1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 uint64_t Offset = DI->getOffset(); 997 // A dbg.value for an alloca is always indirect. 998 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 999 SDDbgValue *SDV; 1000 if (Val.getNode()) { 1001 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 1002 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1003 Val.getResNo(), IsIndirect, 1004 Offset, dl, DbgSDNodeOrder); 1005 DAG.AddDbgValue(SDV, Val.getNode(), false); 1006 } 1007 } else 1008 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1009 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1010 } 1011 } 1012 1013 /// getValue - Return an SDValue for the given Value. 1014 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1015 // If we already have an SDValue for this value, use it. It's important 1016 // to do this first, so that we don't create a CopyFromReg if we already 1017 // have a regular SDValue. 1018 SDValue &N = NodeMap[V]; 1019 if (N.getNode()) return N; 1020 1021 // If there's a virtual register allocated and initialized for this 1022 // value, use it. 1023 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1024 if (It != FuncInfo.ValueMap.end()) { 1025 unsigned InReg = It->second; 1026 RegsForValue RFV(*DAG.getContext(), 1027 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI->getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI->getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1771 TLI->getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, 1774 DAG.getConstant(JTH.Last - JTH.First,VT), 1775 ISD::SETUGT); 1776 1777 // Set NextBlock to be the MBB immediately after the current one, if any. 1778 // This is used to avoid emitting unnecessary branches to the next block. 1779 MachineBasicBlock *NextBlock = nullptr; 1780 MachineFunction::iterator BBI = SwitchBB; 1781 1782 if (++BBI != FuncInfo.MF->end()) 1783 NextBlock = BBI; 1784 1785 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1786 MVT::Other, CopyTo, CMP, 1787 DAG.getBasicBlock(JT.Default)); 1788 1789 if (JT.MBB != NextBlock) 1790 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1791 DAG.getBasicBlock(JT.MBB)); 1792 1793 DAG.setRoot(BrCond); 1794 } 1795 1796 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1797 /// tail spliced into a stack protector check success bb. 1798 /// 1799 /// For a high level explanation of how this fits into the stack protector 1800 /// generation see the comment on the declaration of class 1801 /// StackProtectorDescriptor. 1802 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1803 MachineBasicBlock *ParentBB) { 1804 1805 // First create the loads to the guard/stack slot for the comparison. 1806 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1807 EVT PtrTy = TLI->getPointerTy(); 1808 1809 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1810 int FI = MFI->getStackProtectorIndex(); 1811 1812 const Value *IRGuard = SPD.getGuard(); 1813 SDValue GuardPtr = getValue(IRGuard); 1814 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1815 1816 unsigned Align = 1817 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1818 1819 SDValue Guard; 1820 1821 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1822 // guard value from the virtual register holding the value. Otherwise, emit a 1823 // volatile load to retrieve the stack guard value. 1824 unsigned GuardReg = SPD.getGuardReg(); 1825 1826 if (GuardReg && TLI->useLoadStackGuardNode()) 1827 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1828 PtrTy); 1829 else 1830 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1831 GuardPtr, MachinePointerInfo(IRGuard, 0), 1832 true, false, false, Align); 1833 1834 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1835 StackSlotPtr, 1836 MachinePointerInfo::getFixedStack(FI), 1837 true, false, false, Align); 1838 1839 // Perform the comparison via a subtract/getsetcc. 1840 EVT VT = Guard.getValueType(); 1841 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1842 1843 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1844 TLI->getSetCCResultType(*DAG.getContext(), 1845 Sub.getValueType()), 1846 Sub, DAG.getConstant(0, VT), 1847 ISD::SETNE); 1848 1849 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1850 // branch to failure MBB. 1851 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1852 MVT::Other, StackSlot.getOperand(0), 1853 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1854 // Otherwise branch to success MBB. 1855 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1856 MVT::Other, BrCond, 1857 DAG.getBasicBlock(SPD.getSuccessMBB())); 1858 1859 DAG.setRoot(Br); 1860 } 1861 1862 /// Codegen the failure basic block for a stack protector check. 1863 /// 1864 /// A failure stack protector machine basic block consists simply of a call to 1865 /// __stack_chk_fail(). 1866 /// 1867 /// For a high level explanation of how this fits into the stack protector 1868 /// generation see the comment on the declaration of class 1869 /// StackProtectorDescriptor. 1870 void 1871 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1872 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1873 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1874 MVT::isVoid, nullptr, 0, false, 1875 getCurSDLoc(), false, false).second; 1876 DAG.setRoot(Chain); 1877 } 1878 1879 /// visitBitTestHeader - This function emits necessary code to produce value 1880 /// suitable for "bit tests" 1881 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1882 MachineBasicBlock *SwitchBB) { 1883 // Subtract the minimum value 1884 SDValue SwitchOp = getValue(B.SValue); 1885 EVT VT = SwitchOp.getValueType(); 1886 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1887 DAG.getConstant(B.First, VT)); 1888 1889 // Check range 1890 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1891 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1892 TLI->getSetCCResultType(*DAG.getContext(), 1893 Sub.getValueType()), 1894 Sub, DAG.getConstant(B.Range, VT), 1895 ISD::SETUGT); 1896 1897 // Determine the type of the test operands. 1898 bool UsePtrType = false; 1899 if (!TLI->isTypeLegal(VT)) 1900 UsePtrType = true; 1901 else { 1902 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1903 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1904 // Switch table case range are encoded into series of masks. 1905 // Just use pointer type, it's guaranteed to fit. 1906 UsePtrType = true; 1907 break; 1908 } 1909 } 1910 if (UsePtrType) { 1911 VT = TLI->getPointerTy(); 1912 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1913 } 1914 1915 B.RegVT = VT.getSimpleVT(); 1916 B.Reg = FuncInfo.CreateReg(B.RegVT); 1917 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1918 B.Reg, Sub); 1919 1920 // Set NextBlock to be the MBB immediately after the current one, if any. 1921 // This is used to avoid emitting unnecessary branches to the next block. 1922 MachineBasicBlock *NextBlock = nullptr; 1923 MachineFunction::iterator BBI = SwitchBB; 1924 if (++BBI != FuncInfo.MF->end()) 1925 NextBlock = BBI; 1926 1927 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1928 1929 addSuccessorWithWeight(SwitchBB, B.Default); 1930 addSuccessorWithWeight(SwitchBB, MBB); 1931 1932 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1933 MVT::Other, CopyTo, RangeCmp, 1934 DAG.getBasicBlock(B.Default)); 1935 1936 if (MBB != NextBlock) 1937 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1938 DAG.getBasicBlock(MBB)); 1939 1940 DAG.setRoot(BrRange); 1941 } 1942 1943 /// visitBitTestCase - this function produces one "bit test" 1944 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1945 MachineBasicBlock* NextMBB, 1946 uint32_t BranchWeightToNext, 1947 unsigned Reg, 1948 BitTestCase &B, 1949 MachineBasicBlock *SwitchBB) { 1950 MVT VT = BB.RegVT; 1951 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1952 Reg, VT); 1953 SDValue Cmp; 1954 unsigned PopCount = CountPopulation_64(B.Mask); 1955 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1956 if (PopCount == 1) { 1957 // Testing for a single bit; just compare the shift count with what it 1958 // would need to be to shift a 1 bit in that position. 1959 Cmp = DAG.getSetCC(getCurSDLoc(), 1960 TLI->getSetCCResultType(*DAG.getContext(), VT), 1961 ShiftOp, 1962 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1963 ISD::SETEQ); 1964 } else if (PopCount == BB.Range) { 1965 // There is only one zero bit in the range, test for it directly. 1966 Cmp = DAG.getSetCC(getCurSDLoc(), 1967 TLI->getSetCCResultType(*DAG.getContext(), VT), 1968 ShiftOp, 1969 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1970 ISD::SETNE); 1971 } else { 1972 // Make desired shift 1973 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1974 DAG.getConstant(1, VT), ShiftOp); 1975 1976 // Emit bit tests and jumps 1977 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1978 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1979 Cmp = DAG.getSetCC(getCurSDLoc(), 1980 TLI->getSetCCResultType(*DAG.getContext(), VT), 1981 AndOp, DAG.getConstant(0, VT), 1982 ISD::SETNE); 1983 } 1984 1985 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1986 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1987 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1988 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1989 1990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 Cmp, DAG.getBasicBlock(B.TargetBB)); 1993 1994 // Set NextBlock to be the MBB immediately after the current one, if any. 1995 // This is used to avoid emitting unnecessary branches to the next block. 1996 MachineBasicBlock *NextBlock = nullptr; 1997 MachineFunction::iterator BBI = SwitchBB; 1998 if (++BBI != FuncInfo.MF->end()) 1999 NextBlock = BBI; 2000 2001 if (NextMBB != NextBlock) 2002 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2003 DAG.getBasicBlock(NextMBB)); 2004 2005 DAG.setRoot(BrAnd); 2006 } 2007 2008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2010 2011 // Retrieve successors. 2012 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2013 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2014 2015 const Value *Callee(I.getCalledValue()); 2016 const Function *Fn = dyn_cast<Function>(Callee); 2017 if (isa<InlineAsm>(Callee)) 2018 visitInlineAsm(&I); 2019 else if (Fn && Fn->isIntrinsic()) { 2020 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2021 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2022 } else 2023 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2024 2025 // If the value of the invoke is used outside of its defining block, make it 2026 // available as a virtual register. 2027 CopyToExportRegsIfNeeded(&I); 2028 2029 // Update successor info 2030 addSuccessorWithWeight(InvokeMBB, Return); 2031 addSuccessorWithWeight(InvokeMBB, LandingPad); 2032 2033 // Drop into normal successor. 2034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2035 MVT::Other, getControlRoot(), 2036 DAG.getBasicBlock(Return))); 2037 } 2038 2039 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2040 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2041 } 2042 2043 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2044 assert(FuncInfo.MBB->isLandingPad() && 2045 "Call to landingpad not in landing pad!"); 2046 2047 MachineBasicBlock *MBB = FuncInfo.MBB; 2048 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2049 AddLandingPadInfo(LP, MMI, MBB); 2050 2051 // If there aren't registers to copy the values into (e.g., during SjLj 2052 // exceptions), then don't bother to create these DAG nodes. 2053 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2054 if (TLI->getExceptionPointerRegister() == 0 && 2055 TLI->getExceptionSelectorRegister() == 0) 2056 return; 2057 2058 SmallVector<EVT, 2> ValueVTs; 2059 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2060 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2061 2062 // Get the two live-in registers as SDValues. The physregs have already been 2063 // copied into virtual registers. 2064 SDValue Ops[2]; 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2081 /// small case ranges). 2082 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2083 CaseRecVector& WorkList, 2084 const Value* SV, 2085 MachineBasicBlock *Default, 2086 MachineBasicBlock *SwitchBB) { 2087 // Size is the number of Cases represented by this range. 2088 size_t Size = CR.Range.second - CR.Range.first; 2089 if (Size > 3) 2090 return false; 2091 2092 // Get the MachineFunction which holds the current MBB. This is used when 2093 // inserting any additional MBBs necessary to represent the switch. 2094 MachineFunction *CurMF = FuncInfo.MF; 2095 2096 // Figure out which block is immediately after the current one. 2097 MachineBasicBlock *NextBlock = nullptr; 2098 MachineFunction::iterator BBI = CR.CaseBB; 2099 2100 if (++BBI != FuncInfo.MF->end()) 2101 NextBlock = BBI; 2102 2103 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2104 // If any two of the cases has the same destination, and if one value 2105 // is the same as the other, but has one bit unset that the other has set, 2106 // use bit manipulation to do two compares at once. For example: 2107 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2108 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2109 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2110 if (Size == 2 && CR.CaseBB == SwitchBB) { 2111 Case &Small = *CR.Range.first; 2112 Case &Big = *(CR.Range.second-1); 2113 2114 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2115 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2116 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2117 2118 // Check that there is only one bit different. 2119 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2120 (SmallValue | BigValue) == BigValue) { 2121 // Isolate the common bit. 2122 APInt CommonBit = BigValue & ~SmallValue; 2123 assert((SmallValue | CommonBit) == BigValue && 2124 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2125 2126 SDValue CondLHS = getValue(SV); 2127 EVT VT = CondLHS.getValueType(); 2128 SDLoc DL = getCurSDLoc(); 2129 2130 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2131 DAG.getConstant(CommonBit, VT)); 2132 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2133 Or, DAG.getConstant(BigValue, VT), 2134 ISD::SETEQ); 2135 2136 // Update successor info. 2137 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2138 addSuccessorWithWeight(SwitchBB, Small.BB, 2139 Small.ExtraWeight + Big.ExtraWeight); 2140 addSuccessorWithWeight(SwitchBB, Default, 2141 // The default destination is the first successor in IR. 2142 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2143 2144 // Insert the true branch. 2145 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2146 getControlRoot(), Cond, 2147 DAG.getBasicBlock(Small.BB)); 2148 2149 // Insert the false branch. 2150 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2151 DAG.getBasicBlock(Default)); 2152 2153 DAG.setRoot(BrCond); 2154 return true; 2155 } 2156 } 2157 } 2158 2159 // Order cases by weight so the most likely case will be checked first. 2160 uint32_t UnhandledWeights = 0; 2161 if (BPI) { 2162 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2163 uint32_t IWeight = I->ExtraWeight; 2164 UnhandledWeights += IWeight; 2165 for (CaseItr J = CR.Range.first; J < I; ++J) { 2166 uint32_t JWeight = J->ExtraWeight; 2167 if (IWeight > JWeight) 2168 std::swap(*I, *J); 2169 } 2170 } 2171 } 2172 // Rearrange the case blocks so that the last one falls through if possible. 2173 Case &BackCase = *(CR.Range.second-1); 2174 if (Size > 1 && 2175 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2176 // The last case block won't fall through into 'NextBlock' if we emit the 2177 // branches in this order. See if rearranging a case value would help. 2178 // We start at the bottom as it's the case with the least weight. 2179 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2180 if (I->BB == NextBlock) { 2181 std::swap(*I, BackCase); 2182 break; 2183 } 2184 } 2185 2186 // Create a CaseBlock record representing a conditional branch to 2187 // the Case's target mbb if the value being switched on SV is equal 2188 // to C. 2189 MachineBasicBlock *CurBlock = CR.CaseBB; 2190 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2191 MachineBasicBlock *FallThrough; 2192 if (I != E-1) { 2193 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2194 CurMF->insert(BBI, FallThrough); 2195 2196 // Put SV in a virtual register to make it available from the new blocks. 2197 ExportFromCurrentBlock(SV); 2198 } else { 2199 // If the last case doesn't match, go to the default block. 2200 FallThrough = Default; 2201 } 2202 2203 const Value *RHS, *LHS, *MHS; 2204 ISD::CondCode CC; 2205 if (I->High == I->Low) { 2206 // This is just small small case range :) containing exactly 1 case 2207 CC = ISD::SETEQ; 2208 LHS = SV; RHS = I->High; MHS = nullptr; 2209 } else { 2210 CC = ISD::SETLE; 2211 LHS = I->Low; MHS = SV; RHS = I->High; 2212 } 2213 2214 // The false weight should be sum of all un-handled cases. 2215 UnhandledWeights -= I->ExtraWeight; 2216 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2217 /* me */ CurBlock, 2218 /* trueweight */ I->ExtraWeight, 2219 /* falseweight */ UnhandledWeights); 2220 2221 // If emitting the first comparison, just call visitSwitchCase to emit the 2222 // code into the current block. Otherwise, push the CaseBlock onto the 2223 // vector to be later processed by SDISel, and insert the node's MBB 2224 // before the next MBB. 2225 if (CurBlock == SwitchBB) 2226 visitSwitchCase(CB, SwitchBB); 2227 else 2228 SwitchCases.push_back(CB); 2229 2230 CurBlock = FallThrough; 2231 } 2232 2233 return true; 2234 } 2235 2236 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2237 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2238 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2239 } 2240 2241 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2242 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2243 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2244 return (LastExt - FirstExt + 1ULL); 2245 } 2246 2247 /// handleJTSwitchCase - Emit jumptable for current switch case range 2248 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2249 CaseRecVector &WorkList, 2250 const Value *SV, 2251 MachineBasicBlock *Default, 2252 MachineBasicBlock *SwitchBB) { 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2257 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2258 2259 APInt TSize(First.getBitWidth(), 0); 2260 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2261 TSize += I->size(); 2262 2263 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2264 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2265 return false; 2266 2267 APInt Range = ComputeRange(First, Last); 2268 // The density is TSize / Range. Require at least 40%. 2269 // It should not be possible for IntTSize to saturate for sane code, but make 2270 // sure we handle Range saturation correctly. 2271 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2272 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2273 if (IntTSize * 10 < IntRange * 4) 2274 return false; 2275 2276 DEBUG(dbgs() << "Lowering jump table\n" 2277 << "First entry: " << First << ". Last entry: " << Last << '\n' 2278 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2279 2280 // Get the MachineFunction which holds the current MBB. This is used when 2281 // inserting any additional MBBs necessary to represent the switch. 2282 MachineFunction *CurMF = FuncInfo.MF; 2283 2284 // Figure out which block is immediately after the current one. 2285 MachineFunction::iterator BBI = CR.CaseBB; 2286 ++BBI; 2287 2288 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2289 2290 // Create a new basic block to hold the code for loading the address 2291 // of the jump table, and jumping to it. Update successor information; 2292 // we will either branch to the default case for the switch, or the jump 2293 // table. 2294 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, JumpTableBB); 2296 2297 addSuccessorWithWeight(CR.CaseBB, Default); 2298 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2299 2300 // Build a vector of destination BBs, corresponding to each target 2301 // of the jump table. If the value of the jump table slot corresponds to 2302 // a case statement, push the case's BB onto the vector, otherwise, push 2303 // the default BB. 2304 std::vector<MachineBasicBlock*> DestBBs; 2305 APInt TEI = First; 2306 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2307 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2308 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2309 2310 if (Low.sle(TEI) && TEI.sle(High)) { 2311 DestBBs.push_back(I->BB); 2312 if (TEI==High) 2313 ++I; 2314 } else { 2315 DestBBs.push_back(Default); 2316 } 2317 } 2318 2319 // Calculate weight for each unique destination in CR. 2320 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2321 if (FuncInfo.BPI) 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2323 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2324 DestWeights.find(I->BB); 2325 if (Itr != DestWeights.end()) 2326 Itr->second += I->ExtraWeight; 2327 else 2328 DestWeights[I->BB] = I->ExtraWeight; 2329 } 2330 2331 // Update successor info. Add one edge to each unique successor. 2332 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2333 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2334 E = DestBBs.end(); I != E; ++I) { 2335 if (!SuccsHandled[(*I)->getNumber()]) { 2336 SuccsHandled[(*I)->getNumber()] = true; 2337 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2338 DestWeights.find(*I); 2339 addSuccessorWithWeight(JumpTableBB, *I, 2340 Itr != DestWeights.end() ? Itr->second : 0); 2341 } 2342 } 2343 2344 // Create a jump table index for this jump table. 2345 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2346 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2347 ->createJumpTableIndex(DestBBs); 2348 2349 // Set the jump table information so that we can codegen it as a second 2350 // MachineBasicBlock 2351 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2352 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2353 if (CR.CaseBB == SwitchBB) 2354 visitJumpTableHeader(JT, JTH, SwitchBB); 2355 2356 JTCases.push_back(JumpTableBlock(JTH, JT)); 2357 return true; 2358 } 2359 2360 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2361 /// 2 subtrees. 2362 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2363 CaseRecVector& WorkList, 2364 const Value* SV, 2365 MachineBasicBlock* Default, 2366 MachineBasicBlock* SwitchBB) { 2367 // Get the MachineFunction which holds the current MBB. This is used when 2368 // inserting any additional MBBs necessary to represent the switch. 2369 MachineFunction *CurMF = FuncInfo.MF; 2370 2371 // Figure out which block is immediately after the current one. 2372 MachineFunction::iterator BBI = CR.CaseBB; 2373 ++BBI; 2374 2375 Case& FrontCase = *CR.Range.first; 2376 Case& BackCase = *(CR.Range.second-1); 2377 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2378 2379 // Size is the number of Cases represented by this range. 2380 unsigned Size = CR.Range.second - CR.Range.first; 2381 2382 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2383 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2384 double FMetric = 0; 2385 CaseItr Pivot = CR.Range.first + Size/2; 2386 2387 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2388 // (heuristically) allow us to emit JumpTable's later. 2389 APInt TSize(First.getBitWidth(), 0); 2390 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2391 I!=E; ++I) 2392 TSize += I->size(); 2393 2394 APInt LSize = FrontCase.size(); 2395 APInt RSize = TSize-LSize; 2396 DEBUG(dbgs() << "Selecting best pivot: \n" 2397 << "First: " << First << ", Last: " << Last <<'\n' 2398 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2399 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2400 J!=E; ++I, ++J) { 2401 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2402 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2403 APInt Range = ComputeRange(LEnd, RBegin); 2404 assert((Range - 2ULL).isNonNegative() && 2405 "Invalid case distance"); 2406 // Use volatile double here to avoid excess precision issues on some hosts, 2407 // e.g. that use 80-bit X87 registers. 2408 volatile double LDensity = 2409 (double)LSize.roundToDouble() / 2410 (LEnd - First + 1ULL).roundToDouble(); 2411 volatile double RDensity = 2412 (double)RSize.roundToDouble() / 2413 (Last - RBegin + 1ULL).roundToDouble(); 2414 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2415 // Should always split in some non-trivial place 2416 DEBUG(dbgs() <<"=>Step\n" 2417 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2418 << "LDensity: " << LDensity 2419 << ", RDensity: " << RDensity << '\n' 2420 << "Metric: " << Metric << '\n'); 2421 if (FMetric < Metric) { 2422 Pivot = J; 2423 FMetric = Metric; 2424 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2425 } 2426 2427 LSize += J->size(); 2428 RSize -= J->size(); 2429 } 2430 2431 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2432 if (areJTsAllowed(*TLI)) { 2433 // If our case is dense we *really* should handle it earlier! 2434 assert((FMetric > 0) && "Should handle dense range earlier!"); 2435 } else { 2436 Pivot = CR.Range.first + Size/2; 2437 } 2438 2439 CaseRange LHSR(CR.Range.first, Pivot); 2440 CaseRange RHSR(Pivot, CR.Range.second); 2441 const Constant *C = Pivot->Low; 2442 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2443 2444 // We know that we branch to the LHS if the Value being switched on is 2445 // less than the Pivot value, C. We use this to optimize our binary 2446 // tree a bit, by recognizing that if SV is greater than or equal to the 2447 // LHS's Case Value, and that Case Value is exactly one less than the 2448 // Pivot's Value, then we can branch directly to the LHS's Target, 2449 // rather than creating a leaf node for it. 2450 if ((LHSR.second - LHSR.first) == 1 && 2451 LHSR.first->High == CR.GE && 2452 cast<ConstantInt>(C)->getValue() == 2453 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2454 TrueBB = LHSR.first->BB; 2455 } else { 2456 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2457 CurMF->insert(BBI, TrueBB); 2458 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2459 2460 // Put SV in a virtual register to make it available from the new blocks. 2461 ExportFromCurrentBlock(SV); 2462 } 2463 2464 // Similar to the optimization above, if the Value being switched on is 2465 // known to be less than the Constant CR.LT, and the current Case Value 2466 // is CR.LT - 1, then we can branch directly to the target block for 2467 // the current Case Value, rather than emitting a RHS leaf node for it. 2468 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2469 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2470 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2471 FalseBB = RHSR.first->BB; 2472 } else { 2473 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2474 CurMF->insert(BBI, FalseBB); 2475 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2476 2477 // Put SV in a virtual register to make it available from the new blocks. 2478 ExportFromCurrentBlock(SV); 2479 } 2480 2481 // Create a CaseBlock record representing a conditional branch to 2482 // the LHS node if the value being switched on SV is less than C. 2483 // Otherwise, branch to LHS. 2484 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2485 2486 if (CR.CaseBB == SwitchBB) 2487 visitSwitchCase(CB, SwitchBB); 2488 else 2489 SwitchCases.push_back(CB); 2490 2491 return true; 2492 } 2493 2494 /// handleBitTestsSwitchCase - if current case range has few destination and 2495 /// range span less, than machine word bitwidth, encode case range into series 2496 /// of masks and emit bit tests with these masks. 2497 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2498 CaseRecVector& WorkList, 2499 const Value* SV, 2500 MachineBasicBlock* Default, 2501 MachineBasicBlock* SwitchBB) { 2502 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2503 EVT PTy = TLI->getPointerTy(); 2504 unsigned IntPtrBits = PTy.getSizeInBits(); 2505 2506 Case& FrontCase = *CR.Range.first; 2507 Case& BackCase = *(CR.Range.second-1); 2508 2509 // Get the MachineFunction which holds the current MBB. This is used when 2510 // inserting any additional MBBs necessary to represent the switch. 2511 MachineFunction *CurMF = FuncInfo.MF; 2512 2513 // If target does not have legal shift left, do not emit bit tests at all. 2514 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2515 return false; 2516 2517 size_t numCmps = 0; 2518 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2519 I!=E; ++I) { 2520 // Single case counts one, case range - two. 2521 numCmps += (I->Low == I->High ? 1 : 2); 2522 } 2523 2524 // Count unique destinations 2525 SmallSet<MachineBasicBlock*, 4> Dests; 2526 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2527 Dests.insert(I->BB); 2528 if (Dests.size() > 3) 2529 // Don't bother the code below, if there are too much unique destinations 2530 return false; 2531 } 2532 DEBUG(dbgs() << "Total number of unique destinations: " 2533 << Dests.size() << '\n' 2534 << "Total number of comparisons: " << numCmps << '\n'); 2535 2536 // Compute span of values. 2537 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2538 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2539 APInt cmpRange = maxValue - minValue; 2540 2541 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2542 << "Low bound: " << minValue << '\n' 2543 << "High bound: " << maxValue << '\n'); 2544 2545 if (cmpRange.uge(IntPtrBits) || 2546 (!(Dests.size() == 1 && numCmps >= 3) && 2547 !(Dests.size() == 2 && numCmps >= 5) && 2548 !(Dests.size() >= 3 && numCmps >= 6))) 2549 return false; 2550 2551 DEBUG(dbgs() << "Emitting bit tests\n"); 2552 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2553 2554 // Optimize the case where all the case values fit in a 2555 // word without having to subtract minValue. In this case, 2556 // we can optimize away the subtraction. 2557 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2558 cmpRange = maxValue; 2559 } else { 2560 lowBound = minValue; 2561 } 2562 2563 CaseBitsVector CasesBits; 2564 unsigned i, count = 0; 2565 2566 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2567 MachineBasicBlock* Dest = I->BB; 2568 for (i = 0; i < count; ++i) 2569 if (Dest == CasesBits[i].BB) 2570 break; 2571 2572 if (i == count) { 2573 assert((count < 3) && "Too much destinations to test!"); 2574 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2575 count++; 2576 } 2577 2578 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2579 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2580 2581 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2582 uint64_t hi = (highValue - lowBound).getZExtValue(); 2583 CasesBits[i].ExtraWeight += I->ExtraWeight; 2584 2585 for (uint64_t j = lo; j <= hi; j++) { 2586 CasesBits[i].Mask |= 1ULL << j; 2587 CasesBits[i].Bits++; 2588 } 2589 2590 } 2591 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2592 2593 BitTestInfo BTC; 2594 2595 // Figure out which block is immediately after the current one. 2596 MachineFunction::iterator BBI = CR.CaseBB; 2597 ++BBI; 2598 2599 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2600 2601 DEBUG(dbgs() << "Cases:\n"); 2602 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2603 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2604 << ", Bits: " << CasesBits[i].Bits 2605 << ", BB: " << CasesBits[i].BB << '\n'); 2606 2607 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2608 CurMF->insert(BBI, CaseBB); 2609 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2610 CaseBB, 2611 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2612 2613 // Put SV in a virtual register to make it available from the new blocks. 2614 ExportFromCurrentBlock(SV); 2615 } 2616 2617 BitTestBlock BTB(lowBound, cmpRange, SV, 2618 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2619 CR.CaseBB, Default, BTC); 2620 2621 if (CR.CaseBB == SwitchBB) 2622 visitBitTestHeader(BTB, SwitchBB); 2623 2624 BitTestCases.push_back(BTB); 2625 2626 return true; 2627 } 2628 2629 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2630 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2631 const SwitchInst& SI) { 2632 size_t numCmps = 0; 2633 2634 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2635 // Start with "simple" cases 2636 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2637 i != e; ++i) { 2638 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2639 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2640 2641 uint32_t ExtraWeight = 2642 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2643 2644 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2645 SMBB, ExtraWeight)); 2646 } 2647 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2648 2649 // Merge case into clusters 2650 if (Cases.size() >= 2) 2651 // Must recompute end() each iteration because it may be 2652 // invalidated by erase if we hold on to it 2653 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2654 J != Cases.end(); ) { 2655 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2656 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2657 MachineBasicBlock* nextBB = J->BB; 2658 MachineBasicBlock* currentBB = I->BB; 2659 2660 // If the two neighboring cases go to the same destination, merge them 2661 // into a single case. 2662 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2663 I->High = J->High; 2664 I->ExtraWeight += J->ExtraWeight; 2665 J = Cases.erase(J); 2666 } else { 2667 I = J++; 2668 } 2669 } 2670 2671 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2672 if (I->Low != I->High) 2673 // A range counts double, since it requires two compares. 2674 ++numCmps; 2675 } 2676 2677 return numCmps; 2678 } 2679 2680 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2681 MachineBasicBlock *Last) { 2682 // Update JTCases. 2683 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2684 if (JTCases[i].first.HeaderBB == First) 2685 JTCases[i].first.HeaderBB = Last; 2686 2687 // Update BitTestCases. 2688 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2689 if (BitTestCases[i].Parent == First) 2690 BitTestCases[i].Parent = Last; 2691 } 2692 2693 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2694 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2695 2696 // Figure out which block is immediately after the current one. 2697 MachineBasicBlock *NextBlock = nullptr; 2698 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2699 2700 // If there is only the default destination, branch to it if it is not the 2701 // next basic block. Otherwise, just fall through. 2702 if (!SI.getNumCases()) { 2703 // Update machine-CFG edges. 2704 2705 // If this is not a fall-through branch, emit the branch. 2706 SwitchMBB->addSuccessor(Default); 2707 if (Default != NextBlock) 2708 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2709 MVT::Other, getControlRoot(), 2710 DAG.getBasicBlock(Default))); 2711 2712 return; 2713 } 2714 2715 // If there are any non-default case statements, create a vector of Cases 2716 // representing each one, and sort the vector so that we can efficiently 2717 // create a binary search tree from them. 2718 CaseVector Cases; 2719 size_t numCmps = Clusterify(Cases, SI); 2720 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2721 << ". Total compares: " << numCmps << '\n'); 2722 (void)numCmps; 2723 2724 // Get the Value to be switched on and default basic blocks, which will be 2725 // inserted into CaseBlock records, representing basic blocks in the binary 2726 // search tree. 2727 const Value *SV = SI.getCondition(); 2728 2729 // Push the initial CaseRec onto the worklist 2730 CaseRecVector WorkList; 2731 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2732 CaseRange(Cases.begin(),Cases.end()))); 2733 2734 while (!WorkList.empty()) { 2735 // Grab a record representing a case range to process off the worklist 2736 CaseRec CR = WorkList.back(); 2737 WorkList.pop_back(); 2738 2739 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2740 continue; 2741 2742 // If the range has few cases (two or less) emit a series of specific 2743 // tests. 2744 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2745 continue; 2746 2747 // If the switch has more than N blocks, and is at least 40% dense, and the 2748 // target supports indirect branches, then emit a jump table rather than 2749 // lowering the switch to a binary tree of conditional branches. 2750 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2751 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2752 continue; 2753 2754 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2755 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2756 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2757 } 2758 } 2759 2760 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2761 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2762 2763 // Update machine-CFG edges with unique successors. 2764 SmallSet<BasicBlock*, 32> Done; 2765 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2766 BasicBlock *BB = I.getSuccessor(i); 2767 bool Inserted = Done.insert(BB); 2768 if (!Inserted) 2769 continue; 2770 2771 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2772 addSuccessorWithWeight(IndirectBrMBB, Succ); 2773 } 2774 2775 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2776 MVT::Other, getControlRoot(), 2777 getValue(I.getAddress()))); 2778 } 2779 2780 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2781 if (DAG.getTarget().Options.TrapUnreachable) 2782 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2783 } 2784 2785 void SelectionDAGBuilder::visitFSub(const User &I) { 2786 // -0.0 - X --> fneg 2787 Type *Ty = I.getType(); 2788 if (isa<Constant>(I.getOperand(0)) && 2789 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2790 SDValue Op2 = getValue(I.getOperand(1)); 2791 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2792 Op2.getValueType(), Op2)); 2793 return; 2794 } 2795 2796 visitBinary(I, ISD::FSUB); 2797 } 2798 2799 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2800 SDValue Op1 = getValue(I.getOperand(0)); 2801 SDValue Op2 = getValue(I.getOperand(1)); 2802 2803 bool nuw = false; 2804 bool nsw = false; 2805 bool exact = false; 2806 if (const OverflowingBinaryOperator *OFBinOp = 2807 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2808 nuw = OFBinOp->hasNoUnsignedWrap(); 2809 nsw = OFBinOp->hasNoSignedWrap(); 2810 } 2811 if (const PossiblyExactOperator *ExactOp = 2812 dyn_cast<const PossiblyExactOperator>(&I)) 2813 exact = ExactOp->isExact(); 2814 2815 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2816 Op1, Op2, nuw, nsw, exact); 2817 setValue(&I, BinNodeValue); 2818 } 2819 2820 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2821 SDValue Op1 = getValue(I.getOperand(0)); 2822 SDValue Op2 = getValue(I.getOperand(1)); 2823 2824 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2825 Op2.getValueType()); 2826 2827 // Coerce the shift amount to the right type if we can. 2828 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2829 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2830 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2831 SDLoc DL = getCurSDLoc(); 2832 2833 // If the operand is smaller than the shift count type, promote it. 2834 if (ShiftSize > Op2Size) 2835 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2836 2837 // If the operand is larger than the shift count type but the shift 2838 // count type has enough bits to represent any shift value, truncate 2839 // it now. This is a common case and it exposes the truncate to 2840 // optimization early. 2841 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2842 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2843 // Otherwise we'll need to temporarily settle for some other convenient 2844 // type. Type legalization will make adjustments once the shiftee is split. 2845 else 2846 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2847 } 2848 2849 bool nuw = false; 2850 bool nsw = false; 2851 bool exact = false; 2852 2853 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2854 2855 if (const OverflowingBinaryOperator *OFBinOp = 2856 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2857 nuw = OFBinOp->hasNoUnsignedWrap(); 2858 nsw = OFBinOp->hasNoSignedWrap(); 2859 } 2860 if (const PossiblyExactOperator *ExactOp = 2861 dyn_cast<const PossiblyExactOperator>(&I)) 2862 exact = ExactOp->isExact(); 2863 } 2864 2865 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2866 nuw, nsw, exact); 2867 setValue(&I, Res); 2868 } 2869 2870 void SelectionDAGBuilder::visitSDiv(const User &I) { 2871 SDValue Op1 = getValue(I.getOperand(0)); 2872 SDValue Op2 = getValue(I.getOperand(1)); 2873 2874 // Turn exact SDivs into multiplications. 2875 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2876 // exact bit. 2877 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2878 !isa<ConstantSDNode>(Op1) && 2879 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2880 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2881 Op1, Op2, getCurSDLoc(), DAG)); 2882 else 2883 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2884 Op1, Op2)); 2885 } 2886 2887 void SelectionDAGBuilder::visitICmp(const User &I) { 2888 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2889 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2890 predicate = IC->getPredicate(); 2891 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2892 predicate = ICmpInst::Predicate(IC->getPredicate()); 2893 SDValue Op1 = getValue(I.getOperand(0)); 2894 SDValue Op2 = getValue(I.getOperand(1)); 2895 ISD::CondCode Opcode = getICmpCondCode(predicate); 2896 2897 EVT DestVT = 2898 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2899 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2900 } 2901 2902 void SelectionDAGBuilder::visitFCmp(const User &I) { 2903 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2904 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2905 predicate = FC->getPredicate(); 2906 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2907 predicate = FCmpInst::Predicate(FC->getPredicate()); 2908 SDValue Op1 = getValue(I.getOperand(0)); 2909 SDValue Op2 = getValue(I.getOperand(1)); 2910 ISD::CondCode Condition = getFCmpCondCode(predicate); 2911 if (TM.Options.NoNaNsFPMath) 2912 Condition = getFCmpCodeWithoutNaN(Condition); 2913 EVT DestVT = 2914 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2915 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2916 } 2917 2918 void SelectionDAGBuilder::visitSelect(const User &I) { 2919 SmallVector<EVT, 4> ValueVTs; 2920 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2921 ValueVTs); 2922 unsigned NumValues = ValueVTs.size(); 2923 if (NumValues == 0) return; 2924 2925 SmallVector<SDValue, 4> Values(NumValues); 2926 SDValue Cond = getValue(I.getOperand(0)); 2927 SDValue TrueVal = getValue(I.getOperand(1)); 2928 SDValue FalseVal = getValue(I.getOperand(2)); 2929 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2930 ISD::VSELECT : ISD::SELECT; 2931 2932 for (unsigned i = 0; i != NumValues; ++i) 2933 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2934 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2935 Cond, 2936 SDValue(TrueVal.getNode(), 2937 TrueVal.getResNo() + i), 2938 SDValue(FalseVal.getNode(), 2939 FalseVal.getResNo() + i)); 2940 2941 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2942 DAG.getVTList(ValueVTs), Values)); 2943 } 2944 2945 void SelectionDAGBuilder::visitTrunc(const User &I) { 2946 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2947 SDValue N = getValue(I.getOperand(0)); 2948 EVT DestVT = 2949 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2950 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2951 } 2952 2953 void SelectionDAGBuilder::visitZExt(const User &I) { 2954 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2955 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2956 SDValue N = getValue(I.getOperand(0)); 2957 EVT DestVT = 2958 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2959 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2960 } 2961 2962 void SelectionDAGBuilder::visitSExt(const User &I) { 2963 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2964 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2965 SDValue N = getValue(I.getOperand(0)); 2966 EVT DestVT = 2967 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2968 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2969 } 2970 2971 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2972 // FPTrunc is never a no-op cast, no need to check 2973 SDValue N = getValue(I.getOperand(0)); 2974 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2975 EVT DestVT = TLI->getValueType(I.getType()); 2976 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2977 DestVT, N, 2978 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2979 } 2980 2981 void SelectionDAGBuilder::visitFPExt(const User &I) { 2982 // FPExt is never a no-op cast, no need to check 2983 SDValue N = getValue(I.getOperand(0)); 2984 EVT DestVT = 2985 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2986 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2987 } 2988 2989 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2990 // FPToUI is never a no-op cast, no need to check 2991 SDValue N = getValue(I.getOperand(0)); 2992 EVT DestVT = 2993 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2994 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2995 } 2996 2997 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2998 // FPToSI is never a no-op cast, no need to check 2999 SDValue N = getValue(I.getOperand(0)); 3000 EVT DestVT = 3001 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3002 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3003 } 3004 3005 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3006 // UIToFP is never a no-op cast, no need to check 3007 SDValue N = getValue(I.getOperand(0)); 3008 EVT DestVT = 3009 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3010 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3011 } 3012 3013 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3014 // SIToFP is never a no-op cast, no need to check 3015 SDValue N = getValue(I.getOperand(0)); 3016 EVT DestVT = 3017 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3018 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3019 } 3020 3021 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3022 // What to do depends on the size of the integer and the size of the pointer. 3023 // We can either truncate, zero extend, or no-op, accordingly. 3024 SDValue N = getValue(I.getOperand(0)); 3025 EVT DestVT = 3026 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3027 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3028 } 3029 3030 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3031 // What to do depends on the size of the integer and the size of the pointer. 3032 // We can either truncate, zero extend, or no-op, accordingly. 3033 SDValue N = getValue(I.getOperand(0)); 3034 EVT DestVT = 3035 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3036 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3037 } 3038 3039 void SelectionDAGBuilder::visitBitCast(const User &I) { 3040 SDValue N = getValue(I.getOperand(0)); 3041 EVT DestVT = 3042 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3043 3044 // BitCast assures us that source and destination are the same size so this is 3045 // either a BITCAST or a no-op. 3046 if (DestVT != N.getValueType()) 3047 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3048 DestVT, N)); // convert types. 3049 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3050 // might fold any kind of constant expression to an integer constant and that 3051 // is not what we are looking for. Only regcognize a bitcast of a genuine 3052 // constant integer as an opaque constant. 3053 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3054 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3055 /*isOpaque*/true)); 3056 else 3057 setValue(&I, N); // noop cast. 3058 } 3059 3060 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3062 const Value *SV = I.getOperand(0); 3063 SDValue N = getValue(SV); 3064 EVT DestVT = 3065 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3066 3067 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3068 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3069 3070 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3071 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3072 3073 setValue(&I, N); 3074 } 3075 3076 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3078 SDValue InVec = getValue(I.getOperand(0)); 3079 SDValue InVal = getValue(I.getOperand(1)); 3080 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3081 getCurSDLoc(), TLI.getVectorIdxTy()); 3082 setValue(&I, 3083 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3084 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3085 I.getType()), 3086 InVec, InVal, InIdx)); 3087 } 3088 3089 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3091 SDValue InVec = getValue(I.getOperand(0)); 3092 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3093 getCurSDLoc(), TLI.getVectorIdxTy()); 3094 setValue(&I, 3095 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3096 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3097 I.getType()), 3098 InVec, InIdx)); 3099 } 3100 3101 // Utility for visitShuffleVector - Return true if every element in Mask, 3102 // beginning from position Pos and ending in Pos+Size, falls within the 3103 // specified sequential range [L, L+Pos). or is undef. 3104 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3105 unsigned Pos, unsigned Size, int Low) { 3106 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3107 if (Mask[i] >= 0 && Mask[i] != Low) 3108 return false; 3109 return true; 3110 } 3111 3112 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3113 SDValue Src1 = getValue(I.getOperand(0)); 3114 SDValue Src2 = getValue(I.getOperand(1)); 3115 3116 SmallVector<int, 8> Mask; 3117 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3118 unsigned MaskNumElts = Mask.size(); 3119 3120 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3121 EVT VT = TLI->getValueType(I.getType()); 3122 EVT SrcVT = Src1.getValueType(); 3123 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3124 3125 if (SrcNumElts == MaskNumElts) { 3126 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3127 &Mask[0])); 3128 return; 3129 } 3130 3131 // Normalize the shuffle vector since mask and vector length don't match. 3132 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3133 // Mask is longer than the source vectors and is a multiple of the source 3134 // vectors. We can use concatenate vector to make the mask and vectors 3135 // lengths match. 3136 if (SrcNumElts*2 == MaskNumElts) { 3137 // First check for Src1 in low and Src2 in high 3138 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3139 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3140 // The shuffle is concatenating two vectors together. 3141 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3142 VT, Src1, Src2)); 3143 return; 3144 } 3145 // Then check for Src2 in low and Src1 in high 3146 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3147 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3148 // The shuffle is concatenating two vectors together. 3149 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3150 VT, Src2, Src1)); 3151 return; 3152 } 3153 } 3154 3155 // Pad both vectors with undefs to make them the same length as the mask. 3156 unsigned NumConcat = MaskNumElts / SrcNumElts; 3157 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3158 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3159 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3160 3161 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3162 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3163 MOps1[0] = Src1; 3164 MOps2[0] = Src2; 3165 3166 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3167 getCurSDLoc(), VT, MOps1); 3168 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3169 getCurSDLoc(), VT, MOps2); 3170 3171 // Readjust mask for new input vector length. 3172 SmallVector<int, 8> MappedOps; 3173 for (unsigned i = 0; i != MaskNumElts; ++i) { 3174 int Idx = Mask[i]; 3175 if (Idx >= (int)SrcNumElts) 3176 Idx -= SrcNumElts - MaskNumElts; 3177 MappedOps.push_back(Idx); 3178 } 3179 3180 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3181 &MappedOps[0])); 3182 return; 3183 } 3184 3185 if (SrcNumElts > MaskNumElts) { 3186 // Analyze the access pattern of the vector to see if we can extract 3187 // two subvectors and do the shuffle. The analysis is done by calculating 3188 // the range of elements the mask access on both vectors. 3189 int MinRange[2] = { static_cast<int>(SrcNumElts), 3190 static_cast<int>(SrcNumElts)}; 3191 int MaxRange[2] = {-1, -1}; 3192 3193 for (unsigned i = 0; i != MaskNumElts; ++i) { 3194 int Idx = Mask[i]; 3195 unsigned Input = 0; 3196 if (Idx < 0) 3197 continue; 3198 3199 if (Idx >= (int)SrcNumElts) { 3200 Input = 1; 3201 Idx -= SrcNumElts; 3202 } 3203 if (Idx > MaxRange[Input]) 3204 MaxRange[Input] = Idx; 3205 if (Idx < MinRange[Input]) 3206 MinRange[Input] = Idx; 3207 } 3208 3209 // Check if the access is smaller than the vector size and can we find 3210 // a reasonable extract index. 3211 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3212 // Extract. 3213 int StartIdx[2]; // StartIdx to extract from 3214 for (unsigned Input = 0; Input < 2; ++Input) { 3215 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3216 RangeUse[Input] = 0; // Unused 3217 StartIdx[Input] = 0; 3218 continue; 3219 } 3220 3221 // Find a good start index that is a multiple of the mask length. Then 3222 // see if the rest of the elements are in range. 3223 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3224 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3225 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3226 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3227 } 3228 3229 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3230 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3231 return; 3232 } 3233 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3234 // Extract appropriate subvector and generate a vector shuffle 3235 for (unsigned Input = 0; Input < 2; ++Input) { 3236 SDValue &Src = Input == 0 ? Src1 : Src2; 3237 if (RangeUse[Input] == 0) 3238 Src = DAG.getUNDEF(VT); 3239 else 3240 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3241 Src, DAG.getConstant(StartIdx[Input], 3242 TLI->getVectorIdxTy())); 3243 } 3244 3245 // Calculate new mask. 3246 SmallVector<int, 8> MappedOps; 3247 for (unsigned i = 0; i != MaskNumElts; ++i) { 3248 int Idx = Mask[i]; 3249 if (Idx >= 0) { 3250 if (Idx < (int)SrcNumElts) 3251 Idx -= StartIdx[0]; 3252 else 3253 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3254 } 3255 MappedOps.push_back(Idx); 3256 } 3257 3258 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3259 &MappedOps[0])); 3260 return; 3261 } 3262 } 3263 3264 // We can't use either concat vectors or extract subvectors so fall back to 3265 // replacing the shuffle with extract and build vector. 3266 // to insert and build vector. 3267 EVT EltVT = VT.getVectorElementType(); 3268 EVT IdxVT = TLI->getVectorIdxTy(); 3269 SmallVector<SDValue,8> Ops; 3270 for (unsigned i = 0; i != MaskNumElts; ++i) { 3271 int Idx = Mask[i]; 3272 SDValue Res; 3273 3274 if (Idx < 0) { 3275 Res = DAG.getUNDEF(EltVT); 3276 } else { 3277 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3278 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3279 3280 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3281 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3282 } 3283 3284 Ops.push_back(Res); 3285 } 3286 3287 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3288 } 3289 3290 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3291 const Value *Op0 = I.getOperand(0); 3292 const Value *Op1 = I.getOperand(1); 3293 Type *AggTy = I.getType(); 3294 Type *ValTy = Op1->getType(); 3295 bool IntoUndef = isa<UndefValue>(Op0); 3296 bool FromUndef = isa<UndefValue>(Op1); 3297 3298 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3299 3300 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3301 SmallVector<EVT, 4> AggValueVTs; 3302 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3303 SmallVector<EVT, 4> ValValueVTs; 3304 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3305 3306 unsigned NumAggValues = AggValueVTs.size(); 3307 unsigned NumValValues = ValValueVTs.size(); 3308 SmallVector<SDValue, 4> Values(NumAggValues); 3309 3310 SDValue Agg = getValue(Op0); 3311 unsigned i = 0; 3312 // Copy the beginning value(s) from the original aggregate. 3313 for (; i != LinearIndex; ++i) 3314 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3315 SDValue(Agg.getNode(), Agg.getResNo() + i); 3316 // Copy values from the inserted value(s). 3317 if (NumValValues) { 3318 SDValue Val = getValue(Op1); 3319 for (; i != LinearIndex + NumValValues; ++i) 3320 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3321 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3322 } 3323 // Copy remaining value(s) from the original aggregate. 3324 for (; i != NumAggValues; ++i) 3325 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3326 SDValue(Agg.getNode(), Agg.getResNo() + i); 3327 3328 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3329 DAG.getVTList(AggValueVTs), Values)); 3330 } 3331 3332 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3333 const Value *Op0 = I.getOperand(0); 3334 Type *AggTy = Op0->getType(); 3335 Type *ValTy = I.getType(); 3336 bool OutOfUndef = isa<UndefValue>(Op0); 3337 3338 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3339 3340 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3341 SmallVector<EVT, 4> ValValueVTs; 3342 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3343 3344 unsigned NumValValues = ValValueVTs.size(); 3345 3346 // Ignore a extractvalue that produces an empty object 3347 if (!NumValValues) { 3348 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3349 return; 3350 } 3351 3352 SmallVector<SDValue, 4> Values(NumValValues); 3353 3354 SDValue Agg = getValue(Op0); 3355 // Copy out the selected value(s). 3356 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3357 Values[i - LinearIndex] = 3358 OutOfUndef ? 3359 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3360 SDValue(Agg.getNode(), Agg.getResNo() + i); 3361 3362 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3363 DAG.getVTList(ValValueVTs), Values)); 3364 } 3365 3366 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3367 Value *Op0 = I.getOperand(0); 3368 // Note that the pointer operand may be a vector of pointers. Take the scalar 3369 // element which holds a pointer. 3370 Type *Ty = Op0->getType()->getScalarType(); 3371 unsigned AS = Ty->getPointerAddressSpace(); 3372 SDValue N = getValue(Op0); 3373 3374 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3375 OI != E; ++OI) { 3376 const Value *Idx = *OI; 3377 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3378 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3379 if (Field) { 3380 // N = N + Offset 3381 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3382 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3383 DAG.getConstant(Offset, N.getValueType())); 3384 } 3385 3386 Ty = StTy->getElementType(Field); 3387 } else { 3388 Ty = cast<SequentialType>(Ty)->getElementType(); 3389 3390 // If this is a constant subscript, handle it quickly. 3391 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3392 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3393 if (CI->isZero()) continue; 3394 uint64_t Offs = 3395 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3396 SDValue OffsVal; 3397 EVT PTy = TLI->getPointerTy(AS); 3398 unsigned PtrBits = PTy.getSizeInBits(); 3399 if (PtrBits < 64) 3400 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3401 DAG.getConstant(Offs, MVT::i64)); 3402 else 3403 OffsVal = DAG.getConstant(Offs, PTy); 3404 3405 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3406 OffsVal); 3407 continue; 3408 } 3409 3410 // N = N + Idx * ElementSize; 3411 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3412 DL->getTypeAllocSize(Ty)); 3413 SDValue IdxN = getValue(Idx); 3414 3415 // If the index is smaller or larger than intptr_t, truncate or extend 3416 // it. 3417 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3418 3419 // If this is a multiply by a power of two, turn it into a shl 3420 // immediately. This is a very common case. 3421 if (ElementSize != 1) { 3422 if (ElementSize.isPowerOf2()) { 3423 unsigned Amt = ElementSize.logBase2(); 3424 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3425 N.getValueType(), IdxN, 3426 DAG.getConstant(Amt, IdxN.getValueType())); 3427 } else { 3428 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3429 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3430 N.getValueType(), IdxN, Scale); 3431 } 3432 } 3433 3434 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3435 N.getValueType(), N, IdxN); 3436 } 3437 } 3438 3439 setValue(&I, N); 3440 } 3441 3442 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3443 // If this is a fixed sized alloca in the entry block of the function, 3444 // allocate it statically on the stack. 3445 if (FuncInfo.StaticAllocaMap.count(&I)) 3446 return; // getValue will auto-populate this. 3447 3448 Type *Ty = I.getAllocatedType(); 3449 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3450 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3451 unsigned Align = 3452 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3453 I.getAlignment()); 3454 3455 SDValue AllocSize = getValue(I.getArraySize()); 3456 3457 EVT IntPtr = TLI->getPointerTy(); 3458 if (AllocSize.getValueType() != IntPtr) 3459 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3460 3461 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3462 AllocSize, 3463 DAG.getConstant(TySize, IntPtr)); 3464 3465 // Handle alignment. If the requested alignment is less than or equal to 3466 // the stack alignment, ignore it. If the size is greater than or equal to 3467 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3468 unsigned StackAlign = 3469 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3470 if (Align <= StackAlign) 3471 Align = 0; 3472 3473 // Round the size of the allocation up to the stack alignment size 3474 // by add SA-1 to the size. 3475 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3476 AllocSize.getValueType(), AllocSize, 3477 DAG.getIntPtrConstant(StackAlign-1)); 3478 3479 // Mask out the low bits for alignment purposes. 3480 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3481 AllocSize.getValueType(), AllocSize, 3482 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3483 3484 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3485 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3486 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3487 setValue(&I, DSA); 3488 DAG.setRoot(DSA.getValue(1)); 3489 3490 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3491 } 3492 3493 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3494 if (I.isAtomic()) 3495 return visitAtomicLoad(I); 3496 3497 const Value *SV = I.getOperand(0); 3498 SDValue Ptr = getValue(SV); 3499 3500 Type *Ty = I.getType(); 3501 3502 bool isVolatile = I.isVolatile(); 3503 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3504 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3505 unsigned Alignment = I.getAlignment(); 3506 3507 AAMDNodes AAInfo; 3508 I.getAAMetadata(AAInfo); 3509 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3510 3511 SmallVector<EVT, 4> ValueVTs; 3512 SmallVector<uint64_t, 4> Offsets; 3513 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3514 &Offsets); 3515 unsigned NumValues = ValueVTs.size(); 3516 if (NumValues == 0) 3517 return; 3518 3519 SDValue Root; 3520 bool ConstantMemory = false; 3521 if (isVolatile || NumValues > MaxParallelChains) 3522 // Serialize volatile loads with other side effects. 3523 Root = getRoot(); 3524 else if (AA->pointsToConstantMemory( 3525 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3526 // Do not serialize (non-volatile) loads of constant memory with anything. 3527 Root = DAG.getEntryNode(); 3528 ConstantMemory = true; 3529 } else { 3530 // Do not serialize non-volatile loads against each other. 3531 Root = DAG.getRoot(); 3532 } 3533 3534 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3535 if (isVolatile) 3536 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3537 3538 SmallVector<SDValue, 4> Values(NumValues); 3539 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3540 NumValues)); 3541 EVT PtrVT = Ptr.getValueType(); 3542 unsigned ChainI = 0; 3543 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3544 // Serializing loads here may result in excessive register pressure, and 3545 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3546 // could recover a bit by hoisting nodes upward in the chain by recognizing 3547 // they are side-effect free or do not alias. The optimizer should really 3548 // avoid this case by converting large object/array copies to llvm.memcpy 3549 // (MaxParallelChains should always remain as failsafe). 3550 if (ChainI == MaxParallelChains) { 3551 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3552 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3553 makeArrayRef(Chains.data(), ChainI)); 3554 Root = Chain; 3555 ChainI = 0; 3556 } 3557 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3558 PtrVT, Ptr, 3559 DAG.getConstant(Offsets[i], PtrVT)); 3560 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3561 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3562 isNonTemporal, isInvariant, Alignment, AAInfo, 3563 Ranges); 3564 3565 Values[i] = L; 3566 Chains[ChainI] = L.getValue(1); 3567 } 3568 3569 if (!ConstantMemory) { 3570 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3571 makeArrayRef(Chains.data(), ChainI)); 3572 if (isVolatile) 3573 DAG.setRoot(Chain); 3574 else 3575 PendingLoads.push_back(Chain); 3576 } 3577 3578 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3579 DAG.getVTList(ValueVTs), Values)); 3580 } 3581 3582 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3583 if (I.isAtomic()) 3584 return visitAtomicStore(I); 3585 3586 const Value *SrcV = I.getOperand(0); 3587 const Value *PtrV = I.getOperand(1); 3588 3589 SmallVector<EVT, 4> ValueVTs; 3590 SmallVector<uint64_t, 4> Offsets; 3591 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3592 ValueVTs, &Offsets); 3593 unsigned NumValues = ValueVTs.size(); 3594 if (NumValues == 0) 3595 return; 3596 3597 // Get the lowered operands. Note that we do this after 3598 // checking if NumResults is zero, because with zero results 3599 // the operands won't have values in the map. 3600 SDValue Src = getValue(SrcV); 3601 SDValue Ptr = getValue(PtrV); 3602 3603 SDValue Root = getRoot(); 3604 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3605 NumValues)); 3606 EVT PtrVT = Ptr.getValueType(); 3607 bool isVolatile = I.isVolatile(); 3608 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3609 unsigned Alignment = I.getAlignment(); 3610 3611 AAMDNodes AAInfo; 3612 I.getAAMetadata(AAInfo); 3613 3614 unsigned ChainI = 0; 3615 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3616 // See visitLoad comments. 3617 if (ChainI == MaxParallelChains) { 3618 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3619 makeArrayRef(Chains.data(), ChainI)); 3620 Root = Chain; 3621 ChainI = 0; 3622 } 3623 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3624 DAG.getConstant(Offsets[i], PtrVT)); 3625 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3626 SDValue(Src.getNode(), Src.getResNo() + i), 3627 Add, MachinePointerInfo(PtrV, Offsets[i]), 3628 isVolatile, isNonTemporal, Alignment, AAInfo); 3629 Chains[ChainI] = St; 3630 } 3631 3632 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3633 makeArrayRef(Chains.data(), ChainI)); 3634 DAG.setRoot(StoreNode); 3635 } 3636 3637 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3638 SynchronizationScope Scope, 3639 bool Before, SDLoc dl, 3640 SelectionDAG &DAG, 3641 const TargetLowering &TLI) { 3642 // Fence, if necessary 3643 if (Before) { 3644 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3645 Order = Release; 3646 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3647 return Chain; 3648 } else { 3649 if (Order == AcquireRelease) 3650 Order = Acquire; 3651 else if (Order == Release || Order == Monotonic || Order == Unordered) 3652 return Chain; 3653 } 3654 SDValue Ops[3]; 3655 Ops[0] = Chain; 3656 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3657 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3658 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3659 } 3660 3661 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3662 SDLoc dl = getCurSDLoc(); 3663 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3664 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3665 SynchronizationScope Scope = I.getSynchScope(); 3666 3667 SDValue InChain = getRoot(); 3668 3669 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3670 if (TLI->getInsertFencesForAtomic()) 3671 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3672 DAG, *TLI); 3673 3674 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3675 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3676 SDValue L = DAG.getAtomicCmpSwap( 3677 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3678 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3679 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3680 0 /* Alignment */, 3681 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3682 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3683 3684 SDValue OutChain = L.getValue(2); 3685 3686 if (TLI->getInsertFencesForAtomic()) 3687 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3688 DAG, *TLI); 3689 3690 setValue(&I, L); 3691 DAG.setRoot(OutChain); 3692 } 3693 3694 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3695 SDLoc dl = getCurSDLoc(); 3696 ISD::NodeType NT; 3697 switch (I.getOperation()) { 3698 default: llvm_unreachable("Unknown atomicrmw operation"); 3699 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3700 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3701 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3702 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3703 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3704 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3705 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3706 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3707 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3708 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3709 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3710 } 3711 AtomicOrdering Order = I.getOrdering(); 3712 SynchronizationScope Scope = I.getSynchScope(); 3713 3714 SDValue InChain = getRoot(); 3715 3716 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3717 if (TLI->getInsertFencesForAtomic()) 3718 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3719 DAG, *TLI); 3720 3721 SDValue L = 3722 DAG.getAtomic(NT, dl, 3723 getValue(I.getValOperand()).getSimpleValueType(), 3724 InChain, 3725 getValue(I.getPointerOperand()), 3726 getValue(I.getValOperand()), 3727 I.getPointerOperand(), 0 /* Alignment */, 3728 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3729 Scope); 3730 3731 SDValue OutChain = L.getValue(1); 3732 3733 if (TLI->getInsertFencesForAtomic()) 3734 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3735 DAG, *TLI); 3736 3737 setValue(&I, L); 3738 DAG.setRoot(OutChain); 3739 } 3740 3741 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3742 SDLoc dl = getCurSDLoc(); 3743 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3744 SDValue Ops[3]; 3745 Ops[0] = getRoot(); 3746 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3747 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3748 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3749 } 3750 3751 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3752 SDLoc dl = getCurSDLoc(); 3753 AtomicOrdering Order = I.getOrdering(); 3754 SynchronizationScope Scope = I.getSynchScope(); 3755 3756 SDValue InChain = getRoot(); 3757 3758 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3759 EVT VT = TLI->getValueType(I.getType()); 3760 3761 if (I.getAlignment() < VT.getSizeInBits() / 8) 3762 report_fatal_error("Cannot generate unaligned atomic load"); 3763 3764 MachineMemOperand *MMO = 3765 DAG.getMachineFunction(). 3766 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3767 MachineMemOperand::MOVolatile | 3768 MachineMemOperand::MOLoad, 3769 VT.getStoreSize(), 3770 I.getAlignment() ? I.getAlignment() : 3771 DAG.getEVTAlignment(VT)); 3772 3773 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3774 SDValue L = 3775 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3776 getValue(I.getPointerOperand()), MMO, 3777 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3778 Scope); 3779 3780 SDValue OutChain = L.getValue(1); 3781 3782 if (TLI->getInsertFencesForAtomic()) 3783 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3784 DAG, *TLI); 3785 3786 setValue(&I, L); 3787 DAG.setRoot(OutChain); 3788 } 3789 3790 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3791 SDLoc dl = getCurSDLoc(); 3792 3793 AtomicOrdering Order = I.getOrdering(); 3794 SynchronizationScope Scope = I.getSynchScope(); 3795 3796 SDValue InChain = getRoot(); 3797 3798 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3799 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3800 3801 if (I.getAlignment() < VT.getSizeInBits() / 8) 3802 report_fatal_error("Cannot generate unaligned atomic store"); 3803 3804 if (TLI->getInsertFencesForAtomic()) 3805 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3806 DAG, *TLI); 3807 3808 SDValue OutChain = 3809 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3810 InChain, 3811 getValue(I.getPointerOperand()), 3812 getValue(I.getValueOperand()), 3813 I.getPointerOperand(), I.getAlignment(), 3814 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3815 Scope); 3816 3817 if (TLI->getInsertFencesForAtomic()) 3818 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3819 DAG, *TLI); 3820 3821 DAG.setRoot(OutChain); 3822 } 3823 3824 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3825 /// node. 3826 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3827 unsigned Intrinsic) { 3828 bool HasChain = !I.doesNotAccessMemory(); 3829 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3830 3831 // Build the operand list. 3832 SmallVector<SDValue, 8> Ops; 3833 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3834 if (OnlyLoad) { 3835 // We don't need to serialize loads against other loads. 3836 Ops.push_back(DAG.getRoot()); 3837 } else { 3838 Ops.push_back(getRoot()); 3839 } 3840 } 3841 3842 // Info is set by getTgtMemInstrinsic 3843 TargetLowering::IntrinsicInfo Info; 3844 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3845 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3846 3847 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3848 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3849 Info.opc == ISD::INTRINSIC_W_CHAIN) 3850 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3851 3852 // Add all operands of the call to the operand list. 3853 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3854 SDValue Op = getValue(I.getArgOperand(i)); 3855 Ops.push_back(Op); 3856 } 3857 3858 SmallVector<EVT, 4> ValueVTs; 3859 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3860 3861 if (HasChain) 3862 ValueVTs.push_back(MVT::Other); 3863 3864 SDVTList VTs = DAG.getVTList(ValueVTs); 3865 3866 // Create the node. 3867 SDValue Result; 3868 if (IsTgtIntrinsic) { 3869 // This is target intrinsic that touches memory 3870 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3871 VTs, Ops, Info.memVT, 3872 MachinePointerInfo(Info.ptrVal, Info.offset), 3873 Info.align, Info.vol, 3874 Info.readMem, Info.writeMem, Info.size); 3875 } else if (!HasChain) { 3876 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3877 } else if (!I.getType()->isVoidTy()) { 3878 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3879 } else { 3880 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3881 } 3882 3883 if (HasChain) { 3884 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3885 if (OnlyLoad) 3886 PendingLoads.push_back(Chain); 3887 else 3888 DAG.setRoot(Chain); 3889 } 3890 3891 if (!I.getType()->isVoidTy()) { 3892 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3893 EVT VT = TLI->getValueType(PTy); 3894 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3895 } 3896 3897 setValue(&I, Result); 3898 } 3899 } 3900 3901 /// GetSignificand - Get the significand and build it into a floating-point 3902 /// number with exponent of 1: 3903 /// 3904 /// Op = (Op & 0x007fffff) | 0x3f800000; 3905 /// 3906 /// where Op is the hexadecimal representation of floating point value. 3907 static SDValue 3908 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3909 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3910 DAG.getConstant(0x007fffff, MVT::i32)); 3911 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3912 DAG.getConstant(0x3f800000, MVT::i32)); 3913 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3914 } 3915 3916 /// GetExponent - Get the exponent: 3917 /// 3918 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3919 /// 3920 /// where Op is the hexadecimal representation of floating point value. 3921 static SDValue 3922 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3923 SDLoc dl) { 3924 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3925 DAG.getConstant(0x7f800000, MVT::i32)); 3926 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3927 DAG.getConstant(23, TLI.getPointerTy())); 3928 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3929 DAG.getConstant(127, MVT::i32)); 3930 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3931 } 3932 3933 /// getF32Constant - Get 32-bit floating point constant. 3934 static SDValue 3935 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3936 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3937 MVT::f32); 3938 } 3939 3940 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3941 /// limited-precision mode. 3942 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3943 const TargetLowering &TLI) { 3944 if (Op.getValueType() == MVT::f32 && 3945 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3946 3947 // Put the exponent in the right bit position for later addition to the 3948 // final result: 3949 // 3950 // #define LOG2OFe 1.4426950f 3951 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3952 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3953 getF32Constant(DAG, 0x3fb8aa3b)); 3954 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3955 3956 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3957 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3958 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3959 3960 // IntegerPartOfX <<= 23; 3961 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3962 DAG.getConstant(23, TLI.getPointerTy())); 3963 3964 SDValue TwoToFracPartOfX; 3965 if (LimitFloatPrecision <= 6) { 3966 // For floating-point precision of 6: 3967 // 3968 // TwoToFractionalPartOfX = 3969 // 0.997535578f + 3970 // (0.735607626f + 0.252464424f * x) * x; 3971 // 3972 // error 0.0144103317, which is 6 bits 3973 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3974 getF32Constant(DAG, 0x3e814304)); 3975 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x3f3c50c8)); 3977 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3978 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3979 getF32Constant(DAG, 0x3f7f5e7e)); 3980 } else if (LimitFloatPrecision <= 12) { 3981 // For floating-point precision of 12: 3982 // 3983 // TwoToFractionalPartOfX = 3984 // 0.999892986f + 3985 // (0.696457318f + 3986 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3987 // 3988 // 0.000107046256 error, which is 13 to 14 bits 3989 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3990 getF32Constant(DAG, 0x3da235e3)); 3991 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3992 getF32Constant(DAG, 0x3e65b8f3)); 3993 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3994 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3995 getF32Constant(DAG, 0x3f324b07)); 3996 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3997 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3998 getF32Constant(DAG, 0x3f7ff8fd)); 3999 } else { // LimitFloatPrecision <= 18 4000 // For floating-point precision of 18: 4001 // 4002 // TwoToFractionalPartOfX = 4003 // 0.999999982f + 4004 // (0.693148872f + 4005 // (0.240227044f + 4006 // (0.554906021e-1f + 4007 // (0.961591928e-2f + 4008 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4009 // 4010 // error 2.47208000*10^(-7), which is better than 18 bits 4011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4012 getF32Constant(DAG, 0x3924b03e)); 4013 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4014 getF32Constant(DAG, 0x3ab24b87)); 4015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4016 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4017 getF32Constant(DAG, 0x3c1d8c17)); 4018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4019 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4020 getF32Constant(DAG, 0x3d634a1d)); 4021 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4022 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4023 getF32Constant(DAG, 0x3e75fe14)); 4024 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4025 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4026 getF32Constant(DAG, 0x3f317234)); 4027 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4028 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4029 getF32Constant(DAG, 0x3f800000)); 4030 } 4031 4032 // Add the exponent into the result in integer domain. 4033 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4034 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4035 DAG.getNode(ISD::ADD, dl, MVT::i32, 4036 t13, IntegerPartOfX)); 4037 } 4038 4039 // No special expansion. 4040 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4041 } 4042 4043 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4044 /// limited-precision mode. 4045 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4046 const TargetLowering &TLI) { 4047 if (Op.getValueType() == MVT::f32 && 4048 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4049 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4050 4051 // Scale the exponent by log(2) [0.69314718f]. 4052 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4053 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4054 getF32Constant(DAG, 0x3f317218)); 4055 4056 // Get the significand and build it into a floating-point number with 4057 // exponent of 1. 4058 SDValue X = GetSignificand(DAG, Op1, dl); 4059 4060 SDValue LogOfMantissa; 4061 if (LimitFloatPrecision <= 6) { 4062 // For floating-point precision of 6: 4063 // 4064 // LogofMantissa = 4065 // -1.1609546f + 4066 // (1.4034025f - 0.23903021f * x) * x; 4067 // 4068 // error 0.0034276066, which is better than 8 bits 4069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4070 getF32Constant(DAG, 0xbe74c456)); 4071 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4072 getF32Constant(DAG, 0x3fb3a2b1)); 4073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4074 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4075 getF32Constant(DAG, 0x3f949a29)); 4076 } else if (LimitFloatPrecision <= 12) { 4077 // For floating-point precision of 12: 4078 // 4079 // LogOfMantissa = 4080 // -1.7417939f + 4081 // (2.8212026f + 4082 // (-1.4699568f + 4083 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4084 // 4085 // error 0.000061011436, which is 14 bits 4086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0xbd67b6d6)); 4088 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4089 getF32Constant(DAG, 0x3ee4f4b8)); 4090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4091 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4092 getF32Constant(DAG, 0x3fbc278b)); 4093 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4094 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4095 getF32Constant(DAG, 0x40348e95)); 4096 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4097 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4098 getF32Constant(DAG, 0x3fdef31a)); 4099 } else { // LimitFloatPrecision <= 18 4100 // For floating-point precision of 18: 4101 // 4102 // LogOfMantissa = 4103 // -2.1072184f + 4104 // (4.2372794f + 4105 // (-3.7029485f + 4106 // (2.2781945f + 4107 // (-0.87823314f + 4108 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4109 // 4110 // error 0.0000023660568, which is better than 18 bits 4111 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4112 getF32Constant(DAG, 0xbc91e5ac)); 4113 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4114 getF32Constant(DAG, 0x3e4350aa)); 4115 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4116 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4117 getF32Constant(DAG, 0x3f60d3e3)); 4118 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4119 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4120 getF32Constant(DAG, 0x4011cdf0)); 4121 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4122 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4123 getF32Constant(DAG, 0x406cfd1c)); 4124 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4125 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4126 getF32Constant(DAG, 0x408797cb)); 4127 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4128 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4129 getF32Constant(DAG, 0x4006dcab)); 4130 } 4131 4132 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4133 } 4134 4135 // No special expansion. 4136 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4137 } 4138 4139 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4140 /// limited-precision mode. 4141 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4142 const TargetLowering &TLI) { 4143 if (Op.getValueType() == MVT::f32 && 4144 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4145 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4146 4147 // Get the exponent. 4148 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4149 4150 // Get the significand and build it into a floating-point number with 4151 // exponent of 1. 4152 SDValue X = GetSignificand(DAG, Op1, dl); 4153 4154 // Different possible minimax approximations of significand in 4155 // floating-point for various degrees of accuracy over [1,2]. 4156 SDValue Log2ofMantissa; 4157 if (LimitFloatPrecision <= 6) { 4158 // For floating-point precision of 6: 4159 // 4160 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4161 // 4162 // error 0.0049451742, which is more than 7 bits 4163 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4164 getF32Constant(DAG, 0xbeb08fe0)); 4165 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4166 getF32Constant(DAG, 0x40019463)); 4167 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4168 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4169 getF32Constant(DAG, 0x3fd6633d)); 4170 } else if (LimitFloatPrecision <= 12) { 4171 // For floating-point precision of 12: 4172 // 4173 // Log2ofMantissa = 4174 // -2.51285454f + 4175 // (4.07009056f + 4176 // (-2.12067489f + 4177 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4178 // 4179 // error 0.0000876136000, which is better than 13 bits 4180 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4181 getF32Constant(DAG, 0xbda7262e)); 4182 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4183 getF32Constant(DAG, 0x3f25280b)); 4184 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4185 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4186 getF32Constant(DAG, 0x4007b923)); 4187 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4188 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4189 getF32Constant(DAG, 0x40823e2f)); 4190 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4191 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4192 getF32Constant(DAG, 0x4020d29c)); 4193 } else { // LimitFloatPrecision <= 18 4194 // For floating-point precision of 18: 4195 // 4196 // Log2ofMantissa = 4197 // -3.0400495f + 4198 // (6.1129976f + 4199 // (-5.3420409f + 4200 // (3.2865683f + 4201 // (-1.2669343f + 4202 // (0.27515199f - 4203 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4204 // 4205 // error 0.0000018516, which is better than 18 bits 4206 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4207 getF32Constant(DAG, 0xbcd2769e)); 4208 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4209 getF32Constant(DAG, 0x3e8ce0b9)); 4210 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4211 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4212 getF32Constant(DAG, 0x3fa22ae7)); 4213 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4214 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4215 getF32Constant(DAG, 0x40525723)); 4216 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4217 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4218 getF32Constant(DAG, 0x40aaf200)); 4219 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4220 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4221 getF32Constant(DAG, 0x40c39dad)); 4222 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4223 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4224 getF32Constant(DAG, 0x4042902c)); 4225 } 4226 4227 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4228 } 4229 4230 // No special expansion. 4231 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4232 } 4233 4234 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4235 /// limited-precision mode. 4236 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4237 const TargetLowering &TLI) { 4238 if (Op.getValueType() == MVT::f32 && 4239 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4240 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4241 4242 // Scale the exponent by log10(2) [0.30102999f]. 4243 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4244 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4245 getF32Constant(DAG, 0x3e9a209a)); 4246 4247 // Get the significand and build it into a floating-point number with 4248 // exponent of 1. 4249 SDValue X = GetSignificand(DAG, Op1, dl); 4250 4251 SDValue Log10ofMantissa; 4252 if (LimitFloatPrecision <= 6) { 4253 // For floating-point precision of 6: 4254 // 4255 // Log10ofMantissa = 4256 // -0.50419619f + 4257 // (0.60948995f - 0.10380950f * x) * x; 4258 // 4259 // error 0.0014886165, which is 6 bits 4260 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4261 getF32Constant(DAG, 0xbdd49a13)); 4262 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4263 getF32Constant(DAG, 0x3f1c0789)); 4264 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4265 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4266 getF32Constant(DAG, 0x3f011300)); 4267 } else if (LimitFloatPrecision <= 12) { 4268 // For floating-point precision of 12: 4269 // 4270 // Log10ofMantissa = 4271 // -0.64831180f + 4272 // (0.91751397f + 4273 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4274 // 4275 // error 0.00019228036, which is better than 12 bits 4276 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4277 getF32Constant(DAG, 0x3d431f31)); 4278 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4279 getF32Constant(DAG, 0x3ea21fb2)); 4280 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4281 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4282 getF32Constant(DAG, 0x3f6ae232)); 4283 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4284 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4285 getF32Constant(DAG, 0x3f25f7c3)); 4286 } else { // LimitFloatPrecision <= 18 4287 // For floating-point precision of 18: 4288 // 4289 // Log10ofMantissa = 4290 // -0.84299375f + 4291 // (1.5327582f + 4292 // (-1.0688956f + 4293 // (0.49102474f + 4294 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4295 // 4296 // error 0.0000037995730, which is better than 18 bits 4297 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4298 getF32Constant(DAG, 0x3c5d51ce)); 4299 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4300 getF32Constant(DAG, 0x3e00685a)); 4301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4302 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4303 getF32Constant(DAG, 0x3efb6798)); 4304 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4305 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4306 getF32Constant(DAG, 0x3f88d192)); 4307 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4308 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4309 getF32Constant(DAG, 0x3fc4316c)); 4310 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4311 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4312 getF32Constant(DAG, 0x3f57ce70)); 4313 } 4314 4315 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4316 } 4317 4318 // No special expansion. 4319 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4320 } 4321 4322 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4323 /// limited-precision mode. 4324 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4325 const TargetLowering &TLI) { 4326 if (Op.getValueType() == MVT::f32 && 4327 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4328 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4329 4330 // FractionalPartOfX = x - (float)IntegerPartOfX; 4331 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4332 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4333 4334 // IntegerPartOfX <<= 23; 4335 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4336 DAG.getConstant(23, TLI.getPointerTy())); 4337 4338 SDValue TwoToFractionalPartOfX; 4339 if (LimitFloatPrecision <= 6) { 4340 // For floating-point precision of 6: 4341 // 4342 // TwoToFractionalPartOfX = 4343 // 0.997535578f + 4344 // (0.735607626f + 0.252464424f * x) * x; 4345 // 4346 // error 0.0144103317, which is 6 bits 4347 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4348 getF32Constant(DAG, 0x3e814304)); 4349 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4350 getF32Constant(DAG, 0x3f3c50c8)); 4351 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4352 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4353 getF32Constant(DAG, 0x3f7f5e7e)); 4354 } else if (LimitFloatPrecision <= 12) { 4355 // For floating-point precision of 12: 4356 // 4357 // TwoToFractionalPartOfX = 4358 // 0.999892986f + 4359 // (0.696457318f + 4360 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4361 // 4362 // error 0.000107046256, which is 13 to 14 bits 4363 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4364 getF32Constant(DAG, 0x3da235e3)); 4365 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4366 getF32Constant(DAG, 0x3e65b8f3)); 4367 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4368 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4369 getF32Constant(DAG, 0x3f324b07)); 4370 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4371 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4372 getF32Constant(DAG, 0x3f7ff8fd)); 4373 } else { // LimitFloatPrecision <= 18 4374 // For floating-point precision of 18: 4375 // 4376 // TwoToFractionalPartOfX = 4377 // 0.999999982f + 4378 // (0.693148872f + 4379 // (0.240227044f + 4380 // (0.554906021e-1f + 4381 // (0.961591928e-2f + 4382 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4383 // error 2.47208000*10^(-7), which is better than 18 bits 4384 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4385 getF32Constant(DAG, 0x3924b03e)); 4386 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4387 getF32Constant(DAG, 0x3ab24b87)); 4388 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4389 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4390 getF32Constant(DAG, 0x3c1d8c17)); 4391 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4392 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4393 getF32Constant(DAG, 0x3d634a1d)); 4394 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4395 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4396 getF32Constant(DAG, 0x3e75fe14)); 4397 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4398 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4399 getF32Constant(DAG, 0x3f317234)); 4400 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4401 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4402 getF32Constant(DAG, 0x3f800000)); 4403 } 4404 4405 // Add the exponent into the result in integer domain. 4406 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4407 TwoToFractionalPartOfX); 4408 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4409 DAG.getNode(ISD::ADD, dl, MVT::i32, 4410 t13, IntegerPartOfX)); 4411 } 4412 4413 // No special expansion. 4414 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4415 } 4416 4417 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4418 /// limited-precision mode with x == 10.0f. 4419 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4420 SelectionDAG &DAG, const TargetLowering &TLI) { 4421 bool IsExp10 = false; 4422 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4423 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4424 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4425 APFloat Ten(10.0f); 4426 IsExp10 = LHSC->isExactlyValue(Ten); 4427 } 4428 } 4429 4430 if (IsExp10) { 4431 // Put the exponent in the right bit position for later addition to the 4432 // final result: 4433 // 4434 // #define LOG2OF10 3.3219281f 4435 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4436 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4437 getF32Constant(DAG, 0x40549a78)); 4438 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4439 4440 // FractionalPartOfX = x - (float)IntegerPartOfX; 4441 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4442 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4443 4444 // IntegerPartOfX <<= 23; 4445 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4446 DAG.getConstant(23, TLI.getPointerTy())); 4447 4448 SDValue TwoToFractionalPartOfX; 4449 if (LimitFloatPrecision <= 6) { 4450 // For floating-point precision of 6: 4451 // 4452 // twoToFractionalPartOfX = 4453 // 0.997535578f + 4454 // (0.735607626f + 0.252464424f * x) * x; 4455 // 4456 // error 0.0144103317, which is 6 bits 4457 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4458 getF32Constant(DAG, 0x3e814304)); 4459 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4460 getF32Constant(DAG, 0x3f3c50c8)); 4461 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4462 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4463 getF32Constant(DAG, 0x3f7f5e7e)); 4464 } else if (LimitFloatPrecision <= 12) { 4465 // For floating-point precision of 12: 4466 // 4467 // TwoToFractionalPartOfX = 4468 // 0.999892986f + 4469 // (0.696457318f + 4470 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4471 // 4472 // error 0.000107046256, which is 13 to 14 bits 4473 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4474 getF32Constant(DAG, 0x3da235e3)); 4475 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4476 getF32Constant(DAG, 0x3e65b8f3)); 4477 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4478 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4479 getF32Constant(DAG, 0x3f324b07)); 4480 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4481 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4482 getF32Constant(DAG, 0x3f7ff8fd)); 4483 } else { // LimitFloatPrecision <= 18 4484 // For floating-point precision of 18: 4485 // 4486 // TwoToFractionalPartOfX = 4487 // 0.999999982f + 4488 // (0.693148872f + 4489 // (0.240227044f + 4490 // (0.554906021e-1f + 4491 // (0.961591928e-2f + 4492 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4493 // error 2.47208000*10^(-7), which is better than 18 bits 4494 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4495 getF32Constant(DAG, 0x3924b03e)); 4496 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4497 getF32Constant(DAG, 0x3ab24b87)); 4498 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4499 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4500 getF32Constant(DAG, 0x3c1d8c17)); 4501 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4502 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4503 getF32Constant(DAG, 0x3d634a1d)); 4504 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4505 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4506 getF32Constant(DAG, 0x3e75fe14)); 4507 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4508 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4509 getF32Constant(DAG, 0x3f317234)); 4510 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4511 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4512 getF32Constant(DAG, 0x3f800000)); 4513 } 4514 4515 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4516 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4517 DAG.getNode(ISD::ADD, dl, MVT::i32, 4518 t13, IntegerPartOfX)); 4519 } 4520 4521 // No special expansion. 4522 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4523 } 4524 4525 4526 /// ExpandPowI - Expand a llvm.powi intrinsic. 4527 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4528 SelectionDAG &DAG) { 4529 // If RHS is a constant, we can expand this out to a multiplication tree, 4530 // otherwise we end up lowering to a call to __powidf2 (for example). When 4531 // optimizing for size, we only want to do this if the expansion would produce 4532 // a small number of multiplies, otherwise we do the full expansion. 4533 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4534 // Get the exponent as a positive value. 4535 unsigned Val = RHSC->getSExtValue(); 4536 if ((int)Val < 0) Val = -Val; 4537 4538 // powi(x, 0) -> 1.0 4539 if (Val == 0) 4540 return DAG.getConstantFP(1.0, LHS.getValueType()); 4541 4542 const Function *F = DAG.getMachineFunction().getFunction(); 4543 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4544 Attribute::OptimizeForSize) || 4545 // If optimizing for size, don't insert too many multiplies. This 4546 // inserts up to 5 multiplies. 4547 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4548 // We use the simple binary decomposition method to generate the multiply 4549 // sequence. There are more optimal ways to do this (for example, 4550 // powi(x,15) generates one more multiply than it should), but this has 4551 // the benefit of being both really simple and much better than a libcall. 4552 SDValue Res; // Logically starts equal to 1.0 4553 SDValue CurSquare = LHS; 4554 while (Val) { 4555 if (Val & 1) { 4556 if (Res.getNode()) 4557 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4558 else 4559 Res = CurSquare; // 1.0*CurSquare. 4560 } 4561 4562 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4563 CurSquare, CurSquare); 4564 Val >>= 1; 4565 } 4566 4567 // If the original was negative, invert the result, producing 1/(x*x*x). 4568 if (RHSC->getSExtValue() < 0) 4569 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4570 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4571 return Res; 4572 } 4573 } 4574 4575 // Otherwise, expand to a libcall. 4576 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4577 } 4578 4579 // getTruncatedArgReg - Find underlying register used for an truncated 4580 // argument. 4581 static unsigned getTruncatedArgReg(const SDValue &N) { 4582 if (N.getOpcode() != ISD::TRUNCATE) 4583 return 0; 4584 4585 const SDValue &Ext = N.getOperand(0); 4586 if (Ext.getOpcode() == ISD::AssertZext || 4587 Ext.getOpcode() == ISD::AssertSext) { 4588 const SDValue &CFR = Ext.getOperand(0); 4589 if (CFR.getOpcode() == ISD::CopyFromReg) 4590 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4591 if (CFR.getOpcode() == ISD::TRUNCATE) 4592 return getTruncatedArgReg(CFR); 4593 } 4594 return 0; 4595 } 4596 4597 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4598 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4599 /// At the end of instruction selection, they will be inserted to the entry BB. 4600 bool 4601 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4602 int64_t Offset, bool IsIndirect, 4603 const SDValue &N) { 4604 const Argument *Arg = dyn_cast<Argument>(V); 4605 if (!Arg) 4606 return false; 4607 4608 MachineFunction &MF = DAG.getMachineFunction(); 4609 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4610 4611 // Ignore inlined function arguments here. 4612 DIVariable DV(Variable); 4613 if (DV.isInlinedFnArgument(MF.getFunction())) 4614 return false; 4615 4616 Optional<MachineOperand> Op; 4617 // Some arguments' frame index is recorded during argument lowering. 4618 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4619 Op = MachineOperand::CreateFI(FI); 4620 4621 if (!Op && N.getNode()) { 4622 unsigned Reg; 4623 if (N.getOpcode() == ISD::CopyFromReg) 4624 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4625 else 4626 Reg = getTruncatedArgReg(N); 4627 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4628 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4629 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4630 if (PR) 4631 Reg = PR; 4632 } 4633 if (Reg) 4634 Op = MachineOperand::CreateReg(Reg, false); 4635 } 4636 4637 if (!Op) { 4638 // Check if ValueMap has reg number. 4639 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4640 if (VMI != FuncInfo.ValueMap.end()) 4641 Op = MachineOperand::CreateReg(VMI->second, false); 4642 } 4643 4644 if (!Op && N.getNode()) 4645 // Check if frame index is available. 4646 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4647 if (FrameIndexSDNode *FINode = 4648 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4649 Op = MachineOperand::CreateFI(FINode->getIndex()); 4650 4651 if (!Op) 4652 return false; 4653 4654 if (Op->isReg()) 4655 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4656 TII->get(TargetOpcode::DBG_VALUE), 4657 IsIndirect, 4658 Op->getReg(), Offset, Variable)); 4659 else 4660 FuncInfo.ArgDbgValues.push_back( 4661 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4662 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4663 4664 return true; 4665 } 4666 4667 // VisualStudio defines setjmp as _setjmp 4668 #if defined(_MSC_VER) && defined(setjmp) && \ 4669 !defined(setjmp_undefined_for_msvc) 4670 # pragma push_macro("setjmp") 4671 # undef setjmp 4672 # define setjmp_undefined_for_msvc 4673 #endif 4674 4675 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4676 /// we want to emit this as a call to a named external function, return the name 4677 /// otherwise lower it and return null. 4678 const char * 4679 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4680 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4681 SDLoc sdl = getCurSDLoc(); 4682 DebugLoc dl = getCurDebugLoc(); 4683 SDValue Res; 4684 4685 switch (Intrinsic) { 4686 default: 4687 // By default, turn this into a target intrinsic node. 4688 visitTargetIntrinsic(I, Intrinsic); 4689 return nullptr; 4690 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4691 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4692 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4693 case Intrinsic::returnaddress: 4694 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4695 getValue(I.getArgOperand(0)))); 4696 return nullptr; 4697 case Intrinsic::frameaddress: 4698 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4699 getValue(I.getArgOperand(0)))); 4700 return nullptr; 4701 case Intrinsic::read_register: { 4702 Value *Reg = I.getArgOperand(0); 4703 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4704 EVT VT = 4705 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4706 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4707 return nullptr; 4708 } 4709 case Intrinsic::write_register: { 4710 Value *Reg = I.getArgOperand(0); 4711 Value *RegValue = I.getArgOperand(1); 4712 SDValue Chain = getValue(RegValue).getOperand(0); 4713 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4714 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4715 RegName, getValue(RegValue))); 4716 return nullptr; 4717 } 4718 case Intrinsic::setjmp: 4719 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4720 case Intrinsic::longjmp: 4721 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4722 case Intrinsic::memcpy: { 4723 // Assert for address < 256 since we support only user defined address 4724 // spaces. 4725 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4726 < 256 && 4727 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4728 < 256 && 4729 "Unknown address space"); 4730 SDValue Op1 = getValue(I.getArgOperand(0)); 4731 SDValue Op2 = getValue(I.getArgOperand(1)); 4732 SDValue Op3 = getValue(I.getArgOperand(2)); 4733 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4734 if (!Align) 4735 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4736 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4737 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4738 MachinePointerInfo(I.getArgOperand(0)), 4739 MachinePointerInfo(I.getArgOperand(1)))); 4740 return nullptr; 4741 } 4742 case Intrinsic::memset: { 4743 // Assert for address < 256 since we support only user defined address 4744 // spaces. 4745 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4746 < 256 && 4747 "Unknown address space"); 4748 SDValue Op1 = getValue(I.getArgOperand(0)); 4749 SDValue Op2 = getValue(I.getArgOperand(1)); 4750 SDValue Op3 = getValue(I.getArgOperand(2)); 4751 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4752 if (!Align) 4753 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4754 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4755 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4756 MachinePointerInfo(I.getArgOperand(0)))); 4757 return nullptr; 4758 } 4759 case Intrinsic::memmove: { 4760 // Assert for address < 256 since we support only user defined address 4761 // spaces. 4762 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4763 < 256 && 4764 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4765 < 256 && 4766 "Unknown address space"); 4767 SDValue Op1 = getValue(I.getArgOperand(0)); 4768 SDValue Op2 = getValue(I.getArgOperand(1)); 4769 SDValue Op3 = getValue(I.getArgOperand(2)); 4770 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4771 if (!Align) 4772 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4773 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4774 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4775 MachinePointerInfo(I.getArgOperand(0)), 4776 MachinePointerInfo(I.getArgOperand(1)))); 4777 return nullptr; 4778 } 4779 case Intrinsic::dbg_declare: { 4780 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4781 MDNode *Variable = DI.getVariable(); 4782 const Value *Address = DI.getAddress(); 4783 DIVariable DIVar(Variable); 4784 assert((!DIVar || DIVar.isVariable()) && 4785 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4786 if (!Address || !DIVar) { 4787 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4788 return nullptr; 4789 } 4790 4791 // Check if address has undef value. 4792 if (isa<UndefValue>(Address) || 4793 (Address->use_empty() && !isa<Argument>(Address))) { 4794 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4795 return nullptr; 4796 } 4797 4798 SDValue &N = NodeMap[Address]; 4799 if (!N.getNode() && isa<Argument>(Address)) 4800 // Check unused arguments map. 4801 N = UnusedArgNodeMap[Address]; 4802 SDDbgValue *SDV; 4803 if (N.getNode()) { 4804 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4805 Address = BCI->getOperand(0); 4806 // Parameters are handled specially. 4807 bool isParameter = 4808 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4809 isa<Argument>(Address)); 4810 4811 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4812 4813 if (isParameter && !AI) { 4814 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4815 if (FINode) 4816 // Byval parameter. We have a frame index at this point. 4817 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4818 0, dl, SDNodeOrder); 4819 else { 4820 // Address is an argument, so try to emit its dbg value using 4821 // virtual register info from the FuncInfo.ValueMap. 4822 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4823 return nullptr; 4824 } 4825 } else if (AI) 4826 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4827 true, 0, dl, SDNodeOrder); 4828 else { 4829 // Can't do anything with other non-AI cases yet. 4830 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4831 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4832 DEBUG(Address->dump()); 4833 return nullptr; 4834 } 4835 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4836 } else { 4837 // If Address is an argument then try to emit its dbg value using 4838 // virtual register info from the FuncInfo.ValueMap. 4839 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4840 // If variable is pinned by a alloca in dominating bb then 4841 // use StaticAllocaMap. 4842 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4843 if (AI->getParent() != DI.getParent()) { 4844 DenseMap<const AllocaInst*, int>::iterator SI = 4845 FuncInfo.StaticAllocaMap.find(AI); 4846 if (SI != FuncInfo.StaticAllocaMap.end()) { 4847 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4848 0, dl, SDNodeOrder); 4849 DAG.AddDbgValue(SDV, nullptr, false); 4850 return nullptr; 4851 } 4852 } 4853 } 4854 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4855 } 4856 } 4857 return nullptr; 4858 } 4859 case Intrinsic::dbg_value: { 4860 const DbgValueInst &DI = cast<DbgValueInst>(I); 4861 DIVariable DIVar(DI.getVariable()); 4862 assert((!DIVar || DIVar.isVariable()) && 4863 "Variable in DbgValueInst should be either null or a DIVariable."); 4864 if (!DIVar) 4865 return nullptr; 4866 4867 MDNode *Variable = DI.getVariable(); 4868 uint64_t Offset = DI.getOffset(); 4869 const Value *V = DI.getValue(); 4870 if (!V) 4871 return nullptr; 4872 4873 SDDbgValue *SDV; 4874 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4875 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4876 DAG.AddDbgValue(SDV, nullptr, false); 4877 } else { 4878 // Do not use getValue() in here; we don't want to generate code at 4879 // this point if it hasn't been done yet. 4880 SDValue N = NodeMap[V]; 4881 if (!N.getNode() && isa<Argument>(V)) 4882 // Check unused arguments map. 4883 N = UnusedArgNodeMap[V]; 4884 if (N.getNode()) { 4885 // A dbg.value for an alloca is always indirect. 4886 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4887 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4888 SDV = DAG.getDbgValue(Variable, N.getNode(), 4889 N.getResNo(), IsIndirect, 4890 Offset, dl, SDNodeOrder); 4891 DAG.AddDbgValue(SDV, N.getNode(), false); 4892 } 4893 } else if (!V->use_empty() ) { 4894 // Do not call getValue(V) yet, as we don't want to generate code. 4895 // Remember it for later. 4896 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4897 DanglingDebugInfoMap[V] = DDI; 4898 } else { 4899 // We may expand this to cover more cases. One case where we have no 4900 // data available is an unreferenced parameter. 4901 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4902 } 4903 } 4904 4905 // Build a debug info table entry. 4906 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4907 V = BCI->getOperand(0); 4908 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4909 // Don't handle byval struct arguments or VLAs, for example. 4910 if (!AI) { 4911 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4912 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4913 return nullptr; 4914 } 4915 DenseMap<const AllocaInst*, int>::iterator SI = 4916 FuncInfo.StaticAllocaMap.find(AI); 4917 if (SI == FuncInfo.StaticAllocaMap.end()) 4918 return nullptr; // VLAs. 4919 return nullptr; 4920 } 4921 4922 case Intrinsic::eh_typeid_for: { 4923 // Find the type id for the given typeinfo. 4924 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4925 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4926 Res = DAG.getConstant(TypeID, MVT::i32); 4927 setValue(&I, Res); 4928 return nullptr; 4929 } 4930 4931 case Intrinsic::eh_return_i32: 4932 case Intrinsic::eh_return_i64: 4933 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4934 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4935 MVT::Other, 4936 getControlRoot(), 4937 getValue(I.getArgOperand(0)), 4938 getValue(I.getArgOperand(1)))); 4939 return nullptr; 4940 case Intrinsic::eh_unwind_init: 4941 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4942 return nullptr; 4943 case Intrinsic::eh_dwarf_cfa: { 4944 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4945 TLI->getPointerTy()); 4946 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4947 CfaArg.getValueType(), 4948 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4949 CfaArg.getValueType()), 4950 CfaArg); 4951 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4952 TLI->getPointerTy(), 4953 DAG.getConstant(0, TLI->getPointerTy())); 4954 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4955 FA, Offset)); 4956 return nullptr; 4957 } 4958 case Intrinsic::eh_sjlj_callsite: { 4959 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4960 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4961 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4962 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4963 4964 MMI.setCurrentCallSite(CI->getZExtValue()); 4965 return nullptr; 4966 } 4967 case Intrinsic::eh_sjlj_functioncontext: { 4968 // Get and store the index of the function context. 4969 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4970 AllocaInst *FnCtx = 4971 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4972 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4973 MFI->setFunctionContextIndex(FI); 4974 return nullptr; 4975 } 4976 case Intrinsic::eh_sjlj_setjmp: { 4977 SDValue Ops[2]; 4978 Ops[0] = getRoot(); 4979 Ops[1] = getValue(I.getArgOperand(0)); 4980 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4981 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4982 setValue(&I, Op.getValue(0)); 4983 DAG.setRoot(Op.getValue(1)); 4984 return nullptr; 4985 } 4986 case Intrinsic::eh_sjlj_longjmp: { 4987 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4988 getRoot(), getValue(I.getArgOperand(0)))); 4989 return nullptr; 4990 } 4991 4992 case Intrinsic::x86_mmx_pslli_w: 4993 case Intrinsic::x86_mmx_pslli_d: 4994 case Intrinsic::x86_mmx_pslli_q: 4995 case Intrinsic::x86_mmx_psrli_w: 4996 case Intrinsic::x86_mmx_psrli_d: 4997 case Intrinsic::x86_mmx_psrli_q: 4998 case Intrinsic::x86_mmx_psrai_w: 4999 case Intrinsic::x86_mmx_psrai_d: { 5000 SDValue ShAmt = getValue(I.getArgOperand(1)); 5001 if (isa<ConstantSDNode>(ShAmt)) { 5002 visitTargetIntrinsic(I, Intrinsic); 5003 return nullptr; 5004 } 5005 unsigned NewIntrinsic = 0; 5006 EVT ShAmtVT = MVT::v2i32; 5007 switch (Intrinsic) { 5008 case Intrinsic::x86_mmx_pslli_w: 5009 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5010 break; 5011 case Intrinsic::x86_mmx_pslli_d: 5012 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5013 break; 5014 case Intrinsic::x86_mmx_pslli_q: 5015 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5016 break; 5017 case Intrinsic::x86_mmx_psrli_w: 5018 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5019 break; 5020 case Intrinsic::x86_mmx_psrli_d: 5021 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5022 break; 5023 case Intrinsic::x86_mmx_psrli_q: 5024 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5025 break; 5026 case Intrinsic::x86_mmx_psrai_w: 5027 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5028 break; 5029 case Intrinsic::x86_mmx_psrai_d: 5030 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5031 break; 5032 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5033 } 5034 5035 // The vector shift intrinsics with scalars uses 32b shift amounts but 5036 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5037 // to be zero. 5038 // We must do this early because v2i32 is not a legal type. 5039 SDValue ShOps[2]; 5040 ShOps[0] = ShAmt; 5041 ShOps[1] = DAG.getConstant(0, MVT::i32); 5042 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5043 EVT DestVT = TLI->getValueType(I.getType()); 5044 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5045 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5046 DAG.getConstant(NewIntrinsic, MVT::i32), 5047 getValue(I.getArgOperand(0)), ShAmt); 5048 setValue(&I, Res); 5049 return nullptr; 5050 } 5051 case Intrinsic::x86_avx_vinsertf128_pd_256: 5052 case Intrinsic::x86_avx_vinsertf128_ps_256: 5053 case Intrinsic::x86_avx_vinsertf128_si_256: 5054 case Intrinsic::x86_avx2_vinserti128: { 5055 EVT DestVT = TLI->getValueType(I.getType()); 5056 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5057 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5058 ElVT.getVectorNumElements(); 5059 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5060 getValue(I.getArgOperand(0)), 5061 getValue(I.getArgOperand(1)), 5062 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5063 setValue(&I, Res); 5064 return nullptr; 5065 } 5066 case Intrinsic::x86_avx_vextractf128_pd_256: 5067 case Intrinsic::x86_avx_vextractf128_ps_256: 5068 case Intrinsic::x86_avx_vextractf128_si_256: 5069 case Intrinsic::x86_avx2_vextracti128: { 5070 EVT DestVT = TLI->getValueType(I.getType()); 5071 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5072 DestVT.getVectorNumElements(); 5073 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5074 getValue(I.getArgOperand(0)), 5075 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5076 setValue(&I, Res); 5077 return nullptr; 5078 } 5079 case Intrinsic::convertff: 5080 case Intrinsic::convertfsi: 5081 case Intrinsic::convertfui: 5082 case Intrinsic::convertsif: 5083 case Intrinsic::convertuif: 5084 case Intrinsic::convertss: 5085 case Intrinsic::convertsu: 5086 case Intrinsic::convertus: 5087 case Intrinsic::convertuu: { 5088 ISD::CvtCode Code = ISD::CVT_INVALID; 5089 switch (Intrinsic) { 5090 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5091 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5092 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5093 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5094 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5095 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5096 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5097 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5098 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5099 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5100 } 5101 EVT DestVT = TLI->getValueType(I.getType()); 5102 const Value *Op1 = I.getArgOperand(0); 5103 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5104 DAG.getValueType(DestVT), 5105 DAG.getValueType(getValue(Op1).getValueType()), 5106 getValue(I.getArgOperand(1)), 5107 getValue(I.getArgOperand(2)), 5108 Code); 5109 setValue(&I, Res); 5110 return nullptr; 5111 } 5112 case Intrinsic::powi: 5113 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5114 getValue(I.getArgOperand(1)), DAG)); 5115 return nullptr; 5116 case Intrinsic::log: 5117 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5118 return nullptr; 5119 case Intrinsic::log2: 5120 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5121 return nullptr; 5122 case Intrinsic::log10: 5123 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5124 return nullptr; 5125 case Intrinsic::exp: 5126 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5127 return nullptr; 5128 case Intrinsic::exp2: 5129 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5130 return nullptr; 5131 case Intrinsic::pow: 5132 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5133 getValue(I.getArgOperand(1)), DAG, *TLI)); 5134 return nullptr; 5135 case Intrinsic::sqrt: 5136 case Intrinsic::fabs: 5137 case Intrinsic::sin: 5138 case Intrinsic::cos: 5139 case Intrinsic::floor: 5140 case Intrinsic::ceil: 5141 case Intrinsic::trunc: 5142 case Intrinsic::rint: 5143 case Intrinsic::nearbyint: 5144 case Intrinsic::round: { 5145 unsigned Opcode; 5146 switch (Intrinsic) { 5147 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5148 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5149 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5150 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5151 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5152 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5153 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5154 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5155 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5156 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5157 case Intrinsic::round: Opcode = ISD::FROUND; break; 5158 } 5159 5160 setValue(&I, DAG.getNode(Opcode, sdl, 5161 getValue(I.getArgOperand(0)).getValueType(), 5162 getValue(I.getArgOperand(0)))); 5163 return nullptr; 5164 } 5165 case Intrinsic::copysign: 5166 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5167 getValue(I.getArgOperand(0)).getValueType(), 5168 getValue(I.getArgOperand(0)), 5169 getValue(I.getArgOperand(1)))); 5170 return nullptr; 5171 case Intrinsic::fma: 5172 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5173 getValue(I.getArgOperand(0)).getValueType(), 5174 getValue(I.getArgOperand(0)), 5175 getValue(I.getArgOperand(1)), 5176 getValue(I.getArgOperand(2)))); 5177 return nullptr; 5178 case Intrinsic::fmuladd: { 5179 EVT VT = TLI->getValueType(I.getType()); 5180 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5181 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5182 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5183 getValue(I.getArgOperand(0)).getValueType(), 5184 getValue(I.getArgOperand(0)), 5185 getValue(I.getArgOperand(1)), 5186 getValue(I.getArgOperand(2)))); 5187 } else { 5188 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5189 getValue(I.getArgOperand(0)).getValueType(), 5190 getValue(I.getArgOperand(0)), 5191 getValue(I.getArgOperand(1))); 5192 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5193 getValue(I.getArgOperand(0)).getValueType(), 5194 Mul, 5195 getValue(I.getArgOperand(2))); 5196 setValue(&I, Add); 5197 } 5198 return nullptr; 5199 } 5200 case Intrinsic::convert_to_fp16: 5201 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5202 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5203 getValue(I.getArgOperand(0)), 5204 DAG.getTargetConstant(0, MVT::i32)))); 5205 return nullptr; 5206 case Intrinsic::convert_from_fp16: 5207 setValue(&I, 5208 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5209 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5210 getValue(I.getArgOperand(0))))); 5211 return nullptr; 5212 case Intrinsic::pcmarker: { 5213 SDValue Tmp = getValue(I.getArgOperand(0)); 5214 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5215 return nullptr; 5216 } 5217 case Intrinsic::readcyclecounter: { 5218 SDValue Op = getRoot(); 5219 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5220 DAG.getVTList(MVT::i64, MVT::Other), Op); 5221 setValue(&I, Res); 5222 DAG.setRoot(Res.getValue(1)); 5223 return nullptr; 5224 } 5225 case Intrinsic::bswap: 5226 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5227 getValue(I.getArgOperand(0)).getValueType(), 5228 getValue(I.getArgOperand(0)))); 5229 return nullptr; 5230 case Intrinsic::cttz: { 5231 SDValue Arg = getValue(I.getArgOperand(0)); 5232 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5233 EVT Ty = Arg.getValueType(); 5234 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5235 sdl, Ty, Arg)); 5236 return nullptr; 5237 } 5238 case Intrinsic::ctlz: { 5239 SDValue Arg = getValue(I.getArgOperand(0)); 5240 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5241 EVT Ty = Arg.getValueType(); 5242 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5243 sdl, Ty, Arg)); 5244 return nullptr; 5245 } 5246 case Intrinsic::ctpop: { 5247 SDValue Arg = getValue(I.getArgOperand(0)); 5248 EVT Ty = Arg.getValueType(); 5249 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5250 return nullptr; 5251 } 5252 case Intrinsic::stacksave: { 5253 SDValue Op = getRoot(); 5254 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5255 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5256 setValue(&I, Res); 5257 DAG.setRoot(Res.getValue(1)); 5258 return nullptr; 5259 } 5260 case Intrinsic::stackrestore: { 5261 Res = getValue(I.getArgOperand(0)); 5262 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5263 return nullptr; 5264 } 5265 case Intrinsic::stackprotector: { 5266 // Emit code into the DAG to store the stack guard onto the stack. 5267 MachineFunction &MF = DAG.getMachineFunction(); 5268 MachineFrameInfo *MFI = MF.getFrameInfo(); 5269 EVT PtrTy = TLI->getPointerTy(); 5270 SDValue Src, Chain = getRoot(); 5271 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5272 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5273 5274 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5275 // global variable __stack_chk_guard. 5276 if (!GV) 5277 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5278 if (BC->getOpcode() == Instruction::BitCast) 5279 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5280 5281 if (GV && TLI->useLoadStackGuardNode()) { 5282 // Emit a LOAD_STACK_GUARD node. 5283 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5284 sdl, PtrTy, Chain); 5285 MachinePointerInfo MPInfo(GV); 5286 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5287 unsigned Flags = MachineMemOperand::MOLoad | 5288 MachineMemOperand::MOInvariant; 5289 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5290 PtrTy.getSizeInBits() / 8, 5291 DAG.getEVTAlignment(PtrTy)); 5292 Node->setMemRefs(MemRefs, MemRefs + 1); 5293 5294 // Copy the guard value to a virtual register so that it can be 5295 // retrieved in the epilogue. 5296 Src = SDValue(Node, 0); 5297 const TargetRegisterClass *RC = 5298 TLI->getRegClassFor(Src.getSimpleValueType()); 5299 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5300 5301 SPDescriptor.setGuardReg(Reg); 5302 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5303 } else { 5304 Src = getValue(I.getArgOperand(0)); // The guard's value. 5305 } 5306 5307 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5308 5309 int FI = FuncInfo.StaticAllocaMap[Slot]; 5310 MFI->setStackProtectorIndex(FI); 5311 5312 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5313 5314 // Store the stack protector onto the stack. 5315 Res = DAG.getStore(Chain, sdl, Src, FIN, 5316 MachinePointerInfo::getFixedStack(FI), 5317 true, false, 0); 5318 setValue(&I, Res); 5319 DAG.setRoot(Res); 5320 return nullptr; 5321 } 5322 case Intrinsic::objectsize: { 5323 // If we don't know by now, we're never going to know. 5324 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5325 5326 assert(CI && "Non-constant type in __builtin_object_size?"); 5327 5328 SDValue Arg = getValue(I.getCalledValue()); 5329 EVT Ty = Arg.getValueType(); 5330 5331 if (CI->isZero()) 5332 Res = DAG.getConstant(-1ULL, Ty); 5333 else 5334 Res = DAG.getConstant(0, Ty); 5335 5336 setValue(&I, Res); 5337 return nullptr; 5338 } 5339 case Intrinsic::annotation: 5340 case Intrinsic::ptr_annotation: 5341 // Drop the intrinsic, but forward the value 5342 setValue(&I, getValue(I.getOperand(0))); 5343 return nullptr; 5344 case Intrinsic::assume: 5345 case Intrinsic::var_annotation: 5346 // Discard annotate attributes and assumptions 5347 return nullptr; 5348 5349 case Intrinsic::init_trampoline: { 5350 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5351 5352 SDValue Ops[6]; 5353 Ops[0] = getRoot(); 5354 Ops[1] = getValue(I.getArgOperand(0)); 5355 Ops[2] = getValue(I.getArgOperand(1)); 5356 Ops[3] = getValue(I.getArgOperand(2)); 5357 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5358 Ops[5] = DAG.getSrcValue(F); 5359 5360 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5361 5362 DAG.setRoot(Res); 5363 return nullptr; 5364 } 5365 case Intrinsic::adjust_trampoline: { 5366 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5367 TLI->getPointerTy(), 5368 getValue(I.getArgOperand(0)))); 5369 return nullptr; 5370 } 5371 case Intrinsic::gcroot: 5372 if (GFI) { 5373 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5374 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5375 5376 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5377 GFI->addStackRoot(FI->getIndex(), TypeMap); 5378 } 5379 return nullptr; 5380 case Intrinsic::gcread: 5381 case Intrinsic::gcwrite: 5382 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5383 case Intrinsic::flt_rounds: 5384 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5385 return nullptr; 5386 5387 case Intrinsic::expect: { 5388 // Just replace __builtin_expect(exp, c) with EXP. 5389 setValue(&I, getValue(I.getArgOperand(0))); 5390 return nullptr; 5391 } 5392 5393 case Intrinsic::debugtrap: 5394 case Intrinsic::trap: { 5395 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5396 if (TrapFuncName.empty()) { 5397 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5398 ISD::TRAP : ISD::DEBUGTRAP; 5399 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5400 return nullptr; 5401 } 5402 TargetLowering::ArgListTy Args; 5403 5404 TargetLowering::CallLoweringInfo CLI(DAG); 5405 CLI.setDebugLoc(sdl).setChain(getRoot()) 5406 .setCallee(CallingConv::C, I.getType(), 5407 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5408 std::move(Args), 0); 5409 5410 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5411 DAG.setRoot(Result.second); 5412 return nullptr; 5413 } 5414 5415 case Intrinsic::uadd_with_overflow: 5416 case Intrinsic::sadd_with_overflow: 5417 case Intrinsic::usub_with_overflow: 5418 case Intrinsic::ssub_with_overflow: 5419 case Intrinsic::umul_with_overflow: 5420 case Intrinsic::smul_with_overflow: { 5421 ISD::NodeType Op; 5422 switch (Intrinsic) { 5423 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5424 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5425 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5426 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5427 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5428 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5429 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5430 } 5431 SDValue Op1 = getValue(I.getArgOperand(0)); 5432 SDValue Op2 = getValue(I.getArgOperand(1)); 5433 5434 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5435 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5436 return nullptr; 5437 } 5438 case Intrinsic::prefetch: { 5439 SDValue Ops[5]; 5440 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5441 Ops[0] = getRoot(); 5442 Ops[1] = getValue(I.getArgOperand(0)); 5443 Ops[2] = getValue(I.getArgOperand(1)); 5444 Ops[3] = getValue(I.getArgOperand(2)); 5445 Ops[4] = getValue(I.getArgOperand(3)); 5446 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5447 DAG.getVTList(MVT::Other), Ops, 5448 EVT::getIntegerVT(*Context, 8), 5449 MachinePointerInfo(I.getArgOperand(0)), 5450 0, /* align */ 5451 false, /* volatile */ 5452 rw==0, /* read */ 5453 rw==1)); /* write */ 5454 return nullptr; 5455 } 5456 case Intrinsic::lifetime_start: 5457 case Intrinsic::lifetime_end: { 5458 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5459 // Stack coloring is not enabled in O0, discard region information. 5460 if (TM.getOptLevel() == CodeGenOpt::None) 5461 return nullptr; 5462 5463 SmallVector<Value *, 4> Allocas; 5464 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5465 5466 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5467 E = Allocas.end(); Object != E; ++Object) { 5468 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5469 5470 // Could not find an Alloca. 5471 if (!LifetimeObject) 5472 continue; 5473 5474 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5475 5476 SDValue Ops[2]; 5477 Ops[0] = getRoot(); 5478 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5479 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5480 5481 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5482 DAG.setRoot(Res); 5483 } 5484 return nullptr; 5485 } 5486 case Intrinsic::invariant_start: 5487 // Discard region information. 5488 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5489 return nullptr; 5490 case Intrinsic::invariant_end: 5491 // Discard region information. 5492 return nullptr; 5493 case Intrinsic::stackprotectorcheck: { 5494 // Do not actually emit anything for this basic block. Instead we initialize 5495 // the stack protector descriptor and export the guard variable so we can 5496 // access it in FinishBasicBlock. 5497 const BasicBlock *BB = I.getParent(); 5498 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5499 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5500 5501 // Flush our exports since we are going to process a terminator. 5502 (void)getControlRoot(); 5503 return nullptr; 5504 } 5505 case Intrinsic::clear_cache: 5506 return TLI->getClearCacheBuiltinName(); 5507 case Intrinsic::donothing: 5508 // ignore 5509 return nullptr; 5510 case Intrinsic::experimental_stackmap: { 5511 visitStackmap(I); 5512 return nullptr; 5513 } 5514 case Intrinsic::experimental_patchpoint_void: 5515 case Intrinsic::experimental_patchpoint_i64: { 5516 visitPatchpoint(I); 5517 return nullptr; 5518 } 5519 } 5520 } 5521 5522 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5523 bool isTailCall, 5524 MachineBasicBlock *LandingPad) { 5525 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5526 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5527 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5528 Type *RetTy = FTy->getReturnType(); 5529 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5530 MCSymbol *BeginLabel = nullptr; 5531 5532 TargetLowering::ArgListTy Args; 5533 TargetLowering::ArgListEntry Entry; 5534 Args.reserve(CS.arg_size()); 5535 5536 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5537 i != e; ++i) { 5538 const Value *V = *i; 5539 5540 // Skip empty types 5541 if (V->getType()->isEmptyTy()) 5542 continue; 5543 5544 SDValue ArgNode = getValue(V); 5545 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5546 5547 // Skip the first return-type Attribute to get to params. 5548 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5549 Args.push_back(Entry); 5550 } 5551 5552 if (LandingPad) { 5553 // Insert a label before the invoke call to mark the try range. This can be 5554 // used to detect deletion of the invoke via the MachineModuleInfo. 5555 BeginLabel = MMI.getContext().CreateTempSymbol(); 5556 5557 // For SjLj, keep track of which landing pads go with which invokes 5558 // so as to maintain the ordering of pads in the LSDA. 5559 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5560 if (CallSiteIndex) { 5561 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5562 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5563 5564 // Now that the call site is handled, stop tracking it. 5565 MMI.setCurrentCallSite(0); 5566 } 5567 5568 // Both PendingLoads and PendingExports must be flushed here; 5569 // this call might not return. 5570 (void)getRoot(); 5571 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5572 } 5573 5574 // Check if target-independent constraints permit a tail call here. 5575 // Target-dependent constraints are checked within TLI->LowerCallTo. 5576 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5577 isTailCall = false; 5578 5579 TargetLowering::CallLoweringInfo CLI(DAG); 5580 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5581 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5582 5583 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5584 assert((isTailCall || Result.second.getNode()) && 5585 "Non-null chain expected with non-tail call!"); 5586 assert((Result.second.getNode() || !Result.first.getNode()) && 5587 "Null value expected with tail call!"); 5588 if (Result.first.getNode()) 5589 setValue(CS.getInstruction(), Result.first); 5590 5591 if (!Result.second.getNode()) { 5592 // As a special case, a null chain means that a tail call has been emitted 5593 // and the DAG root is already updated. 5594 HasTailCall = true; 5595 5596 // Since there's no actual continuation from this block, nothing can be 5597 // relying on us setting vregs for them. 5598 PendingExports.clear(); 5599 } else { 5600 DAG.setRoot(Result.second); 5601 } 5602 5603 if (LandingPad) { 5604 // Insert a label at the end of the invoke call to mark the try range. This 5605 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5606 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5607 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5608 5609 // Inform MachineModuleInfo of range. 5610 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5611 } 5612 } 5613 5614 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5615 /// value is equal or not-equal to zero. 5616 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5617 for (const User *U : V->users()) { 5618 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5619 if (IC->isEquality()) 5620 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5621 if (C->isNullValue()) 5622 continue; 5623 // Unknown instruction. 5624 return false; 5625 } 5626 return true; 5627 } 5628 5629 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5630 Type *LoadTy, 5631 SelectionDAGBuilder &Builder) { 5632 5633 // Check to see if this load can be trivially constant folded, e.g. if the 5634 // input is from a string literal. 5635 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5636 // Cast pointer to the type we really want to load. 5637 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5638 PointerType::getUnqual(LoadTy)); 5639 5640 if (const Constant *LoadCst = 5641 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5642 Builder.DL)) 5643 return Builder.getValue(LoadCst); 5644 } 5645 5646 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5647 // still constant memory, the input chain can be the entry node. 5648 SDValue Root; 5649 bool ConstantMemory = false; 5650 5651 // Do not serialize (non-volatile) loads of constant memory with anything. 5652 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5653 Root = Builder.DAG.getEntryNode(); 5654 ConstantMemory = true; 5655 } else { 5656 // Do not serialize non-volatile loads against each other. 5657 Root = Builder.DAG.getRoot(); 5658 } 5659 5660 SDValue Ptr = Builder.getValue(PtrVal); 5661 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5662 Ptr, MachinePointerInfo(PtrVal), 5663 false /*volatile*/, 5664 false /*nontemporal*/, 5665 false /*isinvariant*/, 1 /* align=1 */); 5666 5667 if (!ConstantMemory) 5668 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5669 return LoadVal; 5670 } 5671 5672 /// processIntegerCallValue - Record the value for an instruction that 5673 /// produces an integer result, converting the type where necessary. 5674 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5675 SDValue Value, 5676 bool IsSigned) { 5677 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5678 true); 5679 if (IsSigned) 5680 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5681 else 5682 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5683 setValue(&I, Value); 5684 } 5685 5686 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5687 /// If so, return true and lower it, otherwise return false and it will be 5688 /// lowered like a normal call. 5689 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5690 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5691 if (I.getNumArgOperands() != 3) 5692 return false; 5693 5694 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5695 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5696 !I.getArgOperand(2)->getType()->isIntegerTy() || 5697 !I.getType()->isIntegerTy()) 5698 return false; 5699 5700 const Value *Size = I.getArgOperand(2); 5701 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5702 if (CSize && CSize->getZExtValue() == 0) { 5703 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5704 I.getType(), true); 5705 setValue(&I, DAG.getConstant(0, CallVT)); 5706 return true; 5707 } 5708 5709 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5710 std::pair<SDValue, SDValue> Res = 5711 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5712 getValue(LHS), getValue(RHS), getValue(Size), 5713 MachinePointerInfo(LHS), 5714 MachinePointerInfo(RHS)); 5715 if (Res.first.getNode()) { 5716 processIntegerCallValue(I, Res.first, true); 5717 PendingLoads.push_back(Res.second); 5718 return true; 5719 } 5720 5721 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5722 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5723 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5724 bool ActuallyDoIt = true; 5725 MVT LoadVT; 5726 Type *LoadTy; 5727 switch (CSize->getZExtValue()) { 5728 default: 5729 LoadVT = MVT::Other; 5730 LoadTy = nullptr; 5731 ActuallyDoIt = false; 5732 break; 5733 case 2: 5734 LoadVT = MVT::i16; 5735 LoadTy = Type::getInt16Ty(CSize->getContext()); 5736 break; 5737 case 4: 5738 LoadVT = MVT::i32; 5739 LoadTy = Type::getInt32Ty(CSize->getContext()); 5740 break; 5741 case 8: 5742 LoadVT = MVT::i64; 5743 LoadTy = Type::getInt64Ty(CSize->getContext()); 5744 break; 5745 /* 5746 case 16: 5747 LoadVT = MVT::v4i32; 5748 LoadTy = Type::getInt32Ty(CSize->getContext()); 5749 LoadTy = VectorType::get(LoadTy, 4); 5750 break; 5751 */ 5752 } 5753 5754 // This turns into unaligned loads. We only do this if the target natively 5755 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5756 // we'll only produce a small number of byte loads. 5757 5758 // Require that we can find a legal MVT, and only do this if the target 5759 // supports unaligned loads of that type. Expanding into byte loads would 5760 // bloat the code. 5761 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5762 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5763 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5764 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5765 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5766 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5767 // TODO: Check alignment of src and dest ptrs. 5768 if (!TLI->isTypeLegal(LoadVT) || 5769 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5770 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5771 ActuallyDoIt = false; 5772 } 5773 5774 if (ActuallyDoIt) { 5775 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5776 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5777 5778 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5779 ISD::SETNE); 5780 processIntegerCallValue(I, Res, false); 5781 return true; 5782 } 5783 } 5784 5785 5786 return false; 5787 } 5788 5789 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5790 /// form. If so, return true and lower it, otherwise return false and it 5791 /// will be lowered like a normal call. 5792 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5793 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5794 if (I.getNumArgOperands() != 3) 5795 return false; 5796 5797 const Value *Src = I.getArgOperand(0); 5798 const Value *Char = I.getArgOperand(1); 5799 const Value *Length = I.getArgOperand(2); 5800 if (!Src->getType()->isPointerTy() || 5801 !Char->getType()->isIntegerTy() || 5802 !Length->getType()->isIntegerTy() || 5803 !I.getType()->isPointerTy()) 5804 return false; 5805 5806 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5807 std::pair<SDValue, SDValue> Res = 5808 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5809 getValue(Src), getValue(Char), getValue(Length), 5810 MachinePointerInfo(Src)); 5811 if (Res.first.getNode()) { 5812 setValue(&I, Res.first); 5813 PendingLoads.push_back(Res.second); 5814 return true; 5815 } 5816 5817 return false; 5818 } 5819 5820 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5821 /// optimized form. If so, return true and lower it, otherwise return false 5822 /// and it will be lowered like a normal call. 5823 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5824 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5825 if (I.getNumArgOperands() != 2) 5826 return false; 5827 5828 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5829 if (!Arg0->getType()->isPointerTy() || 5830 !Arg1->getType()->isPointerTy() || 5831 !I.getType()->isPointerTy()) 5832 return false; 5833 5834 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5835 std::pair<SDValue, SDValue> Res = 5836 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5837 getValue(Arg0), getValue(Arg1), 5838 MachinePointerInfo(Arg0), 5839 MachinePointerInfo(Arg1), isStpcpy); 5840 if (Res.first.getNode()) { 5841 setValue(&I, Res.first); 5842 DAG.setRoot(Res.second); 5843 return true; 5844 } 5845 5846 return false; 5847 } 5848 5849 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5850 /// If so, return true and lower it, otherwise return false and it will be 5851 /// lowered like a normal call. 5852 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5853 // Verify that the prototype makes sense. int strcmp(void*,void*) 5854 if (I.getNumArgOperands() != 2) 5855 return false; 5856 5857 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5858 if (!Arg0->getType()->isPointerTy() || 5859 !Arg1->getType()->isPointerTy() || 5860 !I.getType()->isIntegerTy()) 5861 return false; 5862 5863 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5864 std::pair<SDValue, SDValue> Res = 5865 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5866 getValue(Arg0), getValue(Arg1), 5867 MachinePointerInfo(Arg0), 5868 MachinePointerInfo(Arg1)); 5869 if (Res.first.getNode()) { 5870 processIntegerCallValue(I, Res.first, true); 5871 PendingLoads.push_back(Res.second); 5872 return true; 5873 } 5874 5875 return false; 5876 } 5877 5878 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5879 /// form. If so, return true and lower it, otherwise return false and it 5880 /// will be lowered like a normal call. 5881 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5882 // Verify that the prototype makes sense. size_t strlen(char *) 5883 if (I.getNumArgOperands() != 1) 5884 return false; 5885 5886 const Value *Arg0 = I.getArgOperand(0); 5887 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5888 return false; 5889 5890 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5891 std::pair<SDValue, SDValue> Res = 5892 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5893 getValue(Arg0), MachinePointerInfo(Arg0)); 5894 if (Res.first.getNode()) { 5895 processIntegerCallValue(I, Res.first, false); 5896 PendingLoads.push_back(Res.second); 5897 return true; 5898 } 5899 5900 return false; 5901 } 5902 5903 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5904 /// form. If so, return true and lower it, otherwise return false and it 5905 /// will be lowered like a normal call. 5906 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5907 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5908 if (I.getNumArgOperands() != 2) 5909 return false; 5910 5911 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5912 if (!Arg0->getType()->isPointerTy() || 5913 !Arg1->getType()->isIntegerTy() || 5914 !I.getType()->isIntegerTy()) 5915 return false; 5916 5917 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5918 std::pair<SDValue, SDValue> Res = 5919 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5920 getValue(Arg0), getValue(Arg1), 5921 MachinePointerInfo(Arg0)); 5922 if (Res.first.getNode()) { 5923 processIntegerCallValue(I, Res.first, false); 5924 PendingLoads.push_back(Res.second); 5925 return true; 5926 } 5927 5928 return false; 5929 } 5930 5931 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5932 /// operation (as expected), translate it to an SDNode with the specified opcode 5933 /// and return true. 5934 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5935 unsigned Opcode) { 5936 // Sanity check that it really is a unary floating-point call. 5937 if (I.getNumArgOperands() != 1 || 5938 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5939 I.getType() != I.getArgOperand(0)->getType() || 5940 !I.onlyReadsMemory()) 5941 return false; 5942 5943 SDValue Tmp = getValue(I.getArgOperand(0)); 5944 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5945 return true; 5946 } 5947 5948 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5949 // Handle inline assembly differently. 5950 if (isa<InlineAsm>(I.getCalledValue())) { 5951 visitInlineAsm(&I); 5952 return; 5953 } 5954 5955 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5956 ComputeUsesVAFloatArgument(I, &MMI); 5957 5958 const char *RenameFn = nullptr; 5959 if (Function *F = I.getCalledFunction()) { 5960 if (F->isDeclaration()) { 5961 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5962 if (unsigned IID = II->getIntrinsicID(F)) { 5963 RenameFn = visitIntrinsicCall(I, IID); 5964 if (!RenameFn) 5965 return; 5966 } 5967 } 5968 if (unsigned IID = F->getIntrinsicID()) { 5969 RenameFn = visitIntrinsicCall(I, IID); 5970 if (!RenameFn) 5971 return; 5972 } 5973 } 5974 5975 // Check for well-known libc/libm calls. If the function is internal, it 5976 // can't be a library call. 5977 LibFunc::Func Func; 5978 if (!F->hasLocalLinkage() && F->hasName() && 5979 LibInfo->getLibFunc(F->getName(), Func) && 5980 LibInfo->hasOptimizedCodeGen(Func)) { 5981 switch (Func) { 5982 default: break; 5983 case LibFunc::copysign: 5984 case LibFunc::copysignf: 5985 case LibFunc::copysignl: 5986 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5987 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5988 I.getType() == I.getArgOperand(0)->getType() && 5989 I.getType() == I.getArgOperand(1)->getType() && 5990 I.onlyReadsMemory()) { 5991 SDValue LHS = getValue(I.getArgOperand(0)); 5992 SDValue RHS = getValue(I.getArgOperand(1)); 5993 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5994 LHS.getValueType(), LHS, RHS)); 5995 return; 5996 } 5997 break; 5998 case LibFunc::fabs: 5999 case LibFunc::fabsf: 6000 case LibFunc::fabsl: 6001 if (visitUnaryFloatCall(I, ISD::FABS)) 6002 return; 6003 break; 6004 case LibFunc::sin: 6005 case LibFunc::sinf: 6006 case LibFunc::sinl: 6007 if (visitUnaryFloatCall(I, ISD::FSIN)) 6008 return; 6009 break; 6010 case LibFunc::cos: 6011 case LibFunc::cosf: 6012 case LibFunc::cosl: 6013 if (visitUnaryFloatCall(I, ISD::FCOS)) 6014 return; 6015 break; 6016 case LibFunc::sqrt: 6017 case LibFunc::sqrtf: 6018 case LibFunc::sqrtl: 6019 case LibFunc::sqrt_finite: 6020 case LibFunc::sqrtf_finite: 6021 case LibFunc::sqrtl_finite: 6022 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6023 return; 6024 break; 6025 case LibFunc::floor: 6026 case LibFunc::floorf: 6027 case LibFunc::floorl: 6028 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6029 return; 6030 break; 6031 case LibFunc::nearbyint: 6032 case LibFunc::nearbyintf: 6033 case LibFunc::nearbyintl: 6034 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6035 return; 6036 break; 6037 case LibFunc::ceil: 6038 case LibFunc::ceilf: 6039 case LibFunc::ceill: 6040 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6041 return; 6042 break; 6043 case LibFunc::rint: 6044 case LibFunc::rintf: 6045 case LibFunc::rintl: 6046 if (visitUnaryFloatCall(I, ISD::FRINT)) 6047 return; 6048 break; 6049 case LibFunc::round: 6050 case LibFunc::roundf: 6051 case LibFunc::roundl: 6052 if (visitUnaryFloatCall(I, ISD::FROUND)) 6053 return; 6054 break; 6055 case LibFunc::trunc: 6056 case LibFunc::truncf: 6057 case LibFunc::truncl: 6058 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6059 return; 6060 break; 6061 case LibFunc::log2: 6062 case LibFunc::log2f: 6063 case LibFunc::log2l: 6064 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6065 return; 6066 break; 6067 case LibFunc::exp2: 6068 case LibFunc::exp2f: 6069 case LibFunc::exp2l: 6070 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6071 return; 6072 break; 6073 case LibFunc::memcmp: 6074 if (visitMemCmpCall(I)) 6075 return; 6076 break; 6077 case LibFunc::memchr: 6078 if (visitMemChrCall(I)) 6079 return; 6080 break; 6081 case LibFunc::strcpy: 6082 if (visitStrCpyCall(I, false)) 6083 return; 6084 break; 6085 case LibFunc::stpcpy: 6086 if (visitStrCpyCall(I, true)) 6087 return; 6088 break; 6089 case LibFunc::strcmp: 6090 if (visitStrCmpCall(I)) 6091 return; 6092 break; 6093 case LibFunc::strlen: 6094 if (visitStrLenCall(I)) 6095 return; 6096 break; 6097 case LibFunc::strnlen: 6098 if (visitStrNLenCall(I)) 6099 return; 6100 break; 6101 } 6102 } 6103 } 6104 6105 SDValue Callee; 6106 if (!RenameFn) 6107 Callee = getValue(I.getCalledValue()); 6108 else 6109 Callee = DAG.getExternalSymbol( 6110 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6111 6112 // Check if we can potentially perform a tail call. More detailed checking is 6113 // be done within LowerCallTo, after more information about the call is known. 6114 LowerCallTo(&I, Callee, I.isTailCall()); 6115 } 6116 6117 namespace { 6118 6119 /// AsmOperandInfo - This contains information for each constraint that we are 6120 /// lowering. 6121 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6122 public: 6123 /// CallOperand - If this is the result output operand or a clobber 6124 /// this is null, otherwise it is the incoming operand to the CallInst. 6125 /// This gets modified as the asm is processed. 6126 SDValue CallOperand; 6127 6128 /// AssignedRegs - If this is a register or register class operand, this 6129 /// contains the set of register corresponding to the operand. 6130 RegsForValue AssignedRegs; 6131 6132 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6133 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6134 } 6135 6136 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6137 /// corresponds to. If there is no Value* for this operand, it returns 6138 /// MVT::Other. 6139 EVT getCallOperandValEVT(LLVMContext &Context, 6140 const TargetLowering &TLI, 6141 const DataLayout *DL) const { 6142 if (!CallOperandVal) return MVT::Other; 6143 6144 if (isa<BasicBlock>(CallOperandVal)) 6145 return TLI.getPointerTy(); 6146 6147 llvm::Type *OpTy = CallOperandVal->getType(); 6148 6149 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6150 // If this is an indirect operand, the operand is a pointer to the 6151 // accessed type. 6152 if (isIndirect) { 6153 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6154 if (!PtrTy) 6155 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6156 OpTy = PtrTy->getElementType(); 6157 } 6158 6159 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6160 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6161 if (STy->getNumElements() == 1) 6162 OpTy = STy->getElementType(0); 6163 6164 // If OpTy is not a single value, it may be a struct/union that we 6165 // can tile with integers. 6166 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6167 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6168 switch (BitSize) { 6169 default: break; 6170 case 1: 6171 case 8: 6172 case 16: 6173 case 32: 6174 case 64: 6175 case 128: 6176 OpTy = IntegerType::get(Context, BitSize); 6177 break; 6178 } 6179 } 6180 6181 return TLI.getValueType(OpTy, true); 6182 } 6183 }; 6184 6185 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6186 6187 } // end anonymous namespace 6188 6189 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6190 /// specified operand. We prefer to assign virtual registers, to allow the 6191 /// register allocator to handle the assignment process. However, if the asm 6192 /// uses features that we can't model on machineinstrs, we have SDISel do the 6193 /// allocation. This produces generally horrible, but correct, code. 6194 /// 6195 /// OpInfo describes the operand. 6196 /// 6197 static void GetRegistersForValue(SelectionDAG &DAG, 6198 const TargetLowering &TLI, 6199 SDLoc DL, 6200 SDISelAsmOperandInfo &OpInfo) { 6201 LLVMContext &Context = *DAG.getContext(); 6202 6203 MachineFunction &MF = DAG.getMachineFunction(); 6204 SmallVector<unsigned, 4> Regs; 6205 6206 // If this is a constraint for a single physreg, or a constraint for a 6207 // register class, find it. 6208 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6209 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6210 OpInfo.ConstraintVT); 6211 6212 unsigned NumRegs = 1; 6213 if (OpInfo.ConstraintVT != MVT::Other) { 6214 // If this is a FP input in an integer register (or visa versa) insert a bit 6215 // cast of the input value. More generally, handle any case where the input 6216 // value disagrees with the register class we plan to stick this in. 6217 if (OpInfo.Type == InlineAsm::isInput && 6218 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6219 // Try to convert to the first EVT that the reg class contains. If the 6220 // types are identical size, use a bitcast to convert (e.g. two differing 6221 // vector types). 6222 MVT RegVT = *PhysReg.second->vt_begin(); 6223 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6224 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6225 RegVT, OpInfo.CallOperand); 6226 OpInfo.ConstraintVT = RegVT; 6227 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6228 // If the input is a FP value and we want it in FP registers, do a 6229 // bitcast to the corresponding integer type. This turns an f64 value 6230 // into i64, which can be passed with two i32 values on a 32-bit 6231 // machine. 6232 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6233 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6234 RegVT, OpInfo.CallOperand); 6235 OpInfo.ConstraintVT = RegVT; 6236 } 6237 } 6238 6239 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6240 } 6241 6242 MVT RegVT; 6243 EVT ValueVT = OpInfo.ConstraintVT; 6244 6245 // If this is a constraint for a specific physical register, like {r17}, 6246 // assign it now. 6247 if (unsigned AssignedReg = PhysReg.first) { 6248 const TargetRegisterClass *RC = PhysReg.second; 6249 if (OpInfo.ConstraintVT == MVT::Other) 6250 ValueVT = *RC->vt_begin(); 6251 6252 // Get the actual register value type. This is important, because the user 6253 // may have asked for (e.g.) the AX register in i32 type. We need to 6254 // remember that AX is actually i16 to get the right extension. 6255 RegVT = *RC->vt_begin(); 6256 6257 // This is a explicit reference to a physical register. 6258 Regs.push_back(AssignedReg); 6259 6260 // If this is an expanded reference, add the rest of the regs to Regs. 6261 if (NumRegs != 1) { 6262 TargetRegisterClass::iterator I = RC->begin(); 6263 for (; *I != AssignedReg; ++I) 6264 assert(I != RC->end() && "Didn't find reg!"); 6265 6266 // Already added the first reg. 6267 --NumRegs; ++I; 6268 for (; NumRegs; --NumRegs, ++I) { 6269 assert(I != RC->end() && "Ran out of registers to allocate!"); 6270 Regs.push_back(*I); 6271 } 6272 } 6273 6274 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6275 return; 6276 } 6277 6278 // Otherwise, if this was a reference to an LLVM register class, create vregs 6279 // for this reference. 6280 if (const TargetRegisterClass *RC = PhysReg.second) { 6281 RegVT = *RC->vt_begin(); 6282 if (OpInfo.ConstraintVT == MVT::Other) 6283 ValueVT = RegVT; 6284 6285 // Create the appropriate number of virtual registers. 6286 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6287 for (; NumRegs; --NumRegs) 6288 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6289 6290 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6291 return; 6292 } 6293 6294 // Otherwise, we couldn't allocate enough registers for this. 6295 } 6296 6297 /// visitInlineAsm - Handle a call to an InlineAsm object. 6298 /// 6299 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6300 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6301 6302 /// ConstraintOperands - Information about all of the constraints. 6303 SDISelAsmOperandInfoVector ConstraintOperands; 6304 6305 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6306 TargetLowering::AsmOperandInfoVector 6307 TargetConstraints = TLI->ParseConstraints(CS); 6308 6309 bool hasMemory = false; 6310 6311 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6312 unsigned ResNo = 0; // ResNo - The result number of the next output. 6313 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6314 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6315 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6316 6317 MVT OpVT = MVT::Other; 6318 6319 // Compute the value type for each operand. 6320 switch (OpInfo.Type) { 6321 case InlineAsm::isOutput: 6322 // Indirect outputs just consume an argument. 6323 if (OpInfo.isIndirect) { 6324 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6325 break; 6326 } 6327 6328 // The return value of the call is this value. As such, there is no 6329 // corresponding argument. 6330 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6331 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6332 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6333 } else { 6334 assert(ResNo == 0 && "Asm only has one result!"); 6335 OpVT = TLI->getSimpleValueType(CS.getType()); 6336 } 6337 ++ResNo; 6338 break; 6339 case InlineAsm::isInput: 6340 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6341 break; 6342 case InlineAsm::isClobber: 6343 // Nothing to do. 6344 break; 6345 } 6346 6347 // If this is an input or an indirect output, process the call argument. 6348 // BasicBlocks are labels, currently appearing only in asm's. 6349 if (OpInfo.CallOperandVal) { 6350 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6351 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6352 } else { 6353 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6354 } 6355 6356 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6357 getSimpleVT(); 6358 } 6359 6360 OpInfo.ConstraintVT = OpVT; 6361 6362 // Indirect operand accesses access memory. 6363 if (OpInfo.isIndirect) 6364 hasMemory = true; 6365 else { 6366 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6367 TargetLowering::ConstraintType 6368 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6369 if (CType == TargetLowering::C_Memory) { 6370 hasMemory = true; 6371 break; 6372 } 6373 } 6374 } 6375 } 6376 6377 SDValue Chain, Flag; 6378 6379 // We won't need to flush pending loads if this asm doesn't touch 6380 // memory and is nonvolatile. 6381 if (hasMemory || IA->hasSideEffects()) 6382 Chain = getRoot(); 6383 else 6384 Chain = DAG.getRoot(); 6385 6386 // Second pass over the constraints: compute which constraint option to use 6387 // and assign registers to constraints that want a specific physreg. 6388 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6389 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6390 6391 // If this is an output operand with a matching input operand, look up the 6392 // matching input. If their types mismatch, e.g. one is an integer, the 6393 // other is floating point, or their sizes are different, flag it as an 6394 // error. 6395 if (OpInfo.hasMatchingInput()) { 6396 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6397 6398 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6399 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6400 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6401 OpInfo.ConstraintVT); 6402 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6403 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6404 Input.ConstraintVT); 6405 if ((OpInfo.ConstraintVT.isInteger() != 6406 Input.ConstraintVT.isInteger()) || 6407 (MatchRC.second != InputRC.second)) { 6408 report_fatal_error("Unsupported asm: input constraint" 6409 " with a matching output constraint of" 6410 " incompatible type!"); 6411 } 6412 Input.ConstraintVT = OpInfo.ConstraintVT; 6413 } 6414 } 6415 6416 // Compute the constraint code and ConstraintType to use. 6417 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6418 6419 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6420 OpInfo.Type == InlineAsm::isClobber) 6421 continue; 6422 6423 // If this is a memory input, and if the operand is not indirect, do what we 6424 // need to to provide an address for the memory input. 6425 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6426 !OpInfo.isIndirect) { 6427 assert((OpInfo.isMultipleAlternative || 6428 (OpInfo.Type == InlineAsm::isInput)) && 6429 "Can only indirectify direct input operands!"); 6430 6431 // Memory operands really want the address of the value. If we don't have 6432 // an indirect input, put it in the constpool if we can, otherwise spill 6433 // it to a stack slot. 6434 // TODO: This isn't quite right. We need to handle these according to 6435 // the addressing mode that the constraint wants. Also, this may take 6436 // an additional register for the computation and we don't want that 6437 // either. 6438 6439 // If the operand is a float, integer, or vector constant, spill to a 6440 // constant pool entry to get its address. 6441 const Value *OpVal = OpInfo.CallOperandVal; 6442 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6443 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6444 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6445 TLI->getPointerTy()); 6446 } else { 6447 // Otherwise, create a stack slot and emit a store to it before the 6448 // asm. 6449 Type *Ty = OpVal->getType(); 6450 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6451 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6452 MachineFunction &MF = DAG.getMachineFunction(); 6453 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6454 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6455 Chain = DAG.getStore(Chain, getCurSDLoc(), 6456 OpInfo.CallOperand, StackSlot, 6457 MachinePointerInfo::getFixedStack(SSFI), 6458 false, false, 0); 6459 OpInfo.CallOperand = StackSlot; 6460 } 6461 6462 // There is no longer a Value* corresponding to this operand. 6463 OpInfo.CallOperandVal = nullptr; 6464 6465 // It is now an indirect operand. 6466 OpInfo.isIndirect = true; 6467 } 6468 6469 // If this constraint is for a specific register, allocate it before 6470 // anything else. 6471 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6472 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6473 } 6474 6475 // Second pass - Loop over all of the operands, assigning virtual or physregs 6476 // to register class operands. 6477 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6478 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6479 6480 // C_Register operands have already been allocated, Other/Memory don't need 6481 // to be. 6482 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6483 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6484 } 6485 6486 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6487 std::vector<SDValue> AsmNodeOperands; 6488 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6489 AsmNodeOperands.push_back( 6490 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6491 TLI->getPointerTy())); 6492 6493 // If we have a !srcloc metadata node associated with it, we want to attach 6494 // this to the ultimately generated inline asm machineinstr. To do this, we 6495 // pass in the third operand as this (potentially null) inline asm MDNode. 6496 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6497 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6498 6499 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6500 // bits as operand 3. 6501 unsigned ExtraInfo = 0; 6502 if (IA->hasSideEffects()) 6503 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6504 if (IA->isAlignStack()) 6505 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6506 // Set the asm dialect. 6507 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6508 6509 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6510 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6511 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6512 6513 // Compute the constraint code and ConstraintType to use. 6514 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6515 6516 // Ideally, we would only check against memory constraints. However, the 6517 // meaning of an other constraint can be target-specific and we can't easily 6518 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6519 // for other constriants as well. 6520 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6521 OpInfo.ConstraintType == TargetLowering::C_Other) { 6522 if (OpInfo.Type == InlineAsm::isInput) 6523 ExtraInfo |= InlineAsm::Extra_MayLoad; 6524 else if (OpInfo.Type == InlineAsm::isOutput) 6525 ExtraInfo |= InlineAsm::Extra_MayStore; 6526 else if (OpInfo.Type == InlineAsm::isClobber) 6527 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6528 } 6529 } 6530 6531 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6532 TLI->getPointerTy())); 6533 6534 // Loop over all of the inputs, copying the operand values into the 6535 // appropriate registers and processing the output regs. 6536 RegsForValue RetValRegs; 6537 6538 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6539 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6540 6541 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6542 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6543 6544 switch (OpInfo.Type) { 6545 case InlineAsm::isOutput: { 6546 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6547 OpInfo.ConstraintType != TargetLowering::C_Register) { 6548 // Memory output, or 'other' output (e.g. 'X' constraint). 6549 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6550 6551 // Add information to the INLINEASM node to know about this output. 6552 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6553 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6554 TLI->getPointerTy())); 6555 AsmNodeOperands.push_back(OpInfo.CallOperand); 6556 break; 6557 } 6558 6559 // Otherwise, this is a register or register class output. 6560 6561 // Copy the output from the appropriate register. Find a register that 6562 // we can use. 6563 if (OpInfo.AssignedRegs.Regs.empty()) { 6564 LLVMContext &Ctx = *DAG.getContext(); 6565 Ctx.emitError(CS.getInstruction(), 6566 "couldn't allocate output register for constraint '" + 6567 Twine(OpInfo.ConstraintCode) + "'"); 6568 return; 6569 } 6570 6571 // If this is an indirect operand, store through the pointer after the 6572 // asm. 6573 if (OpInfo.isIndirect) { 6574 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6575 OpInfo.CallOperandVal)); 6576 } else { 6577 // This is the result value of the call. 6578 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6579 // Concatenate this output onto the outputs list. 6580 RetValRegs.append(OpInfo.AssignedRegs); 6581 } 6582 6583 // Add information to the INLINEASM node to know that this register is 6584 // set. 6585 OpInfo.AssignedRegs 6586 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6587 ? InlineAsm::Kind_RegDefEarlyClobber 6588 : InlineAsm::Kind_RegDef, 6589 false, 0, DAG, AsmNodeOperands); 6590 break; 6591 } 6592 case InlineAsm::isInput: { 6593 SDValue InOperandVal = OpInfo.CallOperand; 6594 6595 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6596 // If this is required to match an output register we have already set, 6597 // just use its register. 6598 unsigned OperandNo = OpInfo.getMatchedOperand(); 6599 6600 // Scan until we find the definition we already emitted of this operand. 6601 // When we find it, create a RegsForValue operand. 6602 unsigned CurOp = InlineAsm::Op_FirstOperand; 6603 for (; OperandNo; --OperandNo) { 6604 // Advance to the next operand. 6605 unsigned OpFlag = 6606 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6607 assert((InlineAsm::isRegDefKind(OpFlag) || 6608 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6609 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6610 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6611 } 6612 6613 unsigned OpFlag = 6614 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6615 if (InlineAsm::isRegDefKind(OpFlag) || 6616 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6617 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6618 if (OpInfo.isIndirect) { 6619 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6620 LLVMContext &Ctx = *DAG.getContext(); 6621 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6622 " don't know how to handle tied " 6623 "indirect register inputs"); 6624 return; 6625 } 6626 6627 RegsForValue MatchedRegs; 6628 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6629 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6630 MatchedRegs.RegVTs.push_back(RegVT); 6631 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6632 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6633 i != e; ++i) { 6634 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6635 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6636 else { 6637 LLVMContext &Ctx = *DAG.getContext(); 6638 Ctx.emitError(CS.getInstruction(), 6639 "inline asm error: This value" 6640 " type register class is not natively supported!"); 6641 return; 6642 } 6643 } 6644 // Use the produced MatchedRegs object to 6645 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6646 Chain, &Flag, CS.getInstruction()); 6647 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6648 true, OpInfo.getMatchedOperand(), 6649 DAG, AsmNodeOperands); 6650 break; 6651 } 6652 6653 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6654 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6655 "Unexpected number of operands"); 6656 // Add information to the INLINEASM node to know about this input. 6657 // See InlineAsm.h isUseOperandTiedToDef. 6658 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6659 OpInfo.getMatchedOperand()); 6660 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6661 TLI->getPointerTy())); 6662 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6663 break; 6664 } 6665 6666 // Treat indirect 'X' constraint as memory. 6667 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6668 OpInfo.isIndirect) 6669 OpInfo.ConstraintType = TargetLowering::C_Memory; 6670 6671 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6672 std::vector<SDValue> Ops; 6673 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6674 Ops, DAG); 6675 if (Ops.empty()) { 6676 LLVMContext &Ctx = *DAG.getContext(); 6677 Ctx.emitError(CS.getInstruction(), 6678 "invalid operand for inline asm constraint '" + 6679 Twine(OpInfo.ConstraintCode) + "'"); 6680 return; 6681 } 6682 6683 // Add information to the INLINEASM node to know about this input. 6684 unsigned ResOpType = 6685 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6686 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6687 TLI->getPointerTy())); 6688 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6689 break; 6690 } 6691 6692 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6693 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6694 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6695 "Memory operands expect pointer values"); 6696 6697 // Add information to the INLINEASM node to know about this input. 6698 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6699 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6700 TLI->getPointerTy())); 6701 AsmNodeOperands.push_back(InOperandVal); 6702 break; 6703 } 6704 6705 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6706 OpInfo.ConstraintType == TargetLowering::C_Register) && 6707 "Unknown constraint type!"); 6708 6709 // TODO: Support this. 6710 if (OpInfo.isIndirect) { 6711 LLVMContext &Ctx = *DAG.getContext(); 6712 Ctx.emitError(CS.getInstruction(), 6713 "Don't know how to handle indirect register inputs yet " 6714 "for constraint '" + 6715 Twine(OpInfo.ConstraintCode) + "'"); 6716 return; 6717 } 6718 6719 // Copy the input into the appropriate registers. 6720 if (OpInfo.AssignedRegs.Regs.empty()) { 6721 LLVMContext &Ctx = *DAG.getContext(); 6722 Ctx.emitError(CS.getInstruction(), 6723 "couldn't allocate input reg for constraint '" + 6724 Twine(OpInfo.ConstraintCode) + "'"); 6725 return; 6726 } 6727 6728 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6729 Chain, &Flag, CS.getInstruction()); 6730 6731 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6732 DAG, AsmNodeOperands); 6733 break; 6734 } 6735 case InlineAsm::isClobber: { 6736 // Add the clobbered value to the operand list, so that the register 6737 // allocator is aware that the physreg got clobbered. 6738 if (!OpInfo.AssignedRegs.Regs.empty()) 6739 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6740 false, 0, DAG, 6741 AsmNodeOperands); 6742 break; 6743 } 6744 } 6745 } 6746 6747 // Finish up input operands. Set the input chain and add the flag last. 6748 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6749 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6750 6751 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6752 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6753 Flag = Chain.getValue(1); 6754 6755 // If this asm returns a register value, copy the result from that register 6756 // and set it as the value of the call. 6757 if (!RetValRegs.Regs.empty()) { 6758 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6759 Chain, &Flag, CS.getInstruction()); 6760 6761 // FIXME: Why don't we do this for inline asms with MRVs? 6762 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6763 EVT ResultType = TLI->getValueType(CS.getType()); 6764 6765 // If any of the results of the inline asm is a vector, it may have the 6766 // wrong width/num elts. This can happen for register classes that can 6767 // contain multiple different value types. The preg or vreg allocated may 6768 // not have the same VT as was expected. Convert it to the right type 6769 // with bit_convert. 6770 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6771 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6772 ResultType, Val); 6773 6774 } else if (ResultType != Val.getValueType() && 6775 ResultType.isInteger() && Val.getValueType().isInteger()) { 6776 // If a result value was tied to an input value, the computed result may 6777 // have a wider width than the expected result. Extract the relevant 6778 // portion. 6779 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6780 } 6781 6782 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6783 } 6784 6785 setValue(CS.getInstruction(), Val); 6786 // Don't need to use this as a chain in this case. 6787 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6788 return; 6789 } 6790 6791 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6792 6793 // Process indirect outputs, first output all of the flagged copies out of 6794 // physregs. 6795 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6796 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6797 const Value *Ptr = IndirectStoresToEmit[i].second; 6798 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6799 Chain, &Flag, IA); 6800 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6801 } 6802 6803 // Emit the non-flagged stores from the physregs. 6804 SmallVector<SDValue, 8> OutChains; 6805 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6806 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6807 StoresToEmit[i].first, 6808 getValue(StoresToEmit[i].second), 6809 MachinePointerInfo(StoresToEmit[i].second), 6810 false, false, 0); 6811 OutChains.push_back(Val); 6812 } 6813 6814 if (!OutChains.empty()) 6815 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6816 6817 DAG.setRoot(Chain); 6818 } 6819 6820 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6821 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6822 MVT::Other, getRoot(), 6823 getValue(I.getArgOperand(0)), 6824 DAG.getSrcValue(I.getArgOperand(0)))); 6825 } 6826 6827 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6828 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6829 const DataLayout &DL = *TLI->getDataLayout(); 6830 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6831 getRoot(), getValue(I.getOperand(0)), 6832 DAG.getSrcValue(I.getOperand(0)), 6833 DL.getABITypeAlignment(I.getType())); 6834 setValue(&I, V); 6835 DAG.setRoot(V.getValue(1)); 6836 } 6837 6838 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6839 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6840 MVT::Other, getRoot(), 6841 getValue(I.getArgOperand(0)), 6842 DAG.getSrcValue(I.getArgOperand(0)))); 6843 } 6844 6845 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6846 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6847 MVT::Other, getRoot(), 6848 getValue(I.getArgOperand(0)), 6849 getValue(I.getArgOperand(1)), 6850 DAG.getSrcValue(I.getArgOperand(0)), 6851 DAG.getSrcValue(I.getArgOperand(1)))); 6852 } 6853 6854 /// \brief Lower an argument list according to the target calling convention. 6855 /// 6856 /// \return A tuple of <return-value, token-chain> 6857 /// 6858 /// This is a helper for lowering intrinsics that follow a target calling 6859 /// convention or require stack pointer adjustment. Only a subset of the 6860 /// intrinsic's operands need to participate in the calling convention. 6861 std::pair<SDValue, SDValue> 6862 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6863 unsigned NumArgs, SDValue Callee, 6864 bool useVoidTy) { 6865 TargetLowering::ArgListTy Args; 6866 Args.reserve(NumArgs); 6867 6868 // Populate the argument list. 6869 // Attributes for args start at offset 1, after the return attribute. 6870 ImmutableCallSite CS(&CI); 6871 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6872 ArgI != ArgE; ++ArgI) { 6873 const Value *V = CI.getOperand(ArgI); 6874 6875 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6876 6877 TargetLowering::ArgListEntry Entry; 6878 Entry.Node = getValue(V); 6879 Entry.Ty = V->getType(); 6880 Entry.setAttributes(&CS, AttrI); 6881 Args.push_back(Entry); 6882 } 6883 6884 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6885 TargetLowering::CallLoweringInfo CLI(DAG); 6886 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6887 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6888 .setDiscardResult(!CI.use_empty()); 6889 6890 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6891 return TLI->LowerCallTo(CLI); 6892 } 6893 6894 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6895 /// or patchpoint target node's operand list. 6896 /// 6897 /// Constants are converted to TargetConstants purely as an optimization to 6898 /// avoid constant materialization and register allocation. 6899 /// 6900 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6901 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6902 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6903 /// address materialization and register allocation, but may also be required 6904 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6905 /// alloca in the entry block, then the runtime may assume that the alloca's 6906 /// StackMap location can be read immediately after compilation and that the 6907 /// location is valid at any point during execution (this is similar to the 6908 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6909 /// only available in a register, then the runtime would need to trap when 6910 /// execution reaches the StackMap in order to read the alloca's location. 6911 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6912 SmallVectorImpl<SDValue> &Ops, 6913 SelectionDAGBuilder &Builder) { 6914 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6915 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6916 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6917 Ops.push_back( 6918 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6919 Ops.push_back( 6920 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6921 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6922 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6923 Ops.push_back( 6924 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6925 } else 6926 Ops.push_back(OpVal); 6927 } 6928 } 6929 6930 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6931 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6932 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6933 // [live variables...]) 6934 6935 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6936 6937 SDValue Chain, InFlag, Callee, NullPtr; 6938 SmallVector<SDValue, 32> Ops; 6939 6940 SDLoc DL = getCurSDLoc(); 6941 Callee = getValue(CI.getCalledValue()); 6942 NullPtr = DAG.getIntPtrConstant(0, true); 6943 6944 // The stackmap intrinsic only records the live variables (the arguemnts 6945 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6946 // intrinsic, this won't be lowered to a function call. This means we don't 6947 // have to worry about calling conventions and target specific lowering code. 6948 // Instead we perform the call lowering right here. 6949 // 6950 // chain, flag = CALLSEQ_START(chain, 0) 6951 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6952 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6953 // 6954 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6955 InFlag = Chain.getValue(1); 6956 6957 // Add the <id> and <numBytes> constants. 6958 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6959 Ops.push_back(DAG.getTargetConstant( 6960 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6961 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6962 Ops.push_back(DAG.getTargetConstant( 6963 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6964 6965 // Push live variables for the stack map. 6966 addStackMapLiveVars(CI, 2, Ops, *this); 6967 6968 // We are not pushing any register mask info here on the operands list, 6969 // because the stackmap doesn't clobber anything. 6970 6971 // Push the chain and the glue flag. 6972 Ops.push_back(Chain); 6973 Ops.push_back(InFlag); 6974 6975 // Create the STACKMAP node. 6976 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6977 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6978 Chain = SDValue(SM, 0); 6979 InFlag = Chain.getValue(1); 6980 6981 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6982 6983 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6984 6985 // Set the root to the target-lowered call chain. 6986 DAG.setRoot(Chain); 6987 6988 // Inform the Frame Information that we have a stackmap in this function. 6989 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6990 } 6991 6992 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6993 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6994 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6995 // i32 <numBytes>, 6996 // i8* <target>, 6997 // i32 <numArgs>, 6998 // [Args...], 6999 // [live variables...]) 7000 7001 CallingConv::ID CC = CI.getCallingConv(); 7002 bool isAnyRegCC = CC == CallingConv::AnyReg; 7003 bool hasDef = !CI.getType()->isVoidTy(); 7004 SDValue Callee = getValue(CI.getOperand(2)); // <target> 7005 7006 // Get the real number of arguments participating in the call <numArgs> 7007 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 7008 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7009 7010 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7011 // Intrinsics include all meta-operands up to but not including CC. 7012 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7013 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7014 "Not enough arguments provided to the patchpoint intrinsic"); 7015 7016 // For AnyRegCC the arguments are lowered later on manually. 7017 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7018 std::pair<SDValue, SDValue> Result = 7019 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7020 7021 // Set the root to the target-lowered call chain. 7022 SDValue Chain = Result.second; 7023 DAG.setRoot(Chain); 7024 7025 SDNode *CallEnd = Chain.getNode(); 7026 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7027 CallEnd = CallEnd->getOperand(0).getNode(); 7028 7029 /// Get a call instruction from the call sequence chain. 7030 /// Tail calls are not allowed. 7031 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7032 "Expected a callseq node."); 7033 SDNode *Call = CallEnd->getOperand(0).getNode(); 7034 bool hasGlue = Call->getGluedNode(); 7035 7036 // Replace the target specific call node with the patchable intrinsic. 7037 SmallVector<SDValue, 8> Ops; 7038 7039 // Add the <id> and <numBytes> constants. 7040 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7041 Ops.push_back(DAG.getTargetConstant( 7042 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7043 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7044 Ops.push_back(DAG.getTargetConstant( 7045 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7046 7047 // Assume that the Callee is a constant address. 7048 // FIXME: handle function symbols in the future. 7049 Ops.push_back( 7050 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7051 /*isTarget=*/true)); 7052 7053 // Adjust <numArgs> to account for any arguments that have been passed on the 7054 // stack instead. 7055 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7056 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7057 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7058 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7059 7060 // Add the calling convention 7061 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7062 7063 // Add the arguments we omitted previously. The register allocator should 7064 // place these in any free register. 7065 if (isAnyRegCC) 7066 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7067 Ops.push_back(getValue(CI.getArgOperand(i))); 7068 7069 // Push the arguments from the call instruction up to the register mask. 7070 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7071 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7072 Ops.push_back(*i); 7073 7074 // Push live variables for the stack map. 7075 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7076 7077 // Push the register mask info. 7078 if (hasGlue) 7079 Ops.push_back(*(Call->op_end()-2)); 7080 else 7081 Ops.push_back(*(Call->op_end()-1)); 7082 7083 // Push the chain (this is originally the first operand of the call, but 7084 // becomes now the last or second to last operand). 7085 Ops.push_back(*(Call->op_begin())); 7086 7087 // Push the glue flag (last operand). 7088 if (hasGlue) 7089 Ops.push_back(*(Call->op_end()-1)); 7090 7091 SDVTList NodeTys; 7092 if (isAnyRegCC && hasDef) { 7093 // Create the return types based on the intrinsic definition 7094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7095 SmallVector<EVT, 3> ValueVTs; 7096 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7097 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7098 7099 // There is always a chain and a glue type at the end 7100 ValueVTs.push_back(MVT::Other); 7101 ValueVTs.push_back(MVT::Glue); 7102 NodeTys = DAG.getVTList(ValueVTs); 7103 } else 7104 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7105 7106 // Replace the target specific call node with a PATCHPOINT node. 7107 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7108 getCurSDLoc(), NodeTys, Ops); 7109 7110 // Update the NodeMap. 7111 if (hasDef) { 7112 if (isAnyRegCC) 7113 setValue(&CI, SDValue(MN, 0)); 7114 else 7115 setValue(&CI, Result.first); 7116 } 7117 7118 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7119 // call sequence. Furthermore the location of the chain and glue can change 7120 // when the AnyReg calling convention is used and the intrinsic returns a 7121 // value. 7122 if (isAnyRegCC && hasDef) { 7123 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7124 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7125 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7126 } else 7127 DAG.ReplaceAllUsesWith(Call, MN); 7128 DAG.DeleteNode(Call); 7129 7130 // Inform the Frame Information that we have a patchpoint in this function. 7131 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7132 } 7133 7134 /// Returns an AttributeSet representing the attributes applied to the return 7135 /// value of the given call. 7136 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7137 SmallVector<Attribute::AttrKind, 2> Attrs; 7138 if (CLI.RetSExt) 7139 Attrs.push_back(Attribute::SExt); 7140 if (CLI.RetZExt) 7141 Attrs.push_back(Attribute::ZExt); 7142 if (CLI.IsInReg) 7143 Attrs.push_back(Attribute::InReg); 7144 7145 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7146 Attrs); 7147 } 7148 7149 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7150 /// implementation, which just calls LowerCall. 7151 /// FIXME: When all targets are 7152 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7153 std::pair<SDValue, SDValue> 7154 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7155 // Handle the incoming return values from the call. 7156 CLI.Ins.clear(); 7157 Type *OrigRetTy = CLI.RetTy; 7158 SmallVector<EVT, 4> RetTys; 7159 SmallVector<uint64_t, 4> Offsets; 7160 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7161 7162 SmallVector<ISD::OutputArg, 4> Outs; 7163 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7164 7165 bool CanLowerReturn = 7166 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7167 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7168 7169 SDValue DemoteStackSlot; 7170 int DemoteStackIdx = -100; 7171 if (!CanLowerReturn) { 7172 // FIXME: equivalent assert? 7173 // assert(!CS.hasInAllocaArgument() && 7174 // "sret demotion is incompatible with inalloca"); 7175 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7176 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7177 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7178 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7179 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7180 7181 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7182 ArgListEntry Entry; 7183 Entry.Node = DemoteStackSlot; 7184 Entry.Ty = StackSlotPtrType; 7185 Entry.isSExt = false; 7186 Entry.isZExt = false; 7187 Entry.isInReg = false; 7188 Entry.isSRet = true; 7189 Entry.isNest = false; 7190 Entry.isByVal = false; 7191 Entry.isReturned = false; 7192 Entry.Alignment = Align; 7193 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7194 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7195 } else { 7196 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7197 EVT VT = RetTys[I]; 7198 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7199 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7200 for (unsigned i = 0; i != NumRegs; ++i) { 7201 ISD::InputArg MyFlags; 7202 MyFlags.VT = RegisterVT; 7203 MyFlags.ArgVT = VT; 7204 MyFlags.Used = CLI.IsReturnValueUsed; 7205 if (CLI.RetSExt) 7206 MyFlags.Flags.setSExt(); 7207 if (CLI.RetZExt) 7208 MyFlags.Flags.setZExt(); 7209 if (CLI.IsInReg) 7210 MyFlags.Flags.setInReg(); 7211 CLI.Ins.push_back(MyFlags); 7212 } 7213 } 7214 } 7215 7216 // Handle all of the outgoing arguments. 7217 CLI.Outs.clear(); 7218 CLI.OutVals.clear(); 7219 ArgListTy &Args = CLI.getArgs(); 7220 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7221 SmallVector<EVT, 4> ValueVTs; 7222 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7223 Type *FinalType = Args[i].Ty; 7224 if (Args[i].isByVal) 7225 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7226 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7227 FinalType, CLI.CallConv, CLI.IsVarArg); 7228 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7229 ++Value) { 7230 EVT VT = ValueVTs[Value]; 7231 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7232 SDValue Op = SDValue(Args[i].Node.getNode(), 7233 Args[i].Node.getResNo() + Value); 7234 ISD::ArgFlagsTy Flags; 7235 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7236 7237 if (Args[i].isZExt) 7238 Flags.setZExt(); 7239 if (Args[i].isSExt) 7240 Flags.setSExt(); 7241 if (Args[i].isInReg) 7242 Flags.setInReg(); 7243 if (Args[i].isSRet) 7244 Flags.setSRet(); 7245 if (Args[i].isByVal) 7246 Flags.setByVal(); 7247 if (Args[i].isInAlloca) { 7248 Flags.setInAlloca(); 7249 // Set the byval flag for CCAssignFn callbacks that don't know about 7250 // inalloca. This way we can know how many bytes we should've allocated 7251 // and how many bytes a callee cleanup function will pop. If we port 7252 // inalloca to more targets, we'll have to add custom inalloca handling 7253 // in the various CC lowering callbacks. 7254 Flags.setByVal(); 7255 } 7256 if (Args[i].isByVal || Args[i].isInAlloca) { 7257 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7258 Type *ElementTy = Ty->getElementType(); 7259 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7260 // For ByVal, alignment should come from FE. BE will guess if this 7261 // info is not there but there are cases it cannot get right. 7262 unsigned FrameAlign; 7263 if (Args[i].Alignment) 7264 FrameAlign = Args[i].Alignment; 7265 else 7266 FrameAlign = getByValTypeAlignment(ElementTy); 7267 Flags.setByValAlign(FrameAlign); 7268 } 7269 if (Args[i].isNest) 7270 Flags.setNest(); 7271 if (NeedsRegBlock) { 7272 Flags.setInConsecutiveRegs(); 7273 if (Value == NumValues - 1) 7274 Flags.setInConsecutiveRegsLast(); 7275 } 7276 Flags.setOrigAlign(OriginalAlignment); 7277 7278 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7279 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7280 SmallVector<SDValue, 4> Parts(NumParts); 7281 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7282 7283 if (Args[i].isSExt) 7284 ExtendKind = ISD::SIGN_EXTEND; 7285 else if (Args[i].isZExt) 7286 ExtendKind = ISD::ZERO_EXTEND; 7287 7288 // Conservatively only handle 'returned' on non-vectors for now 7289 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7290 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7291 "unexpected use of 'returned'"); 7292 // Before passing 'returned' to the target lowering code, ensure that 7293 // either the register MVT and the actual EVT are the same size or that 7294 // the return value and argument are extended in the same way; in these 7295 // cases it's safe to pass the argument register value unchanged as the 7296 // return register value (although it's at the target's option whether 7297 // to do so) 7298 // TODO: allow code generation to take advantage of partially preserved 7299 // registers rather than clobbering the entire register when the 7300 // parameter extension method is not compatible with the return 7301 // extension method 7302 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7303 (ExtendKind != ISD::ANY_EXTEND && 7304 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7305 Flags.setReturned(); 7306 } 7307 7308 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7309 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7310 7311 for (unsigned j = 0; j != NumParts; ++j) { 7312 // if it isn't first piece, alignment must be 1 7313 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7314 i < CLI.NumFixedArgs, 7315 i, j*Parts[j].getValueType().getStoreSize()); 7316 if (NumParts > 1 && j == 0) 7317 MyFlags.Flags.setSplit(); 7318 else if (j != 0) 7319 MyFlags.Flags.setOrigAlign(1); 7320 7321 CLI.Outs.push_back(MyFlags); 7322 CLI.OutVals.push_back(Parts[j]); 7323 } 7324 } 7325 } 7326 7327 SmallVector<SDValue, 4> InVals; 7328 CLI.Chain = LowerCall(CLI, InVals); 7329 7330 // Verify that the target's LowerCall behaved as expected. 7331 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7332 "LowerCall didn't return a valid chain!"); 7333 assert((!CLI.IsTailCall || InVals.empty()) && 7334 "LowerCall emitted a return value for a tail call!"); 7335 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7336 "LowerCall didn't emit the correct number of values!"); 7337 7338 // For a tail call, the return value is merely live-out and there aren't 7339 // any nodes in the DAG representing it. Return a special value to 7340 // indicate that a tail call has been emitted and no more Instructions 7341 // should be processed in the current block. 7342 if (CLI.IsTailCall) { 7343 CLI.DAG.setRoot(CLI.Chain); 7344 return std::make_pair(SDValue(), SDValue()); 7345 } 7346 7347 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7348 assert(InVals[i].getNode() && 7349 "LowerCall emitted a null value!"); 7350 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7351 "LowerCall emitted a value with the wrong type!"); 7352 }); 7353 7354 SmallVector<SDValue, 4> ReturnValues; 7355 if (!CanLowerReturn) { 7356 // The instruction result is the result of loading from the 7357 // hidden sret parameter. 7358 SmallVector<EVT, 1> PVTs; 7359 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7360 7361 ComputeValueVTs(*this, PtrRetTy, PVTs); 7362 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7363 EVT PtrVT = PVTs[0]; 7364 7365 unsigned NumValues = RetTys.size(); 7366 ReturnValues.resize(NumValues); 7367 SmallVector<SDValue, 4> Chains(NumValues); 7368 7369 for (unsigned i = 0; i < NumValues; ++i) { 7370 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7371 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7372 SDValue L = CLI.DAG.getLoad( 7373 RetTys[i], CLI.DL, CLI.Chain, Add, 7374 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7375 false, false, 1); 7376 ReturnValues[i] = L; 7377 Chains[i] = L.getValue(1); 7378 } 7379 7380 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7381 } else { 7382 // Collect the legal value parts into potentially illegal values 7383 // that correspond to the original function's return values. 7384 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7385 if (CLI.RetSExt) 7386 AssertOp = ISD::AssertSext; 7387 else if (CLI.RetZExt) 7388 AssertOp = ISD::AssertZext; 7389 unsigned CurReg = 0; 7390 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7391 EVT VT = RetTys[I]; 7392 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7393 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7394 7395 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7396 NumRegs, RegisterVT, VT, nullptr, 7397 AssertOp)); 7398 CurReg += NumRegs; 7399 } 7400 7401 // For a function returning void, there is no return value. We can't create 7402 // such a node, so we just return a null return value in that case. In 7403 // that case, nothing will actually look at the value. 7404 if (ReturnValues.empty()) 7405 return std::make_pair(SDValue(), CLI.Chain); 7406 } 7407 7408 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7409 CLI.DAG.getVTList(RetTys), ReturnValues); 7410 return std::make_pair(Res, CLI.Chain); 7411 } 7412 7413 void TargetLowering::LowerOperationWrapper(SDNode *N, 7414 SmallVectorImpl<SDValue> &Results, 7415 SelectionDAG &DAG) const { 7416 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7417 if (Res.getNode()) 7418 Results.push_back(Res); 7419 } 7420 7421 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7422 llvm_unreachable("LowerOperation not implemented for this target!"); 7423 } 7424 7425 void 7426 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7427 SDValue Op = getNonRegisterValue(V); 7428 assert((Op.getOpcode() != ISD::CopyFromReg || 7429 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7430 "Copy from a reg to the same reg!"); 7431 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7432 7433 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7434 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7435 SDValue Chain = DAG.getEntryNode(); 7436 7437 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7438 FuncInfo.PreferredExtendType.end()) 7439 ? ISD::ANY_EXTEND 7440 : FuncInfo.PreferredExtendType[V]; 7441 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7442 PendingExports.push_back(Chain); 7443 } 7444 7445 #include "llvm/CodeGen/SelectionDAGISel.h" 7446 7447 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7448 /// entry block, return true. This includes arguments used by switches, since 7449 /// the switch may expand into multiple basic blocks. 7450 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7451 // With FastISel active, we may be splitting blocks, so force creation 7452 // of virtual registers for all non-dead arguments. 7453 if (FastISel) 7454 return A->use_empty(); 7455 7456 const BasicBlock *Entry = A->getParent()->begin(); 7457 for (const User *U : A->users()) 7458 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7459 return false; // Use not in entry block. 7460 7461 return true; 7462 } 7463 7464 void SelectionDAGISel::LowerArguments(const Function &F) { 7465 SelectionDAG &DAG = SDB->DAG; 7466 SDLoc dl = SDB->getCurSDLoc(); 7467 const TargetLowering *TLI = getTargetLowering(); 7468 const DataLayout *DL = TLI->getDataLayout(); 7469 SmallVector<ISD::InputArg, 16> Ins; 7470 7471 if (!FuncInfo->CanLowerReturn) { 7472 // Put in an sret pointer parameter before all the other parameters. 7473 SmallVector<EVT, 1> ValueVTs; 7474 ComputeValueVTs(*getTargetLowering(), 7475 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7476 7477 // NOTE: Assuming that a pointer will never break down to more than one VT 7478 // or one register. 7479 ISD::ArgFlagsTy Flags; 7480 Flags.setSRet(); 7481 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7482 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7483 Ins.push_back(RetArg); 7484 } 7485 7486 // Set up the incoming argument description vector. 7487 unsigned Idx = 1; 7488 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7489 I != E; ++I, ++Idx) { 7490 SmallVector<EVT, 4> ValueVTs; 7491 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7492 bool isArgValueUsed = !I->use_empty(); 7493 unsigned PartBase = 0; 7494 Type *FinalType = I->getType(); 7495 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7496 FinalType = cast<PointerType>(FinalType)->getElementType(); 7497 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7498 FinalType, F.getCallingConv(), F.isVarArg()); 7499 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7500 Value != NumValues; ++Value) { 7501 EVT VT = ValueVTs[Value]; 7502 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7503 ISD::ArgFlagsTy Flags; 7504 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7505 7506 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7507 Flags.setZExt(); 7508 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7509 Flags.setSExt(); 7510 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7511 Flags.setInReg(); 7512 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7513 Flags.setSRet(); 7514 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7515 Flags.setByVal(); 7516 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7517 Flags.setInAlloca(); 7518 // Set the byval flag for CCAssignFn callbacks that don't know about 7519 // inalloca. This way we can know how many bytes we should've allocated 7520 // and how many bytes a callee cleanup function will pop. If we port 7521 // inalloca to more targets, we'll have to add custom inalloca handling 7522 // in the various CC lowering callbacks. 7523 Flags.setByVal(); 7524 } 7525 if (Flags.isByVal() || Flags.isInAlloca()) { 7526 PointerType *Ty = cast<PointerType>(I->getType()); 7527 Type *ElementTy = Ty->getElementType(); 7528 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7529 // For ByVal, alignment should be passed from FE. BE will guess if 7530 // this info is not there but there are cases it cannot get right. 7531 unsigned FrameAlign; 7532 if (F.getParamAlignment(Idx)) 7533 FrameAlign = F.getParamAlignment(Idx); 7534 else 7535 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7536 Flags.setByValAlign(FrameAlign); 7537 } 7538 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7539 Flags.setNest(); 7540 if (NeedsRegBlock) { 7541 Flags.setInConsecutiveRegs(); 7542 if (Value == NumValues - 1) 7543 Flags.setInConsecutiveRegsLast(); 7544 } 7545 Flags.setOrigAlign(OriginalAlignment); 7546 7547 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7548 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7549 for (unsigned i = 0; i != NumRegs; ++i) { 7550 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7551 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7552 if (NumRegs > 1 && i == 0) 7553 MyFlags.Flags.setSplit(); 7554 // if it isn't first piece, alignment must be 1 7555 else if (i > 0) 7556 MyFlags.Flags.setOrigAlign(1); 7557 Ins.push_back(MyFlags); 7558 } 7559 PartBase += VT.getStoreSize(); 7560 } 7561 } 7562 7563 // Call the target to set up the argument values. 7564 SmallVector<SDValue, 8> InVals; 7565 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7566 F.isVarArg(), Ins, 7567 dl, DAG, InVals); 7568 7569 // Verify that the target's LowerFormalArguments behaved as expected. 7570 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7571 "LowerFormalArguments didn't return a valid chain!"); 7572 assert(InVals.size() == Ins.size() && 7573 "LowerFormalArguments didn't emit the correct number of values!"); 7574 DEBUG({ 7575 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7576 assert(InVals[i].getNode() && 7577 "LowerFormalArguments emitted a null value!"); 7578 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7579 "LowerFormalArguments emitted a value with the wrong type!"); 7580 } 7581 }); 7582 7583 // Update the DAG with the new chain value resulting from argument lowering. 7584 DAG.setRoot(NewRoot); 7585 7586 // Set up the argument values. 7587 unsigned i = 0; 7588 Idx = 1; 7589 if (!FuncInfo->CanLowerReturn) { 7590 // Create a virtual register for the sret pointer, and put in a copy 7591 // from the sret argument into it. 7592 SmallVector<EVT, 1> ValueVTs; 7593 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7594 MVT VT = ValueVTs[0].getSimpleVT(); 7595 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7596 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7597 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7598 RegVT, VT, nullptr, AssertOp); 7599 7600 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7601 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7602 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7603 FuncInfo->DemoteRegister = SRetReg; 7604 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7605 SRetReg, ArgValue); 7606 DAG.setRoot(NewRoot); 7607 7608 // i indexes lowered arguments. Bump it past the hidden sret argument. 7609 // Idx indexes LLVM arguments. Don't touch it. 7610 ++i; 7611 } 7612 7613 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7614 ++I, ++Idx) { 7615 SmallVector<SDValue, 4> ArgValues; 7616 SmallVector<EVT, 4> ValueVTs; 7617 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7618 unsigned NumValues = ValueVTs.size(); 7619 7620 // If this argument is unused then remember its value. It is used to generate 7621 // debugging information. 7622 if (I->use_empty() && NumValues) { 7623 SDB->setUnusedArgValue(I, InVals[i]); 7624 7625 // Also remember any frame index for use in FastISel. 7626 if (FrameIndexSDNode *FI = 7627 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7628 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7629 } 7630 7631 for (unsigned Val = 0; Val != NumValues; ++Val) { 7632 EVT VT = ValueVTs[Val]; 7633 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7634 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7635 7636 if (!I->use_empty()) { 7637 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7638 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7639 AssertOp = ISD::AssertSext; 7640 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7641 AssertOp = ISD::AssertZext; 7642 7643 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7644 NumParts, PartVT, VT, 7645 nullptr, AssertOp)); 7646 } 7647 7648 i += NumParts; 7649 } 7650 7651 // We don't need to do anything else for unused arguments. 7652 if (ArgValues.empty()) 7653 continue; 7654 7655 // Note down frame index. 7656 if (FrameIndexSDNode *FI = 7657 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7658 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7659 7660 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7661 SDB->getCurSDLoc()); 7662 7663 SDB->setValue(I, Res); 7664 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7665 if (LoadSDNode *LNode = 7666 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7667 if (FrameIndexSDNode *FI = 7668 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7669 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7670 } 7671 7672 // If this argument is live outside of the entry block, insert a copy from 7673 // wherever we got it to the vreg that other BB's will reference it as. 7674 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7675 // If we can, though, try to skip creating an unnecessary vreg. 7676 // FIXME: This isn't very clean... it would be nice to make this more 7677 // general. It's also subtly incompatible with the hacks FastISel 7678 // uses with vregs. 7679 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7680 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7681 FuncInfo->ValueMap[I] = Reg; 7682 continue; 7683 } 7684 } 7685 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7686 FuncInfo->InitializeRegForValue(I); 7687 SDB->CopyToExportRegsIfNeeded(I); 7688 } 7689 } 7690 7691 assert(i == InVals.size() && "Argument register count mismatch!"); 7692 7693 // Finally, if the target has anything special to do, allow it to do so. 7694 // FIXME: this should insert code into the DAG! 7695 EmitFunctionEntryCode(); 7696 } 7697 7698 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7699 /// ensure constants are generated when needed. Remember the virtual registers 7700 /// that need to be added to the Machine PHI nodes as input. We cannot just 7701 /// directly add them, because expansion might result in multiple MBB's for one 7702 /// BB. As such, the start of the BB might correspond to a different MBB than 7703 /// the end. 7704 /// 7705 void 7706 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7707 const TerminatorInst *TI = LLVMBB->getTerminator(); 7708 7709 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7710 7711 // Check successor nodes' PHI nodes that expect a constant to be available 7712 // from this block. 7713 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7714 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7715 if (!isa<PHINode>(SuccBB->begin())) continue; 7716 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7717 7718 // If this terminator has multiple identical successors (common for 7719 // switches), only handle each succ once. 7720 if (!SuccsHandled.insert(SuccMBB)) continue; 7721 7722 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7723 7724 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7725 // nodes and Machine PHI nodes, but the incoming operands have not been 7726 // emitted yet. 7727 for (BasicBlock::const_iterator I = SuccBB->begin(); 7728 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7729 // Ignore dead phi's. 7730 if (PN->use_empty()) continue; 7731 7732 // Skip empty types 7733 if (PN->getType()->isEmptyTy()) 7734 continue; 7735 7736 unsigned Reg; 7737 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7738 7739 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7740 unsigned &RegOut = ConstantsOut[C]; 7741 if (RegOut == 0) { 7742 RegOut = FuncInfo.CreateRegs(C->getType()); 7743 CopyValueToVirtualRegister(C, RegOut); 7744 } 7745 Reg = RegOut; 7746 } else { 7747 DenseMap<const Value *, unsigned>::iterator I = 7748 FuncInfo.ValueMap.find(PHIOp); 7749 if (I != FuncInfo.ValueMap.end()) 7750 Reg = I->second; 7751 else { 7752 assert(isa<AllocaInst>(PHIOp) && 7753 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7754 "Didn't codegen value into a register!??"); 7755 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7756 CopyValueToVirtualRegister(PHIOp, Reg); 7757 } 7758 } 7759 7760 // Remember that this register needs to added to the machine PHI node as 7761 // the input for this MBB. 7762 SmallVector<EVT, 4> ValueVTs; 7763 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7764 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7765 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7766 EVT VT = ValueVTs[vti]; 7767 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7768 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7769 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7770 Reg += NumRegisters; 7771 } 7772 } 7773 } 7774 7775 ConstantsOut.clear(); 7776 } 7777 7778 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7779 /// is 0. 7780 MachineBasicBlock * 7781 SelectionDAGBuilder::StackProtectorDescriptor:: 7782 AddSuccessorMBB(const BasicBlock *BB, 7783 MachineBasicBlock *ParentMBB, 7784 MachineBasicBlock *SuccMBB) { 7785 // If SuccBB has not been created yet, create it. 7786 if (!SuccMBB) { 7787 MachineFunction *MF = ParentMBB->getParent(); 7788 MachineFunction::iterator BBI = ParentMBB; 7789 SuccMBB = MF->CreateMachineBasicBlock(BB); 7790 MF->insert(++BBI, SuccMBB); 7791 } 7792 // Add it as a successor of ParentMBB. 7793 ParentMBB->addSuccessor(SuccMBB); 7794 return SuccMBB; 7795 } 7796