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6374 return false; 6375 6376 // If the target has a fast compare for the given size, it will return a 6377 // preferred load type for that size. Require that the load VT is legal and 6378 // that the target supports unaligned loads of that type. Otherwise, return 6379 // INVALID. 6380 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6382 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6383 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6384 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6385 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6386 // TODO: Check alignment of src and dest ptrs. 6387 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6388 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6389 if (!TLI.isTypeLegal(LVT) || 6390 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6391 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6392 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6393 } 6394 6395 return LVT; 6396 }; 6397 6398 // This turns into unaligned loads. We only do this if the target natively 6399 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6400 // we'll only produce a small number of byte loads. 6401 MVT LoadVT; 6402 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6403 switch (NumBitsToCompare) { 6404 default: 6405 return false; 6406 case 16: 6407 LoadVT = MVT::i16; 6408 break; 6409 case 32: 6410 LoadVT = MVT::i32; 6411 break; 6412 case 64: 6413 case 128: 6414 case 256: 6415 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6416 break; 6417 } 6418 6419 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6420 return false; 6421 6422 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6423 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6424 6425 // Bitcast to a wide integer type if the loads are vectors. 6426 if (LoadVT.isVector()) { 6427 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6428 LoadL = DAG.getBitcast(CmpVT, LoadL); 6429 LoadR = DAG.getBitcast(CmpVT, LoadR); 6430 } 6431 6432 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6433 processIntegerCallValue(I, Cmp, false); 6434 return true; 6435 } 6436 6437 /// See if we can lower a memchr call into an optimized form. If so, return 6438 /// true and lower it. Otherwise return false, and it will be lowered like a 6439 /// normal call. 6440 /// The caller already checked that \p I calls the appropriate LibFunc with a 6441 /// correct prototype. 6442 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6443 const Value *Src = I.getArgOperand(0); 6444 const Value *Char = I.getArgOperand(1); 6445 const Value *Length = I.getArgOperand(2); 6446 6447 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6448 std::pair<SDValue, SDValue> Res = 6449 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6450 getValue(Src), getValue(Char), getValue(Length), 6451 MachinePointerInfo(Src)); 6452 if (Res.first.getNode()) { 6453 setValue(&I, Res.first); 6454 PendingLoads.push_back(Res.second); 6455 return true; 6456 } 6457 6458 return false; 6459 } 6460 6461 /// See if we can lower a mempcpy call into an optimized form. If so, return 6462 /// true and lower it. Otherwise return false, and it will be lowered like a 6463 /// normal call. 6464 /// The caller already checked that \p I calls the appropriate LibFunc with a 6465 /// correct prototype. 6466 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6467 SDValue Dst = getValue(I.getArgOperand(0)); 6468 SDValue Src = getValue(I.getArgOperand(1)); 6469 SDValue Size = getValue(I.getArgOperand(2)); 6470 6471 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6472 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6473 unsigned Align = std::min(DstAlign, SrcAlign); 6474 if (Align == 0) // Alignment of one or both could not be inferred. 6475 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6476 6477 bool isVol = false; 6478 SDLoc sdl = getCurSDLoc(); 6479 6480 // In the mempcpy context we need to pass in a false value for isTailCall 6481 // because the return pointer needs to be adjusted by the size of 6482 // the copied memory. 6483 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6484 false, /*isTailCall=*/false, 6485 MachinePointerInfo(I.getArgOperand(0)), 6486 MachinePointerInfo(I.getArgOperand(1))); 6487 assert(MC.getNode() != nullptr && 6488 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6489 DAG.setRoot(MC); 6490 6491 // Check if Size needs to be truncated or extended. 6492 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6493 6494 // Adjust return pointer to point just past the last dst byte. 6495 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6496 Dst, Size); 6497 setValue(&I, DstPlusSize); 6498 return true; 6499 } 6500 6501 /// See if we can lower a strcpy call into an optimized form. If so, return 6502 /// true and lower it, otherwise return false and it will be lowered like a 6503 /// normal call. 6504 /// The caller already checked that \p I calls the appropriate LibFunc with a 6505 /// correct prototype. 6506 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6507 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6508 6509 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6510 std::pair<SDValue, SDValue> Res = 6511 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6512 getValue(Arg0), getValue(Arg1), 6513 MachinePointerInfo(Arg0), 6514 MachinePointerInfo(Arg1), isStpcpy); 6515 if (Res.first.getNode()) { 6516 setValue(&I, Res.first); 6517 DAG.setRoot(Res.second); 6518 return true; 6519 } 6520 6521 return false; 6522 } 6523 6524 /// See if we can lower a strcmp call into an optimized form. If so, return 6525 /// true and lower it, otherwise return false and it will be lowered like a 6526 /// normal call. 6527 /// The caller already checked that \p I calls the appropriate LibFunc with a 6528 /// correct prototype. 6529 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6530 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6531 6532 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6533 std::pair<SDValue, SDValue> Res = 6534 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6535 getValue(Arg0), getValue(Arg1), 6536 MachinePointerInfo(Arg0), 6537 MachinePointerInfo(Arg1)); 6538 if (Res.first.getNode()) { 6539 processIntegerCallValue(I, Res.first, true); 6540 PendingLoads.push_back(Res.second); 6541 return true; 6542 } 6543 6544 return false; 6545 } 6546 6547 /// See if we can lower a strlen call into an optimized form. If so, return 6548 /// true and lower it, otherwise return false and it will be lowered like a 6549 /// normal call. 6550 /// The caller already checked that \p I calls the appropriate LibFunc with a 6551 /// correct prototype. 6552 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6553 const Value *Arg0 = I.getArgOperand(0); 6554 6555 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6556 std::pair<SDValue, SDValue> Res = 6557 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6558 getValue(Arg0), MachinePointerInfo(Arg0)); 6559 if (Res.first.getNode()) { 6560 processIntegerCallValue(I, Res.first, false); 6561 PendingLoads.push_back(Res.second); 6562 return true; 6563 } 6564 6565 return false; 6566 } 6567 6568 /// See if we can lower a strnlen call into an optimized form. If so, return 6569 /// true and lower it, otherwise return false and it will be lowered like a 6570 /// normal call. 6571 /// The caller already checked that \p I calls the appropriate LibFunc with a 6572 /// correct prototype. 6573 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6574 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6575 6576 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6577 std::pair<SDValue, SDValue> Res = 6578 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6579 getValue(Arg0), getValue(Arg1), 6580 MachinePointerInfo(Arg0)); 6581 if (Res.first.getNode()) { 6582 processIntegerCallValue(I, Res.first, false); 6583 PendingLoads.push_back(Res.second); 6584 return true; 6585 } 6586 6587 return false; 6588 } 6589 6590 /// See if we can lower a unary floating-point operation into an SDNode with 6591 /// the specified Opcode. If so, return true and lower it, otherwise return 6592 /// false and it will be lowered like a normal call. 6593 /// The caller already checked that \p I calls the appropriate LibFunc with a 6594 /// correct prototype. 6595 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6596 unsigned Opcode) { 6597 // We already checked this call's prototype; verify it doesn't modify errno. 6598 if (!I.onlyReadsMemory()) 6599 return false; 6600 6601 SDValue Tmp = getValue(I.getArgOperand(0)); 6602 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6603 return true; 6604 } 6605 6606 /// See if we can lower a binary floating-point operation into an SDNode with 6607 /// the specified Opcode. If so, return true and lower it. Otherwise return 6608 /// false, and it will be lowered like a normal call. 6609 /// The caller already checked that \p I calls the appropriate LibFunc with a 6610 /// correct prototype. 6611 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6612 unsigned Opcode) { 6613 // We already checked this call's prototype; verify it doesn't modify errno. 6614 if (!I.onlyReadsMemory()) 6615 return false; 6616 6617 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6618 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6619 EVT VT = Tmp0.getValueType(); 6620 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6621 return true; 6622 } 6623 6624 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6625 // Handle inline assembly differently. 6626 if (isa<InlineAsm>(I.getCalledValue())) { 6627 visitInlineAsm(&I); 6628 return; 6629 } 6630 6631 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6632 computeUsesVAFloatArgument(I, MMI); 6633 6634 const char *RenameFn = nullptr; 6635 if (Function *F = I.getCalledFunction()) { 6636 if (F->isDeclaration()) { 6637 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6638 if (unsigned IID = II->getIntrinsicID(F)) { 6639 RenameFn = visitIntrinsicCall(I, IID); 6640 if (!RenameFn) 6641 return; 6642 } 6643 } 6644 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6645 RenameFn = visitIntrinsicCall(I, IID); 6646 if (!RenameFn) 6647 return; 6648 } 6649 } 6650 6651 // Check for well-known libc/libm calls. If the function is internal, it 6652 // can't be a library call. Don't do the check if marked as nobuiltin for 6653 // some reason or the call site requires strict floating point semantics. 6654 LibFunc Func; 6655 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6656 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6657 LibInfo->hasOptimizedCodeGen(Func)) { 6658 switch (Func) { 6659 default: break; 6660 case LibFunc_copysign: 6661 case LibFunc_copysignf: 6662 case LibFunc_copysignl: 6663 // We already checked this call's prototype; verify it doesn't modify 6664 // errno. 6665 if (I.onlyReadsMemory()) { 6666 SDValue LHS = getValue(I.getArgOperand(0)); 6667 SDValue RHS = getValue(I.getArgOperand(1)); 6668 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6669 LHS.getValueType(), LHS, RHS)); 6670 return; 6671 } 6672 break; 6673 case LibFunc_fabs: 6674 case LibFunc_fabsf: 6675 case LibFunc_fabsl: 6676 if (visitUnaryFloatCall(I, ISD::FABS)) 6677 return; 6678 break; 6679 case LibFunc_fmin: 6680 case LibFunc_fminf: 6681 case LibFunc_fminl: 6682 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6683 return; 6684 break; 6685 case LibFunc_fmax: 6686 case LibFunc_fmaxf: 6687 case LibFunc_fmaxl: 6688 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6689 return; 6690 break; 6691 case LibFunc_sin: 6692 case LibFunc_sinf: 6693 case LibFunc_sinl: 6694 if (visitUnaryFloatCall(I, ISD::FSIN)) 6695 return; 6696 break; 6697 case LibFunc_cos: 6698 case LibFunc_cosf: 6699 case LibFunc_cosl: 6700 if (visitUnaryFloatCall(I, ISD::FCOS)) 6701 return; 6702 break; 6703 case LibFunc_sqrt: 6704 case LibFunc_sqrtf: 6705 case LibFunc_sqrtl: 6706 case LibFunc_sqrt_finite: 6707 case LibFunc_sqrtf_finite: 6708 case LibFunc_sqrtl_finite: 6709 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6710 return; 6711 break; 6712 case LibFunc_floor: 6713 case LibFunc_floorf: 6714 case LibFunc_floorl: 6715 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6716 return; 6717 break; 6718 case LibFunc_nearbyint: 6719 case LibFunc_nearbyintf: 6720 case LibFunc_nearbyintl: 6721 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6722 return; 6723 break; 6724 case LibFunc_ceil: 6725 case LibFunc_ceilf: 6726 case LibFunc_ceill: 6727 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6728 return; 6729 break; 6730 case LibFunc_rint: 6731 case LibFunc_rintf: 6732 case LibFunc_rintl: 6733 if (visitUnaryFloatCall(I, ISD::FRINT)) 6734 return; 6735 break; 6736 case LibFunc_round: 6737 case LibFunc_roundf: 6738 case LibFunc_roundl: 6739 if (visitUnaryFloatCall(I, ISD::FROUND)) 6740 return; 6741 break; 6742 case LibFunc_trunc: 6743 case LibFunc_truncf: 6744 case LibFunc_truncl: 6745 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6746 return; 6747 break; 6748 case LibFunc_log2: 6749 case LibFunc_log2f: 6750 case LibFunc_log2l: 6751 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6752 return; 6753 break; 6754 case LibFunc_exp2: 6755 case LibFunc_exp2f: 6756 case LibFunc_exp2l: 6757 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6758 return; 6759 break; 6760 case LibFunc_memcmp: 6761 if (visitMemCmpCall(I)) 6762 return; 6763 break; 6764 case LibFunc_mempcpy: 6765 if (visitMemPCpyCall(I)) 6766 return; 6767 break; 6768 case LibFunc_memchr: 6769 if (visitMemChrCall(I)) 6770 return; 6771 break; 6772 case LibFunc_strcpy: 6773 if (visitStrCpyCall(I, false)) 6774 return; 6775 break; 6776 case LibFunc_stpcpy: 6777 if (visitStrCpyCall(I, true)) 6778 return; 6779 break; 6780 case LibFunc_strcmp: 6781 if (visitStrCmpCall(I)) 6782 return; 6783 break; 6784 case LibFunc_strlen: 6785 if (visitStrLenCall(I)) 6786 return; 6787 break; 6788 case LibFunc_strnlen: 6789 if (visitStrNLenCall(I)) 6790 return; 6791 break; 6792 } 6793 } 6794 } 6795 6796 SDValue Callee; 6797 if (!RenameFn) 6798 Callee = getValue(I.getCalledValue()); 6799 else 6800 Callee = DAG.getExternalSymbol( 6801 RenameFn, 6802 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6803 6804 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6805 // have to do anything here to lower funclet bundles. 6806 assert(!I.hasOperandBundlesOtherThan( 6807 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6808 "Cannot lower calls with arbitrary operand bundles!"); 6809 6810 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6811 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6812 else 6813 // Check if we can potentially perform a tail call. More detailed checking 6814 // is be done within LowerCallTo, after more information about the call is 6815 // known. 6816 LowerCallTo(&I, Callee, I.isTailCall()); 6817 } 6818 6819 namespace { 6820 6821 /// AsmOperandInfo - This contains information for each constraint that we are 6822 /// lowering. 6823 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6824 public: 6825 /// CallOperand - If this is the result output operand or a clobber 6826 /// this is null, otherwise it is the incoming operand to the CallInst. 6827 /// This gets modified as the asm is processed. 6828 SDValue CallOperand; 6829 6830 /// AssignedRegs - If this is a register or register class operand, this 6831 /// contains the set of register corresponding to the operand. 6832 RegsForValue AssignedRegs; 6833 6834 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6835 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6836 } 6837 6838 /// Whether or not this operand accesses memory 6839 bool hasMemory(const TargetLowering &TLI) const { 6840 // Indirect operand accesses access memory. 6841 if (isIndirect) 6842 return true; 6843 6844 for (const auto &Code : Codes) 6845 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6846 return true; 6847 6848 return false; 6849 } 6850 6851 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6852 /// corresponds to. If there is no Value* for this operand, it returns 6853 /// MVT::Other. 6854 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6855 const DataLayout &DL) const { 6856 if (!CallOperandVal) return MVT::Other; 6857 6858 if (isa<BasicBlock>(CallOperandVal)) 6859 return TLI.getPointerTy(DL); 6860 6861 llvm::Type *OpTy = CallOperandVal->getType(); 6862 6863 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6864 // If this is an indirect operand, the operand is a pointer to the 6865 // accessed type. 6866 if (isIndirect) { 6867 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6868 if (!PtrTy) 6869 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6870 OpTy = PtrTy->getElementType(); 6871 } 6872 6873 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6874 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6875 if (STy->getNumElements() == 1) 6876 OpTy = STy->getElementType(0); 6877 6878 // If OpTy is not a single value, it may be a struct/union that we 6879 // can tile with integers. 6880 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6881 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6882 switch (BitSize) { 6883 default: break; 6884 case 1: 6885 case 8: 6886 case 16: 6887 case 32: 6888 case 64: 6889 case 128: 6890 OpTy = IntegerType::get(Context, BitSize); 6891 break; 6892 } 6893 } 6894 6895 return TLI.getValueType(DL, OpTy, true); 6896 } 6897 }; 6898 6899 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 6900 6901 } // end anonymous namespace 6902 6903 /// Make sure that the output operand \p OpInfo and its corresponding input 6904 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6905 /// out). 6906 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6907 SDISelAsmOperandInfo &MatchingOpInfo, 6908 SelectionDAG &DAG) { 6909 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6910 return; 6911 6912 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6913 const auto &TLI = DAG.getTargetLoweringInfo(); 6914 6915 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6916 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6917 OpInfo.ConstraintVT); 6918 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6919 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6920 MatchingOpInfo.ConstraintVT); 6921 if ((OpInfo.ConstraintVT.isInteger() != 6922 MatchingOpInfo.ConstraintVT.isInteger()) || 6923 (MatchRC.second != InputRC.second)) { 6924 // FIXME: error out in a more elegant fashion 6925 report_fatal_error("Unsupported asm: input constraint" 6926 " with a matching output constraint of" 6927 " incompatible type!"); 6928 } 6929 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6930 } 6931 6932 /// Get a direct memory input to behave well as an indirect operand. 6933 /// This may introduce stores, hence the need for a \p Chain. 6934 /// \return The (possibly updated) chain. 6935 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6936 SDISelAsmOperandInfo &OpInfo, 6937 SelectionDAG &DAG) { 6938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6939 6940 // If we don't have an indirect input, put it in the constpool if we can, 6941 // otherwise spill it to a stack slot. 6942 // TODO: This isn't quite right. We need to handle these according to 6943 // the addressing mode that the constraint wants. Also, this may take 6944 // an additional register for the computation and we don't want that 6945 // either. 6946 6947 // If the operand is a float, integer, or vector constant, spill to a 6948 // constant pool entry to get its address. 6949 const Value *OpVal = OpInfo.CallOperandVal; 6950 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6951 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6952 OpInfo.CallOperand = DAG.getConstantPool( 6953 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6954 return Chain; 6955 } 6956 6957 // Otherwise, create a stack slot and emit a store to it before the asm. 6958 Type *Ty = OpVal->getType(); 6959 auto &DL = DAG.getDataLayout(); 6960 uint64_t TySize = DL.getTypeAllocSize(Ty); 6961 unsigned Align = DL.getPrefTypeAlignment(Ty); 6962 MachineFunction &MF = DAG.getMachineFunction(); 6963 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6964 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6965 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6966 MachinePointerInfo::getFixedStack(MF, SSFI)); 6967 OpInfo.CallOperand = StackSlot; 6968 6969 return Chain; 6970 } 6971 6972 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6973 /// specified operand. We prefer to assign virtual registers, to allow the 6974 /// register allocator to handle the assignment process. However, if the asm 6975 /// uses features that we can't model on machineinstrs, we have SDISel do the 6976 /// allocation. This produces generally horrible, but correct, code. 6977 /// 6978 /// OpInfo describes the operand. 6979 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6980 const SDLoc &DL, 6981 SDISelAsmOperandInfo &OpInfo) { 6982 LLVMContext &Context = *DAG.getContext(); 6983 6984 MachineFunction &MF = DAG.getMachineFunction(); 6985 SmallVector<unsigned, 4> Regs; 6986 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6987 6988 // If this is a constraint for a single physreg, or a constraint for a 6989 // register class, find it. 6990 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6991 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6992 OpInfo.ConstraintVT); 6993 6994 unsigned NumRegs = 1; 6995 if (OpInfo.ConstraintVT != MVT::Other) { 6996 // If this is a FP input in an integer register (or visa versa) insert a bit 6997 // cast of the input value. More generally, handle any case where the input 6998 // value disagrees with the register class we plan to stick this in. 6999 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7000 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7001 // Try to convert to the first EVT that the reg class contains. If the 7002 // types are identical size, use a bitcast to convert (e.g. two differing 7003 // vector types). 7004 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7005 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7006 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7007 RegVT, OpInfo.CallOperand); 7008 OpInfo.ConstraintVT = RegVT; 7009 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7010 // If the input is a FP value and we want it in FP registers, do a 7011 // bitcast to the corresponding integer type. This turns an f64 value 7012 // into i64, which can be passed with two i32 values on a 32-bit 7013 // machine. 7014 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7015 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7016 RegVT, OpInfo.CallOperand); 7017 OpInfo.ConstraintVT = RegVT; 7018 } 7019 } 7020 7021 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7022 } 7023 7024 MVT RegVT; 7025 EVT ValueVT = OpInfo.ConstraintVT; 7026 7027 // If this is a constraint for a specific physical register, like {r17}, 7028 // assign it now. 7029 if (unsigned AssignedReg = PhysReg.first) { 7030 const TargetRegisterClass *RC = PhysReg.second; 7031 if (OpInfo.ConstraintVT == MVT::Other) 7032 ValueVT = *TRI.legalclasstypes_begin(*RC); 7033 7034 // Get the actual register value type. This is important, because the user 7035 // may have asked for (e.g.) the AX register in i32 type. We need to 7036 // remember that AX is actually i16 to get the right extension. 7037 RegVT = *TRI.legalclasstypes_begin(*RC); 7038 7039 // This is a explicit reference to a physical register. 7040 Regs.push_back(AssignedReg); 7041 7042 // If this is an expanded reference, add the rest of the regs to Regs. 7043 if (NumRegs != 1) { 7044 TargetRegisterClass::iterator I = RC->begin(); 7045 for (; *I != AssignedReg; ++I) 7046 assert(I != RC->end() && "Didn't find reg!"); 7047 7048 // Already added the first reg. 7049 --NumRegs; ++I; 7050 for (; NumRegs; --NumRegs, ++I) { 7051 assert(I != RC->end() && "Ran out of registers to allocate!"); 7052 Regs.push_back(*I); 7053 } 7054 } 7055 7056 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7057 return; 7058 } 7059 7060 // Otherwise, if this was a reference to an LLVM register class, create vregs 7061 // for this reference. 7062 if (const TargetRegisterClass *RC = PhysReg.second) { 7063 RegVT = *TRI.legalclasstypes_begin(*RC); 7064 if (OpInfo.ConstraintVT == MVT::Other) 7065 ValueVT = RegVT; 7066 7067 // Create the appropriate number of virtual registers. 7068 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7069 for (; NumRegs; --NumRegs) 7070 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7071 7072 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7073 return; 7074 } 7075 7076 // Otherwise, we couldn't allocate enough registers for this. 7077 } 7078 7079 static unsigned 7080 findMatchingInlineAsmOperand(unsigned OperandNo, 7081 const std::vector<SDValue> &AsmNodeOperands) { 7082 // Scan until we find the definition we already emitted of this operand. 7083 unsigned CurOp = InlineAsm::Op_FirstOperand; 7084 for (; OperandNo; --OperandNo) { 7085 // Advance to the next operand. 7086 unsigned OpFlag = 7087 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7088 assert((InlineAsm::isRegDefKind(OpFlag) || 7089 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7090 InlineAsm::isMemKind(OpFlag)) && 7091 "Skipped past definitions?"); 7092 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7093 } 7094 return CurOp; 7095 } 7096 7097 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7098 /// \return true if it has succeeded, false otherwise 7099 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7100 MVT RegVT, SelectionDAG &DAG) { 7101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7102 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7103 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7104 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7105 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7106 else 7107 return false; 7108 } 7109 return true; 7110 } 7111 7112 namespace { 7113 7114 class ExtraFlags { 7115 unsigned Flags = 0; 7116 7117 public: 7118 explicit ExtraFlags(ImmutableCallSite CS) { 7119 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7120 if (IA->hasSideEffects()) 7121 Flags |= InlineAsm::Extra_HasSideEffects; 7122 if (IA->isAlignStack()) 7123 Flags |= InlineAsm::Extra_IsAlignStack; 7124 if (CS.isConvergent()) 7125 Flags |= InlineAsm::Extra_IsConvergent; 7126 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7127 } 7128 7129 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7130 // Ideally, we would only check against memory constraints. However, the 7131 // meaning of an Other constraint can be target-specific and we can't easily 7132 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7133 // for Other constraints as well. 7134 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7135 OpInfo.ConstraintType == TargetLowering::C_Other) { 7136 if (OpInfo.Type == InlineAsm::isInput) 7137 Flags |= InlineAsm::Extra_MayLoad; 7138 else if (OpInfo.Type == InlineAsm::isOutput) 7139 Flags |= InlineAsm::Extra_MayStore; 7140 else if (OpInfo.Type == InlineAsm::isClobber) 7141 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7142 } 7143 } 7144 7145 unsigned get() const { return Flags; } 7146 }; 7147 7148 } // end anonymous namespace 7149 7150 /// visitInlineAsm - Handle a call to an InlineAsm object. 7151 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7152 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7153 7154 /// ConstraintOperands - Information about all of the constraints. 7155 SDISelAsmOperandInfoVector ConstraintOperands; 7156 7157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7158 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7159 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7160 7161 bool hasMemory = false; 7162 7163 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7164 ExtraFlags ExtraInfo(CS); 7165 7166 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7167 unsigned ResNo = 0; // ResNo - The result number of the next output. 7168 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7169 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7170 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7171 7172 MVT OpVT = MVT::Other; 7173 7174 // Compute the value type for each operand. 7175 if (OpInfo.Type == InlineAsm::isInput || 7176 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7177 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7178 7179 // Process the call argument. BasicBlocks are labels, currently appearing 7180 // only in asm's. 7181 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7182 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7183 } else { 7184 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7185 } 7186 7187 OpVT = 7188 OpInfo 7189 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7190 .getSimpleVT(); 7191 } 7192 7193 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7194 // The return value of the call is this value. As such, there is no 7195 // corresponding argument. 7196 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7197 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7198 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7199 STy->getElementType(ResNo)); 7200 } else { 7201 assert(ResNo == 0 && "Asm only has one result!"); 7202 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7203 } 7204 ++ResNo; 7205 } 7206 7207 OpInfo.ConstraintVT = OpVT; 7208 7209 if (!hasMemory) 7210 hasMemory = OpInfo.hasMemory(TLI); 7211 7212 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7213 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7214 auto TargetConstraint = TargetConstraints[i]; 7215 7216 // Compute the constraint code and ConstraintType to use. 7217 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7218 7219 ExtraInfo.update(TargetConstraint); 7220 } 7221 7222 SDValue Chain, Flag; 7223 7224 // We won't need to flush pending loads if this asm doesn't touch 7225 // memory and is nonvolatile. 7226 if (hasMemory || IA->hasSideEffects()) 7227 Chain = getRoot(); 7228 else 7229 Chain = DAG.getRoot(); 7230 7231 // Second pass over the constraints: compute which constraint option to use 7232 // and assign registers to constraints that want a specific physreg. 7233 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7234 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7235 7236 // If this is an output operand with a matching input operand, look up the 7237 // matching input. If their types mismatch, e.g. one is an integer, the 7238 // other is floating point, or their sizes are different, flag it as an 7239 // error. 7240 if (OpInfo.hasMatchingInput()) { 7241 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7242 patchMatchingInput(OpInfo, Input, DAG); 7243 } 7244 7245 // Compute the constraint code and ConstraintType to use. 7246 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7247 7248 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7249 OpInfo.Type == InlineAsm::isClobber) 7250 continue; 7251 7252 // If this is a memory input, and if the operand is not indirect, do what we 7253 // need to to provide an address for the memory input. 7254 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7255 !OpInfo.isIndirect) { 7256 assert((OpInfo.isMultipleAlternative || 7257 (OpInfo.Type == InlineAsm::isInput)) && 7258 "Can only indirectify direct input operands!"); 7259 7260 // Memory operands really want the address of the value. 7261 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7262 7263 // There is no longer a Value* corresponding to this operand. 7264 OpInfo.CallOperandVal = nullptr; 7265 7266 // It is now an indirect operand. 7267 OpInfo.isIndirect = true; 7268 } 7269 7270 // If this constraint is for a specific register, allocate it before 7271 // anything else. 7272 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7273 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7274 } 7275 7276 // Third pass - Loop over all of the operands, assigning virtual or physregs 7277 // to register class operands. 7278 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7279 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7280 7281 // C_Register operands have already been allocated, Other/Memory don't need 7282 // to be. 7283 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7284 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7285 } 7286 7287 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7288 std::vector<SDValue> AsmNodeOperands; 7289 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7290 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7291 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7292 7293 // If we have a !srcloc metadata node associated with it, we want to attach 7294 // this to the ultimately generated inline asm machineinstr. To do this, we 7295 // pass in the third operand as this (potentially null) inline asm MDNode. 7296 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7297 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7298 7299 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7300 // bits as operand 3. 7301 AsmNodeOperands.push_back(DAG.getTargetConstant( 7302 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7303 7304 // Loop over all of the inputs, copying the operand values into the 7305 // appropriate registers and processing the output regs. 7306 RegsForValue RetValRegs; 7307 7308 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7309 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7310 7311 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7312 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7313 7314 switch (OpInfo.Type) { 7315 case InlineAsm::isOutput: 7316 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7317 OpInfo.ConstraintType != TargetLowering::C_Register) { 7318 // Memory output, or 'other' output (e.g. 'X' constraint). 7319 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7320 7321 unsigned ConstraintID = 7322 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7323 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7324 "Failed to convert memory constraint code to constraint id."); 7325 7326 // Add information to the INLINEASM node to know about this output. 7327 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7328 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7329 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7330 MVT::i32)); 7331 AsmNodeOperands.push_back(OpInfo.CallOperand); 7332 break; 7333 } 7334 7335 // Otherwise, this is a register or register class output. 7336 7337 // Copy the output from the appropriate register. Find a register that 7338 // we can use. 7339 if (OpInfo.AssignedRegs.Regs.empty()) { 7340 emitInlineAsmError( 7341 CS, "couldn't allocate output register for constraint '" + 7342 Twine(OpInfo.ConstraintCode) + "'"); 7343 return; 7344 } 7345 7346 // If this is an indirect operand, store through the pointer after the 7347 // asm. 7348 if (OpInfo.isIndirect) { 7349 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7350 OpInfo.CallOperandVal)); 7351 } else { 7352 // This is the result value of the call. 7353 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7354 // Concatenate this output onto the outputs list. 7355 RetValRegs.append(OpInfo.AssignedRegs); 7356 } 7357 7358 // Add information to the INLINEASM node to know that this register is 7359 // set. 7360 OpInfo.AssignedRegs 7361 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7362 ? InlineAsm::Kind_RegDefEarlyClobber 7363 : InlineAsm::Kind_RegDef, 7364 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7365 break; 7366 7367 case InlineAsm::isInput: { 7368 SDValue InOperandVal = OpInfo.CallOperand; 7369 7370 if (OpInfo.isMatchingInputConstraint()) { 7371 // If this is required to match an output register we have already set, 7372 // just use its register. 7373 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7374 AsmNodeOperands); 7375 unsigned OpFlag = 7376 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7377 if (InlineAsm::isRegDefKind(OpFlag) || 7378 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7379 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7380 if (OpInfo.isIndirect) { 7381 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7382 emitInlineAsmError(CS, "inline asm not supported yet:" 7383 " don't know how to handle tied " 7384 "indirect register inputs"); 7385 return; 7386 } 7387 7388 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7389 SmallVector<unsigned, 4> Regs; 7390 7391 if (!createVirtualRegs(Regs, 7392 InlineAsm::getNumOperandRegisters(OpFlag), 7393 RegVT, DAG)) { 7394 emitInlineAsmError(CS, "inline asm error: This value type register " 7395 "class is not natively supported!"); 7396 return; 7397 } 7398 7399 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7400 7401 SDLoc dl = getCurSDLoc(); 7402 // Use the produced MatchedRegs object to 7403 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7404 CS.getInstruction()); 7405 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7406 true, OpInfo.getMatchedOperand(), dl, 7407 DAG, AsmNodeOperands); 7408 break; 7409 } 7410 7411 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7412 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7413 "Unexpected number of operands"); 7414 // Add information to the INLINEASM node to know about this input. 7415 // See InlineAsm.h isUseOperandTiedToDef. 7416 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7417 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7418 OpInfo.getMatchedOperand()); 7419 AsmNodeOperands.push_back(DAG.getTargetConstant( 7420 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7421 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7422 break; 7423 } 7424 7425 // Treat indirect 'X' constraint as memory. 7426 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7427 OpInfo.isIndirect) 7428 OpInfo.ConstraintType = TargetLowering::C_Memory; 7429 7430 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7431 std::vector<SDValue> Ops; 7432 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7433 Ops, DAG); 7434 if (Ops.empty()) { 7435 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7436 Twine(OpInfo.ConstraintCode) + "'"); 7437 return; 7438 } 7439 7440 // Add information to the INLINEASM node to know about this input. 7441 unsigned ResOpType = 7442 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7443 AsmNodeOperands.push_back(DAG.getTargetConstant( 7444 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7445 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7446 break; 7447 } 7448 7449 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7450 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7451 assert(InOperandVal.getValueType() == 7452 TLI.getPointerTy(DAG.getDataLayout()) && 7453 "Memory operands expect pointer values"); 7454 7455 unsigned ConstraintID = 7456 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7457 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7458 "Failed to convert memory constraint code to constraint id."); 7459 7460 // Add information to the INLINEASM node to know about this input. 7461 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7462 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7463 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7464 getCurSDLoc(), 7465 MVT::i32)); 7466 AsmNodeOperands.push_back(InOperandVal); 7467 break; 7468 } 7469 7470 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7471 OpInfo.ConstraintType == TargetLowering::C_Register) && 7472 "Unknown constraint type!"); 7473 7474 // TODO: Support this. 7475 if (OpInfo.isIndirect) { 7476 emitInlineAsmError( 7477 CS, "Don't know how to handle indirect register inputs yet " 7478 "for constraint '" + 7479 Twine(OpInfo.ConstraintCode) + "'"); 7480 return; 7481 } 7482 7483 // Copy the input into the appropriate registers. 7484 if (OpInfo.AssignedRegs.Regs.empty()) { 7485 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7486 Twine(OpInfo.ConstraintCode) + "'"); 7487 return; 7488 } 7489 7490 SDLoc dl = getCurSDLoc(); 7491 7492 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7493 Chain, &Flag, CS.getInstruction()); 7494 7495 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7496 dl, DAG, AsmNodeOperands); 7497 break; 7498 } 7499 case InlineAsm::isClobber: 7500 // Add the clobbered value to the operand list, so that the register 7501 // allocator is aware that the physreg got clobbered. 7502 if (!OpInfo.AssignedRegs.Regs.empty()) 7503 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7504 false, 0, getCurSDLoc(), DAG, 7505 AsmNodeOperands); 7506 break; 7507 } 7508 } 7509 7510 // Finish up input operands. Set the input chain and add the flag last. 7511 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7512 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7513 7514 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7515 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7516 Flag = Chain.getValue(1); 7517 7518 // If this asm returns a register value, copy the result from that register 7519 // and set it as the value of the call. 7520 if (!RetValRegs.Regs.empty()) { 7521 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7522 Chain, &Flag, CS.getInstruction()); 7523 7524 // FIXME: Why don't we do this for inline asms with MRVs? 7525 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7526 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7527 7528 // If any of the results of the inline asm is a vector, it may have the 7529 // wrong width/num elts. This can happen for register classes that can 7530 // contain multiple different value types. The preg or vreg allocated may 7531 // not have the same VT as was expected. Convert it to the right type 7532 // with bit_convert. 7533 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7534 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7535 ResultType, Val); 7536 7537 } else if (ResultType != Val.getValueType() && 7538 ResultType.isInteger() && Val.getValueType().isInteger()) { 7539 // If a result value was tied to an input value, the computed result may 7540 // have a wider width than the expected result. Extract the relevant 7541 // portion. 7542 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7543 } 7544 7545 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7546 } 7547 7548 setValue(CS.getInstruction(), Val); 7549 // Don't need to use this as a chain in this case. 7550 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7551 return; 7552 } 7553 7554 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7555 7556 // Process indirect outputs, first output all of the flagged copies out of 7557 // physregs. 7558 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7559 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7560 const Value *Ptr = IndirectStoresToEmit[i].second; 7561 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7562 Chain, &Flag, IA); 7563 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7564 } 7565 7566 // Emit the non-flagged stores from the physregs. 7567 SmallVector<SDValue, 8> OutChains; 7568 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7569 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7570 getValue(StoresToEmit[i].second), 7571 MachinePointerInfo(StoresToEmit[i].second)); 7572 OutChains.push_back(Val); 7573 } 7574 7575 if (!OutChains.empty()) 7576 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7577 7578 DAG.setRoot(Chain); 7579 } 7580 7581 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7582 const Twine &Message) { 7583 LLVMContext &Ctx = *DAG.getContext(); 7584 Ctx.emitError(CS.getInstruction(), Message); 7585 7586 // Make sure we leave the DAG in a valid state 7587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7588 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7589 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7590 } 7591 7592 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7593 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7594 MVT::Other, getRoot(), 7595 getValue(I.getArgOperand(0)), 7596 DAG.getSrcValue(I.getArgOperand(0)))); 7597 } 7598 7599 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7601 const DataLayout &DL = DAG.getDataLayout(); 7602 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7603 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7604 DAG.getSrcValue(I.getOperand(0)), 7605 DL.getABITypeAlignment(I.getType())); 7606 setValue(&I, V); 7607 DAG.setRoot(V.getValue(1)); 7608 } 7609 7610 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7611 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7612 MVT::Other, getRoot(), 7613 getValue(I.getArgOperand(0)), 7614 DAG.getSrcValue(I.getArgOperand(0)))); 7615 } 7616 7617 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7618 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7619 MVT::Other, getRoot(), 7620 getValue(I.getArgOperand(0)), 7621 getValue(I.getArgOperand(1)), 7622 DAG.getSrcValue(I.getArgOperand(0)), 7623 DAG.getSrcValue(I.getArgOperand(1)))); 7624 } 7625 7626 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7627 const Instruction &I, 7628 SDValue Op) { 7629 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7630 if (!Range) 7631 return Op; 7632 7633 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7634 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7635 return Op; 7636 7637 APInt Lo = CR.getUnsignedMin(); 7638 if (!Lo.isMinValue()) 7639 return Op; 7640 7641 APInt Hi = CR.getUnsignedMax(); 7642 unsigned Bits = Hi.getActiveBits(); 7643 7644 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7645 7646 SDLoc SL = getCurSDLoc(); 7647 7648 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7649 DAG.getValueType(SmallVT)); 7650 unsigned NumVals = Op.getNode()->getNumValues(); 7651 if (NumVals == 1) 7652 return ZExt; 7653 7654 SmallVector<SDValue, 4> Ops; 7655 7656 Ops.push_back(ZExt); 7657 for (unsigned I = 1; I != NumVals; ++I) 7658 Ops.push_back(Op.getValue(I)); 7659 7660 return DAG.getMergeValues(Ops, SL); 7661 } 7662 7663 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7664 /// the call being lowered. 7665 /// 7666 /// This is a helper for lowering intrinsics that follow a target calling 7667 /// convention or require stack pointer adjustment. Only a subset of the 7668 /// intrinsic's operands need to participate in the calling convention. 7669 void SelectionDAGBuilder::populateCallLoweringInfo( 7670 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7671 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7672 bool IsPatchPoint) { 7673 TargetLowering::ArgListTy Args; 7674 Args.reserve(NumArgs); 7675 7676 // Populate the argument list. 7677 // Attributes for args start at offset 1, after the return attribute. 7678 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7679 ArgI != ArgE; ++ArgI) { 7680 const Value *V = CS->getOperand(ArgI); 7681 7682 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7683 7684 TargetLowering::ArgListEntry Entry; 7685 Entry.Node = getValue(V); 7686 Entry.Ty = V->getType(); 7687 Entry.setAttributes(&CS, ArgIdx); 7688 Args.push_back(Entry); 7689 } 7690 7691 CLI.setDebugLoc(getCurSDLoc()) 7692 .setChain(getRoot()) 7693 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7694 .setDiscardResult(CS->use_empty()) 7695 .setIsPatchPoint(IsPatchPoint); 7696 } 7697 7698 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7699 /// or patchpoint target node's operand list. 7700 /// 7701 /// Constants are converted to TargetConstants purely as an optimization to 7702 /// avoid constant materialization and register allocation. 7703 /// 7704 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7705 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7706 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7707 /// address materialization and register allocation, but may also be required 7708 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7709 /// alloca in the entry block, then the runtime may assume that the alloca's 7710 /// StackMap location can be read immediately after compilation and that the 7711 /// location is valid at any point during execution (this is similar to the 7712 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7713 /// only available in a register, then the runtime would need to trap when 7714 /// execution reaches the StackMap in order to read the alloca's location. 7715 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7716 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7717 SelectionDAGBuilder &Builder) { 7718 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7719 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7720 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7721 Ops.push_back( 7722 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7723 Ops.push_back( 7724 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7725 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7726 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7727 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7728 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7729 } else 7730 Ops.push_back(OpVal); 7731 } 7732 } 7733 7734 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7735 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7736 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7737 // [live variables...]) 7738 7739 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7740 7741 SDValue Chain, InFlag, Callee, NullPtr; 7742 SmallVector<SDValue, 32> Ops; 7743 7744 SDLoc DL = getCurSDLoc(); 7745 Callee = getValue(CI.getCalledValue()); 7746 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7747 7748 // The stackmap intrinsic only records the live variables (the arguemnts 7749 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7750 // intrinsic, this won't be lowered to a function call. This means we don't 7751 // have to worry about calling conventions and target specific lowering code. 7752 // Instead we perform the call lowering right here. 7753 // 7754 // chain, flag = CALLSEQ_START(chain, 0, 0) 7755 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7756 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7757 // 7758 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7759 InFlag = Chain.getValue(1); 7760 7761 // Add the <id> and <numBytes> constants. 7762 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7763 Ops.push_back(DAG.getTargetConstant( 7764 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7765 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7766 Ops.push_back(DAG.getTargetConstant( 7767 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7768 MVT::i32)); 7769 7770 // Push live variables for the stack map. 7771 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7772 7773 // We are not pushing any register mask info here on the operands list, 7774 // because the stackmap doesn't clobber anything. 7775 7776 // Push the chain and the glue flag. 7777 Ops.push_back(Chain); 7778 Ops.push_back(InFlag); 7779 7780 // Create the STACKMAP node. 7781 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7782 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7783 Chain = SDValue(SM, 0); 7784 InFlag = Chain.getValue(1); 7785 7786 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7787 7788 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7789 7790 // Set the root to the target-lowered call chain. 7791 DAG.setRoot(Chain); 7792 7793 // Inform the Frame Information that we have a stackmap in this function. 7794 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7795 } 7796 7797 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7798 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7799 const BasicBlock *EHPadBB) { 7800 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7801 // i32 <numBytes>, 7802 // i8* <target>, 7803 // i32 <numArgs>, 7804 // [Args...], 7805 // [live variables...]) 7806 7807 CallingConv::ID CC = CS.getCallingConv(); 7808 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7809 bool HasDef = !CS->getType()->isVoidTy(); 7810 SDLoc dl = getCurSDLoc(); 7811 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7812 7813 // Handle immediate and symbolic callees. 7814 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7815 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7816 /*isTarget=*/true); 7817 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7818 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7819 SDLoc(SymbolicCallee), 7820 SymbolicCallee->getValueType(0)); 7821 7822 // Get the real number of arguments participating in the call <numArgs> 7823 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7824 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7825 7826 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7827 // Intrinsics include all meta-operands up to but not including CC. 7828 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7829 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7830 "Not enough arguments provided to the patchpoint intrinsic"); 7831 7832 // For AnyRegCC the arguments are lowered later on manually. 7833 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7834 Type *ReturnTy = 7835 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7836 7837 TargetLowering::CallLoweringInfo CLI(DAG); 7838 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7839 true); 7840 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7841 7842 SDNode *CallEnd = Result.second.getNode(); 7843 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7844 CallEnd = CallEnd->getOperand(0).getNode(); 7845 7846 /// Get a call instruction from the call sequence chain. 7847 /// Tail calls are not allowed. 7848 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7849 "Expected a callseq node."); 7850 SDNode *Call = CallEnd->getOperand(0).getNode(); 7851 bool HasGlue = Call->getGluedNode(); 7852 7853 // Replace the target specific call node with the patchable intrinsic. 7854 SmallVector<SDValue, 8> Ops; 7855 7856 // Add the <id> and <numBytes> constants. 7857 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7858 Ops.push_back(DAG.getTargetConstant( 7859 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7860 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7861 Ops.push_back(DAG.getTargetConstant( 7862 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7863 MVT::i32)); 7864 7865 // Add the callee. 7866 Ops.push_back(Callee); 7867 7868 // Adjust <numArgs> to account for any arguments that have been passed on the 7869 // stack instead. 7870 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7871 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7872 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7873 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7874 7875 // Add the calling convention 7876 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7877 7878 // Add the arguments we omitted previously. The register allocator should 7879 // place these in any free register. 7880 if (IsAnyRegCC) 7881 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7882 Ops.push_back(getValue(CS.getArgument(i))); 7883 7884 // Push the arguments from the call instruction up to the register mask. 7885 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7886 Ops.append(Call->op_begin() + 2, e); 7887 7888 // Push live variables for the stack map. 7889 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7890 7891 // Push the register mask info. 7892 if (HasGlue) 7893 Ops.push_back(*(Call->op_end()-2)); 7894 else 7895 Ops.push_back(*(Call->op_end()-1)); 7896 7897 // Push the chain (this is originally the first operand of the call, but 7898 // becomes now the last or second to last operand). 7899 Ops.push_back(*(Call->op_begin())); 7900 7901 // Push the glue flag (last operand). 7902 if (HasGlue) 7903 Ops.push_back(*(Call->op_end()-1)); 7904 7905 SDVTList NodeTys; 7906 if (IsAnyRegCC && HasDef) { 7907 // Create the return types based on the intrinsic definition 7908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7909 SmallVector<EVT, 3> ValueVTs; 7910 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7911 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7912 7913 // There is always a chain and a glue type at the end 7914 ValueVTs.push_back(MVT::Other); 7915 ValueVTs.push_back(MVT::Glue); 7916 NodeTys = DAG.getVTList(ValueVTs); 7917 } else 7918 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7919 7920 // Replace the target specific call node with a PATCHPOINT node. 7921 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7922 dl, NodeTys, Ops); 7923 7924 // Update the NodeMap. 7925 if (HasDef) { 7926 if (IsAnyRegCC) 7927 setValue(CS.getInstruction(), SDValue(MN, 0)); 7928 else 7929 setValue(CS.getInstruction(), Result.first); 7930 } 7931 7932 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7933 // call sequence. Furthermore the location of the chain and glue can change 7934 // when the AnyReg calling convention is used and the intrinsic returns a 7935 // value. 7936 if (IsAnyRegCC && HasDef) { 7937 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7938 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7939 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7940 } else 7941 DAG.ReplaceAllUsesWith(Call, MN); 7942 DAG.DeleteNode(Call); 7943 7944 // Inform the Frame Information that we have a patchpoint in this function. 7945 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7946 } 7947 7948 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7949 unsigned Intrinsic) { 7950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7951 SDValue Op1 = getValue(I.getArgOperand(0)); 7952 SDValue Op2; 7953 if (I.getNumArgOperands() > 1) 7954 Op2 = getValue(I.getArgOperand(1)); 7955 SDLoc dl = getCurSDLoc(); 7956 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7957 SDValue Res; 7958 FastMathFlags FMF; 7959 if (isa<FPMathOperator>(I)) 7960 FMF = I.getFastMathFlags(); 7961 SDNodeFlags SDFlags; 7962 SDFlags.setNoNaNs(FMF.noNaNs()); 7963 7964 switch (Intrinsic) { 7965 case Intrinsic::experimental_vector_reduce_fadd: 7966 if (FMF.isFast()) 7967 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7968 else 7969 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7970 break; 7971 case Intrinsic::experimental_vector_reduce_fmul: 7972 if (FMF.isFast()) 7973 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7974 else 7975 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7976 break; 7977 case Intrinsic::experimental_vector_reduce_add: 7978 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7979 break; 7980 case Intrinsic::experimental_vector_reduce_mul: 7981 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7982 break; 7983 case Intrinsic::experimental_vector_reduce_and: 7984 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7985 break; 7986 case Intrinsic::experimental_vector_reduce_or: 7987 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7988 break; 7989 case Intrinsic::experimental_vector_reduce_xor: 7990 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 7991 break; 7992 case Intrinsic::experimental_vector_reduce_smax: 7993 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 7994 break; 7995 case Intrinsic::experimental_vector_reduce_smin: 7996 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 7997 break; 7998 case Intrinsic::experimental_vector_reduce_umax: 7999 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8000 break; 8001 case Intrinsic::experimental_vector_reduce_umin: 8002 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8003 break; 8004 case Intrinsic::experimental_vector_reduce_fmax: 8005 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8006 break; 8007 case Intrinsic::experimental_vector_reduce_fmin: 8008 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8009 break; 8010 default: 8011 llvm_unreachable("Unhandled vector reduce intrinsic"); 8012 } 8013 setValue(&I, Res); 8014 } 8015 8016 /// Returns an AttributeList representing the attributes applied to the return 8017 /// value of the given call. 8018 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8019 SmallVector<Attribute::AttrKind, 2> Attrs; 8020 if (CLI.RetSExt) 8021 Attrs.push_back(Attribute::SExt); 8022 if (CLI.RetZExt) 8023 Attrs.push_back(Attribute::ZExt); 8024 if (CLI.IsInReg) 8025 Attrs.push_back(Attribute::InReg); 8026 8027 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8028 Attrs); 8029 } 8030 8031 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8032 /// implementation, which just calls LowerCall. 8033 /// FIXME: When all targets are 8034 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8035 std::pair<SDValue, SDValue> 8036 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8037 // Handle the incoming return values from the call. 8038 CLI.Ins.clear(); 8039 Type *OrigRetTy = CLI.RetTy; 8040 SmallVector<EVT, 4> RetTys; 8041 SmallVector<uint64_t, 4> Offsets; 8042 auto &DL = CLI.DAG.getDataLayout(); 8043 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8044 8045 if (CLI.IsPostTypeLegalization) { 8046 // If we are lowering a libcall after legalization, split the return type. 8047 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8048 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8049 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8050 EVT RetVT = OldRetTys[i]; 8051 uint64_t Offset = OldOffsets[i]; 8052 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8053 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8054 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8055 RetTys.append(NumRegs, RegisterVT); 8056 for (unsigned j = 0; j != NumRegs; ++j) 8057 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8058 } 8059 } 8060 8061 SmallVector<ISD::OutputArg, 4> Outs; 8062 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8063 8064 bool CanLowerReturn = 8065 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8066 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8067 8068 SDValue DemoteStackSlot; 8069 int DemoteStackIdx = -100; 8070 if (!CanLowerReturn) { 8071 // FIXME: equivalent assert? 8072 // assert(!CS.hasInAllocaArgument() && 8073 // "sret demotion is incompatible with inalloca"); 8074 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8075 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8076 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8077 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8078 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8079 8080 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8081 ArgListEntry Entry; 8082 Entry.Node = DemoteStackSlot; 8083 Entry.Ty = StackSlotPtrType; 8084 Entry.IsSExt = false; 8085 Entry.IsZExt = false; 8086 Entry.IsInReg = false; 8087 Entry.IsSRet = true; 8088 Entry.IsNest = false; 8089 Entry.IsByVal = false; 8090 Entry.IsReturned = false; 8091 Entry.IsSwiftSelf = false; 8092 Entry.IsSwiftError = false; 8093 Entry.Alignment = Align; 8094 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8095 CLI.NumFixedArgs += 1; 8096 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8097 8098 // sret demotion isn't compatible with tail-calls, since the sret argument 8099 // points into the callers stack frame. 8100 CLI.IsTailCall = false; 8101 } else { 8102 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8103 EVT VT = RetTys[I]; 8104 MVT RegisterVT = 8105 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8106 unsigned NumRegs = 8107 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8108 for (unsigned i = 0; i != NumRegs; ++i) { 8109 ISD::InputArg MyFlags; 8110 MyFlags.VT = RegisterVT; 8111 MyFlags.ArgVT = VT; 8112 MyFlags.Used = CLI.IsReturnValueUsed; 8113 if (CLI.RetSExt) 8114 MyFlags.Flags.setSExt(); 8115 if (CLI.RetZExt) 8116 MyFlags.Flags.setZExt(); 8117 if (CLI.IsInReg) 8118 MyFlags.Flags.setInReg(); 8119 CLI.Ins.push_back(MyFlags); 8120 } 8121 } 8122 } 8123 8124 // We push in swifterror return as the last element of CLI.Ins. 8125 ArgListTy &Args = CLI.getArgs(); 8126 if (supportSwiftError()) { 8127 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8128 if (Args[i].IsSwiftError) { 8129 ISD::InputArg MyFlags; 8130 MyFlags.VT = getPointerTy(DL); 8131 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8132 MyFlags.Flags.setSwiftError(); 8133 CLI.Ins.push_back(MyFlags); 8134 } 8135 } 8136 } 8137 8138 // Handle all of the outgoing arguments. 8139 CLI.Outs.clear(); 8140 CLI.OutVals.clear(); 8141 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8142 SmallVector<EVT, 4> ValueVTs; 8143 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8144 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8145 Type *FinalType = Args[i].Ty; 8146 if (Args[i].IsByVal) 8147 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8148 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8149 FinalType, CLI.CallConv, CLI.IsVarArg); 8150 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8151 ++Value) { 8152 EVT VT = ValueVTs[Value]; 8153 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8154 SDValue Op = SDValue(Args[i].Node.getNode(), 8155 Args[i].Node.getResNo() + Value); 8156 ISD::ArgFlagsTy Flags; 8157 8158 // Certain targets (such as MIPS), may have a different ABI alignment 8159 // for a type depending on the context. Give the target a chance to 8160 // specify the alignment it wants. 8161 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8162 8163 if (Args[i].IsZExt) 8164 Flags.setZExt(); 8165 if (Args[i].IsSExt) 8166 Flags.setSExt(); 8167 if (Args[i].IsInReg) { 8168 // If we are using vectorcall calling convention, a structure that is 8169 // passed InReg - is surely an HVA 8170 if (CLI.CallConv == CallingConv::X86_VectorCall && 8171 isa<StructType>(FinalType)) { 8172 // The first value of a structure is marked 8173 if (0 == Value) 8174 Flags.setHvaStart(); 8175 Flags.setHva(); 8176 } 8177 // Set InReg Flag 8178 Flags.setInReg(); 8179 } 8180 if (Args[i].IsSRet) 8181 Flags.setSRet(); 8182 if (Args[i].IsSwiftSelf) 8183 Flags.setSwiftSelf(); 8184 if (Args[i].IsSwiftError) 8185 Flags.setSwiftError(); 8186 if (Args[i].IsByVal) 8187 Flags.setByVal(); 8188 if (Args[i].IsInAlloca) { 8189 Flags.setInAlloca(); 8190 // Set the byval flag for CCAssignFn callbacks that don't know about 8191 // inalloca. This way we can know how many bytes we should've allocated 8192 // and how many bytes a callee cleanup function will pop. If we port 8193 // inalloca to more targets, we'll have to add custom inalloca handling 8194 // in the various CC lowering callbacks. 8195 Flags.setByVal(); 8196 } 8197 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8198 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8199 Type *ElementTy = Ty->getElementType(); 8200 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8201 // For ByVal, alignment should come from FE. BE will guess if this 8202 // info is not there but there are cases it cannot get right. 8203 unsigned FrameAlign; 8204 if (Args[i].Alignment) 8205 FrameAlign = Args[i].Alignment; 8206 else 8207 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8208 Flags.setByValAlign(FrameAlign); 8209 } 8210 if (Args[i].IsNest) 8211 Flags.setNest(); 8212 if (NeedsRegBlock) 8213 Flags.setInConsecutiveRegs(); 8214 Flags.setOrigAlign(OriginalAlignment); 8215 8216 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8217 unsigned NumParts = 8218 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8219 SmallVector<SDValue, 4> Parts(NumParts); 8220 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8221 8222 if (Args[i].IsSExt) 8223 ExtendKind = ISD::SIGN_EXTEND; 8224 else if (Args[i].IsZExt) 8225 ExtendKind = ISD::ZERO_EXTEND; 8226 8227 // Conservatively only handle 'returned' on non-vectors for now 8228 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8229 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8230 "unexpected use of 'returned'"); 8231 // Before passing 'returned' to the target lowering code, ensure that 8232 // either the register MVT and the actual EVT are the same size or that 8233 // the return value and argument are extended in the same way; in these 8234 // cases it's safe to pass the argument register value unchanged as the 8235 // return register value (although it's at the target's option whether 8236 // to do so) 8237 // TODO: allow code generation to take advantage of partially preserved 8238 // registers rather than clobbering the entire register when the 8239 // parameter extension method is not compatible with the return 8240 // extension method 8241 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8242 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8243 CLI.RetZExt == Args[i].IsZExt)) 8244 Flags.setReturned(); 8245 } 8246 8247 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8248 CLI.CS.getInstruction(), ExtendKind, true); 8249 8250 for (unsigned j = 0; j != NumParts; ++j) { 8251 // if it isn't first piece, alignment must be 1 8252 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8253 i < CLI.NumFixedArgs, 8254 i, j*Parts[j].getValueType().getStoreSize()); 8255 if (NumParts > 1 && j == 0) 8256 MyFlags.Flags.setSplit(); 8257 else if (j != 0) { 8258 MyFlags.Flags.setOrigAlign(1); 8259 if (j == NumParts - 1) 8260 MyFlags.Flags.setSplitEnd(); 8261 } 8262 8263 CLI.Outs.push_back(MyFlags); 8264 CLI.OutVals.push_back(Parts[j]); 8265 } 8266 8267 if (NeedsRegBlock && Value == NumValues - 1) 8268 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8269 } 8270 } 8271 8272 SmallVector<SDValue, 4> InVals; 8273 CLI.Chain = LowerCall(CLI, InVals); 8274 8275 // Update CLI.InVals to use outside of this function. 8276 CLI.InVals = InVals; 8277 8278 // Verify that the target's LowerCall behaved as expected. 8279 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8280 "LowerCall didn't return a valid chain!"); 8281 assert((!CLI.IsTailCall || InVals.empty()) && 8282 "LowerCall emitted a return value for a tail call!"); 8283 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8284 "LowerCall didn't emit the correct number of values!"); 8285 8286 // For a tail call, the return value is merely live-out and there aren't 8287 // any nodes in the DAG representing it. Return a special value to 8288 // indicate that a tail call has been emitted and no more Instructions 8289 // should be processed in the current block. 8290 if (CLI.IsTailCall) { 8291 CLI.DAG.setRoot(CLI.Chain); 8292 return std::make_pair(SDValue(), SDValue()); 8293 } 8294 8295 #ifndef NDEBUG 8296 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8297 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8298 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8299 "LowerCall emitted a value with the wrong type!"); 8300 } 8301 #endif 8302 8303 SmallVector<SDValue, 4> ReturnValues; 8304 if (!CanLowerReturn) { 8305 // The instruction result is the result of loading from the 8306 // hidden sret parameter. 8307 SmallVector<EVT, 1> PVTs; 8308 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 8309 8310 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8311 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8312 EVT PtrVT = PVTs[0]; 8313 8314 unsigned NumValues = RetTys.size(); 8315 ReturnValues.resize(NumValues); 8316 SmallVector<SDValue, 4> Chains(NumValues); 8317 8318 // An aggregate return value cannot wrap around the address space, so 8319 // offsets to its parts don't wrap either. 8320 SDNodeFlags Flags; 8321 Flags.setNoUnsignedWrap(true); 8322 8323 for (unsigned i = 0; i < NumValues; ++i) { 8324 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8325 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8326 PtrVT), Flags); 8327 SDValue L = CLI.DAG.getLoad( 8328 RetTys[i], CLI.DL, CLI.Chain, Add, 8329 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8330 DemoteStackIdx, Offsets[i]), 8331 /* Alignment = */ 1); 8332 ReturnValues[i] = L; 8333 Chains[i] = L.getValue(1); 8334 } 8335 8336 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8337 } else { 8338 // Collect the legal value parts into potentially illegal values 8339 // that correspond to the original function's return values. 8340 Optional<ISD::NodeType> AssertOp; 8341 if (CLI.RetSExt) 8342 AssertOp = ISD::AssertSext; 8343 else if (CLI.RetZExt) 8344 AssertOp = ISD::AssertZext; 8345 unsigned CurReg = 0; 8346 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8347 EVT VT = RetTys[I]; 8348 MVT RegisterVT = 8349 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8350 unsigned NumRegs = 8351 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8352 8353 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8354 NumRegs, RegisterVT, VT, nullptr, 8355 AssertOp, true)); 8356 CurReg += NumRegs; 8357 } 8358 8359 // For a function returning void, there is no return value. We can't create 8360 // such a node, so we just return a null return value in that case. In 8361 // that case, nothing will actually look at the value. 8362 if (ReturnValues.empty()) 8363 return std::make_pair(SDValue(), CLI.Chain); 8364 } 8365 8366 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8367 CLI.DAG.getVTList(RetTys), ReturnValues); 8368 return std::make_pair(Res, CLI.Chain); 8369 } 8370 8371 void TargetLowering::LowerOperationWrapper(SDNode *N, 8372 SmallVectorImpl<SDValue> &Results, 8373 SelectionDAG &DAG) const { 8374 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8375 Results.push_back(Res); 8376 } 8377 8378 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8379 llvm_unreachable("LowerOperation not implemented for this target!"); 8380 } 8381 8382 void 8383 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8384 SDValue Op = getNonRegisterValue(V); 8385 assert((Op.getOpcode() != ISD::CopyFromReg || 8386 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8387 "Copy from a reg to the same reg!"); 8388 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8389 8390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8391 // If this is an InlineAsm we have to match the registers required, not the 8392 // notional registers required by the type. 8393 8394 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8395 V->getType(), isABIRegCopy(V)); 8396 SDValue Chain = DAG.getEntryNode(); 8397 8398 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8399 FuncInfo.PreferredExtendType.end()) 8400 ? ISD::ANY_EXTEND 8401 : FuncInfo.PreferredExtendType[V]; 8402 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8403 PendingExports.push_back(Chain); 8404 } 8405 8406 #include "llvm/CodeGen/SelectionDAGISel.h" 8407 8408 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8409 /// entry block, return true. This includes arguments used by switches, since 8410 /// the switch may expand into multiple basic blocks. 8411 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8412 // With FastISel active, we may be splitting blocks, so force creation 8413 // of virtual registers for all non-dead arguments. 8414 if (FastISel) 8415 return A->use_empty(); 8416 8417 const BasicBlock &Entry = A->getParent()->front(); 8418 for (const User *U : A->users()) 8419 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8420 return false; // Use not in entry block. 8421 8422 return true; 8423 } 8424 8425 using ArgCopyElisionMapTy = 8426 DenseMap<const Argument *, 8427 std::pair<const AllocaInst *, const StoreInst *>>; 8428 8429 /// Scan the entry block of the function in FuncInfo for arguments that look 8430 /// like copies into a local alloca. Record any copied arguments in 8431 /// ArgCopyElisionCandidates. 8432 static void 8433 findArgumentCopyElisionCandidates(const DataLayout &DL, 8434 FunctionLoweringInfo *FuncInfo, 8435 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8436 // Record the state of every static alloca used in the entry block. Argument 8437 // allocas are all used in the entry block, so we need approximately as many 8438 // entries as we have arguments. 8439 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8440 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8441 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8442 StaticAllocas.reserve(NumArgs * 2); 8443 8444 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8445 if (!V) 8446 return nullptr; 8447 V = V->stripPointerCasts(); 8448 const auto *AI = dyn_cast<AllocaInst>(V); 8449 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8450 return nullptr; 8451 auto Iter = StaticAllocas.insert({AI, Unknown}); 8452 return &Iter.first->second; 8453 }; 8454 8455 // Look for stores of arguments to static allocas. Look through bitcasts and 8456 // GEPs to handle type coercions, as long as the alloca is fully initialized 8457 // by the store. Any non-store use of an alloca escapes it and any subsequent 8458 // unanalyzed store might write it. 8459 // FIXME: Handle structs initialized with multiple stores. 8460 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8461 // Look for stores, and handle non-store uses conservatively. 8462 const auto *SI = dyn_cast<StoreInst>(&I); 8463 if (!SI) { 8464 // We will look through cast uses, so ignore them completely. 8465 if (I.isCast()) 8466 continue; 8467 // Ignore debug info intrinsics, they don't escape or store to allocas. 8468 if (isa<DbgInfoIntrinsic>(I)) 8469 continue; 8470 // This is an unknown instruction. Assume it escapes or writes to all 8471 // static alloca operands. 8472 for (const Use &U : I.operands()) { 8473 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8474 *Info = StaticAllocaInfo::Clobbered; 8475 } 8476 continue; 8477 } 8478 8479 // If the stored value is a static alloca, mark it as escaped. 8480 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8481 *Info = StaticAllocaInfo::Clobbered; 8482 8483 // Check if the destination is a static alloca. 8484 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8485 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8486 if (!Info) 8487 continue; 8488 const AllocaInst *AI = cast<AllocaInst>(Dst); 8489 8490 // Skip allocas that have been initialized or clobbered. 8491 if (*Info != StaticAllocaInfo::Unknown) 8492 continue; 8493 8494 // Check if the stored value is an argument, and that this store fully 8495 // initializes the alloca. Don't elide copies from the same argument twice. 8496 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8497 const auto *Arg = dyn_cast<Argument>(Val); 8498 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8499 Arg->getType()->isEmptyTy() || 8500 DL.getTypeStoreSize(Arg->getType()) != 8501 DL.getTypeAllocSize(AI->getAllocatedType()) || 8502 ArgCopyElisionCandidates.count(Arg)) { 8503 *Info = StaticAllocaInfo::Clobbered; 8504 continue; 8505 } 8506 8507 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8508 8509 // Mark this alloca and store for argument copy elision. 8510 *Info = StaticAllocaInfo::Elidable; 8511 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8512 8513 // Stop scanning if we've seen all arguments. This will happen early in -O0 8514 // builds, which is useful, because -O0 builds have large entry blocks and 8515 // many allocas. 8516 if (ArgCopyElisionCandidates.size() == NumArgs) 8517 break; 8518 } 8519 } 8520 8521 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8522 /// ArgVal is a load from a suitable fixed stack object. 8523 static void tryToElideArgumentCopy( 8524 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8525 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8526 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8527 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8528 SDValue ArgVal, bool &ArgHasUses) { 8529 // Check if this is a load from a fixed stack object. 8530 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8531 if (!LNode) 8532 return; 8533 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8534 if (!FINode) 8535 return; 8536 8537 // Check that the fixed stack object is the right size and alignment. 8538 // Look at the alignment that the user wrote on the alloca instead of looking 8539 // at the stack object. 8540 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8541 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8542 const AllocaInst *AI = ArgCopyIter->second.first; 8543 int FixedIndex = FINode->getIndex(); 8544 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8545 int OldIndex = AllocaIndex; 8546 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8547 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8548 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8549 "object size\n"); 8550 return; 8551 } 8552 unsigned RequiredAlignment = AI->getAlignment(); 8553 if (!RequiredAlignment) { 8554 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8555 AI->getAllocatedType()); 8556 } 8557 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8558 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8559 "greater than stack argument alignment (" 8560 << RequiredAlignment << " vs " 8561 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8562 return; 8563 } 8564 8565 // Perform the elision. Delete the old stack object and replace its only use 8566 // in the variable info map. Mark the stack object as mutable. 8567 DEBUG({ 8568 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8569 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8570 << '\n'; 8571 }); 8572 MFI.RemoveStackObject(OldIndex); 8573 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8574 AllocaIndex = FixedIndex; 8575 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8576 Chains.push_back(ArgVal.getValue(1)); 8577 8578 // Avoid emitting code for the store implementing the copy. 8579 const StoreInst *SI = ArgCopyIter->second.second; 8580 ElidedArgCopyInstrs.insert(SI); 8581 8582 // Check for uses of the argument again so that we can avoid exporting ArgVal 8583 // if it is't used by anything other than the store. 8584 for (const Value *U : Arg.users()) { 8585 if (U != SI) { 8586 ArgHasUses = true; 8587 break; 8588 } 8589 } 8590 } 8591 8592 void SelectionDAGISel::LowerArguments(const Function &F) { 8593 SelectionDAG &DAG = SDB->DAG; 8594 SDLoc dl = SDB->getCurSDLoc(); 8595 const DataLayout &DL = DAG.getDataLayout(); 8596 SmallVector<ISD::InputArg, 16> Ins; 8597 8598 if (!FuncInfo->CanLowerReturn) { 8599 // Put in an sret pointer parameter before all the other parameters. 8600 SmallVector<EVT, 1> ValueVTs; 8601 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8602 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8603 8604 // NOTE: Assuming that a pointer will never break down to more than one VT 8605 // or one register. 8606 ISD::ArgFlagsTy Flags; 8607 Flags.setSRet(); 8608 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8609 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8610 ISD::InputArg::NoArgIndex, 0); 8611 Ins.push_back(RetArg); 8612 } 8613 8614 // Look for stores of arguments to static allocas. Mark such arguments with a 8615 // flag to ask the target to give us the memory location of that argument if 8616 // available. 8617 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8618 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8619 8620 // Set up the incoming argument description vector. 8621 for (const Argument &Arg : F.args()) { 8622 unsigned ArgNo = Arg.getArgNo(); 8623 SmallVector<EVT, 4> ValueVTs; 8624 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8625 bool isArgValueUsed = !Arg.use_empty(); 8626 unsigned PartBase = 0; 8627 Type *FinalType = Arg.getType(); 8628 if (Arg.hasAttribute(Attribute::ByVal)) 8629 FinalType = cast<PointerType>(FinalType)->getElementType(); 8630 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8631 FinalType, F.getCallingConv(), F.isVarArg()); 8632 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8633 Value != NumValues; ++Value) { 8634 EVT VT = ValueVTs[Value]; 8635 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8636 ISD::ArgFlagsTy Flags; 8637 8638 // Certain targets (such as MIPS), may have a different ABI alignment 8639 // for a type depending on the context. Give the target a chance to 8640 // specify the alignment it wants. 8641 unsigned OriginalAlignment = 8642 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8643 8644 if (Arg.hasAttribute(Attribute::ZExt)) 8645 Flags.setZExt(); 8646 if (Arg.hasAttribute(Attribute::SExt)) 8647 Flags.setSExt(); 8648 if (Arg.hasAttribute(Attribute::InReg)) { 8649 // If we are using vectorcall calling convention, a structure that is 8650 // passed InReg - is surely an HVA 8651 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8652 isa<StructType>(Arg.getType())) { 8653 // The first value of a structure is marked 8654 if (0 == Value) 8655 Flags.setHvaStart(); 8656 Flags.setHva(); 8657 } 8658 // Set InReg Flag 8659 Flags.setInReg(); 8660 } 8661 if (Arg.hasAttribute(Attribute::StructRet)) 8662 Flags.setSRet(); 8663 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8664 Flags.setSwiftSelf(); 8665 if (Arg.hasAttribute(Attribute::SwiftError)) 8666 Flags.setSwiftError(); 8667 if (Arg.hasAttribute(Attribute::ByVal)) 8668 Flags.setByVal(); 8669 if (Arg.hasAttribute(Attribute::InAlloca)) { 8670 Flags.setInAlloca(); 8671 // Set the byval flag for CCAssignFn callbacks that don't know about 8672 // inalloca. This way we can know how many bytes we should've allocated 8673 // and how many bytes a callee cleanup function will pop. If we port 8674 // inalloca to more targets, we'll have to add custom inalloca handling 8675 // in the various CC lowering callbacks. 8676 Flags.setByVal(); 8677 } 8678 if (F.getCallingConv() == CallingConv::X86_INTR) { 8679 // IA Interrupt passes frame (1st parameter) by value in the stack. 8680 if (ArgNo == 0) 8681 Flags.setByVal(); 8682 } 8683 if (Flags.isByVal() || Flags.isInAlloca()) { 8684 PointerType *Ty = cast<PointerType>(Arg.getType()); 8685 Type *ElementTy = Ty->getElementType(); 8686 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8687 // For ByVal, alignment should be passed from FE. BE will guess if 8688 // this info is not there but there are cases it cannot get right. 8689 unsigned FrameAlign; 8690 if (Arg.getParamAlignment()) 8691 FrameAlign = Arg.getParamAlignment(); 8692 else 8693 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8694 Flags.setByValAlign(FrameAlign); 8695 } 8696 if (Arg.hasAttribute(Attribute::Nest)) 8697 Flags.setNest(); 8698 if (NeedsRegBlock) 8699 Flags.setInConsecutiveRegs(); 8700 Flags.setOrigAlign(OriginalAlignment); 8701 if (ArgCopyElisionCandidates.count(&Arg)) 8702 Flags.setCopyElisionCandidate(); 8703 8704 MVT RegisterVT = 8705 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8706 unsigned NumRegs = 8707 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8708 for (unsigned i = 0; i != NumRegs; ++i) { 8709 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8710 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8711 if (NumRegs > 1 && i == 0) 8712 MyFlags.Flags.setSplit(); 8713 // if it isn't first piece, alignment must be 1 8714 else if (i > 0) { 8715 MyFlags.Flags.setOrigAlign(1); 8716 if (i == NumRegs - 1) 8717 MyFlags.Flags.setSplitEnd(); 8718 } 8719 Ins.push_back(MyFlags); 8720 } 8721 if (NeedsRegBlock && Value == NumValues - 1) 8722 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8723 PartBase += VT.getStoreSize(); 8724 } 8725 } 8726 8727 // Call the target to set up the argument values. 8728 SmallVector<SDValue, 8> InVals; 8729 SDValue NewRoot = TLI->LowerFormalArguments( 8730 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8731 8732 // Verify that the target's LowerFormalArguments behaved as expected. 8733 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8734 "LowerFormalArguments didn't return a valid chain!"); 8735 assert(InVals.size() == Ins.size() && 8736 "LowerFormalArguments didn't emit the correct number of values!"); 8737 DEBUG({ 8738 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8739 assert(InVals[i].getNode() && 8740 "LowerFormalArguments emitted a null value!"); 8741 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8742 "LowerFormalArguments emitted a value with the wrong type!"); 8743 } 8744 }); 8745 8746 // Update the DAG with the new chain value resulting from argument lowering. 8747 DAG.setRoot(NewRoot); 8748 8749 // Set up the argument values. 8750 unsigned i = 0; 8751 if (!FuncInfo->CanLowerReturn) { 8752 // Create a virtual register for the sret pointer, and put in a copy 8753 // from the sret argument into it. 8754 SmallVector<EVT, 1> ValueVTs; 8755 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8756 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8757 MVT VT = ValueVTs[0].getSimpleVT(); 8758 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8759 Optional<ISD::NodeType> AssertOp = None; 8760 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8761 RegVT, VT, nullptr, AssertOp); 8762 8763 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8764 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8765 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8766 FuncInfo->DemoteRegister = SRetReg; 8767 NewRoot = 8768 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8769 DAG.setRoot(NewRoot); 8770 8771 // i indexes lowered arguments. Bump it past the hidden sret argument. 8772 ++i; 8773 } 8774 8775 SmallVector<SDValue, 4> Chains; 8776 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8777 for (const Argument &Arg : F.args()) { 8778 SmallVector<SDValue, 4> ArgValues; 8779 SmallVector<EVT, 4> ValueVTs; 8780 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8781 unsigned NumValues = ValueVTs.size(); 8782 if (NumValues == 0) 8783 continue; 8784 8785 bool ArgHasUses = !Arg.use_empty(); 8786 8787 // Elide the copying store if the target loaded this argument from a 8788 // suitable fixed stack object. 8789 if (Ins[i].Flags.isCopyElisionCandidate()) { 8790 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8791 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8792 InVals[i], ArgHasUses); 8793 } 8794 8795 // If this argument is unused then remember its value. It is used to generate 8796 // debugging information. 8797 bool isSwiftErrorArg = 8798 TLI->supportSwiftError() && 8799 Arg.hasAttribute(Attribute::SwiftError); 8800 if (!ArgHasUses && !isSwiftErrorArg) { 8801 SDB->setUnusedArgValue(&Arg, InVals[i]); 8802 8803 // Also remember any frame index for use in FastISel. 8804 if (FrameIndexSDNode *FI = 8805 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8806 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8807 } 8808 8809 for (unsigned Val = 0; Val != NumValues; ++Val) { 8810 EVT VT = ValueVTs[Val]; 8811 MVT PartVT = 8812 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8813 unsigned NumParts = 8814 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8815 8816 // Even an apparant 'unused' swifterror argument needs to be returned. So 8817 // we do generate a copy for it that can be used on return from the 8818 // function. 8819 if (ArgHasUses || isSwiftErrorArg) { 8820 Optional<ISD::NodeType> AssertOp; 8821 if (Arg.hasAttribute(Attribute::SExt)) 8822 AssertOp = ISD::AssertSext; 8823 else if (Arg.hasAttribute(Attribute::ZExt)) 8824 AssertOp = ISD::AssertZext; 8825 8826 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8827 PartVT, VT, nullptr, AssertOp, 8828 true)); 8829 } 8830 8831 i += NumParts; 8832 } 8833 8834 // We don't need to do anything else for unused arguments. 8835 if (ArgValues.empty()) 8836 continue; 8837 8838 // Note down frame index. 8839 if (FrameIndexSDNode *FI = 8840 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8841 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8842 8843 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8844 SDB->getCurSDLoc()); 8845 8846 SDB->setValue(&Arg, Res); 8847 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8848 // We want to associate the argument with the frame index, among 8849 // involved operands, that correspond to the lowest address. The 8850 // getCopyFromParts function, called earlier, is swapping the order of 8851 // the operands to BUILD_PAIR depending on endianness. The result of 8852 // that swapping is that the least significant bits of the argument will 8853 // be in the first operand of the BUILD_PAIR node, and the most 8854 // significant bits will be in the second operand. 8855 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8856 if (LoadSDNode *LNode = 8857 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8858 if (FrameIndexSDNode *FI = 8859 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8860 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8861 } 8862 8863 // Update the SwiftErrorVRegDefMap. 8864 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8865 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8866 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8867 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8868 FuncInfo->SwiftErrorArg, Reg); 8869 } 8870 8871 // If this argument is live outside of the entry block, insert a copy from 8872 // wherever we got it to the vreg that other BB's will reference it as. 8873 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8874 // If we can, though, try to skip creating an unnecessary vreg. 8875 // FIXME: This isn't very clean... it would be nice to make this more 8876 // general. It's also subtly incompatible with the hacks FastISel 8877 // uses with vregs. 8878 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8879 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8880 FuncInfo->ValueMap[&Arg] = Reg; 8881 continue; 8882 } 8883 } 8884 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8885 FuncInfo->InitializeRegForValue(&Arg); 8886 SDB->CopyToExportRegsIfNeeded(&Arg); 8887 } 8888 } 8889 8890 if (!Chains.empty()) { 8891 Chains.push_back(NewRoot); 8892 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8893 } 8894 8895 DAG.setRoot(NewRoot); 8896 8897 assert(i == InVals.size() && "Argument register count mismatch!"); 8898 8899 // If any argument copy elisions occurred and we have debug info, update the 8900 // stale frame indices used in the dbg.declare variable info table. 8901 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8902 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8903 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8904 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8905 if (I != ArgCopyElisionFrameIndexMap.end()) 8906 VI.Slot = I->second; 8907 } 8908 } 8909 8910 // Finally, if the target has anything special to do, allow it to do so. 8911 EmitFunctionEntryCode(); 8912 } 8913 8914 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8915 /// ensure constants are generated when needed. Remember the virtual registers 8916 /// that need to be added to the Machine PHI nodes as input. We cannot just 8917 /// directly add them, because expansion might result in multiple MBB's for one 8918 /// BB. As such, the start of the BB might correspond to a different MBB than 8919 /// the end. 8920 void 8921 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8922 const TerminatorInst *TI = LLVMBB->getTerminator(); 8923 8924 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8925 8926 // Check PHI nodes in successors that expect a value to be available from this 8927 // block. 8928 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8929 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8930 if (!isa<PHINode>(SuccBB->begin())) continue; 8931 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8932 8933 // If this terminator has multiple identical successors (common for 8934 // switches), only handle each succ once. 8935 if (!SuccsHandled.insert(SuccMBB).second) 8936 continue; 8937 8938 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8939 8940 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8941 // nodes and Machine PHI nodes, but the incoming operands have not been 8942 // emitted yet. 8943 for (BasicBlock::const_iterator I = SuccBB->begin(); 8944 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8945 // Ignore dead phi's. 8946 if (PN->use_empty()) continue; 8947 8948 // Skip empty types 8949 if (PN->getType()->isEmptyTy()) 8950 continue; 8951 8952 unsigned Reg; 8953 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8954 8955 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8956 unsigned &RegOut = ConstantsOut[C]; 8957 if (RegOut == 0) { 8958 RegOut = FuncInfo.CreateRegs(C->getType()); 8959 CopyValueToVirtualRegister(C, RegOut); 8960 } 8961 Reg = RegOut; 8962 } else { 8963 DenseMap<const Value *, unsigned>::iterator I = 8964 FuncInfo.ValueMap.find(PHIOp); 8965 if (I != FuncInfo.ValueMap.end()) 8966 Reg = I->second; 8967 else { 8968 assert(isa<AllocaInst>(PHIOp) && 8969 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8970 "Didn't codegen value into a register!??"); 8971 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8972 CopyValueToVirtualRegister(PHIOp, Reg); 8973 } 8974 } 8975 8976 // Remember that this register needs to added to the machine PHI node as 8977 // the input for this MBB. 8978 SmallVector<EVT, 4> ValueVTs; 8979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8980 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8981 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8982 EVT VT = ValueVTs[vti]; 8983 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8984 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8985 FuncInfo.PHINodesToUpdate.push_back( 8986 std::make_pair(&*MBBI++, Reg + i)); 8987 Reg += NumRegisters; 8988 } 8989 } 8990 } 8991 8992 ConstantsOut.clear(); 8993 } 8994 8995 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8996 /// is 0. 8997 MachineBasicBlock * 8998 SelectionDAGBuilder::StackProtectorDescriptor:: 8999 AddSuccessorMBB(const BasicBlock *BB, 9000 MachineBasicBlock *ParentMBB, 9001 bool IsLikely, 9002 MachineBasicBlock *SuccMBB) { 9003 // If SuccBB has not been created yet, create it. 9004 if (!SuccMBB) { 9005 MachineFunction *MF = ParentMBB->getParent(); 9006 MachineFunction::iterator BBI(ParentMBB); 9007 SuccMBB = MF->CreateMachineBasicBlock(BB); 9008 MF->insert(++BBI, SuccMBB); 9009 } 9010 // Add it as a successor of ParentMBB. 9011 ParentMBB->addSuccessor( 9012 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9013 return SuccMBB; 9014 } 9015 9016 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9017 MachineFunction::iterator I(MBB); 9018 if (++I == FuncInfo.MF->end()) 9019 return nullptr; 9020 return &*I; 9021 } 9022 9023 /// During lowering new call nodes can be created (such as memset, etc.). 9024 /// Those will become new roots of the current DAG, but complications arise 9025 /// when they are tail calls. In such cases, the call lowering will update 9026 /// the root, but the builder still needs to know that a tail call has been 9027 /// lowered in order to avoid generating an additional return. 9028 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9029 // If the node is null, we do have a tail call. 9030 if (MaybeTC.getNode() != nullptr) 9031 DAG.setRoot(MaybeTC); 9032 else 9033 HasTailCall = true; 9034 } 9035 9036 uint64_t 9037 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9038 unsigned First, unsigned Last) const { 9039 assert(Last >= First); 9040 const APInt &LowCase = Clusters[First].Low->getValue(); 9041 const APInt &HighCase = Clusters[Last].High->getValue(); 9042 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9043 9044 // FIXME: A range of consecutive cases has 100% density, but only requires one 9045 // comparison to lower. We should discriminate against such consecutive ranges 9046 // in jump tables. 9047 9048 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9049 } 9050 9051 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9052 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9053 unsigned Last) const { 9054 assert(Last >= First); 9055 assert(TotalCases[Last] >= TotalCases[First]); 9056 uint64_t NumCases = 9057 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9058 return NumCases; 9059 } 9060 9061 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9062 unsigned First, unsigned Last, 9063 const SwitchInst *SI, 9064 MachineBasicBlock *DefaultMBB, 9065 CaseCluster &JTCluster) { 9066 assert(First <= Last); 9067 9068 auto Prob = BranchProbability::getZero(); 9069 unsigned NumCmps = 0; 9070 std::vector<MachineBasicBlock*> Table; 9071 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9072 9073 // Initialize probabilities in JTProbs. 9074 for (unsigned I = First; I <= Last; ++I) 9075 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9076 9077 for (unsigned I = First; I <= Last; ++I) { 9078 assert(Clusters[I].Kind == CC_Range); 9079 Prob += Clusters[I].Prob; 9080 const APInt &Low = Clusters[I].Low->getValue(); 9081 const APInt &High = Clusters[I].High->getValue(); 9082 NumCmps += (Low == High) ? 1 : 2; 9083 if (I != First) { 9084 // Fill the gap between this and the previous cluster. 9085 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9086 assert(PreviousHigh.slt(Low)); 9087 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9088 for (uint64_t J = 0; J < Gap; J++) 9089 Table.push_back(DefaultMBB); 9090 } 9091 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9092 for (uint64_t J = 0; J < ClusterSize; ++J) 9093 Table.push_back(Clusters[I].MBB); 9094 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9095 } 9096 9097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9098 unsigned NumDests = JTProbs.size(); 9099 if (TLI.isSuitableForBitTests( 9100 NumDests, NumCmps, Clusters[First].Low->getValue(), 9101 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9102 // Clusters[First..Last] should be lowered as bit tests instead. 9103 return false; 9104 } 9105 9106 // Create the MBB that will load from and jump through the table. 9107 // Note: We create it here, but it's not inserted into the function yet. 9108 MachineFunction *CurMF = FuncInfo.MF; 9109 MachineBasicBlock *JumpTableMBB = 9110 CurMF->CreateMachineBasicBlock(SI->getParent()); 9111 9112 // Add successors. Note: use table order for determinism. 9113 SmallPtrSet<MachineBasicBlock *, 8> Done; 9114 for (MachineBasicBlock *Succ : Table) { 9115 if (Done.count(Succ)) 9116 continue; 9117 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9118 Done.insert(Succ); 9119 } 9120 JumpTableMBB->normalizeSuccProbs(); 9121 9122 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9123 ->createJumpTableIndex(Table); 9124 9125 // Set up the jump table info. 9126 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9127 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9128 Clusters[Last].High->getValue(), SI->getCondition(), 9129 nullptr, false); 9130 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9131 9132 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9133 JTCases.size() - 1, Prob); 9134 return true; 9135 } 9136 9137 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9138 const SwitchInst *SI, 9139 MachineBasicBlock *DefaultMBB) { 9140 #ifndef NDEBUG 9141 // Clusters must be non-empty, sorted, and only contain Range clusters. 9142 assert(!Clusters.empty()); 9143 for (CaseCluster &C : Clusters) 9144 assert(C.Kind == CC_Range); 9145 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9146 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9147 #endif 9148 9149 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9150 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9151 return; 9152 9153 const int64_t N = Clusters.size(); 9154 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9155 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9156 9157 if (N < 2 || N < MinJumpTableEntries) 9158 return; 9159 9160 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9161 SmallVector<unsigned, 8> TotalCases(N); 9162 for (unsigned i = 0; i < N; ++i) { 9163 const APInt &Hi = Clusters[i].High->getValue(); 9164 const APInt &Lo = Clusters[i].Low->getValue(); 9165 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9166 if (i != 0) 9167 TotalCases[i] += TotalCases[i - 1]; 9168 } 9169 9170 // Cheap case: the whole range may be suitable for jump table. 9171 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9172 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9173 assert(NumCases < UINT64_MAX / 100); 9174 assert(Range >= NumCases); 9175 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9176 CaseCluster JTCluster; 9177 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9178 Clusters[0] = JTCluster; 9179 Clusters.resize(1); 9180 return; 9181 } 9182 } 9183 9184 // The algorithm below is not suitable for -O0. 9185 if (TM.getOptLevel() == CodeGenOpt::None) 9186 return; 9187 9188 // Split Clusters into minimum number of dense partitions. The algorithm uses 9189 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9190 // for the Case Statement'" (1994), but builds the MinPartitions array in 9191 // reverse order to make it easier to reconstruct the partitions in ascending 9192 // order. In the choice between two optimal partitionings, it picks the one 9193 // which yields more jump tables. 9194 9195 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9196 SmallVector<unsigned, 8> MinPartitions(N); 9197 // LastElement[i] is the last element of the partition starting at i. 9198 SmallVector<unsigned, 8> LastElement(N); 9199 // PartitionsScore[i] is used to break ties when choosing between two 9200 // partitionings resulting in the same number of partitions. 9201 SmallVector<unsigned, 8> PartitionsScore(N); 9202 // For PartitionsScore, a small number of comparisons is considered as good as 9203 // a jump table and a single comparison is considered better than a jump 9204 // table. 9205 enum PartitionScores : unsigned { 9206 NoTable = 0, 9207 Table = 1, 9208 FewCases = 1, 9209 SingleCase = 2 9210 }; 9211 9212 // Base case: There is only one way to partition Clusters[N-1]. 9213 MinPartitions[N - 1] = 1; 9214 LastElement[N - 1] = N - 1; 9215 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9216 9217 // Note: loop indexes are signed to avoid underflow. 9218 for (int64_t i = N - 2; i >= 0; i--) { 9219 // Find optimal partitioning of Clusters[i..N-1]. 9220 // Baseline: Put Clusters[i] into a partition on its own. 9221 MinPartitions[i] = MinPartitions[i + 1] + 1; 9222 LastElement[i] = i; 9223 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9224 9225 // Search for a solution that results in fewer partitions. 9226 for (int64_t j = N - 1; j > i; j--) { 9227 // Try building a partition from Clusters[i..j]. 9228 uint64_t Range = getJumpTableRange(Clusters, i, j); 9229 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9230 assert(NumCases < UINT64_MAX / 100); 9231 assert(Range >= NumCases); 9232 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9233 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9234 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9235 int64_t NumEntries = j - i + 1; 9236 9237 if (NumEntries == 1) 9238 Score += PartitionScores::SingleCase; 9239 else if (NumEntries <= SmallNumberOfEntries) 9240 Score += PartitionScores::FewCases; 9241 else if (NumEntries >= MinJumpTableEntries) 9242 Score += PartitionScores::Table; 9243 9244 // If this leads to fewer partitions, or to the same number of 9245 // partitions with better score, it is a better partitioning. 9246 if (NumPartitions < MinPartitions[i] || 9247 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9248 MinPartitions[i] = NumPartitions; 9249 LastElement[i] = j; 9250 PartitionsScore[i] = Score; 9251 } 9252 } 9253 } 9254 } 9255 9256 // Iterate over the partitions, replacing some with jump tables in-place. 9257 unsigned DstIndex = 0; 9258 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9259 Last = LastElement[First]; 9260 assert(Last >= First); 9261 assert(DstIndex <= First); 9262 unsigned NumClusters = Last - First + 1; 9263 9264 CaseCluster JTCluster; 9265 if (NumClusters >= MinJumpTableEntries && 9266 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9267 Clusters[DstIndex++] = JTCluster; 9268 } else { 9269 for (unsigned I = First; I <= Last; ++I) 9270 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9271 } 9272 } 9273 Clusters.resize(DstIndex); 9274 } 9275 9276 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9277 unsigned First, unsigned Last, 9278 const SwitchInst *SI, 9279 CaseCluster &BTCluster) { 9280 assert(First <= Last); 9281 if (First == Last) 9282 return false; 9283 9284 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9285 unsigned NumCmps = 0; 9286 for (int64_t I = First; I <= Last; ++I) { 9287 assert(Clusters[I].Kind == CC_Range); 9288 Dests.set(Clusters[I].MBB->getNumber()); 9289 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9290 } 9291 unsigned NumDests = Dests.count(); 9292 9293 APInt Low = Clusters[First].Low->getValue(); 9294 APInt High = Clusters[Last].High->getValue(); 9295 assert(Low.slt(High)); 9296 9297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9298 const DataLayout &DL = DAG.getDataLayout(); 9299 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9300 return false; 9301 9302 APInt LowBound; 9303 APInt CmpRange; 9304 9305 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9306 assert(TLI.rangeFitsInWord(Low, High, DL) && 9307 "Case range must fit in bit mask!"); 9308 9309 // Check if the clusters cover a contiguous range such that no value in the 9310 // range will jump to the default statement. 9311 bool ContiguousRange = true; 9312 for (int64_t I = First + 1; I <= Last; ++I) { 9313 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9314 ContiguousRange = false; 9315 break; 9316 } 9317 } 9318 9319 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9320 // Optimize the case where all the case values fit in a word without having 9321 // to subtract minValue. In this case, we can optimize away the subtraction. 9322 LowBound = APInt::getNullValue(Low.getBitWidth()); 9323 CmpRange = High; 9324 ContiguousRange = false; 9325 } else { 9326 LowBound = Low; 9327 CmpRange = High - Low; 9328 } 9329 9330 CaseBitsVector CBV; 9331 auto TotalProb = BranchProbability::getZero(); 9332 for (unsigned i = First; i <= Last; ++i) { 9333 // Find the CaseBits for this destination. 9334 unsigned j; 9335 for (j = 0; j < CBV.size(); ++j) 9336 if (CBV[j].BB == Clusters[i].MBB) 9337 break; 9338 if (j == CBV.size()) 9339 CBV.push_back( 9340 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9341 CaseBits *CB = &CBV[j]; 9342 9343 // Update Mask, Bits and ExtraProb. 9344 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9345 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9346 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9347 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9348 CB->Bits += Hi - Lo + 1; 9349 CB->ExtraProb += Clusters[i].Prob; 9350 TotalProb += Clusters[i].Prob; 9351 } 9352 9353 BitTestInfo BTI; 9354 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9355 // Sort by probability first, number of bits second. 9356 if (a.ExtraProb != b.ExtraProb) 9357 return a.ExtraProb > b.ExtraProb; 9358 return a.Bits > b.Bits; 9359 }); 9360 9361 for (auto &CB : CBV) { 9362 MachineBasicBlock *BitTestBB = 9363 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9364 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9365 } 9366 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9367 SI->getCondition(), -1U, MVT::Other, false, 9368 ContiguousRange, nullptr, nullptr, std::move(BTI), 9369 TotalProb); 9370 9371 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9372 BitTestCases.size() - 1, TotalProb); 9373 return true; 9374 } 9375 9376 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9377 const SwitchInst *SI) { 9378 // Partition Clusters into as few subsets as possible, where each subset has a 9379 // range that fits in a machine word and has <= 3 unique destinations. 9380 9381 #ifndef NDEBUG 9382 // Clusters must be sorted and contain Range or JumpTable clusters. 9383 assert(!Clusters.empty()); 9384 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9385 for (const CaseCluster &C : Clusters) 9386 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9387 for (unsigned i = 1; i < Clusters.size(); ++i) 9388 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9389 #endif 9390 9391 // The algorithm below is not suitable for -O0. 9392 if (TM.getOptLevel() == CodeGenOpt::None) 9393 return; 9394 9395 // If target does not have legal shift left, do not emit bit tests at all. 9396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9397 const DataLayout &DL = DAG.getDataLayout(); 9398 9399 EVT PTy = TLI.getPointerTy(DL); 9400 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9401 return; 9402 9403 int BitWidth = PTy.getSizeInBits(); 9404 const int64_t N = Clusters.size(); 9405 9406 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9407 SmallVector<unsigned, 8> MinPartitions(N); 9408 // LastElement[i] is the last element of the partition starting at i. 9409 SmallVector<unsigned, 8> LastElement(N); 9410 9411 // FIXME: This might not be the best algorithm for finding bit test clusters. 9412 9413 // Base case: There is only one way to partition Clusters[N-1]. 9414 MinPartitions[N - 1] = 1; 9415 LastElement[N - 1] = N - 1; 9416 9417 // Note: loop indexes are signed to avoid underflow. 9418 for (int64_t i = N - 2; i >= 0; --i) { 9419 // Find optimal partitioning of Clusters[i..N-1]. 9420 // Baseline: Put Clusters[i] into a partition on its own. 9421 MinPartitions[i] = MinPartitions[i + 1] + 1; 9422 LastElement[i] = i; 9423 9424 // Search for a solution that results in fewer partitions. 9425 // Note: the search is limited by BitWidth, reducing time complexity. 9426 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9427 // Try building a partition from Clusters[i..j]. 9428 9429 // Check the range. 9430 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9431 Clusters[j].High->getValue(), DL)) 9432 continue; 9433 9434 // Check nbr of destinations and cluster types. 9435 // FIXME: This works, but doesn't seem very efficient. 9436 bool RangesOnly = true; 9437 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9438 for (int64_t k = i; k <= j; k++) { 9439 if (Clusters[k].Kind != CC_Range) { 9440 RangesOnly = false; 9441 break; 9442 } 9443 Dests.set(Clusters[k].MBB->getNumber()); 9444 } 9445 if (!RangesOnly || Dests.count() > 3) 9446 break; 9447 9448 // Check if it's a better partition. 9449 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9450 if (NumPartitions < MinPartitions[i]) { 9451 // Found a better partition. 9452 MinPartitions[i] = NumPartitions; 9453 LastElement[i] = j; 9454 } 9455 } 9456 } 9457 9458 // Iterate over the partitions, replacing with bit-test clusters in-place. 9459 unsigned DstIndex = 0; 9460 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9461 Last = LastElement[First]; 9462 assert(First <= Last); 9463 assert(DstIndex <= First); 9464 9465 CaseCluster BitTestCluster; 9466 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9467 Clusters[DstIndex++] = BitTestCluster; 9468 } else { 9469 size_t NumClusters = Last - First + 1; 9470 std::memmove(&Clusters[DstIndex], &Clusters[First], 9471 sizeof(Clusters[0]) * NumClusters); 9472 DstIndex += NumClusters; 9473 } 9474 } 9475 Clusters.resize(DstIndex); 9476 } 9477 9478 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9479 MachineBasicBlock *SwitchMBB, 9480 MachineBasicBlock *DefaultMBB) { 9481 MachineFunction *CurMF = FuncInfo.MF; 9482 MachineBasicBlock *NextMBB = nullptr; 9483 MachineFunction::iterator BBI(W.MBB); 9484 if (++BBI != FuncInfo.MF->end()) 9485 NextMBB = &*BBI; 9486 9487 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9488 9489 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9490 9491 if (Size == 2 && W.MBB == SwitchMBB) { 9492 // If any two of the cases has the same destination, and if one value 9493 // is the same as the other, but has one bit unset that the other has set, 9494 // use bit manipulation to do two compares at once. For example: 9495 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9496 // TODO: This could be extended to merge any 2 cases in switches with 3 9497 // cases. 9498 // TODO: Handle cases where W.CaseBB != SwitchBB. 9499 CaseCluster &Small = *W.FirstCluster; 9500 CaseCluster &Big = *W.LastCluster; 9501 9502 if (Small.Low == Small.High && Big.Low == Big.High && 9503 Small.MBB == Big.MBB) { 9504 const APInt &SmallValue = Small.Low->getValue(); 9505 const APInt &BigValue = Big.Low->getValue(); 9506 9507 // Check that there is only one bit different. 9508 APInt CommonBit = BigValue ^ SmallValue; 9509 if (CommonBit.isPowerOf2()) { 9510 SDValue CondLHS = getValue(Cond); 9511 EVT VT = CondLHS.getValueType(); 9512 SDLoc DL = getCurSDLoc(); 9513 9514 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9515 DAG.getConstant(CommonBit, DL, VT)); 9516 SDValue Cond = DAG.getSetCC( 9517 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9518 ISD::SETEQ); 9519 9520 // Update successor info. 9521 // Both Small and Big will jump to Small.BB, so we sum up the 9522 // probabilities. 9523 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9524 if (BPI) 9525 addSuccessorWithProb( 9526 SwitchMBB, DefaultMBB, 9527 // The default destination is the first successor in IR. 9528 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9529 else 9530 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9531 9532 // Insert the true branch. 9533 SDValue BrCond = 9534 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9535 DAG.getBasicBlock(Small.MBB)); 9536 // Insert the false branch. 9537 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9538 DAG.getBasicBlock(DefaultMBB)); 9539 9540 DAG.setRoot(BrCond); 9541 return; 9542 } 9543 } 9544 } 9545 9546 if (TM.getOptLevel() != CodeGenOpt::None) { 9547 // Order cases by probability so the most likely case will be checked first. 9548 std::sort(W.FirstCluster, W.LastCluster + 1, 9549 [](const CaseCluster &a, const CaseCluster &b) { 9550 return a.Prob > b.Prob; 9551 }); 9552 9553 // Rearrange the case blocks so that the last one falls through if possible 9554 // without without changing the order of probabilities. 9555 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9556 --I; 9557 if (I->Prob > W.LastCluster->Prob) 9558 break; 9559 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9560 std::swap(*I, *W.LastCluster); 9561 break; 9562 } 9563 } 9564 } 9565 9566 // Compute total probability. 9567 BranchProbability DefaultProb = W.DefaultProb; 9568 BranchProbability UnhandledProbs = DefaultProb; 9569 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9570 UnhandledProbs += I->Prob; 9571 9572 MachineBasicBlock *CurMBB = W.MBB; 9573 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9574 MachineBasicBlock *Fallthrough; 9575 if (I == W.LastCluster) { 9576 // For the last cluster, fall through to the default destination. 9577 Fallthrough = DefaultMBB; 9578 } else { 9579 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9580 CurMF->insert(BBI, Fallthrough); 9581 // Put Cond in a virtual register to make it available from the new blocks. 9582 ExportFromCurrentBlock(Cond); 9583 } 9584 UnhandledProbs -= I->Prob; 9585 9586 switch (I->Kind) { 9587 case CC_JumpTable: { 9588 // FIXME: Optimize away range check based on pivot comparisons. 9589 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9590 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9591 9592 // The jump block hasn't been inserted yet; insert it here. 9593 MachineBasicBlock *JumpMBB = JT->MBB; 9594 CurMF->insert(BBI, JumpMBB); 9595 9596 auto JumpProb = I->Prob; 9597 auto FallthroughProb = UnhandledProbs; 9598 9599 // If the default statement is a target of the jump table, we evenly 9600 // distribute the default probability to successors of CurMBB. Also 9601 // update the probability on the edge from JumpMBB to Fallthrough. 9602 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9603 SE = JumpMBB->succ_end(); 9604 SI != SE; ++SI) { 9605 if (*SI == DefaultMBB) { 9606 JumpProb += DefaultProb / 2; 9607 FallthroughProb -= DefaultProb / 2; 9608 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9609 JumpMBB->normalizeSuccProbs(); 9610 break; 9611 } 9612 } 9613 9614 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9615 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9616 CurMBB->normalizeSuccProbs(); 9617 9618 // The jump table header will be inserted in our current block, do the 9619 // range check, and fall through to our fallthrough block. 9620 JTH->HeaderBB = CurMBB; 9621 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9622 9623 // If we're in the right place, emit the jump table header right now. 9624 if (CurMBB == SwitchMBB) { 9625 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9626 JTH->Emitted = true; 9627 } 9628 break; 9629 } 9630 case CC_BitTests: { 9631 // FIXME: Optimize away range check based on pivot comparisons. 9632 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9633 9634 // The bit test blocks haven't been inserted yet; insert them here. 9635 for (BitTestCase &BTC : BTB->Cases) 9636 CurMF->insert(BBI, BTC.ThisBB); 9637 9638 // Fill in fields of the BitTestBlock. 9639 BTB->Parent = CurMBB; 9640 BTB->Default = Fallthrough; 9641 9642 BTB->DefaultProb = UnhandledProbs; 9643 // If the cases in bit test don't form a contiguous range, we evenly 9644 // distribute the probability on the edge to Fallthrough to two 9645 // successors of CurMBB. 9646 if (!BTB->ContiguousRange) { 9647 BTB->Prob += DefaultProb / 2; 9648 BTB->DefaultProb -= DefaultProb / 2; 9649 } 9650 9651 // If we're in the right place, emit the bit test header right now. 9652 if (CurMBB == SwitchMBB) { 9653 visitBitTestHeader(*BTB, SwitchMBB); 9654 BTB->Emitted = true; 9655 } 9656 break; 9657 } 9658 case CC_Range: { 9659 const Value *RHS, *LHS, *MHS; 9660 ISD::CondCode CC; 9661 if (I->Low == I->High) { 9662 // Check Cond == I->Low. 9663 CC = ISD::SETEQ; 9664 LHS = Cond; 9665 RHS=I->Low; 9666 MHS = nullptr; 9667 } else { 9668 // Check I->Low <= Cond <= I->High. 9669 CC = ISD::SETLE; 9670 LHS = I->Low; 9671 MHS = Cond; 9672 RHS = I->High; 9673 } 9674 9675 // The false probability is the sum of all unhandled cases. 9676 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9677 getCurSDLoc(), I->Prob, UnhandledProbs); 9678 9679 if (CurMBB == SwitchMBB) 9680 visitSwitchCase(CB, SwitchMBB); 9681 else 9682 SwitchCases.push_back(CB); 9683 9684 break; 9685 } 9686 } 9687 CurMBB = Fallthrough; 9688 } 9689 } 9690 9691 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9692 CaseClusterIt First, 9693 CaseClusterIt Last) { 9694 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9695 if (X.Prob != CC.Prob) 9696 return X.Prob > CC.Prob; 9697 9698 // Ties are broken by comparing the case value. 9699 return X.Low->getValue().slt(CC.Low->getValue()); 9700 }); 9701 } 9702 9703 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9704 const SwitchWorkListItem &W, 9705 Value *Cond, 9706 MachineBasicBlock *SwitchMBB) { 9707 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9708 "Clusters not sorted?"); 9709 9710 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9711 9712 // Balance the tree based on branch probabilities to create a near-optimal (in 9713 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9714 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9715 CaseClusterIt LastLeft = W.FirstCluster; 9716 CaseClusterIt FirstRight = W.LastCluster; 9717 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9718 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9719 9720 // Move LastLeft and FirstRight towards each other from opposite directions to 9721 // find a partitioning of the clusters which balances the probability on both 9722 // sides. If LeftProb and RightProb are equal, alternate which side is 9723 // taken to ensure 0-probability nodes are distributed evenly. 9724 unsigned I = 0; 9725 while (LastLeft + 1 < FirstRight) { 9726 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9727 LeftProb += (++LastLeft)->Prob; 9728 else 9729 RightProb += (--FirstRight)->Prob; 9730 I++; 9731 } 9732 9733 while (true) { 9734 // Our binary search tree differs from a typical BST in that ours can have up 9735 // to three values in each leaf. The pivot selection above doesn't take that 9736 // into account, which means the tree might require more nodes and be less 9737 // efficient. We compensate for this here. 9738 9739 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9740 unsigned NumRight = W.LastCluster - FirstRight + 1; 9741 9742 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9743 // If one side has less than 3 clusters, and the other has more than 3, 9744 // consider taking a cluster from the other side. 9745 9746 if (NumLeft < NumRight) { 9747 // Consider moving the first cluster on the right to the left side. 9748 CaseCluster &CC = *FirstRight; 9749 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9750 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9751 if (LeftSideRank <= RightSideRank) { 9752 // Moving the cluster to the left does not demote it. 9753 ++LastLeft; 9754 ++FirstRight; 9755 continue; 9756 } 9757 } else { 9758 assert(NumRight < NumLeft); 9759 // Consider moving the last element on the left to the right side. 9760 CaseCluster &CC = *LastLeft; 9761 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9762 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9763 if (RightSideRank <= LeftSideRank) { 9764 // Moving the cluster to the right does not demot it. 9765 --LastLeft; 9766 --FirstRight; 9767 continue; 9768 } 9769 } 9770 } 9771 break; 9772 } 9773 9774 assert(LastLeft + 1 == FirstRight); 9775 assert(LastLeft >= W.FirstCluster); 9776 assert(FirstRight <= W.LastCluster); 9777 9778 // Use the first element on the right as pivot since we will make less-than 9779 // comparisons against it. 9780 CaseClusterIt PivotCluster = FirstRight; 9781 assert(PivotCluster > W.FirstCluster); 9782 assert(PivotCluster <= W.LastCluster); 9783 9784 CaseClusterIt FirstLeft = W.FirstCluster; 9785 CaseClusterIt LastRight = W.LastCluster; 9786 9787 const ConstantInt *Pivot = PivotCluster->Low; 9788 9789 // New blocks will be inserted immediately after the current one. 9790 MachineFunction::iterator BBI(W.MBB); 9791 ++BBI; 9792 9793 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9794 // we can branch to its destination directly if it's squeezed exactly in 9795 // between the known lower bound and Pivot - 1. 9796 MachineBasicBlock *LeftMBB; 9797 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9798 FirstLeft->Low == W.GE && 9799 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9800 LeftMBB = FirstLeft->MBB; 9801 } else { 9802 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9803 FuncInfo.MF->insert(BBI, LeftMBB); 9804 WorkList.push_back( 9805 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9806 // Put Cond in a virtual register to make it available from the new blocks. 9807 ExportFromCurrentBlock(Cond); 9808 } 9809 9810 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9811 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9812 // directly if RHS.High equals the current upper bound. 9813 MachineBasicBlock *RightMBB; 9814 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9815 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9816 RightMBB = FirstRight->MBB; 9817 } else { 9818 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9819 FuncInfo.MF->insert(BBI, RightMBB); 9820 WorkList.push_back( 9821 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9822 // Put Cond in a virtual register to make it available from the new blocks. 9823 ExportFromCurrentBlock(Cond); 9824 } 9825 9826 // Create the CaseBlock record that will be used to lower the branch. 9827 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9828 getCurSDLoc(), LeftProb, RightProb); 9829 9830 if (W.MBB == SwitchMBB) 9831 visitSwitchCase(CB, SwitchMBB); 9832 else 9833 SwitchCases.push_back(CB); 9834 } 9835 9836 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9837 // Extract cases from the switch. 9838 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9839 CaseClusterVector Clusters; 9840 Clusters.reserve(SI.getNumCases()); 9841 for (auto I : SI.cases()) { 9842 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9843 const ConstantInt *CaseVal = I.getCaseValue(); 9844 BranchProbability Prob = 9845 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9846 : BranchProbability(1, SI.getNumCases() + 1); 9847 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9848 } 9849 9850 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9851 9852 // Cluster adjacent cases with the same destination. We do this at all 9853 // optimization levels because it's cheap to do and will make codegen faster 9854 // if there are many clusters. 9855 sortAndRangeify(Clusters); 9856 9857 if (TM.getOptLevel() != CodeGenOpt::None) { 9858 // Replace an unreachable default with the most popular destination. 9859 // FIXME: Exploit unreachable default more aggressively. 9860 bool UnreachableDefault = 9861 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9862 if (UnreachableDefault && !Clusters.empty()) { 9863 DenseMap<const BasicBlock *, unsigned> Popularity; 9864 unsigned MaxPop = 0; 9865 const BasicBlock *MaxBB = nullptr; 9866 for (auto I : SI.cases()) { 9867 const BasicBlock *BB = I.getCaseSuccessor(); 9868 if (++Popularity[BB] > MaxPop) { 9869 MaxPop = Popularity[BB]; 9870 MaxBB = BB; 9871 } 9872 } 9873 // Set new default. 9874 assert(MaxPop > 0 && MaxBB); 9875 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9876 9877 // Remove cases that were pointing to the destination that is now the 9878 // default. 9879 CaseClusterVector New; 9880 New.reserve(Clusters.size()); 9881 for (CaseCluster &CC : Clusters) { 9882 if (CC.MBB != DefaultMBB) 9883 New.push_back(CC); 9884 } 9885 Clusters = std::move(New); 9886 } 9887 } 9888 9889 // If there is only the default destination, jump there directly. 9890 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9891 if (Clusters.empty()) { 9892 SwitchMBB->addSuccessor(DefaultMBB); 9893 if (DefaultMBB != NextBlock(SwitchMBB)) { 9894 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9895 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9896 } 9897 return; 9898 } 9899 9900 findJumpTables(Clusters, &SI, DefaultMBB); 9901 findBitTestClusters(Clusters, &SI); 9902 9903 DEBUG({ 9904 dbgs() << "Case clusters: "; 9905 for (const CaseCluster &C : Clusters) { 9906 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9907 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9908 9909 C.Low->getValue().print(dbgs(), true); 9910 if (C.Low != C.High) { 9911 dbgs() << '-'; 9912 C.High->getValue().print(dbgs(), true); 9913 } 9914 dbgs() << ' '; 9915 } 9916 dbgs() << '\n'; 9917 }); 9918 9919 assert(!Clusters.empty()); 9920 SwitchWorkList WorkList; 9921 CaseClusterIt First = Clusters.begin(); 9922 CaseClusterIt Last = Clusters.end() - 1; 9923 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9924 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9925 9926 while (!WorkList.empty()) { 9927 SwitchWorkListItem W = WorkList.back(); 9928 WorkList.pop_back(); 9929 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9930 9931 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9932 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9933 // For optimized builds, lower large range as a balanced binary tree. 9934 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9935 continue; 9936 } 9937 9938 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9939 } 9940 } 9941