1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorElementCount().isScalar()) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 673 assert(PartVT.getFixedSizeInBits() > ValueSize && 674 "lossy conversion of vector to scalar type"); 675 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, unsigned>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 unsigned RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) { 1088 HandlePHINodesInSuccessorBlocks(I.getParent()); 1089 } 1090 1091 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1092 if (!isa<DbgInfoIntrinsic>(I)) 1093 ++SDNodeOrder; 1094 1095 CurInst = &I; 1096 1097 visit(I.getOpcode(), I); 1098 1099 if (!I.isTerminator() && !HasTailCall && 1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1101 CopyToExportRegsIfNeeded(&I); 1102 1103 CurInst = nullptr; 1104 } 1105 1106 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1108 } 1109 1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1111 // Note: this doesn't use InstVisitor, because it has to work with 1112 // ConstantExpr's in addition to instructions. 1113 switch (Opcode) { 1114 default: llvm_unreachable("Unknown instruction type encountered!"); 1115 // Build the switch statement using the Instruction.def file. 1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1118 #include "llvm/IR/Instruction.def" 1119 } 1120 } 1121 1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1123 const DIExpression *Expr) { 1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1125 const DbgValueInst *DI = DDI.getDI(); 1126 DIVariable *DanglingVariable = DI->getVariable(); 1127 DIExpression *DanglingExpr = DI->getExpression(); 1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1130 return true; 1131 } 1132 return false; 1133 }; 1134 1135 for (auto &DDIMI : DanglingDebugInfoMap) { 1136 DanglingDebugInfoVector &DDIV = DDIMI.second; 1137 1138 // If debug info is to be dropped, run it through final checks to see 1139 // whether it can be salvaged. 1140 for (auto &DDI : DDIV) 1141 if (isMatchingDbgValue(DDI)) 1142 salvageUnresolvedDbgValue(DDI); 1143 1144 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1145 } 1146 } 1147 1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1149 // generate the debug data structures now that we've seen its definition. 1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1151 SDValue Val) { 1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1154 return; 1155 1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1157 for (auto &DDI : DDIV) { 1158 const DbgValueInst *DI = DDI.getDI(); 1159 assert(DI && "Ill-formed DanglingDebugInfo"); 1160 DebugLoc dl = DDI.getdl(); 1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1163 DILocalVariable *Variable = DI->getVariable(); 1164 DIExpression *Expr = DI->getExpression(); 1165 assert(Variable->isValidLocationForIntrinsic(dl) && 1166 "Expected inlined-at fields to agree"); 1167 SDDbgValue *SDV; 1168 if (Val.getNode()) { 1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1171 // we couldn't resolve it directly when examining the DbgValue intrinsic 1172 // in the first place we should not be more successful here). Unless we 1173 // have some test case that prove this to be correct we should avoid 1174 // calling EmitFuncArgumentDbgValue here. 1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1180 // inserted after the definition of Val when emitting the instructions 1181 // after ISel. An alternative could be to teach 1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1185 << ValSDNodeOrder << "\n"); 1186 SDV = getDbgValue(Val, Variable, Expr, dl, 1187 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1188 DAG.AddDbgValue(SDV, Val.getNode(), false); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1191 << "in EmitFuncArgumentDbgValue\n"); 1192 } else { 1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 auto Undef = 1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1196 auto SDV = 1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1198 DAG.AddDbgValue(SDV, nullptr, false); 1199 } 1200 } 1201 DDIV.clear(); 1202 } 1203 1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1205 Value *V = DDI.getDI()->getValue(); 1206 DILocalVariable *Var = DDI.getDI()->getVariable(); 1207 DIExpression *Expr = DDI.getDI()->getExpression(); 1208 DebugLoc DL = DDI.getdl(); 1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1210 unsigned SDOrder = DDI.getSDNodeOrder(); 1211 1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1213 // that DW_OP_stack_value is desired. 1214 assert(isa<DbgValueInst>(DDI.getDI())); 1215 bool StackValue = true; 1216 1217 // Can this Value can be encoded without any further work? 1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1219 return; 1220 1221 // Attempt to salvage back through as many instructions as possible. Bail if 1222 // a non-instruction is seen, such as a constant expression or global 1223 // variable. FIXME: Further work could recover those too. 1224 while (isa<Instruction>(V)) { 1225 Instruction &VAsInst = *cast<Instruction>(V); 1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1227 1228 // If we cannot salvage any further, and haven't yet found a suitable debug 1229 // expression, bail out. 1230 if (!NewExpr) 1231 break; 1232 1233 // New value and expr now represent this debuginfo. 1234 V = VAsInst.getOperand(0); 1235 Expr = NewExpr; 1236 1237 // Some kind of simplification occurred: check whether the operand of the 1238 // salvaged debug expression can be encoded in this DAG. 1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1241 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1242 return; 1243 } 1244 } 1245 1246 // This was the final opportunity to salvage this debug information, and it 1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1248 // any earlier variable location. 1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1251 DAG.AddDbgValue(SDV, nullptr, false); 1252 1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1254 << "\n"); 1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1256 << "\n"); 1257 } 1258 1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1260 DIExpression *Expr, DebugLoc dl, 1261 DebugLoc InstDL, unsigned Order) { 1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1263 SDDbgValue *SDV; 1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1265 isa<ConstantPointerNull>(V)) { 1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1267 DAG.AddDbgValue(SDV, nullptr, false); 1268 return true; 1269 } 1270 1271 // If the Value is a frame index, we can create a FrameIndex debug value 1272 // without relying on the DAG at all. 1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1274 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1275 if (SI != FuncInfo.StaticAllocaMap.end()) { 1276 auto SDV = 1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1278 /*IsIndirect*/ false, dl, SDNodeOrder); 1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1280 // is still available even if the SDNode gets optimized out. 1281 DAG.AddDbgValue(SDV, nullptr, false); 1282 return true; 1283 } 1284 } 1285 1286 // Do not use getValue() in here; we don't want to generate code at 1287 // this point if it hasn't been done yet. 1288 SDValue N = NodeMap[V]; 1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1290 N = UnusedArgNodeMap[V]; 1291 if (N.getNode()) { 1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1293 return true; 1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1295 DAG.AddDbgValue(SDV, N.getNode(), false); 1296 return true; 1297 } 1298 1299 // Special rules apply for the first dbg.values of parameter variables in a 1300 // function. Identify them by the fact they reference Argument Values, that 1301 // they're parameters, and they are parameters of the current function. We 1302 // need to let them dangle until they get an SDNode. 1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1304 !InstDL.getInlinedAt(); 1305 if (!IsParamOfFunc) { 1306 // The value is not used in this block yet (or it would have an SDNode). 1307 // We still want the value to appear for the user if possible -- if it has 1308 // an associated VReg, we can refer to that instead. 1309 auto VMI = FuncInfo.ValueMap.find(V); 1310 if (VMI != FuncInfo.ValueMap.end()) { 1311 unsigned Reg = VMI->second; 1312 // If this is a PHI node, it may be split up into several MI PHI nodes 1313 // (in FunctionLoweringInfo::set). 1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1315 V->getType(), None); 1316 if (RFV.occupiesMultipleRegs()) { 1317 unsigned Offset = 0; 1318 unsigned BitsToDescribe = 0; 1319 if (auto VarSize = Var->getSizeInBits()) 1320 BitsToDescribe = *VarSize; 1321 if (auto Fragment = Expr->getFragmentInfo()) 1322 BitsToDescribe = Fragment->SizeInBits; 1323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1324 unsigned RegisterSize = RegAndSize.second; 1325 // Bail out if all bits are described already. 1326 if (Offset >= BitsToDescribe) 1327 break; 1328 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1329 ? BitsToDescribe - Offset 1330 : RegisterSize; 1331 auto FragmentExpr = DIExpression::createFragmentExpression( 1332 Expr, Offset, FragmentSize); 1333 if (!FragmentExpr) 1334 continue; 1335 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1336 false, dl, SDNodeOrder); 1337 DAG.AddDbgValue(SDV, nullptr, false); 1338 Offset += RegisterSize; 1339 } 1340 } else { 1341 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1342 DAG.AddDbgValue(SDV, nullptr, false); 1343 } 1344 return true; 1345 } 1346 } 1347 1348 return false; 1349 } 1350 1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1352 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1353 for (auto &Pair : DanglingDebugInfoMap) 1354 for (auto &DDI : Pair.second) 1355 salvageUnresolvedDbgValue(DDI); 1356 clearDanglingDebugInfo(); 1357 } 1358 1359 /// getCopyFromRegs - If there was virtual register allocated for the value V 1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1362 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1363 SDValue Result; 1364 1365 if (It != FuncInfo.ValueMap.end()) { 1366 Register InReg = It->second; 1367 1368 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1369 DAG.getDataLayout(), InReg, Ty, 1370 None); // This is not an ABI copy. 1371 SDValue Chain = DAG.getEntryNode(); 1372 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1373 V); 1374 resolveDanglingDebugInfo(V, Result); 1375 } 1376 1377 return Result; 1378 } 1379 1380 /// getValue - Return an SDValue for the given Value. 1381 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1382 // If we already have an SDValue for this value, use it. It's important 1383 // to do this first, so that we don't create a CopyFromReg if we already 1384 // have a regular SDValue. 1385 SDValue &N = NodeMap[V]; 1386 if (N.getNode()) return N; 1387 1388 // If there's a virtual register allocated and initialized for this 1389 // value, use it. 1390 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1391 return copyFromReg; 1392 1393 // Otherwise create a new SDValue and remember it. 1394 SDValue Val = getValueImpl(V); 1395 NodeMap[V] = Val; 1396 resolveDanglingDebugInfo(V, Val); 1397 return Val; 1398 } 1399 1400 /// getNonRegisterValue - Return an SDValue for the given Value, but 1401 /// don't look in FuncInfo.ValueMap for a virtual register. 1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1403 // If we already have an SDValue for this value, use it. 1404 SDValue &N = NodeMap[V]; 1405 if (N.getNode()) { 1406 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1407 // Remove the debug location from the node as the node is about to be used 1408 // in a location which may differ from the original debug location. This 1409 // is relevant to Constant and ConstantFP nodes because they can appear 1410 // as constant expressions inside PHI nodes. 1411 N->setDebugLoc(DebugLoc()); 1412 } 1413 return N; 1414 } 1415 1416 // Otherwise create a new SDValue and remember it. 1417 SDValue Val = getValueImpl(V); 1418 NodeMap[V] = Val; 1419 resolveDanglingDebugInfo(V, Val); 1420 return Val; 1421 } 1422 1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1424 /// Create an SDValue for the given value. 1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 1428 if (const Constant *C = dyn_cast<Constant>(V)) { 1429 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1430 1431 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1432 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1433 1434 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1435 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1436 1437 if (isa<ConstantPointerNull>(C)) { 1438 unsigned AS = V->getType()->getPointerAddressSpace(); 1439 return DAG.getConstant(0, getCurSDLoc(), 1440 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1441 } 1442 1443 if (match(C, m_VScale(DAG.getDataLayout()))) 1444 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1445 1446 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1447 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1448 1449 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1450 return DAG.getUNDEF(VT); 1451 1452 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1453 visit(CE->getOpcode(), *CE); 1454 SDValue N1 = NodeMap[V]; 1455 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1456 return N1; 1457 } 1458 1459 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1460 SmallVector<SDValue, 4> Constants; 1461 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1462 OI != OE; ++OI) { 1463 SDNode *Val = getValue(*OI).getNode(); 1464 // If the operand is an empty aggregate, there are no values. 1465 if (!Val) continue; 1466 // Add each leaf value from the operand to the Constants list 1467 // to form a flattened list of all the values. 1468 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1469 Constants.push_back(SDValue(Val, i)); 1470 } 1471 1472 return DAG.getMergeValues(Constants, getCurSDLoc()); 1473 } 1474 1475 if (const ConstantDataSequential *CDS = 1476 dyn_cast<ConstantDataSequential>(C)) { 1477 SmallVector<SDValue, 4> Ops; 1478 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1479 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1480 // Add each leaf value from the operand to the Constants list 1481 // to form a flattened list of all the values. 1482 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1483 Ops.push_back(SDValue(Val, i)); 1484 } 1485 1486 if (isa<ArrayType>(CDS->getType())) 1487 return DAG.getMergeValues(Ops, getCurSDLoc()); 1488 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1489 } 1490 1491 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1492 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1493 "Unknown struct or array constant!"); 1494 1495 SmallVector<EVT, 4> ValueVTs; 1496 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1497 unsigned NumElts = ValueVTs.size(); 1498 if (NumElts == 0) 1499 return SDValue(); // empty struct 1500 SmallVector<SDValue, 4> Constants(NumElts); 1501 for (unsigned i = 0; i != NumElts; ++i) { 1502 EVT EltVT = ValueVTs[i]; 1503 if (isa<UndefValue>(C)) 1504 Constants[i] = DAG.getUNDEF(EltVT); 1505 else if (EltVT.isFloatingPoint()) 1506 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1507 else 1508 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1509 } 1510 1511 return DAG.getMergeValues(Constants, getCurSDLoc()); 1512 } 1513 1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1515 return DAG.getBlockAddress(BA, VT); 1516 1517 VectorType *VecTy = cast<VectorType>(V->getType()); 1518 1519 // Now that we know the number and type of the elements, get that number of 1520 // elements into the Ops array based on what kind of constant it is. 1521 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1522 SmallVector<SDValue, 16> Ops; 1523 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1524 for (unsigned i = 0; i != NumElements; ++i) 1525 Ops.push_back(getValue(CV->getOperand(i))); 1526 1527 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1528 } else if (isa<ConstantAggregateZero>(C)) { 1529 EVT EltVT = 1530 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1531 1532 SDValue Op; 1533 if (EltVT.isFloatingPoint()) 1534 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1535 else 1536 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1537 1538 if (isa<ScalableVectorType>(VecTy)) 1539 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1540 else { 1541 SmallVector<SDValue, 16> Ops; 1542 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1543 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1544 } 1545 } 1546 llvm_unreachable("Unknown vector constant"); 1547 } 1548 1549 // If this is a static alloca, generate it as the frameindex instead of 1550 // computation. 1551 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1552 DenseMap<const AllocaInst*, int>::iterator SI = 1553 FuncInfo.StaticAllocaMap.find(AI); 1554 if (SI != FuncInfo.StaticAllocaMap.end()) 1555 return DAG.getFrameIndex(SI->second, 1556 TLI.getFrameIndexTy(DAG.getDataLayout())); 1557 } 1558 1559 // If this is an instruction which fast-isel has deferred, select it now. 1560 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1561 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1562 1563 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1564 Inst->getType(), None); 1565 SDValue Chain = DAG.getEntryNode(); 1566 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1567 } 1568 1569 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1570 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1571 } 1572 llvm_unreachable("Can't get register for value!"); 1573 } 1574 1575 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1576 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1577 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1578 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1579 bool IsSEH = isAsynchronousEHPersonality(Pers); 1580 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1581 if (!IsSEH) 1582 CatchPadMBB->setIsEHScopeEntry(); 1583 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1584 if (IsMSVCCXX || IsCoreCLR) 1585 CatchPadMBB->setIsEHFuncletEntry(); 1586 } 1587 1588 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1589 // Update machine-CFG edge. 1590 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1591 FuncInfo.MBB->addSuccessor(TargetMBB); 1592 1593 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1594 bool IsSEH = isAsynchronousEHPersonality(Pers); 1595 if (IsSEH) { 1596 // If this is not a fall-through branch or optimizations are switched off, 1597 // emit the branch. 1598 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1599 TM.getOptLevel() == CodeGenOpt::None) 1600 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1601 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1602 return; 1603 } 1604 1605 // Figure out the funclet membership for the catchret's successor. 1606 // This will be used by the FuncletLayout pass to determine how to order the 1607 // BB's. 1608 // A 'catchret' returns to the outer scope's color. 1609 Value *ParentPad = I.getCatchSwitchParentPad(); 1610 const BasicBlock *SuccessorColor; 1611 if (isa<ConstantTokenNone>(ParentPad)) 1612 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1613 else 1614 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1615 assert(SuccessorColor && "No parent funclet for catchret!"); 1616 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1617 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1618 1619 // Create the terminator node. 1620 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1621 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1622 DAG.getBasicBlock(SuccessorColorMBB)); 1623 DAG.setRoot(Ret); 1624 } 1625 1626 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1627 // Don't emit any special code for the cleanuppad instruction. It just marks 1628 // the start of an EH scope/funclet. 1629 FuncInfo.MBB->setIsEHScopeEntry(); 1630 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1631 if (Pers != EHPersonality::Wasm_CXX) { 1632 FuncInfo.MBB->setIsEHFuncletEntry(); 1633 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1634 } 1635 } 1636 1637 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1638 // the control flow always stops at the single catch pad, as it does for a 1639 // cleanup pad. In case the exception caught is not of the types the catch pad 1640 // catches, it will be rethrown by a rethrow. 1641 static void findWasmUnwindDestinations( 1642 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1643 BranchProbability Prob, 1644 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1645 &UnwindDests) { 1646 while (EHPadBB) { 1647 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1648 if (isa<CleanupPadInst>(Pad)) { 1649 // Stop on cleanup pads. 1650 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1651 UnwindDests.back().first->setIsEHScopeEntry(); 1652 break; 1653 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1654 // Add the catchpad handlers to the possible destinations. We don't 1655 // continue to the unwind destination of the catchswitch for wasm. 1656 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1657 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1658 UnwindDests.back().first->setIsEHScopeEntry(); 1659 } 1660 break; 1661 } else { 1662 continue; 1663 } 1664 } 1665 } 1666 1667 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1668 /// many places it could ultimately go. In the IR, we have a single unwind 1669 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1670 /// This function skips over imaginary basic blocks that hold catchswitch 1671 /// instructions, and finds all the "real" machine 1672 /// basic block destinations. As those destinations may not be successors of 1673 /// EHPadBB, here we also calculate the edge probability to those destinations. 1674 /// The passed-in Prob is the edge probability to EHPadBB. 1675 static void findUnwindDestinations( 1676 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1677 BranchProbability Prob, 1678 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1679 &UnwindDests) { 1680 EHPersonality Personality = 1681 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1682 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1683 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1684 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1685 bool IsSEH = isAsynchronousEHPersonality(Personality); 1686 1687 if (IsWasmCXX) { 1688 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1689 assert(UnwindDests.size() <= 1 && 1690 "There should be at most one unwind destination for wasm"); 1691 return; 1692 } 1693 1694 while (EHPadBB) { 1695 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1696 BasicBlock *NewEHPadBB = nullptr; 1697 if (isa<LandingPadInst>(Pad)) { 1698 // Stop on landingpads. They are not funclets. 1699 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1700 break; 1701 } else if (isa<CleanupPadInst>(Pad)) { 1702 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1703 // personalities. 1704 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1705 UnwindDests.back().first->setIsEHScopeEntry(); 1706 UnwindDests.back().first->setIsEHFuncletEntry(); 1707 break; 1708 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1709 // Add the catchpad handlers to the possible destinations. 1710 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1712 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1713 if (IsMSVCCXX || IsCoreCLR) 1714 UnwindDests.back().first->setIsEHFuncletEntry(); 1715 if (!IsSEH) 1716 UnwindDests.back().first->setIsEHScopeEntry(); 1717 } 1718 NewEHPadBB = CatchSwitch->getUnwindDest(); 1719 } else { 1720 continue; 1721 } 1722 1723 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1724 if (BPI && NewEHPadBB) 1725 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1726 EHPadBB = NewEHPadBB; 1727 } 1728 } 1729 1730 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1731 // Update successor info. 1732 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1733 auto UnwindDest = I.getUnwindDest(); 1734 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1735 BranchProbability UnwindDestProb = 1736 (BPI && UnwindDest) 1737 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1738 : BranchProbability::getZero(); 1739 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1740 for (auto &UnwindDest : UnwindDests) { 1741 UnwindDest.first->setIsEHPad(); 1742 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1743 } 1744 FuncInfo.MBB->normalizeSuccProbs(); 1745 1746 // Create the terminator node. 1747 SDValue Ret = 1748 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1749 DAG.setRoot(Ret); 1750 } 1751 1752 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1753 report_fatal_error("visitCatchSwitch not yet implemented!"); 1754 } 1755 1756 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1758 auto &DL = DAG.getDataLayout(); 1759 SDValue Chain = getControlRoot(); 1760 SmallVector<ISD::OutputArg, 8> Outs; 1761 SmallVector<SDValue, 8> OutVals; 1762 1763 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1764 // lower 1765 // 1766 // %val = call <ty> @llvm.experimental.deoptimize() 1767 // ret <ty> %val 1768 // 1769 // differently. 1770 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1771 LowerDeoptimizingReturn(); 1772 return; 1773 } 1774 1775 if (!FuncInfo.CanLowerReturn) { 1776 unsigned DemoteReg = FuncInfo.DemoteRegister; 1777 const Function *F = I.getParent()->getParent(); 1778 1779 // Emit a store of the return value through the virtual register. 1780 // Leave Outs empty so that LowerReturn won't try to load return 1781 // registers the usual way. 1782 SmallVector<EVT, 1> PtrValueVTs; 1783 ComputeValueVTs(TLI, DL, 1784 F->getReturnType()->getPointerTo( 1785 DAG.getDataLayout().getAllocaAddrSpace()), 1786 PtrValueVTs); 1787 1788 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1789 DemoteReg, PtrValueVTs[0]); 1790 SDValue RetOp = getValue(I.getOperand(0)); 1791 1792 SmallVector<EVT, 4> ValueVTs, MemVTs; 1793 SmallVector<uint64_t, 4> Offsets; 1794 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1795 &Offsets); 1796 unsigned NumValues = ValueVTs.size(); 1797 1798 SmallVector<SDValue, 4> Chains(NumValues); 1799 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1800 for (unsigned i = 0; i != NumValues; ++i) { 1801 // An aggregate return value cannot wrap around the address space, so 1802 // offsets to its parts don't wrap either. 1803 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1804 TypeSize::Fixed(Offsets[i])); 1805 1806 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1807 if (MemVTs[i] != ValueVTs[i]) 1808 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1809 Chains[i] = DAG.getStore( 1810 Chain, getCurSDLoc(), Val, 1811 // FIXME: better loc info would be nice. 1812 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1813 commonAlignment(BaseAlign, Offsets[i])); 1814 } 1815 1816 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1817 MVT::Other, Chains); 1818 } else if (I.getNumOperands() != 0) { 1819 SmallVector<EVT, 4> ValueVTs; 1820 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1821 unsigned NumValues = ValueVTs.size(); 1822 if (NumValues) { 1823 SDValue RetOp = getValue(I.getOperand(0)); 1824 1825 const Function *F = I.getParent()->getParent(); 1826 1827 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1828 I.getOperand(0)->getType(), F->getCallingConv(), 1829 /*IsVarArg*/ false); 1830 1831 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1832 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1833 Attribute::SExt)) 1834 ExtendKind = ISD::SIGN_EXTEND; 1835 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1836 Attribute::ZExt)) 1837 ExtendKind = ISD::ZERO_EXTEND; 1838 1839 LLVMContext &Context = F->getContext(); 1840 bool RetInReg = F->getAttributes().hasAttribute( 1841 AttributeList::ReturnIndex, Attribute::InReg); 1842 1843 for (unsigned j = 0; j != NumValues; ++j) { 1844 EVT VT = ValueVTs[j]; 1845 1846 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1847 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1848 1849 CallingConv::ID CC = F->getCallingConv(); 1850 1851 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1852 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1853 SmallVector<SDValue, 4> Parts(NumParts); 1854 getCopyToParts(DAG, getCurSDLoc(), 1855 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1856 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1857 1858 // 'inreg' on function refers to return value 1859 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1860 if (RetInReg) 1861 Flags.setInReg(); 1862 1863 if (I.getOperand(0)->getType()->isPointerTy()) { 1864 Flags.setPointer(); 1865 Flags.setPointerAddrSpace( 1866 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1867 } 1868 1869 if (NeedsRegBlock) { 1870 Flags.setInConsecutiveRegs(); 1871 if (j == NumValues - 1) 1872 Flags.setInConsecutiveRegsLast(); 1873 } 1874 1875 // Propagate extension type if any 1876 if (ExtendKind == ISD::SIGN_EXTEND) 1877 Flags.setSExt(); 1878 else if (ExtendKind == ISD::ZERO_EXTEND) 1879 Flags.setZExt(); 1880 1881 for (unsigned i = 0; i < NumParts; ++i) { 1882 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1883 VT, /*isfixed=*/true, 0, 0)); 1884 OutVals.push_back(Parts[i]); 1885 } 1886 } 1887 } 1888 } 1889 1890 // Push in swifterror virtual register as the last element of Outs. This makes 1891 // sure swifterror virtual register will be returned in the swifterror 1892 // physical register. 1893 const Function *F = I.getParent()->getParent(); 1894 if (TLI.supportSwiftError() && 1895 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1896 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1897 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1898 Flags.setSwiftError(); 1899 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1900 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1901 true /*isfixed*/, 1 /*origidx*/, 1902 0 /*partOffs*/)); 1903 // Create SDNode for the swifterror virtual register. 1904 OutVals.push_back( 1905 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1906 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1907 EVT(TLI.getPointerTy(DL)))); 1908 } 1909 1910 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1911 CallingConv::ID CallConv = 1912 DAG.getMachineFunction().getFunction().getCallingConv(); 1913 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1914 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1915 1916 // Verify that the target's LowerReturn behaved as expected. 1917 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1918 "LowerReturn didn't return a valid chain!"); 1919 1920 // Update the DAG with the new chain value resulting from return lowering. 1921 DAG.setRoot(Chain); 1922 } 1923 1924 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1925 /// created for it, emit nodes to copy the value into the virtual 1926 /// registers. 1927 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1928 // Skip empty types 1929 if (V->getType()->isEmptyTy()) 1930 return; 1931 1932 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1933 if (VMI != FuncInfo.ValueMap.end()) { 1934 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1935 CopyValueToVirtualRegister(V, VMI->second); 1936 } 1937 } 1938 1939 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1940 /// the current basic block, add it to ValueMap now so that we'll get a 1941 /// CopyTo/FromReg. 1942 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1943 // No need to export constants. 1944 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1945 1946 // Already exported? 1947 if (FuncInfo.isExportedInst(V)) return; 1948 1949 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1950 CopyValueToVirtualRegister(V, Reg); 1951 } 1952 1953 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1954 const BasicBlock *FromBB) { 1955 // The operands of the setcc have to be in this block. We don't know 1956 // how to export them from some other block. 1957 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1958 // Can export from current BB. 1959 if (VI->getParent() == FromBB) 1960 return true; 1961 1962 // Is already exported, noop. 1963 return FuncInfo.isExportedInst(V); 1964 } 1965 1966 // If this is an argument, we can export it if the BB is the entry block or 1967 // if it is already exported. 1968 if (isa<Argument>(V)) { 1969 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1970 return true; 1971 1972 // Otherwise, can only export this if it is already exported. 1973 return FuncInfo.isExportedInst(V); 1974 } 1975 1976 // Otherwise, constants can always be exported. 1977 return true; 1978 } 1979 1980 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1981 BranchProbability 1982 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1983 const MachineBasicBlock *Dst) const { 1984 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1985 const BasicBlock *SrcBB = Src->getBasicBlock(); 1986 const BasicBlock *DstBB = Dst->getBasicBlock(); 1987 if (!BPI) { 1988 // If BPI is not available, set the default probability as 1 / N, where N is 1989 // the number of successors. 1990 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1991 return BranchProbability(1, SuccSize); 1992 } 1993 return BPI->getEdgeProbability(SrcBB, DstBB); 1994 } 1995 1996 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1997 MachineBasicBlock *Dst, 1998 BranchProbability Prob) { 1999 if (!FuncInfo.BPI) 2000 Src->addSuccessorWithoutProb(Dst); 2001 else { 2002 if (Prob.isUnknown()) 2003 Prob = getEdgeProbability(Src, Dst); 2004 Src->addSuccessor(Dst, Prob); 2005 } 2006 } 2007 2008 static bool InBlock(const Value *V, const BasicBlock *BB) { 2009 if (const Instruction *I = dyn_cast<Instruction>(V)) 2010 return I->getParent() == BB; 2011 return true; 2012 } 2013 2014 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2015 /// This function emits a branch and is used at the leaves of an OR or an 2016 /// AND operator tree. 2017 void 2018 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2019 MachineBasicBlock *TBB, 2020 MachineBasicBlock *FBB, 2021 MachineBasicBlock *CurBB, 2022 MachineBasicBlock *SwitchBB, 2023 BranchProbability TProb, 2024 BranchProbability FProb, 2025 bool InvertCond) { 2026 const BasicBlock *BB = CurBB->getBasicBlock(); 2027 2028 // If the leaf of the tree is a comparison, merge the condition into 2029 // the caseblock. 2030 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2031 // The operands of the cmp have to be in this block. We don't know 2032 // how to export them from some other block. If this is the first block 2033 // of the sequence, no exporting is needed. 2034 if (CurBB == SwitchBB || 2035 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2036 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2037 ISD::CondCode Condition; 2038 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2039 ICmpInst::Predicate Pred = 2040 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2041 Condition = getICmpCondCode(Pred); 2042 } else { 2043 const FCmpInst *FC = cast<FCmpInst>(Cond); 2044 FCmpInst::Predicate Pred = 2045 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2046 Condition = getFCmpCondCode(Pred); 2047 if (TM.Options.NoNaNsFPMath) 2048 Condition = getFCmpCodeWithoutNaN(Condition); 2049 } 2050 2051 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2052 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2053 SL->SwitchCases.push_back(CB); 2054 return; 2055 } 2056 } 2057 2058 // Create a CaseBlock record representing this branch. 2059 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2060 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2061 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2062 SL->SwitchCases.push_back(CB); 2063 } 2064 2065 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2066 MachineBasicBlock *TBB, 2067 MachineBasicBlock *FBB, 2068 MachineBasicBlock *CurBB, 2069 MachineBasicBlock *SwitchBB, 2070 Instruction::BinaryOps Opc, 2071 BranchProbability TProb, 2072 BranchProbability FProb, 2073 bool InvertCond) { 2074 // Skip over not part of the tree and remember to invert op and operands at 2075 // next level. 2076 Value *NotCond; 2077 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2078 InBlock(NotCond, CurBB->getBasicBlock())) { 2079 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2080 !InvertCond); 2081 return; 2082 } 2083 2084 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2085 // Compute the effective opcode for Cond, taking into account whether it needs 2086 // to be inverted, e.g. 2087 // and (not (or A, B)), C 2088 // gets lowered as 2089 // and (and (not A, not B), C) 2090 unsigned BOpc = 0; 2091 if (BOp) { 2092 BOpc = BOp->getOpcode(); 2093 if (InvertCond) { 2094 if (BOpc == Instruction::And) 2095 BOpc = Instruction::Or; 2096 else if (BOpc == Instruction::Or) 2097 BOpc = Instruction::And; 2098 } 2099 } 2100 2101 // If this node is not part of the or/and tree, emit it as a branch. 2102 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2103 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2104 BOp->getParent() != CurBB->getBasicBlock() || 2105 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2106 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2107 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2108 TProb, FProb, InvertCond); 2109 return; 2110 } 2111 2112 // Create TmpBB after CurBB. 2113 MachineFunction::iterator BBI(CurBB); 2114 MachineFunction &MF = DAG.getMachineFunction(); 2115 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2116 CurBB->getParent()->insert(++BBI, TmpBB); 2117 2118 if (Opc == Instruction::Or) { 2119 // Codegen X | Y as: 2120 // BB1: 2121 // jmp_if_X TBB 2122 // jmp TmpBB 2123 // TmpBB: 2124 // jmp_if_Y TBB 2125 // jmp FBB 2126 // 2127 2128 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2129 // The requirement is that 2130 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2131 // = TrueProb for original BB. 2132 // Assuming the original probabilities are A and B, one choice is to set 2133 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2134 // A/(1+B) and 2B/(1+B). This choice assumes that 2135 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2136 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2137 // TmpBB, but the math is more complicated. 2138 2139 auto NewTrueProb = TProb / 2; 2140 auto NewFalseProb = TProb / 2 + FProb; 2141 // Emit the LHS condition. 2142 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2143 NewTrueProb, NewFalseProb, InvertCond); 2144 2145 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2146 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2147 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2148 // Emit the RHS condition into TmpBB. 2149 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2150 Probs[0], Probs[1], InvertCond); 2151 } else { 2152 assert(Opc == Instruction::And && "Unknown merge op!"); 2153 // Codegen X & Y as: 2154 // BB1: 2155 // jmp_if_X TmpBB 2156 // jmp FBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 // This requires creation of TmpBB after CurBB. 2162 2163 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2164 // The requirement is that 2165 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2166 // = FalseProb for original BB. 2167 // Assuming the original probabilities are A and B, one choice is to set 2168 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2169 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2170 // TrueProb for BB1 * FalseProb for TmpBB. 2171 2172 auto NewTrueProb = TProb + FProb / 2; 2173 auto NewFalseProb = FProb / 2; 2174 // Emit the LHS condition. 2175 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2176 NewTrueProb, NewFalseProb, InvertCond); 2177 2178 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2179 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2180 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2181 // Emit the RHS condition into TmpBB. 2182 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2183 Probs[0], Probs[1], InvertCond); 2184 } 2185 } 2186 2187 /// If the set of cases should be emitted as a series of branches, return true. 2188 /// If we should emit this as a bunch of and/or'd together conditions, return 2189 /// false. 2190 bool 2191 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2192 if (Cases.size() != 2) return true; 2193 2194 // If this is two comparisons of the same values or'd or and'd together, they 2195 // will get folded into a single comparison, so don't emit two blocks. 2196 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2197 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2198 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2199 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2200 return false; 2201 } 2202 2203 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2204 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2205 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2206 Cases[0].CC == Cases[1].CC && 2207 isa<Constant>(Cases[0].CmpRHS) && 2208 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2209 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2210 return false; 2211 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2212 return false; 2213 } 2214 2215 return true; 2216 } 2217 2218 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2219 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2220 2221 // Update machine-CFG edges. 2222 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2223 2224 if (I.isUnconditional()) { 2225 // Update machine-CFG edges. 2226 BrMBB->addSuccessor(Succ0MBB); 2227 2228 // If this is not a fall-through branch or optimizations are switched off, 2229 // emit the branch. 2230 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2231 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2232 MVT::Other, getControlRoot(), 2233 DAG.getBasicBlock(Succ0MBB))); 2234 2235 return; 2236 } 2237 2238 // If this condition is one of the special cases we handle, do special stuff 2239 // now. 2240 const Value *CondVal = I.getCondition(); 2241 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2242 2243 // If this is a series of conditions that are or'd or and'd together, emit 2244 // this as a sequence of branches instead of setcc's with and/or operations. 2245 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2246 // unpredictable branches, and vector extracts because those jumps are likely 2247 // expensive for any target), this should improve performance. 2248 // For example, instead of something like: 2249 // cmp A, B 2250 // C = seteq 2251 // cmp D, E 2252 // F = setle 2253 // or C, F 2254 // jnz foo 2255 // Emit: 2256 // cmp A, B 2257 // je foo 2258 // cmp D, E 2259 // jle foo 2260 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2261 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2262 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2263 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2264 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2265 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2266 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2267 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2268 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2269 Opcode, 2270 getEdgeProbability(BrMBB, Succ0MBB), 2271 getEdgeProbability(BrMBB, Succ1MBB), 2272 /*InvertCond=*/false); 2273 // If the compares in later blocks need to use values not currently 2274 // exported from this block, export them now. This block should always 2275 // be the first entry. 2276 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2277 2278 // Allow some cases to be rejected. 2279 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2280 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2282 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2283 } 2284 2285 // Emit the branch for this block. 2286 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2287 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2288 return; 2289 } 2290 2291 // Okay, we decided not to do this, remove any inserted MBB's and clear 2292 // SwitchCases. 2293 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2294 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2295 2296 SL->SwitchCases.clear(); 2297 } 2298 } 2299 2300 // Create a CaseBlock record representing this branch. 2301 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2302 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2303 2304 // Use visitSwitchCase to actually insert the fast branch sequence for this 2305 // cond branch. 2306 visitSwitchCase(CB, BrMBB); 2307 } 2308 2309 /// visitSwitchCase - Emits the necessary code to represent a single node in 2310 /// the binary search tree resulting from lowering a switch instruction. 2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2312 MachineBasicBlock *SwitchBB) { 2313 SDValue Cond; 2314 SDValue CondLHS = getValue(CB.CmpLHS); 2315 SDLoc dl = CB.DL; 2316 2317 if (CB.CC == ISD::SETTRUE) { 2318 // Branch or fall through to TrueBB. 2319 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2320 SwitchBB->normalizeSuccProbs(); 2321 if (CB.TrueBB != NextBlock(SwitchBB)) { 2322 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2323 DAG.getBasicBlock(CB.TrueBB))); 2324 } 2325 return; 2326 } 2327 2328 auto &TLI = DAG.getTargetLoweringInfo(); 2329 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2330 2331 // Build the setcc now. 2332 if (!CB.CmpMHS) { 2333 // Fold "(X == true)" to X and "(X == false)" to !X to 2334 // handle common cases produced by branch lowering. 2335 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2336 CB.CC == ISD::SETEQ) 2337 Cond = CondLHS; 2338 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) { 2340 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2341 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2342 } else { 2343 SDValue CondRHS = getValue(CB.CmpRHS); 2344 2345 // If a pointer's DAG type is larger than its memory type then the DAG 2346 // values are zero-extended. This breaks signed comparisons so truncate 2347 // back to the underlying type before doing the compare. 2348 if (CondLHS.getValueType() != MemVT) { 2349 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2350 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2351 } 2352 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2353 } 2354 } else { 2355 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2356 2357 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2358 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2359 2360 SDValue CmpOp = getValue(CB.CmpMHS); 2361 EVT VT = CmpOp.getValueType(); 2362 2363 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2364 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2365 ISD::SETLE); 2366 } else { 2367 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2368 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2369 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2370 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2371 } 2372 } 2373 2374 // Update successor info 2375 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2376 // TrueBB and FalseBB are always different unless the incoming IR is 2377 // degenerate. This only happens when running llc on weird IR. 2378 if (CB.TrueBB != CB.FalseBB) 2379 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2380 SwitchBB->normalizeSuccProbs(); 2381 2382 // If the lhs block is the next block, invert the condition so that we can 2383 // fall through to the lhs instead of the rhs block. 2384 if (CB.TrueBB == NextBlock(SwitchBB)) { 2385 std::swap(CB.TrueBB, CB.FalseBB); 2386 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2387 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2388 } 2389 2390 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2391 MVT::Other, getControlRoot(), Cond, 2392 DAG.getBasicBlock(CB.TrueBB)); 2393 2394 // Insert the false branch. Do this even if it's a fall through branch, 2395 // this makes it easier to do DAG optimizations which require inverting 2396 // the branch condition. 2397 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2398 DAG.getBasicBlock(CB.FalseBB)); 2399 2400 DAG.setRoot(BrCond); 2401 } 2402 2403 /// visitJumpTable - Emit JumpTable node in the current MBB 2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2405 // Emit the code for the jump table 2406 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2407 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2408 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2409 JT.Reg, PTy); 2410 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2411 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2412 MVT::Other, Index.getValue(1), 2413 Table, Index); 2414 DAG.setRoot(BrJumpTable); 2415 } 2416 2417 /// visitJumpTableHeader - This function emits necessary code to produce index 2418 /// in the JumpTable from switch case. 2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2420 JumpTableHeader &JTH, 2421 MachineBasicBlock *SwitchBB) { 2422 SDLoc dl = getCurSDLoc(); 2423 2424 // Subtract the lowest switch case value from the value being switched on. 2425 SDValue SwitchOp = getValue(JTH.SValue); 2426 EVT VT = SwitchOp.getValueType(); 2427 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2428 DAG.getConstant(JTH.First, dl, VT)); 2429 2430 // The SDNode we just created, which holds the value being switched on minus 2431 // the smallest case value, needs to be copied to a virtual register so it 2432 // can be used as an index into the jump table in a subsequent basic block. 2433 // This value may be smaller or larger than the target's pointer type, and 2434 // therefore require extension or truncating. 2435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2436 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2437 2438 unsigned JumpTableReg = 2439 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2440 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2441 JumpTableReg, SwitchOp); 2442 JT.Reg = JumpTableReg; 2443 2444 if (!JTH.OmitRangeCheck) { 2445 // Emit the range check for the jump table, and branch to the default block 2446 // for the switch statement if the value being switched on exceeds the 2447 // largest case in the switch. 2448 SDValue CMP = DAG.getSetCC( 2449 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2450 Sub.getValueType()), 2451 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2452 2453 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2454 MVT::Other, CopyTo, CMP, 2455 DAG.getBasicBlock(JT.Default)); 2456 2457 // Avoid emitting unnecessary branches to the next block. 2458 if (JT.MBB != NextBlock(SwitchBB)) 2459 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2460 DAG.getBasicBlock(JT.MBB)); 2461 2462 DAG.setRoot(BrCond); 2463 } else { 2464 // Avoid emitting unnecessary branches to the next block. 2465 if (JT.MBB != NextBlock(SwitchBB)) 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2467 DAG.getBasicBlock(JT.MBB))); 2468 else 2469 DAG.setRoot(CopyTo); 2470 } 2471 } 2472 2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2474 /// variable if there exists one. 2475 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2476 SDValue &Chain) { 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2479 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2480 MachineFunction &MF = DAG.getMachineFunction(); 2481 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2482 MachineSDNode *Node = 2483 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2484 if (Global) { 2485 MachinePointerInfo MPInfo(Global); 2486 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2487 MachineMemOperand::MODereferenceable; 2488 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2489 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2490 DAG.setNodeMemRefs(Node, {MemRef}); 2491 } 2492 if (PtrTy != PtrMemTy) 2493 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2494 return SDValue(Node, 0); 2495 } 2496 2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2498 /// tail spliced into a stack protector check success bb. 2499 /// 2500 /// For a high level explanation of how this fits into the stack protector 2501 /// generation see the comment on the declaration of class 2502 /// StackProtectorDescriptor. 2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2504 MachineBasicBlock *ParentBB) { 2505 2506 // First create the loads to the guard/stack slot for the comparison. 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2509 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2510 2511 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2512 int FI = MFI.getStackProtectorIndex(); 2513 2514 SDValue Guard; 2515 SDLoc dl = getCurSDLoc(); 2516 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2517 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2518 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2519 2520 // Generate code to load the content of the guard slot. 2521 SDValue GuardVal = DAG.getLoad( 2522 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2523 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2524 MachineMemOperand::MOVolatile); 2525 2526 if (TLI.useStackGuardXorFP()) 2527 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2528 2529 // Retrieve guard check function, nullptr if instrumentation is inlined. 2530 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2531 // The target provides a guard check function to validate the guard value. 2532 // Generate a call to that function with the content of the guard slot as 2533 // argument. 2534 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2535 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2536 2537 TargetLowering::ArgListTy Args; 2538 TargetLowering::ArgListEntry Entry; 2539 Entry.Node = GuardVal; 2540 Entry.Ty = FnTy->getParamType(0); 2541 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2542 Entry.IsInReg = true; 2543 Args.push_back(Entry); 2544 2545 TargetLowering::CallLoweringInfo CLI(DAG); 2546 CLI.setDebugLoc(getCurSDLoc()) 2547 .setChain(DAG.getEntryNode()) 2548 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2549 getValue(GuardCheckFn), std::move(Args)); 2550 2551 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2552 DAG.setRoot(Result.second); 2553 return; 2554 } 2555 2556 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2557 // Otherwise, emit a volatile load to retrieve the stack guard value. 2558 SDValue Chain = DAG.getEntryNode(); 2559 if (TLI.useLoadStackGuardNode()) { 2560 Guard = getLoadStackGuard(DAG, dl, Chain); 2561 } else { 2562 const Value *IRGuard = TLI.getSDagStackGuard(M); 2563 SDValue GuardPtr = getValue(IRGuard); 2564 2565 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2566 MachinePointerInfo(IRGuard, 0), Align, 2567 MachineMemOperand::MOVolatile); 2568 } 2569 2570 // Perform the comparison via a getsetcc. 2571 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2572 *DAG.getContext(), 2573 Guard.getValueType()), 2574 Guard, GuardVal, ISD::SETNE); 2575 2576 // If the guard/stackslot do not equal, branch to failure MBB. 2577 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2578 MVT::Other, GuardVal.getOperand(0), 2579 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2580 // Otherwise branch to success MBB. 2581 SDValue Br = DAG.getNode(ISD::BR, dl, 2582 MVT::Other, BrCond, 2583 DAG.getBasicBlock(SPD.getSuccessMBB())); 2584 2585 DAG.setRoot(Br); 2586 } 2587 2588 /// Codegen the failure basic block for a stack protector check. 2589 /// 2590 /// A failure stack protector machine basic block consists simply of a call to 2591 /// __stack_chk_fail(). 2592 /// 2593 /// For a high level explanation of how this fits into the stack protector 2594 /// generation see the comment on the declaration of class 2595 /// StackProtectorDescriptor. 2596 void 2597 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2599 TargetLowering::MakeLibCallOptions CallOptions; 2600 CallOptions.setDiscardResult(true); 2601 SDValue Chain = 2602 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2603 None, CallOptions, getCurSDLoc()).second; 2604 // On PS4, the "return address" must still be within the calling function, 2605 // even if it's at the very end, so emit an explicit TRAP here. 2606 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2607 if (TM.getTargetTriple().isPS4CPU()) 2608 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2609 // WebAssembly needs an unreachable instruction after a non-returning call, 2610 // because the function return type can be different from __stack_chk_fail's 2611 // return type (void). 2612 if (TM.getTargetTriple().isWasm()) 2613 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2614 2615 DAG.setRoot(Chain); 2616 } 2617 2618 /// visitBitTestHeader - This function emits necessary code to produce value 2619 /// suitable for "bit tests" 2620 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2621 MachineBasicBlock *SwitchBB) { 2622 SDLoc dl = getCurSDLoc(); 2623 2624 // Subtract the minimum value. 2625 SDValue SwitchOp = getValue(B.SValue); 2626 EVT VT = SwitchOp.getValueType(); 2627 SDValue RangeSub = 2628 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2629 2630 // Determine the type of the test operands. 2631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2632 bool UsePtrType = false; 2633 if (!TLI.isTypeLegal(VT)) { 2634 UsePtrType = true; 2635 } else { 2636 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2637 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2638 // Switch table case range are encoded into series of masks. 2639 // Just use pointer type, it's guaranteed to fit. 2640 UsePtrType = true; 2641 break; 2642 } 2643 } 2644 SDValue Sub = RangeSub; 2645 if (UsePtrType) { 2646 VT = TLI.getPointerTy(DAG.getDataLayout()); 2647 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2648 } 2649 2650 B.RegVT = VT.getSimpleVT(); 2651 B.Reg = FuncInfo.CreateReg(B.RegVT); 2652 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2653 2654 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2655 2656 if (!B.OmitRangeCheck) 2657 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2658 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2659 SwitchBB->normalizeSuccProbs(); 2660 2661 SDValue Root = CopyTo; 2662 if (!B.OmitRangeCheck) { 2663 // Conditional branch to the default block. 2664 SDValue RangeCmp = DAG.getSetCC(dl, 2665 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2666 RangeSub.getValueType()), 2667 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2668 ISD::SETUGT); 2669 2670 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2671 DAG.getBasicBlock(B.Default)); 2672 } 2673 2674 // Avoid emitting unnecessary branches to the next block. 2675 if (MBB != NextBlock(SwitchBB)) 2676 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2677 2678 DAG.setRoot(Root); 2679 } 2680 2681 /// visitBitTestCase - this function produces one "bit test" 2682 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2683 MachineBasicBlock* NextMBB, 2684 BranchProbability BranchProbToNext, 2685 unsigned Reg, 2686 BitTestCase &B, 2687 MachineBasicBlock *SwitchBB) { 2688 SDLoc dl = getCurSDLoc(); 2689 MVT VT = BB.RegVT; 2690 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2691 SDValue Cmp; 2692 unsigned PopCount = countPopulation(B.Mask); 2693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2694 if (PopCount == 1) { 2695 // Testing for a single bit; just compare the shift count with what it 2696 // would need to be to shift a 1 bit in that position. 2697 Cmp = DAG.getSetCC( 2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2699 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2700 ISD::SETEQ); 2701 } else if (PopCount == BB.Range) { 2702 // There is only one zero bit in the range, test for it directly. 2703 Cmp = DAG.getSetCC( 2704 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2705 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2706 ISD::SETNE); 2707 } else { 2708 // Make desired shift 2709 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2710 DAG.getConstant(1, dl, VT), ShiftOp); 2711 2712 // Emit bit tests and jumps 2713 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2714 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2715 Cmp = DAG.getSetCC( 2716 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2717 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2718 } 2719 2720 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2721 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2722 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2723 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2724 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2725 // one as they are relative probabilities (and thus work more like weights), 2726 // and hence we need to normalize them to let the sum of them become one. 2727 SwitchBB->normalizeSuccProbs(); 2728 2729 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2730 MVT::Other, getControlRoot(), 2731 Cmp, DAG.getBasicBlock(B.TargetBB)); 2732 2733 // Avoid emitting unnecessary branches to the next block. 2734 if (NextMBB != NextBlock(SwitchBB)) 2735 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2736 DAG.getBasicBlock(NextMBB)); 2737 2738 DAG.setRoot(BrAnd); 2739 } 2740 2741 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2742 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2743 2744 // Retrieve successors. Look through artificial IR level blocks like 2745 // catchswitch for successors. 2746 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2747 const BasicBlock *EHPadBB = I.getSuccessor(1); 2748 2749 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2750 // have to do anything here to lower funclet bundles. 2751 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2752 LLVMContext::OB_gc_transition, 2753 LLVMContext::OB_gc_live, 2754 LLVMContext::OB_funclet, 2755 LLVMContext::OB_cfguardtarget}) && 2756 "Cannot lower invokes with arbitrary operand bundles yet!"); 2757 2758 const Value *Callee(I.getCalledOperand()); 2759 const Function *Fn = dyn_cast<Function>(Callee); 2760 if (isa<InlineAsm>(Callee)) 2761 visitInlineAsm(I); 2762 else if (Fn && Fn->isIntrinsic()) { 2763 switch (Fn->getIntrinsicID()) { 2764 default: 2765 llvm_unreachable("Cannot invoke this intrinsic"); 2766 case Intrinsic::donothing: 2767 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2768 break; 2769 case Intrinsic::experimental_patchpoint_void: 2770 case Intrinsic::experimental_patchpoint_i64: 2771 visitPatchpoint(I, EHPadBB); 2772 break; 2773 case Intrinsic::experimental_gc_statepoint: 2774 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2775 break; 2776 case Intrinsic::wasm_rethrow_in_catch: { 2777 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2778 // special because it can be invoked, so we manually lower it to a DAG 2779 // node here. 2780 SmallVector<SDValue, 8> Ops; 2781 Ops.push_back(getRoot()); // inchain 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 Ops.push_back( 2784 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2785 TLI.getPointerTy(DAG.getDataLayout()))); 2786 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2787 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2788 break; 2789 } 2790 } 2791 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2792 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2793 // Eventually we will support lowering the @llvm.experimental.deoptimize 2794 // intrinsic, and right now there are no plans to support other intrinsics 2795 // with deopt state. 2796 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2797 } else { 2798 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2799 } 2800 2801 // If the value of the invoke is used outside of its defining block, make it 2802 // available as a virtual register. 2803 // We already took care of the exported value for the statepoint instruction 2804 // during call to the LowerStatepoint. 2805 if (!isa<GCStatepointInst>(I)) { 2806 CopyToExportRegsIfNeeded(&I); 2807 } 2808 2809 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2810 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2811 BranchProbability EHPadBBProb = 2812 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2813 : BranchProbability::getZero(); 2814 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2815 2816 // Update successor info. 2817 addSuccessorWithProb(InvokeMBB, Return); 2818 for (auto &UnwindDest : UnwindDests) { 2819 UnwindDest.first->setIsEHPad(); 2820 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2821 } 2822 InvokeMBB->normalizeSuccProbs(); 2823 2824 // Drop into normal successor. 2825 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2826 DAG.getBasicBlock(Return))); 2827 } 2828 2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2830 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2831 2832 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2833 // have to do anything here to lower funclet bundles. 2834 assert(!I.hasOperandBundlesOtherThan( 2835 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2836 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2837 2838 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2839 visitInlineAsm(I); 2840 CopyToExportRegsIfNeeded(&I); 2841 2842 // Retrieve successors. 2843 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2844 2845 // Update successor info. 2846 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2847 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2848 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2849 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2850 Target->setIsInlineAsmBrIndirectTarget(); 2851 } 2852 CallBrMBB->normalizeSuccProbs(); 2853 2854 // Drop into default successor. 2855 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2856 MVT::Other, getControlRoot(), 2857 DAG.getBasicBlock(Return))); 2858 } 2859 2860 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2861 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2862 } 2863 2864 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2865 assert(FuncInfo.MBB->isEHPad() && 2866 "Call to landingpad not in landing pad!"); 2867 2868 // If there aren't registers to copy the values into (e.g., during SjLj 2869 // exceptions), then don't bother to create these DAG nodes. 2870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2871 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2872 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2873 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2874 return; 2875 2876 // If landingpad's return type is token type, we don't create DAG nodes 2877 // for its exception pointer and selector value. The extraction of exception 2878 // pointer or selector value from token type landingpads is not currently 2879 // supported. 2880 if (LP.getType()->isTokenTy()) 2881 return; 2882 2883 SmallVector<EVT, 2> ValueVTs; 2884 SDLoc dl = getCurSDLoc(); 2885 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2886 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2887 2888 // Get the two live-in registers as SDValues. The physregs have already been 2889 // copied into virtual registers. 2890 SDValue Ops[2]; 2891 if (FuncInfo.ExceptionPointerVirtReg) { 2892 Ops[0] = DAG.getZExtOrTrunc( 2893 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2894 FuncInfo.ExceptionPointerVirtReg, 2895 TLI.getPointerTy(DAG.getDataLayout())), 2896 dl, ValueVTs[0]); 2897 } else { 2898 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2899 } 2900 Ops[1] = DAG.getZExtOrTrunc( 2901 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2902 FuncInfo.ExceptionSelectorVirtReg, 2903 TLI.getPointerTy(DAG.getDataLayout())), 2904 dl, ValueVTs[1]); 2905 2906 // Merge into one. 2907 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2908 DAG.getVTList(ValueVTs), Ops); 2909 setValue(&LP, Res); 2910 } 2911 2912 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2913 MachineBasicBlock *Last) { 2914 // Update JTCases. 2915 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2916 if (SL->JTCases[i].first.HeaderBB == First) 2917 SL->JTCases[i].first.HeaderBB = Last; 2918 2919 // Update BitTestCases. 2920 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2921 if (SL->BitTestCases[i].Parent == First) 2922 SL->BitTestCases[i].Parent = Last; 2923 } 2924 2925 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2926 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2927 2928 // Update machine-CFG edges with unique successors. 2929 SmallSet<BasicBlock*, 32> Done; 2930 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2931 BasicBlock *BB = I.getSuccessor(i); 2932 bool Inserted = Done.insert(BB).second; 2933 if (!Inserted) 2934 continue; 2935 2936 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2937 addSuccessorWithProb(IndirectBrMBB, Succ); 2938 } 2939 IndirectBrMBB->normalizeSuccProbs(); 2940 2941 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2942 MVT::Other, getControlRoot(), 2943 getValue(I.getAddress()))); 2944 } 2945 2946 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2947 if (!DAG.getTarget().Options.TrapUnreachable) 2948 return; 2949 2950 // We may be able to ignore unreachable behind a noreturn call. 2951 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2952 const BasicBlock &BB = *I.getParent(); 2953 if (&I != &BB.front()) { 2954 BasicBlock::const_iterator PredI = 2955 std::prev(BasicBlock::const_iterator(&I)); 2956 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2957 if (Call->doesNotReturn()) 2958 return; 2959 } 2960 } 2961 } 2962 2963 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2964 } 2965 2966 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2967 SDNodeFlags Flags; 2968 2969 SDValue Op = getValue(I.getOperand(0)); 2970 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2971 Op, Flags); 2972 setValue(&I, UnNodeValue); 2973 } 2974 2975 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2976 SDNodeFlags Flags; 2977 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2978 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2979 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2980 } 2981 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 2982 Flags.setExact(ExactOp->isExact()); 2983 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 2984 Flags.copyFMF(*FPOp); 2985 2986 SDValue Op1 = getValue(I.getOperand(0)); 2987 SDValue Op2 = getValue(I.getOperand(1)); 2988 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2989 Op1, Op2, Flags); 2990 setValue(&I, BinNodeValue); 2991 } 2992 2993 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2994 SDValue Op1 = getValue(I.getOperand(0)); 2995 SDValue Op2 = getValue(I.getOperand(1)); 2996 2997 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2998 Op1.getValueType(), DAG.getDataLayout()); 2999 3000 // Coerce the shift amount to the right type if we can. 3001 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3002 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3003 unsigned Op2Size = Op2.getValueSizeInBits(); 3004 SDLoc DL = getCurSDLoc(); 3005 3006 // If the operand is smaller than the shift count type, promote it. 3007 if (ShiftSize > Op2Size) 3008 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3009 3010 // If the operand is larger than the shift count type but the shift 3011 // count type has enough bits to represent any shift value, truncate 3012 // it now. This is a common case and it exposes the truncate to 3013 // optimization early. 3014 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3015 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3016 // Otherwise we'll need to temporarily settle for some other convenient 3017 // type. Type legalization will make adjustments once the shiftee is split. 3018 else 3019 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3020 } 3021 3022 bool nuw = false; 3023 bool nsw = false; 3024 bool exact = false; 3025 3026 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3027 3028 if (const OverflowingBinaryOperator *OFBinOp = 3029 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3030 nuw = OFBinOp->hasNoUnsignedWrap(); 3031 nsw = OFBinOp->hasNoSignedWrap(); 3032 } 3033 if (const PossiblyExactOperator *ExactOp = 3034 dyn_cast<const PossiblyExactOperator>(&I)) 3035 exact = ExactOp->isExact(); 3036 } 3037 SDNodeFlags Flags; 3038 Flags.setExact(exact); 3039 Flags.setNoSignedWrap(nsw); 3040 Flags.setNoUnsignedWrap(nuw); 3041 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3042 Flags); 3043 setValue(&I, Res); 3044 } 3045 3046 void SelectionDAGBuilder::visitSDiv(const User &I) { 3047 SDValue Op1 = getValue(I.getOperand(0)); 3048 SDValue Op2 = getValue(I.getOperand(1)); 3049 3050 SDNodeFlags Flags; 3051 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3052 cast<PossiblyExactOperator>(&I)->isExact()); 3053 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3054 Op2, Flags)); 3055 } 3056 3057 void SelectionDAGBuilder::visitICmp(const User &I) { 3058 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3059 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3060 predicate = IC->getPredicate(); 3061 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3062 predicate = ICmpInst::Predicate(IC->getPredicate()); 3063 SDValue Op1 = getValue(I.getOperand(0)); 3064 SDValue Op2 = getValue(I.getOperand(1)); 3065 ISD::CondCode Opcode = getICmpCondCode(predicate); 3066 3067 auto &TLI = DAG.getTargetLoweringInfo(); 3068 EVT MemVT = 3069 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3070 3071 // If a pointer's DAG type is larger than its memory type then the DAG values 3072 // are zero-extended. This breaks signed comparisons so truncate back to the 3073 // underlying type before doing the compare. 3074 if (Op1.getValueType() != MemVT) { 3075 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3076 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3077 } 3078 3079 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3080 I.getType()); 3081 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3082 } 3083 3084 void SelectionDAGBuilder::visitFCmp(const User &I) { 3085 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3086 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3087 predicate = FC->getPredicate(); 3088 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3089 predicate = FCmpInst::Predicate(FC->getPredicate()); 3090 SDValue Op1 = getValue(I.getOperand(0)); 3091 SDValue Op2 = getValue(I.getOperand(1)); 3092 3093 ISD::CondCode Condition = getFCmpCondCode(predicate); 3094 auto *FPMO = cast<FPMathOperator>(&I); 3095 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3096 Condition = getFCmpCodeWithoutNaN(Condition); 3097 3098 SDNodeFlags Flags; 3099 Flags.copyFMF(*FPMO); 3100 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3101 3102 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3103 I.getType()); 3104 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3105 } 3106 3107 // Check if the condition of the select has one use or two users that are both 3108 // selects with the same condition. 3109 static bool hasOnlySelectUsers(const Value *Cond) { 3110 return llvm::all_of(Cond->users(), [](const Value *V) { 3111 return isa<SelectInst>(V); 3112 }); 3113 } 3114 3115 void SelectionDAGBuilder::visitSelect(const User &I) { 3116 SmallVector<EVT, 4> ValueVTs; 3117 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3118 ValueVTs); 3119 unsigned NumValues = ValueVTs.size(); 3120 if (NumValues == 0) return; 3121 3122 SmallVector<SDValue, 4> Values(NumValues); 3123 SDValue Cond = getValue(I.getOperand(0)); 3124 SDValue LHSVal = getValue(I.getOperand(1)); 3125 SDValue RHSVal = getValue(I.getOperand(2)); 3126 SmallVector<SDValue, 1> BaseOps(1, Cond); 3127 ISD::NodeType OpCode = 3128 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3129 3130 bool IsUnaryAbs = false; 3131 3132 SDNodeFlags Flags; 3133 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3134 Flags.copyFMF(*FPOp); 3135 3136 // Min/max matching is only viable if all output VTs are the same. 3137 if (is_splat(ValueVTs)) { 3138 EVT VT = ValueVTs[0]; 3139 LLVMContext &Ctx = *DAG.getContext(); 3140 auto &TLI = DAG.getTargetLoweringInfo(); 3141 3142 // We care about the legality of the operation after it has been type 3143 // legalized. 3144 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3145 VT = TLI.getTypeToTransformTo(Ctx, VT); 3146 3147 // If the vselect is legal, assume we want to leave this as a vector setcc + 3148 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3149 // min/max is legal on the scalar type. 3150 bool UseScalarMinMax = VT.isVector() && 3151 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3152 3153 Value *LHS, *RHS; 3154 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3155 ISD::NodeType Opc = ISD::DELETED_NODE; 3156 switch (SPR.Flavor) { 3157 case SPF_UMAX: Opc = ISD::UMAX; break; 3158 case SPF_UMIN: Opc = ISD::UMIN; break; 3159 case SPF_SMAX: Opc = ISD::SMAX; break; 3160 case SPF_SMIN: Opc = ISD::SMIN; break; 3161 case SPF_FMINNUM: 3162 switch (SPR.NaNBehavior) { 3163 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3164 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3165 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3166 case SPNB_RETURNS_ANY: { 3167 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3168 Opc = ISD::FMINNUM; 3169 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3170 Opc = ISD::FMINIMUM; 3171 else if (UseScalarMinMax) 3172 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3173 ISD::FMINNUM : ISD::FMINIMUM; 3174 break; 3175 } 3176 } 3177 break; 3178 case SPF_FMAXNUM: 3179 switch (SPR.NaNBehavior) { 3180 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3181 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3182 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3183 case SPNB_RETURNS_ANY: 3184 3185 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3186 Opc = ISD::FMAXNUM; 3187 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3188 Opc = ISD::FMAXIMUM; 3189 else if (UseScalarMinMax) 3190 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3191 ISD::FMAXNUM : ISD::FMAXIMUM; 3192 break; 3193 } 3194 break; 3195 case SPF_ABS: 3196 IsUnaryAbs = true; 3197 Opc = ISD::ABS; 3198 break; 3199 case SPF_NABS: 3200 // TODO: we need to produce sub(0, abs(X)). 3201 default: break; 3202 } 3203 3204 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3205 (TLI.isOperationLegalOrCustom(Opc, VT) || 3206 (UseScalarMinMax && 3207 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3208 // If the underlying comparison instruction is used by any other 3209 // instruction, the consumed instructions won't be destroyed, so it is 3210 // not profitable to convert to a min/max. 3211 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3212 OpCode = Opc; 3213 LHSVal = getValue(LHS); 3214 RHSVal = getValue(RHS); 3215 BaseOps.clear(); 3216 } 3217 3218 if (IsUnaryAbs) { 3219 OpCode = Opc; 3220 LHSVal = getValue(LHS); 3221 BaseOps.clear(); 3222 } 3223 } 3224 3225 if (IsUnaryAbs) { 3226 for (unsigned i = 0; i != NumValues; ++i) { 3227 Values[i] = 3228 DAG.getNode(OpCode, getCurSDLoc(), 3229 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3230 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3231 } 3232 } else { 3233 for (unsigned i = 0; i != NumValues; ++i) { 3234 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3235 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3236 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3237 Values[i] = DAG.getNode( 3238 OpCode, getCurSDLoc(), 3239 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3240 } 3241 } 3242 3243 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3244 DAG.getVTList(ValueVTs), Values)); 3245 } 3246 3247 void SelectionDAGBuilder::visitTrunc(const User &I) { 3248 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3249 SDValue N = getValue(I.getOperand(0)); 3250 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3251 I.getType()); 3252 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3253 } 3254 3255 void SelectionDAGBuilder::visitZExt(const User &I) { 3256 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3257 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3258 SDValue N = getValue(I.getOperand(0)); 3259 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3260 I.getType()); 3261 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3262 } 3263 3264 void SelectionDAGBuilder::visitSExt(const User &I) { 3265 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3266 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3267 SDValue N = getValue(I.getOperand(0)); 3268 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3269 I.getType()); 3270 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3271 } 3272 3273 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3274 // FPTrunc is never a no-op cast, no need to check 3275 SDValue N = getValue(I.getOperand(0)); 3276 SDLoc dl = getCurSDLoc(); 3277 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3278 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3279 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3280 DAG.getTargetConstant( 3281 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3282 } 3283 3284 void SelectionDAGBuilder::visitFPExt(const User &I) { 3285 // FPExt is never a no-op cast, no need to check 3286 SDValue N = getValue(I.getOperand(0)); 3287 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3288 I.getType()); 3289 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3290 } 3291 3292 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3293 // FPToUI is never a no-op cast, no need to check 3294 SDValue N = getValue(I.getOperand(0)); 3295 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3296 I.getType()); 3297 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3298 } 3299 3300 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3301 // FPToSI is never a no-op cast, no need to check 3302 SDValue N = getValue(I.getOperand(0)); 3303 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3304 I.getType()); 3305 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3306 } 3307 3308 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3309 // UIToFP is never a no-op cast, no need to check 3310 SDValue N = getValue(I.getOperand(0)); 3311 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3312 I.getType()); 3313 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3314 } 3315 3316 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3317 // SIToFP is never a no-op cast, no need to check 3318 SDValue N = getValue(I.getOperand(0)); 3319 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3320 I.getType()); 3321 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3322 } 3323 3324 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3325 // What to do depends on the size of the integer and the size of the pointer. 3326 // We can either truncate, zero extend, or no-op, accordingly. 3327 SDValue N = getValue(I.getOperand(0)); 3328 auto &TLI = DAG.getTargetLoweringInfo(); 3329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3330 I.getType()); 3331 EVT PtrMemVT = 3332 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3333 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3334 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3335 setValue(&I, N); 3336 } 3337 3338 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3339 // What to do depends on the size of the integer and the size of the pointer. 3340 // We can either truncate, zero extend, or no-op, accordingly. 3341 SDValue N = getValue(I.getOperand(0)); 3342 auto &TLI = DAG.getTargetLoweringInfo(); 3343 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3344 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3345 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3346 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3347 setValue(&I, N); 3348 } 3349 3350 void SelectionDAGBuilder::visitBitCast(const User &I) { 3351 SDValue N = getValue(I.getOperand(0)); 3352 SDLoc dl = getCurSDLoc(); 3353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3354 I.getType()); 3355 3356 // BitCast assures us that source and destination are the same size so this is 3357 // either a BITCAST or a no-op. 3358 if (DestVT != N.getValueType()) 3359 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3360 DestVT, N)); // convert types. 3361 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3362 // might fold any kind of constant expression to an integer constant and that 3363 // is not what we are looking for. Only recognize a bitcast of a genuine 3364 // constant integer as an opaque constant. 3365 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3366 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3367 /*isOpaque*/true)); 3368 else 3369 setValue(&I, N); // noop cast. 3370 } 3371 3372 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3374 const Value *SV = I.getOperand(0); 3375 SDValue N = getValue(SV); 3376 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3377 3378 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3379 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3380 3381 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3382 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3383 3384 setValue(&I, N); 3385 } 3386 3387 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3389 SDValue InVec = getValue(I.getOperand(0)); 3390 SDValue InVal = getValue(I.getOperand(1)); 3391 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3392 TLI.getVectorIdxTy(DAG.getDataLayout())); 3393 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3394 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3395 InVec, InVal, InIdx)); 3396 } 3397 3398 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3400 SDValue InVec = getValue(I.getOperand(0)); 3401 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3402 TLI.getVectorIdxTy(DAG.getDataLayout())); 3403 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3404 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3405 InVec, InIdx)); 3406 } 3407 3408 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3409 SDValue Src1 = getValue(I.getOperand(0)); 3410 SDValue Src2 = getValue(I.getOperand(1)); 3411 ArrayRef<int> Mask; 3412 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3413 Mask = SVI->getShuffleMask(); 3414 else 3415 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3416 SDLoc DL = getCurSDLoc(); 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3419 EVT SrcVT = Src1.getValueType(); 3420 3421 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3422 VT.isScalableVector()) { 3423 // Canonical splat form of first element of first input vector. 3424 SDValue FirstElt = 3425 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3426 DAG.getVectorIdxConstant(0, DL)); 3427 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3428 return; 3429 } 3430 3431 // For now, we only handle splats for scalable vectors. 3432 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3433 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3434 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3435 3436 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3437 unsigned MaskNumElts = Mask.size(); 3438 3439 if (SrcNumElts == MaskNumElts) { 3440 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3441 return; 3442 } 3443 3444 // Normalize the shuffle vector since mask and vector length don't match. 3445 if (SrcNumElts < MaskNumElts) { 3446 // Mask is longer than the source vectors. We can use concatenate vector to 3447 // make the mask and vectors lengths match. 3448 3449 if (MaskNumElts % SrcNumElts == 0) { 3450 // Mask length is a multiple of the source vector length. 3451 // Check if the shuffle is some kind of concatenation of the input 3452 // vectors. 3453 unsigned NumConcat = MaskNumElts / SrcNumElts; 3454 bool IsConcat = true; 3455 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3456 for (unsigned i = 0; i != MaskNumElts; ++i) { 3457 int Idx = Mask[i]; 3458 if (Idx < 0) 3459 continue; 3460 // Ensure the indices in each SrcVT sized piece are sequential and that 3461 // the same source is used for the whole piece. 3462 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3463 (ConcatSrcs[i / SrcNumElts] >= 0 && 3464 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3465 IsConcat = false; 3466 break; 3467 } 3468 // Remember which source this index came from. 3469 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3470 } 3471 3472 // The shuffle is concatenating multiple vectors together. Just emit 3473 // a CONCAT_VECTORS operation. 3474 if (IsConcat) { 3475 SmallVector<SDValue, 8> ConcatOps; 3476 for (auto Src : ConcatSrcs) { 3477 if (Src < 0) 3478 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3479 else if (Src == 0) 3480 ConcatOps.push_back(Src1); 3481 else 3482 ConcatOps.push_back(Src2); 3483 } 3484 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3485 return; 3486 } 3487 } 3488 3489 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3490 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3491 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3492 PaddedMaskNumElts); 3493 3494 // Pad both vectors with undefs to make them the same length as the mask. 3495 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3496 3497 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3498 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3499 MOps1[0] = Src1; 3500 MOps2[0] = Src2; 3501 3502 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3503 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3504 3505 // Readjust mask for new input vector length. 3506 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3507 for (unsigned i = 0; i != MaskNumElts; ++i) { 3508 int Idx = Mask[i]; 3509 if (Idx >= (int)SrcNumElts) 3510 Idx -= SrcNumElts - PaddedMaskNumElts; 3511 MappedOps[i] = Idx; 3512 } 3513 3514 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3515 3516 // If the concatenated vector was padded, extract a subvector with the 3517 // correct number of elements. 3518 if (MaskNumElts != PaddedMaskNumElts) 3519 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3520 DAG.getVectorIdxConstant(0, DL)); 3521 3522 setValue(&I, Result); 3523 return; 3524 } 3525 3526 if (SrcNumElts > MaskNumElts) { 3527 // Analyze the access pattern of the vector to see if we can extract 3528 // two subvectors and do the shuffle. 3529 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3530 bool CanExtract = true; 3531 for (int Idx : Mask) { 3532 unsigned Input = 0; 3533 if (Idx < 0) 3534 continue; 3535 3536 if (Idx >= (int)SrcNumElts) { 3537 Input = 1; 3538 Idx -= SrcNumElts; 3539 } 3540 3541 // If all the indices come from the same MaskNumElts sized portion of 3542 // the sources we can use extract. Also make sure the extract wouldn't 3543 // extract past the end of the source. 3544 int NewStartIdx = alignDown(Idx, MaskNumElts); 3545 if (NewStartIdx + MaskNumElts > SrcNumElts || 3546 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3547 CanExtract = false; 3548 // Make sure we always update StartIdx as we use it to track if all 3549 // elements are undef. 3550 StartIdx[Input] = NewStartIdx; 3551 } 3552 3553 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3554 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3555 return; 3556 } 3557 if (CanExtract) { 3558 // Extract appropriate subvector and generate a vector shuffle 3559 for (unsigned Input = 0; Input < 2; ++Input) { 3560 SDValue &Src = Input == 0 ? Src1 : Src2; 3561 if (StartIdx[Input] < 0) 3562 Src = DAG.getUNDEF(VT); 3563 else { 3564 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3565 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3566 } 3567 } 3568 3569 // Calculate new mask. 3570 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3571 for (int &Idx : MappedOps) { 3572 if (Idx >= (int)SrcNumElts) 3573 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3574 else if (Idx >= 0) 3575 Idx -= StartIdx[0]; 3576 } 3577 3578 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3579 return; 3580 } 3581 } 3582 3583 // We can't use either concat vectors or extract subvectors so fall back to 3584 // replacing the shuffle with extract and build vector. 3585 // to insert and build vector. 3586 EVT EltVT = VT.getVectorElementType(); 3587 SmallVector<SDValue,8> Ops; 3588 for (int Idx : Mask) { 3589 SDValue Res; 3590 3591 if (Idx < 0) { 3592 Res = DAG.getUNDEF(EltVT); 3593 } else { 3594 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3595 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3596 3597 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3598 DAG.getVectorIdxConstant(Idx, DL)); 3599 } 3600 3601 Ops.push_back(Res); 3602 } 3603 3604 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3605 } 3606 3607 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3608 ArrayRef<unsigned> Indices; 3609 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3610 Indices = IV->getIndices(); 3611 else 3612 Indices = cast<ConstantExpr>(&I)->getIndices(); 3613 3614 const Value *Op0 = I.getOperand(0); 3615 const Value *Op1 = I.getOperand(1); 3616 Type *AggTy = I.getType(); 3617 Type *ValTy = Op1->getType(); 3618 bool IntoUndef = isa<UndefValue>(Op0); 3619 bool FromUndef = isa<UndefValue>(Op1); 3620 3621 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3622 3623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3624 SmallVector<EVT, 4> AggValueVTs; 3625 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3626 SmallVector<EVT, 4> ValValueVTs; 3627 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3628 3629 unsigned NumAggValues = AggValueVTs.size(); 3630 unsigned NumValValues = ValValueVTs.size(); 3631 SmallVector<SDValue, 4> Values(NumAggValues); 3632 3633 // Ignore an insertvalue that produces an empty object 3634 if (!NumAggValues) { 3635 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3636 return; 3637 } 3638 3639 SDValue Agg = getValue(Op0); 3640 unsigned i = 0; 3641 // Copy the beginning value(s) from the original aggregate. 3642 for (; i != LinearIndex; ++i) 3643 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3644 SDValue(Agg.getNode(), Agg.getResNo() + i); 3645 // Copy values from the inserted value(s). 3646 if (NumValValues) { 3647 SDValue Val = getValue(Op1); 3648 for (; i != LinearIndex + NumValValues; ++i) 3649 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3650 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3651 } 3652 // Copy remaining value(s) from the original aggregate. 3653 for (; i != NumAggValues; ++i) 3654 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3655 SDValue(Agg.getNode(), Agg.getResNo() + i); 3656 3657 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3658 DAG.getVTList(AggValueVTs), Values)); 3659 } 3660 3661 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3662 ArrayRef<unsigned> Indices; 3663 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3664 Indices = EV->getIndices(); 3665 else 3666 Indices = cast<ConstantExpr>(&I)->getIndices(); 3667 3668 const Value *Op0 = I.getOperand(0); 3669 Type *AggTy = Op0->getType(); 3670 Type *ValTy = I.getType(); 3671 bool OutOfUndef = isa<UndefValue>(Op0); 3672 3673 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3674 3675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3676 SmallVector<EVT, 4> ValValueVTs; 3677 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3678 3679 unsigned NumValValues = ValValueVTs.size(); 3680 3681 // Ignore a extractvalue that produces an empty object 3682 if (!NumValValues) { 3683 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3684 return; 3685 } 3686 3687 SmallVector<SDValue, 4> Values(NumValValues); 3688 3689 SDValue Agg = getValue(Op0); 3690 // Copy out the selected value(s). 3691 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3692 Values[i - LinearIndex] = 3693 OutOfUndef ? 3694 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3695 SDValue(Agg.getNode(), Agg.getResNo() + i); 3696 3697 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3698 DAG.getVTList(ValValueVTs), Values)); 3699 } 3700 3701 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3702 Value *Op0 = I.getOperand(0); 3703 // Note that the pointer operand may be a vector of pointers. Take the scalar 3704 // element which holds a pointer. 3705 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3706 SDValue N = getValue(Op0); 3707 SDLoc dl = getCurSDLoc(); 3708 auto &TLI = DAG.getTargetLoweringInfo(); 3709 3710 // Normalize Vector GEP - all scalar operands should be converted to the 3711 // splat vector. 3712 bool IsVectorGEP = I.getType()->isVectorTy(); 3713 ElementCount VectorElementCount = 3714 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3715 : ElementCount::getFixed(0); 3716 3717 if (IsVectorGEP && !N.getValueType().isVector()) { 3718 LLVMContext &Context = *DAG.getContext(); 3719 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3720 if (VectorElementCount.isScalable()) 3721 N = DAG.getSplatVector(VT, dl, N); 3722 else 3723 N = DAG.getSplatBuildVector(VT, dl, N); 3724 } 3725 3726 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3727 GTI != E; ++GTI) { 3728 const Value *Idx = GTI.getOperand(); 3729 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3730 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3731 if (Field) { 3732 // N = N + Offset 3733 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3734 3735 // In an inbounds GEP with an offset that is nonnegative even when 3736 // interpreted as signed, assume there is no unsigned overflow. 3737 SDNodeFlags Flags; 3738 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3739 Flags.setNoUnsignedWrap(true); 3740 3741 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3742 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3743 } 3744 } else { 3745 // IdxSize is the width of the arithmetic according to IR semantics. 3746 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3747 // (and fix up the result later). 3748 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3749 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3750 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3751 // We intentionally mask away the high bits here; ElementSize may not 3752 // fit in IdxTy. 3753 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3754 bool ElementScalable = ElementSize.isScalable(); 3755 3756 // If this is a scalar constant or a splat vector of constants, 3757 // handle it quickly. 3758 const auto *C = dyn_cast<Constant>(Idx); 3759 if (C && isa<VectorType>(C->getType())) 3760 C = C->getSplatValue(); 3761 3762 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3763 if (CI && CI->isZero()) 3764 continue; 3765 if (CI && !ElementScalable) { 3766 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3767 LLVMContext &Context = *DAG.getContext(); 3768 SDValue OffsVal; 3769 if (IsVectorGEP) 3770 OffsVal = DAG.getConstant( 3771 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3772 else 3773 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3774 3775 // In an inbounds GEP with an offset that is nonnegative even when 3776 // interpreted as signed, assume there is no unsigned overflow. 3777 SDNodeFlags Flags; 3778 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3779 Flags.setNoUnsignedWrap(true); 3780 3781 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3782 3783 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3784 continue; 3785 } 3786 3787 // N = N + Idx * ElementMul; 3788 SDValue IdxN = getValue(Idx); 3789 3790 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3791 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3792 VectorElementCount); 3793 if (VectorElementCount.isScalable()) 3794 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3795 else 3796 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3797 } 3798 3799 // If the index is smaller or larger than intptr_t, truncate or extend 3800 // it. 3801 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3802 3803 if (ElementScalable) { 3804 EVT VScaleTy = N.getValueType().getScalarType(); 3805 SDValue VScale = DAG.getNode( 3806 ISD::VSCALE, dl, VScaleTy, 3807 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3808 if (IsVectorGEP) 3809 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3810 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3811 } else { 3812 // If this is a multiply by a power of two, turn it into a shl 3813 // immediately. This is a very common case. 3814 if (ElementMul != 1) { 3815 if (ElementMul.isPowerOf2()) { 3816 unsigned Amt = ElementMul.logBase2(); 3817 IdxN = DAG.getNode(ISD::SHL, dl, 3818 N.getValueType(), IdxN, 3819 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3820 } else { 3821 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3822 IdxN.getValueType()); 3823 IdxN = DAG.getNode(ISD::MUL, dl, 3824 N.getValueType(), IdxN, Scale); 3825 } 3826 } 3827 } 3828 3829 N = DAG.getNode(ISD::ADD, dl, 3830 N.getValueType(), N, IdxN); 3831 } 3832 } 3833 3834 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3835 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3836 if (IsVectorGEP) { 3837 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3838 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3839 } 3840 3841 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3842 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3843 3844 setValue(&I, N); 3845 } 3846 3847 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3848 // If this is a fixed sized alloca in the entry block of the function, 3849 // allocate it statically on the stack. 3850 if (FuncInfo.StaticAllocaMap.count(&I)) 3851 return; // getValue will auto-populate this. 3852 3853 SDLoc dl = getCurSDLoc(); 3854 Type *Ty = I.getAllocatedType(); 3855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3856 auto &DL = DAG.getDataLayout(); 3857 uint64_t TySize = DL.getTypeAllocSize(Ty); 3858 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3859 3860 SDValue AllocSize = getValue(I.getArraySize()); 3861 3862 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3863 if (AllocSize.getValueType() != IntPtr) 3864 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3865 3866 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3867 AllocSize, 3868 DAG.getConstant(TySize, dl, IntPtr)); 3869 3870 // Handle alignment. If the requested alignment is less than or equal to 3871 // the stack alignment, ignore it. If the size is greater than or equal to 3872 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3873 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3874 if (*Alignment <= StackAlign) 3875 Alignment = None; 3876 3877 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3878 // Round the size of the allocation up to the stack alignment size 3879 // by add SA-1 to the size. This doesn't overflow because we're computing 3880 // an address inside an alloca. 3881 SDNodeFlags Flags; 3882 Flags.setNoUnsignedWrap(true); 3883 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3884 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3885 3886 // Mask out the low bits for alignment purposes. 3887 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3888 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3889 3890 SDValue Ops[] = { 3891 getRoot(), AllocSize, 3892 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3893 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3894 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3895 setValue(&I, DSA); 3896 DAG.setRoot(DSA.getValue(1)); 3897 3898 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3899 } 3900 3901 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3902 if (I.isAtomic()) 3903 return visitAtomicLoad(I); 3904 3905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3906 const Value *SV = I.getOperand(0); 3907 if (TLI.supportSwiftError()) { 3908 // Swifterror values can come from either a function parameter with 3909 // swifterror attribute or an alloca with swifterror attribute. 3910 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3911 if (Arg->hasSwiftErrorAttr()) 3912 return visitLoadFromSwiftError(I); 3913 } 3914 3915 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3916 if (Alloca->isSwiftError()) 3917 return visitLoadFromSwiftError(I); 3918 } 3919 } 3920 3921 SDValue Ptr = getValue(SV); 3922 3923 Type *Ty = I.getType(); 3924 Align Alignment = I.getAlign(); 3925 3926 AAMDNodes AAInfo; 3927 I.getAAMetadata(AAInfo); 3928 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3929 3930 SmallVector<EVT, 4> ValueVTs, MemVTs; 3931 SmallVector<uint64_t, 4> Offsets; 3932 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3933 unsigned NumValues = ValueVTs.size(); 3934 if (NumValues == 0) 3935 return; 3936 3937 bool isVolatile = I.isVolatile(); 3938 3939 SDValue Root; 3940 bool ConstantMemory = false; 3941 if (isVolatile) 3942 // Serialize volatile loads with other side effects. 3943 Root = getRoot(); 3944 else if (NumValues > MaxParallelChains) 3945 Root = getMemoryRoot(); 3946 else if (AA && 3947 AA->pointsToConstantMemory(MemoryLocation( 3948 SV, 3949 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3950 AAInfo))) { 3951 // Do not serialize (non-volatile) loads of constant memory with anything. 3952 Root = DAG.getEntryNode(); 3953 ConstantMemory = true; 3954 } else { 3955 // Do not serialize non-volatile loads against each other. 3956 Root = DAG.getRoot(); 3957 } 3958 3959 SDLoc dl = getCurSDLoc(); 3960 3961 if (isVolatile) 3962 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3963 3964 // An aggregate load cannot wrap around the address space, so offsets to its 3965 // parts don't wrap either. 3966 SDNodeFlags Flags; 3967 Flags.setNoUnsignedWrap(true); 3968 3969 SmallVector<SDValue, 4> Values(NumValues); 3970 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3971 EVT PtrVT = Ptr.getValueType(); 3972 3973 MachineMemOperand::Flags MMOFlags 3974 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3975 3976 unsigned ChainI = 0; 3977 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3978 // Serializing loads here may result in excessive register pressure, and 3979 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3980 // could recover a bit by hoisting nodes upward in the chain by recognizing 3981 // they are side-effect free or do not alias. The optimizer should really 3982 // avoid this case by converting large object/array copies to llvm.memcpy 3983 // (MaxParallelChains should always remain as failsafe). 3984 if (ChainI == MaxParallelChains) { 3985 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3986 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3987 makeArrayRef(Chains.data(), ChainI)); 3988 Root = Chain; 3989 ChainI = 0; 3990 } 3991 SDValue A = DAG.getNode(ISD::ADD, dl, 3992 PtrVT, Ptr, 3993 DAG.getConstant(Offsets[i], dl, PtrVT), 3994 Flags); 3995 3996 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 3997 MachinePointerInfo(SV, Offsets[i]), Alignment, 3998 MMOFlags, AAInfo, Ranges); 3999 Chains[ChainI] = L.getValue(1); 4000 4001 if (MemVTs[i] != ValueVTs[i]) 4002 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4003 4004 Values[i] = L; 4005 } 4006 4007 if (!ConstantMemory) { 4008 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4009 makeArrayRef(Chains.data(), ChainI)); 4010 if (isVolatile) 4011 DAG.setRoot(Chain); 4012 else 4013 PendingLoads.push_back(Chain); 4014 } 4015 4016 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4017 DAG.getVTList(ValueVTs), Values)); 4018 } 4019 4020 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4021 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4022 "call visitStoreToSwiftError when backend supports swifterror"); 4023 4024 SmallVector<EVT, 4> ValueVTs; 4025 SmallVector<uint64_t, 4> Offsets; 4026 const Value *SrcV = I.getOperand(0); 4027 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4028 SrcV->getType(), ValueVTs, &Offsets); 4029 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4030 "expect a single EVT for swifterror"); 4031 4032 SDValue Src = getValue(SrcV); 4033 // Create a virtual register, then update the virtual register. 4034 Register VReg = 4035 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4036 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4037 // Chain can be getRoot or getControlRoot. 4038 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4039 SDValue(Src.getNode(), Src.getResNo())); 4040 DAG.setRoot(CopyNode); 4041 } 4042 4043 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4044 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4045 "call visitLoadFromSwiftError when backend supports swifterror"); 4046 4047 assert(!I.isVolatile() && 4048 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4049 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4050 "Support volatile, non temporal, invariant for load_from_swift_error"); 4051 4052 const Value *SV = I.getOperand(0); 4053 Type *Ty = I.getType(); 4054 AAMDNodes AAInfo; 4055 I.getAAMetadata(AAInfo); 4056 assert( 4057 (!AA || 4058 !AA->pointsToConstantMemory(MemoryLocation( 4059 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4060 AAInfo))) && 4061 "load_from_swift_error should not be constant memory"); 4062 4063 SmallVector<EVT, 4> ValueVTs; 4064 SmallVector<uint64_t, 4> Offsets; 4065 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4066 ValueVTs, &Offsets); 4067 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4068 "expect a single EVT for swifterror"); 4069 4070 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4071 SDValue L = DAG.getCopyFromReg( 4072 getRoot(), getCurSDLoc(), 4073 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4074 4075 setValue(&I, L); 4076 } 4077 4078 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4079 if (I.isAtomic()) 4080 return visitAtomicStore(I); 4081 4082 const Value *SrcV = I.getOperand(0); 4083 const Value *PtrV = I.getOperand(1); 4084 4085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4086 if (TLI.supportSwiftError()) { 4087 // Swifterror values can come from either a function parameter with 4088 // swifterror attribute or an alloca with swifterror attribute. 4089 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4090 if (Arg->hasSwiftErrorAttr()) 4091 return visitStoreToSwiftError(I); 4092 } 4093 4094 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4095 if (Alloca->isSwiftError()) 4096 return visitStoreToSwiftError(I); 4097 } 4098 } 4099 4100 SmallVector<EVT, 4> ValueVTs, MemVTs; 4101 SmallVector<uint64_t, 4> Offsets; 4102 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4103 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4104 unsigned NumValues = ValueVTs.size(); 4105 if (NumValues == 0) 4106 return; 4107 4108 // Get the lowered operands. Note that we do this after 4109 // checking if NumResults is zero, because with zero results 4110 // the operands won't have values in the map. 4111 SDValue Src = getValue(SrcV); 4112 SDValue Ptr = getValue(PtrV); 4113 4114 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4115 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4116 SDLoc dl = getCurSDLoc(); 4117 Align Alignment = I.getAlign(); 4118 AAMDNodes AAInfo; 4119 I.getAAMetadata(AAInfo); 4120 4121 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4122 4123 // An aggregate load cannot wrap around the address space, so offsets to its 4124 // parts don't wrap either. 4125 SDNodeFlags Flags; 4126 Flags.setNoUnsignedWrap(true); 4127 4128 unsigned ChainI = 0; 4129 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4130 // See visitLoad comments. 4131 if (ChainI == MaxParallelChains) { 4132 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4133 makeArrayRef(Chains.data(), ChainI)); 4134 Root = Chain; 4135 ChainI = 0; 4136 } 4137 SDValue Add = 4138 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4139 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4140 if (MemVTs[i] != ValueVTs[i]) 4141 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4142 SDValue St = 4143 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4144 Alignment, MMOFlags, AAInfo); 4145 Chains[ChainI] = St; 4146 } 4147 4148 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4149 makeArrayRef(Chains.data(), ChainI)); 4150 DAG.setRoot(StoreNode); 4151 } 4152 4153 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4154 bool IsCompressing) { 4155 SDLoc sdl = getCurSDLoc(); 4156 4157 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4158 MaybeAlign &Alignment) { 4159 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4160 Src0 = I.getArgOperand(0); 4161 Ptr = I.getArgOperand(1); 4162 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4163 Mask = I.getArgOperand(3); 4164 }; 4165 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4166 MaybeAlign &Alignment) { 4167 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4168 Src0 = I.getArgOperand(0); 4169 Ptr = I.getArgOperand(1); 4170 Mask = I.getArgOperand(2); 4171 Alignment = None; 4172 }; 4173 4174 Value *PtrOperand, *MaskOperand, *Src0Operand; 4175 MaybeAlign Alignment; 4176 if (IsCompressing) 4177 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4178 else 4179 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4180 4181 SDValue Ptr = getValue(PtrOperand); 4182 SDValue Src0 = getValue(Src0Operand); 4183 SDValue Mask = getValue(MaskOperand); 4184 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4185 4186 EVT VT = Src0.getValueType(); 4187 if (!Alignment) 4188 Alignment = DAG.getEVTAlign(VT); 4189 4190 AAMDNodes AAInfo; 4191 I.getAAMetadata(AAInfo); 4192 4193 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4194 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4195 // TODO: Make MachineMemOperands aware of scalable 4196 // vectors. 4197 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4198 SDValue StoreNode = 4199 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4200 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4201 DAG.setRoot(StoreNode); 4202 setValue(&I, StoreNode); 4203 } 4204 4205 // Get a uniform base for the Gather/Scatter intrinsic. 4206 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4207 // We try to represent it as a base pointer + vector of indices. 4208 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4209 // The first operand of the GEP may be a single pointer or a vector of pointers 4210 // Example: 4211 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4212 // or 4213 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4214 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4215 // 4216 // When the first GEP operand is a single pointer - it is the uniform base we 4217 // are looking for. If first operand of the GEP is a splat vector - we 4218 // extract the splat value and use it as a uniform base. 4219 // In all other cases the function returns 'false'. 4220 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4221 ISD::MemIndexType &IndexType, SDValue &Scale, 4222 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4223 SelectionDAG& DAG = SDB->DAG; 4224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4225 const DataLayout &DL = DAG.getDataLayout(); 4226 4227 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4228 4229 // Handle splat constant pointer. 4230 if (auto *C = dyn_cast<Constant>(Ptr)) { 4231 C = C->getSplatValue(); 4232 if (!C) 4233 return false; 4234 4235 Base = SDB->getValue(C); 4236 4237 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4238 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4239 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4240 IndexType = ISD::SIGNED_SCALED; 4241 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4242 return true; 4243 } 4244 4245 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4246 if (!GEP || GEP->getParent() != CurBB) 4247 return false; 4248 4249 if (GEP->getNumOperands() != 2) 4250 return false; 4251 4252 const Value *BasePtr = GEP->getPointerOperand(); 4253 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4254 4255 // Make sure the base is scalar and the index is a vector. 4256 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4257 return false; 4258 4259 Base = SDB->getValue(BasePtr); 4260 Index = SDB->getValue(IndexVal); 4261 IndexType = ISD::SIGNED_SCALED; 4262 Scale = DAG.getTargetConstant( 4263 DL.getTypeAllocSize(GEP->getResultElementType()), 4264 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4265 return true; 4266 } 4267 4268 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4269 SDLoc sdl = getCurSDLoc(); 4270 4271 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4272 const Value *Ptr = I.getArgOperand(1); 4273 SDValue Src0 = getValue(I.getArgOperand(0)); 4274 SDValue Mask = getValue(I.getArgOperand(3)); 4275 EVT VT = Src0.getValueType(); 4276 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4277 ->getMaybeAlignValue() 4278 .getValueOr(DAG.getEVTAlign(VT)); 4279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4280 4281 AAMDNodes AAInfo; 4282 I.getAAMetadata(AAInfo); 4283 4284 SDValue Base; 4285 SDValue Index; 4286 ISD::MemIndexType IndexType; 4287 SDValue Scale; 4288 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4289 I.getParent()); 4290 4291 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4292 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4293 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4294 // TODO: Make MachineMemOperands aware of scalable 4295 // vectors. 4296 MemoryLocation::UnknownSize, Alignment, AAInfo); 4297 if (!UniformBase) { 4298 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4299 Index = getValue(Ptr); 4300 IndexType = ISD::SIGNED_SCALED; 4301 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4302 } 4303 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4304 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4305 Ops, MMO, IndexType, false); 4306 DAG.setRoot(Scatter); 4307 setValue(&I, Scatter); 4308 } 4309 4310 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4311 SDLoc sdl = getCurSDLoc(); 4312 4313 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4314 MaybeAlign &Alignment) { 4315 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4316 Ptr = I.getArgOperand(0); 4317 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4318 Mask = I.getArgOperand(2); 4319 Src0 = I.getArgOperand(3); 4320 }; 4321 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4322 MaybeAlign &Alignment) { 4323 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4324 Ptr = I.getArgOperand(0); 4325 Alignment = None; 4326 Mask = I.getArgOperand(1); 4327 Src0 = I.getArgOperand(2); 4328 }; 4329 4330 Value *PtrOperand, *MaskOperand, *Src0Operand; 4331 MaybeAlign Alignment; 4332 if (IsExpanding) 4333 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4334 else 4335 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4336 4337 SDValue Ptr = getValue(PtrOperand); 4338 SDValue Src0 = getValue(Src0Operand); 4339 SDValue Mask = getValue(MaskOperand); 4340 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4341 4342 EVT VT = Src0.getValueType(); 4343 if (!Alignment) 4344 Alignment = DAG.getEVTAlign(VT); 4345 4346 AAMDNodes AAInfo; 4347 I.getAAMetadata(AAInfo); 4348 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4349 4350 // Do not serialize masked loads of constant memory with anything. 4351 MemoryLocation ML; 4352 if (VT.isScalableVector()) 4353 ML = MemoryLocation(PtrOperand); 4354 else 4355 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4356 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4357 AAInfo); 4358 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4359 4360 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4361 4362 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4363 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4364 // TODO: Make MachineMemOperands aware of scalable 4365 // vectors. 4366 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4367 4368 SDValue Load = 4369 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4370 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4371 if (AddToChain) 4372 PendingLoads.push_back(Load.getValue(1)); 4373 setValue(&I, Load); 4374 } 4375 4376 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4377 SDLoc sdl = getCurSDLoc(); 4378 4379 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4380 const Value *Ptr = I.getArgOperand(0); 4381 SDValue Src0 = getValue(I.getArgOperand(3)); 4382 SDValue Mask = getValue(I.getArgOperand(2)); 4383 4384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4385 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4386 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4387 ->getMaybeAlignValue() 4388 .getValueOr(DAG.getEVTAlign(VT)); 4389 4390 AAMDNodes AAInfo; 4391 I.getAAMetadata(AAInfo); 4392 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4393 4394 SDValue Root = DAG.getRoot(); 4395 SDValue Base; 4396 SDValue Index; 4397 ISD::MemIndexType IndexType; 4398 SDValue Scale; 4399 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4400 I.getParent()); 4401 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4402 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4403 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4404 // TODO: Make MachineMemOperands aware of scalable 4405 // vectors. 4406 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4407 4408 if (!UniformBase) { 4409 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4410 Index = getValue(Ptr); 4411 IndexType = ISD::SIGNED_SCALED; 4412 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4413 } 4414 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4415 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4416 Ops, MMO, IndexType); 4417 4418 PendingLoads.push_back(Gather.getValue(1)); 4419 setValue(&I, Gather); 4420 } 4421 4422 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4423 SDLoc dl = getCurSDLoc(); 4424 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4425 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4426 SyncScope::ID SSID = I.getSyncScopeID(); 4427 4428 SDValue InChain = getRoot(); 4429 4430 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4431 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4432 4433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4434 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4435 4436 MachineFunction &MF = DAG.getMachineFunction(); 4437 MachineMemOperand *MMO = MF.getMachineMemOperand( 4438 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4439 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4440 FailureOrdering); 4441 4442 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4443 dl, MemVT, VTs, InChain, 4444 getValue(I.getPointerOperand()), 4445 getValue(I.getCompareOperand()), 4446 getValue(I.getNewValOperand()), MMO); 4447 4448 SDValue OutChain = L.getValue(2); 4449 4450 setValue(&I, L); 4451 DAG.setRoot(OutChain); 4452 } 4453 4454 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4455 SDLoc dl = getCurSDLoc(); 4456 ISD::NodeType NT; 4457 switch (I.getOperation()) { 4458 default: llvm_unreachable("Unknown atomicrmw operation"); 4459 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4460 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4461 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4462 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4463 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4464 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4465 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4466 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4467 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4468 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4469 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4470 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4471 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4472 } 4473 AtomicOrdering Ordering = I.getOrdering(); 4474 SyncScope::ID SSID = I.getSyncScopeID(); 4475 4476 SDValue InChain = getRoot(); 4477 4478 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4480 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4481 4482 MachineFunction &MF = DAG.getMachineFunction(); 4483 MachineMemOperand *MMO = MF.getMachineMemOperand( 4484 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4485 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4486 4487 SDValue L = 4488 DAG.getAtomic(NT, dl, MemVT, InChain, 4489 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4490 MMO); 4491 4492 SDValue OutChain = L.getValue(1); 4493 4494 setValue(&I, L); 4495 DAG.setRoot(OutChain); 4496 } 4497 4498 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4499 SDLoc dl = getCurSDLoc(); 4500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4501 SDValue Ops[3]; 4502 Ops[0] = getRoot(); 4503 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4504 TLI.getFenceOperandTy(DAG.getDataLayout())); 4505 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4506 TLI.getFenceOperandTy(DAG.getDataLayout())); 4507 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4508 } 4509 4510 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4511 SDLoc dl = getCurSDLoc(); 4512 AtomicOrdering Order = I.getOrdering(); 4513 SyncScope::ID SSID = I.getSyncScopeID(); 4514 4515 SDValue InChain = getRoot(); 4516 4517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4518 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4519 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4520 4521 if (!TLI.supportsUnalignedAtomics() && 4522 I.getAlignment() < MemVT.getSizeInBits() / 8) 4523 report_fatal_error("Cannot generate unaligned atomic load"); 4524 4525 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4526 4527 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4528 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4529 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4530 4531 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4532 4533 SDValue Ptr = getValue(I.getPointerOperand()); 4534 4535 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4536 // TODO: Once this is better exercised by tests, it should be merged with 4537 // the normal path for loads to prevent future divergence. 4538 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4539 if (MemVT != VT) 4540 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4541 4542 setValue(&I, L); 4543 SDValue OutChain = L.getValue(1); 4544 if (!I.isUnordered()) 4545 DAG.setRoot(OutChain); 4546 else 4547 PendingLoads.push_back(OutChain); 4548 return; 4549 } 4550 4551 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4552 Ptr, MMO); 4553 4554 SDValue OutChain = L.getValue(1); 4555 if (MemVT != VT) 4556 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4557 4558 setValue(&I, L); 4559 DAG.setRoot(OutChain); 4560 } 4561 4562 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4563 SDLoc dl = getCurSDLoc(); 4564 4565 AtomicOrdering Ordering = I.getOrdering(); 4566 SyncScope::ID SSID = I.getSyncScopeID(); 4567 4568 SDValue InChain = getRoot(); 4569 4570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4571 EVT MemVT = 4572 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4573 4574 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4575 report_fatal_error("Cannot generate unaligned atomic store"); 4576 4577 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4578 4579 MachineFunction &MF = DAG.getMachineFunction(); 4580 MachineMemOperand *MMO = MF.getMachineMemOperand( 4581 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4582 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4583 4584 SDValue Val = getValue(I.getValueOperand()); 4585 if (Val.getValueType() != MemVT) 4586 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4587 SDValue Ptr = getValue(I.getPointerOperand()); 4588 4589 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4590 // TODO: Once this is better exercised by tests, it should be merged with 4591 // the normal path for stores to prevent future divergence. 4592 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4593 DAG.setRoot(S); 4594 return; 4595 } 4596 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4597 Ptr, Val, MMO); 4598 4599 4600 DAG.setRoot(OutChain); 4601 } 4602 4603 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4604 /// node. 4605 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4606 unsigned Intrinsic) { 4607 // Ignore the callsite's attributes. A specific call site may be marked with 4608 // readnone, but the lowering code will expect the chain based on the 4609 // definition. 4610 const Function *F = I.getCalledFunction(); 4611 bool HasChain = !F->doesNotAccessMemory(); 4612 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4613 4614 // Build the operand list. 4615 SmallVector<SDValue, 8> Ops; 4616 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4617 if (OnlyLoad) { 4618 // We don't need to serialize loads against other loads. 4619 Ops.push_back(DAG.getRoot()); 4620 } else { 4621 Ops.push_back(getRoot()); 4622 } 4623 } 4624 4625 // Info is set by getTgtMemInstrinsic 4626 TargetLowering::IntrinsicInfo Info; 4627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4628 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4629 DAG.getMachineFunction(), 4630 Intrinsic); 4631 4632 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4633 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4634 Info.opc == ISD::INTRINSIC_W_CHAIN) 4635 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4636 TLI.getPointerTy(DAG.getDataLayout()))); 4637 4638 // Add all operands of the call to the operand list. 4639 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4640 const Value *Arg = I.getArgOperand(i); 4641 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4642 Ops.push_back(getValue(Arg)); 4643 continue; 4644 } 4645 4646 // Use TargetConstant instead of a regular constant for immarg. 4647 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4648 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4649 assert(CI->getBitWidth() <= 64 && 4650 "large intrinsic immediates not handled"); 4651 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4652 } else { 4653 Ops.push_back( 4654 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4655 } 4656 } 4657 4658 SmallVector<EVT, 4> ValueVTs; 4659 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4660 4661 if (HasChain) 4662 ValueVTs.push_back(MVT::Other); 4663 4664 SDVTList VTs = DAG.getVTList(ValueVTs); 4665 4666 // Create the node. 4667 SDValue Result; 4668 if (IsTgtIntrinsic) { 4669 // This is target intrinsic that touches memory 4670 AAMDNodes AAInfo; 4671 I.getAAMetadata(AAInfo); 4672 Result = 4673 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4674 MachinePointerInfo(Info.ptrVal, Info.offset), 4675 Info.align, Info.flags, Info.size, AAInfo); 4676 } else if (!HasChain) { 4677 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4678 } else if (!I.getType()->isVoidTy()) { 4679 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4680 } else { 4681 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4682 } 4683 4684 if (HasChain) { 4685 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4686 if (OnlyLoad) 4687 PendingLoads.push_back(Chain); 4688 else 4689 DAG.setRoot(Chain); 4690 } 4691 4692 if (!I.getType()->isVoidTy()) { 4693 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4694 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4695 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4696 } else 4697 Result = lowerRangeToAssertZExt(DAG, I, Result); 4698 4699 MaybeAlign Alignment = I.getRetAlign(); 4700 if (!Alignment) 4701 Alignment = F->getAttributes().getRetAlignment(); 4702 // Insert `assertalign` node if there's an alignment. 4703 if (InsertAssertAlign && Alignment) { 4704 Result = 4705 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4706 } 4707 4708 setValue(&I, Result); 4709 } 4710 } 4711 4712 /// GetSignificand - Get the significand and build it into a floating-point 4713 /// number with exponent of 1: 4714 /// 4715 /// Op = (Op & 0x007fffff) | 0x3f800000; 4716 /// 4717 /// where Op is the hexadecimal representation of floating point value. 4718 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4719 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4720 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4721 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4722 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4723 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4724 } 4725 4726 /// GetExponent - Get the exponent: 4727 /// 4728 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4729 /// 4730 /// where Op is the hexadecimal representation of floating point value. 4731 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4732 const TargetLowering &TLI, const SDLoc &dl) { 4733 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4734 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4735 SDValue t1 = DAG.getNode( 4736 ISD::SRL, dl, MVT::i32, t0, 4737 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4738 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4739 DAG.getConstant(127, dl, MVT::i32)); 4740 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4741 } 4742 4743 /// getF32Constant - Get 32-bit floating point constant. 4744 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4745 const SDLoc &dl) { 4746 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4747 MVT::f32); 4748 } 4749 4750 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4751 SelectionDAG &DAG) { 4752 // TODO: What fast-math-flags should be set on the floating-point nodes? 4753 4754 // IntegerPartOfX = ((int32_t)(t0); 4755 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4756 4757 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4758 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4759 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4760 4761 // IntegerPartOfX <<= 23; 4762 IntegerPartOfX = DAG.getNode( 4763 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4764 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4765 DAG.getDataLayout()))); 4766 4767 SDValue TwoToFractionalPartOfX; 4768 if (LimitFloatPrecision <= 6) { 4769 // For floating-point precision of 6: 4770 // 4771 // TwoToFractionalPartOfX = 4772 // 0.997535578f + 4773 // (0.735607626f + 0.252464424f * x) * x; 4774 // 4775 // error 0.0144103317, which is 6 bits 4776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4777 getF32Constant(DAG, 0x3e814304, dl)); 4778 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4779 getF32Constant(DAG, 0x3f3c50c8, dl)); 4780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4781 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4782 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4783 } else if (LimitFloatPrecision <= 12) { 4784 // For floating-point precision of 12: 4785 // 4786 // TwoToFractionalPartOfX = 4787 // 0.999892986f + 4788 // (0.696457318f + 4789 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4790 // 4791 // error 0.000107046256, which is 13 to 14 bits 4792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4793 getF32Constant(DAG, 0x3da235e3, dl)); 4794 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4795 getF32Constant(DAG, 0x3e65b8f3, dl)); 4796 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4797 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4798 getF32Constant(DAG, 0x3f324b07, dl)); 4799 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4800 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4801 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4802 } else { // LimitFloatPrecision <= 18 4803 // For floating-point precision of 18: 4804 // 4805 // TwoToFractionalPartOfX = 4806 // 0.999999982f + 4807 // (0.693148872f + 4808 // (0.240227044f + 4809 // (0.554906021e-1f + 4810 // (0.961591928e-2f + 4811 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4812 // error 2.47208000*10^(-7), which is better than 18 bits 4813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4814 getF32Constant(DAG, 0x3924b03e, dl)); 4815 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4816 getF32Constant(DAG, 0x3ab24b87, dl)); 4817 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4818 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4819 getF32Constant(DAG, 0x3c1d8c17, dl)); 4820 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4821 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4822 getF32Constant(DAG, 0x3d634a1d, dl)); 4823 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4824 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4825 getF32Constant(DAG, 0x3e75fe14, dl)); 4826 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4827 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4828 getF32Constant(DAG, 0x3f317234, dl)); 4829 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4830 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4831 getF32Constant(DAG, 0x3f800000, dl)); 4832 } 4833 4834 // Add the exponent into the result in integer domain. 4835 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4836 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4837 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4838 } 4839 4840 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4841 /// limited-precision mode. 4842 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4843 const TargetLowering &TLI, SDNodeFlags Flags) { 4844 if (Op.getValueType() == MVT::f32 && 4845 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4846 4847 // Put the exponent in the right bit position for later addition to the 4848 // final result: 4849 // 4850 // t0 = Op * log2(e) 4851 4852 // TODO: What fast-math-flags should be set here? 4853 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4854 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4855 return getLimitedPrecisionExp2(t0, dl, DAG); 4856 } 4857 4858 // No special expansion. 4859 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4860 } 4861 4862 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4863 /// limited-precision mode. 4864 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4865 const TargetLowering &TLI, SDNodeFlags Flags) { 4866 // TODO: What fast-math-flags should be set on the floating-point nodes? 4867 4868 if (Op.getValueType() == MVT::f32 && 4869 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4870 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4871 4872 // Scale the exponent by log(2). 4873 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4874 SDValue LogOfExponent = 4875 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4876 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4877 4878 // Get the significand and build it into a floating-point number with 4879 // exponent of 1. 4880 SDValue X = GetSignificand(DAG, Op1, dl); 4881 4882 SDValue LogOfMantissa; 4883 if (LimitFloatPrecision <= 6) { 4884 // For floating-point precision of 6: 4885 // 4886 // LogofMantissa = 4887 // -1.1609546f + 4888 // (1.4034025f - 0.23903021f * x) * x; 4889 // 4890 // error 0.0034276066, which is better than 8 bits 4891 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4892 getF32Constant(DAG, 0xbe74c456, dl)); 4893 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4894 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4896 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4897 getF32Constant(DAG, 0x3f949a29, dl)); 4898 } else if (LimitFloatPrecision <= 12) { 4899 // For floating-point precision of 12: 4900 // 4901 // LogOfMantissa = 4902 // -1.7417939f + 4903 // (2.8212026f + 4904 // (-1.4699568f + 4905 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4906 // 4907 // error 0.000061011436, which is 14 bits 4908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4909 getF32Constant(DAG, 0xbd67b6d6, dl)); 4910 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4911 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4913 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4914 getF32Constant(DAG, 0x3fbc278b, dl)); 4915 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4916 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4917 getF32Constant(DAG, 0x40348e95, dl)); 4918 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4919 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4920 getF32Constant(DAG, 0x3fdef31a, dl)); 4921 } else { // LimitFloatPrecision <= 18 4922 // For floating-point precision of 18: 4923 // 4924 // LogOfMantissa = 4925 // -2.1072184f + 4926 // (4.2372794f + 4927 // (-3.7029485f + 4928 // (2.2781945f + 4929 // (-0.87823314f + 4930 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4931 // 4932 // error 0.0000023660568, which is better than 18 bits 4933 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4934 getF32Constant(DAG, 0xbc91e5ac, dl)); 4935 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4936 getF32Constant(DAG, 0x3e4350aa, dl)); 4937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4938 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4939 getF32Constant(DAG, 0x3f60d3e3, dl)); 4940 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4941 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4942 getF32Constant(DAG, 0x4011cdf0, dl)); 4943 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4944 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4945 getF32Constant(DAG, 0x406cfd1c, dl)); 4946 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4947 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4948 getF32Constant(DAG, 0x408797cb, dl)); 4949 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4950 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4951 getF32Constant(DAG, 0x4006dcab, dl)); 4952 } 4953 4954 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4955 } 4956 4957 // No special expansion. 4958 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 4959 } 4960 4961 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4962 /// limited-precision mode. 4963 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4964 const TargetLowering &TLI, SDNodeFlags Flags) { 4965 // TODO: What fast-math-flags should be set on the floating-point nodes? 4966 4967 if (Op.getValueType() == MVT::f32 && 4968 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4969 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4970 4971 // Get the exponent. 4972 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4973 4974 // Get the significand and build it into a floating-point number with 4975 // exponent of 1. 4976 SDValue X = GetSignificand(DAG, Op1, dl); 4977 4978 // Different possible minimax approximations of significand in 4979 // floating-point for various degrees of accuracy over [1,2]. 4980 SDValue Log2ofMantissa; 4981 if (LimitFloatPrecision <= 6) { 4982 // For floating-point precision of 6: 4983 // 4984 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4985 // 4986 // error 0.0049451742, which is more than 7 bits 4987 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4988 getF32Constant(DAG, 0xbeb08fe0, dl)); 4989 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4990 getF32Constant(DAG, 0x40019463, dl)); 4991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4992 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4993 getF32Constant(DAG, 0x3fd6633d, dl)); 4994 } else if (LimitFloatPrecision <= 12) { 4995 // For floating-point precision of 12: 4996 // 4997 // Log2ofMantissa = 4998 // -2.51285454f + 4999 // (4.07009056f + 5000 // (-2.12067489f + 5001 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5002 // 5003 // error 0.0000876136000, which is better than 13 bits 5004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5005 getF32Constant(DAG, 0xbda7262e, dl)); 5006 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5007 getF32Constant(DAG, 0x3f25280b, dl)); 5008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5009 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5010 getF32Constant(DAG, 0x4007b923, dl)); 5011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5012 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5013 getF32Constant(DAG, 0x40823e2f, dl)); 5014 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5015 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5016 getF32Constant(DAG, 0x4020d29c, dl)); 5017 } else { // LimitFloatPrecision <= 18 5018 // For floating-point precision of 18: 5019 // 5020 // Log2ofMantissa = 5021 // -3.0400495f + 5022 // (6.1129976f + 5023 // (-5.3420409f + 5024 // (3.2865683f + 5025 // (-1.2669343f + 5026 // (0.27515199f - 5027 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5028 // 5029 // error 0.0000018516, which is better than 18 bits 5030 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5031 getF32Constant(DAG, 0xbcd2769e, dl)); 5032 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5033 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5034 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5035 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5036 getF32Constant(DAG, 0x3fa22ae7, dl)); 5037 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5038 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5039 getF32Constant(DAG, 0x40525723, dl)); 5040 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5041 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5042 getF32Constant(DAG, 0x40aaf200, dl)); 5043 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5044 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5045 getF32Constant(DAG, 0x40c39dad, dl)); 5046 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5048 getF32Constant(DAG, 0x4042902c, dl)); 5049 } 5050 5051 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5052 } 5053 5054 // No special expansion. 5055 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5056 } 5057 5058 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5059 /// limited-precision mode. 5060 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5061 const TargetLowering &TLI, SDNodeFlags Flags) { 5062 // TODO: What fast-math-flags should be set on the floating-point nodes? 5063 5064 if (Op.getValueType() == MVT::f32 && 5065 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5066 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5067 5068 // Scale the exponent by log10(2) [0.30102999f]. 5069 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5070 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5071 getF32Constant(DAG, 0x3e9a209a, dl)); 5072 5073 // Get the significand and build it into a floating-point number with 5074 // exponent of 1. 5075 SDValue X = GetSignificand(DAG, Op1, dl); 5076 5077 SDValue Log10ofMantissa; 5078 if (LimitFloatPrecision <= 6) { 5079 // For floating-point precision of 6: 5080 // 5081 // Log10ofMantissa = 5082 // -0.50419619f + 5083 // (0.60948995f - 0.10380950f * x) * x; 5084 // 5085 // error 0.0014886165, which is 6 bits 5086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5087 getF32Constant(DAG, 0xbdd49a13, dl)); 5088 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5089 getF32Constant(DAG, 0x3f1c0789, dl)); 5090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5091 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5092 getF32Constant(DAG, 0x3f011300, dl)); 5093 } else if (LimitFloatPrecision <= 12) { 5094 // For floating-point precision of 12: 5095 // 5096 // Log10ofMantissa = 5097 // -0.64831180f + 5098 // (0.91751397f + 5099 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5100 // 5101 // error 0.00019228036, which is better than 12 bits 5102 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5103 getF32Constant(DAG, 0x3d431f31, dl)); 5104 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5105 getF32Constant(DAG, 0x3ea21fb2, dl)); 5106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5107 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5108 getF32Constant(DAG, 0x3f6ae232, dl)); 5109 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5110 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5111 getF32Constant(DAG, 0x3f25f7c3, dl)); 5112 } else { // LimitFloatPrecision <= 18 5113 // For floating-point precision of 18: 5114 // 5115 // Log10ofMantissa = 5116 // -0.84299375f + 5117 // (1.5327582f + 5118 // (-1.0688956f + 5119 // (0.49102474f + 5120 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5121 // 5122 // error 0.0000037995730, which is better than 18 bits 5123 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5124 getF32Constant(DAG, 0x3c5d51ce, dl)); 5125 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5126 getF32Constant(DAG, 0x3e00685a, dl)); 5127 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5128 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5129 getF32Constant(DAG, 0x3efb6798, dl)); 5130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5131 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5132 getF32Constant(DAG, 0x3f88d192, dl)); 5133 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5134 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5135 getF32Constant(DAG, 0x3fc4316c, dl)); 5136 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5137 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5138 getF32Constant(DAG, 0x3f57ce70, dl)); 5139 } 5140 5141 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5142 } 5143 5144 // No special expansion. 5145 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5146 } 5147 5148 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5149 /// limited-precision mode. 5150 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5151 const TargetLowering &TLI, SDNodeFlags Flags) { 5152 if (Op.getValueType() == MVT::f32 && 5153 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5154 return getLimitedPrecisionExp2(Op, dl, DAG); 5155 5156 // No special expansion. 5157 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5158 } 5159 5160 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5161 /// limited-precision mode with x == 10.0f. 5162 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5163 SelectionDAG &DAG, const TargetLowering &TLI, 5164 SDNodeFlags Flags) { 5165 bool IsExp10 = false; 5166 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5167 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5168 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5169 APFloat Ten(10.0f); 5170 IsExp10 = LHSC->isExactlyValue(Ten); 5171 } 5172 } 5173 5174 // TODO: What fast-math-flags should be set on the FMUL node? 5175 if (IsExp10) { 5176 // Put the exponent in the right bit position for later addition to the 5177 // final result: 5178 // 5179 // #define LOG2OF10 3.3219281f 5180 // t0 = Op * LOG2OF10; 5181 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5182 getF32Constant(DAG, 0x40549a78, dl)); 5183 return getLimitedPrecisionExp2(t0, dl, DAG); 5184 } 5185 5186 // No special expansion. 5187 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5188 } 5189 5190 /// ExpandPowI - Expand a llvm.powi intrinsic. 5191 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5192 SelectionDAG &DAG) { 5193 // If RHS is a constant, we can expand this out to a multiplication tree, 5194 // otherwise we end up lowering to a call to __powidf2 (for example). When 5195 // optimizing for size, we only want to do this if the expansion would produce 5196 // a small number of multiplies, otherwise we do the full expansion. 5197 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5198 // Get the exponent as a positive value. 5199 unsigned Val = RHSC->getSExtValue(); 5200 if ((int)Val < 0) Val = -Val; 5201 5202 // powi(x, 0) -> 1.0 5203 if (Val == 0) 5204 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5205 5206 bool OptForSize = DAG.shouldOptForSize(); 5207 if (!OptForSize || 5208 // If optimizing for size, don't insert too many multiplies. 5209 // This inserts up to 5 multiplies. 5210 countPopulation(Val) + Log2_32(Val) < 7) { 5211 // We use the simple binary decomposition method to generate the multiply 5212 // sequence. There are more optimal ways to do this (for example, 5213 // powi(x,15) generates one more multiply than it should), but this has 5214 // the benefit of being both really simple and much better than a libcall. 5215 SDValue Res; // Logically starts equal to 1.0 5216 SDValue CurSquare = LHS; 5217 // TODO: Intrinsics should have fast-math-flags that propagate to these 5218 // nodes. 5219 while (Val) { 5220 if (Val & 1) { 5221 if (Res.getNode()) 5222 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5223 else 5224 Res = CurSquare; // 1.0*CurSquare. 5225 } 5226 5227 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5228 CurSquare, CurSquare); 5229 Val >>= 1; 5230 } 5231 5232 // If the original was negative, invert the result, producing 1/(x*x*x). 5233 if (RHSC->getSExtValue() < 0) 5234 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5235 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5236 return Res; 5237 } 5238 } 5239 5240 // Otherwise, expand to a libcall. 5241 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5242 } 5243 5244 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5245 SDValue LHS, SDValue RHS, SDValue Scale, 5246 SelectionDAG &DAG, const TargetLowering &TLI) { 5247 EVT VT = LHS.getValueType(); 5248 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5249 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5250 LLVMContext &Ctx = *DAG.getContext(); 5251 5252 // If the type is legal but the operation isn't, this node might survive all 5253 // the way to operation legalization. If we end up there and we do not have 5254 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5255 // node. 5256 5257 // Coax the legalizer into expanding the node during type legalization instead 5258 // by bumping the size by one bit. This will force it to Promote, enabling the 5259 // early expansion and avoiding the need to expand later. 5260 5261 // We don't have to do this if Scale is 0; that can always be expanded, unless 5262 // it's a saturating signed operation. Those can experience true integer 5263 // division overflow, a case which we must avoid. 5264 5265 // FIXME: We wouldn't have to do this (or any of the early 5266 // expansion/promotion) if it was possible to expand a libcall of an 5267 // illegal type during operation legalization. But it's not, so things 5268 // get a bit hacky. 5269 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5270 if ((ScaleInt > 0 || (Saturating && Signed)) && 5271 (TLI.isTypeLegal(VT) || 5272 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5273 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5274 Opcode, VT, ScaleInt); 5275 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5276 EVT PromVT; 5277 if (VT.isScalarInteger()) 5278 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5279 else if (VT.isVector()) { 5280 PromVT = VT.getVectorElementType(); 5281 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5282 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5283 } else 5284 llvm_unreachable("Wrong VT for DIVFIX?"); 5285 if (Signed) { 5286 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5287 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5288 } else { 5289 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5290 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5291 } 5292 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5293 // For saturating operations, we need to shift up the LHS to get the 5294 // proper saturation width, and then shift down again afterwards. 5295 if (Saturating) 5296 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5297 DAG.getConstant(1, DL, ShiftTy)); 5298 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5299 if (Saturating) 5300 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5301 DAG.getConstant(1, DL, ShiftTy)); 5302 return DAG.getZExtOrTrunc(Res, DL, VT); 5303 } 5304 } 5305 5306 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5307 } 5308 5309 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5310 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5311 static void 5312 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5313 const SDValue &N) { 5314 switch (N.getOpcode()) { 5315 case ISD::CopyFromReg: { 5316 SDValue Op = N.getOperand(1); 5317 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5318 Op.getValueType().getSizeInBits()); 5319 return; 5320 } 5321 case ISD::BITCAST: 5322 case ISD::AssertZext: 5323 case ISD::AssertSext: 5324 case ISD::TRUNCATE: 5325 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5326 return; 5327 case ISD::BUILD_PAIR: 5328 case ISD::BUILD_VECTOR: 5329 case ISD::CONCAT_VECTORS: 5330 for (SDValue Op : N->op_values()) 5331 getUnderlyingArgRegs(Regs, Op); 5332 return; 5333 default: 5334 return; 5335 } 5336 } 5337 5338 /// If the DbgValueInst is a dbg_value of a function argument, create the 5339 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5340 /// instruction selection, they will be inserted to the entry BB. 5341 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5342 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5343 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5344 const Argument *Arg = dyn_cast<Argument>(V); 5345 if (!Arg) 5346 return false; 5347 5348 if (!IsDbgDeclare) { 5349 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5350 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5351 // the entry block. 5352 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5353 if (!IsInEntryBlock) 5354 return false; 5355 5356 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5357 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5358 // variable that also is a param. 5359 // 5360 // Although, if we are at the top of the entry block already, we can still 5361 // emit using ArgDbgValue. This might catch some situations when the 5362 // dbg.value refers to an argument that isn't used in the entry block, so 5363 // any CopyToReg node would be optimized out and the only way to express 5364 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5365 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5366 // we should only emit as ArgDbgValue if the Variable is an argument to the 5367 // current function, and the dbg.value intrinsic is found in the entry 5368 // block. 5369 bool VariableIsFunctionInputArg = Variable->isParameter() && 5370 !DL->getInlinedAt(); 5371 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5372 if (!IsInPrologue && !VariableIsFunctionInputArg) 5373 return false; 5374 5375 // Here we assume that a function argument on IR level only can be used to 5376 // describe one input parameter on source level. If we for example have 5377 // source code like this 5378 // 5379 // struct A { long x, y; }; 5380 // void foo(struct A a, long b) { 5381 // ... 5382 // b = a.x; 5383 // ... 5384 // } 5385 // 5386 // and IR like this 5387 // 5388 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5389 // entry: 5390 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5391 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5392 // call void @llvm.dbg.value(metadata i32 %b, "b", 5393 // ... 5394 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5395 // ... 5396 // 5397 // then the last dbg.value is describing a parameter "b" using a value that 5398 // is an argument. But since we already has used %a1 to describe a parameter 5399 // we should not handle that last dbg.value here (that would result in an 5400 // incorrect hoisting of the DBG_VALUE to the function entry). 5401 // Notice that we allow one dbg.value per IR level argument, to accommodate 5402 // for the situation with fragments above. 5403 if (VariableIsFunctionInputArg) { 5404 unsigned ArgNo = Arg->getArgNo(); 5405 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5406 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5407 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5408 return false; 5409 FuncInfo.DescribedArgs.set(ArgNo); 5410 } 5411 } 5412 5413 MachineFunction &MF = DAG.getMachineFunction(); 5414 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5415 5416 bool IsIndirect = false; 5417 Optional<MachineOperand> Op; 5418 // Some arguments' frame index is recorded during argument lowering. 5419 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5420 if (FI != std::numeric_limits<int>::max()) 5421 Op = MachineOperand::CreateFI(FI); 5422 5423 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5424 if (!Op && N.getNode()) { 5425 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5426 Register Reg; 5427 if (ArgRegsAndSizes.size() == 1) 5428 Reg = ArgRegsAndSizes.front().first; 5429 5430 if (Reg && Reg.isVirtual()) { 5431 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5432 Register PR = RegInfo.getLiveInPhysReg(Reg); 5433 if (PR) 5434 Reg = PR; 5435 } 5436 if (Reg) { 5437 Op = MachineOperand::CreateReg(Reg, false); 5438 IsIndirect = IsDbgDeclare; 5439 } 5440 } 5441 5442 if (!Op && N.getNode()) { 5443 // Check if frame index is available. 5444 SDValue LCandidate = peekThroughBitcasts(N); 5445 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5446 if (FrameIndexSDNode *FINode = 5447 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5448 Op = MachineOperand::CreateFI(FINode->getIndex()); 5449 } 5450 5451 if (!Op) { 5452 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5453 auto splitMultiRegDbgValue 5454 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5455 unsigned Offset = 0; 5456 for (auto RegAndSize : SplitRegs) { 5457 // If the expression is already a fragment, the current register 5458 // offset+size might extend beyond the fragment. In this case, only 5459 // the register bits that are inside the fragment are relevant. 5460 int RegFragmentSizeInBits = RegAndSize.second; 5461 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5462 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5463 // The register is entirely outside the expression fragment, 5464 // so is irrelevant for debug info. 5465 if (Offset >= ExprFragmentSizeInBits) 5466 break; 5467 // The register is partially outside the expression fragment, only 5468 // the low bits within the fragment are relevant for debug info. 5469 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5470 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5471 } 5472 } 5473 5474 auto FragmentExpr = DIExpression::createFragmentExpression( 5475 Expr, Offset, RegFragmentSizeInBits); 5476 Offset += RegAndSize.second; 5477 // If a valid fragment expression cannot be created, the variable's 5478 // correct value cannot be determined and so it is set as Undef. 5479 if (!FragmentExpr) { 5480 SDDbgValue *SDV = DAG.getConstantDbgValue( 5481 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5482 DAG.AddDbgValue(SDV, nullptr, false); 5483 continue; 5484 } 5485 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5486 FuncInfo.ArgDbgValues.push_back( 5487 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5488 RegAndSize.first, Variable, *FragmentExpr)); 5489 } 5490 }; 5491 5492 // Check if ValueMap has reg number. 5493 DenseMap<const Value *, Register>::const_iterator 5494 VMI = FuncInfo.ValueMap.find(V); 5495 if (VMI != FuncInfo.ValueMap.end()) { 5496 const auto &TLI = DAG.getTargetLoweringInfo(); 5497 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5498 V->getType(), None); 5499 if (RFV.occupiesMultipleRegs()) { 5500 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5501 return true; 5502 } 5503 5504 Op = MachineOperand::CreateReg(VMI->second, false); 5505 IsIndirect = IsDbgDeclare; 5506 } else if (ArgRegsAndSizes.size() > 1) { 5507 // This was split due to the calling convention, and no virtual register 5508 // mapping exists for the value. 5509 splitMultiRegDbgValue(ArgRegsAndSizes); 5510 return true; 5511 } 5512 } 5513 5514 if (!Op) 5515 return false; 5516 5517 assert(Variable->isValidLocationForIntrinsic(DL) && 5518 "Expected inlined-at fields to agree"); 5519 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5520 FuncInfo.ArgDbgValues.push_back( 5521 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5522 *Op, Variable, Expr)); 5523 5524 return true; 5525 } 5526 5527 /// Return the appropriate SDDbgValue based on N. 5528 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5529 DILocalVariable *Variable, 5530 DIExpression *Expr, 5531 const DebugLoc &dl, 5532 unsigned DbgSDNodeOrder) { 5533 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5534 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5535 // stack slot locations. 5536 // 5537 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5538 // debug values here after optimization: 5539 // 5540 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5541 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5542 // 5543 // Both describe the direct values of their associated variables. 5544 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5545 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5546 } 5547 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5548 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5549 } 5550 5551 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5552 switch (Intrinsic) { 5553 case Intrinsic::smul_fix: 5554 return ISD::SMULFIX; 5555 case Intrinsic::umul_fix: 5556 return ISD::UMULFIX; 5557 case Intrinsic::smul_fix_sat: 5558 return ISD::SMULFIXSAT; 5559 case Intrinsic::umul_fix_sat: 5560 return ISD::UMULFIXSAT; 5561 case Intrinsic::sdiv_fix: 5562 return ISD::SDIVFIX; 5563 case Intrinsic::udiv_fix: 5564 return ISD::UDIVFIX; 5565 case Intrinsic::sdiv_fix_sat: 5566 return ISD::SDIVFIXSAT; 5567 case Intrinsic::udiv_fix_sat: 5568 return ISD::UDIVFIXSAT; 5569 default: 5570 llvm_unreachable("Unhandled fixed point intrinsic"); 5571 } 5572 } 5573 5574 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5575 const char *FunctionName) { 5576 assert(FunctionName && "FunctionName must not be nullptr"); 5577 SDValue Callee = DAG.getExternalSymbol( 5578 FunctionName, 5579 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5580 LowerCallTo(I, Callee, I.isTailCall()); 5581 } 5582 5583 /// Given a @llvm.call.preallocated.setup, return the corresponding 5584 /// preallocated call. 5585 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5586 assert(cast<CallBase>(PreallocatedSetup) 5587 ->getCalledFunction() 5588 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5589 "expected call_preallocated_setup Value"); 5590 for (auto *U : PreallocatedSetup->users()) { 5591 auto *UseCall = cast<CallBase>(U); 5592 const Function *Fn = UseCall->getCalledFunction(); 5593 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5594 return UseCall; 5595 } 5596 } 5597 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5598 } 5599 5600 /// Lower the call to the specified intrinsic function. 5601 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5602 unsigned Intrinsic) { 5603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5604 SDLoc sdl = getCurSDLoc(); 5605 DebugLoc dl = getCurDebugLoc(); 5606 SDValue Res; 5607 5608 SDNodeFlags Flags; 5609 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5610 Flags.copyFMF(*FPOp); 5611 5612 switch (Intrinsic) { 5613 default: 5614 // By default, turn this into a target intrinsic node. 5615 visitTargetIntrinsic(I, Intrinsic); 5616 return; 5617 case Intrinsic::vscale: { 5618 match(&I, m_VScale(DAG.getDataLayout())); 5619 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5620 setValue(&I, 5621 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5622 return; 5623 } 5624 case Intrinsic::vastart: visitVAStart(I); return; 5625 case Intrinsic::vaend: visitVAEnd(I); return; 5626 case Intrinsic::vacopy: visitVACopy(I); return; 5627 case Intrinsic::returnaddress: 5628 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5629 TLI.getPointerTy(DAG.getDataLayout()), 5630 getValue(I.getArgOperand(0)))); 5631 return; 5632 case Intrinsic::addressofreturnaddress: 5633 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5634 TLI.getPointerTy(DAG.getDataLayout()))); 5635 return; 5636 case Intrinsic::sponentry: 5637 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5638 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5639 return; 5640 case Intrinsic::frameaddress: 5641 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5642 TLI.getFrameIndexTy(DAG.getDataLayout()), 5643 getValue(I.getArgOperand(0)))); 5644 return; 5645 case Intrinsic::read_volatile_register: 5646 case Intrinsic::read_register: { 5647 Value *Reg = I.getArgOperand(0); 5648 SDValue Chain = getRoot(); 5649 SDValue RegName = 5650 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5651 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5652 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5653 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5654 setValue(&I, Res); 5655 DAG.setRoot(Res.getValue(1)); 5656 return; 5657 } 5658 case Intrinsic::write_register: { 5659 Value *Reg = I.getArgOperand(0); 5660 Value *RegValue = I.getArgOperand(1); 5661 SDValue Chain = getRoot(); 5662 SDValue RegName = 5663 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5664 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5665 RegName, getValue(RegValue))); 5666 return; 5667 } 5668 case Intrinsic::memcpy: { 5669 const auto &MCI = cast<MemCpyInst>(I); 5670 SDValue Op1 = getValue(I.getArgOperand(0)); 5671 SDValue Op2 = getValue(I.getArgOperand(1)); 5672 SDValue Op3 = getValue(I.getArgOperand(2)); 5673 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5674 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5675 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5676 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5677 bool isVol = MCI.isVolatile(); 5678 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5679 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5680 // node. 5681 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5682 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5683 /* AlwaysInline */ false, isTC, 5684 MachinePointerInfo(I.getArgOperand(0)), 5685 MachinePointerInfo(I.getArgOperand(1))); 5686 updateDAGForMaybeTailCall(MC); 5687 return; 5688 } 5689 case Intrinsic::memcpy_inline: { 5690 const auto &MCI = cast<MemCpyInlineInst>(I); 5691 SDValue Dst = getValue(I.getArgOperand(0)); 5692 SDValue Src = getValue(I.getArgOperand(1)); 5693 SDValue Size = getValue(I.getArgOperand(2)); 5694 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5695 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5696 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5697 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5698 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5699 bool isVol = MCI.isVolatile(); 5700 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5701 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5702 // node. 5703 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5704 /* AlwaysInline */ true, isTC, 5705 MachinePointerInfo(I.getArgOperand(0)), 5706 MachinePointerInfo(I.getArgOperand(1))); 5707 updateDAGForMaybeTailCall(MC); 5708 return; 5709 } 5710 case Intrinsic::memset: { 5711 const auto &MSI = cast<MemSetInst>(I); 5712 SDValue Op1 = getValue(I.getArgOperand(0)); 5713 SDValue Op2 = getValue(I.getArgOperand(1)); 5714 SDValue Op3 = getValue(I.getArgOperand(2)); 5715 // @llvm.memset defines 0 and 1 to both mean no alignment. 5716 Align Alignment = MSI.getDestAlign().valueOrOne(); 5717 bool isVol = MSI.isVolatile(); 5718 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5719 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5720 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5721 MachinePointerInfo(I.getArgOperand(0))); 5722 updateDAGForMaybeTailCall(MS); 5723 return; 5724 } 5725 case Intrinsic::memmove: { 5726 const auto &MMI = cast<MemMoveInst>(I); 5727 SDValue Op1 = getValue(I.getArgOperand(0)); 5728 SDValue Op2 = getValue(I.getArgOperand(1)); 5729 SDValue Op3 = getValue(I.getArgOperand(2)); 5730 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5731 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5732 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5733 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5734 bool isVol = MMI.isVolatile(); 5735 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5736 // FIXME: Support passing different dest/src alignments to the memmove DAG 5737 // node. 5738 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5739 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5740 isTC, MachinePointerInfo(I.getArgOperand(0)), 5741 MachinePointerInfo(I.getArgOperand(1))); 5742 updateDAGForMaybeTailCall(MM); 5743 return; 5744 } 5745 case Intrinsic::memcpy_element_unordered_atomic: { 5746 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5747 SDValue Dst = getValue(MI.getRawDest()); 5748 SDValue Src = getValue(MI.getRawSource()); 5749 SDValue Length = getValue(MI.getLength()); 5750 5751 unsigned DstAlign = MI.getDestAlignment(); 5752 unsigned SrcAlign = MI.getSourceAlignment(); 5753 Type *LengthTy = MI.getLength()->getType(); 5754 unsigned ElemSz = MI.getElementSizeInBytes(); 5755 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5756 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5757 SrcAlign, Length, LengthTy, ElemSz, isTC, 5758 MachinePointerInfo(MI.getRawDest()), 5759 MachinePointerInfo(MI.getRawSource())); 5760 updateDAGForMaybeTailCall(MC); 5761 return; 5762 } 5763 case Intrinsic::memmove_element_unordered_atomic: { 5764 auto &MI = cast<AtomicMemMoveInst>(I); 5765 SDValue Dst = getValue(MI.getRawDest()); 5766 SDValue Src = getValue(MI.getRawSource()); 5767 SDValue Length = getValue(MI.getLength()); 5768 5769 unsigned DstAlign = MI.getDestAlignment(); 5770 unsigned SrcAlign = MI.getSourceAlignment(); 5771 Type *LengthTy = MI.getLength()->getType(); 5772 unsigned ElemSz = MI.getElementSizeInBytes(); 5773 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5774 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5775 SrcAlign, Length, LengthTy, ElemSz, isTC, 5776 MachinePointerInfo(MI.getRawDest()), 5777 MachinePointerInfo(MI.getRawSource())); 5778 updateDAGForMaybeTailCall(MC); 5779 return; 5780 } 5781 case Intrinsic::memset_element_unordered_atomic: { 5782 auto &MI = cast<AtomicMemSetInst>(I); 5783 SDValue Dst = getValue(MI.getRawDest()); 5784 SDValue Val = getValue(MI.getValue()); 5785 SDValue Length = getValue(MI.getLength()); 5786 5787 unsigned DstAlign = MI.getDestAlignment(); 5788 Type *LengthTy = MI.getLength()->getType(); 5789 unsigned ElemSz = MI.getElementSizeInBytes(); 5790 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5791 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5792 LengthTy, ElemSz, isTC, 5793 MachinePointerInfo(MI.getRawDest())); 5794 updateDAGForMaybeTailCall(MC); 5795 return; 5796 } 5797 case Intrinsic::call_preallocated_setup: { 5798 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5799 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5800 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5801 getRoot(), SrcValue); 5802 setValue(&I, Res); 5803 DAG.setRoot(Res); 5804 return; 5805 } 5806 case Intrinsic::call_preallocated_arg: { 5807 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5808 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5809 SDValue Ops[3]; 5810 Ops[0] = getRoot(); 5811 Ops[1] = SrcValue; 5812 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5813 MVT::i32); // arg index 5814 SDValue Res = DAG.getNode( 5815 ISD::PREALLOCATED_ARG, sdl, 5816 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5817 setValue(&I, Res); 5818 DAG.setRoot(Res.getValue(1)); 5819 return; 5820 } 5821 case Intrinsic::dbg_addr: 5822 case Intrinsic::dbg_declare: { 5823 const auto &DI = cast<DbgVariableIntrinsic>(I); 5824 DILocalVariable *Variable = DI.getVariable(); 5825 DIExpression *Expression = DI.getExpression(); 5826 dropDanglingDebugInfo(Variable, Expression); 5827 assert(Variable && "Missing variable"); 5828 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5829 << "\n"); 5830 // Check if address has undef value. 5831 const Value *Address = DI.getVariableLocation(); 5832 if (!Address || isa<UndefValue>(Address) || 5833 (Address->use_empty() && !isa<Argument>(Address))) { 5834 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5835 << " (bad/undef/unused-arg address)\n"); 5836 return; 5837 } 5838 5839 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5840 5841 // Check if this variable can be described by a frame index, typically 5842 // either as a static alloca or a byval parameter. 5843 int FI = std::numeric_limits<int>::max(); 5844 if (const auto *AI = 5845 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5846 if (AI->isStaticAlloca()) { 5847 auto I = FuncInfo.StaticAllocaMap.find(AI); 5848 if (I != FuncInfo.StaticAllocaMap.end()) 5849 FI = I->second; 5850 } 5851 } else if (const auto *Arg = dyn_cast<Argument>( 5852 Address->stripInBoundsConstantOffsets())) { 5853 FI = FuncInfo.getArgumentFrameIndex(Arg); 5854 } 5855 5856 // llvm.dbg.addr is control dependent and always generates indirect 5857 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5858 // the MachineFunction variable table. 5859 if (FI != std::numeric_limits<int>::max()) { 5860 if (Intrinsic == Intrinsic::dbg_addr) { 5861 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5862 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5863 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5864 } else { 5865 LLVM_DEBUG(dbgs() << "Skipping " << DI 5866 << " (variable info stashed in MF side table)\n"); 5867 } 5868 return; 5869 } 5870 5871 SDValue &N = NodeMap[Address]; 5872 if (!N.getNode() && isa<Argument>(Address)) 5873 // Check unused arguments map. 5874 N = UnusedArgNodeMap[Address]; 5875 SDDbgValue *SDV; 5876 if (N.getNode()) { 5877 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5878 Address = BCI->getOperand(0); 5879 // Parameters are handled specially. 5880 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5881 if (isParameter && FINode) { 5882 // Byval parameter. We have a frame index at this point. 5883 SDV = 5884 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5885 /*IsIndirect*/ true, dl, SDNodeOrder); 5886 } else if (isa<Argument>(Address)) { 5887 // Address is an argument, so try to emit its dbg value using 5888 // virtual register info from the FuncInfo.ValueMap. 5889 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5890 return; 5891 } else { 5892 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5893 true, dl, SDNodeOrder); 5894 } 5895 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5896 } else { 5897 // If Address is an argument then try to emit its dbg value using 5898 // virtual register info from the FuncInfo.ValueMap. 5899 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5900 N)) { 5901 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5902 << " (could not emit func-arg dbg_value)\n"); 5903 } 5904 } 5905 return; 5906 } 5907 case Intrinsic::dbg_label: { 5908 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5909 DILabel *Label = DI.getLabel(); 5910 assert(Label && "Missing label"); 5911 5912 SDDbgLabel *SDV; 5913 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5914 DAG.AddDbgLabel(SDV); 5915 return; 5916 } 5917 case Intrinsic::dbg_value: { 5918 const DbgValueInst &DI = cast<DbgValueInst>(I); 5919 assert(DI.getVariable() && "Missing variable"); 5920 5921 DILocalVariable *Variable = DI.getVariable(); 5922 DIExpression *Expression = DI.getExpression(); 5923 dropDanglingDebugInfo(Variable, Expression); 5924 const Value *V = DI.getValue(); 5925 if (!V) 5926 return; 5927 5928 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5929 SDNodeOrder)) 5930 return; 5931 5932 // TODO: Dangling debug info will eventually either be resolved or produce 5933 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5934 // between the original dbg.value location and its resolved DBG_VALUE, which 5935 // we should ideally fill with an extra Undef DBG_VALUE. 5936 5937 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5938 return; 5939 } 5940 5941 case Intrinsic::eh_typeid_for: { 5942 // Find the type id for the given typeinfo. 5943 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5944 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5945 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5946 setValue(&I, Res); 5947 return; 5948 } 5949 5950 case Intrinsic::eh_return_i32: 5951 case Intrinsic::eh_return_i64: 5952 DAG.getMachineFunction().setCallsEHReturn(true); 5953 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5954 MVT::Other, 5955 getControlRoot(), 5956 getValue(I.getArgOperand(0)), 5957 getValue(I.getArgOperand(1)))); 5958 return; 5959 case Intrinsic::eh_unwind_init: 5960 DAG.getMachineFunction().setCallsUnwindInit(true); 5961 return; 5962 case Intrinsic::eh_dwarf_cfa: 5963 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5964 TLI.getPointerTy(DAG.getDataLayout()), 5965 getValue(I.getArgOperand(0)))); 5966 return; 5967 case Intrinsic::eh_sjlj_callsite: { 5968 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5969 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5970 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5971 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5972 5973 MMI.setCurrentCallSite(CI->getZExtValue()); 5974 return; 5975 } 5976 case Intrinsic::eh_sjlj_functioncontext: { 5977 // Get and store the index of the function context. 5978 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5979 AllocaInst *FnCtx = 5980 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5981 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5982 MFI.setFunctionContextIndex(FI); 5983 return; 5984 } 5985 case Intrinsic::eh_sjlj_setjmp: { 5986 SDValue Ops[2]; 5987 Ops[0] = getRoot(); 5988 Ops[1] = getValue(I.getArgOperand(0)); 5989 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5990 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5991 setValue(&I, Op.getValue(0)); 5992 DAG.setRoot(Op.getValue(1)); 5993 return; 5994 } 5995 case Intrinsic::eh_sjlj_longjmp: 5996 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5997 getRoot(), getValue(I.getArgOperand(0)))); 5998 return; 5999 case Intrinsic::eh_sjlj_setup_dispatch: 6000 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6001 getRoot())); 6002 return; 6003 case Intrinsic::masked_gather: 6004 visitMaskedGather(I); 6005 return; 6006 case Intrinsic::masked_load: 6007 visitMaskedLoad(I); 6008 return; 6009 case Intrinsic::masked_scatter: 6010 visitMaskedScatter(I); 6011 return; 6012 case Intrinsic::masked_store: 6013 visitMaskedStore(I); 6014 return; 6015 case Intrinsic::masked_expandload: 6016 visitMaskedLoad(I, true /* IsExpanding */); 6017 return; 6018 case Intrinsic::masked_compressstore: 6019 visitMaskedStore(I, true /* IsCompressing */); 6020 return; 6021 case Intrinsic::powi: 6022 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6023 getValue(I.getArgOperand(1)), DAG)); 6024 return; 6025 case Intrinsic::log: 6026 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6027 return; 6028 case Intrinsic::log2: 6029 setValue(&I, 6030 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6031 return; 6032 case Intrinsic::log10: 6033 setValue(&I, 6034 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6035 return; 6036 case Intrinsic::exp: 6037 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6038 return; 6039 case Intrinsic::exp2: 6040 setValue(&I, 6041 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6042 return; 6043 case Intrinsic::pow: 6044 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6045 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6046 return; 6047 case Intrinsic::sqrt: 6048 case Intrinsic::fabs: 6049 case Intrinsic::sin: 6050 case Intrinsic::cos: 6051 case Intrinsic::floor: 6052 case Intrinsic::ceil: 6053 case Intrinsic::trunc: 6054 case Intrinsic::rint: 6055 case Intrinsic::nearbyint: 6056 case Intrinsic::round: 6057 case Intrinsic::roundeven: 6058 case Intrinsic::canonicalize: { 6059 unsigned Opcode; 6060 switch (Intrinsic) { 6061 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6062 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6063 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6064 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6065 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6066 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6067 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6068 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6069 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6070 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6071 case Intrinsic::round: Opcode = ISD::FROUND; break; 6072 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6073 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6074 } 6075 6076 setValue(&I, DAG.getNode(Opcode, sdl, 6077 getValue(I.getArgOperand(0)).getValueType(), 6078 getValue(I.getArgOperand(0)), Flags)); 6079 return; 6080 } 6081 case Intrinsic::lround: 6082 case Intrinsic::llround: 6083 case Intrinsic::lrint: 6084 case Intrinsic::llrint: { 6085 unsigned Opcode; 6086 switch (Intrinsic) { 6087 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6088 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6089 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6090 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6091 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6092 } 6093 6094 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6095 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6096 getValue(I.getArgOperand(0)))); 6097 return; 6098 } 6099 case Intrinsic::minnum: 6100 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6101 getValue(I.getArgOperand(0)).getValueType(), 6102 getValue(I.getArgOperand(0)), 6103 getValue(I.getArgOperand(1)), Flags)); 6104 return; 6105 case Intrinsic::maxnum: 6106 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6107 getValue(I.getArgOperand(0)).getValueType(), 6108 getValue(I.getArgOperand(0)), 6109 getValue(I.getArgOperand(1)), Flags)); 6110 return; 6111 case Intrinsic::minimum: 6112 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6113 getValue(I.getArgOperand(0)).getValueType(), 6114 getValue(I.getArgOperand(0)), 6115 getValue(I.getArgOperand(1)), Flags)); 6116 return; 6117 case Intrinsic::maximum: 6118 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6119 getValue(I.getArgOperand(0)).getValueType(), 6120 getValue(I.getArgOperand(0)), 6121 getValue(I.getArgOperand(1)), Flags)); 6122 return; 6123 case Intrinsic::copysign: 6124 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6125 getValue(I.getArgOperand(0)).getValueType(), 6126 getValue(I.getArgOperand(0)), 6127 getValue(I.getArgOperand(1)), Flags)); 6128 return; 6129 case Intrinsic::fma: 6130 setValue(&I, DAG.getNode( 6131 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6132 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6133 getValue(I.getArgOperand(2)), Flags)); 6134 return; 6135 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6136 case Intrinsic::INTRINSIC: 6137 #include "llvm/IR/ConstrainedOps.def" 6138 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6139 return; 6140 case Intrinsic::fmuladd: { 6141 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6142 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6143 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6144 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6145 getValue(I.getArgOperand(0)).getValueType(), 6146 getValue(I.getArgOperand(0)), 6147 getValue(I.getArgOperand(1)), 6148 getValue(I.getArgOperand(2)), Flags)); 6149 } else { 6150 // TODO: Intrinsic calls should have fast-math-flags. 6151 SDValue Mul = DAG.getNode( 6152 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6153 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6154 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6155 getValue(I.getArgOperand(0)).getValueType(), 6156 Mul, getValue(I.getArgOperand(2)), Flags); 6157 setValue(&I, Add); 6158 } 6159 return; 6160 } 6161 case Intrinsic::convert_to_fp16: 6162 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6163 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6164 getValue(I.getArgOperand(0)), 6165 DAG.getTargetConstant(0, sdl, 6166 MVT::i32)))); 6167 return; 6168 case Intrinsic::convert_from_fp16: 6169 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6170 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6171 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6172 getValue(I.getArgOperand(0))))); 6173 return; 6174 case Intrinsic::pcmarker: { 6175 SDValue Tmp = getValue(I.getArgOperand(0)); 6176 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6177 return; 6178 } 6179 case Intrinsic::readcyclecounter: { 6180 SDValue Op = getRoot(); 6181 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6182 DAG.getVTList(MVT::i64, MVT::Other), Op); 6183 setValue(&I, Res); 6184 DAG.setRoot(Res.getValue(1)); 6185 return; 6186 } 6187 case Intrinsic::bitreverse: 6188 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6189 getValue(I.getArgOperand(0)).getValueType(), 6190 getValue(I.getArgOperand(0)))); 6191 return; 6192 case Intrinsic::bswap: 6193 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6194 getValue(I.getArgOperand(0)).getValueType(), 6195 getValue(I.getArgOperand(0)))); 6196 return; 6197 case Intrinsic::cttz: { 6198 SDValue Arg = getValue(I.getArgOperand(0)); 6199 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6200 EVT Ty = Arg.getValueType(); 6201 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6202 sdl, Ty, Arg)); 6203 return; 6204 } 6205 case Intrinsic::ctlz: { 6206 SDValue Arg = getValue(I.getArgOperand(0)); 6207 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6208 EVT Ty = Arg.getValueType(); 6209 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6210 sdl, Ty, Arg)); 6211 return; 6212 } 6213 case Intrinsic::ctpop: { 6214 SDValue Arg = getValue(I.getArgOperand(0)); 6215 EVT Ty = Arg.getValueType(); 6216 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6217 return; 6218 } 6219 case Intrinsic::fshl: 6220 case Intrinsic::fshr: { 6221 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6222 SDValue X = getValue(I.getArgOperand(0)); 6223 SDValue Y = getValue(I.getArgOperand(1)); 6224 SDValue Z = getValue(I.getArgOperand(2)); 6225 EVT VT = X.getValueType(); 6226 6227 if (X == Y) { 6228 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6229 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6230 } else { 6231 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6232 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6233 } 6234 return; 6235 } 6236 case Intrinsic::sadd_sat: { 6237 SDValue Op1 = getValue(I.getArgOperand(0)); 6238 SDValue Op2 = getValue(I.getArgOperand(1)); 6239 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6240 return; 6241 } 6242 case Intrinsic::uadd_sat: { 6243 SDValue Op1 = getValue(I.getArgOperand(0)); 6244 SDValue Op2 = getValue(I.getArgOperand(1)); 6245 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6246 return; 6247 } 6248 case Intrinsic::ssub_sat: { 6249 SDValue Op1 = getValue(I.getArgOperand(0)); 6250 SDValue Op2 = getValue(I.getArgOperand(1)); 6251 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6252 return; 6253 } 6254 case Intrinsic::usub_sat: { 6255 SDValue Op1 = getValue(I.getArgOperand(0)); 6256 SDValue Op2 = getValue(I.getArgOperand(1)); 6257 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6258 return; 6259 } 6260 case Intrinsic::sshl_sat: { 6261 SDValue Op1 = getValue(I.getArgOperand(0)); 6262 SDValue Op2 = getValue(I.getArgOperand(1)); 6263 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6264 return; 6265 } 6266 case Intrinsic::ushl_sat: { 6267 SDValue Op1 = getValue(I.getArgOperand(0)); 6268 SDValue Op2 = getValue(I.getArgOperand(1)); 6269 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6270 return; 6271 } 6272 case Intrinsic::smul_fix: 6273 case Intrinsic::umul_fix: 6274 case Intrinsic::smul_fix_sat: 6275 case Intrinsic::umul_fix_sat: { 6276 SDValue Op1 = getValue(I.getArgOperand(0)); 6277 SDValue Op2 = getValue(I.getArgOperand(1)); 6278 SDValue Op3 = getValue(I.getArgOperand(2)); 6279 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6280 Op1.getValueType(), Op1, Op2, Op3)); 6281 return; 6282 } 6283 case Intrinsic::sdiv_fix: 6284 case Intrinsic::udiv_fix: 6285 case Intrinsic::sdiv_fix_sat: 6286 case Intrinsic::udiv_fix_sat: { 6287 SDValue Op1 = getValue(I.getArgOperand(0)); 6288 SDValue Op2 = getValue(I.getArgOperand(1)); 6289 SDValue Op3 = getValue(I.getArgOperand(2)); 6290 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6291 Op1, Op2, Op3, DAG, TLI)); 6292 return; 6293 } 6294 case Intrinsic::smax: { 6295 SDValue Op1 = getValue(I.getArgOperand(0)); 6296 SDValue Op2 = getValue(I.getArgOperand(1)); 6297 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6298 return; 6299 } 6300 case Intrinsic::smin: { 6301 SDValue Op1 = getValue(I.getArgOperand(0)); 6302 SDValue Op2 = getValue(I.getArgOperand(1)); 6303 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6304 return; 6305 } 6306 case Intrinsic::umax: { 6307 SDValue Op1 = getValue(I.getArgOperand(0)); 6308 SDValue Op2 = getValue(I.getArgOperand(1)); 6309 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6310 return; 6311 } 6312 case Intrinsic::umin: { 6313 SDValue Op1 = getValue(I.getArgOperand(0)); 6314 SDValue Op2 = getValue(I.getArgOperand(1)); 6315 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6316 return; 6317 } 6318 case Intrinsic::abs: { 6319 // TODO: Preserve "int min is poison" arg in SDAG? 6320 SDValue Op1 = getValue(I.getArgOperand(0)); 6321 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6322 return; 6323 } 6324 case Intrinsic::stacksave: { 6325 SDValue Op = getRoot(); 6326 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6327 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6328 setValue(&I, Res); 6329 DAG.setRoot(Res.getValue(1)); 6330 return; 6331 } 6332 case Intrinsic::stackrestore: 6333 Res = getValue(I.getArgOperand(0)); 6334 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6335 return; 6336 case Intrinsic::get_dynamic_area_offset: { 6337 SDValue Op = getRoot(); 6338 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6339 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6340 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6341 // target. 6342 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6343 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6344 " intrinsic!"); 6345 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6346 Op); 6347 DAG.setRoot(Op); 6348 setValue(&I, Res); 6349 return; 6350 } 6351 case Intrinsic::stackguard: { 6352 MachineFunction &MF = DAG.getMachineFunction(); 6353 const Module &M = *MF.getFunction().getParent(); 6354 SDValue Chain = getRoot(); 6355 if (TLI.useLoadStackGuardNode()) { 6356 Res = getLoadStackGuard(DAG, sdl, Chain); 6357 } else { 6358 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6359 const Value *Global = TLI.getSDagStackGuard(M); 6360 Align Align = DL->getPrefTypeAlign(Global->getType()); 6361 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6362 MachinePointerInfo(Global, 0), Align, 6363 MachineMemOperand::MOVolatile); 6364 } 6365 if (TLI.useStackGuardXorFP()) 6366 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6367 DAG.setRoot(Chain); 6368 setValue(&I, Res); 6369 return; 6370 } 6371 case Intrinsic::stackprotector: { 6372 // Emit code into the DAG to store the stack guard onto the stack. 6373 MachineFunction &MF = DAG.getMachineFunction(); 6374 MachineFrameInfo &MFI = MF.getFrameInfo(); 6375 SDValue Src, Chain = getRoot(); 6376 6377 if (TLI.useLoadStackGuardNode()) 6378 Src = getLoadStackGuard(DAG, sdl, Chain); 6379 else 6380 Src = getValue(I.getArgOperand(0)); // The guard's value. 6381 6382 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6383 6384 int FI = FuncInfo.StaticAllocaMap[Slot]; 6385 MFI.setStackProtectorIndex(FI); 6386 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6387 6388 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6389 6390 // Store the stack protector onto the stack. 6391 Res = DAG.getStore( 6392 Chain, sdl, Src, FIN, 6393 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6394 MaybeAlign(), MachineMemOperand::MOVolatile); 6395 setValue(&I, Res); 6396 DAG.setRoot(Res); 6397 return; 6398 } 6399 case Intrinsic::objectsize: 6400 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6401 6402 case Intrinsic::is_constant: 6403 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6404 6405 case Intrinsic::annotation: 6406 case Intrinsic::ptr_annotation: 6407 case Intrinsic::launder_invariant_group: 6408 case Intrinsic::strip_invariant_group: 6409 // Drop the intrinsic, but forward the value 6410 setValue(&I, getValue(I.getOperand(0))); 6411 return; 6412 case Intrinsic::assume: 6413 case Intrinsic::var_annotation: 6414 case Intrinsic::sideeffect: 6415 // Discard annotate attributes, assumptions, and artificial side-effects. 6416 return; 6417 6418 case Intrinsic::codeview_annotation: { 6419 // Emit a label associated with this metadata. 6420 MachineFunction &MF = DAG.getMachineFunction(); 6421 MCSymbol *Label = 6422 MF.getMMI().getContext().createTempSymbol("annotation", true); 6423 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6424 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6425 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6426 DAG.setRoot(Res); 6427 return; 6428 } 6429 6430 case Intrinsic::init_trampoline: { 6431 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6432 6433 SDValue Ops[6]; 6434 Ops[0] = getRoot(); 6435 Ops[1] = getValue(I.getArgOperand(0)); 6436 Ops[2] = getValue(I.getArgOperand(1)); 6437 Ops[3] = getValue(I.getArgOperand(2)); 6438 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6439 Ops[5] = DAG.getSrcValue(F); 6440 6441 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6442 6443 DAG.setRoot(Res); 6444 return; 6445 } 6446 case Intrinsic::adjust_trampoline: 6447 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6448 TLI.getPointerTy(DAG.getDataLayout()), 6449 getValue(I.getArgOperand(0)))); 6450 return; 6451 case Intrinsic::gcroot: { 6452 assert(DAG.getMachineFunction().getFunction().hasGC() && 6453 "only valid in functions with gc specified, enforced by Verifier"); 6454 assert(GFI && "implied by previous"); 6455 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6456 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6457 6458 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6459 GFI->addStackRoot(FI->getIndex(), TypeMap); 6460 return; 6461 } 6462 case Intrinsic::gcread: 6463 case Intrinsic::gcwrite: 6464 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6465 case Intrinsic::flt_rounds: 6466 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6467 setValue(&I, Res); 6468 DAG.setRoot(Res.getValue(1)); 6469 return; 6470 6471 case Intrinsic::expect: 6472 // Just replace __builtin_expect(exp, c) with EXP. 6473 setValue(&I, getValue(I.getArgOperand(0))); 6474 return; 6475 6476 case Intrinsic::debugtrap: 6477 case Intrinsic::trap: { 6478 StringRef TrapFuncName = 6479 I.getAttributes() 6480 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6481 .getValueAsString(); 6482 if (TrapFuncName.empty()) { 6483 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6484 ISD::TRAP : ISD::DEBUGTRAP; 6485 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6486 return; 6487 } 6488 TargetLowering::ArgListTy Args; 6489 6490 TargetLowering::CallLoweringInfo CLI(DAG); 6491 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6492 CallingConv::C, I.getType(), 6493 DAG.getExternalSymbol(TrapFuncName.data(), 6494 TLI.getPointerTy(DAG.getDataLayout())), 6495 std::move(Args)); 6496 6497 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6498 DAG.setRoot(Result.second); 6499 return; 6500 } 6501 6502 case Intrinsic::uadd_with_overflow: 6503 case Intrinsic::sadd_with_overflow: 6504 case Intrinsic::usub_with_overflow: 6505 case Intrinsic::ssub_with_overflow: 6506 case Intrinsic::umul_with_overflow: 6507 case Intrinsic::smul_with_overflow: { 6508 ISD::NodeType Op; 6509 switch (Intrinsic) { 6510 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6511 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6512 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6513 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6514 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6515 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6516 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6517 } 6518 SDValue Op1 = getValue(I.getArgOperand(0)); 6519 SDValue Op2 = getValue(I.getArgOperand(1)); 6520 6521 EVT ResultVT = Op1.getValueType(); 6522 EVT OverflowVT = MVT::i1; 6523 if (ResultVT.isVector()) 6524 OverflowVT = EVT::getVectorVT( 6525 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6526 6527 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6528 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6529 return; 6530 } 6531 case Intrinsic::prefetch: { 6532 SDValue Ops[5]; 6533 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6534 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6535 Ops[0] = DAG.getRoot(); 6536 Ops[1] = getValue(I.getArgOperand(0)); 6537 Ops[2] = getValue(I.getArgOperand(1)); 6538 Ops[3] = getValue(I.getArgOperand(2)); 6539 Ops[4] = getValue(I.getArgOperand(3)); 6540 SDValue Result = DAG.getMemIntrinsicNode( 6541 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6542 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6543 /* align */ None, Flags); 6544 6545 // Chain the prefetch in parallell with any pending loads, to stay out of 6546 // the way of later optimizations. 6547 PendingLoads.push_back(Result); 6548 Result = getRoot(); 6549 DAG.setRoot(Result); 6550 return; 6551 } 6552 case Intrinsic::lifetime_start: 6553 case Intrinsic::lifetime_end: { 6554 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6555 // Stack coloring is not enabled in O0, discard region information. 6556 if (TM.getOptLevel() == CodeGenOpt::None) 6557 return; 6558 6559 const int64_t ObjectSize = 6560 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6561 Value *const ObjectPtr = I.getArgOperand(1); 6562 SmallVector<const Value *, 4> Allocas; 6563 getUnderlyingObjects(ObjectPtr, Allocas); 6564 6565 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6566 E = Allocas.end(); Object != E; ++Object) { 6567 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6568 6569 // Could not find an Alloca. 6570 if (!LifetimeObject) 6571 continue; 6572 6573 // First check that the Alloca is static, otherwise it won't have a 6574 // valid frame index. 6575 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6576 if (SI == FuncInfo.StaticAllocaMap.end()) 6577 return; 6578 6579 const int FrameIndex = SI->second; 6580 int64_t Offset; 6581 if (GetPointerBaseWithConstantOffset( 6582 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6583 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6584 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6585 Offset); 6586 DAG.setRoot(Res); 6587 } 6588 return; 6589 } 6590 case Intrinsic::invariant_start: 6591 // Discard region information. 6592 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6593 return; 6594 case Intrinsic::invariant_end: 6595 // Discard region information. 6596 return; 6597 case Intrinsic::clear_cache: 6598 /// FunctionName may be null. 6599 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6600 lowerCallToExternalSymbol(I, FunctionName); 6601 return; 6602 case Intrinsic::donothing: 6603 // ignore 6604 return; 6605 case Intrinsic::experimental_stackmap: 6606 visitStackmap(I); 6607 return; 6608 case Intrinsic::experimental_patchpoint_void: 6609 case Intrinsic::experimental_patchpoint_i64: 6610 visitPatchpoint(I); 6611 return; 6612 case Intrinsic::experimental_gc_statepoint: 6613 LowerStatepoint(cast<GCStatepointInst>(I)); 6614 return; 6615 case Intrinsic::experimental_gc_result: 6616 visitGCResult(cast<GCResultInst>(I)); 6617 return; 6618 case Intrinsic::experimental_gc_relocate: 6619 visitGCRelocate(cast<GCRelocateInst>(I)); 6620 return; 6621 case Intrinsic::instrprof_increment: 6622 llvm_unreachable("instrprof failed to lower an increment"); 6623 case Intrinsic::instrprof_value_profile: 6624 llvm_unreachable("instrprof failed to lower a value profiling call"); 6625 case Intrinsic::localescape: { 6626 MachineFunction &MF = DAG.getMachineFunction(); 6627 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6628 6629 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6630 // is the same on all targets. 6631 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6632 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6633 if (isa<ConstantPointerNull>(Arg)) 6634 continue; // Skip null pointers. They represent a hole in index space. 6635 AllocaInst *Slot = cast<AllocaInst>(Arg); 6636 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6637 "can only escape static allocas"); 6638 int FI = FuncInfo.StaticAllocaMap[Slot]; 6639 MCSymbol *FrameAllocSym = 6640 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6641 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6642 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6643 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6644 .addSym(FrameAllocSym) 6645 .addFrameIndex(FI); 6646 } 6647 6648 return; 6649 } 6650 6651 case Intrinsic::localrecover: { 6652 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6653 MachineFunction &MF = DAG.getMachineFunction(); 6654 6655 // Get the symbol that defines the frame offset. 6656 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6657 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6658 unsigned IdxVal = 6659 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6660 MCSymbol *FrameAllocSym = 6661 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6662 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6663 6664 Value *FP = I.getArgOperand(1); 6665 SDValue FPVal = getValue(FP); 6666 EVT PtrVT = FPVal.getValueType(); 6667 6668 // Create a MCSymbol for the label to avoid any target lowering 6669 // that would make this PC relative. 6670 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6671 SDValue OffsetVal = 6672 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6673 6674 // Add the offset to the FP. 6675 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6676 setValue(&I, Add); 6677 6678 return; 6679 } 6680 6681 case Intrinsic::eh_exceptionpointer: 6682 case Intrinsic::eh_exceptioncode: { 6683 // Get the exception pointer vreg, copy from it, and resize it to fit. 6684 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6685 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6686 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6687 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6688 SDValue N = 6689 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6690 if (Intrinsic == Intrinsic::eh_exceptioncode) 6691 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6692 setValue(&I, N); 6693 return; 6694 } 6695 case Intrinsic::xray_customevent: { 6696 // Here we want to make sure that the intrinsic behaves as if it has a 6697 // specific calling convention, and only for x86_64. 6698 // FIXME: Support other platforms later. 6699 const auto &Triple = DAG.getTarget().getTargetTriple(); 6700 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6701 return; 6702 6703 SDLoc DL = getCurSDLoc(); 6704 SmallVector<SDValue, 8> Ops; 6705 6706 // We want to say that we always want the arguments in registers. 6707 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6708 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6709 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6710 SDValue Chain = getRoot(); 6711 Ops.push_back(LogEntryVal); 6712 Ops.push_back(StrSizeVal); 6713 Ops.push_back(Chain); 6714 6715 // We need to enforce the calling convention for the callsite, so that 6716 // argument ordering is enforced correctly, and that register allocation can 6717 // see that some registers may be assumed clobbered and have to preserve 6718 // them across calls to the intrinsic. 6719 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6720 DL, NodeTys, Ops); 6721 SDValue patchableNode = SDValue(MN, 0); 6722 DAG.setRoot(patchableNode); 6723 setValue(&I, patchableNode); 6724 return; 6725 } 6726 case Intrinsic::xray_typedevent: { 6727 // Here we want to make sure that the intrinsic behaves as if it has a 6728 // specific calling convention, and only for x86_64. 6729 // FIXME: Support other platforms later. 6730 const auto &Triple = DAG.getTarget().getTargetTriple(); 6731 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6732 return; 6733 6734 SDLoc DL = getCurSDLoc(); 6735 SmallVector<SDValue, 8> Ops; 6736 6737 // We want to say that we always want the arguments in registers. 6738 // It's unclear to me how manipulating the selection DAG here forces callers 6739 // to provide arguments in registers instead of on the stack. 6740 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6741 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6742 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6743 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6744 SDValue Chain = getRoot(); 6745 Ops.push_back(LogTypeId); 6746 Ops.push_back(LogEntryVal); 6747 Ops.push_back(StrSizeVal); 6748 Ops.push_back(Chain); 6749 6750 // We need to enforce the calling convention for the callsite, so that 6751 // argument ordering is enforced correctly, and that register allocation can 6752 // see that some registers may be assumed clobbered and have to preserve 6753 // them across calls to the intrinsic. 6754 MachineSDNode *MN = DAG.getMachineNode( 6755 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6756 SDValue patchableNode = SDValue(MN, 0); 6757 DAG.setRoot(patchableNode); 6758 setValue(&I, patchableNode); 6759 return; 6760 } 6761 case Intrinsic::experimental_deoptimize: 6762 LowerDeoptimizeCall(&I); 6763 return; 6764 6765 case Intrinsic::vector_reduce_fadd: 6766 case Intrinsic::vector_reduce_fmul: 6767 case Intrinsic::vector_reduce_add: 6768 case Intrinsic::vector_reduce_mul: 6769 case Intrinsic::vector_reduce_and: 6770 case Intrinsic::vector_reduce_or: 6771 case Intrinsic::vector_reduce_xor: 6772 case Intrinsic::vector_reduce_smax: 6773 case Intrinsic::vector_reduce_smin: 6774 case Intrinsic::vector_reduce_umax: 6775 case Intrinsic::vector_reduce_umin: 6776 case Intrinsic::vector_reduce_fmax: 6777 case Intrinsic::vector_reduce_fmin: 6778 visitVectorReduce(I, Intrinsic); 6779 return; 6780 6781 case Intrinsic::icall_branch_funnel: { 6782 SmallVector<SDValue, 16> Ops; 6783 Ops.push_back(getValue(I.getArgOperand(0))); 6784 6785 int64_t Offset; 6786 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6787 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6788 if (!Base) 6789 report_fatal_error( 6790 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6791 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6792 6793 struct BranchFunnelTarget { 6794 int64_t Offset; 6795 SDValue Target; 6796 }; 6797 SmallVector<BranchFunnelTarget, 8> Targets; 6798 6799 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6800 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6801 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6802 if (ElemBase != Base) 6803 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6804 "to the same GlobalValue"); 6805 6806 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6807 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6808 if (!GA) 6809 report_fatal_error( 6810 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6811 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6812 GA->getGlobal(), getCurSDLoc(), 6813 Val.getValueType(), GA->getOffset())}); 6814 } 6815 llvm::sort(Targets, 6816 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6817 return T1.Offset < T2.Offset; 6818 }); 6819 6820 for (auto &T : Targets) { 6821 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6822 Ops.push_back(T.Target); 6823 } 6824 6825 Ops.push_back(DAG.getRoot()); // Chain 6826 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6827 getCurSDLoc(), MVT::Other, Ops), 6828 0); 6829 DAG.setRoot(N); 6830 setValue(&I, N); 6831 HasTailCall = true; 6832 return; 6833 } 6834 6835 case Intrinsic::wasm_landingpad_index: 6836 // Information this intrinsic contained has been transferred to 6837 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6838 // delete it now. 6839 return; 6840 6841 case Intrinsic::aarch64_settag: 6842 case Intrinsic::aarch64_settag_zero: { 6843 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6844 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6845 SDValue Val = TSI.EmitTargetCodeForSetTag( 6846 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6847 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6848 ZeroMemory); 6849 DAG.setRoot(Val); 6850 setValue(&I, Val); 6851 return; 6852 } 6853 case Intrinsic::ptrmask: { 6854 SDValue Ptr = getValue(I.getOperand(0)); 6855 SDValue Const = getValue(I.getOperand(1)); 6856 6857 EVT PtrVT = Ptr.getValueType(); 6858 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6859 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6860 return; 6861 } 6862 case Intrinsic::get_active_lane_mask: { 6863 auto DL = getCurSDLoc(); 6864 SDValue Index = getValue(I.getOperand(0)); 6865 SDValue TripCount = getValue(I.getOperand(1)); 6866 Type *ElementTy = I.getOperand(0)->getType(); 6867 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6868 unsigned VecWidth = VT.getVectorNumElements(); 6869 6870 SmallVector<SDValue, 16> OpsTripCount; 6871 SmallVector<SDValue, 16> OpsIndex; 6872 SmallVector<SDValue, 16> OpsStepConstants; 6873 for (unsigned i = 0; i < VecWidth; i++) { 6874 OpsTripCount.push_back(TripCount); 6875 OpsIndex.push_back(Index); 6876 OpsStepConstants.push_back( 6877 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6878 } 6879 6880 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6881 6882 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6883 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6884 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6885 SDValue VectorInduction = DAG.getNode( 6886 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6887 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6888 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6889 VectorTripCount, ISD::CondCode::SETULT); 6890 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6891 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6892 SetCC)); 6893 return; 6894 } 6895 } 6896 } 6897 6898 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6899 const ConstrainedFPIntrinsic &FPI) { 6900 SDLoc sdl = getCurSDLoc(); 6901 6902 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6903 SmallVector<EVT, 4> ValueVTs; 6904 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6905 ValueVTs.push_back(MVT::Other); // Out chain 6906 6907 // We do not need to serialize constrained FP intrinsics against 6908 // each other or against (nonvolatile) loads, so they can be 6909 // chained like loads. 6910 SDValue Chain = DAG.getRoot(); 6911 SmallVector<SDValue, 4> Opers; 6912 Opers.push_back(Chain); 6913 if (FPI.isUnaryOp()) { 6914 Opers.push_back(getValue(FPI.getArgOperand(0))); 6915 } else if (FPI.isTernaryOp()) { 6916 Opers.push_back(getValue(FPI.getArgOperand(0))); 6917 Opers.push_back(getValue(FPI.getArgOperand(1))); 6918 Opers.push_back(getValue(FPI.getArgOperand(2))); 6919 } else { 6920 Opers.push_back(getValue(FPI.getArgOperand(0))); 6921 Opers.push_back(getValue(FPI.getArgOperand(1))); 6922 } 6923 6924 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6925 assert(Result.getNode()->getNumValues() == 2); 6926 6927 // Push node to the appropriate list so that future instructions can be 6928 // chained up correctly. 6929 SDValue OutChain = Result.getValue(1); 6930 switch (EB) { 6931 case fp::ExceptionBehavior::ebIgnore: 6932 // The only reason why ebIgnore nodes still need to be chained is that 6933 // they might depend on the current rounding mode, and therefore must 6934 // not be moved across instruction that may change that mode. 6935 LLVM_FALLTHROUGH; 6936 case fp::ExceptionBehavior::ebMayTrap: 6937 // These must not be moved across calls or instructions that may change 6938 // floating-point exception masks. 6939 PendingConstrainedFP.push_back(OutChain); 6940 break; 6941 case fp::ExceptionBehavior::ebStrict: 6942 // These must not be moved across calls or instructions that may change 6943 // floating-point exception masks or read floating-point exception flags. 6944 // In addition, they cannot be optimized out even if unused. 6945 PendingConstrainedFPStrict.push_back(OutChain); 6946 break; 6947 } 6948 }; 6949 6950 SDVTList VTs = DAG.getVTList(ValueVTs); 6951 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6952 6953 SDNodeFlags Flags; 6954 if (EB == fp::ExceptionBehavior::ebIgnore) 6955 Flags.setNoFPExcept(true); 6956 6957 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6958 Flags.copyFMF(*FPOp); 6959 6960 unsigned Opcode; 6961 switch (FPI.getIntrinsicID()) { 6962 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6963 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6964 case Intrinsic::INTRINSIC: \ 6965 Opcode = ISD::STRICT_##DAGN; \ 6966 break; 6967 #include "llvm/IR/ConstrainedOps.def" 6968 case Intrinsic::experimental_constrained_fmuladd: { 6969 Opcode = ISD::STRICT_FMA; 6970 // Break fmuladd into fmul and fadd. 6971 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6972 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6973 ValueVTs[0])) { 6974 Opers.pop_back(); 6975 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6976 pushOutChain(Mul, EB); 6977 Opcode = ISD::STRICT_FADD; 6978 Opers.clear(); 6979 Opers.push_back(Mul.getValue(1)); 6980 Opers.push_back(Mul.getValue(0)); 6981 Opers.push_back(getValue(FPI.getArgOperand(2))); 6982 } 6983 break; 6984 } 6985 } 6986 6987 // A few strict DAG nodes carry additional operands that are not 6988 // set up by the default code above. 6989 switch (Opcode) { 6990 default: break; 6991 case ISD::STRICT_FP_ROUND: 6992 Opers.push_back( 6993 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6994 break; 6995 case ISD::STRICT_FSETCC: 6996 case ISD::STRICT_FSETCCS: { 6997 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6998 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6999 break; 7000 } 7001 } 7002 7003 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7004 pushOutChain(Result, EB); 7005 7006 SDValue FPResult = Result.getValue(0); 7007 setValue(&FPI, FPResult); 7008 } 7009 7010 std::pair<SDValue, SDValue> 7011 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7012 const BasicBlock *EHPadBB) { 7013 MachineFunction &MF = DAG.getMachineFunction(); 7014 MachineModuleInfo &MMI = MF.getMMI(); 7015 MCSymbol *BeginLabel = nullptr; 7016 7017 if (EHPadBB) { 7018 // Insert a label before the invoke call to mark the try range. This can be 7019 // used to detect deletion of the invoke via the MachineModuleInfo. 7020 BeginLabel = MMI.getContext().createTempSymbol(); 7021 7022 // For SjLj, keep track of which landing pads go with which invokes 7023 // so as to maintain the ordering of pads in the LSDA. 7024 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7025 if (CallSiteIndex) { 7026 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7027 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7028 7029 // Now that the call site is handled, stop tracking it. 7030 MMI.setCurrentCallSite(0); 7031 } 7032 7033 // Both PendingLoads and PendingExports must be flushed here; 7034 // this call might not return. 7035 (void)getRoot(); 7036 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7037 7038 CLI.setChain(getRoot()); 7039 } 7040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7041 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7042 7043 assert((CLI.IsTailCall || Result.second.getNode()) && 7044 "Non-null chain expected with non-tail call!"); 7045 assert((Result.second.getNode() || !Result.first.getNode()) && 7046 "Null value expected with tail call!"); 7047 7048 if (!Result.second.getNode()) { 7049 // As a special case, a null chain means that a tail call has been emitted 7050 // and the DAG root is already updated. 7051 HasTailCall = true; 7052 7053 // Since there's no actual continuation from this block, nothing can be 7054 // relying on us setting vregs for them. 7055 PendingExports.clear(); 7056 } else { 7057 DAG.setRoot(Result.second); 7058 } 7059 7060 if (EHPadBB) { 7061 // Insert a label at the end of the invoke call to mark the try range. This 7062 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7063 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7064 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7065 7066 // Inform MachineModuleInfo of range. 7067 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7068 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7069 // actually use outlined funclets and their LSDA info style. 7070 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7071 assert(CLI.CB); 7072 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7073 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7074 } else if (!isScopedEHPersonality(Pers)) { 7075 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7076 } 7077 } 7078 7079 return Result; 7080 } 7081 7082 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7083 bool isTailCall, 7084 const BasicBlock *EHPadBB) { 7085 auto &DL = DAG.getDataLayout(); 7086 FunctionType *FTy = CB.getFunctionType(); 7087 Type *RetTy = CB.getType(); 7088 7089 TargetLowering::ArgListTy Args; 7090 Args.reserve(CB.arg_size()); 7091 7092 const Value *SwiftErrorVal = nullptr; 7093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7094 7095 if (isTailCall) { 7096 // Avoid emitting tail calls in functions with the disable-tail-calls 7097 // attribute. 7098 auto *Caller = CB.getParent()->getParent(); 7099 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7100 "true") 7101 isTailCall = false; 7102 7103 // We can't tail call inside a function with a swifterror argument. Lowering 7104 // does not support this yet. It would have to move into the swifterror 7105 // register before the call. 7106 if (TLI.supportSwiftError() && 7107 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7108 isTailCall = false; 7109 } 7110 7111 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7112 TargetLowering::ArgListEntry Entry; 7113 const Value *V = *I; 7114 7115 // Skip empty types 7116 if (V->getType()->isEmptyTy()) 7117 continue; 7118 7119 SDValue ArgNode = getValue(V); 7120 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7121 7122 Entry.setAttributes(&CB, I - CB.arg_begin()); 7123 7124 // Use swifterror virtual register as input to the call. 7125 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7126 SwiftErrorVal = V; 7127 // We find the virtual register for the actual swifterror argument. 7128 // Instead of using the Value, we use the virtual register instead. 7129 Entry.Node = 7130 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7131 EVT(TLI.getPointerTy(DL))); 7132 } 7133 7134 Args.push_back(Entry); 7135 7136 // If we have an explicit sret argument that is an Instruction, (i.e., it 7137 // might point to function-local memory), we can't meaningfully tail-call. 7138 if (Entry.IsSRet && isa<Instruction>(V)) 7139 isTailCall = false; 7140 } 7141 7142 // If call site has a cfguardtarget operand bundle, create and add an 7143 // additional ArgListEntry. 7144 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7145 TargetLowering::ArgListEntry Entry; 7146 Value *V = Bundle->Inputs[0]; 7147 SDValue ArgNode = getValue(V); 7148 Entry.Node = ArgNode; 7149 Entry.Ty = V->getType(); 7150 Entry.IsCFGuardTarget = true; 7151 Args.push_back(Entry); 7152 } 7153 7154 // Check if target-independent constraints permit a tail call here. 7155 // Target-dependent constraints are checked within TLI->LowerCallTo. 7156 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7157 isTailCall = false; 7158 7159 // Disable tail calls if there is an swifterror argument. Targets have not 7160 // been updated to support tail calls. 7161 if (TLI.supportSwiftError() && SwiftErrorVal) 7162 isTailCall = false; 7163 7164 TargetLowering::CallLoweringInfo CLI(DAG); 7165 CLI.setDebugLoc(getCurSDLoc()) 7166 .setChain(getRoot()) 7167 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7168 .setTailCall(isTailCall) 7169 .setConvergent(CB.isConvergent()) 7170 .setIsPreallocated( 7171 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7172 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7173 7174 if (Result.first.getNode()) { 7175 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7176 setValue(&CB, Result.first); 7177 } 7178 7179 // The last element of CLI.InVals has the SDValue for swifterror return. 7180 // Here we copy it to a virtual register and update SwiftErrorMap for 7181 // book-keeping. 7182 if (SwiftErrorVal && TLI.supportSwiftError()) { 7183 // Get the last element of InVals. 7184 SDValue Src = CLI.InVals.back(); 7185 Register VReg = 7186 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7187 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7188 DAG.setRoot(CopyNode); 7189 } 7190 } 7191 7192 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7193 SelectionDAGBuilder &Builder) { 7194 // Check to see if this load can be trivially constant folded, e.g. if the 7195 // input is from a string literal. 7196 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7197 // Cast pointer to the type we really want to load. 7198 Type *LoadTy = 7199 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7200 if (LoadVT.isVector()) 7201 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7202 7203 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7204 PointerType::getUnqual(LoadTy)); 7205 7206 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7207 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7208 return Builder.getValue(LoadCst); 7209 } 7210 7211 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7212 // still constant memory, the input chain can be the entry node. 7213 SDValue Root; 7214 bool ConstantMemory = false; 7215 7216 // Do not serialize (non-volatile) loads of constant memory with anything. 7217 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7218 Root = Builder.DAG.getEntryNode(); 7219 ConstantMemory = true; 7220 } else { 7221 // Do not serialize non-volatile loads against each other. 7222 Root = Builder.DAG.getRoot(); 7223 } 7224 7225 SDValue Ptr = Builder.getValue(PtrVal); 7226 SDValue LoadVal = 7227 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7228 MachinePointerInfo(PtrVal), Align(1)); 7229 7230 if (!ConstantMemory) 7231 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7232 return LoadVal; 7233 } 7234 7235 /// Record the value for an instruction that produces an integer result, 7236 /// converting the type where necessary. 7237 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7238 SDValue Value, 7239 bool IsSigned) { 7240 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7241 I.getType(), true); 7242 if (IsSigned) 7243 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7244 else 7245 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7246 setValue(&I, Value); 7247 } 7248 7249 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7250 /// true and lower it. Otherwise return false, and it will be lowered like a 7251 /// normal call. 7252 /// The caller already checked that \p I calls the appropriate LibFunc with a 7253 /// correct prototype. 7254 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7255 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7256 const Value *Size = I.getArgOperand(2); 7257 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7258 if (CSize && CSize->getZExtValue() == 0) { 7259 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7260 I.getType(), true); 7261 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7262 return true; 7263 } 7264 7265 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7266 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7267 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7268 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7269 if (Res.first.getNode()) { 7270 processIntegerCallValue(I, Res.first, true); 7271 PendingLoads.push_back(Res.second); 7272 return true; 7273 } 7274 7275 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7276 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7277 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7278 return false; 7279 7280 // If the target has a fast compare for the given size, it will return a 7281 // preferred load type for that size. Require that the load VT is legal and 7282 // that the target supports unaligned loads of that type. Otherwise, return 7283 // INVALID. 7284 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7286 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7287 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7288 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7289 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7290 // TODO: Check alignment of src and dest ptrs. 7291 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7292 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7293 if (!TLI.isTypeLegal(LVT) || 7294 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7295 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7296 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7297 } 7298 7299 return LVT; 7300 }; 7301 7302 // This turns into unaligned loads. We only do this if the target natively 7303 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7304 // we'll only produce a small number of byte loads. 7305 MVT LoadVT; 7306 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7307 switch (NumBitsToCompare) { 7308 default: 7309 return false; 7310 case 16: 7311 LoadVT = MVT::i16; 7312 break; 7313 case 32: 7314 LoadVT = MVT::i32; 7315 break; 7316 case 64: 7317 case 128: 7318 case 256: 7319 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7320 break; 7321 } 7322 7323 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7324 return false; 7325 7326 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7327 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7328 7329 // Bitcast to a wide integer type if the loads are vectors. 7330 if (LoadVT.isVector()) { 7331 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7332 LoadL = DAG.getBitcast(CmpVT, LoadL); 7333 LoadR = DAG.getBitcast(CmpVT, LoadR); 7334 } 7335 7336 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7337 processIntegerCallValue(I, Cmp, false); 7338 return true; 7339 } 7340 7341 /// See if we can lower a memchr call into an optimized form. If so, return 7342 /// true and lower it. Otherwise return false, and it will be lowered like a 7343 /// normal call. 7344 /// The caller already checked that \p I calls the appropriate LibFunc with a 7345 /// correct prototype. 7346 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7347 const Value *Src = I.getArgOperand(0); 7348 const Value *Char = I.getArgOperand(1); 7349 const Value *Length = I.getArgOperand(2); 7350 7351 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7352 std::pair<SDValue, SDValue> Res = 7353 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7354 getValue(Src), getValue(Char), getValue(Length), 7355 MachinePointerInfo(Src)); 7356 if (Res.first.getNode()) { 7357 setValue(&I, Res.first); 7358 PendingLoads.push_back(Res.second); 7359 return true; 7360 } 7361 7362 return false; 7363 } 7364 7365 /// See if we can lower a mempcpy call into an optimized form. If so, return 7366 /// true and lower it. Otherwise return false, and it will be lowered like a 7367 /// normal call. 7368 /// The caller already checked that \p I calls the appropriate LibFunc with a 7369 /// correct prototype. 7370 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7371 SDValue Dst = getValue(I.getArgOperand(0)); 7372 SDValue Src = getValue(I.getArgOperand(1)); 7373 SDValue Size = getValue(I.getArgOperand(2)); 7374 7375 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7376 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7377 // DAG::getMemcpy needs Alignment to be defined. 7378 Align Alignment = std::min(DstAlign, SrcAlign); 7379 7380 bool isVol = false; 7381 SDLoc sdl = getCurSDLoc(); 7382 7383 // In the mempcpy context we need to pass in a false value for isTailCall 7384 // because the return pointer needs to be adjusted by the size of 7385 // the copied memory. 7386 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7387 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7388 /*isTailCall=*/false, 7389 MachinePointerInfo(I.getArgOperand(0)), 7390 MachinePointerInfo(I.getArgOperand(1))); 7391 assert(MC.getNode() != nullptr && 7392 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7393 DAG.setRoot(MC); 7394 7395 // Check if Size needs to be truncated or extended. 7396 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7397 7398 // Adjust return pointer to point just past the last dst byte. 7399 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7400 Dst, Size); 7401 setValue(&I, DstPlusSize); 7402 return true; 7403 } 7404 7405 /// See if we can lower a strcpy call into an optimized form. If so, return 7406 /// true and lower it, otherwise return false and it will be lowered like a 7407 /// normal call. 7408 /// The caller already checked that \p I calls the appropriate LibFunc with a 7409 /// correct prototype. 7410 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7411 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7412 7413 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7414 std::pair<SDValue, SDValue> Res = 7415 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7416 getValue(Arg0), getValue(Arg1), 7417 MachinePointerInfo(Arg0), 7418 MachinePointerInfo(Arg1), isStpcpy); 7419 if (Res.first.getNode()) { 7420 setValue(&I, Res.first); 7421 DAG.setRoot(Res.second); 7422 return true; 7423 } 7424 7425 return false; 7426 } 7427 7428 /// See if we can lower a strcmp call into an optimized form. If so, return 7429 /// true and lower it, otherwise return false and it will be lowered like a 7430 /// normal call. 7431 /// The caller already checked that \p I calls the appropriate LibFunc with a 7432 /// correct prototype. 7433 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7434 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7435 7436 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7437 std::pair<SDValue, SDValue> Res = 7438 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7439 getValue(Arg0), getValue(Arg1), 7440 MachinePointerInfo(Arg0), 7441 MachinePointerInfo(Arg1)); 7442 if (Res.first.getNode()) { 7443 processIntegerCallValue(I, Res.first, true); 7444 PendingLoads.push_back(Res.second); 7445 return true; 7446 } 7447 7448 return false; 7449 } 7450 7451 /// See if we can lower a strlen call into an optimized form. If so, return 7452 /// true and lower it, otherwise return false and it will be lowered like a 7453 /// normal call. 7454 /// The caller already checked that \p I calls the appropriate LibFunc with a 7455 /// correct prototype. 7456 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7457 const Value *Arg0 = I.getArgOperand(0); 7458 7459 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7460 std::pair<SDValue, SDValue> Res = 7461 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7462 getValue(Arg0), MachinePointerInfo(Arg0)); 7463 if (Res.first.getNode()) { 7464 processIntegerCallValue(I, Res.first, false); 7465 PendingLoads.push_back(Res.second); 7466 return true; 7467 } 7468 7469 return false; 7470 } 7471 7472 /// See if we can lower a strnlen call into an optimized form. If so, return 7473 /// true and lower it, otherwise return false and it will be lowered like a 7474 /// normal call. 7475 /// The caller already checked that \p I calls the appropriate LibFunc with a 7476 /// correct prototype. 7477 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7478 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7479 7480 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7481 std::pair<SDValue, SDValue> Res = 7482 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7483 getValue(Arg0), getValue(Arg1), 7484 MachinePointerInfo(Arg0)); 7485 if (Res.first.getNode()) { 7486 processIntegerCallValue(I, Res.first, false); 7487 PendingLoads.push_back(Res.second); 7488 return true; 7489 } 7490 7491 return false; 7492 } 7493 7494 /// See if we can lower a unary floating-point operation into an SDNode with 7495 /// the specified Opcode. If so, return true and lower it, otherwise return 7496 /// false and it will be lowered like a normal call. 7497 /// The caller already checked that \p I calls the appropriate LibFunc with a 7498 /// correct prototype. 7499 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7500 unsigned Opcode) { 7501 // We already checked this call's prototype; verify it doesn't modify errno. 7502 if (!I.onlyReadsMemory()) 7503 return false; 7504 7505 SDNodeFlags Flags; 7506 Flags.copyFMF(cast<FPMathOperator>(I)); 7507 7508 SDValue Tmp = getValue(I.getArgOperand(0)); 7509 setValue(&I, 7510 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7511 return true; 7512 } 7513 7514 /// See if we can lower a binary floating-point operation into an SDNode with 7515 /// the specified Opcode. If so, return true and lower it. Otherwise return 7516 /// false, and it will be lowered like a normal call. 7517 /// The caller already checked that \p I calls the appropriate LibFunc with a 7518 /// correct prototype. 7519 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7520 unsigned Opcode) { 7521 // We already checked this call's prototype; verify it doesn't modify errno. 7522 if (!I.onlyReadsMemory()) 7523 return false; 7524 7525 SDNodeFlags Flags; 7526 Flags.copyFMF(cast<FPMathOperator>(I)); 7527 7528 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7529 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7530 EVT VT = Tmp0.getValueType(); 7531 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7532 return true; 7533 } 7534 7535 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7536 // Handle inline assembly differently. 7537 if (I.isInlineAsm()) { 7538 visitInlineAsm(I); 7539 return; 7540 } 7541 7542 if (Function *F = I.getCalledFunction()) { 7543 if (F->isDeclaration()) { 7544 // Is this an LLVM intrinsic or a target-specific intrinsic? 7545 unsigned IID = F->getIntrinsicID(); 7546 if (!IID) 7547 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7548 IID = II->getIntrinsicID(F); 7549 7550 if (IID) { 7551 visitIntrinsicCall(I, IID); 7552 return; 7553 } 7554 } 7555 7556 // Check for well-known libc/libm calls. If the function is internal, it 7557 // can't be a library call. Don't do the check if marked as nobuiltin for 7558 // some reason or the call site requires strict floating point semantics. 7559 LibFunc Func; 7560 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7561 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7562 LibInfo->hasOptimizedCodeGen(Func)) { 7563 switch (Func) { 7564 default: break; 7565 case LibFunc_bcmp: 7566 if (visitMemCmpBCmpCall(I)) 7567 return; 7568 break; 7569 case LibFunc_copysign: 7570 case LibFunc_copysignf: 7571 case LibFunc_copysignl: 7572 // We already checked this call's prototype; verify it doesn't modify 7573 // errno. 7574 if (I.onlyReadsMemory()) { 7575 SDValue LHS = getValue(I.getArgOperand(0)); 7576 SDValue RHS = getValue(I.getArgOperand(1)); 7577 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7578 LHS.getValueType(), LHS, RHS)); 7579 return; 7580 } 7581 break; 7582 case LibFunc_fabs: 7583 case LibFunc_fabsf: 7584 case LibFunc_fabsl: 7585 if (visitUnaryFloatCall(I, ISD::FABS)) 7586 return; 7587 break; 7588 case LibFunc_fmin: 7589 case LibFunc_fminf: 7590 case LibFunc_fminl: 7591 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7592 return; 7593 break; 7594 case LibFunc_fmax: 7595 case LibFunc_fmaxf: 7596 case LibFunc_fmaxl: 7597 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7598 return; 7599 break; 7600 case LibFunc_sin: 7601 case LibFunc_sinf: 7602 case LibFunc_sinl: 7603 if (visitUnaryFloatCall(I, ISD::FSIN)) 7604 return; 7605 break; 7606 case LibFunc_cos: 7607 case LibFunc_cosf: 7608 case LibFunc_cosl: 7609 if (visitUnaryFloatCall(I, ISD::FCOS)) 7610 return; 7611 break; 7612 case LibFunc_sqrt: 7613 case LibFunc_sqrtf: 7614 case LibFunc_sqrtl: 7615 case LibFunc_sqrt_finite: 7616 case LibFunc_sqrtf_finite: 7617 case LibFunc_sqrtl_finite: 7618 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7619 return; 7620 break; 7621 case LibFunc_floor: 7622 case LibFunc_floorf: 7623 case LibFunc_floorl: 7624 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7625 return; 7626 break; 7627 case LibFunc_nearbyint: 7628 case LibFunc_nearbyintf: 7629 case LibFunc_nearbyintl: 7630 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7631 return; 7632 break; 7633 case LibFunc_ceil: 7634 case LibFunc_ceilf: 7635 case LibFunc_ceill: 7636 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7637 return; 7638 break; 7639 case LibFunc_rint: 7640 case LibFunc_rintf: 7641 case LibFunc_rintl: 7642 if (visitUnaryFloatCall(I, ISD::FRINT)) 7643 return; 7644 break; 7645 case LibFunc_round: 7646 case LibFunc_roundf: 7647 case LibFunc_roundl: 7648 if (visitUnaryFloatCall(I, ISD::FROUND)) 7649 return; 7650 break; 7651 case LibFunc_trunc: 7652 case LibFunc_truncf: 7653 case LibFunc_truncl: 7654 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7655 return; 7656 break; 7657 case LibFunc_log2: 7658 case LibFunc_log2f: 7659 case LibFunc_log2l: 7660 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7661 return; 7662 break; 7663 case LibFunc_exp2: 7664 case LibFunc_exp2f: 7665 case LibFunc_exp2l: 7666 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7667 return; 7668 break; 7669 case LibFunc_memcmp: 7670 if (visitMemCmpBCmpCall(I)) 7671 return; 7672 break; 7673 case LibFunc_mempcpy: 7674 if (visitMemPCpyCall(I)) 7675 return; 7676 break; 7677 case LibFunc_memchr: 7678 if (visitMemChrCall(I)) 7679 return; 7680 break; 7681 case LibFunc_strcpy: 7682 if (visitStrCpyCall(I, false)) 7683 return; 7684 break; 7685 case LibFunc_stpcpy: 7686 if (visitStrCpyCall(I, true)) 7687 return; 7688 break; 7689 case LibFunc_strcmp: 7690 if (visitStrCmpCall(I)) 7691 return; 7692 break; 7693 case LibFunc_strlen: 7694 if (visitStrLenCall(I)) 7695 return; 7696 break; 7697 case LibFunc_strnlen: 7698 if (visitStrNLenCall(I)) 7699 return; 7700 break; 7701 } 7702 } 7703 } 7704 7705 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7706 // have to do anything here to lower funclet bundles. 7707 // CFGuardTarget bundles are lowered in LowerCallTo. 7708 assert(!I.hasOperandBundlesOtherThan( 7709 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7710 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7711 "Cannot lower calls with arbitrary operand bundles!"); 7712 7713 SDValue Callee = getValue(I.getCalledOperand()); 7714 7715 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7716 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7717 else 7718 // Check if we can potentially perform a tail call. More detailed checking 7719 // is be done within LowerCallTo, after more information about the call is 7720 // known. 7721 LowerCallTo(I, Callee, I.isTailCall()); 7722 } 7723 7724 namespace { 7725 7726 /// AsmOperandInfo - This contains information for each constraint that we are 7727 /// lowering. 7728 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7729 public: 7730 /// CallOperand - If this is the result output operand or a clobber 7731 /// this is null, otherwise it is the incoming operand to the CallInst. 7732 /// This gets modified as the asm is processed. 7733 SDValue CallOperand; 7734 7735 /// AssignedRegs - If this is a register or register class operand, this 7736 /// contains the set of register corresponding to the operand. 7737 RegsForValue AssignedRegs; 7738 7739 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7740 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7741 } 7742 7743 /// Whether or not this operand accesses memory 7744 bool hasMemory(const TargetLowering &TLI) const { 7745 // Indirect operand accesses access memory. 7746 if (isIndirect) 7747 return true; 7748 7749 for (const auto &Code : Codes) 7750 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7751 return true; 7752 7753 return false; 7754 } 7755 7756 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7757 /// corresponds to. If there is no Value* for this operand, it returns 7758 /// MVT::Other. 7759 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7760 const DataLayout &DL) const { 7761 if (!CallOperandVal) return MVT::Other; 7762 7763 if (isa<BasicBlock>(CallOperandVal)) 7764 return TLI.getProgramPointerTy(DL); 7765 7766 llvm::Type *OpTy = CallOperandVal->getType(); 7767 7768 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7769 // If this is an indirect operand, the operand is a pointer to the 7770 // accessed type. 7771 if (isIndirect) { 7772 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7773 if (!PtrTy) 7774 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7775 OpTy = PtrTy->getElementType(); 7776 } 7777 7778 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7779 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7780 if (STy->getNumElements() == 1) 7781 OpTy = STy->getElementType(0); 7782 7783 // If OpTy is not a single value, it may be a struct/union that we 7784 // can tile with integers. 7785 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7786 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7787 switch (BitSize) { 7788 default: break; 7789 case 1: 7790 case 8: 7791 case 16: 7792 case 32: 7793 case 64: 7794 case 128: 7795 OpTy = IntegerType::get(Context, BitSize); 7796 break; 7797 } 7798 } 7799 7800 return TLI.getValueType(DL, OpTy, true); 7801 } 7802 }; 7803 7804 7805 } // end anonymous namespace 7806 7807 /// Make sure that the output operand \p OpInfo and its corresponding input 7808 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7809 /// out). 7810 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7811 SDISelAsmOperandInfo &MatchingOpInfo, 7812 SelectionDAG &DAG) { 7813 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7814 return; 7815 7816 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7817 const auto &TLI = DAG.getTargetLoweringInfo(); 7818 7819 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7820 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7821 OpInfo.ConstraintVT); 7822 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7823 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7824 MatchingOpInfo.ConstraintVT); 7825 if ((OpInfo.ConstraintVT.isInteger() != 7826 MatchingOpInfo.ConstraintVT.isInteger()) || 7827 (MatchRC.second != InputRC.second)) { 7828 // FIXME: error out in a more elegant fashion 7829 report_fatal_error("Unsupported asm: input constraint" 7830 " with a matching output constraint of" 7831 " incompatible type!"); 7832 } 7833 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7834 } 7835 7836 /// Get a direct memory input to behave well as an indirect operand. 7837 /// This may introduce stores, hence the need for a \p Chain. 7838 /// \return The (possibly updated) chain. 7839 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7840 SDISelAsmOperandInfo &OpInfo, 7841 SelectionDAG &DAG) { 7842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7843 7844 // If we don't have an indirect input, put it in the constpool if we can, 7845 // otherwise spill it to a stack slot. 7846 // TODO: This isn't quite right. We need to handle these according to 7847 // the addressing mode that the constraint wants. Also, this may take 7848 // an additional register for the computation and we don't want that 7849 // either. 7850 7851 // If the operand is a float, integer, or vector constant, spill to a 7852 // constant pool entry to get its address. 7853 const Value *OpVal = OpInfo.CallOperandVal; 7854 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7855 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7856 OpInfo.CallOperand = DAG.getConstantPool( 7857 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7858 return Chain; 7859 } 7860 7861 // Otherwise, create a stack slot and emit a store to it before the asm. 7862 Type *Ty = OpVal->getType(); 7863 auto &DL = DAG.getDataLayout(); 7864 uint64_t TySize = DL.getTypeAllocSize(Ty); 7865 MachineFunction &MF = DAG.getMachineFunction(); 7866 int SSFI = MF.getFrameInfo().CreateStackObject( 7867 TySize, DL.getPrefTypeAlign(Ty), false); 7868 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7869 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7870 MachinePointerInfo::getFixedStack(MF, SSFI), 7871 TLI.getMemValueType(DL, Ty)); 7872 OpInfo.CallOperand = StackSlot; 7873 7874 return Chain; 7875 } 7876 7877 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7878 /// specified operand. We prefer to assign virtual registers, to allow the 7879 /// register allocator to handle the assignment process. However, if the asm 7880 /// uses features that we can't model on machineinstrs, we have SDISel do the 7881 /// allocation. This produces generally horrible, but correct, code. 7882 /// 7883 /// OpInfo describes the operand 7884 /// RefOpInfo describes the matching operand if any, the operand otherwise 7885 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7886 SDISelAsmOperandInfo &OpInfo, 7887 SDISelAsmOperandInfo &RefOpInfo) { 7888 LLVMContext &Context = *DAG.getContext(); 7889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7890 7891 MachineFunction &MF = DAG.getMachineFunction(); 7892 SmallVector<unsigned, 4> Regs; 7893 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7894 7895 // No work to do for memory operations. 7896 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7897 return; 7898 7899 // If this is a constraint for a single physreg, or a constraint for a 7900 // register class, find it. 7901 unsigned AssignedReg; 7902 const TargetRegisterClass *RC; 7903 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7904 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7905 // RC is unset only on failure. Return immediately. 7906 if (!RC) 7907 return; 7908 7909 // Get the actual register value type. This is important, because the user 7910 // may have asked for (e.g.) the AX register in i32 type. We need to 7911 // remember that AX is actually i16 to get the right extension. 7912 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7913 7914 if (OpInfo.ConstraintVT != MVT::Other) { 7915 // If this is an FP operand in an integer register (or visa versa), or more 7916 // generally if the operand value disagrees with the register class we plan 7917 // to stick it in, fix the operand type. 7918 // 7919 // If this is an input value, the bitcast to the new type is done now. 7920 // Bitcast for output value is done at the end of visitInlineAsm(). 7921 if ((OpInfo.Type == InlineAsm::isOutput || 7922 OpInfo.Type == InlineAsm::isInput) && 7923 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7924 // Try to convert to the first EVT that the reg class contains. If the 7925 // types are identical size, use a bitcast to convert (e.g. two differing 7926 // vector types). Note: output bitcast is done at the end of 7927 // visitInlineAsm(). 7928 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7929 // Exclude indirect inputs while they are unsupported because the code 7930 // to perform the load is missing and thus OpInfo.CallOperand still 7931 // refers to the input address rather than the pointed-to value. 7932 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7933 OpInfo.CallOperand = 7934 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7935 OpInfo.ConstraintVT = RegVT; 7936 // If the operand is an FP value and we want it in integer registers, 7937 // use the corresponding integer type. This turns an f64 value into 7938 // i64, which can be passed with two i32 values on a 32-bit machine. 7939 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7940 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7941 if (OpInfo.Type == InlineAsm::isInput) 7942 OpInfo.CallOperand = 7943 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7944 OpInfo.ConstraintVT = VT; 7945 } 7946 } 7947 } 7948 7949 // No need to allocate a matching input constraint since the constraint it's 7950 // matching to has already been allocated. 7951 if (OpInfo.isMatchingInputConstraint()) 7952 return; 7953 7954 EVT ValueVT = OpInfo.ConstraintVT; 7955 if (OpInfo.ConstraintVT == MVT::Other) 7956 ValueVT = RegVT; 7957 7958 // Initialize NumRegs. 7959 unsigned NumRegs = 1; 7960 if (OpInfo.ConstraintVT != MVT::Other) 7961 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7962 7963 // If this is a constraint for a specific physical register, like {r17}, 7964 // assign it now. 7965 7966 // If this associated to a specific register, initialize iterator to correct 7967 // place. If virtual, make sure we have enough registers 7968 7969 // Initialize iterator if necessary 7970 TargetRegisterClass::iterator I = RC->begin(); 7971 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7972 7973 // Do not check for single registers. 7974 if (AssignedReg) { 7975 for (; *I != AssignedReg; ++I) 7976 assert(I != RC->end() && "AssignedReg should be member of RC"); 7977 } 7978 7979 for (; NumRegs; --NumRegs, ++I) { 7980 assert(I != RC->end() && "Ran out of registers to allocate!"); 7981 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7982 Regs.push_back(R); 7983 } 7984 7985 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7986 } 7987 7988 static unsigned 7989 findMatchingInlineAsmOperand(unsigned OperandNo, 7990 const std::vector<SDValue> &AsmNodeOperands) { 7991 // Scan until we find the definition we already emitted of this operand. 7992 unsigned CurOp = InlineAsm::Op_FirstOperand; 7993 for (; OperandNo; --OperandNo) { 7994 // Advance to the next operand. 7995 unsigned OpFlag = 7996 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7997 assert((InlineAsm::isRegDefKind(OpFlag) || 7998 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7999 InlineAsm::isMemKind(OpFlag)) && 8000 "Skipped past definitions?"); 8001 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8002 } 8003 return CurOp; 8004 } 8005 8006 namespace { 8007 8008 class ExtraFlags { 8009 unsigned Flags = 0; 8010 8011 public: 8012 explicit ExtraFlags(const CallBase &Call) { 8013 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8014 if (IA->hasSideEffects()) 8015 Flags |= InlineAsm::Extra_HasSideEffects; 8016 if (IA->isAlignStack()) 8017 Flags |= InlineAsm::Extra_IsAlignStack; 8018 if (Call.isConvergent()) 8019 Flags |= InlineAsm::Extra_IsConvergent; 8020 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8021 } 8022 8023 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8024 // Ideally, we would only check against memory constraints. However, the 8025 // meaning of an Other constraint can be target-specific and we can't easily 8026 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8027 // for Other constraints as well. 8028 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8029 OpInfo.ConstraintType == TargetLowering::C_Other) { 8030 if (OpInfo.Type == InlineAsm::isInput) 8031 Flags |= InlineAsm::Extra_MayLoad; 8032 else if (OpInfo.Type == InlineAsm::isOutput) 8033 Flags |= InlineAsm::Extra_MayStore; 8034 else if (OpInfo.Type == InlineAsm::isClobber) 8035 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8036 } 8037 } 8038 8039 unsigned get() const { return Flags; } 8040 }; 8041 8042 } // end anonymous namespace 8043 8044 /// visitInlineAsm - Handle a call to an InlineAsm object. 8045 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8046 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8047 8048 /// ConstraintOperands - Information about all of the constraints. 8049 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8050 8051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8052 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8053 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8054 8055 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8056 // AsmDialect, MayLoad, MayStore). 8057 bool HasSideEffect = IA->hasSideEffects(); 8058 ExtraFlags ExtraInfo(Call); 8059 8060 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8061 unsigned ResNo = 0; // ResNo - The result number of the next output. 8062 unsigned NumMatchingOps = 0; 8063 for (auto &T : TargetConstraints) { 8064 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8065 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8066 8067 // Compute the value type for each operand. 8068 if (OpInfo.Type == InlineAsm::isInput || 8069 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8070 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8071 8072 // Process the call argument. BasicBlocks are labels, currently appearing 8073 // only in asm's. 8074 if (isa<CallBrInst>(Call) && 8075 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8076 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8077 NumMatchingOps) && 8078 (NumMatchingOps == 0 || 8079 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8080 NumMatchingOps))) { 8081 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8082 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8083 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8084 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8085 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8086 } else { 8087 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8088 } 8089 8090 OpInfo.ConstraintVT = 8091 OpInfo 8092 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8093 .getSimpleVT(); 8094 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8095 // The return value of the call is this value. As such, there is no 8096 // corresponding argument. 8097 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8098 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8099 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8100 DAG.getDataLayout(), STy->getElementType(ResNo)); 8101 } else { 8102 assert(ResNo == 0 && "Asm only has one result!"); 8103 OpInfo.ConstraintVT = 8104 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8105 } 8106 ++ResNo; 8107 } else { 8108 OpInfo.ConstraintVT = MVT::Other; 8109 } 8110 8111 if (OpInfo.hasMatchingInput()) 8112 ++NumMatchingOps; 8113 8114 if (!HasSideEffect) 8115 HasSideEffect = OpInfo.hasMemory(TLI); 8116 8117 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8118 // FIXME: Could we compute this on OpInfo rather than T? 8119 8120 // Compute the constraint code and ConstraintType to use. 8121 TLI.ComputeConstraintToUse(T, SDValue()); 8122 8123 if (T.ConstraintType == TargetLowering::C_Immediate && 8124 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8125 // We've delayed emitting a diagnostic like the "n" constraint because 8126 // inlining could cause an integer showing up. 8127 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8128 "' expects an integer constant " 8129 "expression"); 8130 8131 ExtraInfo.update(T); 8132 } 8133 8134 8135 // We won't need to flush pending loads if this asm doesn't touch 8136 // memory and is nonvolatile. 8137 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8138 8139 bool IsCallBr = isa<CallBrInst>(Call); 8140 if (IsCallBr) { 8141 // If this is a callbr we need to flush pending exports since inlineasm_br 8142 // is a terminator. We need to do this before nodes are glued to 8143 // the inlineasm_br node. 8144 Chain = getControlRoot(); 8145 } 8146 8147 // Second pass over the constraints: compute which constraint option to use. 8148 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8149 // If this is an output operand with a matching input operand, look up the 8150 // matching input. If their types mismatch, e.g. one is an integer, the 8151 // other is floating point, or their sizes are different, flag it as an 8152 // error. 8153 if (OpInfo.hasMatchingInput()) { 8154 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8155 patchMatchingInput(OpInfo, Input, DAG); 8156 } 8157 8158 // Compute the constraint code and ConstraintType to use. 8159 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8160 8161 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8162 OpInfo.Type == InlineAsm::isClobber) 8163 continue; 8164 8165 // If this is a memory input, and if the operand is not indirect, do what we 8166 // need to provide an address for the memory input. 8167 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8168 !OpInfo.isIndirect) { 8169 assert((OpInfo.isMultipleAlternative || 8170 (OpInfo.Type == InlineAsm::isInput)) && 8171 "Can only indirectify direct input operands!"); 8172 8173 // Memory operands really want the address of the value. 8174 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8175 8176 // There is no longer a Value* corresponding to this operand. 8177 OpInfo.CallOperandVal = nullptr; 8178 8179 // It is now an indirect operand. 8180 OpInfo.isIndirect = true; 8181 } 8182 8183 } 8184 8185 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8186 std::vector<SDValue> AsmNodeOperands; 8187 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8188 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8189 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8190 8191 // If we have a !srcloc metadata node associated with it, we want to attach 8192 // this to the ultimately generated inline asm machineinstr. To do this, we 8193 // pass in the third operand as this (potentially null) inline asm MDNode. 8194 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8195 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8196 8197 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8198 // bits as operand 3. 8199 AsmNodeOperands.push_back(DAG.getTargetConstant( 8200 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8201 8202 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8203 // this, assign virtual and physical registers for inputs and otput. 8204 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8205 // Assign Registers. 8206 SDISelAsmOperandInfo &RefOpInfo = 8207 OpInfo.isMatchingInputConstraint() 8208 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8209 : OpInfo; 8210 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8211 8212 auto DetectWriteToReservedRegister = [&]() { 8213 const MachineFunction &MF = DAG.getMachineFunction(); 8214 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8215 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8216 if (Register::isPhysicalRegister(Reg) && 8217 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8218 const char *RegName = TRI.getName(Reg); 8219 emitInlineAsmError(Call, "write to reserved register '" + 8220 Twine(RegName) + "'"); 8221 return true; 8222 } 8223 } 8224 return false; 8225 }; 8226 8227 switch (OpInfo.Type) { 8228 case InlineAsm::isOutput: 8229 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8230 unsigned ConstraintID = 8231 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8232 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8233 "Failed to convert memory constraint code to constraint id."); 8234 8235 // Add information to the INLINEASM node to know about this output. 8236 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8237 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8238 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8239 MVT::i32)); 8240 AsmNodeOperands.push_back(OpInfo.CallOperand); 8241 } else { 8242 // Otherwise, this outputs to a register (directly for C_Register / 8243 // C_RegisterClass, and a target-defined fashion for 8244 // C_Immediate/C_Other). Find a register that we can use. 8245 if (OpInfo.AssignedRegs.Regs.empty()) { 8246 emitInlineAsmError( 8247 Call, "couldn't allocate output register for constraint '" + 8248 Twine(OpInfo.ConstraintCode) + "'"); 8249 return; 8250 } 8251 8252 if (DetectWriteToReservedRegister()) 8253 return; 8254 8255 // Add information to the INLINEASM node to know that this register is 8256 // set. 8257 OpInfo.AssignedRegs.AddInlineAsmOperands( 8258 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8259 : InlineAsm::Kind_RegDef, 8260 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8261 } 8262 break; 8263 8264 case InlineAsm::isInput: { 8265 SDValue InOperandVal = OpInfo.CallOperand; 8266 8267 if (OpInfo.isMatchingInputConstraint()) { 8268 // If this is required to match an output register we have already set, 8269 // just use its register. 8270 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8271 AsmNodeOperands); 8272 unsigned OpFlag = 8273 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8274 if (InlineAsm::isRegDefKind(OpFlag) || 8275 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8276 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8277 if (OpInfo.isIndirect) { 8278 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8279 emitInlineAsmError(Call, "inline asm not supported yet: " 8280 "don't know how to handle tied " 8281 "indirect register inputs"); 8282 return; 8283 } 8284 8285 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8286 SmallVector<unsigned, 4> Regs; 8287 8288 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8289 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8290 MachineRegisterInfo &RegInfo = 8291 DAG.getMachineFunction().getRegInfo(); 8292 for (unsigned i = 0; i != NumRegs; ++i) 8293 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8294 } else { 8295 emitInlineAsmError(Call, 8296 "inline asm error: This value type register " 8297 "class is not natively supported!"); 8298 return; 8299 } 8300 8301 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8302 8303 SDLoc dl = getCurSDLoc(); 8304 // Use the produced MatchedRegs object to 8305 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8306 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8307 true, OpInfo.getMatchedOperand(), dl, 8308 DAG, AsmNodeOperands); 8309 break; 8310 } 8311 8312 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8313 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8314 "Unexpected number of operands"); 8315 // Add information to the INLINEASM node to know about this input. 8316 // See InlineAsm.h isUseOperandTiedToDef. 8317 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8318 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8319 OpInfo.getMatchedOperand()); 8320 AsmNodeOperands.push_back(DAG.getTargetConstant( 8321 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8322 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8323 break; 8324 } 8325 8326 // Treat indirect 'X' constraint as memory. 8327 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8328 OpInfo.isIndirect) 8329 OpInfo.ConstraintType = TargetLowering::C_Memory; 8330 8331 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8332 OpInfo.ConstraintType == TargetLowering::C_Other) { 8333 std::vector<SDValue> Ops; 8334 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8335 Ops, DAG); 8336 if (Ops.empty()) { 8337 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8338 if (isa<ConstantSDNode>(InOperandVal)) { 8339 emitInlineAsmError(Call, "value out of range for constraint '" + 8340 Twine(OpInfo.ConstraintCode) + "'"); 8341 return; 8342 } 8343 8344 emitInlineAsmError(Call, 8345 "invalid operand for inline asm constraint '" + 8346 Twine(OpInfo.ConstraintCode) + "'"); 8347 return; 8348 } 8349 8350 // Add information to the INLINEASM node to know about this input. 8351 unsigned ResOpType = 8352 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8353 AsmNodeOperands.push_back(DAG.getTargetConstant( 8354 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8355 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8356 break; 8357 } 8358 8359 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8360 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8361 assert(InOperandVal.getValueType() == 8362 TLI.getPointerTy(DAG.getDataLayout()) && 8363 "Memory operands expect pointer values"); 8364 8365 unsigned ConstraintID = 8366 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8367 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8368 "Failed to convert memory constraint code to constraint id."); 8369 8370 // Add information to the INLINEASM node to know about this input. 8371 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8372 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8373 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8374 getCurSDLoc(), 8375 MVT::i32)); 8376 AsmNodeOperands.push_back(InOperandVal); 8377 break; 8378 } 8379 8380 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8381 OpInfo.ConstraintType == TargetLowering::C_Register) && 8382 "Unknown constraint type!"); 8383 8384 // TODO: Support this. 8385 if (OpInfo.isIndirect) { 8386 emitInlineAsmError( 8387 Call, "Don't know how to handle indirect register inputs yet " 8388 "for constraint '" + 8389 Twine(OpInfo.ConstraintCode) + "'"); 8390 return; 8391 } 8392 8393 // Copy the input into the appropriate registers. 8394 if (OpInfo.AssignedRegs.Regs.empty()) { 8395 emitInlineAsmError(Call, 8396 "couldn't allocate input reg for constraint '" + 8397 Twine(OpInfo.ConstraintCode) + "'"); 8398 return; 8399 } 8400 8401 if (DetectWriteToReservedRegister()) 8402 return; 8403 8404 SDLoc dl = getCurSDLoc(); 8405 8406 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8407 &Call); 8408 8409 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8410 dl, DAG, AsmNodeOperands); 8411 break; 8412 } 8413 case InlineAsm::isClobber: 8414 // Add the clobbered value to the operand list, so that the register 8415 // allocator is aware that the physreg got clobbered. 8416 if (!OpInfo.AssignedRegs.Regs.empty()) 8417 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8418 false, 0, getCurSDLoc(), DAG, 8419 AsmNodeOperands); 8420 break; 8421 } 8422 } 8423 8424 // Finish up input operands. Set the input chain and add the flag last. 8425 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8426 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8427 8428 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8429 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8430 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8431 Flag = Chain.getValue(1); 8432 8433 // Do additional work to generate outputs. 8434 8435 SmallVector<EVT, 1> ResultVTs; 8436 SmallVector<SDValue, 1> ResultValues; 8437 SmallVector<SDValue, 8> OutChains; 8438 8439 llvm::Type *CallResultType = Call.getType(); 8440 ArrayRef<Type *> ResultTypes; 8441 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8442 ResultTypes = StructResult->elements(); 8443 else if (!CallResultType->isVoidTy()) 8444 ResultTypes = makeArrayRef(CallResultType); 8445 8446 auto CurResultType = ResultTypes.begin(); 8447 auto handleRegAssign = [&](SDValue V) { 8448 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8449 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8450 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8451 ++CurResultType; 8452 // If the type of the inline asm call site return value is different but has 8453 // same size as the type of the asm output bitcast it. One example of this 8454 // is for vectors with different width / number of elements. This can 8455 // happen for register classes that can contain multiple different value 8456 // types. The preg or vreg allocated may not have the same VT as was 8457 // expected. 8458 // 8459 // This can also happen for a return value that disagrees with the register 8460 // class it is put in, eg. a double in a general-purpose register on a 8461 // 32-bit machine. 8462 if (ResultVT != V.getValueType() && 8463 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8464 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8465 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8466 V.getValueType().isInteger()) { 8467 // If a result value was tied to an input value, the computed result 8468 // may have a wider width than the expected result. Extract the 8469 // relevant portion. 8470 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8471 } 8472 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8473 ResultVTs.push_back(ResultVT); 8474 ResultValues.push_back(V); 8475 }; 8476 8477 // Deal with output operands. 8478 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8479 if (OpInfo.Type == InlineAsm::isOutput) { 8480 SDValue Val; 8481 // Skip trivial output operands. 8482 if (OpInfo.AssignedRegs.Regs.empty()) 8483 continue; 8484 8485 switch (OpInfo.ConstraintType) { 8486 case TargetLowering::C_Register: 8487 case TargetLowering::C_RegisterClass: 8488 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8489 Chain, &Flag, &Call); 8490 break; 8491 case TargetLowering::C_Immediate: 8492 case TargetLowering::C_Other: 8493 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8494 OpInfo, DAG); 8495 break; 8496 case TargetLowering::C_Memory: 8497 break; // Already handled. 8498 case TargetLowering::C_Unknown: 8499 assert(false && "Unexpected unknown constraint"); 8500 } 8501 8502 // Indirect output manifest as stores. Record output chains. 8503 if (OpInfo.isIndirect) { 8504 const Value *Ptr = OpInfo.CallOperandVal; 8505 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8506 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8507 MachinePointerInfo(Ptr)); 8508 OutChains.push_back(Store); 8509 } else { 8510 // generate CopyFromRegs to associated registers. 8511 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8512 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8513 for (const SDValue &V : Val->op_values()) 8514 handleRegAssign(V); 8515 } else 8516 handleRegAssign(Val); 8517 } 8518 } 8519 } 8520 8521 // Set results. 8522 if (!ResultValues.empty()) { 8523 assert(CurResultType == ResultTypes.end() && 8524 "Mismatch in number of ResultTypes"); 8525 assert(ResultValues.size() == ResultTypes.size() && 8526 "Mismatch in number of output operands in asm result"); 8527 8528 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8529 DAG.getVTList(ResultVTs), ResultValues); 8530 setValue(&Call, V); 8531 } 8532 8533 // Collect store chains. 8534 if (!OutChains.empty()) 8535 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8536 8537 // Only Update Root if inline assembly has a memory effect. 8538 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8539 DAG.setRoot(Chain); 8540 } 8541 8542 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8543 const Twine &Message) { 8544 LLVMContext &Ctx = *DAG.getContext(); 8545 Ctx.emitError(&Call, Message); 8546 8547 // Make sure we leave the DAG in a valid state 8548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8549 SmallVector<EVT, 1> ValueVTs; 8550 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8551 8552 if (ValueVTs.empty()) 8553 return; 8554 8555 SmallVector<SDValue, 1> Ops; 8556 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8557 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8558 8559 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8560 } 8561 8562 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8563 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8564 MVT::Other, getRoot(), 8565 getValue(I.getArgOperand(0)), 8566 DAG.getSrcValue(I.getArgOperand(0)))); 8567 } 8568 8569 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8571 const DataLayout &DL = DAG.getDataLayout(); 8572 SDValue V = DAG.getVAArg( 8573 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8574 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8575 DL.getABITypeAlign(I.getType()).value()); 8576 DAG.setRoot(V.getValue(1)); 8577 8578 if (I.getType()->isPointerTy()) 8579 V = DAG.getPtrExtOrTrunc( 8580 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8581 setValue(&I, V); 8582 } 8583 8584 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8585 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8586 MVT::Other, getRoot(), 8587 getValue(I.getArgOperand(0)), 8588 DAG.getSrcValue(I.getArgOperand(0)))); 8589 } 8590 8591 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8592 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8593 MVT::Other, getRoot(), 8594 getValue(I.getArgOperand(0)), 8595 getValue(I.getArgOperand(1)), 8596 DAG.getSrcValue(I.getArgOperand(0)), 8597 DAG.getSrcValue(I.getArgOperand(1)))); 8598 } 8599 8600 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8601 const Instruction &I, 8602 SDValue Op) { 8603 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8604 if (!Range) 8605 return Op; 8606 8607 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8608 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8609 return Op; 8610 8611 APInt Lo = CR.getUnsignedMin(); 8612 if (!Lo.isMinValue()) 8613 return Op; 8614 8615 APInt Hi = CR.getUnsignedMax(); 8616 unsigned Bits = std::max(Hi.getActiveBits(), 8617 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8618 8619 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8620 8621 SDLoc SL = getCurSDLoc(); 8622 8623 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8624 DAG.getValueType(SmallVT)); 8625 unsigned NumVals = Op.getNode()->getNumValues(); 8626 if (NumVals == 1) 8627 return ZExt; 8628 8629 SmallVector<SDValue, 4> Ops; 8630 8631 Ops.push_back(ZExt); 8632 for (unsigned I = 1; I != NumVals; ++I) 8633 Ops.push_back(Op.getValue(I)); 8634 8635 return DAG.getMergeValues(Ops, SL); 8636 } 8637 8638 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8639 /// the call being lowered. 8640 /// 8641 /// This is a helper for lowering intrinsics that follow a target calling 8642 /// convention or require stack pointer adjustment. Only a subset of the 8643 /// intrinsic's operands need to participate in the calling convention. 8644 void SelectionDAGBuilder::populateCallLoweringInfo( 8645 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8646 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8647 bool IsPatchPoint) { 8648 TargetLowering::ArgListTy Args; 8649 Args.reserve(NumArgs); 8650 8651 // Populate the argument list. 8652 // Attributes for args start at offset 1, after the return attribute. 8653 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8654 ArgI != ArgE; ++ArgI) { 8655 const Value *V = Call->getOperand(ArgI); 8656 8657 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8658 8659 TargetLowering::ArgListEntry Entry; 8660 Entry.Node = getValue(V); 8661 Entry.Ty = V->getType(); 8662 Entry.setAttributes(Call, ArgI); 8663 Args.push_back(Entry); 8664 } 8665 8666 CLI.setDebugLoc(getCurSDLoc()) 8667 .setChain(getRoot()) 8668 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8669 .setDiscardResult(Call->use_empty()) 8670 .setIsPatchPoint(IsPatchPoint) 8671 .setIsPreallocated( 8672 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8673 } 8674 8675 /// Add a stack map intrinsic call's live variable operands to a stackmap 8676 /// or patchpoint target node's operand list. 8677 /// 8678 /// Constants are converted to TargetConstants purely as an optimization to 8679 /// avoid constant materialization and register allocation. 8680 /// 8681 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8682 /// generate addess computation nodes, and so FinalizeISel can convert the 8683 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8684 /// address materialization and register allocation, but may also be required 8685 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8686 /// alloca in the entry block, then the runtime may assume that the alloca's 8687 /// StackMap location can be read immediately after compilation and that the 8688 /// location is valid at any point during execution (this is similar to the 8689 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8690 /// only available in a register, then the runtime would need to trap when 8691 /// execution reaches the StackMap in order to read the alloca's location. 8692 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8693 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8694 SelectionDAGBuilder &Builder) { 8695 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8696 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8698 Ops.push_back( 8699 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8700 Ops.push_back( 8701 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8702 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8703 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8704 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8705 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8706 } else 8707 Ops.push_back(OpVal); 8708 } 8709 } 8710 8711 /// Lower llvm.experimental.stackmap directly to its target opcode. 8712 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8713 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8714 // [live variables...]) 8715 8716 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8717 8718 SDValue Chain, InFlag, Callee, NullPtr; 8719 SmallVector<SDValue, 32> Ops; 8720 8721 SDLoc DL = getCurSDLoc(); 8722 Callee = getValue(CI.getCalledOperand()); 8723 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8724 8725 // The stackmap intrinsic only records the live variables (the arguments 8726 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8727 // intrinsic, this won't be lowered to a function call. This means we don't 8728 // have to worry about calling conventions and target specific lowering code. 8729 // Instead we perform the call lowering right here. 8730 // 8731 // chain, flag = CALLSEQ_START(chain, 0, 0) 8732 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8733 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8734 // 8735 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8736 InFlag = Chain.getValue(1); 8737 8738 // Add the <id> and <numBytes> constants. 8739 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8740 Ops.push_back(DAG.getTargetConstant( 8741 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8742 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8743 Ops.push_back(DAG.getTargetConstant( 8744 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8745 MVT::i32)); 8746 8747 // Push live variables for the stack map. 8748 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8749 8750 // We are not pushing any register mask info here on the operands list, 8751 // because the stackmap doesn't clobber anything. 8752 8753 // Push the chain and the glue flag. 8754 Ops.push_back(Chain); 8755 Ops.push_back(InFlag); 8756 8757 // Create the STACKMAP node. 8758 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8759 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8760 Chain = SDValue(SM, 0); 8761 InFlag = Chain.getValue(1); 8762 8763 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8764 8765 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8766 8767 // Set the root to the target-lowered call chain. 8768 DAG.setRoot(Chain); 8769 8770 // Inform the Frame Information that we have a stackmap in this function. 8771 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8772 } 8773 8774 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8775 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8776 const BasicBlock *EHPadBB) { 8777 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8778 // i32 <numBytes>, 8779 // i8* <target>, 8780 // i32 <numArgs>, 8781 // [Args...], 8782 // [live variables...]) 8783 8784 CallingConv::ID CC = CB.getCallingConv(); 8785 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8786 bool HasDef = !CB.getType()->isVoidTy(); 8787 SDLoc dl = getCurSDLoc(); 8788 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8789 8790 // Handle immediate and symbolic callees. 8791 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8792 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8793 /*isTarget=*/true); 8794 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8795 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8796 SDLoc(SymbolicCallee), 8797 SymbolicCallee->getValueType(0)); 8798 8799 // Get the real number of arguments participating in the call <numArgs> 8800 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8801 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8802 8803 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8804 // Intrinsics include all meta-operands up to but not including CC. 8805 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8806 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8807 "Not enough arguments provided to the patchpoint intrinsic"); 8808 8809 // For AnyRegCC the arguments are lowered later on manually. 8810 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8811 Type *ReturnTy = 8812 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8813 8814 TargetLowering::CallLoweringInfo CLI(DAG); 8815 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8816 ReturnTy, true); 8817 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8818 8819 SDNode *CallEnd = Result.second.getNode(); 8820 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8821 CallEnd = CallEnd->getOperand(0).getNode(); 8822 8823 /// Get a call instruction from the call sequence chain. 8824 /// Tail calls are not allowed. 8825 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8826 "Expected a callseq node."); 8827 SDNode *Call = CallEnd->getOperand(0).getNode(); 8828 bool HasGlue = Call->getGluedNode(); 8829 8830 // Replace the target specific call node with the patchable intrinsic. 8831 SmallVector<SDValue, 8> Ops; 8832 8833 // Add the <id> and <numBytes> constants. 8834 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8835 Ops.push_back(DAG.getTargetConstant( 8836 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8837 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8838 Ops.push_back(DAG.getTargetConstant( 8839 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8840 MVT::i32)); 8841 8842 // Add the callee. 8843 Ops.push_back(Callee); 8844 8845 // Adjust <numArgs> to account for any arguments that have been passed on the 8846 // stack instead. 8847 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8848 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8849 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8850 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8851 8852 // Add the calling convention 8853 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8854 8855 // Add the arguments we omitted previously. The register allocator should 8856 // place these in any free register. 8857 if (IsAnyRegCC) 8858 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8859 Ops.push_back(getValue(CB.getArgOperand(i))); 8860 8861 // Push the arguments from the call instruction up to the register mask. 8862 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8863 Ops.append(Call->op_begin() + 2, e); 8864 8865 // Push live variables for the stack map. 8866 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8867 8868 // Push the register mask info. 8869 if (HasGlue) 8870 Ops.push_back(*(Call->op_end()-2)); 8871 else 8872 Ops.push_back(*(Call->op_end()-1)); 8873 8874 // Push the chain (this is originally the first operand of the call, but 8875 // becomes now the last or second to last operand). 8876 Ops.push_back(*(Call->op_begin())); 8877 8878 // Push the glue flag (last operand). 8879 if (HasGlue) 8880 Ops.push_back(*(Call->op_end()-1)); 8881 8882 SDVTList NodeTys; 8883 if (IsAnyRegCC && HasDef) { 8884 // Create the return types based on the intrinsic definition 8885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8886 SmallVector<EVT, 3> ValueVTs; 8887 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8888 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8889 8890 // There is always a chain and a glue type at the end 8891 ValueVTs.push_back(MVT::Other); 8892 ValueVTs.push_back(MVT::Glue); 8893 NodeTys = DAG.getVTList(ValueVTs); 8894 } else 8895 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8896 8897 // Replace the target specific call node with a PATCHPOINT node. 8898 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8899 dl, NodeTys, Ops); 8900 8901 // Update the NodeMap. 8902 if (HasDef) { 8903 if (IsAnyRegCC) 8904 setValue(&CB, SDValue(MN, 0)); 8905 else 8906 setValue(&CB, Result.first); 8907 } 8908 8909 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8910 // call sequence. Furthermore the location of the chain and glue can change 8911 // when the AnyReg calling convention is used and the intrinsic returns a 8912 // value. 8913 if (IsAnyRegCC && HasDef) { 8914 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8915 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8916 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8917 } else 8918 DAG.ReplaceAllUsesWith(Call, MN); 8919 DAG.DeleteNode(Call); 8920 8921 // Inform the Frame Information that we have a patchpoint in this function. 8922 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8923 } 8924 8925 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8926 unsigned Intrinsic) { 8927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8928 SDValue Op1 = getValue(I.getArgOperand(0)); 8929 SDValue Op2; 8930 if (I.getNumArgOperands() > 1) 8931 Op2 = getValue(I.getArgOperand(1)); 8932 SDLoc dl = getCurSDLoc(); 8933 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8934 SDValue Res; 8935 SDNodeFlags SDFlags; 8936 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 8937 SDFlags.copyFMF(*FPMO); 8938 8939 switch (Intrinsic) { 8940 case Intrinsic::vector_reduce_fadd: 8941 if (SDFlags.hasAllowReassociation()) 8942 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8943 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 8944 SDFlags); 8945 else 8946 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 8947 break; 8948 case Intrinsic::vector_reduce_fmul: 8949 if (SDFlags.hasAllowReassociation()) 8950 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8951 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 8952 SDFlags); 8953 else 8954 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 8955 break; 8956 case Intrinsic::vector_reduce_add: 8957 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8958 break; 8959 case Intrinsic::vector_reduce_mul: 8960 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8961 break; 8962 case Intrinsic::vector_reduce_and: 8963 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8964 break; 8965 case Intrinsic::vector_reduce_or: 8966 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8967 break; 8968 case Intrinsic::vector_reduce_xor: 8969 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8970 break; 8971 case Intrinsic::vector_reduce_smax: 8972 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8973 break; 8974 case Intrinsic::vector_reduce_smin: 8975 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8976 break; 8977 case Intrinsic::vector_reduce_umax: 8978 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8979 break; 8980 case Intrinsic::vector_reduce_umin: 8981 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8982 break; 8983 case Intrinsic::vector_reduce_fmax: 8984 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8985 break; 8986 case Intrinsic::vector_reduce_fmin: 8987 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8988 break; 8989 default: 8990 llvm_unreachable("Unhandled vector reduce intrinsic"); 8991 } 8992 setValue(&I, Res); 8993 } 8994 8995 /// Returns an AttributeList representing the attributes applied to the return 8996 /// value of the given call. 8997 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8998 SmallVector<Attribute::AttrKind, 2> Attrs; 8999 if (CLI.RetSExt) 9000 Attrs.push_back(Attribute::SExt); 9001 if (CLI.RetZExt) 9002 Attrs.push_back(Attribute::ZExt); 9003 if (CLI.IsInReg) 9004 Attrs.push_back(Attribute::InReg); 9005 9006 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9007 Attrs); 9008 } 9009 9010 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9011 /// implementation, which just calls LowerCall. 9012 /// FIXME: When all targets are 9013 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9014 std::pair<SDValue, SDValue> 9015 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9016 // Handle the incoming return values from the call. 9017 CLI.Ins.clear(); 9018 Type *OrigRetTy = CLI.RetTy; 9019 SmallVector<EVT, 4> RetTys; 9020 SmallVector<uint64_t, 4> Offsets; 9021 auto &DL = CLI.DAG.getDataLayout(); 9022 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9023 9024 if (CLI.IsPostTypeLegalization) { 9025 // If we are lowering a libcall after legalization, split the return type. 9026 SmallVector<EVT, 4> OldRetTys; 9027 SmallVector<uint64_t, 4> OldOffsets; 9028 RetTys.swap(OldRetTys); 9029 Offsets.swap(OldOffsets); 9030 9031 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9032 EVT RetVT = OldRetTys[i]; 9033 uint64_t Offset = OldOffsets[i]; 9034 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9035 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9036 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9037 RetTys.append(NumRegs, RegisterVT); 9038 for (unsigned j = 0; j != NumRegs; ++j) 9039 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9040 } 9041 } 9042 9043 SmallVector<ISD::OutputArg, 4> Outs; 9044 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9045 9046 bool CanLowerReturn = 9047 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9048 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9049 9050 SDValue DemoteStackSlot; 9051 int DemoteStackIdx = -100; 9052 if (!CanLowerReturn) { 9053 // FIXME: equivalent assert? 9054 // assert(!CS.hasInAllocaArgument() && 9055 // "sret demotion is incompatible with inalloca"); 9056 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9057 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9058 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9059 DemoteStackIdx = 9060 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9061 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9062 DL.getAllocaAddrSpace()); 9063 9064 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9065 ArgListEntry Entry; 9066 Entry.Node = DemoteStackSlot; 9067 Entry.Ty = StackSlotPtrType; 9068 Entry.IsSExt = false; 9069 Entry.IsZExt = false; 9070 Entry.IsInReg = false; 9071 Entry.IsSRet = true; 9072 Entry.IsNest = false; 9073 Entry.IsByVal = false; 9074 Entry.IsByRef = false; 9075 Entry.IsReturned = false; 9076 Entry.IsSwiftSelf = false; 9077 Entry.IsSwiftError = false; 9078 Entry.IsCFGuardTarget = false; 9079 Entry.Alignment = Alignment; 9080 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9081 CLI.NumFixedArgs += 1; 9082 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9083 9084 // sret demotion isn't compatible with tail-calls, since the sret argument 9085 // points into the callers stack frame. 9086 CLI.IsTailCall = false; 9087 } else { 9088 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9089 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9090 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9091 ISD::ArgFlagsTy Flags; 9092 if (NeedsRegBlock) { 9093 Flags.setInConsecutiveRegs(); 9094 if (I == RetTys.size() - 1) 9095 Flags.setInConsecutiveRegsLast(); 9096 } 9097 EVT VT = RetTys[I]; 9098 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9099 CLI.CallConv, VT); 9100 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9101 CLI.CallConv, VT); 9102 for (unsigned i = 0; i != NumRegs; ++i) { 9103 ISD::InputArg MyFlags; 9104 MyFlags.Flags = Flags; 9105 MyFlags.VT = RegisterVT; 9106 MyFlags.ArgVT = VT; 9107 MyFlags.Used = CLI.IsReturnValueUsed; 9108 if (CLI.RetTy->isPointerTy()) { 9109 MyFlags.Flags.setPointer(); 9110 MyFlags.Flags.setPointerAddrSpace( 9111 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9112 } 9113 if (CLI.RetSExt) 9114 MyFlags.Flags.setSExt(); 9115 if (CLI.RetZExt) 9116 MyFlags.Flags.setZExt(); 9117 if (CLI.IsInReg) 9118 MyFlags.Flags.setInReg(); 9119 CLI.Ins.push_back(MyFlags); 9120 } 9121 } 9122 } 9123 9124 // We push in swifterror return as the last element of CLI.Ins. 9125 ArgListTy &Args = CLI.getArgs(); 9126 if (supportSwiftError()) { 9127 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9128 if (Args[i].IsSwiftError) { 9129 ISD::InputArg MyFlags; 9130 MyFlags.VT = getPointerTy(DL); 9131 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9132 MyFlags.Flags.setSwiftError(); 9133 CLI.Ins.push_back(MyFlags); 9134 } 9135 } 9136 } 9137 9138 // Handle all of the outgoing arguments. 9139 CLI.Outs.clear(); 9140 CLI.OutVals.clear(); 9141 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9142 SmallVector<EVT, 4> ValueVTs; 9143 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9144 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9145 Type *FinalType = Args[i].Ty; 9146 if (Args[i].IsByVal) 9147 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9148 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9149 FinalType, CLI.CallConv, CLI.IsVarArg); 9150 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9151 ++Value) { 9152 EVT VT = ValueVTs[Value]; 9153 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9154 SDValue Op = SDValue(Args[i].Node.getNode(), 9155 Args[i].Node.getResNo() + Value); 9156 ISD::ArgFlagsTy Flags; 9157 9158 // Certain targets (such as MIPS), may have a different ABI alignment 9159 // for a type depending on the context. Give the target a chance to 9160 // specify the alignment it wants. 9161 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9162 9163 if (Args[i].Ty->isPointerTy()) { 9164 Flags.setPointer(); 9165 Flags.setPointerAddrSpace( 9166 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9167 } 9168 if (Args[i].IsZExt) 9169 Flags.setZExt(); 9170 if (Args[i].IsSExt) 9171 Flags.setSExt(); 9172 if (Args[i].IsInReg) { 9173 // If we are using vectorcall calling convention, a structure that is 9174 // passed InReg - is surely an HVA 9175 if (CLI.CallConv == CallingConv::X86_VectorCall && 9176 isa<StructType>(FinalType)) { 9177 // The first value of a structure is marked 9178 if (0 == Value) 9179 Flags.setHvaStart(); 9180 Flags.setHva(); 9181 } 9182 // Set InReg Flag 9183 Flags.setInReg(); 9184 } 9185 if (Args[i].IsSRet) 9186 Flags.setSRet(); 9187 if (Args[i].IsSwiftSelf) 9188 Flags.setSwiftSelf(); 9189 if (Args[i].IsSwiftError) 9190 Flags.setSwiftError(); 9191 if (Args[i].IsCFGuardTarget) 9192 Flags.setCFGuardTarget(); 9193 if (Args[i].IsByVal) 9194 Flags.setByVal(); 9195 if (Args[i].IsByRef) 9196 Flags.setByRef(); 9197 if (Args[i].IsPreallocated) { 9198 Flags.setPreallocated(); 9199 // Set the byval flag for CCAssignFn callbacks that don't know about 9200 // preallocated. This way we can know how many bytes we should've 9201 // allocated and how many bytes a callee cleanup function will pop. If 9202 // we port preallocated to more targets, we'll have to add custom 9203 // preallocated handling in the various CC lowering callbacks. 9204 Flags.setByVal(); 9205 } 9206 if (Args[i].IsInAlloca) { 9207 Flags.setInAlloca(); 9208 // Set the byval flag for CCAssignFn callbacks that don't know about 9209 // inalloca. This way we can know how many bytes we should've allocated 9210 // and how many bytes a callee cleanup function will pop. If we port 9211 // inalloca to more targets, we'll have to add custom inalloca handling 9212 // in the various CC lowering callbacks. 9213 Flags.setByVal(); 9214 } 9215 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9216 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9217 Type *ElementTy = Ty->getElementType(); 9218 9219 unsigned FrameSize = DL.getTypeAllocSize( 9220 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9221 Flags.setByValSize(FrameSize); 9222 9223 // info is not there but there are cases it cannot get right. 9224 Align FrameAlign; 9225 if (auto MA = Args[i].Alignment) 9226 FrameAlign = *MA; 9227 else 9228 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9229 Flags.setByValAlign(FrameAlign); 9230 } 9231 if (Args[i].IsNest) 9232 Flags.setNest(); 9233 if (NeedsRegBlock) 9234 Flags.setInConsecutiveRegs(); 9235 Flags.setOrigAlign(OriginalAlignment); 9236 9237 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9238 CLI.CallConv, VT); 9239 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9240 CLI.CallConv, VT); 9241 SmallVector<SDValue, 4> Parts(NumParts); 9242 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9243 9244 if (Args[i].IsSExt) 9245 ExtendKind = ISD::SIGN_EXTEND; 9246 else if (Args[i].IsZExt) 9247 ExtendKind = ISD::ZERO_EXTEND; 9248 9249 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9250 // for now. 9251 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9252 CanLowerReturn) { 9253 assert((CLI.RetTy == Args[i].Ty || 9254 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9255 CLI.RetTy->getPointerAddressSpace() == 9256 Args[i].Ty->getPointerAddressSpace())) && 9257 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9258 // Before passing 'returned' to the target lowering code, ensure that 9259 // either the register MVT and the actual EVT are the same size or that 9260 // the return value and argument are extended in the same way; in these 9261 // cases it's safe to pass the argument register value unchanged as the 9262 // return register value (although it's at the target's option whether 9263 // to do so) 9264 // TODO: allow code generation to take advantage of partially preserved 9265 // registers rather than clobbering the entire register when the 9266 // parameter extension method is not compatible with the return 9267 // extension method 9268 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9269 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9270 CLI.RetZExt == Args[i].IsZExt)) 9271 Flags.setReturned(); 9272 } 9273 9274 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9275 CLI.CallConv, ExtendKind); 9276 9277 for (unsigned j = 0; j != NumParts; ++j) { 9278 // if it isn't first piece, alignment must be 1 9279 // For scalable vectors the scalable part is currently handled 9280 // by individual targets, so we just use the known minimum size here. 9281 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9282 i < CLI.NumFixedArgs, i, 9283 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9284 if (NumParts > 1 && j == 0) 9285 MyFlags.Flags.setSplit(); 9286 else if (j != 0) { 9287 MyFlags.Flags.setOrigAlign(Align(1)); 9288 if (j == NumParts - 1) 9289 MyFlags.Flags.setSplitEnd(); 9290 } 9291 9292 CLI.Outs.push_back(MyFlags); 9293 CLI.OutVals.push_back(Parts[j]); 9294 } 9295 9296 if (NeedsRegBlock && Value == NumValues - 1) 9297 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9298 } 9299 } 9300 9301 SmallVector<SDValue, 4> InVals; 9302 CLI.Chain = LowerCall(CLI, InVals); 9303 9304 // Update CLI.InVals to use outside of this function. 9305 CLI.InVals = InVals; 9306 9307 // Verify that the target's LowerCall behaved as expected. 9308 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9309 "LowerCall didn't return a valid chain!"); 9310 assert((!CLI.IsTailCall || InVals.empty()) && 9311 "LowerCall emitted a return value for a tail call!"); 9312 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9313 "LowerCall didn't emit the correct number of values!"); 9314 9315 // For a tail call, the return value is merely live-out and there aren't 9316 // any nodes in the DAG representing it. Return a special value to 9317 // indicate that a tail call has been emitted and no more Instructions 9318 // should be processed in the current block. 9319 if (CLI.IsTailCall) { 9320 CLI.DAG.setRoot(CLI.Chain); 9321 return std::make_pair(SDValue(), SDValue()); 9322 } 9323 9324 #ifndef NDEBUG 9325 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9326 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9327 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9328 "LowerCall emitted a value with the wrong type!"); 9329 } 9330 #endif 9331 9332 SmallVector<SDValue, 4> ReturnValues; 9333 if (!CanLowerReturn) { 9334 // The instruction result is the result of loading from the 9335 // hidden sret parameter. 9336 SmallVector<EVT, 1> PVTs; 9337 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9338 9339 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9340 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9341 EVT PtrVT = PVTs[0]; 9342 9343 unsigned NumValues = RetTys.size(); 9344 ReturnValues.resize(NumValues); 9345 SmallVector<SDValue, 4> Chains(NumValues); 9346 9347 // An aggregate return value cannot wrap around the address space, so 9348 // offsets to its parts don't wrap either. 9349 SDNodeFlags Flags; 9350 Flags.setNoUnsignedWrap(true); 9351 9352 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9353 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9354 for (unsigned i = 0; i < NumValues; ++i) { 9355 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9356 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9357 PtrVT), Flags); 9358 SDValue L = CLI.DAG.getLoad( 9359 RetTys[i], CLI.DL, CLI.Chain, Add, 9360 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9361 DemoteStackIdx, Offsets[i]), 9362 HiddenSRetAlign); 9363 ReturnValues[i] = L; 9364 Chains[i] = L.getValue(1); 9365 } 9366 9367 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9368 } else { 9369 // Collect the legal value parts into potentially illegal values 9370 // that correspond to the original function's return values. 9371 Optional<ISD::NodeType> AssertOp; 9372 if (CLI.RetSExt) 9373 AssertOp = ISD::AssertSext; 9374 else if (CLI.RetZExt) 9375 AssertOp = ISD::AssertZext; 9376 unsigned CurReg = 0; 9377 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9378 EVT VT = RetTys[I]; 9379 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9380 CLI.CallConv, VT); 9381 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9382 CLI.CallConv, VT); 9383 9384 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9385 NumRegs, RegisterVT, VT, nullptr, 9386 CLI.CallConv, AssertOp)); 9387 CurReg += NumRegs; 9388 } 9389 9390 // For a function returning void, there is no return value. We can't create 9391 // such a node, so we just return a null return value in that case. In 9392 // that case, nothing will actually look at the value. 9393 if (ReturnValues.empty()) 9394 return std::make_pair(SDValue(), CLI.Chain); 9395 } 9396 9397 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9398 CLI.DAG.getVTList(RetTys), ReturnValues); 9399 return std::make_pair(Res, CLI.Chain); 9400 } 9401 9402 void TargetLowering::LowerOperationWrapper(SDNode *N, 9403 SmallVectorImpl<SDValue> &Results, 9404 SelectionDAG &DAG) const { 9405 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9406 Results.push_back(Res); 9407 } 9408 9409 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9410 llvm_unreachable("LowerOperation not implemented for this target!"); 9411 } 9412 9413 void 9414 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9415 SDValue Op = getNonRegisterValue(V); 9416 assert((Op.getOpcode() != ISD::CopyFromReg || 9417 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9418 "Copy from a reg to the same reg!"); 9419 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9420 9421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9422 // If this is an InlineAsm we have to match the registers required, not the 9423 // notional registers required by the type. 9424 9425 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9426 None); // This is not an ABI copy. 9427 SDValue Chain = DAG.getEntryNode(); 9428 9429 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9430 FuncInfo.PreferredExtendType.end()) 9431 ? ISD::ANY_EXTEND 9432 : FuncInfo.PreferredExtendType[V]; 9433 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9434 PendingExports.push_back(Chain); 9435 } 9436 9437 #include "llvm/CodeGen/SelectionDAGISel.h" 9438 9439 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9440 /// entry block, return true. This includes arguments used by switches, since 9441 /// the switch may expand into multiple basic blocks. 9442 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9443 // With FastISel active, we may be splitting blocks, so force creation 9444 // of virtual registers for all non-dead arguments. 9445 if (FastISel) 9446 return A->use_empty(); 9447 9448 const BasicBlock &Entry = A->getParent()->front(); 9449 for (const User *U : A->users()) 9450 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9451 return false; // Use not in entry block. 9452 9453 return true; 9454 } 9455 9456 using ArgCopyElisionMapTy = 9457 DenseMap<const Argument *, 9458 std::pair<const AllocaInst *, const StoreInst *>>; 9459 9460 /// Scan the entry block of the function in FuncInfo for arguments that look 9461 /// like copies into a local alloca. Record any copied arguments in 9462 /// ArgCopyElisionCandidates. 9463 static void 9464 findArgumentCopyElisionCandidates(const DataLayout &DL, 9465 FunctionLoweringInfo *FuncInfo, 9466 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9467 // Record the state of every static alloca used in the entry block. Argument 9468 // allocas are all used in the entry block, so we need approximately as many 9469 // entries as we have arguments. 9470 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9471 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9472 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9473 StaticAllocas.reserve(NumArgs * 2); 9474 9475 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9476 if (!V) 9477 return nullptr; 9478 V = V->stripPointerCasts(); 9479 const auto *AI = dyn_cast<AllocaInst>(V); 9480 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9481 return nullptr; 9482 auto Iter = StaticAllocas.insert({AI, Unknown}); 9483 return &Iter.first->second; 9484 }; 9485 9486 // Look for stores of arguments to static allocas. Look through bitcasts and 9487 // GEPs to handle type coercions, as long as the alloca is fully initialized 9488 // by the store. Any non-store use of an alloca escapes it and any subsequent 9489 // unanalyzed store might write it. 9490 // FIXME: Handle structs initialized with multiple stores. 9491 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9492 // Look for stores, and handle non-store uses conservatively. 9493 const auto *SI = dyn_cast<StoreInst>(&I); 9494 if (!SI) { 9495 // We will look through cast uses, so ignore them completely. 9496 if (I.isCast()) 9497 continue; 9498 // Ignore debug info intrinsics, they don't escape or store to allocas. 9499 if (isa<DbgInfoIntrinsic>(I)) 9500 continue; 9501 // This is an unknown instruction. Assume it escapes or writes to all 9502 // static alloca operands. 9503 for (const Use &U : I.operands()) { 9504 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9505 *Info = StaticAllocaInfo::Clobbered; 9506 } 9507 continue; 9508 } 9509 9510 // If the stored value is a static alloca, mark it as escaped. 9511 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9512 *Info = StaticAllocaInfo::Clobbered; 9513 9514 // Check if the destination is a static alloca. 9515 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9516 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9517 if (!Info) 9518 continue; 9519 const AllocaInst *AI = cast<AllocaInst>(Dst); 9520 9521 // Skip allocas that have been initialized or clobbered. 9522 if (*Info != StaticAllocaInfo::Unknown) 9523 continue; 9524 9525 // Check if the stored value is an argument, and that this store fully 9526 // initializes the alloca. Don't elide copies from the same argument twice. 9527 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9528 const auto *Arg = dyn_cast<Argument>(Val); 9529 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9530 Arg->getType()->isEmptyTy() || 9531 DL.getTypeStoreSize(Arg->getType()) != 9532 DL.getTypeAllocSize(AI->getAllocatedType()) || 9533 ArgCopyElisionCandidates.count(Arg)) { 9534 *Info = StaticAllocaInfo::Clobbered; 9535 continue; 9536 } 9537 9538 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9539 << '\n'); 9540 9541 // Mark this alloca and store for argument copy elision. 9542 *Info = StaticAllocaInfo::Elidable; 9543 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9544 9545 // Stop scanning if we've seen all arguments. This will happen early in -O0 9546 // builds, which is useful, because -O0 builds have large entry blocks and 9547 // many allocas. 9548 if (ArgCopyElisionCandidates.size() == NumArgs) 9549 break; 9550 } 9551 } 9552 9553 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9554 /// ArgVal is a load from a suitable fixed stack object. 9555 static void tryToElideArgumentCopy( 9556 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9557 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9558 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9559 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9560 SDValue ArgVal, bool &ArgHasUses) { 9561 // Check if this is a load from a fixed stack object. 9562 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9563 if (!LNode) 9564 return; 9565 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9566 if (!FINode) 9567 return; 9568 9569 // Check that the fixed stack object is the right size and alignment. 9570 // Look at the alignment that the user wrote on the alloca instead of looking 9571 // at the stack object. 9572 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9573 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9574 const AllocaInst *AI = ArgCopyIter->second.first; 9575 int FixedIndex = FINode->getIndex(); 9576 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9577 int OldIndex = AllocaIndex; 9578 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9579 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9580 LLVM_DEBUG( 9581 dbgs() << " argument copy elision failed due to bad fixed stack " 9582 "object size\n"); 9583 return; 9584 } 9585 Align RequiredAlignment = AI->getAlign(); 9586 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9587 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9588 "greater than stack argument alignment (" 9589 << DebugStr(RequiredAlignment) << " vs " 9590 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9591 return; 9592 } 9593 9594 // Perform the elision. Delete the old stack object and replace its only use 9595 // in the variable info map. Mark the stack object as mutable. 9596 LLVM_DEBUG({ 9597 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9598 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9599 << '\n'; 9600 }); 9601 MFI.RemoveStackObject(OldIndex); 9602 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9603 AllocaIndex = FixedIndex; 9604 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9605 Chains.push_back(ArgVal.getValue(1)); 9606 9607 // Avoid emitting code for the store implementing the copy. 9608 const StoreInst *SI = ArgCopyIter->second.second; 9609 ElidedArgCopyInstrs.insert(SI); 9610 9611 // Check for uses of the argument again so that we can avoid exporting ArgVal 9612 // if it is't used by anything other than the store. 9613 for (const Value *U : Arg.users()) { 9614 if (U != SI) { 9615 ArgHasUses = true; 9616 break; 9617 } 9618 } 9619 } 9620 9621 void SelectionDAGISel::LowerArguments(const Function &F) { 9622 SelectionDAG &DAG = SDB->DAG; 9623 SDLoc dl = SDB->getCurSDLoc(); 9624 const DataLayout &DL = DAG.getDataLayout(); 9625 SmallVector<ISD::InputArg, 16> Ins; 9626 9627 // In Naked functions we aren't going to save any registers. 9628 if (F.hasFnAttribute(Attribute::Naked)) 9629 return; 9630 9631 if (!FuncInfo->CanLowerReturn) { 9632 // Put in an sret pointer parameter before all the other parameters. 9633 SmallVector<EVT, 1> ValueVTs; 9634 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9635 F.getReturnType()->getPointerTo( 9636 DAG.getDataLayout().getAllocaAddrSpace()), 9637 ValueVTs); 9638 9639 // NOTE: Assuming that a pointer will never break down to more than one VT 9640 // or one register. 9641 ISD::ArgFlagsTy Flags; 9642 Flags.setSRet(); 9643 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9644 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9645 ISD::InputArg::NoArgIndex, 0); 9646 Ins.push_back(RetArg); 9647 } 9648 9649 // Look for stores of arguments to static allocas. Mark such arguments with a 9650 // flag to ask the target to give us the memory location of that argument if 9651 // available. 9652 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9653 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9654 ArgCopyElisionCandidates); 9655 9656 // Set up the incoming argument description vector. 9657 for (const Argument &Arg : F.args()) { 9658 unsigned ArgNo = Arg.getArgNo(); 9659 SmallVector<EVT, 4> ValueVTs; 9660 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9661 bool isArgValueUsed = !Arg.use_empty(); 9662 unsigned PartBase = 0; 9663 Type *FinalType = Arg.getType(); 9664 if (Arg.hasAttribute(Attribute::ByVal)) 9665 FinalType = Arg.getParamByValType(); 9666 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9667 FinalType, F.getCallingConv(), F.isVarArg()); 9668 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9669 Value != NumValues; ++Value) { 9670 EVT VT = ValueVTs[Value]; 9671 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9672 ISD::ArgFlagsTy Flags; 9673 9674 // Certain targets (such as MIPS), may have a different ABI alignment 9675 // for a type depending on the context. Give the target a chance to 9676 // specify the alignment it wants. 9677 const Align OriginalAlignment( 9678 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9679 9680 if (Arg.getType()->isPointerTy()) { 9681 Flags.setPointer(); 9682 Flags.setPointerAddrSpace( 9683 cast<PointerType>(Arg.getType())->getAddressSpace()); 9684 } 9685 if (Arg.hasAttribute(Attribute::ZExt)) 9686 Flags.setZExt(); 9687 if (Arg.hasAttribute(Attribute::SExt)) 9688 Flags.setSExt(); 9689 if (Arg.hasAttribute(Attribute::InReg)) { 9690 // If we are using vectorcall calling convention, a structure that is 9691 // passed InReg - is surely an HVA 9692 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9693 isa<StructType>(Arg.getType())) { 9694 // The first value of a structure is marked 9695 if (0 == Value) 9696 Flags.setHvaStart(); 9697 Flags.setHva(); 9698 } 9699 // Set InReg Flag 9700 Flags.setInReg(); 9701 } 9702 if (Arg.hasAttribute(Attribute::StructRet)) 9703 Flags.setSRet(); 9704 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9705 Flags.setSwiftSelf(); 9706 if (Arg.hasAttribute(Attribute::SwiftError)) 9707 Flags.setSwiftError(); 9708 if (Arg.hasAttribute(Attribute::ByVal)) 9709 Flags.setByVal(); 9710 if (Arg.hasAttribute(Attribute::ByRef)) 9711 Flags.setByRef(); 9712 if (Arg.hasAttribute(Attribute::InAlloca)) { 9713 Flags.setInAlloca(); 9714 // Set the byval flag for CCAssignFn callbacks that don't know about 9715 // inalloca. This way we can know how many bytes we should've allocated 9716 // and how many bytes a callee cleanup function will pop. If we port 9717 // inalloca to more targets, we'll have to add custom inalloca handling 9718 // in the various CC lowering callbacks. 9719 Flags.setByVal(); 9720 } 9721 if (Arg.hasAttribute(Attribute::Preallocated)) { 9722 Flags.setPreallocated(); 9723 // Set the byval flag for CCAssignFn callbacks that don't know about 9724 // preallocated. This way we can know how many bytes we should've 9725 // allocated and how many bytes a callee cleanup function will pop. If 9726 // we port preallocated to more targets, we'll have to add custom 9727 // preallocated handling in the various CC lowering callbacks. 9728 Flags.setByVal(); 9729 } 9730 9731 Type *ArgMemTy = nullptr; 9732 if (F.getCallingConv() == CallingConv::X86_INTR) { 9733 // IA Interrupt passes frame (1st parameter) by value in the stack. 9734 if (ArgNo == 0) { 9735 Flags.setByVal(); 9736 // FIXME: Dependence on pointee element type. See bug 46672. 9737 ArgMemTy = Arg.getType()->getPointerElementType(); 9738 } 9739 } 9740 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9741 Flags.isByRef()) { 9742 if (!ArgMemTy) 9743 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9744 9745 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9746 9747 // For in-memory arguments, size and alignment should be passed from FE. 9748 // BE will guess if this info is not there but there are cases it cannot 9749 // get right. 9750 MaybeAlign MemAlign = Arg.getParamAlign(); 9751 if (!MemAlign) 9752 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9753 9754 if (Flags.isByRef()) { 9755 Flags.setByRefSize(MemSize); 9756 Flags.setByRefAlign(*MemAlign); 9757 } else { 9758 Flags.setByValSize(MemSize); 9759 Flags.setByValAlign(*MemAlign); 9760 } 9761 } 9762 9763 if (Arg.hasAttribute(Attribute::Nest)) 9764 Flags.setNest(); 9765 if (NeedsRegBlock) 9766 Flags.setInConsecutiveRegs(); 9767 Flags.setOrigAlign(OriginalAlignment); 9768 if (ArgCopyElisionCandidates.count(&Arg)) 9769 Flags.setCopyElisionCandidate(); 9770 if (Arg.hasAttribute(Attribute::Returned)) 9771 Flags.setReturned(); 9772 9773 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9774 *CurDAG->getContext(), F.getCallingConv(), VT); 9775 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9776 *CurDAG->getContext(), F.getCallingConv(), VT); 9777 for (unsigned i = 0; i != NumRegs; ++i) { 9778 // For scalable vectors, use the minimum size; individual targets 9779 // are responsible for handling scalable vector arguments and 9780 // return values. 9781 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9782 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9783 if (NumRegs > 1 && i == 0) 9784 MyFlags.Flags.setSplit(); 9785 // if it isn't first piece, alignment must be 1 9786 else if (i > 0) { 9787 MyFlags.Flags.setOrigAlign(Align(1)); 9788 if (i == NumRegs - 1) 9789 MyFlags.Flags.setSplitEnd(); 9790 } 9791 Ins.push_back(MyFlags); 9792 } 9793 if (NeedsRegBlock && Value == NumValues - 1) 9794 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9795 PartBase += VT.getStoreSize().getKnownMinSize(); 9796 } 9797 } 9798 9799 // Call the target to set up the argument values. 9800 SmallVector<SDValue, 8> InVals; 9801 SDValue NewRoot = TLI->LowerFormalArguments( 9802 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9803 9804 // Verify that the target's LowerFormalArguments behaved as expected. 9805 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9806 "LowerFormalArguments didn't return a valid chain!"); 9807 assert(InVals.size() == Ins.size() && 9808 "LowerFormalArguments didn't emit the correct number of values!"); 9809 LLVM_DEBUG({ 9810 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9811 assert(InVals[i].getNode() && 9812 "LowerFormalArguments emitted a null value!"); 9813 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9814 "LowerFormalArguments emitted a value with the wrong type!"); 9815 } 9816 }); 9817 9818 // Update the DAG with the new chain value resulting from argument lowering. 9819 DAG.setRoot(NewRoot); 9820 9821 // Set up the argument values. 9822 unsigned i = 0; 9823 if (!FuncInfo->CanLowerReturn) { 9824 // Create a virtual register for the sret pointer, and put in a copy 9825 // from the sret argument into it. 9826 SmallVector<EVT, 1> ValueVTs; 9827 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9828 F.getReturnType()->getPointerTo( 9829 DAG.getDataLayout().getAllocaAddrSpace()), 9830 ValueVTs); 9831 MVT VT = ValueVTs[0].getSimpleVT(); 9832 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9833 Optional<ISD::NodeType> AssertOp = None; 9834 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9835 nullptr, F.getCallingConv(), AssertOp); 9836 9837 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9838 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9839 Register SRetReg = 9840 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9841 FuncInfo->DemoteRegister = SRetReg; 9842 NewRoot = 9843 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9844 DAG.setRoot(NewRoot); 9845 9846 // i indexes lowered arguments. Bump it past the hidden sret argument. 9847 ++i; 9848 } 9849 9850 SmallVector<SDValue, 4> Chains; 9851 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9852 for (const Argument &Arg : F.args()) { 9853 SmallVector<SDValue, 4> ArgValues; 9854 SmallVector<EVT, 4> ValueVTs; 9855 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9856 unsigned NumValues = ValueVTs.size(); 9857 if (NumValues == 0) 9858 continue; 9859 9860 bool ArgHasUses = !Arg.use_empty(); 9861 9862 // Elide the copying store if the target loaded this argument from a 9863 // suitable fixed stack object. 9864 if (Ins[i].Flags.isCopyElisionCandidate()) { 9865 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9866 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9867 InVals[i], ArgHasUses); 9868 } 9869 9870 // If this argument is unused then remember its value. It is used to generate 9871 // debugging information. 9872 bool isSwiftErrorArg = 9873 TLI->supportSwiftError() && 9874 Arg.hasAttribute(Attribute::SwiftError); 9875 if (!ArgHasUses && !isSwiftErrorArg) { 9876 SDB->setUnusedArgValue(&Arg, InVals[i]); 9877 9878 // Also remember any frame index for use in FastISel. 9879 if (FrameIndexSDNode *FI = 9880 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9881 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9882 } 9883 9884 for (unsigned Val = 0; Val != NumValues; ++Val) { 9885 EVT VT = ValueVTs[Val]; 9886 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9887 F.getCallingConv(), VT); 9888 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9889 *CurDAG->getContext(), F.getCallingConv(), VT); 9890 9891 // Even an apparent 'unused' swifterror argument needs to be returned. So 9892 // we do generate a copy for it that can be used on return from the 9893 // function. 9894 if (ArgHasUses || isSwiftErrorArg) { 9895 Optional<ISD::NodeType> AssertOp; 9896 if (Arg.hasAttribute(Attribute::SExt)) 9897 AssertOp = ISD::AssertSext; 9898 else if (Arg.hasAttribute(Attribute::ZExt)) 9899 AssertOp = ISD::AssertZext; 9900 9901 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9902 PartVT, VT, nullptr, 9903 F.getCallingConv(), AssertOp)); 9904 } 9905 9906 i += NumParts; 9907 } 9908 9909 // We don't need to do anything else for unused arguments. 9910 if (ArgValues.empty()) 9911 continue; 9912 9913 // Note down frame index. 9914 if (FrameIndexSDNode *FI = 9915 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9916 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9917 9918 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9919 SDB->getCurSDLoc()); 9920 9921 SDB->setValue(&Arg, Res); 9922 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9923 // We want to associate the argument with the frame index, among 9924 // involved operands, that correspond to the lowest address. The 9925 // getCopyFromParts function, called earlier, is swapping the order of 9926 // the operands to BUILD_PAIR depending on endianness. The result of 9927 // that swapping is that the least significant bits of the argument will 9928 // be in the first operand of the BUILD_PAIR node, and the most 9929 // significant bits will be in the second operand. 9930 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9931 if (LoadSDNode *LNode = 9932 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9933 if (FrameIndexSDNode *FI = 9934 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9935 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9936 } 9937 9938 // Analyses past this point are naive and don't expect an assertion. 9939 if (Res.getOpcode() == ISD::AssertZext) 9940 Res = Res.getOperand(0); 9941 9942 // Update the SwiftErrorVRegDefMap. 9943 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9944 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9945 if (Register::isVirtualRegister(Reg)) 9946 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9947 Reg); 9948 } 9949 9950 // If this argument is live outside of the entry block, insert a copy from 9951 // wherever we got it to the vreg that other BB's will reference it as. 9952 if (Res.getOpcode() == ISD::CopyFromReg) { 9953 // If we can, though, try to skip creating an unnecessary vreg. 9954 // FIXME: This isn't very clean... it would be nice to make this more 9955 // general. 9956 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9957 if (Register::isVirtualRegister(Reg)) { 9958 FuncInfo->ValueMap[&Arg] = Reg; 9959 continue; 9960 } 9961 } 9962 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9963 FuncInfo->InitializeRegForValue(&Arg); 9964 SDB->CopyToExportRegsIfNeeded(&Arg); 9965 } 9966 } 9967 9968 if (!Chains.empty()) { 9969 Chains.push_back(NewRoot); 9970 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9971 } 9972 9973 DAG.setRoot(NewRoot); 9974 9975 assert(i == InVals.size() && "Argument register count mismatch!"); 9976 9977 // If any argument copy elisions occurred and we have debug info, update the 9978 // stale frame indices used in the dbg.declare variable info table. 9979 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9980 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9981 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9982 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9983 if (I != ArgCopyElisionFrameIndexMap.end()) 9984 VI.Slot = I->second; 9985 } 9986 } 9987 9988 // Finally, if the target has anything special to do, allow it to do so. 9989 emitFunctionEntryCode(); 9990 } 9991 9992 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9993 /// ensure constants are generated when needed. Remember the virtual registers 9994 /// that need to be added to the Machine PHI nodes as input. We cannot just 9995 /// directly add them, because expansion might result in multiple MBB's for one 9996 /// BB. As such, the start of the BB might correspond to a different MBB than 9997 /// the end. 9998 void 9999 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10000 const Instruction *TI = LLVMBB->getTerminator(); 10001 10002 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10003 10004 // Check PHI nodes in successors that expect a value to be available from this 10005 // block. 10006 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10007 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10008 if (!isa<PHINode>(SuccBB->begin())) continue; 10009 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10010 10011 // If this terminator has multiple identical successors (common for 10012 // switches), only handle each succ once. 10013 if (!SuccsHandled.insert(SuccMBB).second) 10014 continue; 10015 10016 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10017 10018 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10019 // nodes and Machine PHI nodes, but the incoming operands have not been 10020 // emitted yet. 10021 for (const PHINode &PN : SuccBB->phis()) { 10022 // Ignore dead phi's. 10023 if (PN.use_empty()) 10024 continue; 10025 10026 // Skip empty types 10027 if (PN.getType()->isEmptyTy()) 10028 continue; 10029 10030 unsigned Reg; 10031 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10032 10033 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10034 unsigned &RegOut = ConstantsOut[C]; 10035 if (RegOut == 0) { 10036 RegOut = FuncInfo.CreateRegs(C); 10037 CopyValueToVirtualRegister(C, RegOut); 10038 } 10039 Reg = RegOut; 10040 } else { 10041 DenseMap<const Value *, Register>::iterator I = 10042 FuncInfo.ValueMap.find(PHIOp); 10043 if (I != FuncInfo.ValueMap.end()) 10044 Reg = I->second; 10045 else { 10046 assert(isa<AllocaInst>(PHIOp) && 10047 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10048 "Didn't codegen value into a register!??"); 10049 Reg = FuncInfo.CreateRegs(PHIOp); 10050 CopyValueToVirtualRegister(PHIOp, Reg); 10051 } 10052 } 10053 10054 // Remember that this register needs to added to the machine PHI node as 10055 // the input for this MBB. 10056 SmallVector<EVT, 4> ValueVTs; 10057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10058 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10059 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10060 EVT VT = ValueVTs[vti]; 10061 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10062 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10063 FuncInfo.PHINodesToUpdate.push_back( 10064 std::make_pair(&*MBBI++, Reg + i)); 10065 Reg += NumRegisters; 10066 } 10067 } 10068 } 10069 10070 ConstantsOut.clear(); 10071 } 10072 10073 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10074 /// is 0. 10075 MachineBasicBlock * 10076 SelectionDAGBuilder::StackProtectorDescriptor:: 10077 AddSuccessorMBB(const BasicBlock *BB, 10078 MachineBasicBlock *ParentMBB, 10079 bool IsLikely, 10080 MachineBasicBlock *SuccMBB) { 10081 // If SuccBB has not been created yet, create it. 10082 if (!SuccMBB) { 10083 MachineFunction *MF = ParentMBB->getParent(); 10084 MachineFunction::iterator BBI(ParentMBB); 10085 SuccMBB = MF->CreateMachineBasicBlock(BB); 10086 MF->insert(++BBI, SuccMBB); 10087 } 10088 // Add it as a successor of ParentMBB. 10089 ParentMBB->addSuccessor( 10090 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10091 return SuccMBB; 10092 } 10093 10094 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10095 MachineFunction::iterator I(MBB); 10096 if (++I == FuncInfo.MF->end()) 10097 return nullptr; 10098 return &*I; 10099 } 10100 10101 /// During lowering new call nodes can be created (such as memset, etc.). 10102 /// Those will become new roots of the current DAG, but complications arise 10103 /// when they are tail calls. In such cases, the call lowering will update 10104 /// the root, but the builder still needs to know that a tail call has been 10105 /// lowered in order to avoid generating an additional return. 10106 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10107 // If the node is null, we do have a tail call. 10108 if (MaybeTC.getNode() != nullptr) 10109 DAG.setRoot(MaybeTC); 10110 else 10111 HasTailCall = true; 10112 } 10113 10114 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10115 MachineBasicBlock *SwitchMBB, 10116 MachineBasicBlock *DefaultMBB) { 10117 MachineFunction *CurMF = FuncInfo.MF; 10118 MachineBasicBlock *NextMBB = nullptr; 10119 MachineFunction::iterator BBI(W.MBB); 10120 if (++BBI != FuncInfo.MF->end()) 10121 NextMBB = &*BBI; 10122 10123 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10124 10125 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10126 10127 if (Size == 2 && W.MBB == SwitchMBB) { 10128 // If any two of the cases has the same destination, and if one value 10129 // is the same as the other, but has one bit unset that the other has set, 10130 // use bit manipulation to do two compares at once. For example: 10131 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10132 // TODO: This could be extended to merge any 2 cases in switches with 3 10133 // cases. 10134 // TODO: Handle cases where W.CaseBB != SwitchBB. 10135 CaseCluster &Small = *W.FirstCluster; 10136 CaseCluster &Big = *W.LastCluster; 10137 10138 if (Small.Low == Small.High && Big.Low == Big.High && 10139 Small.MBB == Big.MBB) { 10140 const APInt &SmallValue = Small.Low->getValue(); 10141 const APInt &BigValue = Big.Low->getValue(); 10142 10143 // Check that there is only one bit different. 10144 APInt CommonBit = BigValue ^ SmallValue; 10145 if (CommonBit.isPowerOf2()) { 10146 SDValue CondLHS = getValue(Cond); 10147 EVT VT = CondLHS.getValueType(); 10148 SDLoc DL = getCurSDLoc(); 10149 10150 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10151 DAG.getConstant(CommonBit, DL, VT)); 10152 SDValue Cond = DAG.getSetCC( 10153 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10154 ISD::SETEQ); 10155 10156 // Update successor info. 10157 // Both Small and Big will jump to Small.BB, so we sum up the 10158 // probabilities. 10159 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10160 if (BPI) 10161 addSuccessorWithProb( 10162 SwitchMBB, DefaultMBB, 10163 // The default destination is the first successor in IR. 10164 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10165 else 10166 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10167 10168 // Insert the true branch. 10169 SDValue BrCond = 10170 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10171 DAG.getBasicBlock(Small.MBB)); 10172 // Insert the false branch. 10173 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10174 DAG.getBasicBlock(DefaultMBB)); 10175 10176 DAG.setRoot(BrCond); 10177 return; 10178 } 10179 } 10180 } 10181 10182 if (TM.getOptLevel() != CodeGenOpt::None) { 10183 // Here, we order cases by probability so the most likely case will be 10184 // checked first. However, two clusters can have the same probability in 10185 // which case their relative ordering is non-deterministic. So we use Low 10186 // as a tie-breaker as clusters are guaranteed to never overlap. 10187 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10188 [](const CaseCluster &a, const CaseCluster &b) { 10189 return a.Prob != b.Prob ? 10190 a.Prob > b.Prob : 10191 a.Low->getValue().slt(b.Low->getValue()); 10192 }); 10193 10194 // Rearrange the case blocks so that the last one falls through if possible 10195 // without changing the order of probabilities. 10196 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10197 --I; 10198 if (I->Prob > W.LastCluster->Prob) 10199 break; 10200 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10201 std::swap(*I, *W.LastCluster); 10202 break; 10203 } 10204 } 10205 } 10206 10207 // Compute total probability. 10208 BranchProbability DefaultProb = W.DefaultProb; 10209 BranchProbability UnhandledProbs = DefaultProb; 10210 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10211 UnhandledProbs += I->Prob; 10212 10213 MachineBasicBlock *CurMBB = W.MBB; 10214 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10215 bool FallthroughUnreachable = false; 10216 MachineBasicBlock *Fallthrough; 10217 if (I == W.LastCluster) { 10218 // For the last cluster, fall through to the default destination. 10219 Fallthrough = DefaultMBB; 10220 FallthroughUnreachable = isa<UnreachableInst>( 10221 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10222 } else { 10223 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10224 CurMF->insert(BBI, Fallthrough); 10225 // Put Cond in a virtual register to make it available from the new blocks. 10226 ExportFromCurrentBlock(Cond); 10227 } 10228 UnhandledProbs -= I->Prob; 10229 10230 switch (I->Kind) { 10231 case CC_JumpTable: { 10232 // FIXME: Optimize away range check based on pivot comparisons. 10233 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10234 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10235 10236 // The jump block hasn't been inserted yet; insert it here. 10237 MachineBasicBlock *JumpMBB = JT->MBB; 10238 CurMF->insert(BBI, JumpMBB); 10239 10240 auto JumpProb = I->Prob; 10241 auto FallthroughProb = UnhandledProbs; 10242 10243 // If the default statement is a target of the jump table, we evenly 10244 // distribute the default probability to successors of CurMBB. Also 10245 // update the probability on the edge from JumpMBB to Fallthrough. 10246 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10247 SE = JumpMBB->succ_end(); 10248 SI != SE; ++SI) { 10249 if (*SI == DefaultMBB) { 10250 JumpProb += DefaultProb / 2; 10251 FallthroughProb -= DefaultProb / 2; 10252 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10253 JumpMBB->normalizeSuccProbs(); 10254 break; 10255 } 10256 } 10257 10258 if (FallthroughUnreachable) { 10259 // Skip the range check if the fallthrough block is unreachable. 10260 JTH->OmitRangeCheck = true; 10261 } 10262 10263 if (!JTH->OmitRangeCheck) 10264 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10265 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10266 CurMBB->normalizeSuccProbs(); 10267 10268 // The jump table header will be inserted in our current block, do the 10269 // range check, and fall through to our fallthrough block. 10270 JTH->HeaderBB = CurMBB; 10271 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10272 10273 // If we're in the right place, emit the jump table header right now. 10274 if (CurMBB == SwitchMBB) { 10275 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10276 JTH->Emitted = true; 10277 } 10278 break; 10279 } 10280 case CC_BitTests: { 10281 // FIXME: Optimize away range check based on pivot comparisons. 10282 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10283 10284 // The bit test blocks haven't been inserted yet; insert them here. 10285 for (BitTestCase &BTC : BTB->Cases) 10286 CurMF->insert(BBI, BTC.ThisBB); 10287 10288 // Fill in fields of the BitTestBlock. 10289 BTB->Parent = CurMBB; 10290 BTB->Default = Fallthrough; 10291 10292 BTB->DefaultProb = UnhandledProbs; 10293 // If the cases in bit test don't form a contiguous range, we evenly 10294 // distribute the probability on the edge to Fallthrough to two 10295 // successors of CurMBB. 10296 if (!BTB->ContiguousRange) { 10297 BTB->Prob += DefaultProb / 2; 10298 BTB->DefaultProb -= DefaultProb / 2; 10299 } 10300 10301 if (FallthroughUnreachable) { 10302 // Skip the range check if the fallthrough block is unreachable. 10303 BTB->OmitRangeCheck = true; 10304 } 10305 10306 // If we're in the right place, emit the bit test header right now. 10307 if (CurMBB == SwitchMBB) { 10308 visitBitTestHeader(*BTB, SwitchMBB); 10309 BTB->Emitted = true; 10310 } 10311 break; 10312 } 10313 case CC_Range: { 10314 const Value *RHS, *LHS, *MHS; 10315 ISD::CondCode CC; 10316 if (I->Low == I->High) { 10317 // Check Cond == I->Low. 10318 CC = ISD::SETEQ; 10319 LHS = Cond; 10320 RHS=I->Low; 10321 MHS = nullptr; 10322 } else { 10323 // Check I->Low <= Cond <= I->High. 10324 CC = ISD::SETLE; 10325 LHS = I->Low; 10326 MHS = Cond; 10327 RHS = I->High; 10328 } 10329 10330 // If Fallthrough is unreachable, fold away the comparison. 10331 if (FallthroughUnreachable) 10332 CC = ISD::SETTRUE; 10333 10334 // The false probability is the sum of all unhandled cases. 10335 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10336 getCurSDLoc(), I->Prob, UnhandledProbs); 10337 10338 if (CurMBB == SwitchMBB) 10339 visitSwitchCase(CB, SwitchMBB); 10340 else 10341 SL->SwitchCases.push_back(CB); 10342 10343 break; 10344 } 10345 } 10346 CurMBB = Fallthrough; 10347 } 10348 } 10349 10350 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10351 CaseClusterIt First, 10352 CaseClusterIt Last) { 10353 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10354 if (X.Prob != CC.Prob) 10355 return X.Prob > CC.Prob; 10356 10357 // Ties are broken by comparing the case value. 10358 return X.Low->getValue().slt(CC.Low->getValue()); 10359 }); 10360 } 10361 10362 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10363 const SwitchWorkListItem &W, 10364 Value *Cond, 10365 MachineBasicBlock *SwitchMBB) { 10366 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10367 "Clusters not sorted?"); 10368 10369 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10370 10371 // Balance the tree based on branch probabilities to create a near-optimal (in 10372 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10373 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10374 CaseClusterIt LastLeft = W.FirstCluster; 10375 CaseClusterIt FirstRight = W.LastCluster; 10376 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10377 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10378 10379 // Move LastLeft and FirstRight towards each other from opposite directions to 10380 // find a partitioning of the clusters which balances the probability on both 10381 // sides. If LeftProb and RightProb are equal, alternate which side is 10382 // taken to ensure 0-probability nodes are distributed evenly. 10383 unsigned I = 0; 10384 while (LastLeft + 1 < FirstRight) { 10385 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10386 LeftProb += (++LastLeft)->Prob; 10387 else 10388 RightProb += (--FirstRight)->Prob; 10389 I++; 10390 } 10391 10392 while (true) { 10393 // Our binary search tree differs from a typical BST in that ours can have up 10394 // to three values in each leaf. The pivot selection above doesn't take that 10395 // into account, which means the tree might require more nodes and be less 10396 // efficient. We compensate for this here. 10397 10398 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10399 unsigned NumRight = W.LastCluster - FirstRight + 1; 10400 10401 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10402 // If one side has less than 3 clusters, and the other has more than 3, 10403 // consider taking a cluster from the other side. 10404 10405 if (NumLeft < NumRight) { 10406 // Consider moving the first cluster on the right to the left side. 10407 CaseCluster &CC = *FirstRight; 10408 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10409 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10410 if (LeftSideRank <= RightSideRank) { 10411 // Moving the cluster to the left does not demote it. 10412 ++LastLeft; 10413 ++FirstRight; 10414 continue; 10415 } 10416 } else { 10417 assert(NumRight < NumLeft); 10418 // Consider moving the last element on the left to the right side. 10419 CaseCluster &CC = *LastLeft; 10420 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10421 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10422 if (RightSideRank <= LeftSideRank) { 10423 // Moving the cluster to the right does not demot it. 10424 --LastLeft; 10425 --FirstRight; 10426 continue; 10427 } 10428 } 10429 } 10430 break; 10431 } 10432 10433 assert(LastLeft + 1 == FirstRight); 10434 assert(LastLeft >= W.FirstCluster); 10435 assert(FirstRight <= W.LastCluster); 10436 10437 // Use the first element on the right as pivot since we will make less-than 10438 // comparisons against it. 10439 CaseClusterIt PivotCluster = FirstRight; 10440 assert(PivotCluster > W.FirstCluster); 10441 assert(PivotCluster <= W.LastCluster); 10442 10443 CaseClusterIt FirstLeft = W.FirstCluster; 10444 CaseClusterIt LastRight = W.LastCluster; 10445 10446 const ConstantInt *Pivot = PivotCluster->Low; 10447 10448 // New blocks will be inserted immediately after the current one. 10449 MachineFunction::iterator BBI(W.MBB); 10450 ++BBI; 10451 10452 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10453 // we can branch to its destination directly if it's squeezed exactly in 10454 // between the known lower bound and Pivot - 1. 10455 MachineBasicBlock *LeftMBB; 10456 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10457 FirstLeft->Low == W.GE && 10458 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10459 LeftMBB = FirstLeft->MBB; 10460 } else { 10461 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10462 FuncInfo.MF->insert(BBI, LeftMBB); 10463 WorkList.push_back( 10464 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10465 // Put Cond in a virtual register to make it available from the new blocks. 10466 ExportFromCurrentBlock(Cond); 10467 } 10468 10469 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10470 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10471 // directly if RHS.High equals the current upper bound. 10472 MachineBasicBlock *RightMBB; 10473 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10474 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10475 RightMBB = FirstRight->MBB; 10476 } else { 10477 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10478 FuncInfo.MF->insert(BBI, RightMBB); 10479 WorkList.push_back( 10480 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10481 // Put Cond in a virtual register to make it available from the new blocks. 10482 ExportFromCurrentBlock(Cond); 10483 } 10484 10485 // Create the CaseBlock record that will be used to lower the branch. 10486 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10487 getCurSDLoc(), LeftProb, RightProb); 10488 10489 if (W.MBB == SwitchMBB) 10490 visitSwitchCase(CB, SwitchMBB); 10491 else 10492 SL->SwitchCases.push_back(CB); 10493 } 10494 10495 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10496 // from the swith statement. 10497 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10498 BranchProbability PeeledCaseProb) { 10499 if (PeeledCaseProb == BranchProbability::getOne()) 10500 return BranchProbability::getZero(); 10501 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10502 10503 uint32_t Numerator = CaseProb.getNumerator(); 10504 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10505 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10506 } 10507 10508 // Try to peel the top probability case if it exceeds the threshold. 10509 // Return current MachineBasicBlock for the switch statement if the peeling 10510 // does not occur. 10511 // If the peeling is performed, return the newly created MachineBasicBlock 10512 // for the peeled switch statement. Also update Clusters to remove the peeled 10513 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10514 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10515 const SwitchInst &SI, CaseClusterVector &Clusters, 10516 BranchProbability &PeeledCaseProb) { 10517 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10518 // Don't perform if there is only one cluster or optimizing for size. 10519 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10520 TM.getOptLevel() == CodeGenOpt::None || 10521 SwitchMBB->getParent()->getFunction().hasMinSize()) 10522 return SwitchMBB; 10523 10524 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10525 unsigned PeeledCaseIndex = 0; 10526 bool SwitchPeeled = false; 10527 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10528 CaseCluster &CC = Clusters[Index]; 10529 if (CC.Prob < TopCaseProb) 10530 continue; 10531 TopCaseProb = CC.Prob; 10532 PeeledCaseIndex = Index; 10533 SwitchPeeled = true; 10534 } 10535 if (!SwitchPeeled) 10536 return SwitchMBB; 10537 10538 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10539 << TopCaseProb << "\n"); 10540 10541 // Record the MBB for the peeled switch statement. 10542 MachineFunction::iterator BBI(SwitchMBB); 10543 ++BBI; 10544 MachineBasicBlock *PeeledSwitchMBB = 10545 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10546 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10547 10548 ExportFromCurrentBlock(SI.getCondition()); 10549 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10550 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10551 nullptr, nullptr, TopCaseProb.getCompl()}; 10552 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10553 10554 Clusters.erase(PeeledCaseIt); 10555 for (CaseCluster &CC : Clusters) { 10556 LLVM_DEBUG( 10557 dbgs() << "Scale the probablity for one cluster, before scaling: " 10558 << CC.Prob << "\n"); 10559 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10560 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10561 } 10562 PeeledCaseProb = TopCaseProb; 10563 return PeeledSwitchMBB; 10564 } 10565 10566 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10567 // Extract cases from the switch. 10568 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10569 CaseClusterVector Clusters; 10570 Clusters.reserve(SI.getNumCases()); 10571 for (auto I : SI.cases()) { 10572 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10573 const ConstantInt *CaseVal = I.getCaseValue(); 10574 BranchProbability Prob = 10575 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10576 : BranchProbability(1, SI.getNumCases() + 1); 10577 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10578 } 10579 10580 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10581 10582 // Cluster adjacent cases with the same destination. We do this at all 10583 // optimization levels because it's cheap to do and will make codegen faster 10584 // if there are many clusters. 10585 sortAndRangeify(Clusters); 10586 10587 // The branch probablity of the peeled case. 10588 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10589 MachineBasicBlock *PeeledSwitchMBB = 10590 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10591 10592 // If there is only the default destination, jump there directly. 10593 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10594 if (Clusters.empty()) { 10595 assert(PeeledSwitchMBB == SwitchMBB); 10596 SwitchMBB->addSuccessor(DefaultMBB); 10597 if (DefaultMBB != NextBlock(SwitchMBB)) { 10598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10599 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10600 } 10601 return; 10602 } 10603 10604 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10605 SL->findBitTestClusters(Clusters, &SI); 10606 10607 LLVM_DEBUG({ 10608 dbgs() << "Case clusters: "; 10609 for (const CaseCluster &C : Clusters) { 10610 if (C.Kind == CC_JumpTable) 10611 dbgs() << "JT:"; 10612 if (C.Kind == CC_BitTests) 10613 dbgs() << "BT:"; 10614 10615 C.Low->getValue().print(dbgs(), true); 10616 if (C.Low != C.High) { 10617 dbgs() << '-'; 10618 C.High->getValue().print(dbgs(), true); 10619 } 10620 dbgs() << ' '; 10621 } 10622 dbgs() << '\n'; 10623 }); 10624 10625 assert(!Clusters.empty()); 10626 SwitchWorkList WorkList; 10627 CaseClusterIt First = Clusters.begin(); 10628 CaseClusterIt Last = Clusters.end() - 1; 10629 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10630 // Scale the branchprobability for DefaultMBB if the peel occurs and 10631 // DefaultMBB is not replaced. 10632 if (PeeledCaseProb != BranchProbability::getZero() && 10633 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10634 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10635 WorkList.push_back( 10636 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10637 10638 while (!WorkList.empty()) { 10639 SwitchWorkListItem W = WorkList.back(); 10640 WorkList.pop_back(); 10641 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10642 10643 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10644 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10645 // For optimized builds, lower large range as a balanced binary tree. 10646 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10647 continue; 10648 } 10649 10650 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10651 } 10652 } 10653 10654 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10655 SmallVector<EVT, 4> ValueVTs; 10656 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10657 ValueVTs); 10658 unsigned NumValues = ValueVTs.size(); 10659 if (NumValues == 0) return; 10660 10661 SmallVector<SDValue, 4> Values(NumValues); 10662 SDValue Op = getValue(I.getOperand(0)); 10663 10664 for (unsigned i = 0; i != NumValues; ++i) 10665 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10666 SDValue(Op.getNode(), Op.getResNo() + i)); 10667 10668 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10669 DAG.getVTList(ValueVTs), Values)); 10670 } 10671