1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorElementCount().isScalar()) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 673 assert(PartVT.getFixedSizeInBits() > ValueSize && 674 "lossy conversion of vector to scalar type"); 675 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, TypeSize>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) { 1088 HandlePHINodesInSuccessorBlocks(I.getParent()); 1089 } 1090 1091 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1092 if (!isa<DbgInfoIntrinsic>(I)) 1093 ++SDNodeOrder; 1094 1095 CurInst = &I; 1096 1097 visit(I.getOpcode(), I); 1098 1099 if (!I.isTerminator() && !HasTailCall && 1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1101 CopyToExportRegsIfNeeded(&I); 1102 1103 CurInst = nullptr; 1104 } 1105 1106 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1108 } 1109 1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1111 // Note: this doesn't use InstVisitor, because it has to work with 1112 // ConstantExpr's in addition to instructions. 1113 switch (Opcode) { 1114 default: llvm_unreachable("Unknown instruction type encountered!"); 1115 // Build the switch statement using the Instruction.def file. 1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1118 #include "llvm/IR/Instruction.def" 1119 } 1120 } 1121 1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1123 const DIExpression *Expr) { 1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1125 const DbgValueInst *DI = DDI.getDI(); 1126 DIVariable *DanglingVariable = DI->getVariable(); 1127 DIExpression *DanglingExpr = DI->getExpression(); 1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1130 return true; 1131 } 1132 return false; 1133 }; 1134 1135 for (auto &DDIMI : DanglingDebugInfoMap) { 1136 DanglingDebugInfoVector &DDIV = DDIMI.second; 1137 1138 // If debug info is to be dropped, run it through final checks to see 1139 // whether it can be salvaged. 1140 for (auto &DDI : DDIV) 1141 if (isMatchingDbgValue(DDI)) 1142 salvageUnresolvedDbgValue(DDI); 1143 1144 erase_if(DDIV, isMatchingDbgValue); 1145 } 1146 } 1147 1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1149 // generate the debug data structures now that we've seen its definition. 1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1151 SDValue Val) { 1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1154 return; 1155 1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1157 for (auto &DDI : DDIV) { 1158 const DbgValueInst *DI = DDI.getDI(); 1159 assert(DI && "Ill-formed DanglingDebugInfo"); 1160 DebugLoc dl = DDI.getdl(); 1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1163 DILocalVariable *Variable = DI->getVariable(); 1164 DIExpression *Expr = DI->getExpression(); 1165 assert(Variable->isValidLocationForIntrinsic(dl) && 1166 "Expected inlined-at fields to agree"); 1167 SDDbgValue *SDV; 1168 if (Val.getNode()) { 1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1171 // we couldn't resolve it directly when examining the DbgValue intrinsic 1172 // in the first place we should not be more successful here). Unless we 1173 // have some test case that prove this to be correct we should avoid 1174 // calling EmitFuncArgumentDbgValue here. 1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1180 // inserted after the definition of Val when emitting the instructions 1181 // after ISel. An alternative could be to teach 1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1185 << ValSDNodeOrder << "\n"); 1186 SDV = getDbgValue(Val, Variable, Expr, dl, 1187 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1188 DAG.AddDbgValue(SDV, Val.getNode(), false); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1191 << "in EmitFuncArgumentDbgValue\n"); 1192 } else { 1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 auto Undef = 1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1196 auto SDV = 1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1198 DAG.AddDbgValue(SDV, nullptr, false); 1199 } 1200 } 1201 DDIV.clear(); 1202 } 1203 1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1205 Value *V = DDI.getDI()->getValue(); 1206 DILocalVariable *Var = DDI.getDI()->getVariable(); 1207 DIExpression *Expr = DDI.getDI()->getExpression(); 1208 DebugLoc DL = DDI.getdl(); 1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1210 unsigned SDOrder = DDI.getSDNodeOrder(); 1211 1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1213 // that DW_OP_stack_value is desired. 1214 assert(isa<DbgValueInst>(DDI.getDI())); 1215 bool StackValue = true; 1216 1217 // Can this Value can be encoded without any further work? 1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1219 return; 1220 1221 // Attempt to salvage back through as many instructions as possible. Bail if 1222 // a non-instruction is seen, such as a constant expression or global 1223 // variable. FIXME: Further work could recover those too. 1224 while (isa<Instruction>(V)) { 1225 Instruction &VAsInst = *cast<Instruction>(V); 1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1227 1228 // If we cannot salvage any further, and haven't yet found a suitable debug 1229 // expression, bail out. 1230 if (!NewExpr) 1231 break; 1232 1233 // New value and expr now represent this debuginfo. 1234 V = VAsInst.getOperand(0); 1235 Expr = NewExpr; 1236 1237 // Some kind of simplification occurred: check whether the operand of the 1238 // salvaged debug expression can be encoded in this DAG. 1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1241 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1242 return; 1243 } 1244 } 1245 1246 // This was the final opportunity to salvage this debug information, and it 1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1248 // any earlier variable location. 1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1251 DAG.AddDbgValue(SDV, nullptr, false); 1252 1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1254 << "\n"); 1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1256 << "\n"); 1257 } 1258 1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1260 DIExpression *Expr, DebugLoc dl, 1261 DebugLoc InstDL, unsigned Order) { 1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1263 SDDbgValue *SDV; 1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1265 isa<ConstantPointerNull>(V)) { 1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1267 DAG.AddDbgValue(SDV, nullptr, false); 1268 return true; 1269 } 1270 1271 // If the Value is a frame index, we can create a FrameIndex debug value 1272 // without relying on the DAG at all. 1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1274 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1275 if (SI != FuncInfo.StaticAllocaMap.end()) { 1276 auto SDV = 1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1278 /*IsIndirect*/ false, dl, SDNodeOrder); 1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1280 // is still available even if the SDNode gets optimized out. 1281 DAG.AddDbgValue(SDV, nullptr, false); 1282 return true; 1283 } 1284 } 1285 1286 // Do not use getValue() in here; we don't want to generate code at 1287 // this point if it hasn't been done yet. 1288 SDValue N = NodeMap[V]; 1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1290 N = UnusedArgNodeMap[V]; 1291 if (N.getNode()) { 1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1293 return true; 1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1295 DAG.AddDbgValue(SDV, N.getNode(), false); 1296 return true; 1297 } 1298 1299 // Special rules apply for the first dbg.values of parameter variables in a 1300 // function. Identify them by the fact they reference Argument Values, that 1301 // they're parameters, and they are parameters of the current function. We 1302 // need to let them dangle until they get an SDNode. 1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1304 !InstDL.getInlinedAt(); 1305 if (!IsParamOfFunc) { 1306 // The value is not used in this block yet (or it would have an SDNode). 1307 // We still want the value to appear for the user if possible -- if it has 1308 // an associated VReg, we can refer to that instead. 1309 auto VMI = FuncInfo.ValueMap.find(V); 1310 if (VMI != FuncInfo.ValueMap.end()) { 1311 unsigned Reg = VMI->second; 1312 // If this is a PHI node, it may be split up into several MI PHI nodes 1313 // (in FunctionLoweringInfo::set). 1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1315 V->getType(), None); 1316 if (RFV.occupiesMultipleRegs()) { 1317 unsigned Offset = 0; 1318 unsigned BitsToDescribe = 0; 1319 if (auto VarSize = Var->getSizeInBits()) 1320 BitsToDescribe = *VarSize; 1321 if (auto Fragment = Expr->getFragmentInfo()) 1322 BitsToDescribe = Fragment->SizeInBits; 1323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 // TODO: handle scalable vectors. 1328 unsigned RegisterSize = RegAndSize.second; 1329 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1330 ? BitsToDescribe - Offset 1331 : RegisterSize; 1332 auto FragmentExpr = DIExpression::createFragmentExpression( 1333 Expr, Offset, FragmentSize); 1334 if (!FragmentExpr) 1335 continue; 1336 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1337 false, dl, SDNodeOrder); 1338 DAG.AddDbgValue(SDV, nullptr, false); 1339 Offset += RegisterSize; 1340 } 1341 } else { 1342 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1343 DAG.AddDbgValue(SDV, nullptr, false); 1344 } 1345 return true; 1346 } 1347 } 1348 1349 return false; 1350 } 1351 1352 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1353 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1354 for (auto &Pair : DanglingDebugInfoMap) 1355 for (auto &DDI : Pair.second) 1356 salvageUnresolvedDbgValue(DDI); 1357 clearDanglingDebugInfo(); 1358 } 1359 1360 /// getCopyFromRegs - If there was virtual register allocated for the value V 1361 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1362 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1363 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1364 SDValue Result; 1365 1366 if (It != FuncInfo.ValueMap.end()) { 1367 Register InReg = It->second; 1368 1369 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1370 DAG.getDataLayout(), InReg, Ty, 1371 None); // This is not an ABI copy. 1372 SDValue Chain = DAG.getEntryNode(); 1373 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1374 V); 1375 resolveDanglingDebugInfo(V, Result); 1376 } 1377 1378 return Result; 1379 } 1380 1381 /// getValue - Return an SDValue for the given Value. 1382 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1383 // If we already have an SDValue for this value, use it. It's important 1384 // to do this first, so that we don't create a CopyFromReg if we already 1385 // have a regular SDValue. 1386 SDValue &N = NodeMap[V]; 1387 if (N.getNode()) return N; 1388 1389 // If there's a virtual register allocated and initialized for this 1390 // value, use it. 1391 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1392 return copyFromReg; 1393 1394 // Otherwise create a new SDValue and remember it. 1395 SDValue Val = getValueImpl(V); 1396 NodeMap[V] = Val; 1397 resolveDanglingDebugInfo(V, Val); 1398 return Val; 1399 } 1400 1401 /// getNonRegisterValue - Return an SDValue for the given Value, but 1402 /// don't look in FuncInfo.ValueMap for a virtual register. 1403 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1404 // If we already have an SDValue for this value, use it. 1405 SDValue &N = NodeMap[V]; 1406 if (N.getNode()) { 1407 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1408 // Remove the debug location from the node as the node is about to be used 1409 // in a location which may differ from the original debug location. This 1410 // is relevant to Constant and ConstantFP nodes because they can appear 1411 // as constant expressions inside PHI nodes. 1412 N->setDebugLoc(DebugLoc()); 1413 } 1414 return N; 1415 } 1416 1417 // Otherwise create a new SDValue and remember it. 1418 SDValue Val = getValueImpl(V); 1419 NodeMap[V] = Val; 1420 resolveDanglingDebugInfo(V, Val); 1421 return Val; 1422 } 1423 1424 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1425 /// Create an SDValue for the given value. 1426 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1428 1429 if (const Constant *C = dyn_cast<Constant>(V)) { 1430 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1431 1432 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1433 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1434 1435 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1436 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1437 1438 if (isa<ConstantPointerNull>(C)) { 1439 unsigned AS = V->getType()->getPointerAddressSpace(); 1440 return DAG.getConstant(0, getCurSDLoc(), 1441 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1442 } 1443 1444 if (match(C, m_VScale(DAG.getDataLayout()))) 1445 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1446 1447 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1448 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1449 1450 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1451 return DAG.getUNDEF(VT); 1452 1453 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1454 visit(CE->getOpcode(), *CE); 1455 SDValue N1 = NodeMap[V]; 1456 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1457 return N1; 1458 } 1459 1460 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1461 SmallVector<SDValue, 4> Constants; 1462 for (const Use &U : C->operands()) { 1463 SDNode *Val = getValue(U).getNode(); 1464 // If the operand is an empty aggregate, there are no values. 1465 if (!Val) continue; 1466 // Add each leaf value from the operand to the Constants list 1467 // to form a flattened list of all the values. 1468 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1469 Constants.push_back(SDValue(Val, i)); 1470 } 1471 1472 return DAG.getMergeValues(Constants, getCurSDLoc()); 1473 } 1474 1475 if (const ConstantDataSequential *CDS = 1476 dyn_cast<ConstantDataSequential>(C)) { 1477 SmallVector<SDValue, 4> Ops; 1478 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1479 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1480 // Add each leaf value from the operand to the Constants list 1481 // to form a flattened list of all the values. 1482 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1483 Ops.push_back(SDValue(Val, i)); 1484 } 1485 1486 if (isa<ArrayType>(CDS->getType())) 1487 return DAG.getMergeValues(Ops, getCurSDLoc()); 1488 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1489 } 1490 1491 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1492 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1493 "Unknown struct or array constant!"); 1494 1495 SmallVector<EVT, 4> ValueVTs; 1496 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1497 unsigned NumElts = ValueVTs.size(); 1498 if (NumElts == 0) 1499 return SDValue(); // empty struct 1500 SmallVector<SDValue, 4> Constants(NumElts); 1501 for (unsigned i = 0; i != NumElts; ++i) { 1502 EVT EltVT = ValueVTs[i]; 1503 if (isa<UndefValue>(C)) 1504 Constants[i] = DAG.getUNDEF(EltVT); 1505 else if (EltVT.isFloatingPoint()) 1506 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1507 else 1508 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1509 } 1510 1511 return DAG.getMergeValues(Constants, getCurSDLoc()); 1512 } 1513 1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1515 return DAG.getBlockAddress(BA, VT); 1516 1517 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1518 return getValue(Equiv->getGlobalValue()); 1519 1520 VectorType *VecTy = cast<VectorType>(V->getType()); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1525 SmallVector<SDValue, 16> Ops; 1526 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1527 for (unsigned i = 0; i != NumElements; ++i) 1528 Ops.push_back(getValue(CV->getOperand(i))); 1529 1530 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1531 } else if (isa<ConstantAggregateZero>(C)) { 1532 EVT EltVT = 1533 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1534 1535 SDValue Op; 1536 if (EltVT.isFloatingPoint()) 1537 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1538 else 1539 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1540 1541 if (isa<ScalableVectorType>(VecTy)) 1542 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1543 else { 1544 SmallVector<SDValue, 16> Ops; 1545 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1546 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1547 } 1548 } 1549 llvm_unreachable("Unknown vector constant"); 1550 } 1551 1552 // If this is a static alloca, generate it as the frameindex instead of 1553 // computation. 1554 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1555 DenseMap<const AllocaInst*, int>::iterator SI = 1556 FuncInfo.StaticAllocaMap.find(AI); 1557 if (SI != FuncInfo.StaticAllocaMap.end()) 1558 return DAG.getFrameIndex(SI->second, 1559 TLI.getFrameIndexTy(DAG.getDataLayout())); 1560 } 1561 1562 // If this is an instruction which fast-isel has deferred, select it now. 1563 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1564 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1565 1566 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1567 Inst->getType(), None); 1568 SDValue Chain = DAG.getEntryNode(); 1569 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1570 } 1571 1572 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1573 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1574 } 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1584 if (!IsSEH) 1585 CatchPadMBB->setIsEHScopeEntry(); 1586 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1587 if (IsMSVCCXX || IsCoreCLR) 1588 CatchPadMBB->setIsEHFuncletEntry(); 1589 } 1590 1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1592 // Update machine-CFG edge. 1593 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1594 FuncInfo.MBB->addSuccessor(TargetMBB); 1595 TargetMBB->setIsEHCatchretTarget(true); 1596 DAG.getMachineFunction().setHasEHCatchret(true); 1597 1598 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1599 bool IsSEH = isAsynchronousEHPersonality(Pers); 1600 if (IsSEH) { 1601 // If this is not a fall-through branch or optimizations are switched off, 1602 // emit the branch. 1603 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1604 TM.getOptLevel() == CodeGenOpt::None) 1605 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1606 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1607 return; 1608 } 1609 1610 // Figure out the funclet membership for the catchret's successor. 1611 // This will be used by the FuncletLayout pass to determine how to order the 1612 // BB's. 1613 // A 'catchret' returns to the outer scope's color. 1614 Value *ParentPad = I.getCatchSwitchParentPad(); 1615 const BasicBlock *SuccessorColor; 1616 if (isa<ConstantTokenNone>(ParentPad)) 1617 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1618 else 1619 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1620 assert(SuccessorColor && "No parent funclet for catchret!"); 1621 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1622 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1623 1624 // Create the terminator node. 1625 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1626 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1627 DAG.getBasicBlock(SuccessorColorMBB)); 1628 DAG.setRoot(Ret); 1629 } 1630 1631 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1632 // Don't emit any special code for the cleanuppad instruction. It just marks 1633 // the start of an EH scope/funclet. 1634 FuncInfo.MBB->setIsEHScopeEntry(); 1635 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1636 if (Pers != EHPersonality::Wasm_CXX) { 1637 FuncInfo.MBB->setIsEHFuncletEntry(); 1638 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1639 } 1640 } 1641 1642 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1643 // not match, it is OK to add only the first unwind destination catchpad to the 1644 // successors, because there will be at least one invoke instruction within the 1645 // catch scope that points to the next unwind destination, if one exists, so 1646 // CFGSort cannot mess up with BB sorting order. 1647 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1648 // call within them, and catchpads only consisting of 'catch (...)' have a 1649 // '__cxa_end_catch' call within them, both of which generate invokes in case 1650 // the next unwind destination exists, i.e., the next unwind destination is not 1651 // the caller.) 1652 // 1653 // Having at most one EH pad successor is also simpler and helps later 1654 // transformations. 1655 // 1656 // For example, 1657 // current: 1658 // invoke void @foo to ... unwind label %catch.dispatch 1659 // catch.dispatch: 1660 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1661 // catch.start: 1662 // ... 1663 // ... in this BB or some other child BB dominated by this BB there will be an 1664 // invoke that points to 'next' BB as an unwind destination 1665 // 1666 // next: ; We don't need to add this to 'current' BB's successor 1667 // ... 1668 static void findWasmUnwindDestinations( 1669 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1670 BranchProbability Prob, 1671 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1672 &UnwindDests) { 1673 while (EHPadBB) { 1674 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1675 if (isa<CleanupPadInst>(Pad)) { 1676 // Stop on cleanup pads. 1677 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1678 UnwindDests.back().first->setIsEHScopeEntry(); 1679 break; 1680 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1681 // Add the catchpad handlers to the possible destinations. We don't 1682 // continue to the unwind destination of the catchswitch for wasm. 1683 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1684 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1685 UnwindDests.back().first->setIsEHScopeEntry(); 1686 } 1687 break; 1688 } else { 1689 continue; 1690 } 1691 } 1692 } 1693 1694 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1695 /// many places it could ultimately go. In the IR, we have a single unwind 1696 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1697 /// This function skips over imaginary basic blocks that hold catchswitch 1698 /// instructions, and finds all the "real" machine 1699 /// basic block destinations. As those destinations may not be successors of 1700 /// EHPadBB, here we also calculate the edge probability to those destinations. 1701 /// The passed-in Prob is the edge probability to EHPadBB. 1702 static void findUnwindDestinations( 1703 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1704 BranchProbability Prob, 1705 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1706 &UnwindDests) { 1707 EHPersonality Personality = 1708 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1709 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1710 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1711 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1712 bool IsSEH = isAsynchronousEHPersonality(Personality); 1713 1714 if (IsWasmCXX) { 1715 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1716 assert(UnwindDests.size() <= 1 && 1717 "There should be at most one unwind destination for wasm"); 1718 return; 1719 } 1720 1721 while (EHPadBB) { 1722 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1723 BasicBlock *NewEHPadBB = nullptr; 1724 if (isa<LandingPadInst>(Pad)) { 1725 // Stop on landingpads. They are not funclets. 1726 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1727 break; 1728 } else if (isa<CleanupPadInst>(Pad)) { 1729 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1730 // personalities. 1731 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1732 UnwindDests.back().first->setIsEHScopeEntry(); 1733 UnwindDests.back().first->setIsEHFuncletEntry(); 1734 break; 1735 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1736 // Add the catchpad handlers to the possible destinations. 1737 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1738 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1739 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1740 if (IsMSVCCXX || IsCoreCLR) 1741 UnwindDests.back().first->setIsEHFuncletEntry(); 1742 if (!IsSEH) 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 } 1745 NewEHPadBB = CatchSwitch->getUnwindDest(); 1746 } else { 1747 continue; 1748 } 1749 1750 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1751 if (BPI && NewEHPadBB) 1752 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1753 EHPadBB = NewEHPadBB; 1754 } 1755 } 1756 1757 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1758 // Update successor info. 1759 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1760 auto UnwindDest = I.getUnwindDest(); 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 BranchProbability UnwindDestProb = 1763 (BPI && UnwindDest) 1764 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1765 : BranchProbability::getZero(); 1766 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1767 for (auto &UnwindDest : UnwindDests) { 1768 UnwindDest.first->setIsEHPad(); 1769 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1770 } 1771 FuncInfo.MBB->normalizeSuccProbs(); 1772 1773 // Create the terminator node. 1774 SDValue Ret = 1775 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1776 DAG.setRoot(Ret); 1777 } 1778 1779 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1780 report_fatal_error("visitCatchSwitch not yet implemented!"); 1781 } 1782 1783 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1785 auto &DL = DAG.getDataLayout(); 1786 SDValue Chain = getControlRoot(); 1787 SmallVector<ISD::OutputArg, 8> Outs; 1788 SmallVector<SDValue, 8> OutVals; 1789 1790 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1791 // lower 1792 // 1793 // %val = call <ty> @llvm.experimental.deoptimize() 1794 // ret <ty> %val 1795 // 1796 // differently. 1797 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1798 LowerDeoptimizingReturn(); 1799 return; 1800 } 1801 1802 if (!FuncInfo.CanLowerReturn) { 1803 unsigned DemoteReg = FuncInfo.DemoteRegister; 1804 const Function *F = I.getParent()->getParent(); 1805 1806 // Emit a store of the return value through the virtual register. 1807 // Leave Outs empty so that LowerReturn won't try to load return 1808 // registers the usual way. 1809 SmallVector<EVT, 1> PtrValueVTs; 1810 ComputeValueVTs(TLI, DL, 1811 F->getReturnType()->getPointerTo( 1812 DAG.getDataLayout().getAllocaAddrSpace()), 1813 PtrValueVTs); 1814 1815 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1816 DemoteReg, PtrValueVTs[0]); 1817 SDValue RetOp = getValue(I.getOperand(0)); 1818 1819 SmallVector<EVT, 4> ValueVTs, MemVTs; 1820 SmallVector<uint64_t, 4> Offsets; 1821 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1822 &Offsets); 1823 unsigned NumValues = ValueVTs.size(); 1824 1825 SmallVector<SDValue, 4> Chains(NumValues); 1826 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1827 for (unsigned i = 0; i != NumValues; ++i) { 1828 // An aggregate return value cannot wrap around the address space, so 1829 // offsets to its parts don't wrap either. 1830 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1831 TypeSize::Fixed(Offsets[i])); 1832 1833 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1834 if (MemVTs[i] != ValueVTs[i]) 1835 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1836 Chains[i] = DAG.getStore( 1837 Chain, getCurSDLoc(), Val, 1838 // FIXME: better loc info would be nice. 1839 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1840 commonAlignment(BaseAlign, Offsets[i])); 1841 } 1842 1843 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1844 MVT::Other, Chains); 1845 } else if (I.getNumOperands() != 0) { 1846 SmallVector<EVT, 4> ValueVTs; 1847 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1848 unsigned NumValues = ValueVTs.size(); 1849 if (NumValues) { 1850 SDValue RetOp = getValue(I.getOperand(0)); 1851 1852 const Function *F = I.getParent()->getParent(); 1853 1854 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1855 I.getOperand(0)->getType(), F->getCallingConv(), 1856 /*IsVarArg*/ false); 1857 1858 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1859 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1860 Attribute::SExt)) 1861 ExtendKind = ISD::SIGN_EXTEND; 1862 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1863 Attribute::ZExt)) 1864 ExtendKind = ISD::ZERO_EXTEND; 1865 1866 LLVMContext &Context = F->getContext(); 1867 bool RetInReg = F->getAttributes().hasAttribute( 1868 AttributeList::ReturnIndex, Attribute::InReg); 1869 1870 for (unsigned j = 0; j != NumValues; ++j) { 1871 EVT VT = ValueVTs[j]; 1872 1873 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1874 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1875 1876 CallingConv::ID CC = F->getCallingConv(); 1877 1878 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1879 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1880 SmallVector<SDValue, 4> Parts(NumParts); 1881 getCopyToParts(DAG, getCurSDLoc(), 1882 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1883 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1884 1885 // 'inreg' on function refers to return value 1886 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1887 if (RetInReg) 1888 Flags.setInReg(); 1889 1890 if (I.getOperand(0)->getType()->isPointerTy()) { 1891 Flags.setPointer(); 1892 Flags.setPointerAddrSpace( 1893 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1894 } 1895 1896 if (NeedsRegBlock) { 1897 Flags.setInConsecutiveRegs(); 1898 if (j == NumValues - 1) 1899 Flags.setInConsecutiveRegsLast(); 1900 } 1901 1902 // Propagate extension type if any 1903 if (ExtendKind == ISD::SIGN_EXTEND) 1904 Flags.setSExt(); 1905 else if (ExtendKind == ISD::ZERO_EXTEND) 1906 Flags.setZExt(); 1907 1908 for (unsigned i = 0; i < NumParts; ++i) { 1909 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1910 VT, /*isfixed=*/true, 0, 0)); 1911 OutVals.push_back(Parts[i]); 1912 } 1913 } 1914 } 1915 } 1916 1917 // Push in swifterror virtual register as the last element of Outs. This makes 1918 // sure swifterror virtual register will be returned in the swifterror 1919 // physical register. 1920 const Function *F = I.getParent()->getParent(); 1921 if (TLI.supportSwiftError() && 1922 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1923 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1924 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1925 Flags.setSwiftError(); 1926 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1927 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1928 true /*isfixed*/, 1 /*origidx*/, 1929 0 /*partOffs*/)); 1930 // Create SDNode for the swifterror virtual register. 1931 OutVals.push_back( 1932 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1933 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1934 EVT(TLI.getPointerTy(DL)))); 1935 } 1936 1937 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1938 CallingConv::ID CallConv = 1939 DAG.getMachineFunction().getFunction().getCallingConv(); 1940 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1941 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1942 1943 // Verify that the target's LowerReturn behaved as expected. 1944 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1945 "LowerReturn didn't return a valid chain!"); 1946 1947 // Update the DAG with the new chain value resulting from return lowering. 1948 DAG.setRoot(Chain); 1949 } 1950 1951 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1952 /// created for it, emit nodes to copy the value into the virtual 1953 /// registers. 1954 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1955 // Skip empty types 1956 if (V->getType()->isEmptyTy()) 1957 return; 1958 1959 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1960 if (VMI != FuncInfo.ValueMap.end()) { 1961 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1962 CopyValueToVirtualRegister(V, VMI->second); 1963 } 1964 } 1965 1966 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1967 /// the current basic block, add it to ValueMap now so that we'll get a 1968 /// CopyTo/FromReg. 1969 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1970 // No need to export constants. 1971 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1972 1973 // Already exported? 1974 if (FuncInfo.isExportedInst(V)) return; 1975 1976 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1977 CopyValueToVirtualRegister(V, Reg); 1978 } 1979 1980 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1981 const BasicBlock *FromBB) { 1982 // The operands of the setcc have to be in this block. We don't know 1983 // how to export them from some other block. 1984 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1985 // Can export from current BB. 1986 if (VI->getParent() == FromBB) 1987 return true; 1988 1989 // Is already exported, noop. 1990 return FuncInfo.isExportedInst(V); 1991 } 1992 1993 // If this is an argument, we can export it if the BB is the entry block or 1994 // if it is already exported. 1995 if (isa<Argument>(V)) { 1996 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1997 return true; 1998 1999 // Otherwise, can only export this if it is already exported. 2000 return FuncInfo.isExportedInst(V); 2001 } 2002 2003 // Otherwise, constants can always be exported. 2004 return true; 2005 } 2006 2007 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2008 BranchProbability 2009 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2010 const MachineBasicBlock *Dst) const { 2011 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2012 const BasicBlock *SrcBB = Src->getBasicBlock(); 2013 const BasicBlock *DstBB = Dst->getBasicBlock(); 2014 if (!BPI) { 2015 // If BPI is not available, set the default probability as 1 / N, where N is 2016 // the number of successors. 2017 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2018 return BranchProbability(1, SuccSize); 2019 } 2020 return BPI->getEdgeProbability(SrcBB, DstBB); 2021 } 2022 2023 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2024 MachineBasicBlock *Dst, 2025 BranchProbability Prob) { 2026 if (!FuncInfo.BPI) 2027 Src->addSuccessorWithoutProb(Dst); 2028 else { 2029 if (Prob.isUnknown()) 2030 Prob = getEdgeProbability(Src, Dst); 2031 Src->addSuccessor(Dst, Prob); 2032 } 2033 } 2034 2035 static bool InBlock(const Value *V, const BasicBlock *BB) { 2036 if (const Instruction *I = dyn_cast<Instruction>(V)) 2037 return I->getParent() == BB; 2038 return true; 2039 } 2040 2041 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2042 /// This function emits a branch and is used at the leaves of an OR or an 2043 /// AND operator tree. 2044 void 2045 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2046 MachineBasicBlock *TBB, 2047 MachineBasicBlock *FBB, 2048 MachineBasicBlock *CurBB, 2049 MachineBasicBlock *SwitchBB, 2050 BranchProbability TProb, 2051 BranchProbability FProb, 2052 bool InvertCond) { 2053 const BasicBlock *BB = CurBB->getBasicBlock(); 2054 2055 // If the leaf of the tree is a comparison, merge the condition into 2056 // the caseblock. 2057 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2058 // The operands of the cmp have to be in this block. We don't know 2059 // how to export them from some other block. If this is the first block 2060 // of the sequence, no exporting is needed. 2061 if (CurBB == SwitchBB || 2062 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2063 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2064 ISD::CondCode Condition; 2065 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2066 ICmpInst::Predicate Pred = 2067 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2068 Condition = getICmpCondCode(Pred); 2069 } else { 2070 const FCmpInst *FC = cast<FCmpInst>(Cond); 2071 FCmpInst::Predicate Pred = 2072 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2073 Condition = getFCmpCondCode(Pred); 2074 if (TM.Options.NoNaNsFPMath) 2075 Condition = getFCmpCodeWithoutNaN(Condition); 2076 } 2077 2078 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2079 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2080 SL->SwitchCases.push_back(CB); 2081 return; 2082 } 2083 } 2084 2085 // Create a CaseBlock record representing this branch. 2086 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2087 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2088 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2089 SL->SwitchCases.push_back(CB); 2090 } 2091 2092 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2093 MachineBasicBlock *TBB, 2094 MachineBasicBlock *FBB, 2095 MachineBasicBlock *CurBB, 2096 MachineBasicBlock *SwitchBB, 2097 Instruction::BinaryOps Opc, 2098 BranchProbability TProb, 2099 BranchProbability FProb, 2100 bool InvertCond) { 2101 // Skip over not part of the tree and remember to invert op and operands at 2102 // next level. 2103 Value *NotCond; 2104 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2105 InBlock(NotCond, CurBB->getBasicBlock())) { 2106 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2107 !InvertCond); 2108 return; 2109 } 2110 2111 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2112 const Value *BOpOp0, *BOpOp1; 2113 // Compute the effective opcode for Cond, taking into account whether it needs 2114 // to be inverted, e.g. 2115 // and (not (or A, B)), C 2116 // gets lowered as 2117 // and (and (not A, not B), C) 2118 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2119 if (BOp) { 2120 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2121 ? Instruction::And 2122 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2123 ? Instruction::Or 2124 : (Instruction::BinaryOps)0); 2125 if (InvertCond) { 2126 if (BOpc == Instruction::And) 2127 BOpc = Instruction::Or; 2128 else if (BOpc == Instruction::Or) 2129 BOpc = Instruction::And; 2130 } 2131 } 2132 2133 // If this node is not part of the or/and tree, emit it as a branch. 2134 // Note that all nodes in the tree should have same opcode. 2135 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2136 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2137 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2138 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2139 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2140 TProb, FProb, InvertCond); 2141 return; 2142 } 2143 2144 // Create TmpBB after CurBB. 2145 MachineFunction::iterator BBI(CurBB); 2146 MachineFunction &MF = DAG.getMachineFunction(); 2147 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2148 CurBB->getParent()->insert(++BBI, TmpBB); 2149 2150 if (Opc == Instruction::Or) { 2151 // Codegen X | Y as: 2152 // BB1: 2153 // jmp_if_X TBB 2154 // jmp TmpBB 2155 // TmpBB: 2156 // jmp_if_Y TBB 2157 // jmp FBB 2158 // 2159 2160 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2161 // The requirement is that 2162 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2163 // = TrueProb for original BB. 2164 // Assuming the original probabilities are A and B, one choice is to set 2165 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2166 // A/(1+B) and 2B/(1+B). This choice assumes that 2167 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2168 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2169 // TmpBB, but the math is more complicated. 2170 2171 auto NewTrueProb = TProb / 2; 2172 auto NewFalseProb = TProb / 2 + FProb; 2173 // Emit the LHS condition. 2174 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2175 NewFalseProb, InvertCond); 2176 2177 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2178 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2179 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2180 // Emit the RHS condition into TmpBB. 2181 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2182 Probs[1], InvertCond); 2183 } else { 2184 assert(Opc == Instruction::And && "Unknown merge op!"); 2185 // Codegen X & Y as: 2186 // BB1: 2187 // jmp_if_X TmpBB 2188 // jmp FBB 2189 // TmpBB: 2190 // jmp_if_Y TBB 2191 // jmp FBB 2192 // 2193 // This requires creation of TmpBB after CurBB. 2194 2195 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2196 // The requirement is that 2197 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2198 // = FalseProb for original BB. 2199 // Assuming the original probabilities are A and B, one choice is to set 2200 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2201 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2202 // TrueProb for BB1 * FalseProb for TmpBB. 2203 2204 auto NewTrueProb = TProb + FProb / 2; 2205 auto NewFalseProb = FProb / 2; 2206 // Emit the LHS condition. 2207 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2208 NewFalseProb, InvertCond); 2209 2210 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2211 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2212 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2213 // Emit the RHS condition into TmpBB. 2214 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2215 Probs[1], InvertCond); 2216 } 2217 } 2218 2219 /// If the set of cases should be emitted as a series of branches, return true. 2220 /// If we should emit this as a bunch of and/or'd together conditions, return 2221 /// false. 2222 bool 2223 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2224 if (Cases.size() != 2) return true; 2225 2226 // If this is two comparisons of the same values or'd or and'd together, they 2227 // will get folded into a single comparison, so don't emit two blocks. 2228 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2229 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2230 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2231 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2232 return false; 2233 } 2234 2235 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2236 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2237 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2238 Cases[0].CC == Cases[1].CC && 2239 isa<Constant>(Cases[0].CmpRHS) && 2240 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2241 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2242 return false; 2243 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2244 return false; 2245 } 2246 2247 return true; 2248 } 2249 2250 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2251 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2252 2253 // Update machine-CFG edges. 2254 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2255 2256 if (I.isUnconditional()) { 2257 // Update machine-CFG edges. 2258 BrMBB->addSuccessor(Succ0MBB); 2259 2260 // If this is not a fall-through branch or optimizations are switched off, 2261 // emit the branch. 2262 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2263 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2264 MVT::Other, getControlRoot(), 2265 DAG.getBasicBlock(Succ0MBB))); 2266 2267 return; 2268 } 2269 2270 // If this condition is one of the special cases we handle, do special stuff 2271 // now. 2272 const Value *CondVal = I.getCondition(); 2273 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2274 2275 // If this is a series of conditions that are or'd or and'd together, emit 2276 // this as a sequence of branches instead of setcc's with and/or operations. 2277 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2278 // unpredictable branches, and vector extracts because those jumps are likely 2279 // expensive for any target), this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2293 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2294 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2295 Value *Vec; 2296 const Value *BOp0, *BOp1; 2297 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2298 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2299 Opcode = Instruction::And; 2300 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2301 Opcode = Instruction::Or; 2302 2303 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2304 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2305 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2306 getEdgeProbability(BrMBB, Succ0MBB), 2307 getEdgeProbability(BrMBB, Succ1MBB), 2308 /*InvertCond=*/false); 2309 // If the compares in later blocks need to use values not currently 2310 // exported from this block, export them now. This block should always 2311 // be the first entry. 2312 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2313 2314 // Allow some cases to be rejected. 2315 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2316 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2317 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2318 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2319 } 2320 2321 // Emit the branch for this block. 2322 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2323 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2324 return; 2325 } 2326 2327 // Okay, we decided not to do this, remove any inserted MBB's and clear 2328 // SwitchCases. 2329 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2330 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2331 2332 SL->SwitchCases.clear(); 2333 } 2334 } 2335 2336 // Create a CaseBlock record representing this branch. 2337 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2338 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2339 2340 // Use visitSwitchCase to actually insert the fast branch sequence for this 2341 // cond branch. 2342 visitSwitchCase(CB, BrMBB); 2343 } 2344 2345 /// visitSwitchCase - Emits the necessary code to represent a single node in 2346 /// the binary search tree resulting from lowering a switch instruction. 2347 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2348 MachineBasicBlock *SwitchBB) { 2349 SDValue Cond; 2350 SDValue CondLHS = getValue(CB.CmpLHS); 2351 SDLoc dl = CB.DL; 2352 2353 if (CB.CC == ISD::SETTRUE) { 2354 // Branch or fall through to TrueBB. 2355 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2356 SwitchBB->normalizeSuccProbs(); 2357 if (CB.TrueBB != NextBlock(SwitchBB)) { 2358 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2359 DAG.getBasicBlock(CB.TrueBB))); 2360 } 2361 return; 2362 } 2363 2364 auto &TLI = DAG.getTargetLoweringInfo(); 2365 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2366 2367 // Build the setcc now. 2368 if (!CB.CmpMHS) { 2369 // Fold "(X == true)" to X and "(X == false)" to !X to 2370 // handle common cases produced by branch lowering. 2371 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2372 CB.CC == ISD::SETEQ) 2373 Cond = CondLHS; 2374 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2375 CB.CC == ISD::SETEQ) { 2376 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2377 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2378 } else { 2379 SDValue CondRHS = getValue(CB.CmpRHS); 2380 2381 // If a pointer's DAG type is larger than its memory type then the DAG 2382 // values are zero-extended. This breaks signed comparisons so truncate 2383 // back to the underlying type before doing the compare. 2384 if (CondLHS.getValueType() != MemVT) { 2385 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2386 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2387 } 2388 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2389 } 2390 } else { 2391 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2392 2393 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2394 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2395 2396 SDValue CmpOp = getValue(CB.CmpMHS); 2397 EVT VT = CmpOp.getValueType(); 2398 2399 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2400 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2401 ISD::SETLE); 2402 } else { 2403 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2404 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2405 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2406 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2407 } 2408 } 2409 2410 // Update successor info 2411 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2412 // TrueBB and FalseBB are always different unless the incoming IR is 2413 // degenerate. This only happens when running llc on weird IR. 2414 if (CB.TrueBB != CB.FalseBB) 2415 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2416 SwitchBB->normalizeSuccProbs(); 2417 2418 // If the lhs block is the next block, invert the condition so that we can 2419 // fall through to the lhs instead of the rhs block. 2420 if (CB.TrueBB == NextBlock(SwitchBB)) { 2421 std::swap(CB.TrueBB, CB.FalseBB); 2422 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2423 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2424 } 2425 2426 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2427 MVT::Other, getControlRoot(), Cond, 2428 DAG.getBasicBlock(CB.TrueBB)); 2429 2430 // Insert the false branch. Do this even if it's a fall through branch, 2431 // this makes it easier to do DAG optimizations which require inverting 2432 // the branch condition. 2433 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2434 DAG.getBasicBlock(CB.FalseBB)); 2435 2436 DAG.setRoot(BrCond); 2437 } 2438 2439 /// visitJumpTable - Emit JumpTable node in the current MBB 2440 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2441 // Emit the code for the jump table 2442 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2443 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2444 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2445 JT.Reg, PTy); 2446 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2447 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2448 MVT::Other, Index.getValue(1), 2449 Table, Index); 2450 DAG.setRoot(BrJumpTable); 2451 } 2452 2453 /// visitJumpTableHeader - This function emits necessary code to produce index 2454 /// in the JumpTable from switch case. 2455 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2456 JumpTableHeader &JTH, 2457 MachineBasicBlock *SwitchBB) { 2458 SDLoc dl = getCurSDLoc(); 2459 2460 // Subtract the lowest switch case value from the value being switched on. 2461 SDValue SwitchOp = getValue(JTH.SValue); 2462 EVT VT = SwitchOp.getValueType(); 2463 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2464 DAG.getConstant(JTH.First, dl, VT)); 2465 2466 // The SDNode we just created, which holds the value being switched on minus 2467 // the smallest case value, needs to be copied to a virtual register so it 2468 // can be used as an index into the jump table in a subsequent basic block. 2469 // This value may be smaller or larger than the target's pointer type, and 2470 // therefore require extension or truncating. 2471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2472 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2473 2474 unsigned JumpTableReg = 2475 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2476 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2477 JumpTableReg, SwitchOp); 2478 JT.Reg = JumpTableReg; 2479 2480 if (!JTH.OmitRangeCheck) { 2481 // Emit the range check for the jump table, and branch to the default block 2482 // for the switch statement if the value being switched on exceeds the 2483 // largest case in the switch. 2484 SDValue CMP = DAG.getSetCC( 2485 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2486 Sub.getValueType()), 2487 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2488 2489 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2490 MVT::Other, CopyTo, CMP, 2491 DAG.getBasicBlock(JT.Default)); 2492 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2496 DAG.getBasicBlock(JT.MBB)); 2497 2498 DAG.setRoot(BrCond); 2499 } else { 2500 // Avoid emitting unnecessary branches to the next block. 2501 if (JT.MBB != NextBlock(SwitchBB)) 2502 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2503 DAG.getBasicBlock(JT.MBB))); 2504 else 2505 DAG.setRoot(CopyTo); 2506 } 2507 } 2508 2509 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2510 /// variable if there exists one. 2511 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2512 SDValue &Chain) { 2513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2514 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2515 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2516 MachineFunction &MF = DAG.getMachineFunction(); 2517 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2518 MachineSDNode *Node = 2519 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2520 if (Global) { 2521 MachinePointerInfo MPInfo(Global); 2522 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2523 MachineMemOperand::MODereferenceable; 2524 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2525 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2526 DAG.setNodeMemRefs(Node, {MemRef}); 2527 } 2528 if (PtrTy != PtrMemTy) 2529 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2530 return SDValue(Node, 0); 2531 } 2532 2533 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2534 /// tail spliced into a stack protector check success bb. 2535 /// 2536 /// For a high level explanation of how this fits into the stack protector 2537 /// generation see the comment on the declaration of class 2538 /// StackProtectorDescriptor. 2539 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2540 MachineBasicBlock *ParentBB) { 2541 2542 // First create the loads to the guard/stack slot for the comparison. 2543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2544 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2545 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2546 2547 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2548 int FI = MFI.getStackProtectorIndex(); 2549 2550 SDValue Guard; 2551 SDLoc dl = getCurSDLoc(); 2552 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2553 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2554 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2555 2556 // Generate code to load the content of the guard slot. 2557 SDValue GuardVal = DAG.getLoad( 2558 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2559 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2560 MachineMemOperand::MOVolatile); 2561 2562 if (TLI.useStackGuardXorFP()) 2563 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2564 2565 // Retrieve guard check function, nullptr if instrumentation is inlined. 2566 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2567 // The target provides a guard check function to validate the guard value. 2568 // Generate a call to that function with the content of the guard slot as 2569 // argument. 2570 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2571 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2572 2573 TargetLowering::ArgListTy Args; 2574 TargetLowering::ArgListEntry Entry; 2575 Entry.Node = GuardVal; 2576 Entry.Ty = FnTy->getParamType(0); 2577 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2578 Entry.IsInReg = true; 2579 Args.push_back(Entry); 2580 2581 TargetLowering::CallLoweringInfo CLI(DAG); 2582 CLI.setDebugLoc(getCurSDLoc()) 2583 .setChain(DAG.getEntryNode()) 2584 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2585 getValue(GuardCheckFn), std::move(Args)); 2586 2587 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2588 DAG.setRoot(Result.second); 2589 return; 2590 } 2591 2592 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2593 // Otherwise, emit a volatile load to retrieve the stack guard value. 2594 SDValue Chain = DAG.getEntryNode(); 2595 if (TLI.useLoadStackGuardNode()) { 2596 Guard = getLoadStackGuard(DAG, dl, Chain); 2597 } else { 2598 const Value *IRGuard = TLI.getSDagStackGuard(M); 2599 SDValue GuardPtr = getValue(IRGuard); 2600 2601 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2602 MachinePointerInfo(IRGuard, 0), Align, 2603 MachineMemOperand::MOVolatile); 2604 } 2605 2606 // Perform the comparison via a getsetcc. 2607 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2608 *DAG.getContext(), 2609 Guard.getValueType()), 2610 Guard, GuardVal, ISD::SETNE); 2611 2612 // If the guard/stackslot do not equal, branch to failure MBB. 2613 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2614 MVT::Other, GuardVal.getOperand(0), 2615 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2616 // Otherwise branch to success MBB. 2617 SDValue Br = DAG.getNode(ISD::BR, dl, 2618 MVT::Other, BrCond, 2619 DAG.getBasicBlock(SPD.getSuccessMBB())); 2620 2621 DAG.setRoot(Br); 2622 } 2623 2624 /// Codegen the failure basic block for a stack protector check. 2625 /// 2626 /// A failure stack protector machine basic block consists simply of a call to 2627 /// __stack_chk_fail(). 2628 /// 2629 /// For a high level explanation of how this fits into the stack protector 2630 /// generation see the comment on the declaration of class 2631 /// StackProtectorDescriptor. 2632 void 2633 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2635 TargetLowering::MakeLibCallOptions CallOptions; 2636 CallOptions.setDiscardResult(true); 2637 SDValue Chain = 2638 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2639 None, CallOptions, getCurSDLoc()).second; 2640 // On PS4, the "return address" must still be within the calling function, 2641 // even if it's at the very end, so emit an explicit TRAP here. 2642 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2643 if (TM.getTargetTriple().isPS4CPU()) 2644 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2645 // WebAssembly needs an unreachable instruction after a non-returning call, 2646 // because the function return type can be different from __stack_chk_fail's 2647 // return type (void). 2648 if (TM.getTargetTriple().isWasm()) 2649 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2650 2651 DAG.setRoot(Chain); 2652 } 2653 2654 /// visitBitTestHeader - This function emits necessary code to produce value 2655 /// suitable for "bit tests" 2656 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2657 MachineBasicBlock *SwitchBB) { 2658 SDLoc dl = getCurSDLoc(); 2659 2660 // Subtract the minimum value. 2661 SDValue SwitchOp = getValue(B.SValue); 2662 EVT VT = SwitchOp.getValueType(); 2663 SDValue RangeSub = 2664 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2665 2666 // Determine the type of the test operands. 2667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2668 bool UsePtrType = false; 2669 if (!TLI.isTypeLegal(VT)) { 2670 UsePtrType = true; 2671 } else { 2672 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2673 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2674 // Switch table case range are encoded into series of masks. 2675 // Just use pointer type, it's guaranteed to fit. 2676 UsePtrType = true; 2677 break; 2678 } 2679 } 2680 SDValue Sub = RangeSub; 2681 if (UsePtrType) { 2682 VT = TLI.getPointerTy(DAG.getDataLayout()); 2683 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2684 } 2685 2686 B.RegVT = VT.getSimpleVT(); 2687 B.Reg = FuncInfo.CreateReg(B.RegVT); 2688 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2689 2690 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2691 2692 if (!B.OmitRangeCheck) 2693 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2694 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2695 SwitchBB->normalizeSuccProbs(); 2696 2697 SDValue Root = CopyTo; 2698 if (!B.OmitRangeCheck) { 2699 // Conditional branch to the default block. 2700 SDValue RangeCmp = DAG.getSetCC(dl, 2701 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2702 RangeSub.getValueType()), 2703 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2704 ISD::SETUGT); 2705 2706 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2707 DAG.getBasicBlock(B.Default)); 2708 } 2709 2710 // Avoid emitting unnecessary branches to the next block. 2711 if (MBB != NextBlock(SwitchBB)) 2712 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2713 2714 DAG.setRoot(Root); 2715 } 2716 2717 /// visitBitTestCase - this function produces one "bit test" 2718 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2719 MachineBasicBlock* NextMBB, 2720 BranchProbability BranchProbToNext, 2721 unsigned Reg, 2722 BitTestCase &B, 2723 MachineBasicBlock *SwitchBB) { 2724 SDLoc dl = getCurSDLoc(); 2725 MVT VT = BB.RegVT; 2726 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2727 SDValue Cmp; 2728 unsigned PopCount = countPopulation(B.Mask); 2729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2730 if (PopCount == 1) { 2731 // Testing for a single bit; just compare the shift count with what it 2732 // would need to be to shift a 1 bit in that position. 2733 Cmp = DAG.getSetCC( 2734 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2735 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2736 ISD::SETEQ); 2737 } else if (PopCount == BB.Range) { 2738 // There is only one zero bit in the range, test for it directly. 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2742 ISD::SETNE); 2743 } else { 2744 // Make desired shift 2745 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2746 DAG.getConstant(1, dl, VT), ShiftOp); 2747 2748 // Emit bit tests and jumps 2749 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2750 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2751 Cmp = DAG.getSetCC( 2752 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2753 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2754 } 2755 2756 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2757 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2758 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2759 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2760 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2761 // one as they are relative probabilities (and thus work more like weights), 2762 // and hence we need to normalize them to let the sum of them become one. 2763 SwitchBB->normalizeSuccProbs(); 2764 2765 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2766 MVT::Other, getControlRoot(), 2767 Cmp, DAG.getBasicBlock(B.TargetBB)); 2768 2769 // Avoid emitting unnecessary branches to the next block. 2770 if (NextMBB != NextBlock(SwitchBB)) 2771 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2772 DAG.getBasicBlock(NextMBB)); 2773 2774 DAG.setRoot(BrAnd); 2775 } 2776 2777 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2778 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2779 2780 // Retrieve successors. Look through artificial IR level blocks like 2781 // catchswitch for successors. 2782 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2783 const BasicBlock *EHPadBB = I.getSuccessor(1); 2784 2785 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2786 // have to do anything here to lower funclet bundles. 2787 assert(!I.hasOperandBundlesOtherThan( 2788 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2789 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2790 LLVMContext::OB_cfguardtarget, 2791 LLVMContext::OB_clang_arc_attachedcall}) && 2792 "Cannot lower invokes with arbitrary operand bundles yet!"); 2793 2794 const Value *Callee(I.getCalledOperand()); 2795 const Function *Fn = dyn_cast<Function>(Callee); 2796 if (isa<InlineAsm>(Callee)) 2797 visitInlineAsm(I); 2798 else if (Fn && Fn->isIntrinsic()) { 2799 switch (Fn->getIntrinsicID()) { 2800 default: 2801 llvm_unreachable("Cannot invoke this intrinsic"); 2802 case Intrinsic::donothing: 2803 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2804 break; 2805 case Intrinsic::experimental_patchpoint_void: 2806 case Intrinsic::experimental_patchpoint_i64: 2807 visitPatchpoint(I, EHPadBB); 2808 break; 2809 case Intrinsic::experimental_gc_statepoint: 2810 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2811 break; 2812 case Intrinsic::wasm_rethrow: { 2813 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2814 // special because it can be invoked, so we manually lower it to a DAG 2815 // node here. 2816 SmallVector<SDValue, 8> Ops; 2817 Ops.push_back(getRoot()); // inchain 2818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2819 Ops.push_back( 2820 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2821 TLI.getPointerTy(DAG.getDataLayout()))); 2822 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2823 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2824 break; 2825 } 2826 } 2827 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2828 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2829 // Eventually we will support lowering the @llvm.experimental.deoptimize 2830 // intrinsic, and right now there are no plans to support other intrinsics 2831 // with deopt state. 2832 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2833 } else { 2834 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2835 } 2836 2837 // If the value of the invoke is used outside of its defining block, make it 2838 // available as a virtual register. 2839 // We already took care of the exported value for the statepoint instruction 2840 // during call to the LowerStatepoint. 2841 if (!isa<GCStatepointInst>(I)) { 2842 CopyToExportRegsIfNeeded(&I); 2843 } 2844 2845 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2846 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2847 BranchProbability EHPadBBProb = 2848 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2849 : BranchProbability::getZero(); 2850 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2851 2852 // Update successor info. 2853 addSuccessorWithProb(InvokeMBB, Return); 2854 for (auto &UnwindDest : UnwindDests) { 2855 UnwindDest.first->setIsEHPad(); 2856 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2857 } 2858 InvokeMBB->normalizeSuccProbs(); 2859 2860 // Drop into normal successor. 2861 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2862 DAG.getBasicBlock(Return))); 2863 } 2864 2865 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2866 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2867 2868 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2869 // have to do anything here to lower funclet bundles. 2870 assert(!I.hasOperandBundlesOtherThan( 2871 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2872 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2873 2874 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2875 visitInlineAsm(I); 2876 CopyToExportRegsIfNeeded(&I); 2877 2878 // Retrieve successors. 2879 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2880 2881 // Update successor info. 2882 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2883 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2884 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2885 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2886 Target->setIsInlineAsmBrIndirectTarget(); 2887 } 2888 CallBrMBB->normalizeSuccProbs(); 2889 2890 // Drop into default successor. 2891 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2892 MVT::Other, getControlRoot(), 2893 DAG.getBasicBlock(Return))); 2894 } 2895 2896 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2897 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2898 } 2899 2900 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2901 assert(FuncInfo.MBB->isEHPad() && 2902 "Call to landingpad not in landing pad!"); 2903 2904 // If there aren't registers to copy the values into (e.g., during SjLj 2905 // exceptions), then don't bother to create these DAG nodes. 2906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2907 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2908 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2909 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2910 return; 2911 2912 // If landingpad's return type is token type, we don't create DAG nodes 2913 // for its exception pointer and selector value. The extraction of exception 2914 // pointer or selector value from token type landingpads is not currently 2915 // supported. 2916 if (LP.getType()->isTokenTy()) 2917 return; 2918 2919 SmallVector<EVT, 2> ValueVTs; 2920 SDLoc dl = getCurSDLoc(); 2921 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2922 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2923 2924 // Get the two live-in registers as SDValues. The physregs have already been 2925 // copied into virtual registers. 2926 SDValue Ops[2]; 2927 if (FuncInfo.ExceptionPointerVirtReg) { 2928 Ops[0] = DAG.getZExtOrTrunc( 2929 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2930 FuncInfo.ExceptionPointerVirtReg, 2931 TLI.getPointerTy(DAG.getDataLayout())), 2932 dl, ValueVTs[0]); 2933 } else { 2934 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2935 } 2936 Ops[1] = DAG.getZExtOrTrunc( 2937 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2938 FuncInfo.ExceptionSelectorVirtReg, 2939 TLI.getPointerTy(DAG.getDataLayout())), 2940 dl, ValueVTs[1]); 2941 2942 // Merge into one. 2943 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2944 DAG.getVTList(ValueVTs), Ops); 2945 setValue(&LP, Res); 2946 } 2947 2948 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2949 MachineBasicBlock *Last) { 2950 // Update JTCases. 2951 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2952 if (SL->JTCases[i].first.HeaderBB == First) 2953 SL->JTCases[i].first.HeaderBB = Last; 2954 2955 // Update BitTestCases. 2956 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2957 if (SL->BitTestCases[i].Parent == First) 2958 SL->BitTestCases[i].Parent = Last; 2959 } 2960 2961 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2962 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2963 2964 // Update machine-CFG edges with unique successors. 2965 SmallSet<BasicBlock*, 32> Done; 2966 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2967 BasicBlock *BB = I.getSuccessor(i); 2968 bool Inserted = Done.insert(BB).second; 2969 if (!Inserted) 2970 continue; 2971 2972 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2973 addSuccessorWithProb(IndirectBrMBB, Succ); 2974 } 2975 IndirectBrMBB->normalizeSuccProbs(); 2976 2977 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2978 MVT::Other, getControlRoot(), 2979 getValue(I.getAddress()))); 2980 } 2981 2982 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2983 if (!DAG.getTarget().Options.TrapUnreachable) 2984 return; 2985 2986 // We may be able to ignore unreachable behind a noreturn call. 2987 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2988 const BasicBlock &BB = *I.getParent(); 2989 if (&I != &BB.front()) { 2990 BasicBlock::const_iterator PredI = 2991 std::prev(BasicBlock::const_iterator(&I)); 2992 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2993 if (Call->doesNotReturn()) 2994 return; 2995 } 2996 } 2997 } 2998 2999 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3000 } 3001 3002 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3003 SDNodeFlags Flags; 3004 3005 SDValue Op = getValue(I.getOperand(0)); 3006 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3007 Op, Flags); 3008 setValue(&I, UnNodeValue); 3009 } 3010 3011 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3012 SDNodeFlags Flags; 3013 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3014 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3015 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3016 } 3017 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3018 Flags.setExact(ExactOp->isExact()); 3019 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3020 Flags.copyFMF(*FPOp); 3021 3022 SDValue Op1 = getValue(I.getOperand(0)); 3023 SDValue Op2 = getValue(I.getOperand(1)); 3024 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3025 Op1, Op2, Flags); 3026 setValue(&I, BinNodeValue); 3027 } 3028 3029 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3030 SDValue Op1 = getValue(I.getOperand(0)); 3031 SDValue Op2 = getValue(I.getOperand(1)); 3032 3033 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3034 Op1.getValueType(), DAG.getDataLayout()); 3035 3036 // Coerce the shift amount to the right type if we can. 3037 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3038 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3039 unsigned Op2Size = Op2.getValueSizeInBits(); 3040 SDLoc DL = getCurSDLoc(); 3041 3042 // If the operand is smaller than the shift count type, promote it. 3043 if (ShiftSize > Op2Size) 3044 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3045 3046 // If the operand is larger than the shift count type but the shift 3047 // count type has enough bits to represent any shift value, truncate 3048 // it now. This is a common case and it exposes the truncate to 3049 // optimization early. 3050 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3051 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3052 // Otherwise we'll need to temporarily settle for some other convenient 3053 // type. Type legalization will make adjustments once the shiftee is split. 3054 else 3055 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3056 } 3057 3058 bool nuw = false; 3059 bool nsw = false; 3060 bool exact = false; 3061 3062 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3063 3064 if (const OverflowingBinaryOperator *OFBinOp = 3065 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3066 nuw = OFBinOp->hasNoUnsignedWrap(); 3067 nsw = OFBinOp->hasNoSignedWrap(); 3068 } 3069 if (const PossiblyExactOperator *ExactOp = 3070 dyn_cast<const PossiblyExactOperator>(&I)) 3071 exact = ExactOp->isExact(); 3072 } 3073 SDNodeFlags Flags; 3074 Flags.setExact(exact); 3075 Flags.setNoSignedWrap(nsw); 3076 Flags.setNoUnsignedWrap(nuw); 3077 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3078 Flags); 3079 setValue(&I, Res); 3080 } 3081 3082 void SelectionDAGBuilder::visitSDiv(const User &I) { 3083 SDValue Op1 = getValue(I.getOperand(0)); 3084 SDValue Op2 = getValue(I.getOperand(1)); 3085 3086 SDNodeFlags Flags; 3087 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3088 cast<PossiblyExactOperator>(&I)->isExact()); 3089 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3090 Op2, Flags)); 3091 } 3092 3093 void SelectionDAGBuilder::visitICmp(const User &I) { 3094 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3095 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3096 predicate = IC->getPredicate(); 3097 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3098 predicate = ICmpInst::Predicate(IC->getPredicate()); 3099 SDValue Op1 = getValue(I.getOperand(0)); 3100 SDValue Op2 = getValue(I.getOperand(1)); 3101 ISD::CondCode Opcode = getICmpCondCode(predicate); 3102 3103 auto &TLI = DAG.getTargetLoweringInfo(); 3104 EVT MemVT = 3105 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3106 3107 // If a pointer's DAG type is larger than its memory type then the DAG values 3108 // are zero-extended. This breaks signed comparisons so truncate back to the 3109 // underlying type before doing the compare. 3110 if (Op1.getValueType() != MemVT) { 3111 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3112 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3113 } 3114 3115 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3116 I.getType()); 3117 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3118 } 3119 3120 void SelectionDAGBuilder::visitFCmp(const User &I) { 3121 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3122 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3123 predicate = FC->getPredicate(); 3124 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3125 predicate = FCmpInst::Predicate(FC->getPredicate()); 3126 SDValue Op1 = getValue(I.getOperand(0)); 3127 SDValue Op2 = getValue(I.getOperand(1)); 3128 3129 ISD::CondCode Condition = getFCmpCondCode(predicate); 3130 auto *FPMO = cast<FPMathOperator>(&I); 3131 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3132 Condition = getFCmpCodeWithoutNaN(Condition); 3133 3134 SDNodeFlags Flags; 3135 Flags.copyFMF(*FPMO); 3136 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3137 3138 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3139 I.getType()); 3140 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3141 } 3142 3143 // Check if the condition of the select has one use or two users that are both 3144 // selects with the same condition. 3145 static bool hasOnlySelectUsers(const Value *Cond) { 3146 return llvm::all_of(Cond->users(), [](const Value *V) { 3147 return isa<SelectInst>(V); 3148 }); 3149 } 3150 3151 void SelectionDAGBuilder::visitSelect(const User &I) { 3152 SmallVector<EVT, 4> ValueVTs; 3153 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3154 ValueVTs); 3155 unsigned NumValues = ValueVTs.size(); 3156 if (NumValues == 0) return; 3157 3158 SmallVector<SDValue, 4> Values(NumValues); 3159 SDValue Cond = getValue(I.getOperand(0)); 3160 SDValue LHSVal = getValue(I.getOperand(1)); 3161 SDValue RHSVal = getValue(I.getOperand(2)); 3162 SmallVector<SDValue, 1> BaseOps(1, Cond); 3163 ISD::NodeType OpCode = 3164 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3165 3166 bool IsUnaryAbs = false; 3167 bool Negate = false; 3168 3169 SDNodeFlags Flags; 3170 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3171 Flags.copyFMF(*FPOp); 3172 3173 // Min/max matching is only viable if all output VTs are the same. 3174 if (is_splat(ValueVTs)) { 3175 EVT VT = ValueVTs[0]; 3176 LLVMContext &Ctx = *DAG.getContext(); 3177 auto &TLI = DAG.getTargetLoweringInfo(); 3178 3179 // We care about the legality of the operation after it has been type 3180 // legalized. 3181 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3182 VT = TLI.getTypeToTransformTo(Ctx, VT); 3183 3184 // If the vselect is legal, assume we want to leave this as a vector setcc + 3185 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3186 // min/max is legal on the scalar type. 3187 bool UseScalarMinMax = VT.isVector() && 3188 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3189 3190 Value *LHS, *RHS; 3191 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3192 ISD::NodeType Opc = ISD::DELETED_NODE; 3193 switch (SPR.Flavor) { 3194 case SPF_UMAX: Opc = ISD::UMAX; break; 3195 case SPF_UMIN: Opc = ISD::UMIN; break; 3196 case SPF_SMAX: Opc = ISD::SMAX; break; 3197 case SPF_SMIN: Opc = ISD::SMIN; break; 3198 case SPF_FMINNUM: 3199 switch (SPR.NaNBehavior) { 3200 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3201 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3202 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3203 case SPNB_RETURNS_ANY: { 3204 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3205 Opc = ISD::FMINNUM; 3206 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3207 Opc = ISD::FMINIMUM; 3208 else if (UseScalarMinMax) 3209 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3210 ISD::FMINNUM : ISD::FMINIMUM; 3211 break; 3212 } 3213 } 3214 break; 3215 case SPF_FMAXNUM: 3216 switch (SPR.NaNBehavior) { 3217 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3218 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3219 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3220 case SPNB_RETURNS_ANY: 3221 3222 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3223 Opc = ISD::FMAXNUM; 3224 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3225 Opc = ISD::FMAXIMUM; 3226 else if (UseScalarMinMax) 3227 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3228 ISD::FMAXNUM : ISD::FMAXIMUM; 3229 break; 3230 } 3231 break; 3232 case SPF_NABS: 3233 Negate = true; 3234 LLVM_FALLTHROUGH; 3235 case SPF_ABS: 3236 IsUnaryAbs = true; 3237 Opc = ISD::ABS; 3238 break; 3239 default: break; 3240 } 3241 3242 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3243 (TLI.isOperationLegalOrCustom(Opc, VT) || 3244 (UseScalarMinMax && 3245 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3246 // If the underlying comparison instruction is used by any other 3247 // instruction, the consumed instructions won't be destroyed, so it is 3248 // not profitable to convert to a min/max. 3249 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3250 OpCode = Opc; 3251 LHSVal = getValue(LHS); 3252 RHSVal = getValue(RHS); 3253 BaseOps.clear(); 3254 } 3255 3256 if (IsUnaryAbs) { 3257 OpCode = Opc; 3258 LHSVal = getValue(LHS); 3259 BaseOps.clear(); 3260 } 3261 } 3262 3263 if (IsUnaryAbs) { 3264 for (unsigned i = 0; i != NumValues; ++i) { 3265 SDLoc dl = getCurSDLoc(); 3266 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3267 Values[i] = 3268 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3269 if (Negate) 3270 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3271 Values[i]); 3272 } 3273 } else { 3274 for (unsigned i = 0; i != NumValues; ++i) { 3275 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3276 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3277 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3278 Values[i] = DAG.getNode( 3279 OpCode, getCurSDLoc(), 3280 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3281 } 3282 } 3283 3284 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3285 DAG.getVTList(ValueVTs), Values)); 3286 } 3287 3288 void SelectionDAGBuilder::visitTrunc(const User &I) { 3289 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3290 SDValue N = getValue(I.getOperand(0)); 3291 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3292 I.getType()); 3293 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3294 } 3295 3296 void SelectionDAGBuilder::visitZExt(const User &I) { 3297 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3298 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3299 SDValue N = getValue(I.getOperand(0)); 3300 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3301 I.getType()); 3302 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3303 } 3304 3305 void SelectionDAGBuilder::visitSExt(const User &I) { 3306 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3307 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3308 SDValue N = getValue(I.getOperand(0)); 3309 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3310 I.getType()); 3311 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3312 } 3313 3314 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3315 // FPTrunc is never a no-op cast, no need to check 3316 SDValue N = getValue(I.getOperand(0)); 3317 SDLoc dl = getCurSDLoc(); 3318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3319 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3320 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3321 DAG.getTargetConstant( 3322 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3323 } 3324 3325 void SelectionDAGBuilder::visitFPExt(const User &I) { 3326 // FPExt is never a no-op cast, no need to check 3327 SDValue N = getValue(I.getOperand(0)); 3328 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3329 I.getType()); 3330 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3331 } 3332 3333 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3334 // FPToUI is never a no-op cast, no need to check 3335 SDValue N = getValue(I.getOperand(0)); 3336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3337 I.getType()); 3338 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3339 } 3340 3341 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3342 // FPToSI is never a no-op cast, no need to check 3343 SDValue N = getValue(I.getOperand(0)); 3344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3345 I.getType()); 3346 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3347 } 3348 3349 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3350 // UIToFP is never a no-op cast, no need to check 3351 SDValue N = getValue(I.getOperand(0)); 3352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3353 I.getType()); 3354 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3355 } 3356 3357 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3358 // SIToFP is never a no-op cast, no need to check 3359 SDValue N = getValue(I.getOperand(0)); 3360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3361 I.getType()); 3362 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3363 } 3364 3365 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3366 // What to do depends on the size of the integer and the size of the pointer. 3367 // We can either truncate, zero extend, or no-op, accordingly. 3368 SDValue N = getValue(I.getOperand(0)); 3369 auto &TLI = DAG.getTargetLoweringInfo(); 3370 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3371 I.getType()); 3372 EVT PtrMemVT = 3373 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3374 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3375 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3376 setValue(&I, N); 3377 } 3378 3379 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3380 // What to do depends on the size of the integer and the size of the pointer. 3381 // We can either truncate, zero extend, or no-op, accordingly. 3382 SDValue N = getValue(I.getOperand(0)); 3383 auto &TLI = DAG.getTargetLoweringInfo(); 3384 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3385 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3386 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3387 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3388 setValue(&I, N); 3389 } 3390 3391 void SelectionDAGBuilder::visitBitCast(const User &I) { 3392 SDValue N = getValue(I.getOperand(0)); 3393 SDLoc dl = getCurSDLoc(); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 3397 // BitCast assures us that source and destination are the same size so this is 3398 // either a BITCAST or a no-op. 3399 if (DestVT != N.getValueType()) 3400 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3401 DestVT, N)); // convert types. 3402 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3403 // might fold any kind of constant expression to an integer constant and that 3404 // is not what we are looking for. Only recognize a bitcast of a genuine 3405 // constant integer as an opaque constant. 3406 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3407 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3408 /*isOpaque*/true)); 3409 else 3410 setValue(&I, N); // noop cast. 3411 } 3412 3413 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3415 const Value *SV = I.getOperand(0); 3416 SDValue N = getValue(SV); 3417 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3418 3419 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3420 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3421 3422 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3423 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3424 3425 setValue(&I, N); 3426 } 3427 3428 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 SDValue InVec = getValue(I.getOperand(0)); 3431 SDValue InVal = getValue(I.getOperand(1)); 3432 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3433 TLI.getVectorIdxTy(DAG.getDataLayout())); 3434 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3435 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3436 InVec, InVal, InIdx)); 3437 } 3438 3439 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 SDValue InVec = getValue(I.getOperand(0)); 3442 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3443 TLI.getVectorIdxTy(DAG.getDataLayout())); 3444 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3445 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3446 InVec, InIdx)); 3447 } 3448 3449 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3450 SDValue Src1 = getValue(I.getOperand(0)); 3451 SDValue Src2 = getValue(I.getOperand(1)); 3452 ArrayRef<int> Mask; 3453 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3454 Mask = SVI->getShuffleMask(); 3455 else 3456 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3457 SDLoc DL = getCurSDLoc(); 3458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3459 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3460 EVT SrcVT = Src1.getValueType(); 3461 3462 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3463 VT.isScalableVector()) { 3464 // Canonical splat form of first element of first input vector. 3465 SDValue FirstElt = 3466 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3467 DAG.getVectorIdxConstant(0, DL)); 3468 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3469 return; 3470 } 3471 3472 // For now, we only handle splats for scalable vectors. 3473 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3474 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3475 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3476 3477 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3478 unsigned MaskNumElts = Mask.size(); 3479 3480 if (SrcNumElts == MaskNumElts) { 3481 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3482 return; 3483 } 3484 3485 // Normalize the shuffle vector since mask and vector length don't match. 3486 if (SrcNumElts < MaskNumElts) { 3487 // Mask is longer than the source vectors. We can use concatenate vector to 3488 // make the mask and vectors lengths match. 3489 3490 if (MaskNumElts % SrcNumElts == 0) { 3491 // Mask length is a multiple of the source vector length. 3492 // Check if the shuffle is some kind of concatenation of the input 3493 // vectors. 3494 unsigned NumConcat = MaskNumElts / SrcNumElts; 3495 bool IsConcat = true; 3496 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3497 for (unsigned i = 0; i != MaskNumElts; ++i) { 3498 int Idx = Mask[i]; 3499 if (Idx < 0) 3500 continue; 3501 // Ensure the indices in each SrcVT sized piece are sequential and that 3502 // the same source is used for the whole piece. 3503 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3504 (ConcatSrcs[i / SrcNumElts] >= 0 && 3505 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3506 IsConcat = false; 3507 break; 3508 } 3509 // Remember which source this index came from. 3510 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3511 } 3512 3513 // The shuffle is concatenating multiple vectors together. Just emit 3514 // a CONCAT_VECTORS operation. 3515 if (IsConcat) { 3516 SmallVector<SDValue, 8> ConcatOps; 3517 for (auto Src : ConcatSrcs) { 3518 if (Src < 0) 3519 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3520 else if (Src == 0) 3521 ConcatOps.push_back(Src1); 3522 else 3523 ConcatOps.push_back(Src2); 3524 } 3525 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3526 return; 3527 } 3528 } 3529 3530 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3531 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3532 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3533 PaddedMaskNumElts); 3534 3535 // Pad both vectors with undefs to make them the same length as the mask. 3536 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3537 3538 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3539 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3540 MOps1[0] = Src1; 3541 MOps2[0] = Src2; 3542 3543 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3544 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3545 3546 // Readjust mask for new input vector length. 3547 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3548 for (unsigned i = 0; i != MaskNumElts; ++i) { 3549 int Idx = Mask[i]; 3550 if (Idx >= (int)SrcNumElts) 3551 Idx -= SrcNumElts - PaddedMaskNumElts; 3552 MappedOps[i] = Idx; 3553 } 3554 3555 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3556 3557 // If the concatenated vector was padded, extract a subvector with the 3558 // correct number of elements. 3559 if (MaskNumElts != PaddedMaskNumElts) 3560 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3561 DAG.getVectorIdxConstant(0, DL)); 3562 3563 setValue(&I, Result); 3564 return; 3565 } 3566 3567 if (SrcNumElts > MaskNumElts) { 3568 // Analyze the access pattern of the vector to see if we can extract 3569 // two subvectors and do the shuffle. 3570 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3571 bool CanExtract = true; 3572 for (int Idx : Mask) { 3573 unsigned Input = 0; 3574 if (Idx < 0) 3575 continue; 3576 3577 if (Idx >= (int)SrcNumElts) { 3578 Input = 1; 3579 Idx -= SrcNumElts; 3580 } 3581 3582 // If all the indices come from the same MaskNumElts sized portion of 3583 // the sources we can use extract. Also make sure the extract wouldn't 3584 // extract past the end of the source. 3585 int NewStartIdx = alignDown(Idx, MaskNumElts); 3586 if (NewStartIdx + MaskNumElts > SrcNumElts || 3587 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3588 CanExtract = false; 3589 // Make sure we always update StartIdx as we use it to track if all 3590 // elements are undef. 3591 StartIdx[Input] = NewStartIdx; 3592 } 3593 3594 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3595 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3596 return; 3597 } 3598 if (CanExtract) { 3599 // Extract appropriate subvector and generate a vector shuffle 3600 for (unsigned Input = 0; Input < 2; ++Input) { 3601 SDValue &Src = Input == 0 ? Src1 : Src2; 3602 if (StartIdx[Input] < 0) 3603 Src = DAG.getUNDEF(VT); 3604 else { 3605 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3606 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3607 } 3608 } 3609 3610 // Calculate new mask. 3611 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3612 for (int &Idx : MappedOps) { 3613 if (Idx >= (int)SrcNumElts) 3614 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3615 else if (Idx >= 0) 3616 Idx -= StartIdx[0]; 3617 } 3618 3619 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3620 return; 3621 } 3622 } 3623 3624 // We can't use either concat vectors or extract subvectors so fall back to 3625 // replacing the shuffle with extract and build vector. 3626 // to insert and build vector. 3627 EVT EltVT = VT.getVectorElementType(); 3628 SmallVector<SDValue,8> Ops; 3629 for (int Idx : Mask) { 3630 SDValue Res; 3631 3632 if (Idx < 0) { 3633 Res = DAG.getUNDEF(EltVT); 3634 } else { 3635 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3636 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3637 3638 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3639 DAG.getVectorIdxConstant(Idx, DL)); 3640 } 3641 3642 Ops.push_back(Res); 3643 } 3644 3645 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3646 } 3647 3648 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3649 ArrayRef<unsigned> Indices; 3650 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3651 Indices = IV->getIndices(); 3652 else 3653 Indices = cast<ConstantExpr>(&I)->getIndices(); 3654 3655 const Value *Op0 = I.getOperand(0); 3656 const Value *Op1 = I.getOperand(1); 3657 Type *AggTy = I.getType(); 3658 Type *ValTy = Op1->getType(); 3659 bool IntoUndef = isa<UndefValue>(Op0); 3660 bool FromUndef = isa<UndefValue>(Op1); 3661 3662 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3663 3664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3665 SmallVector<EVT, 4> AggValueVTs; 3666 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3667 SmallVector<EVT, 4> ValValueVTs; 3668 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3669 3670 unsigned NumAggValues = AggValueVTs.size(); 3671 unsigned NumValValues = ValValueVTs.size(); 3672 SmallVector<SDValue, 4> Values(NumAggValues); 3673 3674 // Ignore an insertvalue that produces an empty object 3675 if (!NumAggValues) { 3676 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3677 return; 3678 } 3679 3680 SDValue Agg = getValue(Op0); 3681 unsigned i = 0; 3682 // Copy the beginning value(s) from the original aggregate. 3683 for (; i != LinearIndex; ++i) 3684 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3685 SDValue(Agg.getNode(), Agg.getResNo() + i); 3686 // Copy values from the inserted value(s). 3687 if (NumValValues) { 3688 SDValue Val = getValue(Op1); 3689 for (; i != LinearIndex + NumValValues; ++i) 3690 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3691 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3692 } 3693 // Copy remaining value(s) from the original aggregate. 3694 for (; i != NumAggValues; ++i) 3695 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3696 SDValue(Agg.getNode(), Agg.getResNo() + i); 3697 3698 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3699 DAG.getVTList(AggValueVTs), Values)); 3700 } 3701 3702 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3703 ArrayRef<unsigned> Indices; 3704 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3705 Indices = EV->getIndices(); 3706 else 3707 Indices = cast<ConstantExpr>(&I)->getIndices(); 3708 3709 const Value *Op0 = I.getOperand(0); 3710 Type *AggTy = Op0->getType(); 3711 Type *ValTy = I.getType(); 3712 bool OutOfUndef = isa<UndefValue>(Op0); 3713 3714 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3715 3716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3717 SmallVector<EVT, 4> ValValueVTs; 3718 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3719 3720 unsigned NumValValues = ValValueVTs.size(); 3721 3722 // Ignore a extractvalue that produces an empty object 3723 if (!NumValValues) { 3724 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3725 return; 3726 } 3727 3728 SmallVector<SDValue, 4> Values(NumValValues); 3729 3730 SDValue Agg = getValue(Op0); 3731 // Copy out the selected value(s). 3732 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3733 Values[i - LinearIndex] = 3734 OutOfUndef ? 3735 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3736 SDValue(Agg.getNode(), Agg.getResNo() + i); 3737 3738 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3739 DAG.getVTList(ValValueVTs), Values)); 3740 } 3741 3742 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3743 Value *Op0 = I.getOperand(0); 3744 // Note that the pointer operand may be a vector of pointers. Take the scalar 3745 // element which holds a pointer. 3746 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3747 SDValue N = getValue(Op0); 3748 SDLoc dl = getCurSDLoc(); 3749 auto &TLI = DAG.getTargetLoweringInfo(); 3750 3751 // Normalize Vector GEP - all scalar operands should be converted to the 3752 // splat vector. 3753 bool IsVectorGEP = I.getType()->isVectorTy(); 3754 ElementCount VectorElementCount = 3755 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3756 : ElementCount::getFixed(0); 3757 3758 if (IsVectorGEP && !N.getValueType().isVector()) { 3759 LLVMContext &Context = *DAG.getContext(); 3760 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3761 if (VectorElementCount.isScalable()) 3762 N = DAG.getSplatVector(VT, dl, N); 3763 else 3764 N = DAG.getSplatBuildVector(VT, dl, N); 3765 } 3766 3767 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3768 GTI != E; ++GTI) { 3769 const Value *Idx = GTI.getOperand(); 3770 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3771 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3772 if (Field) { 3773 // N = N + Offset 3774 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3775 3776 // In an inbounds GEP with an offset that is nonnegative even when 3777 // interpreted as signed, assume there is no unsigned overflow. 3778 SDNodeFlags Flags; 3779 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3780 Flags.setNoUnsignedWrap(true); 3781 3782 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3783 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3784 } 3785 } else { 3786 // IdxSize is the width of the arithmetic according to IR semantics. 3787 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3788 // (and fix up the result later). 3789 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3790 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3791 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3792 // We intentionally mask away the high bits here; ElementSize may not 3793 // fit in IdxTy. 3794 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3795 bool ElementScalable = ElementSize.isScalable(); 3796 3797 // If this is a scalar constant or a splat vector of constants, 3798 // handle it quickly. 3799 const auto *C = dyn_cast<Constant>(Idx); 3800 if (C && isa<VectorType>(C->getType())) 3801 C = C->getSplatValue(); 3802 3803 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3804 if (CI && CI->isZero()) 3805 continue; 3806 if (CI && !ElementScalable) { 3807 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3808 LLVMContext &Context = *DAG.getContext(); 3809 SDValue OffsVal; 3810 if (IsVectorGEP) 3811 OffsVal = DAG.getConstant( 3812 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3813 else 3814 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3815 3816 // In an inbounds GEP with an offset that is nonnegative even when 3817 // interpreted as signed, assume there is no unsigned overflow. 3818 SDNodeFlags Flags; 3819 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3820 Flags.setNoUnsignedWrap(true); 3821 3822 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3823 3824 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3825 continue; 3826 } 3827 3828 // N = N + Idx * ElementMul; 3829 SDValue IdxN = getValue(Idx); 3830 3831 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3832 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3833 VectorElementCount); 3834 if (VectorElementCount.isScalable()) 3835 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3836 else 3837 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3838 } 3839 3840 // If the index is smaller or larger than intptr_t, truncate or extend 3841 // it. 3842 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3843 3844 if (ElementScalable) { 3845 EVT VScaleTy = N.getValueType().getScalarType(); 3846 SDValue VScale = DAG.getNode( 3847 ISD::VSCALE, dl, VScaleTy, 3848 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3849 if (IsVectorGEP) 3850 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3851 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3852 } else { 3853 // If this is a multiply by a power of two, turn it into a shl 3854 // immediately. This is a very common case. 3855 if (ElementMul != 1) { 3856 if (ElementMul.isPowerOf2()) { 3857 unsigned Amt = ElementMul.logBase2(); 3858 IdxN = DAG.getNode(ISD::SHL, dl, 3859 N.getValueType(), IdxN, 3860 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3861 } else { 3862 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3863 IdxN.getValueType()); 3864 IdxN = DAG.getNode(ISD::MUL, dl, 3865 N.getValueType(), IdxN, Scale); 3866 } 3867 } 3868 } 3869 3870 N = DAG.getNode(ISD::ADD, dl, 3871 N.getValueType(), N, IdxN); 3872 } 3873 } 3874 3875 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3876 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3877 if (IsVectorGEP) { 3878 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3879 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3880 } 3881 3882 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3883 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3884 3885 setValue(&I, N); 3886 } 3887 3888 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3889 // If this is a fixed sized alloca in the entry block of the function, 3890 // allocate it statically on the stack. 3891 if (FuncInfo.StaticAllocaMap.count(&I)) 3892 return; // getValue will auto-populate this. 3893 3894 SDLoc dl = getCurSDLoc(); 3895 Type *Ty = I.getAllocatedType(); 3896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3897 auto &DL = DAG.getDataLayout(); 3898 uint64_t TySize = DL.getTypeAllocSize(Ty); 3899 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3900 3901 SDValue AllocSize = getValue(I.getArraySize()); 3902 3903 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3904 if (AllocSize.getValueType() != IntPtr) 3905 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3906 3907 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3908 AllocSize, 3909 DAG.getConstant(TySize, dl, IntPtr)); 3910 3911 // Handle alignment. If the requested alignment is less than or equal to 3912 // the stack alignment, ignore it. If the size is greater than or equal to 3913 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3914 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3915 if (*Alignment <= StackAlign) 3916 Alignment = None; 3917 3918 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3919 // Round the size of the allocation up to the stack alignment size 3920 // by add SA-1 to the size. This doesn't overflow because we're computing 3921 // an address inside an alloca. 3922 SDNodeFlags Flags; 3923 Flags.setNoUnsignedWrap(true); 3924 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3925 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3926 3927 // Mask out the low bits for alignment purposes. 3928 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3929 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3930 3931 SDValue Ops[] = { 3932 getRoot(), AllocSize, 3933 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3934 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3935 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3936 setValue(&I, DSA); 3937 DAG.setRoot(DSA.getValue(1)); 3938 3939 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3940 } 3941 3942 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3943 if (I.isAtomic()) 3944 return visitAtomicLoad(I); 3945 3946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3947 const Value *SV = I.getOperand(0); 3948 if (TLI.supportSwiftError()) { 3949 // Swifterror values can come from either a function parameter with 3950 // swifterror attribute or an alloca with swifterror attribute. 3951 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3952 if (Arg->hasSwiftErrorAttr()) 3953 return visitLoadFromSwiftError(I); 3954 } 3955 3956 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3957 if (Alloca->isSwiftError()) 3958 return visitLoadFromSwiftError(I); 3959 } 3960 } 3961 3962 SDValue Ptr = getValue(SV); 3963 3964 Type *Ty = I.getType(); 3965 Align Alignment = I.getAlign(); 3966 3967 AAMDNodes AAInfo; 3968 I.getAAMetadata(AAInfo); 3969 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3970 3971 SmallVector<EVT, 4> ValueVTs, MemVTs; 3972 SmallVector<uint64_t, 4> Offsets; 3973 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3974 unsigned NumValues = ValueVTs.size(); 3975 if (NumValues == 0) 3976 return; 3977 3978 bool isVolatile = I.isVolatile(); 3979 3980 SDValue Root; 3981 bool ConstantMemory = false; 3982 if (isVolatile) 3983 // Serialize volatile loads with other side effects. 3984 Root = getRoot(); 3985 else if (NumValues > MaxParallelChains) 3986 Root = getMemoryRoot(); 3987 else if (AA && 3988 AA->pointsToConstantMemory(MemoryLocation( 3989 SV, 3990 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3991 AAInfo))) { 3992 // Do not serialize (non-volatile) loads of constant memory with anything. 3993 Root = DAG.getEntryNode(); 3994 ConstantMemory = true; 3995 } else { 3996 // Do not serialize non-volatile loads against each other. 3997 Root = DAG.getRoot(); 3998 } 3999 4000 SDLoc dl = getCurSDLoc(); 4001 4002 if (isVolatile) 4003 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4004 4005 // An aggregate load cannot wrap around the address space, so offsets to its 4006 // parts don't wrap either. 4007 SDNodeFlags Flags; 4008 Flags.setNoUnsignedWrap(true); 4009 4010 SmallVector<SDValue, 4> Values(NumValues); 4011 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4012 EVT PtrVT = Ptr.getValueType(); 4013 4014 MachineMemOperand::Flags MMOFlags 4015 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4016 4017 unsigned ChainI = 0; 4018 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4019 // Serializing loads here may result in excessive register pressure, and 4020 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4021 // could recover a bit by hoisting nodes upward in the chain by recognizing 4022 // they are side-effect free or do not alias. The optimizer should really 4023 // avoid this case by converting large object/array copies to llvm.memcpy 4024 // (MaxParallelChains should always remain as failsafe). 4025 if (ChainI == MaxParallelChains) { 4026 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4027 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4028 makeArrayRef(Chains.data(), ChainI)); 4029 Root = Chain; 4030 ChainI = 0; 4031 } 4032 SDValue A = DAG.getNode(ISD::ADD, dl, 4033 PtrVT, Ptr, 4034 DAG.getConstant(Offsets[i], dl, PtrVT), 4035 Flags); 4036 4037 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4038 MachinePointerInfo(SV, Offsets[i]), Alignment, 4039 MMOFlags, AAInfo, Ranges); 4040 Chains[ChainI] = L.getValue(1); 4041 4042 if (MemVTs[i] != ValueVTs[i]) 4043 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4044 4045 Values[i] = L; 4046 } 4047 4048 if (!ConstantMemory) { 4049 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4050 makeArrayRef(Chains.data(), ChainI)); 4051 if (isVolatile) 4052 DAG.setRoot(Chain); 4053 else 4054 PendingLoads.push_back(Chain); 4055 } 4056 4057 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4058 DAG.getVTList(ValueVTs), Values)); 4059 } 4060 4061 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4062 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4063 "call visitStoreToSwiftError when backend supports swifterror"); 4064 4065 SmallVector<EVT, 4> ValueVTs; 4066 SmallVector<uint64_t, 4> Offsets; 4067 const Value *SrcV = I.getOperand(0); 4068 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4069 SrcV->getType(), ValueVTs, &Offsets); 4070 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4071 "expect a single EVT for swifterror"); 4072 4073 SDValue Src = getValue(SrcV); 4074 // Create a virtual register, then update the virtual register. 4075 Register VReg = 4076 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4077 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4078 // Chain can be getRoot or getControlRoot. 4079 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4080 SDValue(Src.getNode(), Src.getResNo())); 4081 DAG.setRoot(CopyNode); 4082 } 4083 4084 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4085 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4086 "call visitLoadFromSwiftError when backend supports swifterror"); 4087 4088 assert(!I.isVolatile() && 4089 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4090 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4091 "Support volatile, non temporal, invariant for load_from_swift_error"); 4092 4093 const Value *SV = I.getOperand(0); 4094 Type *Ty = I.getType(); 4095 AAMDNodes AAInfo; 4096 I.getAAMetadata(AAInfo); 4097 assert( 4098 (!AA || 4099 !AA->pointsToConstantMemory(MemoryLocation( 4100 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4101 AAInfo))) && 4102 "load_from_swift_error should not be constant memory"); 4103 4104 SmallVector<EVT, 4> ValueVTs; 4105 SmallVector<uint64_t, 4> Offsets; 4106 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4107 ValueVTs, &Offsets); 4108 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4109 "expect a single EVT for swifterror"); 4110 4111 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4112 SDValue L = DAG.getCopyFromReg( 4113 getRoot(), getCurSDLoc(), 4114 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4115 4116 setValue(&I, L); 4117 } 4118 4119 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4120 if (I.isAtomic()) 4121 return visitAtomicStore(I); 4122 4123 const Value *SrcV = I.getOperand(0); 4124 const Value *PtrV = I.getOperand(1); 4125 4126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4127 if (TLI.supportSwiftError()) { 4128 // Swifterror values can come from either a function parameter with 4129 // swifterror attribute or an alloca with swifterror attribute. 4130 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4131 if (Arg->hasSwiftErrorAttr()) 4132 return visitStoreToSwiftError(I); 4133 } 4134 4135 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4136 if (Alloca->isSwiftError()) 4137 return visitStoreToSwiftError(I); 4138 } 4139 } 4140 4141 SmallVector<EVT, 4> ValueVTs, MemVTs; 4142 SmallVector<uint64_t, 4> Offsets; 4143 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4144 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4145 unsigned NumValues = ValueVTs.size(); 4146 if (NumValues == 0) 4147 return; 4148 4149 // Get the lowered operands. Note that we do this after 4150 // checking if NumResults is zero, because with zero results 4151 // the operands won't have values in the map. 4152 SDValue Src = getValue(SrcV); 4153 SDValue Ptr = getValue(PtrV); 4154 4155 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4156 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4157 SDLoc dl = getCurSDLoc(); 4158 Align Alignment = I.getAlign(); 4159 AAMDNodes AAInfo; 4160 I.getAAMetadata(AAInfo); 4161 4162 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4163 4164 // An aggregate load cannot wrap around the address space, so offsets to its 4165 // parts don't wrap either. 4166 SDNodeFlags Flags; 4167 Flags.setNoUnsignedWrap(true); 4168 4169 unsigned ChainI = 0; 4170 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4171 // See visitLoad comments. 4172 if (ChainI == MaxParallelChains) { 4173 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4174 makeArrayRef(Chains.data(), ChainI)); 4175 Root = Chain; 4176 ChainI = 0; 4177 } 4178 SDValue Add = 4179 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4180 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4181 if (MemVTs[i] != ValueVTs[i]) 4182 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4183 SDValue St = 4184 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4185 Alignment, MMOFlags, AAInfo); 4186 Chains[ChainI] = St; 4187 } 4188 4189 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4190 makeArrayRef(Chains.data(), ChainI)); 4191 DAG.setRoot(StoreNode); 4192 } 4193 4194 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4195 bool IsCompressing) { 4196 SDLoc sdl = getCurSDLoc(); 4197 4198 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4199 MaybeAlign &Alignment) { 4200 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4201 Src0 = I.getArgOperand(0); 4202 Ptr = I.getArgOperand(1); 4203 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4204 Mask = I.getArgOperand(3); 4205 }; 4206 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4207 MaybeAlign &Alignment) { 4208 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4209 Src0 = I.getArgOperand(0); 4210 Ptr = I.getArgOperand(1); 4211 Mask = I.getArgOperand(2); 4212 Alignment = None; 4213 }; 4214 4215 Value *PtrOperand, *MaskOperand, *Src0Operand; 4216 MaybeAlign Alignment; 4217 if (IsCompressing) 4218 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4219 else 4220 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4221 4222 SDValue Ptr = getValue(PtrOperand); 4223 SDValue Src0 = getValue(Src0Operand); 4224 SDValue Mask = getValue(MaskOperand); 4225 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4226 4227 EVT VT = Src0.getValueType(); 4228 if (!Alignment) 4229 Alignment = DAG.getEVTAlign(VT); 4230 4231 AAMDNodes AAInfo; 4232 I.getAAMetadata(AAInfo); 4233 4234 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4235 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4236 // TODO: Make MachineMemOperands aware of scalable 4237 // vectors. 4238 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4239 SDValue StoreNode = 4240 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4241 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4242 DAG.setRoot(StoreNode); 4243 setValue(&I, StoreNode); 4244 } 4245 4246 // Get a uniform base for the Gather/Scatter intrinsic. 4247 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4248 // We try to represent it as a base pointer + vector of indices. 4249 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4250 // The first operand of the GEP may be a single pointer or a vector of pointers 4251 // Example: 4252 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4253 // or 4254 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4255 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4256 // 4257 // When the first GEP operand is a single pointer - it is the uniform base we 4258 // are looking for. If first operand of the GEP is a splat vector - we 4259 // extract the splat value and use it as a uniform base. 4260 // In all other cases the function returns 'false'. 4261 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4262 ISD::MemIndexType &IndexType, SDValue &Scale, 4263 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4264 SelectionDAG& DAG = SDB->DAG; 4265 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4266 const DataLayout &DL = DAG.getDataLayout(); 4267 4268 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4269 4270 // Handle splat constant pointer. 4271 if (auto *C = dyn_cast<Constant>(Ptr)) { 4272 C = C->getSplatValue(); 4273 if (!C) 4274 return false; 4275 4276 Base = SDB->getValue(C); 4277 4278 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4279 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4280 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4281 IndexType = ISD::SIGNED_SCALED; 4282 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4283 return true; 4284 } 4285 4286 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4287 if (!GEP || GEP->getParent() != CurBB) 4288 return false; 4289 4290 if (GEP->getNumOperands() != 2) 4291 return false; 4292 4293 const Value *BasePtr = GEP->getPointerOperand(); 4294 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4295 4296 // Make sure the base is scalar and the index is a vector. 4297 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4298 return false; 4299 4300 Base = SDB->getValue(BasePtr); 4301 Index = SDB->getValue(IndexVal); 4302 IndexType = ISD::SIGNED_SCALED; 4303 Scale = DAG.getTargetConstant( 4304 DL.getTypeAllocSize(GEP->getResultElementType()), 4305 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4306 return true; 4307 } 4308 4309 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4310 SDLoc sdl = getCurSDLoc(); 4311 4312 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4313 const Value *Ptr = I.getArgOperand(1); 4314 SDValue Src0 = getValue(I.getArgOperand(0)); 4315 SDValue Mask = getValue(I.getArgOperand(3)); 4316 EVT VT = Src0.getValueType(); 4317 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4318 ->getMaybeAlignValue() 4319 .getValueOr(DAG.getEVTAlign(VT)); 4320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4321 4322 AAMDNodes AAInfo; 4323 I.getAAMetadata(AAInfo); 4324 4325 SDValue Base; 4326 SDValue Index; 4327 ISD::MemIndexType IndexType; 4328 SDValue Scale; 4329 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4330 I.getParent()); 4331 4332 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4333 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4334 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4335 // TODO: Make MachineMemOperands aware of scalable 4336 // vectors. 4337 MemoryLocation::UnknownSize, Alignment, AAInfo); 4338 if (!UniformBase) { 4339 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4340 Index = getValue(Ptr); 4341 IndexType = ISD::SIGNED_UNSCALED; 4342 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4343 } 4344 4345 EVT IdxVT = Index.getValueType(); 4346 EVT EltTy = IdxVT.getVectorElementType(); 4347 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4348 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4349 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4350 } 4351 4352 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4353 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4354 Ops, MMO, IndexType, false); 4355 DAG.setRoot(Scatter); 4356 setValue(&I, Scatter); 4357 } 4358 4359 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4360 SDLoc sdl = getCurSDLoc(); 4361 4362 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4363 MaybeAlign &Alignment) { 4364 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4365 Ptr = I.getArgOperand(0); 4366 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4367 Mask = I.getArgOperand(2); 4368 Src0 = I.getArgOperand(3); 4369 }; 4370 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4371 MaybeAlign &Alignment) { 4372 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4373 Ptr = I.getArgOperand(0); 4374 Alignment = None; 4375 Mask = I.getArgOperand(1); 4376 Src0 = I.getArgOperand(2); 4377 }; 4378 4379 Value *PtrOperand, *MaskOperand, *Src0Operand; 4380 MaybeAlign Alignment; 4381 if (IsExpanding) 4382 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4383 else 4384 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4385 4386 SDValue Ptr = getValue(PtrOperand); 4387 SDValue Src0 = getValue(Src0Operand); 4388 SDValue Mask = getValue(MaskOperand); 4389 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4390 4391 EVT VT = Src0.getValueType(); 4392 if (!Alignment) 4393 Alignment = DAG.getEVTAlign(VT); 4394 4395 AAMDNodes AAInfo; 4396 I.getAAMetadata(AAInfo); 4397 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4398 4399 // Do not serialize masked loads of constant memory with anything. 4400 MemoryLocation ML; 4401 if (VT.isScalableVector()) 4402 ML = MemoryLocation::getAfter(PtrOperand); 4403 else 4404 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4405 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4406 AAInfo); 4407 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4408 4409 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4410 4411 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4412 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4413 // TODO: Make MachineMemOperands aware of scalable 4414 // vectors. 4415 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4416 4417 SDValue Load = 4418 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4419 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4420 if (AddToChain) 4421 PendingLoads.push_back(Load.getValue(1)); 4422 setValue(&I, Load); 4423 } 4424 4425 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4426 SDLoc sdl = getCurSDLoc(); 4427 4428 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4429 const Value *Ptr = I.getArgOperand(0); 4430 SDValue Src0 = getValue(I.getArgOperand(3)); 4431 SDValue Mask = getValue(I.getArgOperand(2)); 4432 4433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4434 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4435 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4436 ->getMaybeAlignValue() 4437 .getValueOr(DAG.getEVTAlign(VT)); 4438 4439 AAMDNodes AAInfo; 4440 I.getAAMetadata(AAInfo); 4441 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4442 4443 SDValue Root = DAG.getRoot(); 4444 SDValue Base; 4445 SDValue Index; 4446 ISD::MemIndexType IndexType; 4447 SDValue Scale; 4448 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4449 I.getParent()); 4450 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4451 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4452 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4453 // TODO: Make MachineMemOperands aware of scalable 4454 // vectors. 4455 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4456 4457 if (!UniformBase) { 4458 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4459 Index = getValue(Ptr); 4460 IndexType = ISD::SIGNED_UNSCALED; 4461 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4462 } 4463 4464 EVT IdxVT = Index.getValueType(); 4465 EVT EltTy = IdxVT.getVectorElementType(); 4466 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4467 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4468 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4469 } 4470 4471 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4472 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4473 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4474 4475 PendingLoads.push_back(Gather.getValue(1)); 4476 setValue(&I, Gather); 4477 } 4478 4479 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4480 SDLoc dl = getCurSDLoc(); 4481 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4482 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4483 SyncScope::ID SSID = I.getSyncScopeID(); 4484 4485 SDValue InChain = getRoot(); 4486 4487 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4488 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4489 4490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4491 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4492 4493 MachineFunction &MF = DAG.getMachineFunction(); 4494 MachineMemOperand *MMO = MF.getMachineMemOperand( 4495 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4496 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4497 FailureOrdering); 4498 4499 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4500 dl, MemVT, VTs, InChain, 4501 getValue(I.getPointerOperand()), 4502 getValue(I.getCompareOperand()), 4503 getValue(I.getNewValOperand()), MMO); 4504 4505 SDValue OutChain = L.getValue(2); 4506 4507 setValue(&I, L); 4508 DAG.setRoot(OutChain); 4509 } 4510 4511 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4512 SDLoc dl = getCurSDLoc(); 4513 ISD::NodeType NT; 4514 switch (I.getOperation()) { 4515 default: llvm_unreachable("Unknown atomicrmw operation"); 4516 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4517 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4518 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4519 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4520 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4521 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4522 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4523 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4524 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4525 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4526 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4527 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4528 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4529 } 4530 AtomicOrdering Ordering = I.getOrdering(); 4531 SyncScope::ID SSID = I.getSyncScopeID(); 4532 4533 SDValue InChain = getRoot(); 4534 4535 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4537 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4538 4539 MachineFunction &MF = DAG.getMachineFunction(); 4540 MachineMemOperand *MMO = MF.getMachineMemOperand( 4541 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4542 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4543 4544 SDValue L = 4545 DAG.getAtomic(NT, dl, MemVT, InChain, 4546 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4547 MMO); 4548 4549 SDValue OutChain = L.getValue(1); 4550 4551 setValue(&I, L); 4552 DAG.setRoot(OutChain); 4553 } 4554 4555 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4556 SDLoc dl = getCurSDLoc(); 4557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4558 SDValue Ops[3]; 4559 Ops[0] = getRoot(); 4560 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4561 TLI.getFenceOperandTy(DAG.getDataLayout())); 4562 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4563 TLI.getFenceOperandTy(DAG.getDataLayout())); 4564 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4565 } 4566 4567 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4568 SDLoc dl = getCurSDLoc(); 4569 AtomicOrdering Order = I.getOrdering(); 4570 SyncScope::ID SSID = I.getSyncScopeID(); 4571 4572 SDValue InChain = getRoot(); 4573 4574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4575 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4576 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4577 4578 if (!TLI.supportsUnalignedAtomics() && 4579 I.getAlignment() < MemVT.getSizeInBits() / 8) 4580 report_fatal_error("Cannot generate unaligned atomic load"); 4581 4582 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4583 4584 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4585 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4586 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4587 4588 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4589 4590 SDValue Ptr = getValue(I.getPointerOperand()); 4591 4592 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4593 // TODO: Once this is better exercised by tests, it should be merged with 4594 // the normal path for loads to prevent future divergence. 4595 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4596 if (MemVT != VT) 4597 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4598 4599 setValue(&I, L); 4600 SDValue OutChain = L.getValue(1); 4601 if (!I.isUnordered()) 4602 DAG.setRoot(OutChain); 4603 else 4604 PendingLoads.push_back(OutChain); 4605 return; 4606 } 4607 4608 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4609 Ptr, MMO); 4610 4611 SDValue OutChain = L.getValue(1); 4612 if (MemVT != VT) 4613 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4614 4615 setValue(&I, L); 4616 DAG.setRoot(OutChain); 4617 } 4618 4619 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4620 SDLoc dl = getCurSDLoc(); 4621 4622 AtomicOrdering Ordering = I.getOrdering(); 4623 SyncScope::ID SSID = I.getSyncScopeID(); 4624 4625 SDValue InChain = getRoot(); 4626 4627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4628 EVT MemVT = 4629 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4630 4631 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4632 report_fatal_error("Cannot generate unaligned atomic store"); 4633 4634 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4635 4636 MachineFunction &MF = DAG.getMachineFunction(); 4637 MachineMemOperand *MMO = MF.getMachineMemOperand( 4638 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4639 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4640 4641 SDValue Val = getValue(I.getValueOperand()); 4642 if (Val.getValueType() != MemVT) 4643 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4644 SDValue Ptr = getValue(I.getPointerOperand()); 4645 4646 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4647 // TODO: Once this is better exercised by tests, it should be merged with 4648 // the normal path for stores to prevent future divergence. 4649 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4650 DAG.setRoot(S); 4651 return; 4652 } 4653 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4654 Ptr, Val, MMO); 4655 4656 4657 DAG.setRoot(OutChain); 4658 } 4659 4660 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4661 /// node. 4662 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4663 unsigned Intrinsic) { 4664 // Ignore the callsite's attributes. A specific call site may be marked with 4665 // readnone, but the lowering code will expect the chain based on the 4666 // definition. 4667 const Function *F = I.getCalledFunction(); 4668 bool HasChain = !F->doesNotAccessMemory(); 4669 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4670 4671 // Build the operand list. 4672 SmallVector<SDValue, 8> Ops; 4673 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4674 if (OnlyLoad) { 4675 // We don't need to serialize loads against other loads. 4676 Ops.push_back(DAG.getRoot()); 4677 } else { 4678 Ops.push_back(getRoot()); 4679 } 4680 } 4681 4682 // Info is set by getTgtMemInstrinsic 4683 TargetLowering::IntrinsicInfo Info; 4684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4685 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4686 DAG.getMachineFunction(), 4687 Intrinsic); 4688 4689 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4690 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4691 Info.opc == ISD::INTRINSIC_W_CHAIN) 4692 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4693 TLI.getPointerTy(DAG.getDataLayout()))); 4694 4695 // Add all operands of the call to the operand list. 4696 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4697 const Value *Arg = I.getArgOperand(i); 4698 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4699 Ops.push_back(getValue(Arg)); 4700 continue; 4701 } 4702 4703 // Use TargetConstant instead of a regular constant for immarg. 4704 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4705 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4706 assert(CI->getBitWidth() <= 64 && 4707 "large intrinsic immediates not handled"); 4708 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4709 } else { 4710 Ops.push_back( 4711 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4712 } 4713 } 4714 4715 SmallVector<EVT, 4> ValueVTs; 4716 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4717 4718 if (HasChain) 4719 ValueVTs.push_back(MVT::Other); 4720 4721 SDVTList VTs = DAG.getVTList(ValueVTs); 4722 4723 // Create the node. 4724 SDValue Result; 4725 if (IsTgtIntrinsic) { 4726 // This is target intrinsic that touches memory 4727 AAMDNodes AAInfo; 4728 I.getAAMetadata(AAInfo); 4729 Result = 4730 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4731 MachinePointerInfo(Info.ptrVal, Info.offset), 4732 Info.align, Info.flags, Info.size, AAInfo); 4733 } else if (!HasChain) { 4734 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4735 } else if (!I.getType()->isVoidTy()) { 4736 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4737 } else { 4738 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4739 } 4740 4741 if (HasChain) { 4742 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4743 if (OnlyLoad) 4744 PendingLoads.push_back(Chain); 4745 else 4746 DAG.setRoot(Chain); 4747 } 4748 4749 if (!I.getType()->isVoidTy()) { 4750 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4751 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4752 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4753 } else 4754 Result = lowerRangeToAssertZExt(DAG, I, Result); 4755 4756 MaybeAlign Alignment = I.getRetAlign(); 4757 if (!Alignment) 4758 Alignment = F->getAttributes().getRetAlignment(); 4759 // Insert `assertalign` node if there's an alignment. 4760 if (InsertAssertAlign && Alignment) { 4761 Result = 4762 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4763 } 4764 4765 setValue(&I, Result); 4766 } 4767 } 4768 4769 /// GetSignificand - Get the significand and build it into a floating-point 4770 /// number with exponent of 1: 4771 /// 4772 /// Op = (Op & 0x007fffff) | 0x3f800000; 4773 /// 4774 /// where Op is the hexadecimal representation of floating point value. 4775 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4776 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4777 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4778 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4779 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4780 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4781 } 4782 4783 /// GetExponent - Get the exponent: 4784 /// 4785 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4786 /// 4787 /// where Op is the hexadecimal representation of floating point value. 4788 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4789 const TargetLowering &TLI, const SDLoc &dl) { 4790 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4791 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4792 SDValue t1 = DAG.getNode( 4793 ISD::SRL, dl, MVT::i32, t0, 4794 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4795 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4796 DAG.getConstant(127, dl, MVT::i32)); 4797 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4798 } 4799 4800 /// getF32Constant - Get 32-bit floating point constant. 4801 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4802 const SDLoc &dl) { 4803 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4804 MVT::f32); 4805 } 4806 4807 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4808 SelectionDAG &DAG) { 4809 // TODO: What fast-math-flags should be set on the floating-point nodes? 4810 4811 // IntegerPartOfX = ((int32_t)(t0); 4812 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4813 4814 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4815 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4816 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4817 4818 // IntegerPartOfX <<= 23; 4819 IntegerPartOfX = DAG.getNode( 4820 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4821 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4822 DAG.getDataLayout()))); 4823 4824 SDValue TwoToFractionalPartOfX; 4825 if (LimitFloatPrecision <= 6) { 4826 // For floating-point precision of 6: 4827 // 4828 // TwoToFractionalPartOfX = 4829 // 0.997535578f + 4830 // (0.735607626f + 0.252464424f * x) * x; 4831 // 4832 // error 0.0144103317, which is 6 bits 4833 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4834 getF32Constant(DAG, 0x3e814304, dl)); 4835 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4836 getF32Constant(DAG, 0x3f3c50c8, dl)); 4837 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4838 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4839 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4840 } else if (LimitFloatPrecision <= 12) { 4841 // For floating-point precision of 12: 4842 // 4843 // TwoToFractionalPartOfX = 4844 // 0.999892986f + 4845 // (0.696457318f + 4846 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4847 // 4848 // error 0.000107046256, which is 13 to 14 bits 4849 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4850 getF32Constant(DAG, 0x3da235e3, dl)); 4851 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4852 getF32Constant(DAG, 0x3e65b8f3, dl)); 4853 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4854 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4855 getF32Constant(DAG, 0x3f324b07, dl)); 4856 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4857 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4858 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4859 } else { // LimitFloatPrecision <= 18 4860 // For floating-point precision of 18: 4861 // 4862 // TwoToFractionalPartOfX = 4863 // 0.999999982f + 4864 // (0.693148872f + 4865 // (0.240227044f + 4866 // (0.554906021e-1f + 4867 // (0.961591928e-2f + 4868 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4869 // error 2.47208000*10^(-7), which is better than 18 bits 4870 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4871 getF32Constant(DAG, 0x3924b03e, dl)); 4872 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4873 getF32Constant(DAG, 0x3ab24b87, dl)); 4874 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4875 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4876 getF32Constant(DAG, 0x3c1d8c17, dl)); 4877 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4878 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4879 getF32Constant(DAG, 0x3d634a1d, dl)); 4880 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4881 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4882 getF32Constant(DAG, 0x3e75fe14, dl)); 4883 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4884 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4885 getF32Constant(DAG, 0x3f317234, dl)); 4886 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4887 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4888 getF32Constant(DAG, 0x3f800000, dl)); 4889 } 4890 4891 // Add the exponent into the result in integer domain. 4892 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4893 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4894 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4895 } 4896 4897 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4898 /// limited-precision mode. 4899 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4900 const TargetLowering &TLI, SDNodeFlags Flags) { 4901 if (Op.getValueType() == MVT::f32 && 4902 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4903 4904 // Put the exponent in the right bit position for later addition to the 4905 // final result: 4906 // 4907 // t0 = Op * log2(e) 4908 4909 // TODO: What fast-math-flags should be set here? 4910 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4911 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4912 return getLimitedPrecisionExp2(t0, dl, DAG); 4913 } 4914 4915 // No special expansion. 4916 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4917 } 4918 4919 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4920 /// limited-precision mode. 4921 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4922 const TargetLowering &TLI, SDNodeFlags Flags) { 4923 // TODO: What fast-math-flags should be set on the floating-point nodes? 4924 4925 if (Op.getValueType() == MVT::f32 && 4926 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4927 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4928 4929 // Scale the exponent by log(2). 4930 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4931 SDValue LogOfExponent = 4932 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4933 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4934 4935 // Get the significand and build it into a floating-point number with 4936 // exponent of 1. 4937 SDValue X = GetSignificand(DAG, Op1, dl); 4938 4939 SDValue LogOfMantissa; 4940 if (LimitFloatPrecision <= 6) { 4941 // For floating-point precision of 6: 4942 // 4943 // LogofMantissa = 4944 // -1.1609546f + 4945 // (1.4034025f - 0.23903021f * x) * x; 4946 // 4947 // error 0.0034276066, which is better than 8 bits 4948 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4949 getF32Constant(DAG, 0xbe74c456, dl)); 4950 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4951 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4952 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4953 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4954 getF32Constant(DAG, 0x3f949a29, dl)); 4955 } else if (LimitFloatPrecision <= 12) { 4956 // For floating-point precision of 12: 4957 // 4958 // LogOfMantissa = 4959 // -1.7417939f + 4960 // (2.8212026f + 4961 // (-1.4699568f + 4962 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4963 // 4964 // error 0.000061011436, which is 14 bits 4965 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4966 getF32Constant(DAG, 0xbd67b6d6, dl)); 4967 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4968 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4970 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4971 getF32Constant(DAG, 0x3fbc278b, dl)); 4972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4973 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4974 getF32Constant(DAG, 0x40348e95, dl)); 4975 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4976 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4977 getF32Constant(DAG, 0x3fdef31a, dl)); 4978 } else { // LimitFloatPrecision <= 18 4979 // For floating-point precision of 18: 4980 // 4981 // LogOfMantissa = 4982 // -2.1072184f + 4983 // (4.2372794f + 4984 // (-3.7029485f + 4985 // (2.2781945f + 4986 // (-0.87823314f + 4987 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4988 // 4989 // error 0.0000023660568, which is better than 18 bits 4990 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4991 getF32Constant(DAG, 0xbc91e5ac, dl)); 4992 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4993 getF32Constant(DAG, 0x3e4350aa, dl)); 4994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4995 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4996 getF32Constant(DAG, 0x3f60d3e3, dl)); 4997 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4998 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4999 getF32Constant(DAG, 0x4011cdf0, dl)); 5000 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5001 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5002 getF32Constant(DAG, 0x406cfd1c, dl)); 5003 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5004 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5005 getF32Constant(DAG, 0x408797cb, dl)); 5006 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5007 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5008 getF32Constant(DAG, 0x4006dcab, dl)); 5009 } 5010 5011 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5012 } 5013 5014 // No special expansion. 5015 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5016 } 5017 5018 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5019 /// limited-precision mode. 5020 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5021 const TargetLowering &TLI, SDNodeFlags Flags) { 5022 // TODO: What fast-math-flags should be set on the floating-point nodes? 5023 5024 if (Op.getValueType() == MVT::f32 && 5025 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5026 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5027 5028 // Get the exponent. 5029 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5030 5031 // Get the significand and build it into a floating-point number with 5032 // exponent of 1. 5033 SDValue X = GetSignificand(DAG, Op1, dl); 5034 5035 // Different possible minimax approximations of significand in 5036 // floating-point for various degrees of accuracy over [1,2]. 5037 SDValue Log2ofMantissa; 5038 if (LimitFloatPrecision <= 6) { 5039 // For floating-point precision of 6: 5040 // 5041 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5042 // 5043 // error 0.0049451742, which is more than 7 bits 5044 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5045 getF32Constant(DAG, 0xbeb08fe0, dl)); 5046 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5047 getF32Constant(DAG, 0x40019463, dl)); 5048 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5049 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5050 getF32Constant(DAG, 0x3fd6633d, dl)); 5051 } else if (LimitFloatPrecision <= 12) { 5052 // For floating-point precision of 12: 5053 // 5054 // Log2ofMantissa = 5055 // -2.51285454f + 5056 // (4.07009056f + 5057 // (-2.12067489f + 5058 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5059 // 5060 // error 0.0000876136000, which is better than 13 bits 5061 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5062 getF32Constant(DAG, 0xbda7262e, dl)); 5063 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5064 getF32Constant(DAG, 0x3f25280b, dl)); 5065 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5066 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5067 getF32Constant(DAG, 0x4007b923, dl)); 5068 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5069 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5070 getF32Constant(DAG, 0x40823e2f, dl)); 5071 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5072 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5073 getF32Constant(DAG, 0x4020d29c, dl)); 5074 } else { // LimitFloatPrecision <= 18 5075 // For floating-point precision of 18: 5076 // 5077 // Log2ofMantissa = 5078 // -3.0400495f + 5079 // (6.1129976f + 5080 // (-5.3420409f + 5081 // (3.2865683f + 5082 // (-1.2669343f + 5083 // (0.27515199f - 5084 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5085 // 5086 // error 0.0000018516, which is better than 18 bits 5087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5088 getF32Constant(DAG, 0xbcd2769e, dl)); 5089 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5090 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5092 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5093 getF32Constant(DAG, 0x3fa22ae7, dl)); 5094 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5095 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5096 getF32Constant(DAG, 0x40525723, dl)); 5097 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5098 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5099 getF32Constant(DAG, 0x40aaf200, dl)); 5100 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5101 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5102 getF32Constant(DAG, 0x40c39dad, dl)); 5103 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5104 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5105 getF32Constant(DAG, 0x4042902c, dl)); 5106 } 5107 5108 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5109 } 5110 5111 // No special expansion. 5112 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5113 } 5114 5115 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5116 /// limited-precision mode. 5117 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5118 const TargetLowering &TLI, SDNodeFlags Flags) { 5119 // TODO: What fast-math-flags should be set on the floating-point nodes? 5120 5121 if (Op.getValueType() == MVT::f32 && 5122 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5123 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5124 5125 // Scale the exponent by log10(2) [0.30102999f]. 5126 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5127 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5128 getF32Constant(DAG, 0x3e9a209a, dl)); 5129 5130 // Get the significand and build it into a floating-point number with 5131 // exponent of 1. 5132 SDValue X = GetSignificand(DAG, Op1, dl); 5133 5134 SDValue Log10ofMantissa; 5135 if (LimitFloatPrecision <= 6) { 5136 // For floating-point precision of 6: 5137 // 5138 // Log10ofMantissa = 5139 // -0.50419619f + 5140 // (0.60948995f - 0.10380950f * x) * x; 5141 // 5142 // error 0.0014886165, which is 6 bits 5143 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5144 getF32Constant(DAG, 0xbdd49a13, dl)); 5145 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5146 getF32Constant(DAG, 0x3f1c0789, dl)); 5147 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5148 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5149 getF32Constant(DAG, 0x3f011300, dl)); 5150 } else if (LimitFloatPrecision <= 12) { 5151 // For floating-point precision of 12: 5152 // 5153 // Log10ofMantissa = 5154 // -0.64831180f + 5155 // (0.91751397f + 5156 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5157 // 5158 // error 0.00019228036, which is better than 12 bits 5159 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5160 getF32Constant(DAG, 0x3d431f31, dl)); 5161 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5162 getF32Constant(DAG, 0x3ea21fb2, dl)); 5163 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5164 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5165 getF32Constant(DAG, 0x3f6ae232, dl)); 5166 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5167 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5168 getF32Constant(DAG, 0x3f25f7c3, dl)); 5169 } else { // LimitFloatPrecision <= 18 5170 // For floating-point precision of 18: 5171 // 5172 // Log10ofMantissa = 5173 // -0.84299375f + 5174 // (1.5327582f + 5175 // (-1.0688956f + 5176 // (0.49102474f + 5177 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5178 // 5179 // error 0.0000037995730, which is better than 18 bits 5180 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5181 getF32Constant(DAG, 0x3c5d51ce, dl)); 5182 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5183 getF32Constant(DAG, 0x3e00685a, dl)); 5184 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5185 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5186 getF32Constant(DAG, 0x3efb6798, dl)); 5187 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5188 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5189 getF32Constant(DAG, 0x3f88d192, dl)); 5190 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5191 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5192 getF32Constant(DAG, 0x3fc4316c, dl)); 5193 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5194 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5195 getF32Constant(DAG, 0x3f57ce70, dl)); 5196 } 5197 5198 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5199 } 5200 5201 // No special expansion. 5202 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5203 } 5204 5205 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5206 /// limited-precision mode. 5207 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5208 const TargetLowering &TLI, SDNodeFlags Flags) { 5209 if (Op.getValueType() == MVT::f32 && 5210 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5211 return getLimitedPrecisionExp2(Op, dl, DAG); 5212 5213 // No special expansion. 5214 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5215 } 5216 5217 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5218 /// limited-precision mode with x == 10.0f. 5219 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5220 SelectionDAG &DAG, const TargetLowering &TLI, 5221 SDNodeFlags Flags) { 5222 bool IsExp10 = false; 5223 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5224 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5225 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5226 APFloat Ten(10.0f); 5227 IsExp10 = LHSC->isExactlyValue(Ten); 5228 } 5229 } 5230 5231 // TODO: What fast-math-flags should be set on the FMUL node? 5232 if (IsExp10) { 5233 // Put the exponent in the right bit position for later addition to the 5234 // final result: 5235 // 5236 // #define LOG2OF10 3.3219281f 5237 // t0 = Op * LOG2OF10; 5238 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5239 getF32Constant(DAG, 0x40549a78, dl)); 5240 return getLimitedPrecisionExp2(t0, dl, DAG); 5241 } 5242 5243 // No special expansion. 5244 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5245 } 5246 5247 /// ExpandPowI - Expand a llvm.powi intrinsic. 5248 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5249 SelectionDAG &DAG) { 5250 // If RHS is a constant, we can expand this out to a multiplication tree, 5251 // otherwise we end up lowering to a call to __powidf2 (for example). When 5252 // optimizing for size, we only want to do this if the expansion would produce 5253 // a small number of multiplies, otherwise we do the full expansion. 5254 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5255 // Get the exponent as a positive value. 5256 unsigned Val = RHSC->getSExtValue(); 5257 if ((int)Val < 0) Val = -Val; 5258 5259 // powi(x, 0) -> 1.0 5260 if (Val == 0) 5261 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5262 5263 bool OptForSize = DAG.shouldOptForSize(); 5264 if (!OptForSize || 5265 // If optimizing for size, don't insert too many multiplies. 5266 // This inserts up to 5 multiplies. 5267 countPopulation(Val) + Log2_32(Val) < 7) { 5268 // We use the simple binary decomposition method to generate the multiply 5269 // sequence. There are more optimal ways to do this (for example, 5270 // powi(x,15) generates one more multiply than it should), but this has 5271 // the benefit of being both really simple and much better than a libcall. 5272 SDValue Res; // Logically starts equal to 1.0 5273 SDValue CurSquare = LHS; 5274 // TODO: Intrinsics should have fast-math-flags that propagate to these 5275 // nodes. 5276 while (Val) { 5277 if (Val & 1) { 5278 if (Res.getNode()) 5279 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5280 else 5281 Res = CurSquare; // 1.0*CurSquare. 5282 } 5283 5284 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5285 CurSquare, CurSquare); 5286 Val >>= 1; 5287 } 5288 5289 // If the original was negative, invert the result, producing 1/(x*x*x). 5290 if (RHSC->getSExtValue() < 0) 5291 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5292 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5293 return Res; 5294 } 5295 } 5296 5297 // Otherwise, expand to a libcall. 5298 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5299 } 5300 5301 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5302 SDValue LHS, SDValue RHS, SDValue Scale, 5303 SelectionDAG &DAG, const TargetLowering &TLI) { 5304 EVT VT = LHS.getValueType(); 5305 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5306 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5307 LLVMContext &Ctx = *DAG.getContext(); 5308 5309 // If the type is legal but the operation isn't, this node might survive all 5310 // the way to operation legalization. If we end up there and we do not have 5311 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5312 // node. 5313 5314 // Coax the legalizer into expanding the node during type legalization instead 5315 // by bumping the size by one bit. This will force it to Promote, enabling the 5316 // early expansion and avoiding the need to expand later. 5317 5318 // We don't have to do this if Scale is 0; that can always be expanded, unless 5319 // it's a saturating signed operation. Those can experience true integer 5320 // division overflow, a case which we must avoid. 5321 5322 // FIXME: We wouldn't have to do this (or any of the early 5323 // expansion/promotion) if it was possible to expand a libcall of an 5324 // illegal type during operation legalization. But it's not, so things 5325 // get a bit hacky. 5326 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5327 if ((ScaleInt > 0 || (Saturating && Signed)) && 5328 (TLI.isTypeLegal(VT) || 5329 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5330 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5331 Opcode, VT, ScaleInt); 5332 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5333 EVT PromVT; 5334 if (VT.isScalarInteger()) 5335 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5336 else if (VT.isVector()) { 5337 PromVT = VT.getVectorElementType(); 5338 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5339 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5340 } else 5341 llvm_unreachable("Wrong VT for DIVFIX?"); 5342 if (Signed) { 5343 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5344 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5345 } else { 5346 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5347 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5348 } 5349 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5350 // For saturating operations, we need to shift up the LHS to get the 5351 // proper saturation width, and then shift down again afterwards. 5352 if (Saturating) 5353 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5354 DAG.getConstant(1, DL, ShiftTy)); 5355 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5356 if (Saturating) 5357 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5358 DAG.getConstant(1, DL, ShiftTy)); 5359 return DAG.getZExtOrTrunc(Res, DL, VT); 5360 } 5361 } 5362 5363 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5364 } 5365 5366 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5367 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5368 static void 5369 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5370 const SDValue &N) { 5371 switch (N.getOpcode()) { 5372 case ISD::CopyFromReg: { 5373 SDValue Op = N.getOperand(1); 5374 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5375 Op.getValueType().getSizeInBits()); 5376 return; 5377 } 5378 case ISD::BITCAST: 5379 case ISD::AssertZext: 5380 case ISD::AssertSext: 5381 case ISD::TRUNCATE: 5382 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5383 return; 5384 case ISD::BUILD_PAIR: 5385 case ISD::BUILD_VECTOR: 5386 case ISD::CONCAT_VECTORS: 5387 for (SDValue Op : N->op_values()) 5388 getUnderlyingArgRegs(Regs, Op); 5389 return; 5390 default: 5391 return; 5392 } 5393 } 5394 5395 /// If the DbgValueInst is a dbg_value of a function argument, create the 5396 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5397 /// instruction selection, they will be inserted to the entry BB. 5398 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5399 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5400 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5401 const Argument *Arg = dyn_cast<Argument>(V); 5402 if (!Arg) 5403 return false; 5404 5405 if (!IsDbgDeclare) { 5406 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5407 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5408 // the entry block. 5409 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5410 if (!IsInEntryBlock) 5411 return false; 5412 5413 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5414 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5415 // variable that also is a param. 5416 // 5417 // Although, if we are at the top of the entry block already, we can still 5418 // emit using ArgDbgValue. This might catch some situations when the 5419 // dbg.value refers to an argument that isn't used in the entry block, so 5420 // any CopyToReg node would be optimized out and the only way to express 5421 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5422 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5423 // we should only emit as ArgDbgValue if the Variable is an argument to the 5424 // current function, and the dbg.value intrinsic is found in the entry 5425 // block. 5426 bool VariableIsFunctionInputArg = Variable->isParameter() && 5427 !DL->getInlinedAt(); 5428 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5429 if (!IsInPrologue && !VariableIsFunctionInputArg) 5430 return false; 5431 5432 // Here we assume that a function argument on IR level only can be used to 5433 // describe one input parameter on source level. If we for example have 5434 // source code like this 5435 // 5436 // struct A { long x, y; }; 5437 // void foo(struct A a, long b) { 5438 // ... 5439 // b = a.x; 5440 // ... 5441 // } 5442 // 5443 // and IR like this 5444 // 5445 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5446 // entry: 5447 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5448 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5449 // call void @llvm.dbg.value(metadata i32 %b, "b", 5450 // ... 5451 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5452 // ... 5453 // 5454 // then the last dbg.value is describing a parameter "b" using a value that 5455 // is an argument. But since we already has used %a1 to describe a parameter 5456 // we should not handle that last dbg.value here (that would result in an 5457 // incorrect hoisting of the DBG_VALUE to the function entry). 5458 // Notice that we allow one dbg.value per IR level argument, to accommodate 5459 // for the situation with fragments above. 5460 if (VariableIsFunctionInputArg) { 5461 unsigned ArgNo = Arg->getArgNo(); 5462 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5463 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5464 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5465 return false; 5466 FuncInfo.DescribedArgs.set(ArgNo); 5467 } 5468 } 5469 5470 MachineFunction &MF = DAG.getMachineFunction(); 5471 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5472 5473 bool IsIndirect = false; 5474 Optional<MachineOperand> Op; 5475 // Some arguments' frame index is recorded during argument lowering. 5476 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5477 if (FI != std::numeric_limits<int>::max()) 5478 Op = MachineOperand::CreateFI(FI); 5479 5480 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5481 if (!Op && N.getNode()) { 5482 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5483 Register Reg; 5484 if (ArgRegsAndSizes.size() == 1) 5485 Reg = ArgRegsAndSizes.front().first; 5486 5487 if (Reg && Reg.isVirtual()) { 5488 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5489 Register PR = RegInfo.getLiveInPhysReg(Reg); 5490 if (PR) 5491 Reg = PR; 5492 } 5493 if (Reg) { 5494 Op = MachineOperand::CreateReg(Reg, false); 5495 IsIndirect = IsDbgDeclare; 5496 } 5497 } 5498 5499 if (!Op && N.getNode()) { 5500 // Check if frame index is available. 5501 SDValue LCandidate = peekThroughBitcasts(N); 5502 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5503 if (FrameIndexSDNode *FINode = 5504 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5505 Op = MachineOperand::CreateFI(FINode->getIndex()); 5506 } 5507 5508 if (!Op) { 5509 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5510 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5511 SplitRegs) { 5512 unsigned Offset = 0; 5513 for (auto RegAndSize : SplitRegs) { 5514 // If the expression is already a fragment, the current register 5515 // offset+size might extend beyond the fragment. In this case, only 5516 // the register bits that are inside the fragment are relevant. 5517 int RegFragmentSizeInBits = RegAndSize.second; 5518 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5519 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5520 // The register is entirely outside the expression fragment, 5521 // so is irrelevant for debug info. 5522 if (Offset >= ExprFragmentSizeInBits) 5523 break; 5524 // The register is partially outside the expression fragment, only 5525 // the low bits within the fragment are relevant for debug info. 5526 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5527 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5528 } 5529 } 5530 5531 auto FragmentExpr = DIExpression::createFragmentExpression( 5532 Expr, Offset, RegFragmentSizeInBits); 5533 Offset += RegAndSize.second; 5534 // If a valid fragment expression cannot be created, the variable's 5535 // correct value cannot be determined and so it is set as Undef. 5536 if (!FragmentExpr) { 5537 SDDbgValue *SDV = DAG.getConstantDbgValue( 5538 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5539 DAG.AddDbgValue(SDV, nullptr, false); 5540 continue; 5541 } 5542 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5543 FuncInfo.ArgDbgValues.push_back( 5544 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5545 RegAndSize.first, Variable, *FragmentExpr)); 5546 } 5547 }; 5548 5549 // Check if ValueMap has reg number. 5550 DenseMap<const Value *, Register>::const_iterator 5551 VMI = FuncInfo.ValueMap.find(V); 5552 if (VMI != FuncInfo.ValueMap.end()) { 5553 const auto &TLI = DAG.getTargetLoweringInfo(); 5554 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5555 V->getType(), None); 5556 if (RFV.occupiesMultipleRegs()) { 5557 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5558 return true; 5559 } 5560 5561 Op = MachineOperand::CreateReg(VMI->second, false); 5562 IsIndirect = IsDbgDeclare; 5563 } else if (ArgRegsAndSizes.size() > 1) { 5564 // This was split due to the calling convention, and no virtual register 5565 // mapping exists for the value. 5566 splitMultiRegDbgValue(ArgRegsAndSizes); 5567 return true; 5568 } 5569 } 5570 5571 if (!Op) 5572 return false; 5573 5574 assert(Variable->isValidLocationForIntrinsic(DL) && 5575 "Expected inlined-at fields to agree"); 5576 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5577 FuncInfo.ArgDbgValues.push_back( 5578 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5579 *Op, Variable, Expr)); 5580 5581 return true; 5582 } 5583 5584 /// Return the appropriate SDDbgValue based on N. 5585 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5586 DILocalVariable *Variable, 5587 DIExpression *Expr, 5588 const DebugLoc &dl, 5589 unsigned DbgSDNodeOrder) { 5590 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5591 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5592 // stack slot locations. 5593 // 5594 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5595 // debug values here after optimization: 5596 // 5597 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5598 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5599 // 5600 // Both describe the direct values of their associated variables. 5601 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5602 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5603 } 5604 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5605 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5606 } 5607 5608 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5609 switch (Intrinsic) { 5610 case Intrinsic::smul_fix: 5611 return ISD::SMULFIX; 5612 case Intrinsic::umul_fix: 5613 return ISD::UMULFIX; 5614 case Intrinsic::smul_fix_sat: 5615 return ISD::SMULFIXSAT; 5616 case Intrinsic::umul_fix_sat: 5617 return ISD::UMULFIXSAT; 5618 case Intrinsic::sdiv_fix: 5619 return ISD::SDIVFIX; 5620 case Intrinsic::udiv_fix: 5621 return ISD::UDIVFIX; 5622 case Intrinsic::sdiv_fix_sat: 5623 return ISD::SDIVFIXSAT; 5624 case Intrinsic::udiv_fix_sat: 5625 return ISD::UDIVFIXSAT; 5626 default: 5627 llvm_unreachable("Unhandled fixed point intrinsic"); 5628 } 5629 } 5630 5631 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5632 const char *FunctionName) { 5633 assert(FunctionName && "FunctionName must not be nullptr"); 5634 SDValue Callee = DAG.getExternalSymbol( 5635 FunctionName, 5636 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5637 LowerCallTo(I, Callee, I.isTailCall()); 5638 } 5639 5640 /// Given a @llvm.call.preallocated.setup, return the corresponding 5641 /// preallocated call. 5642 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5643 assert(cast<CallBase>(PreallocatedSetup) 5644 ->getCalledFunction() 5645 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5646 "expected call_preallocated_setup Value"); 5647 for (auto *U : PreallocatedSetup->users()) { 5648 auto *UseCall = cast<CallBase>(U); 5649 const Function *Fn = UseCall->getCalledFunction(); 5650 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5651 return UseCall; 5652 } 5653 } 5654 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5655 } 5656 5657 /// Lower the call to the specified intrinsic function. 5658 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5659 unsigned Intrinsic) { 5660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5661 SDLoc sdl = getCurSDLoc(); 5662 DebugLoc dl = getCurDebugLoc(); 5663 SDValue Res; 5664 5665 SDNodeFlags Flags; 5666 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5667 Flags.copyFMF(*FPOp); 5668 5669 switch (Intrinsic) { 5670 default: 5671 // By default, turn this into a target intrinsic node. 5672 visitTargetIntrinsic(I, Intrinsic); 5673 return; 5674 case Intrinsic::vscale: { 5675 match(&I, m_VScale(DAG.getDataLayout())); 5676 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5677 setValue(&I, 5678 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5679 return; 5680 } 5681 case Intrinsic::vastart: visitVAStart(I); return; 5682 case Intrinsic::vaend: visitVAEnd(I); return; 5683 case Intrinsic::vacopy: visitVACopy(I); return; 5684 case Intrinsic::returnaddress: 5685 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5686 TLI.getPointerTy(DAG.getDataLayout()), 5687 getValue(I.getArgOperand(0)))); 5688 return; 5689 case Intrinsic::addressofreturnaddress: 5690 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5691 TLI.getPointerTy(DAG.getDataLayout()))); 5692 return; 5693 case Intrinsic::sponentry: 5694 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5695 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5696 return; 5697 case Intrinsic::frameaddress: 5698 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5699 TLI.getFrameIndexTy(DAG.getDataLayout()), 5700 getValue(I.getArgOperand(0)))); 5701 return; 5702 case Intrinsic::read_volatile_register: 5703 case Intrinsic::read_register: { 5704 Value *Reg = I.getArgOperand(0); 5705 SDValue Chain = getRoot(); 5706 SDValue RegName = 5707 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5708 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5709 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5710 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5711 setValue(&I, Res); 5712 DAG.setRoot(Res.getValue(1)); 5713 return; 5714 } 5715 case Intrinsic::write_register: { 5716 Value *Reg = I.getArgOperand(0); 5717 Value *RegValue = I.getArgOperand(1); 5718 SDValue Chain = getRoot(); 5719 SDValue RegName = 5720 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5721 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5722 RegName, getValue(RegValue))); 5723 return; 5724 } 5725 case Intrinsic::memcpy: { 5726 const auto &MCI = cast<MemCpyInst>(I); 5727 SDValue Op1 = getValue(I.getArgOperand(0)); 5728 SDValue Op2 = getValue(I.getArgOperand(1)); 5729 SDValue Op3 = getValue(I.getArgOperand(2)); 5730 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5731 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5732 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5733 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5734 bool isVol = MCI.isVolatile(); 5735 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5736 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5737 // node. 5738 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5739 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5740 /* AlwaysInline */ false, isTC, 5741 MachinePointerInfo(I.getArgOperand(0)), 5742 MachinePointerInfo(I.getArgOperand(1))); 5743 updateDAGForMaybeTailCall(MC); 5744 return; 5745 } 5746 case Intrinsic::memcpy_inline: { 5747 const auto &MCI = cast<MemCpyInlineInst>(I); 5748 SDValue Dst = getValue(I.getArgOperand(0)); 5749 SDValue Src = getValue(I.getArgOperand(1)); 5750 SDValue Size = getValue(I.getArgOperand(2)); 5751 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5752 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5753 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5754 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5755 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5756 bool isVol = MCI.isVolatile(); 5757 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5758 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5759 // node. 5760 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5761 /* AlwaysInline */ true, isTC, 5762 MachinePointerInfo(I.getArgOperand(0)), 5763 MachinePointerInfo(I.getArgOperand(1))); 5764 updateDAGForMaybeTailCall(MC); 5765 return; 5766 } 5767 case Intrinsic::memset: { 5768 const auto &MSI = cast<MemSetInst>(I); 5769 SDValue Op1 = getValue(I.getArgOperand(0)); 5770 SDValue Op2 = getValue(I.getArgOperand(1)); 5771 SDValue Op3 = getValue(I.getArgOperand(2)); 5772 // @llvm.memset defines 0 and 1 to both mean no alignment. 5773 Align Alignment = MSI.getDestAlign().valueOrOne(); 5774 bool isVol = MSI.isVolatile(); 5775 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5776 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5777 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5778 MachinePointerInfo(I.getArgOperand(0))); 5779 updateDAGForMaybeTailCall(MS); 5780 return; 5781 } 5782 case Intrinsic::memmove: { 5783 const auto &MMI = cast<MemMoveInst>(I); 5784 SDValue Op1 = getValue(I.getArgOperand(0)); 5785 SDValue Op2 = getValue(I.getArgOperand(1)); 5786 SDValue Op3 = getValue(I.getArgOperand(2)); 5787 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5788 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5789 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5790 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5791 bool isVol = MMI.isVolatile(); 5792 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5793 // FIXME: Support passing different dest/src alignments to the memmove DAG 5794 // node. 5795 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5796 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5797 isTC, MachinePointerInfo(I.getArgOperand(0)), 5798 MachinePointerInfo(I.getArgOperand(1))); 5799 updateDAGForMaybeTailCall(MM); 5800 return; 5801 } 5802 case Intrinsic::memcpy_element_unordered_atomic: { 5803 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5804 SDValue Dst = getValue(MI.getRawDest()); 5805 SDValue Src = getValue(MI.getRawSource()); 5806 SDValue Length = getValue(MI.getLength()); 5807 5808 unsigned DstAlign = MI.getDestAlignment(); 5809 unsigned SrcAlign = MI.getSourceAlignment(); 5810 Type *LengthTy = MI.getLength()->getType(); 5811 unsigned ElemSz = MI.getElementSizeInBytes(); 5812 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5813 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5814 SrcAlign, Length, LengthTy, ElemSz, isTC, 5815 MachinePointerInfo(MI.getRawDest()), 5816 MachinePointerInfo(MI.getRawSource())); 5817 updateDAGForMaybeTailCall(MC); 5818 return; 5819 } 5820 case Intrinsic::memmove_element_unordered_atomic: { 5821 auto &MI = cast<AtomicMemMoveInst>(I); 5822 SDValue Dst = getValue(MI.getRawDest()); 5823 SDValue Src = getValue(MI.getRawSource()); 5824 SDValue Length = getValue(MI.getLength()); 5825 5826 unsigned DstAlign = MI.getDestAlignment(); 5827 unsigned SrcAlign = MI.getSourceAlignment(); 5828 Type *LengthTy = MI.getLength()->getType(); 5829 unsigned ElemSz = MI.getElementSizeInBytes(); 5830 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5831 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5832 SrcAlign, Length, LengthTy, ElemSz, isTC, 5833 MachinePointerInfo(MI.getRawDest()), 5834 MachinePointerInfo(MI.getRawSource())); 5835 updateDAGForMaybeTailCall(MC); 5836 return; 5837 } 5838 case Intrinsic::memset_element_unordered_atomic: { 5839 auto &MI = cast<AtomicMemSetInst>(I); 5840 SDValue Dst = getValue(MI.getRawDest()); 5841 SDValue Val = getValue(MI.getValue()); 5842 SDValue Length = getValue(MI.getLength()); 5843 5844 unsigned DstAlign = MI.getDestAlignment(); 5845 Type *LengthTy = MI.getLength()->getType(); 5846 unsigned ElemSz = MI.getElementSizeInBytes(); 5847 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5848 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5849 LengthTy, ElemSz, isTC, 5850 MachinePointerInfo(MI.getRawDest())); 5851 updateDAGForMaybeTailCall(MC); 5852 return; 5853 } 5854 case Intrinsic::call_preallocated_setup: { 5855 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5856 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5857 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5858 getRoot(), SrcValue); 5859 setValue(&I, Res); 5860 DAG.setRoot(Res); 5861 return; 5862 } 5863 case Intrinsic::call_preallocated_arg: { 5864 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5865 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5866 SDValue Ops[3]; 5867 Ops[0] = getRoot(); 5868 Ops[1] = SrcValue; 5869 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5870 MVT::i32); // arg index 5871 SDValue Res = DAG.getNode( 5872 ISD::PREALLOCATED_ARG, sdl, 5873 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5874 setValue(&I, Res); 5875 DAG.setRoot(Res.getValue(1)); 5876 return; 5877 } 5878 case Intrinsic::dbg_addr: 5879 case Intrinsic::dbg_declare: { 5880 const auto &DI = cast<DbgVariableIntrinsic>(I); 5881 DILocalVariable *Variable = DI.getVariable(); 5882 DIExpression *Expression = DI.getExpression(); 5883 dropDanglingDebugInfo(Variable, Expression); 5884 assert(Variable && "Missing variable"); 5885 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5886 << "\n"); 5887 // Check if address has undef value. 5888 const Value *Address = DI.getVariableLocation(); 5889 if (!Address || isa<UndefValue>(Address) || 5890 (Address->use_empty() && !isa<Argument>(Address))) { 5891 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5892 << " (bad/undef/unused-arg address)\n"); 5893 return; 5894 } 5895 5896 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5897 5898 // Check if this variable can be described by a frame index, typically 5899 // either as a static alloca or a byval parameter. 5900 int FI = std::numeric_limits<int>::max(); 5901 if (const auto *AI = 5902 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5903 if (AI->isStaticAlloca()) { 5904 auto I = FuncInfo.StaticAllocaMap.find(AI); 5905 if (I != FuncInfo.StaticAllocaMap.end()) 5906 FI = I->second; 5907 } 5908 } else if (const auto *Arg = dyn_cast<Argument>( 5909 Address->stripInBoundsConstantOffsets())) { 5910 FI = FuncInfo.getArgumentFrameIndex(Arg); 5911 } 5912 5913 // llvm.dbg.addr is control dependent and always generates indirect 5914 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5915 // the MachineFunction variable table. 5916 if (FI != std::numeric_limits<int>::max()) { 5917 if (Intrinsic == Intrinsic::dbg_addr) { 5918 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5919 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5920 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5921 } else { 5922 LLVM_DEBUG(dbgs() << "Skipping " << DI 5923 << " (variable info stashed in MF side table)\n"); 5924 } 5925 return; 5926 } 5927 5928 SDValue &N = NodeMap[Address]; 5929 if (!N.getNode() && isa<Argument>(Address)) 5930 // Check unused arguments map. 5931 N = UnusedArgNodeMap[Address]; 5932 SDDbgValue *SDV; 5933 if (N.getNode()) { 5934 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5935 Address = BCI->getOperand(0); 5936 // Parameters are handled specially. 5937 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5938 if (isParameter && FINode) { 5939 // Byval parameter. We have a frame index at this point. 5940 SDV = 5941 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5942 /*IsIndirect*/ true, dl, SDNodeOrder); 5943 } else if (isa<Argument>(Address)) { 5944 // Address is an argument, so try to emit its dbg value using 5945 // virtual register info from the FuncInfo.ValueMap. 5946 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5947 return; 5948 } else { 5949 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5950 true, dl, SDNodeOrder); 5951 } 5952 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5953 } else { 5954 // If Address is an argument then try to emit its dbg value using 5955 // virtual register info from the FuncInfo.ValueMap. 5956 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5957 N)) { 5958 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5959 << " (could not emit func-arg dbg_value)\n"); 5960 } 5961 } 5962 return; 5963 } 5964 case Intrinsic::dbg_label: { 5965 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5966 DILabel *Label = DI.getLabel(); 5967 assert(Label && "Missing label"); 5968 5969 SDDbgLabel *SDV; 5970 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5971 DAG.AddDbgLabel(SDV); 5972 return; 5973 } 5974 case Intrinsic::dbg_value: { 5975 const DbgValueInst &DI = cast<DbgValueInst>(I); 5976 assert(DI.getVariable() && "Missing variable"); 5977 5978 DILocalVariable *Variable = DI.getVariable(); 5979 DIExpression *Expression = DI.getExpression(); 5980 dropDanglingDebugInfo(Variable, Expression); 5981 const Value *V = DI.getValue(); 5982 if (!V) 5983 return; 5984 5985 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5986 SDNodeOrder)) 5987 return; 5988 5989 // TODO: Dangling debug info will eventually either be resolved or produce 5990 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5991 // between the original dbg.value location and its resolved DBG_VALUE, which 5992 // we should ideally fill with an extra Undef DBG_VALUE. 5993 5994 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5995 return; 5996 } 5997 5998 case Intrinsic::eh_typeid_for: { 5999 // Find the type id for the given typeinfo. 6000 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6001 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6002 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6003 setValue(&I, Res); 6004 return; 6005 } 6006 6007 case Intrinsic::eh_return_i32: 6008 case Intrinsic::eh_return_i64: 6009 DAG.getMachineFunction().setCallsEHReturn(true); 6010 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6011 MVT::Other, 6012 getControlRoot(), 6013 getValue(I.getArgOperand(0)), 6014 getValue(I.getArgOperand(1)))); 6015 return; 6016 case Intrinsic::eh_unwind_init: 6017 DAG.getMachineFunction().setCallsUnwindInit(true); 6018 return; 6019 case Intrinsic::eh_dwarf_cfa: 6020 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6021 TLI.getPointerTy(DAG.getDataLayout()), 6022 getValue(I.getArgOperand(0)))); 6023 return; 6024 case Intrinsic::eh_sjlj_callsite: { 6025 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6026 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6027 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6028 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6029 6030 MMI.setCurrentCallSite(CI->getZExtValue()); 6031 return; 6032 } 6033 case Intrinsic::eh_sjlj_functioncontext: { 6034 // Get and store the index of the function context. 6035 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6036 AllocaInst *FnCtx = 6037 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6038 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6039 MFI.setFunctionContextIndex(FI); 6040 return; 6041 } 6042 case Intrinsic::eh_sjlj_setjmp: { 6043 SDValue Ops[2]; 6044 Ops[0] = getRoot(); 6045 Ops[1] = getValue(I.getArgOperand(0)); 6046 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6047 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6048 setValue(&I, Op.getValue(0)); 6049 DAG.setRoot(Op.getValue(1)); 6050 return; 6051 } 6052 case Intrinsic::eh_sjlj_longjmp: 6053 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6054 getRoot(), getValue(I.getArgOperand(0)))); 6055 return; 6056 case Intrinsic::eh_sjlj_setup_dispatch: 6057 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6058 getRoot())); 6059 return; 6060 case Intrinsic::masked_gather: 6061 visitMaskedGather(I); 6062 return; 6063 case Intrinsic::masked_load: 6064 visitMaskedLoad(I); 6065 return; 6066 case Intrinsic::masked_scatter: 6067 visitMaskedScatter(I); 6068 return; 6069 case Intrinsic::masked_store: 6070 visitMaskedStore(I); 6071 return; 6072 case Intrinsic::masked_expandload: 6073 visitMaskedLoad(I, true /* IsExpanding */); 6074 return; 6075 case Intrinsic::masked_compressstore: 6076 visitMaskedStore(I, true /* IsCompressing */); 6077 return; 6078 case Intrinsic::powi: 6079 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6080 getValue(I.getArgOperand(1)), DAG)); 6081 return; 6082 case Intrinsic::log: 6083 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6084 return; 6085 case Intrinsic::log2: 6086 setValue(&I, 6087 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6088 return; 6089 case Intrinsic::log10: 6090 setValue(&I, 6091 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6092 return; 6093 case Intrinsic::exp: 6094 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6095 return; 6096 case Intrinsic::exp2: 6097 setValue(&I, 6098 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6099 return; 6100 case Intrinsic::pow: 6101 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6102 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6103 return; 6104 case Intrinsic::sqrt: 6105 case Intrinsic::fabs: 6106 case Intrinsic::sin: 6107 case Intrinsic::cos: 6108 case Intrinsic::floor: 6109 case Intrinsic::ceil: 6110 case Intrinsic::trunc: 6111 case Intrinsic::rint: 6112 case Intrinsic::nearbyint: 6113 case Intrinsic::round: 6114 case Intrinsic::roundeven: 6115 case Intrinsic::canonicalize: { 6116 unsigned Opcode; 6117 switch (Intrinsic) { 6118 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6119 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6120 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6121 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6122 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6123 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6124 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6125 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6126 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6127 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6128 case Intrinsic::round: Opcode = ISD::FROUND; break; 6129 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6130 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6131 } 6132 6133 setValue(&I, DAG.getNode(Opcode, sdl, 6134 getValue(I.getArgOperand(0)).getValueType(), 6135 getValue(I.getArgOperand(0)), Flags)); 6136 return; 6137 } 6138 case Intrinsic::lround: 6139 case Intrinsic::llround: 6140 case Intrinsic::lrint: 6141 case Intrinsic::llrint: { 6142 unsigned Opcode; 6143 switch (Intrinsic) { 6144 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6145 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6146 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6147 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6148 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6149 } 6150 6151 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6152 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6153 getValue(I.getArgOperand(0)))); 6154 return; 6155 } 6156 case Intrinsic::minnum: 6157 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6158 getValue(I.getArgOperand(0)).getValueType(), 6159 getValue(I.getArgOperand(0)), 6160 getValue(I.getArgOperand(1)), Flags)); 6161 return; 6162 case Intrinsic::maxnum: 6163 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6164 getValue(I.getArgOperand(0)).getValueType(), 6165 getValue(I.getArgOperand(0)), 6166 getValue(I.getArgOperand(1)), Flags)); 6167 return; 6168 case Intrinsic::minimum: 6169 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6170 getValue(I.getArgOperand(0)).getValueType(), 6171 getValue(I.getArgOperand(0)), 6172 getValue(I.getArgOperand(1)), Flags)); 6173 return; 6174 case Intrinsic::maximum: 6175 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6176 getValue(I.getArgOperand(0)).getValueType(), 6177 getValue(I.getArgOperand(0)), 6178 getValue(I.getArgOperand(1)), Flags)); 6179 return; 6180 case Intrinsic::copysign: 6181 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6182 getValue(I.getArgOperand(0)).getValueType(), 6183 getValue(I.getArgOperand(0)), 6184 getValue(I.getArgOperand(1)), Flags)); 6185 return; 6186 case Intrinsic::fma: 6187 setValue(&I, DAG.getNode( 6188 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6189 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6190 getValue(I.getArgOperand(2)), Flags)); 6191 return; 6192 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6193 case Intrinsic::INTRINSIC: 6194 #include "llvm/IR/ConstrainedOps.def" 6195 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6196 return; 6197 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6198 #include "llvm/IR/VPIntrinsics.def" 6199 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6200 return; 6201 case Intrinsic::fmuladd: { 6202 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6203 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6204 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6205 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6206 getValue(I.getArgOperand(0)).getValueType(), 6207 getValue(I.getArgOperand(0)), 6208 getValue(I.getArgOperand(1)), 6209 getValue(I.getArgOperand(2)), Flags)); 6210 } else { 6211 // TODO: Intrinsic calls should have fast-math-flags. 6212 SDValue Mul = DAG.getNode( 6213 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6214 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6215 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6216 getValue(I.getArgOperand(0)).getValueType(), 6217 Mul, getValue(I.getArgOperand(2)), Flags); 6218 setValue(&I, Add); 6219 } 6220 return; 6221 } 6222 case Intrinsic::convert_to_fp16: 6223 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6224 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6225 getValue(I.getArgOperand(0)), 6226 DAG.getTargetConstant(0, sdl, 6227 MVT::i32)))); 6228 return; 6229 case Intrinsic::convert_from_fp16: 6230 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6231 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6232 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6233 getValue(I.getArgOperand(0))))); 6234 return; 6235 case Intrinsic::fptosi_sat: { 6236 EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6237 SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32); 6238 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type, 6239 getValue(I.getArgOperand(0)), SatW)); 6240 return; 6241 } 6242 case Intrinsic::fptoui_sat: { 6243 EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6244 SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32); 6245 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type, 6246 getValue(I.getArgOperand(0)), SatW)); 6247 return; 6248 } 6249 case Intrinsic::set_rounding: 6250 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6251 {getRoot(), getValue(I.getArgOperand(0))}); 6252 setValue(&I, Res); 6253 DAG.setRoot(Res.getValue(0)); 6254 return; 6255 case Intrinsic::pcmarker: { 6256 SDValue Tmp = getValue(I.getArgOperand(0)); 6257 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6258 return; 6259 } 6260 case Intrinsic::readcyclecounter: { 6261 SDValue Op = getRoot(); 6262 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6263 DAG.getVTList(MVT::i64, MVT::Other), Op); 6264 setValue(&I, Res); 6265 DAG.setRoot(Res.getValue(1)); 6266 return; 6267 } 6268 case Intrinsic::bitreverse: 6269 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6270 getValue(I.getArgOperand(0)).getValueType(), 6271 getValue(I.getArgOperand(0)))); 6272 return; 6273 case Intrinsic::bswap: 6274 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6275 getValue(I.getArgOperand(0)).getValueType(), 6276 getValue(I.getArgOperand(0)))); 6277 return; 6278 case Intrinsic::cttz: { 6279 SDValue Arg = getValue(I.getArgOperand(0)); 6280 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6281 EVT Ty = Arg.getValueType(); 6282 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6283 sdl, Ty, Arg)); 6284 return; 6285 } 6286 case Intrinsic::ctlz: { 6287 SDValue Arg = getValue(I.getArgOperand(0)); 6288 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6289 EVT Ty = Arg.getValueType(); 6290 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6291 sdl, Ty, Arg)); 6292 return; 6293 } 6294 case Intrinsic::ctpop: { 6295 SDValue Arg = getValue(I.getArgOperand(0)); 6296 EVT Ty = Arg.getValueType(); 6297 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6298 return; 6299 } 6300 case Intrinsic::fshl: 6301 case Intrinsic::fshr: { 6302 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6303 SDValue X = getValue(I.getArgOperand(0)); 6304 SDValue Y = getValue(I.getArgOperand(1)); 6305 SDValue Z = getValue(I.getArgOperand(2)); 6306 EVT VT = X.getValueType(); 6307 6308 if (X == Y) { 6309 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6310 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6311 } else { 6312 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6313 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6314 } 6315 return; 6316 } 6317 case Intrinsic::sadd_sat: { 6318 SDValue Op1 = getValue(I.getArgOperand(0)); 6319 SDValue Op2 = getValue(I.getArgOperand(1)); 6320 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6321 return; 6322 } 6323 case Intrinsic::uadd_sat: { 6324 SDValue Op1 = getValue(I.getArgOperand(0)); 6325 SDValue Op2 = getValue(I.getArgOperand(1)); 6326 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6327 return; 6328 } 6329 case Intrinsic::ssub_sat: { 6330 SDValue Op1 = getValue(I.getArgOperand(0)); 6331 SDValue Op2 = getValue(I.getArgOperand(1)); 6332 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6333 return; 6334 } 6335 case Intrinsic::usub_sat: { 6336 SDValue Op1 = getValue(I.getArgOperand(0)); 6337 SDValue Op2 = getValue(I.getArgOperand(1)); 6338 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6339 return; 6340 } 6341 case Intrinsic::sshl_sat: { 6342 SDValue Op1 = getValue(I.getArgOperand(0)); 6343 SDValue Op2 = getValue(I.getArgOperand(1)); 6344 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6345 return; 6346 } 6347 case Intrinsic::ushl_sat: { 6348 SDValue Op1 = getValue(I.getArgOperand(0)); 6349 SDValue Op2 = getValue(I.getArgOperand(1)); 6350 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6351 return; 6352 } 6353 case Intrinsic::smul_fix: 6354 case Intrinsic::umul_fix: 6355 case Intrinsic::smul_fix_sat: 6356 case Intrinsic::umul_fix_sat: { 6357 SDValue Op1 = getValue(I.getArgOperand(0)); 6358 SDValue Op2 = getValue(I.getArgOperand(1)); 6359 SDValue Op3 = getValue(I.getArgOperand(2)); 6360 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6361 Op1.getValueType(), Op1, Op2, Op3)); 6362 return; 6363 } 6364 case Intrinsic::sdiv_fix: 6365 case Intrinsic::udiv_fix: 6366 case Intrinsic::sdiv_fix_sat: 6367 case Intrinsic::udiv_fix_sat: { 6368 SDValue Op1 = getValue(I.getArgOperand(0)); 6369 SDValue Op2 = getValue(I.getArgOperand(1)); 6370 SDValue Op3 = getValue(I.getArgOperand(2)); 6371 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6372 Op1, Op2, Op3, DAG, TLI)); 6373 return; 6374 } 6375 case Intrinsic::smax: { 6376 SDValue Op1 = getValue(I.getArgOperand(0)); 6377 SDValue Op2 = getValue(I.getArgOperand(1)); 6378 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6379 return; 6380 } 6381 case Intrinsic::smin: { 6382 SDValue Op1 = getValue(I.getArgOperand(0)); 6383 SDValue Op2 = getValue(I.getArgOperand(1)); 6384 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6385 return; 6386 } 6387 case Intrinsic::umax: { 6388 SDValue Op1 = getValue(I.getArgOperand(0)); 6389 SDValue Op2 = getValue(I.getArgOperand(1)); 6390 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6391 return; 6392 } 6393 case Intrinsic::umin: { 6394 SDValue Op1 = getValue(I.getArgOperand(0)); 6395 SDValue Op2 = getValue(I.getArgOperand(1)); 6396 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6397 return; 6398 } 6399 case Intrinsic::abs: { 6400 // TODO: Preserve "int min is poison" arg in SDAG? 6401 SDValue Op1 = getValue(I.getArgOperand(0)); 6402 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6403 return; 6404 } 6405 case Intrinsic::stacksave: { 6406 SDValue Op = getRoot(); 6407 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6408 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6409 setValue(&I, Res); 6410 DAG.setRoot(Res.getValue(1)); 6411 return; 6412 } 6413 case Intrinsic::stackrestore: 6414 Res = getValue(I.getArgOperand(0)); 6415 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6416 return; 6417 case Intrinsic::get_dynamic_area_offset: { 6418 SDValue Op = getRoot(); 6419 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6420 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6421 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6422 // target. 6423 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6424 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6425 " intrinsic!"); 6426 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6427 Op); 6428 DAG.setRoot(Op); 6429 setValue(&I, Res); 6430 return; 6431 } 6432 case Intrinsic::stackguard: { 6433 MachineFunction &MF = DAG.getMachineFunction(); 6434 const Module &M = *MF.getFunction().getParent(); 6435 SDValue Chain = getRoot(); 6436 if (TLI.useLoadStackGuardNode()) { 6437 Res = getLoadStackGuard(DAG, sdl, Chain); 6438 } else { 6439 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6440 const Value *Global = TLI.getSDagStackGuard(M); 6441 Align Align = DL->getPrefTypeAlign(Global->getType()); 6442 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6443 MachinePointerInfo(Global, 0), Align, 6444 MachineMemOperand::MOVolatile); 6445 } 6446 if (TLI.useStackGuardXorFP()) 6447 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6448 DAG.setRoot(Chain); 6449 setValue(&I, Res); 6450 return; 6451 } 6452 case Intrinsic::stackprotector: { 6453 // Emit code into the DAG to store the stack guard onto the stack. 6454 MachineFunction &MF = DAG.getMachineFunction(); 6455 MachineFrameInfo &MFI = MF.getFrameInfo(); 6456 SDValue Src, Chain = getRoot(); 6457 6458 if (TLI.useLoadStackGuardNode()) 6459 Src = getLoadStackGuard(DAG, sdl, Chain); 6460 else 6461 Src = getValue(I.getArgOperand(0)); // The guard's value. 6462 6463 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6464 6465 int FI = FuncInfo.StaticAllocaMap[Slot]; 6466 MFI.setStackProtectorIndex(FI); 6467 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6468 6469 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6470 6471 // Store the stack protector onto the stack. 6472 Res = DAG.getStore( 6473 Chain, sdl, Src, FIN, 6474 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6475 MaybeAlign(), MachineMemOperand::MOVolatile); 6476 setValue(&I, Res); 6477 DAG.setRoot(Res); 6478 return; 6479 } 6480 case Intrinsic::objectsize: 6481 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6482 6483 case Intrinsic::is_constant: 6484 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6485 6486 case Intrinsic::annotation: 6487 case Intrinsic::ptr_annotation: 6488 case Intrinsic::launder_invariant_group: 6489 case Intrinsic::strip_invariant_group: 6490 // Drop the intrinsic, but forward the value 6491 setValue(&I, getValue(I.getOperand(0))); 6492 return; 6493 6494 case Intrinsic::assume: 6495 case Intrinsic::experimental_noalias_scope_decl: 6496 case Intrinsic::var_annotation: 6497 case Intrinsic::sideeffect: 6498 // Discard annotate attributes, noalias scope declarations, assumptions, and 6499 // artificial side-effects. 6500 return; 6501 6502 case Intrinsic::codeview_annotation: { 6503 // Emit a label associated with this metadata. 6504 MachineFunction &MF = DAG.getMachineFunction(); 6505 MCSymbol *Label = 6506 MF.getMMI().getContext().createTempSymbol("annotation", true); 6507 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6508 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6509 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6510 DAG.setRoot(Res); 6511 return; 6512 } 6513 6514 case Intrinsic::init_trampoline: { 6515 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6516 6517 SDValue Ops[6]; 6518 Ops[0] = getRoot(); 6519 Ops[1] = getValue(I.getArgOperand(0)); 6520 Ops[2] = getValue(I.getArgOperand(1)); 6521 Ops[3] = getValue(I.getArgOperand(2)); 6522 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6523 Ops[5] = DAG.getSrcValue(F); 6524 6525 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6526 6527 DAG.setRoot(Res); 6528 return; 6529 } 6530 case Intrinsic::adjust_trampoline: 6531 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6532 TLI.getPointerTy(DAG.getDataLayout()), 6533 getValue(I.getArgOperand(0)))); 6534 return; 6535 case Intrinsic::gcroot: { 6536 assert(DAG.getMachineFunction().getFunction().hasGC() && 6537 "only valid in functions with gc specified, enforced by Verifier"); 6538 assert(GFI && "implied by previous"); 6539 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6540 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6541 6542 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6543 GFI->addStackRoot(FI->getIndex(), TypeMap); 6544 return; 6545 } 6546 case Intrinsic::gcread: 6547 case Intrinsic::gcwrite: 6548 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6549 case Intrinsic::flt_rounds: 6550 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6551 setValue(&I, Res); 6552 DAG.setRoot(Res.getValue(1)); 6553 return; 6554 6555 case Intrinsic::expect: 6556 // Just replace __builtin_expect(exp, c) with EXP. 6557 setValue(&I, getValue(I.getArgOperand(0))); 6558 return; 6559 6560 case Intrinsic::ubsantrap: 6561 case Intrinsic::debugtrap: 6562 case Intrinsic::trap: { 6563 StringRef TrapFuncName = 6564 I.getAttributes() 6565 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6566 .getValueAsString(); 6567 if (TrapFuncName.empty()) { 6568 switch (Intrinsic) { 6569 case Intrinsic::trap: 6570 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6571 break; 6572 case Intrinsic::debugtrap: 6573 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6574 break; 6575 case Intrinsic::ubsantrap: 6576 DAG.setRoot(DAG.getNode( 6577 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6578 DAG.getTargetConstant( 6579 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6580 MVT::i32))); 6581 break; 6582 default: llvm_unreachable("unknown trap intrinsic"); 6583 } 6584 return; 6585 } 6586 TargetLowering::ArgListTy Args; 6587 if (Intrinsic == Intrinsic::ubsantrap) { 6588 Args.push_back(TargetLoweringBase::ArgListEntry()); 6589 Args[0].Val = I.getArgOperand(0); 6590 Args[0].Node = getValue(Args[0].Val); 6591 Args[0].Ty = Args[0].Val->getType(); 6592 } 6593 6594 TargetLowering::CallLoweringInfo CLI(DAG); 6595 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6596 CallingConv::C, I.getType(), 6597 DAG.getExternalSymbol(TrapFuncName.data(), 6598 TLI.getPointerTy(DAG.getDataLayout())), 6599 std::move(Args)); 6600 6601 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6602 DAG.setRoot(Result.second); 6603 return; 6604 } 6605 6606 case Intrinsic::uadd_with_overflow: 6607 case Intrinsic::sadd_with_overflow: 6608 case Intrinsic::usub_with_overflow: 6609 case Intrinsic::ssub_with_overflow: 6610 case Intrinsic::umul_with_overflow: 6611 case Intrinsic::smul_with_overflow: { 6612 ISD::NodeType Op; 6613 switch (Intrinsic) { 6614 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6615 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6616 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6617 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6618 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6619 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6620 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6621 } 6622 SDValue Op1 = getValue(I.getArgOperand(0)); 6623 SDValue Op2 = getValue(I.getArgOperand(1)); 6624 6625 EVT ResultVT = Op1.getValueType(); 6626 EVT OverflowVT = MVT::i1; 6627 if (ResultVT.isVector()) 6628 OverflowVT = EVT::getVectorVT( 6629 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6630 6631 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6632 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6633 return; 6634 } 6635 case Intrinsic::prefetch: { 6636 SDValue Ops[5]; 6637 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6638 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6639 Ops[0] = DAG.getRoot(); 6640 Ops[1] = getValue(I.getArgOperand(0)); 6641 Ops[2] = getValue(I.getArgOperand(1)); 6642 Ops[3] = getValue(I.getArgOperand(2)); 6643 Ops[4] = getValue(I.getArgOperand(3)); 6644 SDValue Result = DAG.getMemIntrinsicNode( 6645 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6646 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6647 /* align */ None, Flags); 6648 6649 // Chain the prefetch in parallell with any pending loads, to stay out of 6650 // the way of later optimizations. 6651 PendingLoads.push_back(Result); 6652 Result = getRoot(); 6653 DAG.setRoot(Result); 6654 return; 6655 } 6656 case Intrinsic::lifetime_start: 6657 case Intrinsic::lifetime_end: { 6658 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6659 // Stack coloring is not enabled in O0, discard region information. 6660 if (TM.getOptLevel() == CodeGenOpt::None) 6661 return; 6662 6663 const int64_t ObjectSize = 6664 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6665 Value *const ObjectPtr = I.getArgOperand(1); 6666 SmallVector<const Value *, 4> Allocas; 6667 getUnderlyingObjects(ObjectPtr, Allocas); 6668 6669 for (const Value *Alloca : Allocas) { 6670 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6671 6672 // Could not find an Alloca. 6673 if (!LifetimeObject) 6674 continue; 6675 6676 // First check that the Alloca is static, otherwise it won't have a 6677 // valid frame index. 6678 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6679 if (SI == FuncInfo.StaticAllocaMap.end()) 6680 return; 6681 6682 const int FrameIndex = SI->second; 6683 int64_t Offset; 6684 if (GetPointerBaseWithConstantOffset( 6685 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6686 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6687 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6688 Offset); 6689 DAG.setRoot(Res); 6690 } 6691 return; 6692 } 6693 case Intrinsic::pseudoprobe: { 6694 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6695 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6696 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6697 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6698 DAG.setRoot(Res); 6699 return; 6700 } 6701 case Intrinsic::invariant_start: 6702 // Discard region information. 6703 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6704 return; 6705 case Intrinsic::invariant_end: 6706 // Discard region information. 6707 return; 6708 case Intrinsic::clear_cache: 6709 /// FunctionName may be null. 6710 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6711 lowerCallToExternalSymbol(I, FunctionName); 6712 return; 6713 case Intrinsic::donothing: 6714 // ignore 6715 return; 6716 case Intrinsic::experimental_stackmap: 6717 visitStackmap(I); 6718 return; 6719 case Intrinsic::experimental_patchpoint_void: 6720 case Intrinsic::experimental_patchpoint_i64: 6721 visitPatchpoint(I); 6722 return; 6723 case Intrinsic::experimental_gc_statepoint: 6724 LowerStatepoint(cast<GCStatepointInst>(I)); 6725 return; 6726 case Intrinsic::experimental_gc_result: 6727 visitGCResult(cast<GCResultInst>(I)); 6728 return; 6729 case Intrinsic::experimental_gc_relocate: 6730 visitGCRelocate(cast<GCRelocateInst>(I)); 6731 return; 6732 case Intrinsic::instrprof_increment: 6733 llvm_unreachable("instrprof failed to lower an increment"); 6734 case Intrinsic::instrprof_value_profile: 6735 llvm_unreachable("instrprof failed to lower a value profiling call"); 6736 case Intrinsic::localescape: { 6737 MachineFunction &MF = DAG.getMachineFunction(); 6738 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6739 6740 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6741 // is the same on all targets. 6742 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6743 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6744 if (isa<ConstantPointerNull>(Arg)) 6745 continue; // Skip null pointers. They represent a hole in index space. 6746 AllocaInst *Slot = cast<AllocaInst>(Arg); 6747 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6748 "can only escape static allocas"); 6749 int FI = FuncInfo.StaticAllocaMap[Slot]; 6750 MCSymbol *FrameAllocSym = 6751 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6752 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6754 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6755 .addSym(FrameAllocSym) 6756 .addFrameIndex(FI); 6757 } 6758 6759 return; 6760 } 6761 6762 case Intrinsic::localrecover: { 6763 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6764 MachineFunction &MF = DAG.getMachineFunction(); 6765 6766 // Get the symbol that defines the frame offset. 6767 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6768 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6769 unsigned IdxVal = 6770 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6771 MCSymbol *FrameAllocSym = 6772 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6773 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6774 6775 Value *FP = I.getArgOperand(1); 6776 SDValue FPVal = getValue(FP); 6777 EVT PtrVT = FPVal.getValueType(); 6778 6779 // Create a MCSymbol for the label to avoid any target lowering 6780 // that would make this PC relative. 6781 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6782 SDValue OffsetVal = 6783 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6784 6785 // Add the offset to the FP. 6786 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6787 setValue(&I, Add); 6788 6789 return; 6790 } 6791 6792 case Intrinsic::eh_exceptionpointer: 6793 case Intrinsic::eh_exceptioncode: { 6794 // Get the exception pointer vreg, copy from it, and resize it to fit. 6795 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6796 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6797 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6798 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6799 SDValue N = 6800 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6801 if (Intrinsic == Intrinsic::eh_exceptioncode) 6802 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6803 setValue(&I, N); 6804 return; 6805 } 6806 case Intrinsic::xray_customevent: { 6807 // Here we want to make sure that the intrinsic behaves as if it has a 6808 // specific calling convention, and only for x86_64. 6809 // FIXME: Support other platforms later. 6810 const auto &Triple = DAG.getTarget().getTargetTriple(); 6811 if (Triple.getArch() != Triple::x86_64) 6812 return; 6813 6814 SDLoc DL = getCurSDLoc(); 6815 SmallVector<SDValue, 8> Ops; 6816 6817 // We want to say that we always want the arguments in registers. 6818 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6819 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6820 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6821 SDValue Chain = getRoot(); 6822 Ops.push_back(LogEntryVal); 6823 Ops.push_back(StrSizeVal); 6824 Ops.push_back(Chain); 6825 6826 // We need to enforce the calling convention for the callsite, so that 6827 // argument ordering is enforced correctly, and that register allocation can 6828 // see that some registers may be assumed clobbered and have to preserve 6829 // them across calls to the intrinsic. 6830 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6831 DL, NodeTys, Ops); 6832 SDValue patchableNode = SDValue(MN, 0); 6833 DAG.setRoot(patchableNode); 6834 setValue(&I, patchableNode); 6835 return; 6836 } 6837 case Intrinsic::xray_typedevent: { 6838 // Here we want to make sure that the intrinsic behaves as if it has a 6839 // specific calling convention, and only for x86_64. 6840 // FIXME: Support other platforms later. 6841 const auto &Triple = DAG.getTarget().getTargetTriple(); 6842 if (Triple.getArch() != Triple::x86_64) 6843 return; 6844 6845 SDLoc DL = getCurSDLoc(); 6846 SmallVector<SDValue, 8> Ops; 6847 6848 // We want to say that we always want the arguments in registers. 6849 // It's unclear to me how manipulating the selection DAG here forces callers 6850 // to provide arguments in registers instead of on the stack. 6851 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6852 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6853 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6854 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6855 SDValue Chain = getRoot(); 6856 Ops.push_back(LogTypeId); 6857 Ops.push_back(LogEntryVal); 6858 Ops.push_back(StrSizeVal); 6859 Ops.push_back(Chain); 6860 6861 // We need to enforce the calling convention for the callsite, so that 6862 // argument ordering is enforced correctly, and that register allocation can 6863 // see that some registers may be assumed clobbered and have to preserve 6864 // them across calls to the intrinsic. 6865 MachineSDNode *MN = DAG.getMachineNode( 6866 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6867 SDValue patchableNode = SDValue(MN, 0); 6868 DAG.setRoot(patchableNode); 6869 setValue(&I, patchableNode); 6870 return; 6871 } 6872 case Intrinsic::experimental_deoptimize: 6873 LowerDeoptimizeCall(&I); 6874 return; 6875 6876 case Intrinsic::vector_reduce_fadd: 6877 case Intrinsic::vector_reduce_fmul: 6878 case Intrinsic::vector_reduce_add: 6879 case Intrinsic::vector_reduce_mul: 6880 case Intrinsic::vector_reduce_and: 6881 case Intrinsic::vector_reduce_or: 6882 case Intrinsic::vector_reduce_xor: 6883 case Intrinsic::vector_reduce_smax: 6884 case Intrinsic::vector_reduce_smin: 6885 case Intrinsic::vector_reduce_umax: 6886 case Intrinsic::vector_reduce_umin: 6887 case Intrinsic::vector_reduce_fmax: 6888 case Intrinsic::vector_reduce_fmin: 6889 visitVectorReduce(I, Intrinsic); 6890 return; 6891 6892 case Intrinsic::icall_branch_funnel: { 6893 SmallVector<SDValue, 16> Ops; 6894 Ops.push_back(getValue(I.getArgOperand(0))); 6895 6896 int64_t Offset; 6897 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6898 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6899 if (!Base) 6900 report_fatal_error( 6901 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6902 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6903 6904 struct BranchFunnelTarget { 6905 int64_t Offset; 6906 SDValue Target; 6907 }; 6908 SmallVector<BranchFunnelTarget, 8> Targets; 6909 6910 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6911 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6912 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6913 if (ElemBase != Base) 6914 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6915 "to the same GlobalValue"); 6916 6917 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6918 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6919 if (!GA) 6920 report_fatal_error( 6921 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6922 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6923 GA->getGlobal(), getCurSDLoc(), 6924 Val.getValueType(), GA->getOffset())}); 6925 } 6926 llvm::sort(Targets, 6927 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6928 return T1.Offset < T2.Offset; 6929 }); 6930 6931 for (auto &T : Targets) { 6932 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6933 Ops.push_back(T.Target); 6934 } 6935 6936 Ops.push_back(DAG.getRoot()); // Chain 6937 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6938 getCurSDLoc(), MVT::Other, Ops), 6939 0); 6940 DAG.setRoot(N); 6941 setValue(&I, N); 6942 HasTailCall = true; 6943 return; 6944 } 6945 6946 case Intrinsic::wasm_landingpad_index: 6947 // Information this intrinsic contained has been transferred to 6948 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6949 // delete it now. 6950 return; 6951 6952 case Intrinsic::aarch64_settag: 6953 case Intrinsic::aarch64_settag_zero: { 6954 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6955 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6956 SDValue Val = TSI.EmitTargetCodeForSetTag( 6957 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6958 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6959 ZeroMemory); 6960 DAG.setRoot(Val); 6961 setValue(&I, Val); 6962 return; 6963 } 6964 case Intrinsic::ptrmask: { 6965 SDValue Ptr = getValue(I.getOperand(0)); 6966 SDValue Const = getValue(I.getOperand(1)); 6967 6968 EVT PtrVT = Ptr.getValueType(); 6969 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6970 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6971 return; 6972 } 6973 case Intrinsic::get_active_lane_mask: { 6974 auto DL = getCurSDLoc(); 6975 SDValue Index = getValue(I.getOperand(0)); 6976 SDValue TripCount = getValue(I.getOperand(1)); 6977 Type *ElementTy = I.getOperand(0)->getType(); 6978 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6979 unsigned VecWidth = VT.getVectorNumElements(); 6980 6981 SmallVector<SDValue, 16> OpsTripCount; 6982 SmallVector<SDValue, 16> OpsIndex; 6983 SmallVector<SDValue, 16> OpsStepConstants; 6984 for (unsigned i = 0; i < VecWidth; i++) { 6985 OpsTripCount.push_back(TripCount); 6986 OpsIndex.push_back(Index); 6987 OpsStepConstants.push_back( 6988 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6989 } 6990 6991 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6992 6993 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6994 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6995 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6996 SDValue VectorInduction = DAG.getNode( 6997 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6998 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6999 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7000 VectorTripCount, ISD::CondCode::SETULT); 7001 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7002 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7003 SetCC)); 7004 return; 7005 } 7006 case Intrinsic::experimental_vector_insert: { 7007 auto DL = getCurSDLoc(); 7008 7009 SDValue Vec = getValue(I.getOperand(0)); 7010 SDValue SubVec = getValue(I.getOperand(1)); 7011 SDValue Index = getValue(I.getOperand(2)); 7012 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7013 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7014 Index)); 7015 return; 7016 } 7017 case Intrinsic::experimental_vector_extract: { 7018 auto DL = getCurSDLoc(); 7019 7020 SDValue Vec = getValue(I.getOperand(0)); 7021 SDValue Index = getValue(I.getOperand(1)); 7022 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7023 7024 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7025 return; 7026 } 7027 case Intrinsic::experimental_vector_reverse: 7028 visitVectorReverse(I); 7029 return; 7030 } 7031 } 7032 7033 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7034 const ConstrainedFPIntrinsic &FPI) { 7035 SDLoc sdl = getCurSDLoc(); 7036 7037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7038 SmallVector<EVT, 4> ValueVTs; 7039 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7040 ValueVTs.push_back(MVT::Other); // Out chain 7041 7042 // We do not need to serialize constrained FP intrinsics against 7043 // each other or against (nonvolatile) loads, so they can be 7044 // chained like loads. 7045 SDValue Chain = DAG.getRoot(); 7046 SmallVector<SDValue, 4> Opers; 7047 Opers.push_back(Chain); 7048 if (FPI.isUnaryOp()) { 7049 Opers.push_back(getValue(FPI.getArgOperand(0))); 7050 } else if (FPI.isTernaryOp()) { 7051 Opers.push_back(getValue(FPI.getArgOperand(0))); 7052 Opers.push_back(getValue(FPI.getArgOperand(1))); 7053 Opers.push_back(getValue(FPI.getArgOperand(2))); 7054 } else { 7055 Opers.push_back(getValue(FPI.getArgOperand(0))); 7056 Opers.push_back(getValue(FPI.getArgOperand(1))); 7057 } 7058 7059 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7060 assert(Result.getNode()->getNumValues() == 2); 7061 7062 // Push node to the appropriate list so that future instructions can be 7063 // chained up correctly. 7064 SDValue OutChain = Result.getValue(1); 7065 switch (EB) { 7066 case fp::ExceptionBehavior::ebIgnore: 7067 // The only reason why ebIgnore nodes still need to be chained is that 7068 // they might depend on the current rounding mode, and therefore must 7069 // not be moved across instruction that may change that mode. 7070 LLVM_FALLTHROUGH; 7071 case fp::ExceptionBehavior::ebMayTrap: 7072 // These must not be moved across calls or instructions that may change 7073 // floating-point exception masks. 7074 PendingConstrainedFP.push_back(OutChain); 7075 break; 7076 case fp::ExceptionBehavior::ebStrict: 7077 // These must not be moved across calls or instructions that may change 7078 // floating-point exception masks or read floating-point exception flags. 7079 // In addition, they cannot be optimized out even if unused. 7080 PendingConstrainedFPStrict.push_back(OutChain); 7081 break; 7082 } 7083 }; 7084 7085 SDVTList VTs = DAG.getVTList(ValueVTs); 7086 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7087 7088 SDNodeFlags Flags; 7089 if (EB == fp::ExceptionBehavior::ebIgnore) 7090 Flags.setNoFPExcept(true); 7091 7092 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7093 Flags.copyFMF(*FPOp); 7094 7095 unsigned Opcode; 7096 switch (FPI.getIntrinsicID()) { 7097 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7098 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7099 case Intrinsic::INTRINSIC: \ 7100 Opcode = ISD::STRICT_##DAGN; \ 7101 break; 7102 #include "llvm/IR/ConstrainedOps.def" 7103 case Intrinsic::experimental_constrained_fmuladd: { 7104 Opcode = ISD::STRICT_FMA; 7105 // Break fmuladd into fmul and fadd. 7106 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7107 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7108 ValueVTs[0])) { 7109 Opers.pop_back(); 7110 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7111 pushOutChain(Mul, EB); 7112 Opcode = ISD::STRICT_FADD; 7113 Opers.clear(); 7114 Opers.push_back(Mul.getValue(1)); 7115 Opers.push_back(Mul.getValue(0)); 7116 Opers.push_back(getValue(FPI.getArgOperand(2))); 7117 } 7118 break; 7119 } 7120 } 7121 7122 // A few strict DAG nodes carry additional operands that are not 7123 // set up by the default code above. 7124 switch (Opcode) { 7125 default: break; 7126 case ISD::STRICT_FP_ROUND: 7127 Opers.push_back( 7128 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7129 break; 7130 case ISD::STRICT_FSETCC: 7131 case ISD::STRICT_FSETCCS: { 7132 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7133 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7134 if (TM.Options.NoNaNsFPMath) 7135 Condition = getFCmpCodeWithoutNaN(Condition); 7136 Opers.push_back(DAG.getCondCode(Condition)); 7137 break; 7138 } 7139 } 7140 7141 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7142 pushOutChain(Result, EB); 7143 7144 SDValue FPResult = Result.getValue(0); 7145 setValue(&FPI, FPResult); 7146 } 7147 7148 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7149 Optional<unsigned> ResOPC; 7150 switch (VPIntrin.getIntrinsicID()) { 7151 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7152 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7153 #define END_REGISTER_VP_INTRINSIC(...) break; 7154 #include "llvm/IR/VPIntrinsics.def" 7155 } 7156 7157 if (!ResOPC.hasValue()) 7158 llvm_unreachable( 7159 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7160 7161 return ResOPC.getValue(); 7162 } 7163 7164 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7165 const VPIntrinsic &VPIntrin) { 7166 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7167 7168 SmallVector<EVT, 4> ValueVTs; 7169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7170 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7171 SDVTList VTs = DAG.getVTList(ValueVTs); 7172 7173 // Request operands. 7174 SmallVector<SDValue, 7> OpValues; 7175 for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i) 7176 OpValues.push_back(getValue(VPIntrin.getArgOperand(i))); 7177 7178 SDLoc DL = getCurSDLoc(); 7179 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7180 setValue(&VPIntrin, Result); 7181 } 7182 7183 std::pair<SDValue, SDValue> 7184 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7185 const BasicBlock *EHPadBB) { 7186 MachineFunction &MF = DAG.getMachineFunction(); 7187 MachineModuleInfo &MMI = MF.getMMI(); 7188 MCSymbol *BeginLabel = nullptr; 7189 7190 if (EHPadBB) { 7191 // Insert a label before the invoke call to mark the try range. This can be 7192 // used to detect deletion of the invoke via the MachineModuleInfo. 7193 BeginLabel = MMI.getContext().createTempSymbol(); 7194 7195 // For SjLj, keep track of which landing pads go with which invokes 7196 // so as to maintain the ordering of pads in the LSDA. 7197 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7198 if (CallSiteIndex) { 7199 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7200 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7201 7202 // Now that the call site is handled, stop tracking it. 7203 MMI.setCurrentCallSite(0); 7204 } 7205 7206 // Both PendingLoads and PendingExports must be flushed here; 7207 // this call might not return. 7208 (void)getRoot(); 7209 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7210 7211 CLI.setChain(getRoot()); 7212 } 7213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7214 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7215 7216 assert((CLI.IsTailCall || Result.second.getNode()) && 7217 "Non-null chain expected with non-tail call!"); 7218 assert((Result.second.getNode() || !Result.first.getNode()) && 7219 "Null value expected with tail call!"); 7220 7221 if (!Result.second.getNode()) { 7222 // As a special case, a null chain means that a tail call has been emitted 7223 // and the DAG root is already updated. 7224 HasTailCall = true; 7225 7226 // Since there's no actual continuation from this block, nothing can be 7227 // relying on us setting vregs for them. 7228 PendingExports.clear(); 7229 } else { 7230 DAG.setRoot(Result.second); 7231 } 7232 7233 if (EHPadBB) { 7234 // Insert a label at the end of the invoke call to mark the try range. This 7235 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7236 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7237 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7238 7239 // Inform MachineModuleInfo of range. 7240 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7241 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7242 // actually use outlined funclets and their LSDA info style. 7243 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7244 assert(CLI.CB); 7245 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7246 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7247 } else if (!isScopedEHPersonality(Pers)) { 7248 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7249 } 7250 } 7251 7252 return Result; 7253 } 7254 7255 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7256 bool isTailCall, 7257 const BasicBlock *EHPadBB) { 7258 auto &DL = DAG.getDataLayout(); 7259 FunctionType *FTy = CB.getFunctionType(); 7260 Type *RetTy = CB.getType(); 7261 7262 TargetLowering::ArgListTy Args; 7263 Args.reserve(CB.arg_size()); 7264 7265 const Value *SwiftErrorVal = nullptr; 7266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7267 7268 if (isTailCall) { 7269 // Avoid emitting tail calls in functions with the disable-tail-calls 7270 // attribute. 7271 auto *Caller = CB.getParent()->getParent(); 7272 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7273 "true") 7274 isTailCall = false; 7275 7276 // We can't tail call inside a function with a swifterror argument. Lowering 7277 // does not support this yet. It would have to move into the swifterror 7278 // register before the call. 7279 if (TLI.supportSwiftError() && 7280 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7281 isTailCall = false; 7282 } 7283 7284 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7285 TargetLowering::ArgListEntry Entry; 7286 const Value *V = *I; 7287 7288 // Skip empty types 7289 if (V->getType()->isEmptyTy()) 7290 continue; 7291 7292 SDValue ArgNode = getValue(V); 7293 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7294 7295 Entry.setAttributes(&CB, I - CB.arg_begin()); 7296 7297 // Use swifterror virtual register as input to the call. 7298 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7299 SwiftErrorVal = V; 7300 // We find the virtual register for the actual swifterror argument. 7301 // Instead of using the Value, we use the virtual register instead. 7302 Entry.Node = 7303 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7304 EVT(TLI.getPointerTy(DL))); 7305 } 7306 7307 Args.push_back(Entry); 7308 7309 // If we have an explicit sret argument that is an Instruction, (i.e., it 7310 // might point to function-local memory), we can't meaningfully tail-call. 7311 if (Entry.IsSRet && isa<Instruction>(V)) 7312 isTailCall = false; 7313 } 7314 7315 // If call site has a cfguardtarget operand bundle, create and add an 7316 // additional ArgListEntry. 7317 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7318 TargetLowering::ArgListEntry Entry; 7319 Value *V = Bundle->Inputs[0]; 7320 SDValue ArgNode = getValue(V); 7321 Entry.Node = ArgNode; 7322 Entry.Ty = V->getType(); 7323 Entry.IsCFGuardTarget = true; 7324 Args.push_back(Entry); 7325 } 7326 7327 // Check if target-independent constraints permit a tail call here. 7328 // Target-dependent constraints are checked within TLI->LowerCallTo. 7329 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7330 isTailCall = false; 7331 7332 // Disable tail calls if there is an swifterror argument. Targets have not 7333 // been updated to support tail calls. 7334 if (TLI.supportSwiftError() && SwiftErrorVal) 7335 isTailCall = false; 7336 7337 TargetLowering::CallLoweringInfo CLI(DAG); 7338 CLI.setDebugLoc(getCurSDLoc()) 7339 .setChain(getRoot()) 7340 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7341 .setTailCall(isTailCall) 7342 .setConvergent(CB.isConvergent()) 7343 .setIsPreallocated( 7344 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7345 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7346 7347 if (Result.first.getNode()) { 7348 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7349 setValue(&CB, Result.first); 7350 } 7351 7352 // The last element of CLI.InVals has the SDValue for swifterror return. 7353 // Here we copy it to a virtual register and update SwiftErrorMap for 7354 // book-keeping. 7355 if (SwiftErrorVal && TLI.supportSwiftError()) { 7356 // Get the last element of InVals. 7357 SDValue Src = CLI.InVals.back(); 7358 Register VReg = 7359 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7360 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7361 DAG.setRoot(CopyNode); 7362 } 7363 } 7364 7365 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7366 SelectionDAGBuilder &Builder) { 7367 // Check to see if this load can be trivially constant folded, e.g. if the 7368 // input is from a string literal. 7369 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7370 // Cast pointer to the type we really want to load. 7371 Type *LoadTy = 7372 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7373 if (LoadVT.isVector()) 7374 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7375 7376 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7377 PointerType::getUnqual(LoadTy)); 7378 7379 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7380 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7381 return Builder.getValue(LoadCst); 7382 } 7383 7384 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7385 // still constant memory, the input chain can be the entry node. 7386 SDValue Root; 7387 bool ConstantMemory = false; 7388 7389 // Do not serialize (non-volatile) loads of constant memory with anything. 7390 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7391 Root = Builder.DAG.getEntryNode(); 7392 ConstantMemory = true; 7393 } else { 7394 // Do not serialize non-volatile loads against each other. 7395 Root = Builder.DAG.getRoot(); 7396 } 7397 7398 SDValue Ptr = Builder.getValue(PtrVal); 7399 SDValue LoadVal = 7400 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7401 MachinePointerInfo(PtrVal), Align(1)); 7402 7403 if (!ConstantMemory) 7404 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7405 return LoadVal; 7406 } 7407 7408 /// Record the value for an instruction that produces an integer result, 7409 /// converting the type where necessary. 7410 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7411 SDValue Value, 7412 bool IsSigned) { 7413 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7414 I.getType(), true); 7415 if (IsSigned) 7416 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7417 else 7418 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7419 setValue(&I, Value); 7420 } 7421 7422 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7423 /// true and lower it. Otherwise return false, and it will be lowered like a 7424 /// normal call. 7425 /// The caller already checked that \p I calls the appropriate LibFunc with a 7426 /// correct prototype. 7427 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7428 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7429 const Value *Size = I.getArgOperand(2); 7430 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7431 if (CSize && CSize->getZExtValue() == 0) { 7432 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7433 I.getType(), true); 7434 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7435 return true; 7436 } 7437 7438 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7439 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7440 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7441 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7442 if (Res.first.getNode()) { 7443 processIntegerCallValue(I, Res.first, true); 7444 PendingLoads.push_back(Res.second); 7445 return true; 7446 } 7447 7448 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7449 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7450 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7451 return false; 7452 7453 // If the target has a fast compare for the given size, it will return a 7454 // preferred load type for that size. Require that the load VT is legal and 7455 // that the target supports unaligned loads of that type. Otherwise, return 7456 // INVALID. 7457 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7459 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7460 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7461 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7462 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7463 // TODO: Check alignment of src and dest ptrs. 7464 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7465 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7466 if (!TLI.isTypeLegal(LVT) || 7467 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7468 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7469 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7470 } 7471 7472 return LVT; 7473 }; 7474 7475 // This turns into unaligned loads. We only do this if the target natively 7476 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7477 // we'll only produce a small number of byte loads. 7478 MVT LoadVT; 7479 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7480 switch (NumBitsToCompare) { 7481 default: 7482 return false; 7483 case 16: 7484 LoadVT = MVT::i16; 7485 break; 7486 case 32: 7487 LoadVT = MVT::i32; 7488 break; 7489 case 64: 7490 case 128: 7491 case 256: 7492 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7493 break; 7494 } 7495 7496 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7497 return false; 7498 7499 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7500 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7501 7502 // Bitcast to a wide integer type if the loads are vectors. 7503 if (LoadVT.isVector()) { 7504 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7505 LoadL = DAG.getBitcast(CmpVT, LoadL); 7506 LoadR = DAG.getBitcast(CmpVT, LoadR); 7507 } 7508 7509 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7510 processIntegerCallValue(I, Cmp, false); 7511 return true; 7512 } 7513 7514 /// See if we can lower a memchr call into an optimized form. If so, return 7515 /// true and lower it. Otherwise return false, and it will be lowered like a 7516 /// normal call. 7517 /// The caller already checked that \p I calls the appropriate LibFunc with a 7518 /// correct prototype. 7519 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7520 const Value *Src = I.getArgOperand(0); 7521 const Value *Char = I.getArgOperand(1); 7522 const Value *Length = I.getArgOperand(2); 7523 7524 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7525 std::pair<SDValue, SDValue> Res = 7526 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7527 getValue(Src), getValue(Char), getValue(Length), 7528 MachinePointerInfo(Src)); 7529 if (Res.first.getNode()) { 7530 setValue(&I, Res.first); 7531 PendingLoads.push_back(Res.second); 7532 return true; 7533 } 7534 7535 return false; 7536 } 7537 7538 /// See if we can lower a mempcpy call into an optimized form. If so, return 7539 /// true and lower it. Otherwise return false, and it will be lowered like a 7540 /// normal call. 7541 /// The caller already checked that \p I calls the appropriate LibFunc with a 7542 /// correct prototype. 7543 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7544 SDValue Dst = getValue(I.getArgOperand(0)); 7545 SDValue Src = getValue(I.getArgOperand(1)); 7546 SDValue Size = getValue(I.getArgOperand(2)); 7547 7548 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7549 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7550 // DAG::getMemcpy needs Alignment to be defined. 7551 Align Alignment = std::min(DstAlign, SrcAlign); 7552 7553 bool isVol = false; 7554 SDLoc sdl = getCurSDLoc(); 7555 7556 // In the mempcpy context we need to pass in a false value for isTailCall 7557 // because the return pointer needs to be adjusted by the size of 7558 // the copied memory. 7559 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7560 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7561 /*isTailCall=*/false, 7562 MachinePointerInfo(I.getArgOperand(0)), 7563 MachinePointerInfo(I.getArgOperand(1))); 7564 assert(MC.getNode() != nullptr && 7565 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7566 DAG.setRoot(MC); 7567 7568 // Check if Size needs to be truncated or extended. 7569 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7570 7571 // Adjust return pointer to point just past the last dst byte. 7572 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7573 Dst, Size); 7574 setValue(&I, DstPlusSize); 7575 return true; 7576 } 7577 7578 /// See if we can lower a strcpy call into an optimized form. If so, return 7579 /// true and lower it, otherwise return false and it will be lowered like a 7580 /// normal call. 7581 /// The caller already checked that \p I calls the appropriate LibFunc with a 7582 /// correct prototype. 7583 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7584 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7585 7586 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7587 std::pair<SDValue, SDValue> Res = 7588 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7589 getValue(Arg0), getValue(Arg1), 7590 MachinePointerInfo(Arg0), 7591 MachinePointerInfo(Arg1), isStpcpy); 7592 if (Res.first.getNode()) { 7593 setValue(&I, Res.first); 7594 DAG.setRoot(Res.second); 7595 return true; 7596 } 7597 7598 return false; 7599 } 7600 7601 /// See if we can lower a strcmp call into an optimized form. If so, return 7602 /// true and lower it, otherwise return false and it will be lowered like a 7603 /// normal call. 7604 /// The caller already checked that \p I calls the appropriate LibFunc with a 7605 /// correct prototype. 7606 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7607 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7608 7609 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7610 std::pair<SDValue, SDValue> Res = 7611 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7612 getValue(Arg0), getValue(Arg1), 7613 MachinePointerInfo(Arg0), 7614 MachinePointerInfo(Arg1)); 7615 if (Res.first.getNode()) { 7616 processIntegerCallValue(I, Res.first, true); 7617 PendingLoads.push_back(Res.second); 7618 return true; 7619 } 7620 7621 return false; 7622 } 7623 7624 /// See if we can lower a strlen call into an optimized form. If so, return 7625 /// true and lower it, otherwise return false and it will be lowered like a 7626 /// normal call. 7627 /// The caller already checked that \p I calls the appropriate LibFunc with a 7628 /// correct prototype. 7629 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7630 const Value *Arg0 = I.getArgOperand(0); 7631 7632 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7633 std::pair<SDValue, SDValue> Res = 7634 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7635 getValue(Arg0), MachinePointerInfo(Arg0)); 7636 if (Res.first.getNode()) { 7637 processIntegerCallValue(I, Res.first, false); 7638 PendingLoads.push_back(Res.second); 7639 return true; 7640 } 7641 7642 return false; 7643 } 7644 7645 /// See if we can lower a strnlen call into an optimized form. If so, return 7646 /// true and lower it, otherwise return false and it will be lowered like a 7647 /// normal call. 7648 /// The caller already checked that \p I calls the appropriate LibFunc with a 7649 /// correct prototype. 7650 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7651 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7652 7653 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7654 std::pair<SDValue, SDValue> Res = 7655 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7656 getValue(Arg0), getValue(Arg1), 7657 MachinePointerInfo(Arg0)); 7658 if (Res.first.getNode()) { 7659 processIntegerCallValue(I, Res.first, false); 7660 PendingLoads.push_back(Res.second); 7661 return true; 7662 } 7663 7664 return false; 7665 } 7666 7667 /// See if we can lower a unary floating-point operation into an SDNode with 7668 /// the specified Opcode. If so, return true and lower it, otherwise return 7669 /// false and it will be lowered like a normal call. 7670 /// The caller already checked that \p I calls the appropriate LibFunc with a 7671 /// correct prototype. 7672 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7673 unsigned Opcode) { 7674 // We already checked this call's prototype; verify it doesn't modify errno. 7675 if (!I.onlyReadsMemory()) 7676 return false; 7677 7678 SDNodeFlags Flags; 7679 Flags.copyFMF(cast<FPMathOperator>(I)); 7680 7681 SDValue Tmp = getValue(I.getArgOperand(0)); 7682 setValue(&I, 7683 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7684 return true; 7685 } 7686 7687 /// See if we can lower a binary floating-point operation into an SDNode with 7688 /// the specified Opcode. If so, return true and lower it. Otherwise return 7689 /// false, and it will be lowered like a normal call. 7690 /// The caller already checked that \p I calls the appropriate LibFunc with a 7691 /// correct prototype. 7692 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7693 unsigned Opcode) { 7694 // We already checked this call's prototype; verify it doesn't modify errno. 7695 if (!I.onlyReadsMemory()) 7696 return false; 7697 7698 SDNodeFlags Flags; 7699 Flags.copyFMF(cast<FPMathOperator>(I)); 7700 7701 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7702 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7703 EVT VT = Tmp0.getValueType(); 7704 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7705 return true; 7706 } 7707 7708 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7709 // Handle inline assembly differently. 7710 if (I.isInlineAsm()) { 7711 visitInlineAsm(I); 7712 return; 7713 } 7714 7715 if (Function *F = I.getCalledFunction()) { 7716 if (F->isDeclaration()) { 7717 // Is this an LLVM intrinsic or a target-specific intrinsic? 7718 unsigned IID = F->getIntrinsicID(); 7719 if (!IID) 7720 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7721 IID = II->getIntrinsicID(F); 7722 7723 if (IID) { 7724 visitIntrinsicCall(I, IID); 7725 return; 7726 } 7727 } 7728 7729 // Check for well-known libc/libm calls. If the function is internal, it 7730 // can't be a library call. Don't do the check if marked as nobuiltin for 7731 // some reason or the call site requires strict floating point semantics. 7732 LibFunc Func; 7733 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7734 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7735 LibInfo->hasOptimizedCodeGen(Func)) { 7736 switch (Func) { 7737 default: break; 7738 case LibFunc_bcmp: 7739 if (visitMemCmpBCmpCall(I)) 7740 return; 7741 break; 7742 case LibFunc_copysign: 7743 case LibFunc_copysignf: 7744 case LibFunc_copysignl: 7745 // We already checked this call's prototype; verify it doesn't modify 7746 // errno. 7747 if (I.onlyReadsMemory()) { 7748 SDValue LHS = getValue(I.getArgOperand(0)); 7749 SDValue RHS = getValue(I.getArgOperand(1)); 7750 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7751 LHS.getValueType(), LHS, RHS)); 7752 return; 7753 } 7754 break; 7755 case LibFunc_fabs: 7756 case LibFunc_fabsf: 7757 case LibFunc_fabsl: 7758 if (visitUnaryFloatCall(I, ISD::FABS)) 7759 return; 7760 break; 7761 case LibFunc_fmin: 7762 case LibFunc_fminf: 7763 case LibFunc_fminl: 7764 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7765 return; 7766 break; 7767 case LibFunc_fmax: 7768 case LibFunc_fmaxf: 7769 case LibFunc_fmaxl: 7770 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7771 return; 7772 break; 7773 case LibFunc_sin: 7774 case LibFunc_sinf: 7775 case LibFunc_sinl: 7776 if (visitUnaryFloatCall(I, ISD::FSIN)) 7777 return; 7778 break; 7779 case LibFunc_cos: 7780 case LibFunc_cosf: 7781 case LibFunc_cosl: 7782 if (visitUnaryFloatCall(I, ISD::FCOS)) 7783 return; 7784 break; 7785 case LibFunc_sqrt: 7786 case LibFunc_sqrtf: 7787 case LibFunc_sqrtl: 7788 case LibFunc_sqrt_finite: 7789 case LibFunc_sqrtf_finite: 7790 case LibFunc_sqrtl_finite: 7791 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7792 return; 7793 break; 7794 case LibFunc_floor: 7795 case LibFunc_floorf: 7796 case LibFunc_floorl: 7797 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7798 return; 7799 break; 7800 case LibFunc_nearbyint: 7801 case LibFunc_nearbyintf: 7802 case LibFunc_nearbyintl: 7803 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7804 return; 7805 break; 7806 case LibFunc_ceil: 7807 case LibFunc_ceilf: 7808 case LibFunc_ceill: 7809 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7810 return; 7811 break; 7812 case LibFunc_rint: 7813 case LibFunc_rintf: 7814 case LibFunc_rintl: 7815 if (visitUnaryFloatCall(I, ISD::FRINT)) 7816 return; 7817 break; 7818 case LibFunc_round: 7819 case LibFunc_roundf: 7820 case LibFunc_roundl: 7821 if (visitUnaryFloatCall(I, ISD::FROUND)) 7822 return; 7823 break; 7824 case LibFunc_trunc: 7825 case LibFunc_truncf: 7826 case LibFunc_truncl: 7827 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7828 return; 7829 break; 7830 case LibFunc_log2: 7831 case LibFunc_log2f: 7832 case LibFunc_log2l: 7833 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7834 return; 7835 break; 7836 case LibFunc_exp2: 7837 case LibFunc_exp2f: 7838 case LibFunc_exp2l: 7839 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7840 return; 7841 break; 7842 case LibFunc_memcmp: 7843 if (visitMemCmpBCmpCall(I)) 7844 return; 7845 break; 7846 case LibFunc_mempcpy: 7847 if (visitMemPCpyCall(I)) 7848 return; 7849 break; 7850 case LibFunc_memchr: 7851 if (visitMemChrCall(I)) 7852 return; 7853 break; 7854 case LibFunc_strcpy: 7855 if (visitStrCpyCall(I, false)) 7856 return; 7857 break; 7858 case LibFunc_stpcpy: 7859 if (visitStrCpyCall(I, true)) 7860 return; 7861 break; 7862 case LibFunc_strcmp: 7863 if (visitStrCmpCall(I)) 7864 return; 7865 break; 7866 case LibFunc_strlen: 7867 if (visitStrLenCall(I)) 7868 return; 7869 break; 7870 case LibFunc_strnlen: 7871 if (visitStrNLenCall(I)) 7872 return; 7873 break; 7874 } 7875 } 7876 } 7877 7878 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7879 // have to do anything here to lower funclet bundles. 7880 // CFGuardTarget bundles are lowered in LowerCallTo. 7881 assert(!I.hasOperandBundlesOtherThan( 7882 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7883 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 7884 LLVMContext::OB_clang_arc_attachedcall}) && 7885 "Cannot lower calls with arbitrary operand bundles!"); 7886 7887 SDValue Callee = getValue(I.getCalledOperand()); 7888 7889 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7890 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7891 else 7892 // Check if we can potentially perform a tail call. More detailed checking 7893 // is be done within LowerCallTo, after more information about the call is 7894 // known. 7895 LowerCallTo(I, Callee, I.isTailCall()); 7896 } 7897 7898 namespace { 7899 7900 /// AsmOperandInfo - This contains information for each constraint that we are 7901 /// lowering. 7902 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7903 public: 7904 /// CallOperand - If this is the result output operand or a clobber 7905 /// this is null, otherwise it is the incoming operand to the CallInst. 7906 /// This gets modified as the asm is processed. 7907 SDValue CallOperand; 7908 7909 /// AssignedRegs - If this is a register or register class operand, this 7910 /// contains the set of register corresponding to the operand. 7911 RegsForValue AssignedRegs; 7912 7913 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7914 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7915 } 7916 7917 /// Whether or not this operand accesses memory 7918 bool hasMemory(const TargetLowering &TLI) const { 7919 // Indirect operand accesses access memory. 7920 if (isIndirect) 7921 return true; 7922 7923 for (const auto &Code : Codes) 7924 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7925 return true; 7926 7927 return false; 7928 } 7929 7930 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7931 /// corresponds to. If there is no Value* for this operand, it returns 7932 /// MVT::Other. 7933 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7934 const DataLayout &DL) const { 7935 if (!CallOperandVal) return MVT::Other; 7936 7937 if (isa<BasicBlock>(CallOperandVal)) 7938 return TLI.getProgramPointerTy(DL); 7939 7940 llvm::Type *OpTy = CallOperandVal->getType(); 7941 7942 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7943 // If this is an indirect operand, the operand is a pointer to the 7944 // accessed type. 7945 if (isIndirect) { 7946 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7947 if (!PtrTy) 7948 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7949 OpTy = PtrTy->getElementType(); 7950 } 7951 7952 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7953 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7954 if (STy->getNumElements() == 1) 7955 OpTy = STy->getElementType(0); 7956 7957 // If OpTy is not a single value, it may be a struct/union that we 7958 // can tile with integers. 7959 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7960 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7961 switch (BitSize) { 7962 default: break; 7963 case 1: 7964 case 8: 7965 case 16: 7966 case 32: 7967 case 64: 7968 case 128: 7969 OpTy = IntegerType::get(Context, BitSize); 7970 break; 7971 } 7972 } 7973 7974 return TLI.getValueType(DL, OpTy, true); 7975 } 7976 }; 7977 7978 7979 } // end anonymous namespace 7980 7981 /// Make sure that the output operand \p OpInfo and its corresponding input 7982 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7983 /// out). 7984 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7985 SDISelAsmOperandInfo &MatchingOpInfo, 7986 SelectionDAG &DAG) { 7987 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7988 return; 7989 7990 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7991 const auto &TLI = DAG.getTargetLoweringInfo(); 7992 7993 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7994 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7995 OpInfo.ConstraintVT); 7996 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7997 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7998 MatchingOpInfo.ConstraintVT); 7999 if ((OpInfo.ConstraintVT.isInteger() != 8000 MatchingOpInfo.ConstraintVT.isInteger()) || 8001 (MatchRC.second != InputRC.second)) { 8002 // FIXME: error out in a more elegant fashion 8003 report_fatal_error("Unsupported asm: input constraint" 8004 " with a matching output constraint of" 8005 " incompatible type!"); 8006 } 8007 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8008 } 8009 8010 /// Get a direct memory input to behave well as an indirect operand. 8011 /// This may introduce stores, hence the need for a \p Chain. 8012 /// \return The (possibly updated) chain. 8013 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8014 SDISelAsmOperandInfo &OpInfo, 8015 SelectionDAG &DAG) { 8016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8017 8018 // If we don't have an indirect input, put it in the constpool if we can, 8019 // otherwise spill it to a stack slot. 8020 // TODO: This isn't quite right. We need to handle these according to 8021 // the addressing mode that the constraint wants. Also, this may take 8022 // an additional register for the computation and we don't want that 8023 // either. 8024 8025 // If the operand is a float, integer, or vector constant, spill to a 8026 // constant pool entry to get its address. 8027 const Value *OpVal = OpInfo.CallOperandVal; 8028 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8029 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8030 OpInfo.CallOperand = DAG.getConstantPool( 8031 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8032 return Chain; 8033 } 8034 8035 // Otherwise, create a stack slot and emit a store to it before the asm. 8036 Type *Ty = OpVal->getType(); 8037 auto &DL = DAG.getDataLayout(); 8038 uint64_t TySize = DL.getTypeAllocSize(Ty); 8039 MachineFunction &MF = DAG.getMachineFunction(); 8040 int SSFI = MF.getFrameInfo().CreateStackObject( 8041 TySize, DL.getPrefTypeAlign(Ty), false); 8042 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8043 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8044 MachinePointerInfo::getFixedStack(MF, SSFI), 8045 TLI.getMemValueType(DL, Ty)); 8046 OpInfo.CallOperand = StackSlot; 8047 8048 return Chain; 8049 } 8050 8051 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8052 /// specified operand. We prefer to assign virtual registers, to allow the 8053 /// register allocator to handle the assignment process. However, if the asm 8054 /// uses features that we can't model on machineinstrs, we have SDISel do the 8055 /// allocation. This produces generally horrible, but correct, code. 8056 /// 8057 /// OpInfo describes the operand 8058 /// RefOpInfo describes the matching operand if any, the operand otherwise 8059 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8060 SDISelAsmOperandInfo &OpInfo, 8061 SDISelAsmOperandInfo &RefOpInfo) { 8062 LLVMContext &Context = *DAG.getContext(); 8063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8064 8065 MachineFunction &MF = DAG.getMachineFunction(); 8066 SmallVector<unsigned, 4> Regs; 8067 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8068 8069 // No work to do for memory operations. 8070 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8071 return; 8072 8073 // If this is a constraint for a single physreg, or a constraint for a 8074 // register class, find it. 8075 unsigned AssignedReg; 8076 const TargetRegisterClass *RC; 8077 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8078 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8079 // RC is unset only on failure. Return immediately. 8080 if (!RC) 8081 return; 8082 8083 // Get the actual register value type. This is important, because the user 8084 // may have asked for (e.g.) the AX register in i32 type. We need to 8085 // remember that AX is actually i16 to get the right extension. 8086 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8087 8088 if (OpInfo.ConstraintVT != MVT::Other) { 8089 // If this is an FP operand in an integer register (or visa versa), or more 8090 // generally if the operand value disagrees with the register class we plan 8091 // to stick it in, fix the operand type. 8092 // 8093 // If this is an input value, the bitcast to the new type is done now. 8094 // Bitcast for output value is done at the end of visitInlineAsm(). 8095 if ((OpInfo.Type == InlineAsm::isOutput || 8096 OpInfo.Type == InlineAsm::isInput) && 8097 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8098 // Try to convert to the first EVT that the reg class contains. If the 8099 // types are identical size, use a bitcast to convert (e.g. two differing 8100 // vector types). Note: output bitcast is done at the end of 8101 // visitInlineAsm(). 8102 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8103 // Exclude indirect inputs while they are unsupported because the code 8104 // to perform the load is missing and thus OpInfo.CallOperand still 8105 // refers to the input address rather than the pointed-to value. 8106 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8107 OpInfo.CallOperand = 8108 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8109 OpInfo.ConstraintVT = RegVT; 8110 // If the operand is an FP value and we want it in integer registers, 8111 // use the corresponding integer type. This turns an f64 value into 8112 // i64, which can be passed with two i32 values on a 32-bit machine. 8113 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8114 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8115 if (OpInfo.Type == InlineAsm::isInput) 8116 OpInfo.CallOperand = 8117 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8118 OpInfo.ConstraintVT = VT; 8119 } 8120 } 8121 } 8122 8123 // No need to allocate a matching input constraint since the constraint it's 8124 // matching to has already been allocated. 8125 if (OpInfo.isMatchingInputConstraint()) 8126 return; 8127 8128 EVT ValueVT = OpInfo.ConstraintVT; 8129 if (OpInfo.ConstraintVT == MVT::Other) 8130 ValueVT = RegVT; 8131 8132 // Initialize NumRegs. 8133 unsigned NumRegs = 1; 8134 if (OpInfo.ConstraintVT != MVT::Other) 8135 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8136 8137 // If this is a constraint for a specific physical register, like {r17}, 8138 // assign it now. 8139 8140 // If this associated to a specific register, initialize iterator to correct 8141 // place. If virtual, make sure we have enough registers 8142 8143 // Initialize iterator if necessary 8144 TargetRegisterClass::iterator I = RC->begin(); 8145 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8146 8147 // Do not check for single registers. 8148 if (AssignedReg) { 8149 for (; *I != AssignedReg; ++I) 8150 assert(I != RC->end() && "AssignedReg should be member of RC"); 8151 } 8152 8153 for (; NumRegs; --NumRegs, ++I) { 8154 assert(I != RC->end() && "Ran out of registers to allocate!"); 8155 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8156 Regs.push_back(R); 8157 } 8158 8159 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8160 } 8161 8162 static unsigned 8163 findMatchingInlineAsmOperand(unsigned OperandNo, 8164 const std::vector<SDValue> &AsmNodeOperands) { 8165 // Scan until we find the definition we already emitted of this operand. 8166 unsigned CurOp = InlineAsm::Op_FirstOperand; 8167 for (; OperandNo; --OperandNo) { 8168 // Advance to the next operand. 8169 unsigned OpFlag = 8170 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8171 assert((InlineAsm::isRegDefKind(OpFlag) || 8172 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8173 InlineAsm::isMemKind(OpFlag)) && 8174 "Skipped past definitions?"); 8175 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8176 } 8177 return CurOp; 8178 } 8179 8180 namespace { 8181 8182 class ExtraFlags { 8183 unsigned Flags = 0; 8184 8185 public: 8186 explicit ExtraFlags(const CallBase &Call) { 8187 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8188 if (IA->hasSideEffects()) 8189 Flags |= InlineAsm::Extra_HasSideEffects; 8190 if (IA->isAlignStack()) 8191 Flags |= InlineAsm::Extra_IsAlignStack; 8192 if (Call.isConvergent()) 8193 Flags |= InlineAsm::Extra_IsConvergent; 8194 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8195 } 8196 8197 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8198 // Ideally, we would only check against memory constraints. However, the 8199 // meaning of an Other constraint can be target-specific and we can't easily 8200 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8201 // for Other constraints as well. 8202 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8203 OpInfo.ConstraintType == TargetLowering::C_Other) { 8204 if (OpInfo.Type == InlineAsm::isInput) 8205 Flags |= InlineAsm::Extra_MayLoad; 8206 else if (OpInfo.Type == InlineAsm::isOutput) 8207 Flags |= InlineAsm::Extra_MayStore; 8208 else if (OpInfo.Type == InlineAsm::isClobber) 8209 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8210 } 8211 } 8212 8213 unsigned get() const { return Flags; } 8214 }; 8215 8216 } // end anonymous namespace 8217 8218 /// visitInlineAsm - Handle a call to an InlineAsm object. 8219 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8220 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8221 8222 /// ConstraintOperands - Information about all of the constraints. 8223 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8224 8225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8226 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8227 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8228 8229 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8230 // AsmDialect, MayLoad, MayStore). 8231 bool HasSideEffect = IA->hasSideEffects(); 8232 ExtraFlags ExtraInfo(Call); 8233 8234 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8235 unsigned ResNo = 0; // ResNo - The result number of the next output. 8236 unsigned NumMatchingOps = 0; 8237 for (auto &T : TargetConstraints) { 8238 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8239 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8240 8241 // Compute the value type for each operand. 8242 if (OpInfo.Type == InlineAsm::isInput || 8243 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8244 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8245 8246 // Process the call argument. BasicBlocks are labels, currently appearing 8247 // only in asm's. 8248 if (isa<CallBrInst>(Call) && 8249 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8250 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8251 NumMatchingOps) && 8252 (NumMatchingOps == 0 || 8253 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8254 NumMatchingOps))) { 8255 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8256 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8257 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8258 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8259 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8260 } else { 8261 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8262 } 8263 8264 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8265 DAG.getDataLayout()); 8266 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8267 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8268 // The return value of the call is this value. As such, there is no 8269 // corresponding argument. 8270 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8271 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8272 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8273 DAG.getDataLayout(), STy->getElementType(ResNo)); 8274 } else { 8275 assert(ResNo == 0 && "Asm only has one result!"); 8276 OpInfo.ConstraintVT = 8277 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8278 } 8279 ++ResNo; 8280 } else { 8281 OpInfo.ConstraintVT = MVT::Other; 8282 } 8283 8284 if (OpInfo.hasMatchingInput()) 8285 ++NumMatchingOps; 8286 8287 if (!HasSideEffect) 8288 HasSideEffect = OpInfo.hasMemory(TLI); 8289 8290 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8291 // FIXME: Could we compute this on OpInfo rather than T? 8292 8293 // Compute the constraint code and ConstraintType to use. 8294 TLI.ComputeConstraintToUse(T, SDValue()); 8295 8296 if (T.ConstraintType == TargetLowering::C_Immediate && 8297 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8298 // We've delayed emitting a diagnostic like the "n" constraint because 8299 // inlining could cause an integer showing up. 8300 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8301 "' expects an integer constant " 8302 "expression"); 8303 8304 ExtraInfo.update(T); 8305 } 8306 8307 8308 // We won't need to flush pending loads if this asm doesn't touch 8309 // memory and is nonvolatile. 8310 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8311 8312 bool IsCallBr = isa<CallBrInst>(Call); 8313 if (IsCallBr) { 8314 // If this is a callbr we need to flush pending exports since inlineasm_br 8315 // is a terminator. We need to do this before nodes are glued to 8316 // the inlineasm_br node. 8317 Chain = getControlRoot(); 8318 } 8319 8320 // Second pass over the constraints: compute which constraint option to use. 8321 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8322 // If this is an output operand with a matching input operand, look up the 8323 // matching input. If their types mismatch, e.g. one is an integer, the 8324 // other is floating point, or their sizes are different, flag it as an 8325 // error. 8326 if (OpInfo.hasMatchingInput()) { 8327 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8328 patchMatchingInput(OpInfo, Input, DAG); 8329 } 8330 8331 // Compute the constraint code and ConstraintType to use. 8332 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8333 8334 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8335 OpInfo.Type == InlineAsm::isClobber) 8336 continue; 8337 8338 // If this is a memory input, and if the operand is not indirect, do what we 8339 // need to provide an address for the memory input. 8340 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8341 !OpInfo.isIndirect) { 8342 assert((OpInfo.isMultipleAlternative || 8343 (OpInfo.Type == InlineAsm::isInput)) && 8344 "Can only indirectify direct input operands!"); 8345 8346 // Memory operands really want the address of the value. 8347 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8348 8349 // There is no longer a Value* corresponding to this operand. 8350 OpInfo.CallOperandVal = nullptr; 8351 8352 // It is now an indirect operand. 8353 OpInfo.isIndirect = true; 8354 } 8355 8356 } 8357 8358 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8359 std::vector<SDValue> AsmNodeOperands; 8360 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8361 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8362 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8363 8364 // If we have a !srcloc metadata node associated with it, we want to attach 8365 // this to the ultimately generated inline asm machineinstr. To do this, we 8366 // pass in the third operand as this (potentially null) inline asm MDNode. 8367 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8368 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8369 8370 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8371 // bits as operand 3. 8372 AsmNodeOperands.push_back(DAG.getTargetConstant( 8373 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8374 8375 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8376 // this, assign virtual and physical registers for inputs and otput. 8377 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8378 // Assign Registers. 8379 SDISelAsmOperandInfo &RefOpInfo = 8380 OpInfo.isMatchingInputConstraint() 8381 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8382 : OpInfo; 8383 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8384 8385 auto DetectWriteToReservedRegister = [&]() { 8386 const MachineFunction &MF = DAG.getMachineFunction(); 8387 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8388 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8389 if (Register::isPhysicalRegister(Reg) && 8390 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8391 const char *RegName = TRI.getName(Reg); 8392 emitInlineAsmError(Call, "write to reserved register '" + 8393 Twine(RegName) + "'"); 8394 return true; 8395 } 8396 } 8397 return false; 8398 }; 8399 8400 switch (OpInfo.Type) { 8401 case InlineAsm::isOutput: 8402 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8403 unsigned ConstraintID = 8404 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8405 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8406 "Failed to convert memory constraint code to constraint id."); 8407 8408 // Add information to the INLINEASM node to know about this output. 8409 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8410 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8411 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8412 MVT::i32)); 8413 AsmNodeOperands.push_back(OpInfo.CallOperand); 8414 } else { 8415 // Otherwise, this outputs to a register (directly for C_Register / 8416 // C_RegisterClass, and a target-defined fashion for 8417 // C_Immediate/C_Other). Find a register that we can use. 8418 if (OpInfo.AssignedRegs.Regs.empty()) { 8419 emitInlineAsmError( 8420 Call, "couldn't allocate output register for constraint '" + 8421 Twine(OpInfo.ConstraintCode) + "'"); 8422 return; 8423 } 8424 8425 if (DetectWriteToReservedRegister()) 8426 return; 8427 8428 // Add information to the INLINEASM node to know that this register is 8429 // set. 8430 OpInfo.AssignedRegs.AddInlineAsmOperands( 8431 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8432 : InlineAsm::Kind_RegDef, 8433 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8434 } 8435 break; 8436 8437 case InlineAsm::isInput: { 8438 SDValue InOperandVal = OpInfo.CallOperand; 8439 8440 if (OpInfo.isMatchingInputConstraint()) { 8441 // If this is required to match an output register we have already set, 8442 // just use its register. 8443 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8444 AsmNodeOperands); 8445 unsigned OpFlag = 8446 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8447 if (InlineAsm::isRegDefKind(OpFlag) || 8448 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8449 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8450 if (OpInfo.isIndirect) { 8451 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8452 emitInlineAsmError(Call, "inline asm not supported yet: " 8453 "don't know how to handle tied " 8454 "indirect register inputs"); 8455 return; 8456 } 8457 8458 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8459 SmallVector<unsigned, 4> Regs; 8460 8461 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8462 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8463 MachineRegisterInfo &RegInfo = 8464 DAG.getMachineFunction().getRegInfo(); 8465 for (unsigned i = 0; i != NumRegs; ++i) 8466 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8467 } else { 8468 emitInlineAsmError(Call, 8469 "inline asm error: This value type register " 8470 "class is not natively supported!"); 8471 return; 8472 } 8473 8474 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8475 8476 SDLoc dl = getCurSDLoc(); 8477 // Use the produced MatchedRegs object to 8478 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8479 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8480 true, OpInfo.getMatchedOperand(), dl, 8481 DAG, AsmNodeOperands); 8482 break; 8483 } 8484 8485 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8486 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8487 "Unexpected number of operands"); 8488 // Add information to the INLINEASM node to know about this input. 8489 // See InlineAsm.h isUseOperandTiedToDef. 8490 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8491 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8492 OpInfo.getMatchedOperand()); 8493 AsmNodeOperands.push_back(DAG.getTargetConstant( 8494 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8495 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8496 break; 8497 } 8498 8499 // Treat indirect 'X' constraint as memory. 8500 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8501 OpInfo.isIndirect) 8502 OpInfo.ConstraintType = TargetLowering::C_Memory; 8503 8504 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8505 OpInfo.ConstraintType == TargetLowering::C_Other) { 8506 std::vector<SDValue> Ops; 8507 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8508 Ops, DAG); 8509 if (Ops.empty()) { 8510 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8511 if (isa<ConstantSDNode>(InOperandVal)) { 8512 emitInlineAsmError(Call, "value out of range for constraint '" + 8513 Twine(OpInfo.ConstraintCode) + "'"); 8514 return; 8515 } 8516 8517 emitInlineAsmError(Call, 8518 "invalid operand for inline asm constraint '" + 8519 Twine(OpInfo.ConstraintCode) + "'"); 8520 return; 8521 } 8522 8523 // Add information to the INLINEASM node to know about this input. 8524 unsigned ResOpType = 8525 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8526 AsmNodeOperands.push_back(DAG.getTargetConstant( 8527 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8528 llvm::append_range(AsmNodeOperands, Ops); 8529 break; 8530 } 8531 8532 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8533 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8534 assert(InOperandVal.getValueType() == 8535 TLI.getPointerTy(DAG.getDataLayout()) && 8536 "Memory operands expect pointer values"); 8537 8538 unsigned ConstraintID = 8539 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8540 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8541 "Failed to convert memory constraint code to constraint id."); 8542 8543 // Add information to the INLINEASM node to know about this input. 8544 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8545 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8546 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8547 getCurSDLoc(), 8548 MVT::i32)); 8549 AsmNodeOperands.push_back(InOperandVal); 8550 break; 8551 } 8552 8553 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8554 OpInfo.ConstraintType == TargetLowering::C_Register) && 8555 "Unknown constraint type!"); 8556 8557 // TODO: Support this. 8558 if (OpInfo.isIndirect) { 8559 emitInlineAsmError( 8560 Call, "Don't know how to handle indirect register inputs yet " 8561 "for constraint '" + 8562 Twine(OpInfo.ConstraintCode) + "'"); 8563 return; 8564 } 8565 8566 // Copy the input into the appropriate registers. 8567 if (OpInfo.AssignedRegs.Regs.empty()) { 8568 emitInlineAsmError(Call, 8569 "couldn't allocate input reg for constraint '" + 8570 Twine(OpInfo.ConstraintCode) + "'"); 8571 return; 8572 } 8573 8574 if (DetectWriteToReservedRegister()) 8575 return; 8576 8577 SDLoc dl = getCurSDLoc(); 8578 8579 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8580 &Call); 8581 8582 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8583 dl, DAG, AsmNodeOperands); 8584 break; 8585 } 8586 case InlineAsm::isClobber: 8587 // Add the clobbered value to the operand list, so that the register 8588 // allocator is aware that the physreg got clobbered. 8589 if (!OpInfo.AssignedRegs.Regs.empty()) 8590 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8591 false, 0, getCurSDLoc(), DAG, 8592 AsmNodeOperands); 8593 break; 8594 } 8595 } 8596 8597 // Finish up input operands. Set the input chain and add the flag last. 8598 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8599 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8600 8601 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8602 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8603 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8604 Flag = Chain.getValue(1); 8605 8606 // Do additional work to generate outputs. 8607 8608 SmallVector<EVT, 1> ResultVTs; 8609 SmallVector<SDValue, 1> ResultValues; 8610 SmallVector<SDValue, 8> OutChains; 8611 8612 llvm::Type *CallResultType = Call.getType(); 8613 ArrayRef<Type *> ResultTypes; 8614 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8615 ResultTypes = StructResult->elements(); 8616 else if (!CallResultType->isVoidTy()) 8617 ResultTypes = makeArrayRef(CallResultType); 8618 8619 auto CurResultType = ResultTypes.begin(); 8620 auto handleRegAssign = [&](SDValue V) { 8621 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8622 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8623 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8624 ++CurResultType; 8625 // If the type of the inline asm call site return value is different but has 8626 // same size as the type of the asm output bitcast it. One example of this 8627 // is for vectors with different width / number of elements. This can 8628 // happen for register classes that can contain multiple different value 8629 // types. The preg or vreg allocated may not have the same VT as was 8630 // expected. 8631 // 8632 // This can also happen for a return value that disagrees with the register 8633 // class it is put in, eg. a double in a general-purpose register on a 8634 // 32-bit machine. 8635 if (ResultVT != V.getValueType() && 8636 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8637 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8638 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8639 V.getValueType().isInteger()) { 8640 // If a result value was tied to an input value, the computed result 8641 // may have a wider width than the expected result. Extract the 8642 // relevant portion. 8643 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8644 } 8645 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8646 ResultVTs.push_back(ResultVT); 8647 ResultValues.push_back(V); 8648 }; 8649 8650 // Deal with output operands. 8651 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8652 if (OpInfo.Type == InlineAsm::isOutput) { 8653 SDValue Val; 8654 // Skip trivial output operands. 8655 if (OpInfo.AssignedRegs.Regs.empty()) 8656 continue; 8657 8658 switch (OpInfo.ConstraintType) { 8659 case TargetLowering::C_Register: 8660 case TargetLowering::C_RegisterClass: 8661 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8662 Chain, &Flag, &Call); 8663 break; 8664 case TargetLowering::C_Immediate: 8665 case TargetLowering::C_Other: 8666 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8667 OpInfo, DAG); 8668 break; 8669 case TargetLowering::C_Memory: 8670 break; // Already handled. 8671 case TargetLowering::C_Unknown: 8672 assert(false && "Unexpected unknown constraint"); 8673 } 8674 8675 // Indirect output manifest as stores. Record output chains. 8676 if (OpInfo.isIndirect) { 8677 const Value *Ptr = OpInfo.CallOperandVal; 8678 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8679 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8680 MachinePointerInfo(Ptr)); 8681 OutChains.push_back(Store); 8682 } else { 8683 // generate CopyFromRegs to associated registers. 8684 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8685 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8686 for (const SDValue &V : Val->op_values()) 8687 handleRegAssign(V); 8688 } else 8689 handleRegAssign(Val); 8690 } 8691 } 8692 } 8693 8694 // Set results. 8695 if (!ResultValues.empty()) { 8696 assert(CurResultType == ResultTypes.end() && 8697 "Mismatch in number of ResultTypes"); 8698 assert(ResultValues.size() == ResultTypes.size() && 8699 "Mismatch in number of output operands in asm result"); 8700 8701 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8702 DAG.getVTList(ResultVTs), ResultValues); 8703 setValue(&Call, V); 8704 } 8705 8706 // Collect store chains. 8707 if (!OutChains.empty()) 8708 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8709 8710 // Only Update Root if inline assembly has a memory effect. 8711 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8712 DAG.setRoot(Chain); 8713 } 8714 8715 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8716 const Twine &Message) { 8717 LLVMContext &Ctx = *DAG.getContext(); 8718 Ctx.emitError(&Call, Message); 8719 8720 // Make sure we leave the DAG in a valid state 8721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8722 SmallVector<EVT, 1> ValueVTs; 8723 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8724 8725 if (ValueVTs.empty()) 8726 return; 8727 8728 SmallVector<SDValue, 1> Ops; 8729 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8730 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8731 8732 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8733 } 8734 8735 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8736 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8737 MVT::Other, getRoot(), 8738 getValue(I.getArgOperand(0)), 8739 DAG.getSrcValue(I.getArgOperand(0)))); 8740 } 8741 8742 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8744 const DataLayout &DL = DAG.getDataLayout(); 8745 SDValue V = DAG.getVAArg( 8746 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8747 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8748 DL.getABITypeAlign(I.getType()).value()); 8749 DAG.setRoot(V.getValue(1)); 8750 8751 if (I.getType()->isPointerTy()) 8752 V = DAG.getPtrExtOrTrunc( 8753 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8754 setValue(&I, V); 8755 } 8756 8757 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8758 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8759 MVT::Other, getRoot(), 8760 getValue(I.getArgOperand(0)), 8761 DAG.getSrcValue(I.getArgOperand(0)))); 8762 } 8763 8764 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8765 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8766 MVT::Other, getRoot(), 8767 getValue(I.getArgOperand(0)), 8768 getValue(I.getArgOperand(1)), 8769 DAG.getSrcValue(I.getArgOperand(0)), 8770 DAG.getSrcValue(I.getArgOperand(1)))); 8771 } 8772 8773 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8774 const Instruction &I, 8775 SDValue Op) { 8776 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8777 if (!Range) 8778 return Op; 8779 8780 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8781 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8782 return Op; 8783 8784 APInt Lo = CR.getUnsignedMin(); 8785 if (!Lo.isMinValue()) 8786 return Op; 8787 8788 APInt Hi = CR.getUnsignedMax(); 8789 unsigned Bits = std::max(Hi.getActiveBits(), 8790 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8791 8792 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8793 8794 SDLoc SL = getCurSDLoc(); 8795 8796 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8797 DAG.getValueType(SmallVT)); 8798 unsigned NumVals = Op.getNode()->getNumValues(); 8799 if (NumVals == 1) 8800 return ZExt; 8801 8802 SmallVector<SDValue, 4> Ops; 8803 8804 Ops.push_back(ZExt); 8805 for (unsigned I = 1; I != NumVals; ++I) 8806 Ops.push_back(Op.getValue(I)); 8807 8808 return DAG.getMergeValues(Ops, SL); 8809 } 8810 8811 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8812 /// the call being lowered. 8813 /// 8814 /// This is a helper for lowering intrinsics that follow a target calling 8815 /// convention or require stack pointer adjustment. Only a subset of the 8816 /// intrinsic's operands need to participate in the calling convention. 8817 void SelectionDAGBuilder::populateCallLoweringInfo( 8818 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8819 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8820 bool IsPatchPoint) { 8821 TargetLowering::ArgListTy Args; 8822 Args.reserve(NumArgs); 8823 8824 // Populate the argument list. 8825 // Attributes for args start at offset 1, after the return attribute. 8826 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8827 ArgI != ArgE; ++ArgI) { 8828 const Value *V = Call->getOperand(ArgI); 8829 8830 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8831 8832 TargetLowering::ArgListEntry Entry; 8833 Entry.Node = getValue(V); 8834 Entry.Ty = V->getType(); 8835 Entry.setAttributes(Call, ArgI); 8836 Args.push_back(Entry); 8837 } 8838 8839 CLI.setDebugLoc(getCurSDLoc()) 8840 .setChain(getRoot()) 8841 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8842 .setDiscardResult(Call->use_empty()) 8843 .setIsPatchPoint(IsPatchPoint) 8844 .setIsPreallocated( 8845 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8846 } 8847 8848 /// Add a stack map intrinsic call's live variable operands to a stackmap 8849 /// or patchpoint target node's operand list. 8850 /// 8851 /// Constants are converted to TargetConstants purely as an optimization to 8852 /// avoid constant materialization and register allocation. 8853 /// 8854 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8855 /// generate addess computation nodes, and so FinalizeISel can convert the 8856 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8857 /// address materialization and register allocation, but may also be required 8858 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8859 /// alloca in the entry block, then the runtime may assume that the alloca's 8860 /// StackMap location can be read immediately after compilation and that the 8861 /// location is valid at any point during execution (this is similar to the 8862 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8863 /// only available in a register, then the runtime would need to trap when 8864 /// execution reaches the StackMap in order to read the alloca's location. 8865 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8866 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8867 SelectionDAGBuilder &Builder) { 8868 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8869 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8870 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8871 Ops.push_back( 8872 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8873 Ops.push_back( 8874 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8875 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8876 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8877 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8878 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8879 } else 8880 Ops.push_back(OpVal); 8881 } 8882 } 8883 8884 /// Lower llvm.experimental.stackmap directly to its target opcode. 8885 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8886 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8887 // [live variables...]) 8888 8889 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8890 8891 SDValue Chain, InFlag, Callee, NullPtr; 8892 SmallVector<SDValue, 32> Ops; 8893 8894 SDLoc DL = getCurSDLoc(); 8895 Callee = getValue(CI.getCalledOperand()); 8896 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8897 8898 // The stackmap intrinsic only records the live variables (the arguments 8899 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8900 // intrinsic, this won't be lowered to a function call. This means we don't 8901 // have to worry about calling conventions and target specific lowering code. 8902 // Instead we perform the call lowering right here. 8903 // 8904 // chain, flag = CALLSEQ_START(chain, 0, 0) 8905 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8906 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8907 // 8908 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8909 InFlag = Chain.getValue(1); 8910 8911 // Add the <id> and <numBytes> constants. 8912 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8913 Ops.push_back(DAG.getTargetConstant( 8914 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8915 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8916 Ops.push_back(DAG.getTargetConstant( 8917 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8918 MVT::i32)); 8919 8920 // Push live variables for the stack map. 8921 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8922 8923 // We are not pushing any register mask info here on the operands list, 8924 // because the stackmap doesn't clobber anything. 8925 8926 // Push the chain and the glue flag. 8927 Ops.push_back(Chain); 8928 Ops.push_back(InFlag); 8929 8930 // Create the STACKMAP node. 8931 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8932 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8933 Chain = SDValue(SM, 0); 8934 InFlag = Chain.getValue(1); 8935 8936 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8937 8938 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8939 8940 // Set the root to the target-lowered call chain. 8941 DAG.setRoot(Chain); 8942 8943 // Inform the Frame Information that we have a stackmap in this function. 8944 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8945 } 8946 8947 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8948 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8949 const BasicBlock *EHPadBB) { 8950 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8951 // i32 <numBytes>, 8952 // i8* <target>, 8953 // i32 <numArgs>, 8954 // [Args...], 8955 // [live variables...]) 8956 8957 CallingConv::ID CC = CB.getCallingConv(); 8958 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8959 bool HasDef = !CB.getType()->isVoidTy(); 8960 SDLoc dl = getCurSDLoc(); 8961 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8962 8963 // Handle immediate and symbolic callees. 8964 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8965 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8966 /*isTarget=*/true); 8967 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8968 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8969 SDLoc(SymbolicCallee), 8970 SymbolicCallee->getValueType(0)); 8971 8972 // Get the real number of arguments participating in the call <numArgs> 8973 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8974 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8975 8976 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8977 // Intrinsics include all meta-operands up to but not including CC. 8978 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8979 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8980 "Not enough arguments provided to the patchpoint intrinsic"); 8981 8982 // For AnyRegCC the arguments are lowered later on manually. 8983 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8984 Type *ReturnTy = 8985 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8986 8987 TargetLowering::CallLoweringInfo CLI(DAG); 8988 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8989 ReturnTy, true); 8990 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8991 8992 SDNode *CallEnd = Result.second.getNode(); 8993 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8994 CallEnd = CallEnd->getOperand(0).getNode(); 8995 8996 /// Get a call instruction from the call sequence chain. 8997 /// Tail calls are not allowed. 8998 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8999 "Expected a callseq node."); 9000 SDNode *Call = CallEnd->getOperand(0).getNode(); 9001 bool HasGlue = Call->getGluedNode(); 9002 9003 // Replace the target specific call node with the patchable intrinsic. 9004 SmallVector<SDValue, 8> Ops; 9005 9006 // Add the <id> and <numBytes> constants. 9007 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9008 Ops.push_back(DAG.getTargetConstant( 9009 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9010 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9011 Ops.push_back(DAG.getTargetConstant( 9012 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9013 MVT::i32)); 9014 9015 // Add the callee. 9016 Ops.push_back(Callee); 9017 9018 // Adjust <numArgs> to account for any arguments that have been passed on the 9019 // stack instead. 9020 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9021 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9022 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9023 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9024 9025 // Add the calling convention 9026 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9027 9028 // Add the arguments we omitted previously. The register allocator should 9029 // place these in any free register. 9030 if (IsAnyRegCC) 9031 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9032 Ops.push_back(getValue(CB.getArgOperand(i))); 9033 9034 // Push the arguments from the call instruction up to the register mask. 9035 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9036 Ops.append(Call->op_begin() + 2, e); 9037 9038 // Push live variables for the stack map. 9039 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9040 9041 // Push the register mask info. 9042 if (HasGlue) 9043 Ops.push_back(*(Call->op_end()-2)); 9044 else 9045 Ops.push_back(*(Call->op_end()-1)); 9046 9047 // Push the chain (this is originally the first operand of the call, but 9048 // becomes now the last or second to last operand). 9049 Ops.push_back(*(Call->op_begin())); 9050 9051 // Push the glue flag (last operand). 9052 if (HasGlue) 9053 Ops.push_back(*(Call->op_end()-1)); 9054 9055 SDVTList NodeTys; 9056 if (IsAnyRegCC && HasDef) { 9057 // Create the return types based on the intrinsic definition 9058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9059 SmallVector<EVT, 3> ValueVTs; 9060 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9061 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9062 9063 // There is always a chain and a glue type at the end 9064 ValueVTs.push_back(MVT::Other); 9065 ValueVTs.push_back(MVT::Glue); 9066 NodeTys = DAG.getVTList(ValueVTs); 9067 } else 9068 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9069 9070 // Replace the target specific call node with a PATCHPOINT node. 9071 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9072 dl, NodeTys, Ops); 9073 9074 // Update the NodeMap. 9075 if (HasDef) { 9076 if (IsAnyRegCC) 9077 setValue(&CB, SDValue(MN, 0)); 9078 else 9079 setValue(&CB, Result.first); 9080 } 9081 9082 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9083 // call sequence. Furthermore the location of the chain and glue can change 9084 // when the AnyReg calling convention is used and the intrinsic returns a 9085 // value. 9086 if (IsAnyRegCC && HasDef) { 9087 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9088 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9089 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9090 } else 9091 DAG.ReplaceAllUsesWith(Call, MN); 9092 DAG.DeleteNode(Call); 9093 9094 // Inform the Frame Information that we have a patchpoint in this function. 9095 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9096 } 9097 9098 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9099 unsigned Intrinsic) { 9100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9101 SDValue Op1 = getValue(I.getArgOperand(0)); 9102 SDValue Op2; 9103 if (I.getNumArgOperands() > 1) 9104 Op2 = getValue(I.getArgOperand(1)); 9105 SDLoc dl = getCurSDLoc(); 9106 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9107 SDValue Res; 9108 SDNodeFlags SDFlags; 9109 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9110 SDFlags.copyFMF(*FPMO); 9111 9112 switch (Intrinsic) { 9113 case Intrinsic::vector_reduce_fadd: 9114 if (SDFlags.hasAllowReassociation()) 9115 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9116 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9117 SDFlags); 9118 else 9119 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9120 break; 9121 case Intrinsic::vector_reduce_fmul: 9122 if (SDFlags.hasAllowReassociation()) 9123 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9124 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9125 SDFlags); 9126 else 9127 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9128 break; 9129 case Intrinsic::vector_reduce_add: 9130 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9131 break; 9132 case Intrinsic::vector_reduce_mul: 9133 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9134 break; 9135 case Intrinsic::vector_reduce_and: 9136 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9137 break; 9138 case Intrinsic::vector_reduce_or: 9139 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9140 break; 9141 case Intrinsic::vector_reduce_xor: 9142 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9143 break; 9144 case Intrinsic::vector_reduce_smax: 9145 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9146 break; 9147 case Intrinsic::vector_reduce_smin: 9148 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9149 break; 9150 case Intrinsic::vector_reduce_umax: 9151 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9152 break; 9153 case Intrinsic::vector_reduce_umin: 9154 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9155 break; 9156 case Intrinsic::vector_reduce_fmax: 9157 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9158 break; 9159 case Intrinsic::vector_reduce_fmin: 9160 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9161 break; 9162 default: 9163 llvm_unreachable("Unhandled vector reduce intrinsic"); 9164 } 9165 setValue(&I, Res); 9166 } 9167 9168 /// Returns an AttributeList representing the attributes applied to the return 9169 /// value of the given call. 9170 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9171 SmallVector<Attribute::AttrKind, 2> Attrs; 9172 if (CLI.RetSExt) 9173 Attrs.push_back(Attribute::SExt); 9174 if (CLI.RetZExt) 9175 Attrs.push_back(Attribute::ZExt); 9176 if (CLI.IsInReg) 9177 Attrs.push_back(Attribute::InReg); 9178 9179 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9180 Attrs); 9181 } 9182 9183 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9184 /// implementation, which just calls LowerCall. 9185 /// FIXME: When all targets are 9186 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9187 std::pair<SDValue, SDValue> 9188 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9189 // Handle the incoming return values from the call. 9190 CLI.Ins.clear(); 9191 Type *OrigRetTy = CLI.RetTy; 9192 SmallVector<EVT, 4> RetTys; 9193 SmallVector<uint64_t, 4> Offsets; 9194 auto &DL = CLI.DAG.getDataLayout(); 9195 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9196 9197 if (CLI.IsPostTypeLegalization) { 9198 // If we are lowering a libcall after legalization, split the return type. 9199 SmallVector<EVT, 4> OldRetTys; 9200 SmallVector<uint64_t, 4> OldOffsets; 9201 RetTys.swap(OldRetTys); 9202 Offsets.swap(OldOffsets); 9203 9204 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9205 EVT RetVT = OldRetTys[i]; 9206 uint64_t Offset = OldOffsets[i]; 9207 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9208 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9209 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9210 RetTys.append(NumRegs, RegisterVT); 9211 for (unsigned j = 0; j != NumRegs; ++j) 9212 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9213 } 9214 } 9215 9216 SmallVector<ISD::OutputArg, 4> Outs; 9217 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9218 9219 bool CanLowerReturn = 9220 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9221 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9222 9223 SDValue DemoteStackSlot; 9224 int DemoteStackIdx = -100; 9225 if (!CanLowerReturn) { 9226 // FIXME: equivalent assert? 9227 // assert(!CS.hasInAllocaArgument() && 9228 // "sret demotion is incompatible with inalloca"); 9229 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9230 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9231 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9232 DemoteStackIdx = 9233 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9234 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9235 DL.getAllocaAddrSpace()); 9236 9237 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9238 ArgListEntry Entry; 9239 Entry.Node = DemoteStackSlot; 9240 Entry.Ty = StackSlotPtrType; 9241 Entry.IsSExt = false; 9242 Entry.IsZExt = false; 9243 Entry.IsInReg = false; 9244 Entry.IsSRet = true; 9245 Entry.IsNest = false; 9246 Entry.IsByVal = false; 9247 Entry.IsByRef = false; 9248 Entry.IsReturned = false; 9249 Entry.IsSwiftSelf = false; 9250 Entry.IsSwiftError = false; 9251 Entry.IsCFGuardTarget = false; 9252 Entry.Alignment = Alignment; 9253 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9254 CLI.NumFixedArgs += 1; 9255 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9256 9257 // sret demotion isn't compatible with tail-calls, since the sret argument 9258 // points into the callers stack frame. 9259 CLI.IsTailCall = false; 9260 } else { 9261 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9262 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9263 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9264 ISD::ArgFlagsTy Flags; 9265 if (NeedsRegBlock) { 9266 Flags.setInConsecutiveRegs(); 9267 if (I == RetTys.size() - 1) 9268 Flags.setInConsecutiveRegsLast(); 9269 } 9270 EVT VT = RetTys[I]; 9271 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9272 CLI.CallConv, VT); 9273 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9274 CLI.CallConv, VT); 9275 for (unsigned i = 0; i != NumRegs; ++i) { 9276 ISD::InputArg MyFlags; 9277 MyFlags.Flags = Flags; 9278 MyFlags.VT = RegisterVT; 9279 MyFlags.ArgVT = VT; 9280 MyFlags.Used = CLI.IsReturnValueUsed; 9281 if (CLI.RetTy->isPointerTy()) { 9282 MyFlags.Flags.setPointer(); 9283 MyFlags.Flags.setPointerAddrSpace( 9284 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9285 } 9286 if (CLI.RetSExt) 9287 MyFlags.Flags.setSExt(); 9288 if (CLI.RetZExt) 9289 MyFlags.Flags.setZExt(); 9290 if (CLI.IsInReg) 9291 MyFlags.Flags.setInReg(); 9292 CLI.Ins.push_back(MyFlags); 9293 } 9294 } 9295 } 9296 9297 // We push in swifterror return as the last element of CLI.Ins. 9298 ArgListTy &Args = CLI.getArgs(); 9299 if (supportSwiftError()) { 9300 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9301 if (Args[i].IsSwiftError) { 9302 ISD::InputArg MyFlags; 9303 MyFlags.VT = getPointerTy(DL); 9304 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9305 MyFlags.Flags.setSwiftError(); 9306 CLI.Ins.push_back(MyFlags); 9307 } 9308 } 9309 } 9310 9311 // Handle all of the outgoing arguments. 9312 CLI.Outs.clear(); 9313 CLI.OutVals.clear(); 9314 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9315 SmallVector<EVT, 4> ValueVTs; 9316 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9317 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9318 Type *FinalType = Args[i].Ty; 9319 if (Args[i].IsByVal) 9320 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9321 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9322 FinalType, CLI.CallConv, CLI.IsVarArg); 9323 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9324 ++Value) { 9325 EVT VT = ValueVTs[Value]; 9326 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9327 SDValue Op = SDValue(Args[i].Node.getNode(), 9328 Args[i].Node.getResNo() + Value); 9329 ISD::ArgFlagsTy Flags; 9330 9331 // Certain targets (such as MIPS), may have a different ABI alignment 9332 // for a type depending on the context. Give the target a chance to 9333 // specify the alignment it wants. 9334 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9335 9336 if (Args[i].Ty->isPointerTy()) { 9337 Flags.setPointer(); 9338 Flags.setPointerAddrSpace( 9339 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9340 } 9341 if (Args[i].IsZExt) 9342 Flags.setZExt(); 9343 if (Args[i].IsSExt) 9344 Flags.setSExt(); 9345 if (Args[i].IsInReg) { 9346 // If we are using vectorcall calling convention, a structure that is 9347 // passed InReg - is surely an HVA 9348 if (CLI.CallConv == CallingConv::X86_VectorCall && 9349 isa<StructType>(FinalType)) { 9350 // The first value of a structure is marked 9351 if (0 == Value) 9352 Flags.setHvaStart(); 9353 Flags.setHva(); 9354 } 9355 // Set InReg Flag 9356 Flags.setInReg(); 9357 } 9358 if (Args[i].IsSRet) 9359 Flags.setSRet(); 9360 if (Args[i].IsSwiftSelf) 9361 Flags.setSwiftSelf(); 9362 if (Args[i].IsSwiftError) 9363 Flags.setSwiftError(); 9364 if (Args[i].IsCFGuardTarget) 9365 Flags.setCFGuardTarget(); 9366 if (Args[i].IsByVal) 9367 Flags.setByVal(); 9368 if (Args[i].IsByRef) 9369 Flags.setByRef(); 9370 if (Args[i].IsPreallocated) { 9371 Flags.setPreallocated(); 9372 // Set the byval flag for CCAssignFn callbacks that don't know about 9373 // preallocated. This way we can know how many bytes we should've 9374 // allocated and how many bytes a callee cleanup function will pop. If 9375 // we port preallocated to more targets, we'll have to add custom 9376 // preallocated handling in the various CC lowering callbacks. 9377 Flags.setByVal(); 9378 } 9379 if (Args[i].IsInAlloca) { 9380 Flags.setInAlloca(); 9381 // Set the byval flag for CCAssignFn callbacks that don't know about 9382 // inalloca. This way we can know how many bytes we should've allocated 9383 // and how many bytes a callee cleanup function will pop. If we port 9384 // inalloca to more targets, we'll have to add custom inalloca handling 9385 // in the various CC lowering callbacks. 9386 Flags.setByVal(); 9387 } 9388 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9389 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9390 Type *ElementTy = Ty->getElementType(); 9391 9392 unsigned FrameSize = DL.getTypeAllocSize( 9393 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9394 Flags.setByValSize(FrameSize); 9395 9396 // info is not there but there are cases it cannot get right. 9397 Align FrameAlign; 9398 if (auto MA = Args[i].Alignment) 9399 FrameAlign = *MA; 9400 else 9401 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9402 Flags.setByValAlign(FrameAlign); 9403 } 9404 if (Args[i].IsNest) 9405 Flags.setNest(); 9406 if (NeedsRegBlock) 9407 Flags.setInConsecutiveRegs(); 9408 Flags.setOrigAlign(OriginalAlignment); 9409 9410 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9411 CLI.CallConv, VT); 9412 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9413 CLI.CallConv, VT); 9414 SmallVector<SDValue, 4> Parts(NumParts); 9415 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9416 9417 if (Args[i].IsSExt) 9418 ExtendKind = ISD::SIGN_EXTEND; 9419 else if (Args[i].IsZExt) 9420 ExtendKind = ISD::ZERO_EXTEND; 9421 9422 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9423 // for now. 9424 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9425 CanLowerReturn) { 9426 assert((CLI.RetTy == Args[i].Ty || 9427 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9428 CLI.RetTy->getPointerAddressSpace() == 9429 Args[i].Ty->getPointerAddressSpace())) && 9430 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9431 // Before passing 'returned' to the target lowering code, ensure that 9432 // either the register MVT and the actual EVT are the same size or that 9433 // the return value and argument are extended in the same way; in these 9434 // cases it's safe to pass the argument register value unchanged as the 9435 // return register value (although it's at the target's option whether 9436 // to do so) 9437 // TODO: allow code generation to take advantage of partially preserved 9438 // registers rather than clobbering the entire register when the 9439 // parameter extension method is not compatible with the return 9440 // extension method 9441 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9442 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9443 CLI.RetZExt == Args[i].IsZExt)) 9444 Flags.setReturned(); 9445 } 9446 9447 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9448 CLI.CallConv, ExtendKind); 9449 9450 for (unsigned j = 0; j != NumParts; ++j) { 9451 // if it isn't first piece, alignment must be 1 9452 // For scalable vectors the scalable part is currently handled 9453 // by individual targets, so we just use the known minimum size here. 9454 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9455 i < CLI.NumFixedArgs, i, 9456 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9457 if (NumParts > 1 && j == 0) 9458 MyFlags.Flags.setSplit(); 9459 else if (j != 0) { 9460 MyFlags.Flags.setOrigAlign(Align(1)); 9461 if (j == NumParts - 1) 9462 MyFlags.Flags.setSplitEnd(); 9463 } 9464 9465 CLI.Outs.push_back(MyFlags); 9466 CLI.OutVals.push_back(Parts[j]); 9467 } 9468 9469 if (NeedsRegBlock && Value == NumValues - 1) 9470 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9471 } 9472 } 9473 9474 SmallVector<SDValue, 4> InVals; 9475 CLI.Chain = LowerCall(CLI, InVals); 9476 9477 // Update CLI.InVals to use outside of this function. 9478 CLI.InVals = InVals; 9479 9480 // Verify that the target's LowerCall behaved as expected. 9481 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9482 "LowerCall didn't return a valid chain!"); 9483 assert((!CLI.IsTailCall || InVals.empty()) && 9484 "LowerCall emitted a return value for a tail call!"); 9485 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9486 "LowerCall didn't emit the correct number of values!"); 9487 9488 // For a tail call, the return value is merely live-out and there aren't 9489 // any nodes in the DAG representing it. Return a special value to 9490 // indicate that a tail call has been emitted and no more Instructions 9491 // should be processed in the current block. 9492 if (CLI.IsTailCall) { 9493 CLI.DAG.setRoot(CLI.Chain); 9494 return std::make_pair(SDValue(), SDValue()); 9495 } 9496 9497 #ifndef NDEBUG 9498 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9499 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9500 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9501 "LowerCall emitted a value with the wrong type!"); 9502 } 9503 #endif 9504 9505 SmallVector<SDValue, 4> ReturnValues; 9506 if (!CanLowerReturn) { 9507 // The instruction result is the result of loading from the 9508 // hidden sret parameter. 9509 SmallVector<EVT, 1> PVTs; 9510 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9511 9512 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9513 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9514 EVT PtrVT = PVTs[0]; 9515 9516 unsigned NumValues = RetTys.size(); 9517 ReturnValues.resize(NumValues); 9518 SmallVector<SDValue, 4> Chains(NumValues); 9519 9520 // An aggregate return value cannot wrap around the address space, so 9521 // offsets to its parts don't wrap either. 9522 SDNodeFlags Flags; 9523 Flags.setNoUnsignedWrap(true); 9524 9525 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9526 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9527 for (unsigned i = 0; i < NumValues; ++i) { 9528 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9529 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9530 PtrVT), Flags); 9531 SDValue L = CLI.DAG.getLoad( 9532 RetTys[i], CLI.DL, CLI.Chain, Add, 9533 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9534 DemoteStackIdx, Offsets[i]), 9535 HiddenSRetAlign); 9536 ReturnValues[i] = L; 9537 Chains[i] = L.getValue(1); 9538 } 9539 9540 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9541 } else { 9542 // Collect the legal value parts into potentially illegal values 9543 // that correspond to the original function's return values. 9544 Optional<ISD::NodeType> AssertOp; 9545 if (CLI.RetSExt) 9546 AssertOp = ISD::AssertSext; 9547 else if (CLI.RetZExt) 9548 AssertOp = ISD::AssertZext; 9549 unsigned CurReg = 0; 9550 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9551 EVT VT = RetTys[I]; 9552 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9553 CLI.CallConv, VT); 9554 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9555 CLI.CallConv, VT); 9556 9557 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9558 NumRegs, RegisterVT, VT, nullptr, 9559 CLI.CallConv, AssertOp)); 9560 CurReg += NumRegs; 9561 } 9562 9563 // For a function returning void, there is no return value. We can't create 9564 // such a node, so we just return a null return value in that case. In 9565 // that case, nothing will actually look at the value. 9566 if (ReturnValues.empty()) 9567 return std::make_pair(SDValue(), CLI.Chain); 9568 } 9569 9570 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9571 CLI.DAG.getVTList(RetTys), ReturnValues); 9572 return std::make_pair(Res, CLI.Chain); 9573 } 9574 9575 /// Places new result values for the node in Results (their number 9576 /// and types must exactly match those of the original return values of 9577 /// the node), or leaves Results empty, which indicates that the node is not 9578 /// to be custom lowered after all. 9579 void TargetLowering::LowerOperationWrapper(SDNode *N, 9580 SmallVectorImpl<SDValue> &Results, 9581 SelectionDAG &DAG) const { 9582 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9583 9584 if (!Res.getNode()) 9585 return; 9586 9587 // If the original node has one result, take the return value from 9588 // LowerOperation as is. It might not be result number 0. 9589 if (N->getNumValues() == 1) { 9590 Results.push_back(Res); 9591 return; 9592 } 9593 9594 // If the original node has multiple results, then the return node should 9595 // have the same number of results. 9596 assert((N->getNumValues() == Res->getNumValues()) && 9597 "Lowering returned the wrong number of results!"); 9598 9599 // Places new result values base on N result number. 9600 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9601 Results.push_back(Res.getValue(I)); 9602 } 9603 9604 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9605 llvm_unreachable("LowerOperation not implemented for this target!"); 9606 } 9607 9608 void 9609 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9610 SDValue Op = getNonRegisterValue(V); 9611 assert((Op.getOpcode() != ISD::CopyFromReg || 9612 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9613 "Copy from a reg to the same reg!"); 9614 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9615 9616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9617 // If this is an InlineAsm we have to match the registers required, not the 9618 // notional registers required by the type. 9619 9620 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9621 None); // This is not an ABI copy. 9622 SDValue Chain = DAG.getEntryNode(); 9623 9624 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9625 FuncInfo.PreferredExtendType.end()) 9626 ? ISD::ANY_EXTEND 9627 : FuncInfo.PreferredExtendType[V]; 9628 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9629 PendingExports.push_back(Chain); 9630 } 9631 9632 #include "llvm/CodeGen/SelectionDAGISel.h" 9633 9634 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9635 /// entry block, return true. This includes arguments used by switches, since 9636 /// the switch may expand into multiple basic blocks. 9637 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9638 // With FastISel active, we may be splitting blocks, so force creation 9639 // of virtual registers for all non-dead arguments. 9640 if (FastISel) 9641 return A->use_empty(); 9642 9643 const BasicBlock &Entry = A->getParent()->front(); 9644 for (const User *U : A->users()) 9645 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9646 return false; // Use not in entry block. 9647 9648 return true; 9649 } 9650 9651 using ArgCopyElisionMapTy = 9652 DenseMap<const Argument *, 9653 std::pair<const AllocaInst *, const StoreInst *>>; 9654 9655 /// Scan the entry block of the function in FuncInfo for arguments that look 9656 /// like copies into a local alloca. Record any copied arguments in 9657 /// ArgCopyElisionCandidates. 9658 static void 9659 findArgumentCopyElisionCandidates(const DataLayout &DL, 9660 FunctionLoweringInfo *FuncInfo, 9661 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9662 // Record the state of every static alloca used in the entry block. Argument 9663 // allocas are all used in the entry block, so we need approximately as many 9664 // entries as we have arguments. 9665 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9666 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9667 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9668 StaticAllocas.reserve(NumArgs * 2); 9669 9670 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9671 if (!V) 9672 return nullptr; 9673 V = V->stripPointerCasts(); 9674 const auto *AI = dyn_cast<AllocaInst>(V); 9675 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9676 return nullptr; 9677 auto Iter = StaticAllocas.insert({AI, Unknown}); 9678 return &Iter.first->second; 9679 }; 9680 9681 // Look for stores of arguments to static allocas. Look through bitcasts and 9682 // GEPs to handle type coercions, as long as the alloca is fully initialized 9683 // by the store. Any non-store use of an alloca escapes it and any subsequent 9684 // unanalyzed store might write it. 9685 // FIXME: Handle structs initialized with multiple stores. 9686 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9687 // Look for stores, and handle non-store uses conservatively. 9688 const auto *SI = dyn_cast<StoreInst>(&I); 9689 if (!SI) { 9690 // We will look through cast uses, so ignore them completely. 9691 if (I.isCast()) 9692 continue; 9693 // Ignore debug info and pseudo op intrinsics, they don't escape or store 9694 // to allocas. 9695 if (I.isDebugOrPseudoInst()) 9696 continue; 9697 // This is an unknown instruction. Assume it escapes or writes to all 9698 // static alloca operands. 9699 for (const Use &U : I.operands()) { 9700 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9701 *Info = StaticAllocaInfo::Clobbered; 9702 } 9703 continue; 9704 } 9705 9706 // If the stored value is a static alloca, mark it as escaped. 9707 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9708 *Info = StaticAllocaInfo::Clobbered; 9709 9710 // Check if the destination is a static alloca. 9711 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9712 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9713 if (!Info) 9714 continue; 9715 const AllocaInst *AI = cast<AllocaInst>(Dst); 9716 9717 // Skip allocas that have been initialized or clobbered. 9718 if (*Info != StaticAllocaInfo::Unknown) 9719 continue; 9720 9721 // Check if the stored value is an argument, and that this store fully 9722 // initializes the alloca. Don't elide copies from the same argument twice. 9723 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9724 const auto *Arg = dyn_cast<Argument>(Val); 9725 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9726 Arg->getType()->isEmptyTy() || 9727 DL.getTypeStoreSize(Arg->getType()) != 9728 DL.getTypeAllocSize(AI->getAllocatedType()) || 9729 ArgCopyElisionCandidates.count(Arg)) { 9730 *Info = StaticAllocaInfo::Clobbered; 9731 continue; 9732 } 9733 9734 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9735 << '\n'); 9736 9737 // Mark this alloca and store for argument copy elision. 9738 *Info = StaticAllocaInfo::Elidable; 9739 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9740 9741 // Stop scanning if we've seen all arguments. This will happen early in -O0 9742 // builds, which is useful, because -O0 builds have large entry blocks and 9743 // many allocas. 9744 if (ArgCopyElisionCandidates.size() == NumArgs) 9745 break; 9746 } 9747 } 9748 9749 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9750 /// ArgVal is a load from a suitable fixed stack object. 9751 static void tryToElideArgumentCopy( 9752 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9753 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9754 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9755 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9756 SDValue ArgVal, bool &ArgHasUses) { 9757 // Check if this is a load from a fixed stack object. 9758 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9759 if (!LNode) 9760 return; 9761 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9762 if (!FINode) 9763 return; 9764 9765 // Check that the fixed stack object is the right size and alignment. 9766 // Look at the alignment that the user wrote on the alloca instead of looking 9767 // at the stack object. 9768 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9769 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9770 const AllocaInst *AI = ArgCopyIter->second.first; 9771 int FixedIndex = FINode->getIndex(); 9772 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9773 int OldIndex = AllocaIndex; 9774 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9775 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9776 LLVM_DEBUG( 9777 dbgs() << " argument copy elision failed due to bad fixed stack " 9778 "object size\n"); 9779 return; 9780 } 9781 Align RequiredAlignment = AI->getAlign(); 9782 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9783 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9784 "greater than stack argument alignment (" 9785 << DebugStr(RequiredAlignment) << " vs " 9786 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9787 return; 9788 } 9789 9790 // Perform the elision. Delete the old stack object and replace its only use 9791 // in the variable info map. Mark the stack object as mutable. 9792 LLVM_DEBUG({ 9793 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9794 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9795 << '\n'; 9796 }); 9797 MFI.RemoveStackObject(OldIndex); 9798 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9799 AllocaIndex = FixedIndex; 9800 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9801 Chains.push_back(ArgVal.getValue(1)); 9802 9803 // Avoid emitting code for the store implementing the copy. 9804 const StoreInst *SI = ArgCopyIter->second.second; 9805 ElidedArgCopyInstrs.insert(SI); 9806 9807 // Check for uses of the argument again so that we can avoid exporting ArgVal 9808 // if it is't used by anything other than the store. 9809 for (const Value *U : Arg.users()) { 9810 if (U != SI) { 9811 ArgHasUses = true; 9812 break; 9813 } 9814 } 9815 } 9816 9817 void SelectionDAGISel::LowerArguments(const Function &F) { 9818 SelectionDAG &DAG = SDB->DAG; 9819 SDLoc dl = SDB->getCurSDLoc(); 9820 const DataLayout &DL = DAG.getDataLayout(); 9821 SmallVector<ISD::InputArg, 16> Ins; 9822 9823 // In Naked functions we aren't going to save any registers. 9824 if (F.hasFnAttribute(Attribute::Naked)) 9825 return; 9826 9827 if (!FuncInfo->CanLowerReturn) { 9828 // Put in an sret pointer parameter before all the other parameters. 9829 SmallVector<EVT, 1> ValueVTs; 9830 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9831 F.getReturnType()->getPointerTo( 9832 DAG.getDataLayout().getAllocaAddrSpace()), 9833 ValueVTs); 9834 9835 // NOTE: Assuming that a pointer will never break down to more than one VT 9836 // or one register. 9837 ISD::ArgFlagsTy Flags; 9838 Flags.setSRet(); 9839 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9840 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9841 ISD::InputArg::NoArgIndex, 0); 9842 Ins.push_back(RetArg); 9843 } 9844 9845 // Look for stores of arguments to static allocas. Mark such arguments with a 9846 // flag to ask the target to give us the memory location of that argument if 9847 // available. 9848 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9849 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9850 ArgCopyElisionCandidates); 9851 9852 // Set up the incoming argument description vector. 9853 for (const Argument &Arg : F.args()) { 9854 unsigned ArgNo = Arg.getArgNo(); 9855 SmallVector<EVT, 4> ValueVTs; 9856 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9857 bool isArgValueUsed = !Arg.use_empty(); 9858 unsigned PartBase = 0; 9859 Type *FinalType = Arg.getType(); 9860 if (Arg.hasAttribute(Attribute::ByVal)) 9861 FinalType = Arg.getParamByValType(); 9862 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9863 FinalType, F.getCallingConv(), F.isVarArg()); 9864 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9865 Value != NumValues; ++Value) { 9866 EVT VT = ValueVTs[Value]; 9867 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9868 ISD::ArgFlagsTy Flags; 9869 9870 // Certain targets (such as MIPS), may have a different ABI alignment 9871 // for a type depending on the context. Give the target a chance to 9872 // specify the alignment it wants. 9873 const Align OriginalAlignment( 9874 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9875 9876 if (Arg.getType()->isPointerTy()) { 9877 Flags.setPointer(); 9878 Flags.setPointerAddrSpace( 9879 cast<PointerType>(Arg.getType())->getAddressSpace()); 9880 } 9881 if (Arg.hasAttribute(Attribute::ZExt)) 9882 Flags.setZExt(); 9883 if (Arg.hasAttribute(Attribute::SExt)) 9884 Flags.setSExt(); 9885 if (Arg.hasAttribute(Attribute::InReg)) { 9886 // If we are using vectorcall calling convention, a structure that is 9887 // passed InReg - is surely an HVA 9888 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9889 isa<StructType>(Arg.getType())) { 9890 // The first value of a structure is marked 9891 if (0 == Value) 9892 Flags.setHvaStart(); 9893 Flags.setHva(); 9894 } 9895 // Set InReg Flag 9896 Flags.setInReg(); 9897 } 9898 if (Arg.hasAttribute(Attribute::StructRet)) 9899 Flags.setSRet(); 9900 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9901 Flags.setSwiftSelf(); 9902 if (Arg.hasAttribute(Attribute::SwiftError)) 9903 Flags.setSwiftError(); 9904 if (Arg.hasAttribute(Attribute::ByVal)) 9905 Flags.setByVal(); 9906 if (Arg.hasAttribute(Attribute::ByRef)) 9907 Flags.setByRef(); 9908 if (Arg.hasAttribute(Attribute::InAlloca)) { 9909 Flags.setInAlloca(); 9910 // Set the byval flag for CCAssignFn callbacks that don't know about 9911 // inalloca. This way we can know how many bytes we should've allocated 9912 // and how many bytes a callee cleanup function will pop. If we port 9913 // inalloca to more targets, we'll have to add custom inalloca handling 9914 // in the various CC lowering callbacks. 9915 Flags.setByVal(); 9916 } 9917 if (Arg.hasAttribute(Attribute::Preallocated)) { 9918 Flags.setPreallocated(); 9919 // Set the byval flag for CCAssignFn callbacks that don't know about 9920 // preallocated. This way we can know how many bytes we should've 9921 // allocated and how many bytes a callee cleanup function will pop. If 9922 // we port preallocated to more targets, we'll have to add custom 9923 // preallocated handling in the various CC lowering callbacks. 9924 Flags.setByVal(); 9925 } 9926 9927 Type *ArgMemTy = nullptr; 9928 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9929 Flags.isByRef()) { 9930 if (!ArgMemTy) 9931 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9932 9933 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9934 9935 // For in-memory arguments, size and alignment should be passed from FE. 9936 // BE will guess if this info is not there but there are cases it cannot 9937 // get right. 9938 MaybeAlign MemAlign = Arg.getParamAlign(); 9939 if (!MemAlign) 9940 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9941 9942 if (Flags.isByRef()) { 9943 Flags.setByRefSize(MemSize); 9944 Flags.setByRefAlign(*MemAlign); 9945 } else { 9946 Flags.setByValSize(MemSize); 9947 Flags.setByValAlign(*MemAlign); 9948 } 9949 } 9950 9951 if (Arg.hasAttribute(Attribute::Nest)) 9952 Flags.setNest(); 9953 if (NeedsRegBlock) 9954 Flags.setInConsecutiveRegs(); 9955 Flags.setOrigAlign(OriginalAlignment); 9956 if (ArgCopyElisionCandidates.count(&Arg)) 9957 Flags.setCopyElisionCandidate(); 9958 if (Arg.hasAttribute(Attribute::Returned)) 9959 Flags.setReturned(); 9960 9961 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9962 *CurDAG->getContext(), F.getCallingConv(), VT); 9963 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9964 *CurDAG->getContext(), F.getCallingConv(), VT); 9965 for (unsigned i = 0; i != NumRegs; ++i) { 9966 // For scalable vectors, use the minimum size; individual targets 9967 // are responsible for handling scalable vector arguments and 9968 // return values. 9969 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9970 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9971 if (NumRegs > 1 && i == 0) 9972 MyFlags.Flags.setSplit(); 9973 // if it isn't first piece, alignment must be 1 9974 else if (i > 0) { 9975 MyFlags.Flags.setOrigAlign(Align(1)); 9976 if (i == NumRegs - 1) 9977 MyFlags.Flags.setSplitEnd(); 9978 } 9979 Ins.push_back(MyFlags); 9980 } 9981 if (NeedsRegBlock && Value == NumValues - 1) 9982 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9983 PartBase += VT.getStoreSize().getKnownMinSize(); 9984 } 9985 } 9986 9987 // Call the target to set up the argument values. 9988 SmallVector<SDValue, 8> InVals; 9989 SDValue NewRoot = TLI->LowerFormalArguments( 9990 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9991 9992 // Verify that the target's LowerFormalArguments behaved as expected. 9993 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9994 "LowerFormalArguments didn't return a valid chain!"); 9995 assert(InVals.size() == Ins.size() && 9996 "LowerFormalArguments didn't emit the correct number of values!"); 9997 LLVM_DEBUG({ 9998 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9999 assert(InVals[i].getNode() && 10000 "LowerFormalArguments emitted a null value!"); 10001 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10002 "LowerFormalArguments emitted a value with the wrong type!"); 10003 } 10004 }); 10005 10006 // Update the DAG with the new chain value resulting from argument lowering. 10007 DAG.setRoot(NewRoot); 10008 10009 // Set up the argument values. 10010 unsigned i = 0; 10011 if (!FuncInfo->CanLowerReturn) { 10012 // Create a virtual register for the sret pointer, and put in a copy 10013 // from the sret argument into it. 10014 SmallVector<EVT, 1> ValueVTs; 10015 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10016 F.getReturnType()->getPointerTo( 10017 DAG.getDataLayout().getAllocaAddrSpace()), 10018 ValueVTs); 10019 MVT VT = ValueVTs[0].getSimpleVT(); 10020 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10021 Optional<ISD::NodeType> AssertOp = None; 10022 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10023 nullptr, F.getCallingConv(), AssertOp); 10024 10025 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10026 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10027 Register SRetReg = 10028 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10029 FuncInfo->DemoteRegister = SRetReg; 10030 NewRoot = 10031 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10032 DAG.setRoot(NewRoot); 10033 10034 // i indexes lowered arguments. Bump it past the hidden sret argument. 10035 ++i; 10036 } 10037 10038 SmallVector<SDValue, 4> Chains; 10039 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10040 for (const Argument &Arg : F.args()) { 10041 SmallVector<SDValue, 4> ArgValues; 10042 SmallVector<EVT, 4> ValueVTs; 10043 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10044 unsigned NumValues = ValueVTs.size(); 10045 if (NumValues == 0) 10046 continue; 10047 10048 bool ArgHasUses = !Arg.use_empty(); 10049 10050 // Elide the copying store if the target loaded this argument from a 10051 // suitable fixed stack object. 10052 if (Ins[i].Flags.isCopyElisionCandidate()) { 10053 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10054 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10055 InVals[i], ArgHasUses); 10056 } 10057 10058 // If this argument is unused then remember its value. It is used to generate 10059 // debugging information. 10060 bool isSwiftErrorArg = 10061 TLI->supportSwiftError() && 10062 Arg.hasAttribute(Attribute::SwiftError); 10063 if (!ArgHasUses && !isSwiftErrorArg) { 10064 SDB->setUnusedArgValue(&Arg, InVals[i]); 10065 10066 // Also remember any frame index for use in FastISel. 10067 if (FrameIndexSDNode *FI = 10068 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10069 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10070 } 10071 10072 for (unsigned Val = 0; Val != NumValues; ++Val) { 10073 EVT VT = ValueVTs[Val]; 10074 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10075 F.getCallingConv(), VT); 10076 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10077 *CurDAG->getContext(), F.getCallingConv(), VT); 10078 10079 // Even an apparent 'unused' swifterror argument needs to be returned. So 10080 // we do generate a copy for it that can be used on return from the 10081 // function. 10082 if (ArgHasUses || isSwiftErrorArg) { 10083 Optional<ISD::NodeType> AssertOp; 10084 if (Arg.hasAttribute(Attribute::SExt)) 10085 AssertOp = ISD::AssertSext; 10086 else if (Arg.hasAttribute(Attribute::ZExt)) 10087 AssertOp = ISD::AssertZext; 10088 10089 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10090 PartVT, VT, nullptr, 10091 F.getCallingConv(), AssertOp)); 10092 } 10093 10094 i += NumParts; 10095 } 10096 10097 // We don't need to do anything else for unused arguments. 10098 if (ArgValues.empty()) 10099 continue; 10100 10101 // Note down frame index. 10102 if (FrameIndexSDNode *FI = 10103 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10104 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10105 10106 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10107 SDB->getCurSDLoc()); 10108 10109 SDB->setValue(&Arg, Res); 10110 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10111 // We want to associate the argument with the frame index, among 10112 // involved operands, that correspond to the lowest address. The 10113 // getCopyFromParts function, called earlier, is swapping the order of 10114 // the operands to BUILD_PAIR depending on endianness. The result of 10115 // that swapping is that the least significant bits of the argument will 10116 // be in the first operand of the BUILD_PAIR node, and the most 10117 // significant bits will be in the second operand. 10118 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10119 if (LoadSDNode *LNode = 10120 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10121 if (FrameIndexSDNode *FI = 10122 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10123 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10124 } 10125 10126 // Analyses past this point are naive and don't expect an assertion. 10127 if (Res.getOpcode() == ISD::AssertZext) 10128 Res = Res.getOperand(0); 10129 10130 // Update the SwiftErrorVRegDefMap. 10131 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10132 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10133 if (Register::isVirtualRegister(Reg)) 10134 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10135 Reg); 10136 } 10137 10138 // If this argument is live outside of the entry block, insert a copy from 10139 // wherever we got it to the vreg that other BB's will reference it as. 10140 if (Res.getOpcode() == ISD::CopyFromReg) { 10141 // If we can, though, try to skip creating an unnecessary vreg. 10142 // FIXME: This isn't very clean... it would be nice to make this more 10143 // general. 10144 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10145 if (Register::isVirtualRegister(Reg)) { 10146 FuncInfo->ValueMap[&Arg] = Reg; 10147 continue; 10148 } 10149 } 10150 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10151 FuncInfo->InitializeRegForValue(&Arg); 10152 SDB->CopyToExportRegsIfNeeded(&Arg); 10153 } 10154 } 10155 10156 if (!Chains.empty()) { 10157 Chains.push_back(NewRoot); 10158 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10159 } 10160 10161 DAG.setRoot(NewRoot); 10162 10163 assert(i == InVals.size() && "Argument register count mismatch!"); 10164 10165 // If any argument copy elisions occurred and we have debug info, update the 10166 // stale frame indices used in the dbg.declare variable info table. 10167 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10168 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10169 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10170 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10171 if (I != ArgCopyElisionFrameIndexMap.end()) 10172 VI.Slot = I->second; 10173 } 10174 } 10175 10176 // Finally, if the target has anything special to do, allow it to do so. 10177 emitFunctionEntryCode(); 10178 } 10179 10180 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10181 /// ensure constants are generated when needed. Remember the virtual registers 10182 /// that need to be added to the Machine PHI nodes as input. We cannot just 10183 /// directly add them, because expansion might result in multiple MBB's for one 10184 /// BB. As such, the start of the BB might correspond to a different MBB than 10185 /// the end. 10186 void 10187 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10188 const Instruction *TI = LLVMBB->getTerminator(); 10189 10190 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10191 10192 // Check PHI nodes in successors that expect a value to be available from this 10193 // block. 10194 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10195 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10196 if (!isa<PHINode>(SuccBB->begin())) continue; 10197 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10198 10199 // If this terminator has multiple identical successors (common for 10200 // switches), only handle each succ once. 10201 if (!SuccsHandled.insert(SuccMBB).second) 10202 continue; 10203 10204 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10205 10206 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10207 // nodes and Machine PHI nodes, but the incoming operands have not been 10208 // emitted yet. 10209 for (const PHINode &PN : SuccBB->phis()) { 10210 // Ignore dead phi's. 10211 if (PN.use_empty()) 10212 continue; 10213 10214 // Skip empty types 10215 if (PN.getType()->isEmptyTy()) 10216 continue; 10217 10218 unsigned Reg; 10219 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10220 10221 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10222 unsigned &RegOut = ConstantsOut[C]; 10223 if (RegOut == 0) { 10224 RegOut = FuncInfo.CreateRegs(C); 10225 CopyValueToVirtualRegister(C, RegOut); 10226 } 10227 Reg = RegOut; 10228 } else { 10229 DenseMap<const Value *, Register>::iterator I = 10230 FuncInfo.ValueMap.find(PHIOp); 10231 if (I != FuncInfo.ValueMap.end()) 10232 Reg = I->second; 10233 else { 10234 assert(isa<AllocaInst>(PHIOp) && 10235 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10236 "Didn't codegen value into a register!??"); 10237 Reg = FuncInfo.CreateRegs(PHIOp); 10238 CopyValueToVirtualRegister(PHIOp, Reg); 10239 } 10240 } 10241 10242 // Remember that this register needs to added to the machine PHI node as 10243 // the input for this MBB. 10244 SmallVector<EVT, 4> ValueVTs; 10245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10246 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10247 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10248 EVT VT = ValueVTs[vti]; 10249 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10250 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10251 FuncInfo.PHINodesToUpdate.push_back( 10252 std::make_pair(&*MBBI++, Reg + i)); 10253 Reg += NumRegisters; 10254 } 10255 } 10256 } 10257 10258 ConstantsOut.clear(); 10259 } 10260 10261 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10262 /// is 0. 10263 MachineBasicBlock * 10264 SelectionDAGBuilder::StackProtectorDescriptor:: 10265 AddSuccessorMBB(const BasicBlock *BB, 10266 MachineBasicBlock *ParentMBB, 10267 bool IsLikely, 10268 MachineBasicBlock *SuccMBB) { 10269 // If SuccBB has not been created yet, create it. 10270 if (!SuccMBB) { 10271 MachineFunction *MF = ParentMBB->getParent(); 10272 MachineFunction::iterator BBI(ParentMBB); 10273 SuccMBB = MF->CreateMachineBasicBlock(BB); 10274 MF->insert(++BBI, SuccMBB); 10275 } 10276 // Add it as a successor of ParentMBB. 10277 ParentMBB->addSuccessor( 10278 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10279 return SuccMBB; 10280 } 10281 10282 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10283 MachineFunction::iterator I(MBB); 10284 if (++I == FuncInfo.MF->end()) 10285 return nullptr; 10286 return &*I; 10287 } 10288 10289 /// During lowering new call nodes can be created (such as memset, etc.). 10290 /// Those will become new roots of the current DAG, but complications arise 10291 /// when they are tail calls. In such cases, the call lowering will update 10292 /// the root, but the builder still needs to know that a tail call has been 10293 /// lowered in order to avoid generating an additional return. 10294 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10295 // If the node is null, we do have a tail call. 10296 if (MaybeTC.getNode() != nullptr) 10297 DAG.setRoot(MaybeTC); 10298 else 10299 HasTailCall = true; 10300 } 10301 10302 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10303 MachineBasicBlock *SwitchMBB, 10304 MachineBasicBlock *DefaultMBB) { 10305 MachineFunction *CurMF = FuncInfo.MF; 10306 MachineBasicBlock *NextMBB = nullptr; 10307 MachineFunction::iterator BBI(W.MBB); 10308 if (++BBI != FuncInfo.MF->end()) 10309 NextMBB = &*BBI; 10310 10311 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10312 10313 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10314 10315 if (Size == 2 && W.MBB == SwitchMBB) { 10316 // If any two of the cases has the same destination, and if one value 10317 // is the same as the other, but has one bit unset that the other has set, 10318 // use bit manipulation to do two compares at once. For example: 10319 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10320 // TODO: This could be extended to merge any 2 cases in switches with 3 10321 // cases. 10322 // TODO: Handle cases where W.CaseBB != SwitchBB. 10323 CaseCluster &Small = *W.FirstCluster; 10324 CaseCluster &Big = *W.LastCluster; 10325 10326 if (Small.Low == Small.High && Big.Low == Big.High && 10327 Small.MBB == Big.MBB) { 10328 const APInt &SmallValue = Small.Low->getValue(); 10329 const APInt &BigValue = Big.Low->getValue(); 10330 10331 // Check that there is only one bit different. 10332 APInt CommonBit = BigValue ^ SmallValue; 10333 if (CommonBit.isPowerOf2()) { 10334 SDValue CondLHS = getValue(Cond); 10335 EVT VT = CondLHS.getValueType(); 10336 SDLoc DL = getCurSDLoc(); 10337 10338 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10339 DAG.getConstant(CommonBit, DL, VT)); 10340 SDValue Cond = DAG.getSetCC( 10341 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10342 ISD::SETEQ); 10343 10344 // Update successor info. 10345 // Both Small and Big will jump to Small.BB, so we sum up the 10346 // probabilities. 10347 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10348 if (BPI) 10349 addSuccessorWithProb( 10350 SwitchMBB, DefaultMBB, 10351 // The default destination is the first successor in IR. 10352 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10353 else 10354 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10355 10356 // Insert the true branch. 10357 SDValue BrCond = 10358 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10359 DAG.getBasicBlock(Small.MBB)); 10360 // Insert the false branch. 10361 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10362 DAG.getBasicBlock(DefaultMBB)); 10363 10364 DAG.setRoot(BrCond); 10365 return; 10366 } 10367 } 10368 } 10369 10370 if (TM.getOptLevel() != CodeGenOpt::None) { 10371 // Here, we order cases by probability so the most likely case will be 10372 // checked first. However, two clusters can have the same probability in 10373 // which case their relative ordering is non-deterministic. So we use Low 10374 // as a tie-breaker as clusters are guaranteed to never overlap. 10375 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10376 [](const CaseCluster &a, const CaseCluster &b) { 10377 return a.Prob != b.Prob ? 10378 a.Prob > b.Prob : 10379 a.Low->getValue().slt(b.Low->getValue()); 10380 }); 10381 10382 // Rearrange the case blocks so that the last one falls through if possible 10383 // without changing the order of probabilities. 10384 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10385 --I; 10386 if (I->Prob > W.LastCluster->Prob) 10387 break; 10388 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10389 std::swap(*I, *W.LastCluster); 10390 break; 10391 } 10392 } 10393 } 10394 10395 // Compute total probability. 10396 BranchProbability DefaultProb = W.DefaultProb; 10397 BranchProbability UnhandledProbs = DefaultProb; 10398 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10399 UnhandledProbs += I->Prob; 10400 10401 MachineBasicBlock *CurMBB = W.MBB; 10402 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10403 bool FallthroughUnreachable = false; 10404 MachineBasicBlock *Fallthrough; 10405 if (I == W.LastCluster) { 10406 // For the last cluster, fall through to the default destination. 10407 Fallthrough = DefaultMBB; 10408 FallthroughUnreachable = isa<UnreachableInst>( 10409 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10410 } else { 10411 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10412 CurMF->insert(BBI, Fallthrough); 10413 // Put Cond in a virtual register to make it available from the new blocks. 10414 ExportFromCurrentBlock(Cond); 10415 } 10416 UnhandledProbs -= I->Prob; 10417 10418 switch (I->Kind) { 10419 case CC_JumpTable: { 10420 // FIXME: Optimize away range check based on pivot comparisons. 10421 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10422 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10423 10424 // The jump block hasn't been inserted yet; insert it here. 10425 MachineBasicBlock *JumpMBB = JT->MBB; 10426 CurMF->insert(BBI, JumpMBB); 10427 10428 auto JumpProb = I->Prob; 10429 auto FallthroughProb = UnhandledProbs; 10430 10431 // If the default statement is a target of the jump table, we evenly 10432 // distribute the default probability to successors of CurMBB. Also 10433 // update the probability on the edge from JumpMBB to Fallthrough. 10434 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10435 SE = JumpMBB->succ_end(); 10436 SI != SE; ++SI) { 10437 if (*SI == DefaultMBB) { 10438 JumpProb += DefaultProb / 2; 10439 FallthroughProb -= DefaultProb / 2; 10440 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10441 JumpMBB->normalizeSuccProbs(); 10442 break; 10443 } 10444 } 10445 10446 if (FallthroughUnreachable) { 10447 // Skip the range check if the fallthrough block is unreachable. 10448 JTH->OmitRangeCheck = true; 10449 } 10450 10451 if (!JTH->OmitRangeCheck) 10452 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10453 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10454 CurMBB->normalizeSuccProbs(); 10455 10456 // The jump table header will be inserted in our current block, do the 10457 // range check, and fall through to our fallthrough block. 10458 JTH->HeaderBB = CurMBB; 10459 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10460 10461 // If we're in the right place, emit the jump table header right now. 10462 if (CurMBB == SwitchMBB) { 10463 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10464 JTH->Emitted = true; 10465 } 10466 break; 10467 } 10468 case CC_BitTests: { 10469 // FIXME: Optimize away range check based on pivot comparisons. 10470 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10471 10472 // The bit test blocks haven't been inserted yet; insert them here. 10473 for (BitTestCase &BTC : BTB->Cases) 10474 CurMF->insert(BBI, BTC.ThisBB); 10475 10476 // Fill in fields of the BitTestBlock. 10477 BTB->Parent = CurMBB; 10478 BTB->Default = Fallthrough; 10479 10480 BTB->DefaultProb = UnhandledProbs; 10481 // If the cases in bit test don't form a contiguous range, we evenly 10482 // distribute the probability on the edge to Fallthrough to two 10483 // successors of CurMBB. 10484 if (!BTB->ContiguousRange) { 10485 BTB->Prob += DefaultProb / 2; 10486 BTB->DefaultProb -= DefaultProb / 2; 10487 } 10488 10489 if (FallthroughUnreachable) { 10490 // Skip the range check if the fallthrough block is unreachable. 10491 BTB->OmitRangeCheck = true; 10492 } 10493 10494 // If we're in the right place, emit the bit test header right now. 10495 if (CurMBB == SwitchMBB) { 10496 visitBitTestHeader(*BTB, SwitchMBB); 10497 BTB->Emitted = true; 10498 } 10499 break; 10500 } 10501 case CC_Range: { 10502 const Value *RHS, *LHS, *MHS; 10503 ISD::CondCode CC; 10504 if (I->Low == I->High) { 10505 // Check Cond == I->Low. 10506 CC = ISD::SETEQ; 10507 LHS = Cond; 10508 RHS=I->Low; 10509 MHS = nullptr; 10510 } else { 10511 // Check I->Low <= Cond <= I->High. 10512 CC = ISD::SETLE; 10513 LHS = I->Low; 10514 MHS = Cond; 10515 RHS = I->High; 10516 } 10517 10518 // If Fallthrough is unreachable, fold away the comparison. 10519 if (FallthroughUnreachable) 10520 CC = ISD::SETTRUE; 10521 10522 // The false probability is the sum of all unhandled cases. 10523 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10524 getCurSDLoc(), I->Prob, UnhandledProbs); 10525 10526 if (CurMBB == SwitchMBB) 10527 visitSwitchCase(CB, SwitchMBB); 10528 else 10529 SL->SwitchCases.push_back(CB); 10530 10531 break; 10532 } 10533 } 10534 CurMBB = Fallthrough; 10535 } 10536 } 10537 10538 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10539 CaseClusterIt First, 10540 CaseClusterIt Last) { 10541 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10542 if (X.Prob != CC.Prob) 10543 return X.Prob > CC.Prob; 10544 10545 // Ties are broken by comparing the case value. 10546 return X.Low->getValue().slt(CC.Low->getValue()); 10547 }); 10548 } 10549 10550 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10551 const SwitchWorkListItem &W, 10552 Value *Cond, 10553 MachineBasicBlock *SwitchMBB) { 10554 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10555 "Clusters not sorted?"); 10556 10557 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10558 10559 // Balance the tree based on branch probabilities to create a near-optimal (in 10560 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10561 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10562 CaseClusterIt LastLeft = W.FirstCluster; 10563 CaseClusterIt FirstRight = W.LastCluster; 10564 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10565 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10566 10567 // Move LastLeft and FirstRight towards each other from opposite directions to 10568 // find a partitioning of the clusters which balances the probability on both 10569 // sides. If LeftProb and RightProb are equal, alternate which side is 10570 // taken to ensure 0-probability nodes are distributed evenly. 10571 unsigned I = 0; 10572 while (LastLeft + 1 < FirstRight) { 10573 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10574 LeftProb += (++LastLeft)->Prob; 10575 else 10576 RightProb += (--FirstRight)->Prob; 10577 I++; 10578 } 10579 10580 while (true) { 10581 // Our binary search tree differs from a typical BST in that ours can have up 10582 // to three values in each leaf. The pivot selection above doesn't take that 10583 // into account, which means the tree might require more nodes and be less 10584 // efficient. We compensate for this here. 10585 10586 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10587 unsigned NumRight = W.LastCluster - FirstRight + 1; 10588 10589 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10590 // If one side has less than 3 clusters, and the other has more than 3, 10591 // consider taking a cluster from the other side. 10592 10593 if (NumLeft < NumRight) { 10594 // Consider moving the first cluster on the right to the left side. 10595 CaseCluster &CC = *FirstRight; 10596 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10597 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10598 if (LeftSideRank <= RightSideRank) { 10599 // Moving the cluster to the left does not demote it. 10600 ++LastLeft; 10601 ++FirstRight; 10602 continue; 10603 } 10604 } else { 10605 assert(NumRight < NumLeft); 10606 // Consider moving the last element on the left to the right side. 10607 CaseCluster &CC = *LastLeft; 10608 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10609 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10610 if (RightSideRank <= LeftSideRank) { 10611 // Moving the cluster to the right does not demot it. 10612 --LastLeft; 10613 --FirstRight; 10614 continue; 10615 } 10616 } 10617 } 10618 break; 10619 } 10620 10621 assert(LastLeft + 1 == FirstRight); 10622 assert(LastLeft >= W.FirstCluster); 10623 assert(FirstRight <= W.LastCluster); 10624 10625 // Use the first element on the right as pivot since we will make less-than 10626 // comparisons against it. 10627 CaseClusterIt PivotCluster = FirstRight; 10628 assert(PivotCluster > W.FirstCluster); 10629 assert(PivotCluster <= W.LastCluster); 10630 10631 CaseClusterIt FirstLeft = W.FirstCluster; 10632 CaseClusterIt LastRight = W.LastCluster; 10633 10634 const ConstantInt *Pivot = PivotCluster->Low; 10635 10636 // New blocks will be inserted immediately after the current one. 10637 MachineFunction::iterator BBI(W.MBB); 10638 ++BBI; 10639 10640 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10641 // we can branch to its destination directly if it's squeezed exactly in 10642 // between the known lower bound and Pivot - 1. 10643 MachineBasicBlock *LeftMBB; 10644 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10645 FirstLeft->Low == W.GE && 10646 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10647 LeftMBB = FirstLeft->MBB; 10648 } else { 10649 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10650 FuncInfo.MF->insert(BBI, LeftMBB); 10651 WorkList.push_back( 10652 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10653 // Put Cond in a virtual register to make it available from the new blocks. 10654 ExportFromCurrentBlock(Cond); 10655 } 10656 10657 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10658 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10659 // directly if RHS.High equals the current upper bound. 10660 MachineBasicBlock *RightMBB; 10661 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10662 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10663 RightMBB = FirstRight->MBB; 10664 } else { 10665 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10666 FuncInfo.MF->insert(BBI, RightMBB); 10667 WorkList.push_back( 10668 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10669 // Put Cond in a virtual register to make it available from the new blocks. 10670 ExportFromCurrentBlock(Cond); 10671 } 10672 10673 // Create the CaseBlock record that will be used to lower the branch. 10674 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10675 getCurSDLoc(), LeftProb, RightProb); 10676 10677 if (W.MBB == SwitchMBB) 10678 visitSwitchCase(CB, SwitchMBB); 10679 else 10680 SL->SwitchCases.push_back(CB); 10681 } 10682 10683 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10684 // from the swith statement. 10685 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10686 BranchProbability PeeledCaseProb) { 10687 if (PeeledCaseProb == BranchProbability::getOne()) 10688 return BranchProbability::getZero(); 10689 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10690 10691 uint32_t Numerator = CaseProb.getNumerator(); 10692 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10693 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10694 } 10695 10696 // Try to peel the top probability case if it exceeds the threshold. 10697 // Return current MachineBasicBlock for the switch statement if the peeling 10698 // does not occur. 10699 // If the peeling is performed, return the newly created MachineBasicBlock 10700 // for the peeled switch statement. Also update Clusters to remove the peeled 10701 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10702 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10703 const SwitchInst &SI, CaseClusterVector &Clusters, 10704 BranchProbability &PeeledCaseProb) { 10705 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10706 // Don't perform if there is only one cluster or optimizing for size. 10707 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10708 TM.getOptLevel() == CodeGenOpt::None || 10709 SwitchMBB->getParent()->getFunction().hasMinSize()) 10710 return SwitchMBB; 10711 10712 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10713 unsigned PeeledCaseIndex = 0; 10714 bool SwitchPeeled = false; 10715 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10716 CaseCluster &CC = Clusters[Index]; 10717 if (CC.Prob < TopCaseProb) 10718 continue; 10719 TopCaseProb = CC.Prob; 10720 PeeledCaseIndex = Index; 10721 SwitchPeeled = true; 10722 } 10723 if (!SwitchPeeled) 10724 return SwitchMBB; 10725 10726 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10727 << TopCaseProb << "\n"); 10728 10729 // Record the MBB for the peeled switch statement. 10730 MachineFunction::iterator BBI(SwitchMBB); 10731 ++BBI; 10732 MachineBasicBlock *PeeledSwitchMBB = 10733 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10734 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10735 10736 ExportFromCurrentBlock(SI.getCondition()); 10737 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10738 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10739 nullptr, nullptr, TopCaseProb.getCompl()}; 10740 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10741 10742 Clusters.erase(PeeledCaseIt); 10743 for (CaseCluster &CC : Clusters) { 10744 LLVM_DEBUG( 10745 dbgs() << "Scale the probablity for one cluster, before scaling: " 10746 << CC.Prob << "\n"); 10747 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10748 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10749 } 10750 PeeledCaseProb = TopCaseProb; 10751 return PeeledSwitchMBB; 10752 } 10753 10754 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10755 // Extract cases from the switch. 10756 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10757 CaseClusterVector Clusters; 10758 Clusters.reserve(SI.getNumCases()); 10759 for (auto I : SI.cases()) { 10760 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10761 const ConstantInt *CaseVal = I.getCaseValue(); 10762 BranchProbability Prob = 10763 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10764 : BranchProbability(1, SI.getNumCases() + 1); 10765 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10766 } 10767 10768 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10769 10770 // Cluster adjacent cases with the same destination. We do this at all 10771 // optimization levels because it's cheap to do and will make codegen faster 10772 // if there are many clusters. 10773 sortAndRangeify(Clusters); 10774 10775 // The branch probablity of the peeled case. 10776 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10777 MachineBasicBlock *PeeledSwitchMBB = 10778 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10779 10780 // If there is only the default destination, jump there directly. 10781 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10782 if (Clusters.empty()) { 10783 assert(PeeledSwitchMBB == SwitchMBB); 10784 SwitchMBB->addSuccessor(DefaultMBB); 10785 if (DefaultMBB != NextBlock(SwitchMBB)) { 10786 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10787 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10788 } 10789 return; 10790 } 10791 10792 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10793 SL->findBitTestClusters(Clusters, &SI); 10794 10795 LLVM_DEBUG({ 10796 dbgs() << "Case clusters: "; 10797 for (const CaseCluster &C : Clusters) { 10798 if (C.Kind == CC_JumpTable) 10799 dbgs() << "JT:"; 10800 if (C.Kind == CC_BitTests) 10801 dbgs() << "BT:"; 10802 10803 C.Low->getValue().print(dbgs(), true); 10804 if (C.Low != C.High) { 10805 dbgs() << '-'; 10806 C.High->getValue().print(dbgs(), true); 10807 } 10808 dbgs() << ' '; 10809 } 10810 dbgs() << '\n'; 10811 }); 10812 10813 assert(!Clusters.empty()); 10814 SwitchWorkList WorkList; 10815 CaseClusterIt First = Clusters.begin(); 10816 CaseClusterIt Last = Clusters.end() - 1; 10817 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10818 // Scale the branchprobability for DefaultMBB if the peel occurs and 10819 // DefaultMBB is not replaced. 10820 if (PeeledCaseProb != BranchProbability::getZero() && 10821 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10822 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10823 WorkList.push_back( 10824 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10825 10826 while (!WorkList.empty()) { 10827 SwitchWorkListItem W = WorkList.pop_back_val(); 10828 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10829 10830 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10831 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10832 // For optimized builds, lower large range as a balanced binary tree. 10833 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10834 continue; 10835 } 10836 10837 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10838 } 10839 } 10840 10841 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 10842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10843 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10844 10845 SDLoc DL = getCurSDLoc(); 10846 SDValue V = getValue(I.getOperand(0)); 10847 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 10848 10849 if (VT.isScalableVector()) { 10850 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 10851 return; 10852 } 10853 10854 // Use VECTOR_SHUFFLE for the fixed-length vector 10855 // to maintain existing behavior. 10856 SmallVector<int, 8> Mask; 10857 unsigned NumElts = VT.getVectorMinNumElements(); 10858 for (unsigned i = 0; i != NumElts; ++i) 10859 Mask.push_back(NumElts - 1 - i); 10860 10861 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 10862 } 10863 10864 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10865 SmallVector<EVT, 4> ValueVTs; 10866 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10867 ValueVTs); 10868 unsigned NumValues = ValueVTs.size(); 10869 if (NumValues == 0) return; 10870 10871 SmallVector<SDValue, 4> Values(NumValues); 10872 SDValue Op = getValue(I.getOperand(0)); 10873 10874 for (unsigned i = 0; i != NumValues; ++i) 10875 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10876 SDValue(Op.getNode(), Op.getResNo() + i)); 10877 10878 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10879 DAG.getVTList(ValueVTs), Values)); 10880 } 10881