1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt = true; 823 EVT FromVT(MVT::Other); 824 if (NumSignBits == RegSize) { 825 isSExt = true; // ASSERT SEXT 1 826 FromVT = MVT::i1; 827 } else if (NumZeroBits >= RegSize - 1) { 828 isSExt = false; // ASSERT ZEXT 1 829 FromVT = MVT::i1; 830 } else if (NumSignBits > RegSize - 8) { 831 isSExt = true; // ASSERT SEXT 8 832 FromVT = MVT::i8; 833 } else if (NumZeroBits >= RegSize - 8) { 834 isSExt = false; // ASSERT ZEXT 8 835 FromVT = MVT::i8; 836 } else if (NumSignBits > RegSize - 16) { 837 isSExt = true; // ASSERT SEXT 16 838 FromVT = MVT::i16; 839 } else if (NumZeroBits >= RegSize - 16) { 840 isSExt = false; // ASSERT ZEXT 16 841 FromVT = MVT::i16; 842 } else if (NumSignBits > RegSize - 32) { 843 isSExt = true; // ASSERT SEXT 32 844 FromVT = MVT::i32; 845 } else if (NumZeroBits >= RegSize - 32) { 846 isSExt = false; // ASSERT ZEXT 32 847 FromVT = MVT::i32; 848 } else { 849 continue; 850 } 851 // Add an assertion node. 852 assert(FromVT != MVT::Other); 853 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 854 RegisterVT, P, DAG.getValueType(FromVT)); 855 } 856 857 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 858 NumRegs, RegisterVT, ValueVT, V); 859 Part += NumRegs; 860 Parts.clear(); 861 } 862 863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 864 } 865 866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 867 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 868 const Value *V, 869 ISD::NodeType PreferredExtendType) const { 870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 871 ISD::NodeType ExtendKind = PreferredExtendType; 872 873 // Get the list of the values's legal parts. 874 unsigned NumRegs = Regs.size(); 875 SmallVector<SDValue, 8> Parts(NumRegs); 876 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 877 unsigned NumParts = RegCount[Value]; 878 879 MVT RegisterVT = IsABIMangled 880 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 881 : RegVTs[Value]; 882 883 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 884 ExtendKind = ISD::ZERO_EXTEND; 885 886 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 887 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 888 Part += NumParts; 889 } 890 891 // Copy the parts into the registers. 892 SmallVector<SDValue, 8> Chains(NumRegs); 893 for (unsigned i = 0; i != NumRegs; ++i) { 894 SDValue Part; 895 if (!Flag) { 896 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 897 } else { 898 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 899 *Flag = Part.getValue(1); 900 } 901 902 Chains[i] = Part.getValue(0); 903 } 904 905 if (NumRegs == 1 || Flag) 906 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 907 // flagged to it. That is the CopyToReg nodes and the user are considered 908 // a single scheduling unit. If we create a TokenFactor and return it as 909 // chain, then the TokenFactor is both a predecessor (operand) of the 910 // user as well as a successor (the TF operands are flagged to the user). 911 // c1, f1 = CopyToReg 912 // c2, f2 = CopyToReg 913 // c3 = TokenFactor c1, c2 914 // ... 915 // = op c3, ..., f2 916 Chain = Chains[NumRegs-1]; 917 else 918 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 919 } 920 921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 922 unsigned MatchingIdx, const SDLoc &dl, 923 SelectionDAG &DAG, 924 std::vector<SDValue> &Ops) const { 925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 926 927 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 928 if (HasMatching) 929 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 930 else if (!Regs.empty() && 931 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 932 // Put the register class of the virtual registers in the flag word. That 933 // way, later passes can recompute register class constraints for inline 934 // assembly as well as normal instructions. 935 // Don't do this for tied operands that can use the regclass information 936 // from the def. 937 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 938 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 939 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 940 } 941 942 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 943 Ops.push_back(Res); 944 945 if (Code == InlineAsm::Kind_Clobber) { 946 // Clobbers should always have a 1:1 mapping with registers, and may 947 // reference registers that have illegal (e.g. vector) types. Hence, we 948 // shouldn't try to apply any sort of splitting logic to them. 949 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 950 "No 1:1 mapping from clobbers to regs?"); 951 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 952 (void)SP; 953 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 954 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 955 assert( 956 (Regs[I] != SP || 957 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 958 "If we clobbered the stack pointer, MFI should know about it."); 959 } 960 return; 961 } 962 963 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 965 MVT RegisterVT = RegVTs[Value]; 966 for (unsigned i = 0; i != NumRegs; ++i) { 967 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 968 unsigned TheReg = Regs[Reg++]; 969 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 970 } 971 } 972 } 973 974 SmallVector<std::pair<unsigned, unsigned>, 4> 975 RegsForValue::getRegsAndSizes() const { 976 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 977 unsigned I = 0; 978 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 979 unsigned RegCount = std::get<0>(CountAndVT); 980 MVT RegisterVT = std::get<1>(CountAndVT); 981 unsigned RegisterSize = RegisterVT.getSizeInBits(); 982 for (unsigned E = I + RegCount; I != E; ++I) 983 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 984 } 985 return OutVec; 986 } 987 988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 989 const TargetLibraryInfo *li) { 990 AA = aa; 991 GFI = gfi; 992 LibInfo = li; 993 DL = &DAG.getDataLayout(); 994 Context = DAG.getContext(); 995 LPadToCallSiteMap.clear(); 996 } 997 998 void SelectionDAGBuilder::clear() { 999 NodeMap.clear(); 1000 UnusedArgNodeMap.clear(); 1001 PendingLoads.clear(); 1002 PendingExports.clear(); 1003 CurInst = nullptr; 1004 HasTailCall = false; 1005 SDNodeOrder = LowestSDNodeOrder; 1006 StatepointLowering.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1010 DanglingDebugInfoMap.clear(); 1011 } 1012 1013 SDValue SelectionDAGBuilder::getRoot() { 1014 if (PendingLoads.empty()) 1015 return DAG.getRoot(); 1016 1017 if (PendingLoads.size() == 1) { 1018 SDValue Root = PendingLoads[0]; 1019 DAG.setRoot(Root); 1020 PendingLoads.clear(); 1021 return Root; 1022 } 1023 1024 // Otherwise, we have to make a token factor node. 1025 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1026 PendingLoads); 1027 PendingLoads.clear(); 1028 DAG.setRoot(Root); 1029 return Root; 1030 } 1031 1032 SDValue SelectionDAGBuilder::getControlRoot() { 1033 SDValue Root = DAG.getRoot(); 1034 1035 if (PendingExports.empty()) 1036 return Root; 1037 1038 // Turn all of the CopyToReg chains into one factored node. 1039 if (Root.getOpcode() != ISD::EntryToken) { 1040 unsigned i = 0, e = PendingExports.size(); 1041 for (; i != e; ++i) { 1042 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1043 if (PendingExports[i].getNode()->getOperand(0) == Root) 1044 break; // Don't add the root if we already indirectly depend on it. 1045 } 1046 1047 if (i == e) 1048 PendingExports.push_back(Root); 1049 } 1050 1051 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1052 PendingExports); 1053 PendingExports.clear(); 1054 DAG.setRoot(Root); 1055 return Root; 1056 } 1057 1058 void SelectionDAGBuilder::visit(const Instruction &I) { 1059 // Set up outgoing PHI node register values before emitting the terminator. 1060 if (isa<TerminatorInst>(&I)) { 1061 HandlePHINodesInSuccessorBlocks(I.getParent()); 1062 } 1063 1064 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1065 if (!isa<DbgInfoIntrinsic>(I)) 1066 ++SDNodeOrder; 1067 1068 CurInst = &I; 1069 1070 visit(I.getOpcode(), I); 1071 1072 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1073 !isStatepoint(&I)) // statepoints handle their exports internally 1074 CopyToExportRegsIfNeeded(&I); 1075 1076 CurInst = nullptr; 1077 } 1078 1079 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1080 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1081 } 1082 1083 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1084 // Note: this doesn't use InstVisitor, because it has to work with 1085 // ConstantExpr's in addition to instructions. 1086 switch (Opcode) { 1087 default: llvm_unreachable("Unknown instruction type encountered!"); 1088 // Build the switch statement using the Instruction.def file. 1089 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1090 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1091 #include "llvm/IR/Instruction.def" 1092 } 1093 } 1094 1095 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1096 const DIExpression *Expr) { 1097 for (auto &DDIMI : DanglingDebugInfoMap) 1098 for (auto &DDI : DDIMI.second) 1099 if (DDI.getDI()) { 1100 const DbgValueInst *DI = DDI.getDI(); 1101 DIVariable *DanglingVariable = DI->getVariable(); 1102 DIExpression *DanglingExpr = DI->getExpression(); 1103 if (DanglingVariable == Variable && 1104 Expr->fragmentsOverlap(DanglingExpr)) { 1105 DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1106 DDI = DanglingDebugInfo(); 1107 } 1108 } 1109 } 1110 1111 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1112 // generate the debug data structures now that we've seen its definition. 1113 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1114 SDValue Val) { 1115 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1116 for (auto &DDI : DDIV) { 1117 if (!DDI.getDI()) 1118 continue; 1119 const DbgValueInst *DI = DDI.getDI(); 1120 DebugLoc dl = DDI.getdl(); 1121 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1122 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1123 DILocalVariable *Variable = DI->getVariable(); 1124 DIExpression *Expr = DI->getExpression(); 1125 assert(Variable->isValidLocationForIntrinsic(dl) && 1126 "Expected inlined-at fields to agree"); 1127 SDDbgValue *SDV; 1128 if (Val.getNode()) { 1129 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1130 DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder 1131 << "] for:\n " << *DI << "\n"); 1132 DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1133 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1134 // inserted after the definition of Val when emitting the instructions 1135 // after ISel. An alternative could be to teach 1136 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1137 DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) 1138 dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder 1139 << " to " << ValSDNodeOrder << "\n"); 1140 SDV = getDbgValue(Val, Variable, Expr, dl, 1141 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1142 DAG.AddDbgValue(SDV, Val.getNode(), false); 1143 } else 1144 DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1145 << "in EmitFuncArgumentDbgValue\n"); 1146 } else 1147 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1148 } 1149 DanglingDebugInfoMap[V].clear(); 1150 } 1151 1152 /// getCopyFromRegs - If there was virtual register allocated for the value V 1153 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1154 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1155 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1156 SDValue Result; 1157 1158 if (It != FuncInfo.ValueMap.end()) { 1159 unsigned InReg = It->second; 1160 1161 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1162 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1163 SDValue Chain = DAG.getEntryNode(); 1164 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1165 V); 1166 resolveDanglingDebugInfo(V, Result); 1167 } 1168 1169 return Result; 1170 } 1171 1172 /// getValue - Return an SDValue for the given Value. 1173 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1174 // If we already have an SDValue for this value, use it. It's important 1175 // to do this first, so that we don't create a CopyFromReg if we already 1176 // have a regular SDValue. 1177 SDValue &N = NodeMap[V]; 1178 if (N.getNode()) return N; 1179 1180 // If there's a virtual register allocated and initialized for this 1181 // value, use it. 1182 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1183 return copyFromReg; 1184 1185 // Otherwise create a new SDValue and remember it. 1186 SDValue Val = getValueImpl(V); 1187 NodeMap[V] = Val; 1188 resolveDanglingDebugInfo(V, Val); 1189 return Val; 1190 } 1191 1192 // Return true if SDValue exists for the given Value 1193 bool SelectionDAGBuilder::findValue(const Value *V) const { 1194 return (NodeMap.find(V) != NodeMap.end()) || 1195 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1196 } 1197 1198 /// getNonRegisterValue - Return an SDValue for the given Value, but 1199 /// don't look in FuncInfo.ValueMap for a virtual register. 1200 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1201 // If we already have an SDValue for this value, use it. 1202 SDValue &N = NodeMap[V]; 1203 if (N.getNode()) { 1204 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1205 // Remove the debug location from the node as the node is about to be used 1206 // in a location which may differ from the original debug location. This 1207 // is relevant to Constant and ConstantFP nodes because they can appear 1208 // as constant expressions inside PHI nodes. 1209 N->setDebugLoc(DebugLoc()); 1210 } 1211 return N; 1212 } 1213 1214 // Otherwise create a new SDValue and remember it. 1215 SDValue Val = getValueImpl(V); 1216 NodeMap[V] = Val; 1217 resolveDanglingDebugInfo(V, Val); 1218 return Val; 1219 } 1220 1221 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1222 /// Create an SDValue for the given value. 1223 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1225 1226 if (const Constant *C = dyn_cast<Constant>(V)) { 1227 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1228 1229 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1230 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1231 1232 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1233 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1234 1235 if (isa<ConstantPointerNull>(C)) { 1236 unsigned AS = V->getType()->getPointerAddressSpace(); 1237 return DAG.getConstant(0, getCurSDLoc(), 1238 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1239 } 1240 1241 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1242 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1243 1244 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1245 return DAG.getUNDEF(VT); 1246 1247 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1248 visit(CE->getOpcode(), *CE); 1249 SDValue N1 = NodeMap[V]; 1250 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1251 return N1; 1252 } 1253 1254 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1255 SmallVector<SDValue, 4> Constants; 1256 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1257 OI != OE; ++OI) { 1258 SDNode *Val = getValue(*OI).getNode(); 1259 // If the operand is an empty aggregate, there are no values. 1260 if (!Val) continue; 1261 // Add each leaf value from the operand to the Constants list 1262 // to form a flattened list of all the values. 1263 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1264 Constants.push_back(SDValue(Val, i)); 1265 } 1266 1267 return DAG.getMergeValues(Constants, getCurSDLoc()); 1268 } 1269 1270 if (const ConstantDataSequential *CDS = 1271 dyn_cast<ConstantDataSequential>(C)) { 1272 SmallVector<SDValue, 4> Ops; 1273 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1274 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1275 // Add each leaf value from the operand to the Constants list 1276 // to form a flattened list of all the values. 1277 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1278 Ops.push_back(SDValue(Val, i)); 1279 } 1280 1281 if (isa<ArrayType>(CDS->getType())) 1282 return DAG.getMergeValues(Ops, getCurSDLoc()); 1283 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1284 } 1285 1286 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1287 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1288 "Unknown struct or array constant!"); 1289 1290 SmallVector<EVT, 4> ValueVTs; 1291 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1292 unsigned NumElts = ValueVTs.size(); 1293 if (NumElts == 0) 1294 return SDValue(); // empty struct 1295 SmallVector<SDValue, 4> Constants(NumElts); 1296 for (unsigned i = 0; i != NumElts; ++i) { 1297 EVT EltVT = ValueVTs[i]; 1298 if (isa<UndefValue>(C)) 1299 Constants[i] = DAG.getUNDEF(EltVT); 1300 else if (EltVT.isFloatingPoint()) 1301 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1302 else 1303 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1304 } 1305 1306 return DAG.getMergeValues(Constants, getCurSDLoc()); 1307 } 1308 1309 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1310 return DAG.getBlockAddress(BA, VT); 1311 1312 VectorType *VecTy = cast<VectorType>(V->getType()); 1313 unsigned NumElements = VecTy->getNumElements(); 1314 1315 // Now that we know the number and type of the elements, get that number of 1316 // elements into the Ops array based on what kind of constant it is. 1317 SmallVector<SDValue, 16> Ops; 1318 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1319 for (unsigned i = 0; i != NumElements; ++i) 1320 Ops.push_back(getValue(CV->getOperand(i))); 1321 } else { 1322 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1323 EVT EltVT = 1324 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1325 1326 SDValue Op; 1327 if (EltVT.isFloatingPoint()) 1328 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1329 else 1330 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1331 Ops.assign(NumElements, Op); 1332 } 1333 1334 // Create a BUILD_VECTOR node. 1335 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1336 } 1337 1338 // If this is a static alloca, generate it as the frameindex instead of 1339 // computation. 1340 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1341 DenseMap<const AllocaInst*, int>::iterator SI = 1342 FuncInfo.StaticAllocaMap.find(AI); 1343 if (SI != FuncInfo.StaticAllocaMap.end()) 1344 return DAG.getFrameIndex(SI->second, 1345 TLI.getFrameIndexTy(DAG.getDataLayout())); 1346 } 1347 1348 // If this is an instruction which fast-isel has deferred, select it now. 1349 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1350 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1351 1352 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1353 Inst->getType(), isABIRegCopy(V)); 1354 SDValue Chain = DAG.getEntryNode(); 1355 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1356 } 1357 1358 llvm_unreachable("Can't get register for value!"); 1359 } 1360 1361 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1362 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1363 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1364 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1365 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1366 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1367 if (IsMSVCCXX || IsCoreCLR) 1368 CatchPadMBB->setIsEHFuncletEntry(); 1369 1370 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1371 } 1372 1373 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1374 // Update machine-CFG edge. 1375 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1376 FuncInfo.MBB->addSuccessor(TargetMBB); 1377 1378 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1379 bool IsSEH = isAsynchronousEHPersonality(Pers); 1380 if (IsSEH) { 1381 // If this is not a fall-through branch or optimizations are switched off, 1382 // emit the branch. 1383 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1384 TM.getOptLevel() == CodeGenOpt::None) 1385 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1386 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1387 return; 1388 } 1389 1390 // Figure out the funclet membership for the catchret's successor. 1391 // This will be used by the FuncletLayout pass to determine how to order the 1392 // BB's. 1393 // A 'catchret' returns to the outer scope's color. 1394 Value *ParentPad = I.getCatchSwitchParentPad(); 1395 const BasicBlock *SuccessorColor; 1396 if (isa<ConstantTokenNone>(ParentPad)) 1397 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1398 else 1399 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1400 assert(SuccessorColor && "No parent funclet for catchret!"); 1401 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1402 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1403 1404 // Create the terminator node. 1405 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1406 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1407 DAG.getBasicBlock(SuccessorColorMBB)); 1408 DAG.setRoot(Ret); 1409 } 1410 1411 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1412 // Don't emit any special code for the cleanuppad instruction. It just marks 1413 // the start of a funclet. 1414 FuncInfo.MBB->setIsEHFuncletEntry(); 1415 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1416 } 1417 1418 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1419 /// many places it could ultimately go. In the IR, we have a single unwind 1420 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1421 /// This function skips over imaginary basic blocks that hold catchswitch 1422 /// instructions, and finds all the "real" machine 1423 /// basic block destinations. As those destinations may not be successors of 1424 /// EHPadBB, here we also calculate the edge probability to those destinations. 1425 /// The passed-in Prob is the edge probability to EHPadBB. 1426 static void findUnwindDestinations( 1427 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1428 BranchProbability Prob, 1429 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1430 &UnwindDests) { 1431 EHPersonality Personality = 1432 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1433 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1434 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1435 1436 while (EHPadBB) { 1437 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1438 BasicBlock *NewEHPadBB = nullptr; 1439 if (isa<LandingPadInst>(Pad)) { 1440 // Stop on landingpads. They are not funclets. 1441 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1442 break; 1443 } else if (isa<CleanupPadInst>(Pad)) { 1444 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1445 // personalities. 1446 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1447 UnwindDests.back().first->setIsEHFuncletEntry(); 1448 break; 1449 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1450 // Add the catchpad handlers to the possible destinations. 1451 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1452 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1453 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1454 if (IsMSVCCXX || IsCoreCLR) 1455 UnwindDests.back().first->setIsEHFuncletEntry(); 1456 } 1457 NewEHPadBB = CatchSwitch->getUnwindDest(); 1458 } else { 1459 continue; 1460 } 1461 1462 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1463 if (BPI && NewEHPadBB) 1464 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1465 EHPadBB = NewEHPadBB; 1466 } 1467 } 1468 1469 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1470 // Update successor info. 1471 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1472 auto UnwindDest = I.getUnwindDest(); 1473 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1474 BranchProbability UnwindDestProb = 1475 (BPI && UnwindDest) 1476 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1477 : BranchProbability::getZero(); 1478 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1479 for (auto &UnwindDest : UnwindDests) { 1480 UnwindDest.first->setIsEHPad(); 1481 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1482 } 1483 FuncInfo.MBB->normalizeSuccProbs(); 1484 1485 // Create the terminator node. 1486 SDValue Ret = 1487 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1488 DAG.setRoot(Ret); 1489 } 1490 1491 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1492 report_fatal_error("visitCatchSwitch not yet implemented!"); 1493 } 1494 1495 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1497 auto &DL = DAG.getDataLayout(); 1498 SDValue Chain = getControlRoot(); 1499 SmallVector<ISD::OutputArg, 8> Outs; 1500 SmallVector<SDValue, 8> OutVals; 1501 1502 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1503 // lower 1504 // 1505 // %val = call <ty> @llvm.experimental.deoptimize() 1506 // ret <ty> %val 1507 // 1508 // differently. 1509 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1510 LowerDeoptimizingReturn(); 1511 return; 1512 } 1513 1514 if (!FuncInfo.CanLowerReturn) { 1515 unsigned DemoteReg = FuncInfo.DemoteRegister; 1516 const Function *F = I.getParent()->getParent(); 1517 1518 // Emit a store of the return value through the virtual register. 1519 // Leave Outs empty so that LowerReturn won't try to load return 1520 // registers the usual way. 1521 SmallVector<EVT, 1> PtrValueVTs; 1522 ComputeValueVTs(TLI, DL, 1523 F->getReturnType()->getPointerTo( 1524 DAG.getDataLayout().getAllocaAddrSpace()), 1525 PtrValueVTs); 1526 1527 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1528 DemoteReg, PtrValueVTs[0]); 1529 SDValue RetOp = getValue(I.getOperand(0)); 1530 1531 SmallVector<EVT, 4> ValueVTs; 1532 SmallVector<uint64_t, 4> Offsets; 1533 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1534 unsigned NumValues = ValueVTs.size(); 1535 1536 SmallVector<SDValue, 4> Chains(NumValues); 1537 for (unsigned i = 0; i != NumValues; ++i) { 1538 // An aggregate return value cannot wrap around the address space, so 1539 // offsets to its parts don't wrap either. 1540 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1541 Chains[i] = DAG.getStore( 1542 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1543 // FIXME: better loc info would be nice. 1544 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1545 } 1546 1547 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1548 MVT::Other, Chains); 1549 } else if (I.getNumOperands() != 0) { 1550 SmallVector<EVT, 4> ValueVTs; 1551 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1552 unsigned NumValues = ValueVTs.size(); 1553 if (NumValues) { 1554 SDValue RetOp = getValue(I.getOperand(0)); 1555 1556 const Function *F = I.getParent()->getParent(); 1557 1558 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1559 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1560 Attribute::SExt)) 1561 ExtendKind = ISD::SIGN_EXTEND; 1562 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1563 Attribute::ZExt)) 1564 ExtendKind = ISD::ZERO_EXTEND; 1565 1566 LLVMContext &Context = F->getContext(); 1567 bool RetInReg = F->getAttributes().hasAttribute( 1568 AttributeList::ReturnIndex, Attribute::InReg); 1569 1570 for (unsigned j = 0; j != NumValues; ++j) { 1571 EVT VT = ValueVTs[j]; 1572 1573 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1574 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1575 1576 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1577 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1578 SmallVector<SDValue, 4> Parts(NumParts); 1579 getCopyToParts(DAG, getCurSDLoc(), 1580 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1581 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1582 1583 // 'inreg' on function refers to return value 1584 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1585 if (RetInReg) 1586 Flags.setInReg(); 1587 1588 // Propagate extension type if any 1589 if (ExtendKind == ISD::SIGN_EXTEND) 1590 Flags.setSExt(); 1591 else if (ExtendKind == ISD::ZERO_EXTEND) 1592 Flags.setZExt(); 1593 1594 for (unsigned i = 0; i < NumParts; ++i) { 1595 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1596 VT, /*isfixed=*/true, 0, 0)); 1597 OutVals.push_back(Parts[i]); 1598 } 1599 } 1600 } 1601 } 1602 1603 // Push in swifterror virtual register as the last element of Outs. This makes 1604 // sure swifterror virtual register will be returned in the swifterror 1605 // physical register. 1606 const Function *F = I.getParent()->getParent(); 1607 if (TLI.supportSwiftError() && 1608 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1609 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1610 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1611 Flags.setSwiftError(); 1612 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1613 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1614 true /*isfixed*/, 1 /*origidx*/, 1615 0 /*partOffs*/)); 1616 // Create SDNode for the swifterror virtual register. 1617 OutVals.push_back( 1618 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1619 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1620 EVT(TLI.getPointerTy(DL)))); 1621 } 1622 1623 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1624 CallingConv::ID CallConv = 1625 DAG.getMachineFunction().getFunction().getCallingConv(); 1626 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1627 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1628 1629 // Verify that the target's LowerReturn behaved as expected. 1630 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1631 "LowerReturn didn't return a valid chain!"); 1632 1633 // Update the DAG with the new chain value resulting from return lowering. 1634 DAG.setRoot(Chain); 1635 } 1636 1637 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1638 /// created for it, emit nodes to copy the value into the virtual 1639 /// registers. 1640 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1641 // Skip empty types 1642 if (V->getType()->isEmptyTy()) 1643 return; 1644 1645 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1646 if (VMI != FuncInfo.ValueMap.end()) { 1647 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1648 CopyValueToVirtualRegister(V, VMI->second); 1649 } 1650 } 1651 1652 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1653 /// the current basic block, add it to ValueMap now so that we'll get a 1654 /// CopyTo/FromReg. 1655 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1656 // No need to export constants. 1657 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1658 1659 // Already exported? 1660 if (FuncInfo.isExportedInst(V)) return; 1661 1662 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1663 CopyValueToVirtualRegister(V, Reg); 1664 } 1665 1666 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1667 const BasicBlock *FromBB) { 1668 // The operands of the setcc have to be in this block. We don't know 1669 // how to export them from some other block. 1670 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1671 // Can export from current BB. 1672 if (VI->getParent() == FromBB) 1673 return true; 1674 1675 // Is already exported, noop. 1676 return FuncInfo.isExportedInst(V); 1677 } 1678 1679 // If this is an argument, we can export it if the BB is the entry block or 1680 // if it is already exported. 1681 if (isa<Argument>(V)) { 1682 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1683 return true; 1684 1685 // Otherwise, can only export this if it is already exported. 1686 return FuncInfo.isExportedInst(V); 1687 } 1688 1689 // Otherwise, constants can always be exported. 1690 return true; 1691 } 1692 1693 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1694 BranchProbability 1695 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1696 const MachineBasicBlock *Dst) const { 1697 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1698 const BasicBlock *SrcBB = Src->getBasicBlock(); 1699 const BasicBlock *DstBB = Dst->getBasicBlock(); 1700 if (!BPI) { 1701 // If BPI is not available, set the default probability as 1 / N, where N is 1702 // the number of successors. 1703 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1704 return BranchProbability(1, SuccSize); 1705 } 1706 return BPI->getEdgeProbability(SrcBB, DstBB); 1707 } 1708 1709 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1710 MachineBasicBlock *Dst, 1711 BranchProbability Prob) { 1712 if (!FuncInfo.BPI) 1713 Src->addSuccessorWithoutProb(Dst); 1714 else { 1715 if (Prob.isUnknown()) 1716 Prob = getEdgeProbability(Src, Dst); 1717 Src->addSuccessor(Dst, Prob); 1718 } 1719 } 1720 1721 static bool InBlock(const Value *V, const BasicBlock *BB) { 1722 if (const Instruction *I = dyn_cast<Instruction>(V)) 1723 return I->getParent() == BB; 1724 return true; 1725 } 1726 1727 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1728 /// This function emits a branch and is used at the leaves of an OR or an 1729 /// AND operator tree. 1730 void 1731 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1732 MachineBasicBlock *TBB, 1733 MachineBasicBlock *FBB, 1734 MachineBasicBlock *CurBB, 1735 MachineBasicBlock *SwitchBB, 1736 BranchProbability TProb, 1737 BranchProbability FProb, 1738 bool InvertCond) { 1739 const BasicBlock *BB = CurBB->getBasicBlock(); 1740 1741 // If the leaf of the tree is a comparison, merge the condition into 1742 // the caseblock. 1743 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1744 // The operands of the cmp have to be in this block. We don't know 1745 // how to export them from some other block. If this is the first block 1746 // of the sequence, no exporting is needed. 1747 if (CurBB == SwitchBB || 1748 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1749 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1750 ISD::CondCode Condition; 1751 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1752 ICmpInst::Predicate Pred = 1753 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1754 Condition = getICmpCondCode(Pred); 1755 } else { 1756 const FCmpInst *FC = cast<FCmpInst>(Cond); 1757 FCmpInst::Predicate Pred = 1758 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1759 Condition = getFCmpCondCode(Pred); 1760 if (TM.Options.NoNaNsFPMath) 1761 Condition = getFCmpCodeWithoutNaN(Condition); 1762 } 1763 1764 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1765 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1766 SwitchCases.push_back(CB); 1767 return; 1768 } 1769 } 1770 1771 // Create a CaseBlock record representing this branch. 1772 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1773 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1774 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1775 SwitchCases.push_back(CB); 1776 } 1777 1778 /// FindMergedConditions - If Cond is an expression like 1779 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1780 MachineBasicBlock *TBB, 1781 MachineBasicBlock *FBB, 1782 MachineBasicBlock *CurBB, 1783 MachineBasicBlock *SwitchBB, 1784 Instruction::BinaryOps Opc, 1785 BranchProbability TProb, 1786 BranchProbability FProb, 1787 bool InvertCond) { 1788 // Skip over not part of the tree and remember to invert op and operands at 1789 // next level. 1790 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1791 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1792 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1793 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1794 !InvertCond); 1795 return; 1796 } 1797 } 1798 1799 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1800 // Compute the effective opcode for Cond, taking into account whether it needs 1801 // to be inverted, e.g. 1802 // and (not (or A, B)), C 1803 // gets lowered as 1804 // and (and (not A, not B), C) 1805 unsigned BOpc = 0; 1806 if (BOp) { 1807 BOpc = BOp->getOpcode(); 1808 if (InvertCond) { 1809 if (BOpc == Instruction::And) 1810 BOpc = Instruction::Or; 1811 else if (BOpc == Instruction::Or) 1812 BOpc = Instruction::And; 1813 } 1814 } 1815 1816 // If this node is not part of the or/and tree, emit it as a branch. 1817 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1818 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1819 BOp->getParent() != CurBB->getBasicBlock() || 1820 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1821 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1822 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1823 TProb, FProb, InvertCond); 1824 return; 1825 } 1826 1827 // Create TmpBB after CurBB. 1828 MachineFunction::iterator BBI(CurBB); 1829 MachineFunction &MF = DAG.getMachineFunction(); 1830 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1831 CurBB->getParent()->insert(++BBI, TmpBB); 1832 1833 if (Opc == Instruction::Or) { 1834 // Codegen X | Y as: 1835 // BB1: 1836 // jmp_if_X TBB 1837 // jmp TmpBB 1838 // TmpBB: 1839 // jmp_if_Y TBB 1840 // jmp FBB 1841 // 1842 1843 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1844 // The requirement is that 1845 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1846 // = TrueProb for original BB. 1847 // Assuming the original probabilities are A and B, one choice is to set 1848 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1849 // A/(1+B) and 2B/(1+B). This choice assumes that 1850 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1851 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1852 // TmpBB, but the math is more complicated. 1853 1854 auto NewTrueProb = TProb / 2; 1855 auto NewFalseProb = TProb / 2 + FProb; 1856 // Emit the LHS condition. 1857 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1858 NewTrueProb, NewFalseProb, InvertCond); 1859 1860 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1861 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1862 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1863 // Emit the RHS condition into TmpBB. 1864 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1865 Probs[0], Probs[1], InvertCond); 1866 } else { 1867 assert(Opc == Instruction::And && "Unknown merge op!"); 1868 // Codegen X & Y as: 1869 // BB1: 1870 // jmp_if_X TmpBB 1871 // jmp FBB 1872 // TmpBB: 1873 // jmp_if_Y TBB 1874 // jmp FBB 1875 // 1876 // This requires creation of TmpBB after CurBB. 1877 1878 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1879 // The requirement is that 1880 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1881 // = FalseProb for original BB. 1882 // Assuming the original probabilities are A and B, one choice is to set 1883 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1884 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1885 // TrueProb for BB1 * FalseProb for TmpBB. 1886 1887 auto NewTrueProb = TProb + FProb / 2; 1888 auto NewFalseProb = FProb / 2; 1889 // Emit the LHS condition. 1890 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1891 NewTrueProb, NewFalseProb, InvertCond); 1892 1893 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1894 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1895 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1896 // Emit the RHS condition into TmpBB. 1897 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1898 Probs[0], Probs[1], InvertCond); 1899 } 1900 } 1901 1902 /// If the set of cases should be emitted as a series of branches, return true. 1903 /// If we should emit this as a bunch of and/or'd together conditions, return 1904 /// false. 1905 bool 1906 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1907 if (Cases.size() != 2) return true; 1908 1909 // If this is two comparisons of the same values or'd or and'd together, they 1910 // will get folded into a single comparison, so don't emit two blocks. 1911 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1912 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1913 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1914 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1915 return false; 1916 } 1917 1918 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1919 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1920 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1921 Cases[0].CC == Cases[1].CC && 1922 isa<Constant>(Cases[0].CmpRHS) && 1923 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1924 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1925 return false; 1926 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1927 return false; 1928 } 1929 1930 return true; 1931 } 1932 1933 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1934 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1935 1936 // Update machine-CFG edges. 1937 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1938 1939 if (I.isUnconditional()) { 1940 // Update machine-CFG edges. 1941 BrMBB->addSuccessor(Succ0MBB); 1942 1943 // If this is not a fall-through branch or optimizations are switched off, 1944 // emit the branch. 1945 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1946 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1947 MVT::Other, getControlRoot(), 1948 DAG.getBasicBlock(Succ0MBB))); 1949 1950 return; 1951 } 1952 1953 // If this condition is one of the special cases we handle, do special stuff 1954 // now. 1955 const Value *CondVal = I.getCondition(); 1956 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1957 1958 // If this is a series of conditions that are or'd or and'd together, emit 1959 // this as a sequence of branches instead of setcc's with and/or operations. 1960 // As long as jumps are not expensive, this should improve performance. 1961 // For example, instead of something like: 1962 // cmp A, B 1963 // C = seteq 1964 // cmp D, E 1965 // F = setle 1966 // or C, F 1967 // jnz foo 1968 // Emit: 1969 // cmp A, B 1970 // je foo 1971 // cmp D, E 1972 // jle foo 1973 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1974 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1975 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1976 !I.getMetadata(LLVMContext::MD_unpredictable) && 1977 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1978 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1979 Opcode, 1980 getEdgeProbability(BrMBB, Succ0MBB), 1981 getEdgeProbability(BrMBB, Succ1MBB), 1982 /*InvertCond=*/false); 1983 // If the compares in later blocks need to use values not currently 1984 // exported from this block, export them now. This block should always 1985 // be the first entry. 1986 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1987 1988 // Allow some cases to be rejected. 1989 if (ShouldEmitAsBranches(SwitchCases)) { 1990 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1991 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1992 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1993 } 1994 1995 // Emit the branch for this block. 1996 visitSwitchCase(SwitchCases[0], BrMBB); 1997 SwitchCases.erase(SwitchCases.begin()); 1998 return; 1999 } 2000 2001 // Okay, we decided not to do this, remove any inserted MBB's and clear 2002 // SwitchCases. 2003 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2004 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2005 2006 SwitchCases.clear(); 2007 } 2008 } 2009 2010 // Create a CaseBlock record representing this branch. 2011 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2012 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2013 2014 // Use visitSwitchCase to actually insert the fast branch sequence for this 2015 // cond branch. 2016 visitSwitchCase(CB, BrMBB); 2017 } 2018 2019 /// visitSwitchCase - Emits the necessary code to represent a single node in 2020 /// the binary search tree resulting from lowering a switch instruction. 2021 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2022 MachineBasicBlock *SwitchBB) { 2023 SDValue Cond; 2024 SDValue CondLHS = getValue(CB.CmpLHS); 2025 SDLoc dl = CB.DL; 2026 2027 // Build the setcc now. 2028 if (!CB.CmpMHS) { 2029 // Fold "(X == true)" to X and "(X == false)" to !X to 2030 // handle common cases produced by branch lowering. 2031 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2032 CB.CC == ISD::SETEQ) 2033 Cond = CondLHS; 2034 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2035 CB.CC == ISD::SETEQ) { 2036 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2037 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2038 } else 2039 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2040 } else { 2041 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2042 2043 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2044 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2045 2046 SDValue CmpOp = getValue(CB.CmpMHS); 2047 EVT VT = CmpOp.getValueType(); 2048 2049 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2050 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2051 ISD::SETLE); 2052 } else { 2053 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2054 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2055 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2056 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2057 } 2058 } 2059 2060 // Update successor info 2061 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2062 // TrueBB and FalseBB are always different unless the incoming IR is 2063 // degenerate. This only happens when running llc on weird IR. 2064 if (CB.TrueBB != CB.FalseBB) 2065 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2066 SwitchBB->normalizeSuccProbs(); 2067 2068 // If the lhs block is the next block, invert the condition so that we can 2069 // fall through to the lhs instead of the rhs block. 2070 if (CB.TrueBB == NextBlock(SwitchBB)) { 2071 std::swap(CB.TrueBB, CB.FalseBB); 2072 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2073 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2074 } 2075 2076 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2077 MVT::Other, getControlRoot(), Cond, 2078 DAG.getBasicBlock(CB.TrueBB)); 2079 2080 // Insert the false branch. Do this even if it's a fall through branch, 2081 // this makes it easier to do DAG optimizations which require inverting 2082 // the branch condition. 2083 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2084 DAG.getBasicBlock(CB.FalseBB)); 2085 2086 DAG.setRoot(BrCond); 2087 } 2088 2089 /// visitJumpTable - Emit JumpTable node in the current MBB 2090 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2091 // Emit the code for the jump table 2092 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2093 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2094 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2095 JT.Reg, PTy); 2096 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2097 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2098 MVT::Other, Index.getValue(1), 2099 Table, Index); 2100 DAG.setRoot(BrJumpTable); 2101 } 2102 2103 /// visitJumpTableHeader - This function emits necessary code to produce index 2104 /// in the JumpTable from switch case. 2105 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2106 JumpTableHeader &JTH, 2107 MachineBasicBlock *SwitchBB) { 2108 SDLoc dl = getCurSDLoc(); 2109 2110 // Subtract the lowest switch case value from the value being switched on and 2111 // conditional branch to default mbb if the result is greater than the 2112 // difference between smallest and largest cases. 2113 SDValue SwitchOp = getValue(JTH.SValue); 2114 EVT VT = SwitchOp.getValueType(); 2115 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2116 DAG.getConstant(JTH.First, dl, VT)); 2117 2118 // The SDNode we just created, which holds the value being switched on minus 2119 // the smallest case value, needs to be copied to a virtual register so it 2120 // can be used as an index into the jump table in a subsequent basic block. 2121 // This value may be smaller or larger than the target's pointer type, and 2122 // therefore require extension or truncating. 2123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2124 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2125 2126 unsigned JumpTableReg = 2127 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2128 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2129 JumpTableReg, SwitchOp); 2130 JT.Reg = JumpTableReg; 2131 2132 // Emit the range check for the jump table, and branch to the default block 2133 // for the switch statement if the value being switched on exceeds the largest 2134 // case in the switch. 2135 SDValue CMP = DAG.getSetCC( 2136 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2137 Sub.getValueType()), 2138 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2139 2140 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2141 MVT::Other, CopyTo, CMP, 2142 DAG.getBasicBlock(JT.Default)); 2143 2144 // Avoid emitting unnecessary branches to the next block. 2145 if (JT.MBB != NextBlock(SwitchBB)) 2146 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2147 DAG.getBasicBlock(JT.MBB)); 2148 2149 DAG.setRoot(BrCond); 2150 } 2151 2152 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2153 /// variable if there exists one. 2154 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2155 SDValue &Chain) { 2156 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2157 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2158 MachineFunction &MF = DAG.getMachineFunction(); 2159 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2160 MachineSDNode *Node = 2161 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2162 if (Global) { 2163 MachinePointerInfo MPInfo(Global); 2164 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2165 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2166 MachineMemOperand::MODereferenceable; 2167 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2168 DAG.getEVTAlignment(PtrTy)); 2169 Node->setMemRefs(MemRefs, MemRefs + 1); 2170 } 2171 return SDValue(Node, 0); 2172 } 2173 2174 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2175 /// tail spliced into a stack protector check success bb. 2176 /// 2177 /// For a high level explanation of how this fits into the stack protector 2178 /// generation see the comment on the declaration of class 2179 /// StackProtectorDescriptor. 2180 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2181 MachineBasicBlock *ParentBB) { 2182 2183 // First create the loads to the guard/stack slot for the comparison. 2184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2185 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2186 2187 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2188 int FI = MFI.getStackProtectorIndex(); 2189 2190 SDValue Guard; 2191 SDLoc dl = getCurSDLoc(); 2192 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2193 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2194 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2195 2196 // Generate code to load the content of the guard slot. 2197 SDValue GuardVal = DAG.getLoad( 2198 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2199 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2200 MachineMemOperand::MOVolatile); 2201 2202 if (TLI.useStackGuardXorFP()) 2203 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2204 2205 // Retrieve guard check function, nullptr if instrumentation is inlined. 2206 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2207 // The target provides a guard check function to validate the guard value. 2208 // Generate a call to that function with the content of the guard slot as 2209 // argument. 2210 auto *Fn = cast<Function>(GuardCheck); 2211 FunctionType *FnTy = Fn->getFunctionType(); 2212 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2213 2214 TargetLowering::ArgListTy Args; 2215 TargetLowering::ArgListEntry Entry; 2216 Entry.Node = GuardVal; 2217 Entry.Ty = FnTy->getParamType(0); 2218 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2219 Entry.IsInReg = true; 2220 Args.push_back(Entry); 2221 2222 TargetLowering::CallLoweringInfo CLI(DAG); 2223 CLI.setDebugLoc(getCurSDLoc()) 2224 .setChain(DAG.getEntryNode()) 2225 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2226 getValue(GuardCheck), std::move(Args)); 2227 2228 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2229 DAG.setRoot(Result.second); 2230 return; 2231 } 2232 2233 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2234 // Otherwise, emit a volatile load to retrieve the stack guard value. 2235 SDValue Chain = DAG.getEntryNode(); 2236 if (TLI.useLoadStackGuardNode()) { 2237 Guard = getLoadStackGuard(DAG, dl, Chain); 2238 } else { 2239 const Value *IRGuard = TLI.getSDagStackGuard(M); 2240 SDValue GuardPtr = getValue(IRGuard); 2241 2242 Guard = 2243 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2244 Align, MachineMemOperand::MOVolatile); 2245 } 2246 2247 // Perform the comparison via a subtract/getsetcc. 2248 EVT VT = Guard.getValueType(); 2249 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2250 2251 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2252 *DAG.getContext(), 2253 Sub.getValueType()), 2254 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2255 2256 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2257 // branch to failure MBB. 2258 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2259 MVT::Other, GuardVal.getOperand(0), 2260 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2261 // Otherwise branch to success MBB. 2262 SDValue Br = DAG.getNode(ISD::BR, dl, 2263 MVT::Other, BrCond, 2264 DAG.getBasicBlock(SPD.getSuccessMBB())); 2265 2266 DAG.setRoot(Br); 2267 } 2268 2269 /// Codegen the failure basic block for a stack protector check. 2270 /// 2271 /// A failure stack protector machine basic block consists simply of a call to 2272 /// __stack_chk_fail(). 2273 /// 2274 /// For a high level explanation of how this fits into the stack protector 2275 /// generation see the comment on the declaration of class 2276 /// StackProtectorDescriptor. 2277 void 2278 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2280 SDValue Chain = 2281 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2282 None, false, getCurSDLoc(), false, false).second; 2283 DAG.setRoot(Chain); 2284 } 2285 2286 /// visitBitTestHeader - This function emits necessary code to produce value 2287 /// suitable for "bit tests" 2288 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2289 MachineBasicBlock *SwitchBB) { 2290 SDLoc dl = getCurSDLoc(); 2291 2292 // Subtract the minimum value 2293 SDValue SwitchOp = getValue(B.SValue); 2294 EVT VT = SwitchOp.getValueType(); 2295 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2296 DAG.getConstant(B.First, dl, VT)); 2297 2298 // Check range 2299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2300 SDValue RangeCmp = DAG.getSetCC( 2301 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2302 Sub.getValueType()), 2303 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2304 2305 // Determine the type of the test operands. 2306 bool UsePtrType = false; 2307 if (!TLI.isTypeLegal(VT)) 2308 UsePtrType = true; 2309 else { 2310 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2311 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2312 // Switch table case range are encoded into series of masks. 2313 // Just use pointer type, it's guaranteed to fit. 2314 UsePtrType = true; 2315 break; 2316 } 2317 } 2318 if (UsePtrType) { 2319 VT = TLI.getPointerTy(DAG.getDataLayout()); 2320 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2321 } 2322 2323 B.RegVT = VT.getSimpleVT(); 2324 B.Reg = FuncInfo.CreateReg(B.RegVT); 2325 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2326 2327 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2328 2329 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2330 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2331 SwitchBB->normalizeSuccProbs(); 2332 2333 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2334 MVT::Other, CopyTo, RangeCmp, 2335 DAG.getBasicBlock(B.Default)); 2336 2337 // Avoid emitting unnecessary branches to the next block. 2338 if (MBB != NextBlock(SwitchBB)) 2339 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2340 DAG.getBasicBlock(MBB)); 2341 2342 DAG.setRoot(BrRange); 2343 } 2344 2345 /// visitBitTestCase - this function produces one "bit test" 2346 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2347 MachineBasicBlock* NextMBB, 2348 BranchProbability BranchProbToNext, 2349 unsigned Reg, 2350 BitTestCase &B, 2351 MachineBasicBlock *SwitchBB) { 2352 SDLoc dl = getCurSDLoc(); 2353 MVT VT = BB.RegVT; 2354 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2355 SDValue Cmp; 2356 unsigned PopCount = countPopulation(B.Mask); 2357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2358 if (PopCount == 1) { 2359 // Testing for a single bit; just compare the shift count with what it 2360 // would need to be to shift a 1 bit in that position. 2361 Cmp = DAG.getSetCC( 2362 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2363 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2364 ISD::SETEQ); 2365 } else if (PopCount == BB.Range) { 2366 // There is only one zero bit in the range, test for it directly. 2367 Cmp = DAG.getSetCC( 2368 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2369 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2370 ISD::SETNE); 2371 } else { 2372 // Make desired shift 2373 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2374 DAG.getConstant(1, dl, VT), ShiftOp); 2375 2376 // Emit bit tests and jumps 2377 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2378 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2379 Cmp = DAG.getSetCC( 2380 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2381 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2382 } 2383 2384 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2385 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2386 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2387 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2388 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2389 // one as they are relative probabilities (and thus work more like weights), 2390 // and hence we need to normalize them to let the sum of them become one. 2391 SwitchBB->normalizeSuccProbs(); 2392 2393 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2394 MVT::Other, getControlRoot(), 2395 Cmp, DAG.getBasicBlock(B.TargetBB)); 2396 2397 // Avoid emitting unnecessary branches to the next block. 2398 if (NextMBB != NextBlock(SwitchBB)) 2399 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2400 DAG.getBasicBlock(NextMBB)); 2401 2402 DAG.setRoot(BrAnd); 2403 } 2404 2405 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2406 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2407 2408 // Retrieve successors. Look through artificial IR level blocks like 2409 // catchswitch for successors. 2410 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2411 const BasicBlock *EHPadBB = I.getSuccessor(1); 2412 2413 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2414 // have to do anything here to lower funclet bundles. 2415 assert(!I.hasOperandBundlesOtherThan( 2416 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2417 "Cannot lower invokes with arbitrary operand bundles yet!"); 2418 2419 const Value *Callee(I.getCalledValue()); 2420 const Function *Fn = dyn_cast<Function>(Callee); 2421 if (isa<InlineAsm>(Callee)) 2422 visitInlineAsm(&I); 2423 else if (Fn && Fn->isIntrinsic()) { 2424 switch (Fn->getIntrinsicID()) { 2425 default: 2426 llvm_unreachable("Cannot invoke this intrinsic"); 2427 case Intrinsic::donothing: 2428 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2429 break; 2430 case Intrinsic::experimental_patchpoint_void: 2431 case Intrinsic::experimental_patchpoint_i64: 2432 visitPatchpoint(&I, EHPadBB); 2433 break; 2434 case Intrinsic::experimental_gc_statepoint: 2435 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2436 break; 2437 } 2438 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2439 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2440 // Eventually we will support lowering the @llvm.experimental.deoptimize 2441 // intrinsic, and right now there are no plans to support other intrinsics 2442 // with deopt state. 2443 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2444 } else { 2445 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2446 } 2447 2448 // If the value of the invoke is used outside of its defining block, make it 2449 // available as a virtual register. 2450 // We already took care of the exported value for the statepoint instruction 2451 // during call to the LowerStatepoint. 2452 if (!isStatepoint(I)) { 2453 CopyToExportRegsIfNeeded(&I); 2454 } 2455 2456 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2457 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2458 BranchProbability EHPadBBProb = 2459 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2460 : BranchProbability::getZero(); 2461 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2462 2463 // Update successor info. 2464 addSuccessorWithProb(InvokeMBB, Return); 2465 for (auto &UnwindDest : UnwindDests) { 2466 UnwindDest.first->setIsEHPad(); 2467 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2468 } 2469 InvokeMBB->normalizeSuccProbs(); 2470 2471 // Drop into normal successor. 2472 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2473 MVT::Other, getControlRoot(), 2474 DAG.getBasicBlock(Return))); 2475 } 2476 2477 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2478 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2479 } 2480 2481 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2482 assert(FuncInfo.MBB->isEHPad() && 2483 "Call to landingpad not in landing pad!"); 2484 2485 MachineBasicBlock *MBB = FuncInfo.MBB; 2486 addLandingPadInfo(LP, *MBB); 2487 2488 // If there aren't registers to copy the values into (e.g., during SjLj 2489 // exceptions), then don't bother to create these DAG nodes. 2490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2491 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2492 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2493 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2494 return; 2495 2496 // If landingpad's return type is token type, we don't create DAG nodes 2497 // for its exception pointer and selector value. The extraction of exception 2498 // pointer or selector value from token type landingpads is not currently 2499 // supported. 2500 if (LP.getType()->isTokenTy()) 2501 return; 2502 2503 SmallVector<EVT, 2> ValueVTs; 2504 SDLoc dl = getCurSDLoc(); 2505 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2506 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2507 2508 // Get the two live-in registers as SDValues. The physregs have already been 2509 // copied into virtual registers. 2510 SDValue Ops[2]; 2511 if (FuncInfo.ExceptionPointerVirtReg) { 2512 Ops[0] = DAG.getZExtOrTrunc( 2513 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2514 FuncInfo.ExceptionPointerVirtReg, 2515 TLI.getPointerTy(DAG.getDataLayout())), 2516 dl, ValueVTs[0]); 2517 } else { 2518 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2519 } 2520 Ops[1] = DAG.getZExtOrTrunc( 2521 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2522 FuncInfo.ExceptionSelectorVirtReg, 2523 TLI.getPointerTy(DAG.getDataLayout())), 2524 dl, ValueVTs[1]); 2525 2526 // Merge into one. 2527 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2528 DAG.getVTList(ValueVTs), Ops); 2529 setValue(&LP, Res); 2530 } 2531 2532 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2533 #ifndef NDEBUG 2534 for (const CaseCluster &CC : Clusters) 2535 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2536 #endif 2537 2538 llvm::sort(Clusters.begin(), Clusters.end(), 2539 [](const CaseCluster &a, const CaseCluster &b) { 2540 return a.Low->getValue().slt(b.Low->getValue()); 2541 }); 2542 2543 // Merge adjacent clusters with the same destination. 2544 const unsigned N = Clusters.size(); 2545 unsigned DstIndex = 0; 2546 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2547 CaseCluster &CC = Clusters[SrcIndex]; 2548 const ConstantInt *CaseVal = CC.Low; 2549 MachineBasicBlock *Succ = CC.MBB; 2550 2551 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2552 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2553 // If this case has the same successor and is a neighbour, merge it into 2554 // the previous cluster. 2555 Clusters[DstIndex - 1].High = CaseVal; 2556 Clusters[DstIndex - 1].Prob += CC.Prob; 2557 } else { 2558 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2559 sizeof(Clusters[SrcIndex])); 2560 } 2561 } 2562 Clusters.resize(DstIndex); 2563 } 2564 2565 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2566 MachineBasicBlock *Last) { 2567 // Update JTCases. 2568 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2569 if (JTCases[i].first.HeaderBB == First) 2570 JTCases[i].first.HeaderBB = Last; 2571 2572 // Update BitTestCases. 2573 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2574 if (BitTestCases[i].Parent == First) 2575 BitTestCases[i].Parent = Last; 2576 } 2577 2578 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2579 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2580 2581 // Update machine-CFG edges with unique successors. 2582 SmallSet<BasicBlock*, 32> Done; 2583 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2584 BasicBlock *BB = I.getSuccessor(i); 2585 bool Inserted = Done.insert(BB).second; 2586 if (!Inserted) 2587 continue; 2588 2589 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2590 addSuccessorWithProb(IndirectBrMBB, Succ); 2591 } 2592 IndirectBrMBB->normalizeSuccProbs(); 2593 2594 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2595 MVT::Other, getControlRoot(), 2596 getValue(I.getAddress()))); 2597 } 2598 2599 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2600 if (DAG.getTarget().Options.TrapUnreachable) 2601 DAG.setRoot( 2602 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2603 } 2604 2605 void SelectionDAGBuilder::visitFSub(const User &I) { 2606 // -0.0 - X --> fneg 2607 Type *Ty = I.getType(); 2608 if (isa<Constant>(I.getOperand(0)) && 2609 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2610 SDValue Op2 = getValue(I.getOperand(1)); 2611 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2612 Op2.getValueType(), Op2)); 2613 return; 2614 } 2615 2616 visitBinary(I, ISD::FSUB); 2617 } 2618 2619 /// Checks if the given instruction performs a vector reduction, in which case 2620 /// we have the freedom to alter the elements in the result as long as the 2621 /// reduction of them stays unchanged. 2622 static bool isVectorReductionOp(const User *I) { 2623 const Instruction *Inst = dyn_cast<Instruction>(I); 2624 if (!Inst || !Inst->getType()->isVectorTy()) 2625 return false; 2626 2627 auto OpCode = Inst->getOpcode(); 2628 switch (OpCode) { 2629 case Instruction::Add: 2630 case Instruction::Mul: 2631 case Instruction::And: 2632 case Instruction::Or: 2633 case Instruction::Xor: 2634 break; 2635 case Instruction::FAdd: 2636 case Instruction::FMul: 2637 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2638 if (FPOp->getFastMathFlags().isFast()) 2639 break; 2640 LLVM_FALLTHROUGH; 2641 default: 2642 return false; 2643 } 2644 2645 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2646 unsigned ElemNumToReduce = ElemNum; 2647 2648 // Do DFS search on the def-use chain from the given instruction. We only 2649 // allow four kinds of operations during the search until we reach the 2650 // instruction that extracts the first element from the vector: 2651 // 2652 // 1. The reduction operation of the same opcode as the given instruction. 2653 // 2654 // 2. PHI node. 2655 // 2656 // 3. ShuffleVector instruction together with a reduction operation that 2657 // does a partial reduction. 2658 // 2659 // 4. ExtractElement that extracts the first element from the vector, and we 2660 // stop searching the def-use chain here. 2661 // 2662 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2663 // from 1-3 to the stack to continue the DFS. The given instruction is not 2664 // a reduction operation if we meet any other instructions other than those 2665 // listed above. 2666 2667 SmallVector<const User *, 16> UsersToVisit{Inst}; 2668 SmallPtrSet<const User *, 16> Visited; 2669 bool ReduxExtracted = false; 2670 2671 while (!UsersToVisit.empty()) { 2672 auto User = UsersToVisit.back(); 2673 UsersToVisit.pop_back(); 2674 if (!Visited.insert(User).second) 2675 continue; 2676 2677 for (const auto &U : User->users()) { 2678 auto Inst = dyn_cast<Instruction>(U); 2679 if (!Inst) 2680 return false; 2681 2682 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2683 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2684 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2685 return false; 2686 UsersToVisit.push_back(U); 2687 } else if (const ShuffleVectorInst *ShufInst = 2688 dyn_cast<ShuffleVectorInst>(U)) { 2689 // Detect the following pattern: A ShuffleVector instruction together 2690 // with a reduction that do partial reduction on the first and second 2691 // ElemNumToReduce / 2 elements, and store the result in 2692 // ElemNumToReduce / 2 elements in another vector. 2693 2694 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2695 if (ResultElements < ElemNum) 2696 return false; 2697 2698 if (ElemNumToReduce == 1) 2699 return false; 2700 if (!isa<UndefValue>(U->getOperand(1))) 2701 return false; 2702 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2703 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2704 return false; 2705 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2706 if (ShufInst->getMaskValue(i) != -1) 2707 return false; 2708 2709 // There is only one user of this ShuffleVector instruction, which 2710 // must be a reduction operation. 2711 if (!U->hasOneUse()) 2712 return false; 2713 2714 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2715 if (!U2 || U2->getOpcode() != OpCode) 2716 return false; 2717 2718 // Check operands of the reduction operation. 2719 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2720 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2721 UsersToVisit.push_back(U2); 2722 ElemNumToReduce /= 2; 2723 } else 2724 return false; 2725 } else if (isa<ExtractElementInst>(U)) { 2726 // At this moment we should have reduced all elements in the vector. 2727 if (ElemNumToReduce != 1) 2728 return false; 2729 2730 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2731 if (!Val || Val->getZExtValue() != 0) 2732 return false; 2733 2734 ReduxExtracted = true; 2735 } else 2736 return false; 2737 } 2738 } 2739 return ReduxExtracted; 2740 } 2741 2742 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2743 SDNodeFlags Flags; 2744 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2745 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2746 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2747 } 2748 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2749 Flags.setExact(ExactOp->isExact()); 2750 } 2751 if (isVectorReductionOp(&I)) { 2752 Flags.setVectorReduction(true); 2753 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2754 } 2755 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 2756 Flags.copyFMF(*FPOp); 2757 } 2758 2759 SDValue Op1 = getValue(I.getOperand(0)); 2760 SDValue Op2 = getValue(I.getOperand(1)); 2761 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2762 Op1, Op2, Flags); 2763 setValue(&I, BinNodeValue); 2764 } 2765 2766 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2767 SDValue Op1 = getValue(I.getOperand(0)); 2768 SDValue Op2 = getValue(I.getOperand(1)); 2769 2770 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2771 Op2.getValueType(), DAG.getDataLayout()); 2772 2773 // Coerce the shift amount to the right type if we can. 2774 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2775 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2776 unsigned Op2Size = Op2.getValueSizeInBits(); 2777 SDLoc DL = getCurSDLoc(); 2778 2779 // If the operand is smaller than the shift count type, promote it. 2780 if (ShiftSize > Op2Size) 2781 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2782 2783 // If the operand is larger than the shift count type but the shift 2784 // count type has enough bits to represent any shift value, truncate 2785 // it now. This is a common case and it exposes the truncate to 2786 // optimization early. 2787 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2788 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2789 // Otherwise we'll need to temporarily settle for some other convenient 2790 // type. Type legalization will make adjustments once the shiftee is split. 2791 else 2792 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2793 } 2794 2795 bool nuw = false; 2796 bool nsw = false; 2797 bool exact = false; 2798 2799 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2800 2801 if (const OverflowingBinaryOperator *OFBinOp = 2802 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2803 nuw = OFBinOp->hasNoUnsignedWrap(); 2804 nsw = OFBinOp->hasNoSignedWrap(); 2805 } 2806 if (const PossiblyExactOperator *ExactOp = 2807 dyn_cast<const PossiblyExactOperator>(&I)) 2808 exact = ExactOp->isExact(); 2809 } 2810 SDNodeFlags Flags; 2811 Flags.setExact(exact); 2812 Flags.setNoSignedWrap(nsw); 2813 Flags.setNoUnsignedWrap(nuw); 2814 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2815 Flags); 2816 setValue(&I, Res); 2817 } 2818 2819 void SelectionDAGBuilder::visitSDiv(const User &I) { 2820 SDValue Op1 = getValue(I.getOperand(0)); 2821 SDValue Op2 = getValue(I.getOperand(1)); 2822 2823 SDNodeFlags Flags; 2824 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2825 cast<PossiblyExactOperator>(&I)->isExact()); 2826 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2827 Op2, Flags)); 2828 } 2829 2830 void SelectionDAGBuilder::visitICmp(const User &I) { 2831 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2832 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2833 predicate = IC->getPredicate(); 2834 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2835 predicate = ICmpInst::Predicate(IC->getPredicate()); 2836 SDValue Op1 = getValue(I.getOperand(0)); 2837 SDValue Op2 = getValue(I.getOperand(1)); 2838 ISD::CondCode Opcode = getICmpCondCode(predicate); 2839 2840 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2841 I.getType()); 2842 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2843 } 2844 2845 void SelectionDAGBuilder::visitFCmp(const User &I) { 2846 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2847 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2848 predicate = FC->getPredicate(); 2849 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2850 predicate = FCmpInst::Predicate(FC->getPredicate()); 2851 SDValue Op1 = getValue(I.getOperand(0)); 2852 SDValue Op2 = getValue(I.getOperand(1)); 2853 ISD::CondCode Condition = getFCmpCondCode(predicate); 2854 2855 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2856 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2857 // further optimization, but currently FMF is only applicable to binary nodes. 2858 if (TM.Options.NoNaNsFPMath) 2859 Condition = getFCmpCodeWithoutNaN(Condition); 2860 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2861 I.getType()); 2862 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2863 } 2864 2865 // Check if the condition of the select has one use or two users that are both 2866 // selects with the same condition. 2867 static bool hasOnlySelectUsers(const Value *Cond) { 2868 return llvm::all_of(Cond->users(), [](const Value *V) { 2869 return isa<SelectInst>(V); 2870 }); 2871 } 2872 2873 void SelectionDAGBuilder::visitSelect(const User &I) { 2874 SmallVector<EVT, 4> ValueVTs; 2875 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2876 ValueVTs); 2877 unsigned NumValues = ValueVTs.size(); 2878 if (NumValues == 0) return; 2879 2880 SmallVector<SDValue, 4> Values(NumValues); 2881 SDValue Cond = getValue(I.getOperand(0)); 2882 SDValue LHSVal = getValue(I.getOperand(1)); 2883 SDValue RHSVal = getValue(I.getOperand(2)); 2884 auto BaseOps = {Cond}; 2885 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2886 ISD::VSELECT : ISD::SELECT; 2887 2888 // Min/max matching is only viable if all output VTs are the same. 2889 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2890 EVT VT = ValueVTs[0]; 2891 LLVMContext &Ctx = *DAG.getContext(); 2892 auto &TLI = DAG.getTargetLoweringInfo(); 2893 2894 // We care about the legality of the operation after it has been type 2895 // legalized. 2896 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2897 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2898 VT = TLI.getTypeToTransformTo(Ctx, VT); 2899 2900 // If the vselect is legal, assume we want to leave this as a vector setcc + 2901 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2902 // min/max is legal on the scalar type. 2903 bool UseScalarMinMax = VT.isVector() && 2904 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2905 2906 Value *LHS, *RHS; 2907 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2908 ISD::NodeType Opc = ISD::DELETED_NODE; 2909 switch (SPR.Flavor) { 2910 case SPF_UMAX: Opc = ISD::UMAX; break; 2911 case SPF_UMIN: Opc = ISD::UMIN; break; 2912 case SPF_SMAX: Opc = ISD::SMAX; break; 2913 case SPF_SMIN: Opc = ISD::SMIN; break; 2914 case SPF_FMINNUM: 2915 switch (SPR.NaNBehavior) { 2916 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2917 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2918 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2919 case SPNB_RETURNS_ANY: { 2920 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2921 Opc = ISD::FMINNUM; 2922 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2923 Opc = ISD::FMINNAN; 2924 else if (UseScalarMinMax) 2925 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2926 ISD::FMINNUM : ISD::FMINNAN; 2927 break; 2928 } 2929 } 2930 break; 2931 case SPF_FMAXNUM: 2932 switch (SPR.NaNBehavior) { 2933 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2934 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2935 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2936 case SPNB_RETURNS_ANY: 2937 2938 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2939 Opc = ISD::FMAXNUM; 2940 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2941 Opc = ISD::FMAXNAN; 2942 else if (UseScalarMinMax) 2943 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2944 ISD::FMAXNUM : ISD::FMAXNAN; 2945 break; 2946 } 2947 break; 2948 default: break; 2949 } 2950 2951 if (Opc != ISD::DELETED_NODE && 2952 (TLI.isOperationLegalOrCustom(Opc, VT) || 2953 (UseScalarMinMax && 2954 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2955 // If the underlying comparison instruction is used by any other 2956 // instruction, the consumed instructions won't be destroyed, so it is 2957 // not profitable to convert to a min/max. 2958 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2959 OpCode = Opc; 2960 LHSVal = getValue(LHS); 2961 RHSVal = getValue(RHS); 2962 BaseOps = {}; 2963 } 2964 } 2965 2966 for (unsigned i = 0; i != NumValues; ++i) { 2967 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2968 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2969 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2970 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2971 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2972 Ops); 2973 } 2974 2975 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2976 DAG.getVTList(ValueVTs), Values)); 2977 } 2978 2979 void SelectionDAGBuilder::visitTrunc(const User &I) { 2980 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2981 SDValue N = getValue(I.getOperand(0)); 2982 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2983 I.getType()); 2984 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2985 } 2986 2987 void SelectionDAGBuilder::visitZExt(const User &I) { 2988 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2989 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2990 SDValue N = getValue(I.getOperand(0)); 2991 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2992 I.getType()); 2993 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2994 } 2995 2996 void SelectionDAGBuilder::visitSExt(const User &I) { 2997 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2998 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2999 SDValue N = getValue(I.getOperand(0)); 3000 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3001 I.getType()); 3002 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3003 } 3004 3005 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3006 // FPTrunc is never a no-op cast, no need to check 3007 SDValue N = getValue(I.getOperand(0)); 3008 SDLoc dl = getCurSDLoc(); 3009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3010 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3011 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3012 DAG.getTargetConstant( 3013 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3014 } 3015 3016 void SelectionDAGBuilder::visitFPExt(const User &I) { 3017 // FPExt is never a no-op cast, no need to check 3018 SDValue N = getValue(I.getOperand(0)); 3019 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3020 I.getType()); 3021 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3022 } 3023 3024 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3025 // FPToUI is never a no-op cast, no need to check 3026 SDValue N = getValue(I.getOperand(0)); 3027 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3028 I.getType()); 3029 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3030 } 3031 3032 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3033 // FPToSI is never a no-op cast, no need to check 3034 SDValue N = getValue(I.getOperand(0)); 3035 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3036 I.getType()); 3037 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3038 } 3039 3040 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3041 // UIToFP is never a no-op cast, no need to check 3042 SDValue N = getValue(I.getOperand(0)); 3043 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3044 I.getType()); 3045 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3046 } 3047 3048 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3049 // SIToFP is never a no-op cast, no need to check 3050 SDValue N = getValue(I.getOperand(0)); 3051 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3052 I.getType()); 3053 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3054 } 3055 3056 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3057 // What to do depends on the size of the integer and the size of the pointer. 3058 // We can either truncate, zero extend, or no-op, accordingly. 3059 SDValue N = getValue(I.getOperand(0)); 3060 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3061 I.getType()); 3062 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3063 } 3064 3065 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3066 // What to do depends on the size of the integer and the size of the pointer. 3067 // We can either truncate, zero extend, or no-op, accordingly. 3068 SDValue N = getValue(I.getOperand(0)); 3069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3070 I.getType()); 3071 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3072 } 3073 3074 void SelectionDAGBuilder::visitBitCast(const User &I) { 3075 SDValue N = getValue(I.getOperand(0)); 3076 SDLoc dl = getCurSDLoc(); 3077 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3078 I.getType()); 3079 3080 // BitCast assures us that source and destination are the same size so this is 3081 // either a BITCAST or a no-op. 3082 if (DestVT != N.getValueType()) 3083 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3084 DestVT, N)); // convert types. 3085 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3086 // might fold any kind of constant expression to an integer constant and that 3087 // is not what we are looking for. Only recognize a bitcast of a genuine 3088 // constant integer as an opaque constant. 3089 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3090 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3091 /*isOpaque*/true)); 3092 else 3093 setValue(&I, N); // noop cast. 3094 } 3095 3096 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3098 const Value *SV = I.getOperand(0); 3099 SDValue N = getValue(SV); 3100 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3101 3102 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3103 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3104 3105 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3106 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3107 3108 setValue(&I, N); 3109 } 3110 3111 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3113 SDValue InVec = getValue(I.getOperand(0)); 3114 SDValue InVal = getValue(I.getOperand(1)); 3115 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3116 TLI.getVectorIdxTy(DAG.getDataLayout())); 3117 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3118 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3119 InVec, InVal, InIdx)); 3120 } 3121 3122 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3124 SDValue InVec = getValue(I.getOperand(0)); 3125 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3126 TLI.getVectorIdxTy(DAG.getDataLayout())); 3127 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3128 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3129 InVec, InIdx)); 3130 } 3131 3132 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3133 SDValue Src1 = getValue(I.getOperand(0)); 3134 SDValue Src2 = getValue(I.getOperand(1)); 3135 SDLoc DL = getCurSDLoc(); 3136 3137 SmallVector<int, 8> Mask; 3138 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3139 unsigned MaskNumElts = Mask.size(); 3140 3141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3142 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3143 EVT SrcVT = Src1.getValueType(); 3144 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3145 3146 if (SrcNumElts == MaskNumElts) { 3147 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3148 return; 3149 } 3150 3151 // Normalize the shuffle vector since mask and vector length don't match. 3152 if (SrcNumElts < MaskNumElts) { 3153 // Mask is longer than the source vectors. We can use concatenate vector to 3154 // make the mask and vectors lengths match. 3155 3156 if (MaskNumElts % SrcNumElts == 0) { 3157 // Mask length is a multiple of the source vector length. 3158 // Check if the shuffle is some kind of concatenation of the input 3159 // vectors. 3160 unsigned NumConcat = MaskNumElts / SrcNumElts; 3161 bool IsConcat = true; 3162 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3163 for (unsigned i = 0; i != MaskNumElts; ++i) { 3164 int Idx = Mask[i]; 3165 if (Idx < 0) 3166 continue; 3167 // Ensure the indices in each SrcVT sized piece are sequential and that 3168 // the same source is used for the whole piece. 3169 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3170 (ConcatSrcs[i / SrcNumElts] >= 0 && 3171 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3172 IsConcat = false; 3173 break; 3174 } 3175 // Remember which source this index came from. 3176 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3177 } 3178 3179 // The shuffle is concatenating multiple vectors together. Just emit 3180 // a CONCAT_VECTORS operation. 3181 if (IsConcat) { 3182 SmallVector<SDValue, 8> ConcatOps; 3183 for (auto Src : ConcatSrcs) { 3184 if (Src < 0) 3185 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3186 else if (Src == 0) 3187 ConcatOps.push_back(Src1); 3188 else 3189 ConcatOps.push_back(Src2); 3190 } 3191 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3192 return; 3193 } 3194 } 3195 3196 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3197 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3198 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3199 PaddedMaskNumElts); 3200 3201 // Pad both vectors with undefs to make them the same length as the mask. 3202 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3203 3204 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3205 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3206 MOps1[0] = Src1; 3207 MOps2[0] = Src2; 3208 3209 Src1 = Src1.isUndef() 3210 ? DAG.getUNDEF(PaddedVT) 3211 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3212 Src2 = Src2.isUndef() 3213 ? DAG.getUNDEF(PaddedVT) 3214 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3215 3216 // Readjust mask for new input vector length. 3217 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3218 for (unsigned i = 0; i != MaskNumElts; ++i) { 3219 int Idx = Mask[i]; 3220 if (Idx >= (int)SrcNumElts) 3221 Idx -= SrcNumElts - PaddedMaskNumElts; 3222 MappedOps[i] = Idx; 3223 } 3224 3225 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3226 3227 // If the concatenated vector was padded, extract a subvector with the 3228 // correct number of elements. 3229 if (MaskNumElts != PaddedMaskNumElts) 3230 Result = DAG.getNode( 3231 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3232 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3233 3234 setValue(&I, Result); 3235 return; 3236 } 3237 3238 if (SrcNumElts > MaskNumElts) { 3239 // Analyze the access pattern of the vector to see if we can extract 3240 // two subvectors and do the shuffle. 3241 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3242 bool CanExtract = true; 3243 for (int Idx : Mask) { 3244 unsigned Input = 0; 3245 if (Idx < 0) 3246 continue; 3247 3248 if (Idx >= (int)SrcNumElts) { 3249 Input = 1; 3250 Idx -= SrcNumElts; 3251 } 3252 3253 // If all the indices come from the same MaskNumElts sized portion of 3254 // the sources we can use extract. Also make sure the extract wouldn't 3255 // extract past the end of the source. 3256 int NewStartIdx = alignDown(Idx, MaskNumElts); 3257 if (NewStartIdx + MaskNumElts > SrcNumElts || 3258 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3259 CanExtract = false; 3260 // Make sure we always update StartIdx as we use it to track if all 3261 // elements are undef. 3262 StartIdx[Input] = NewStartIdx; 3263 } 3264 3265 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3266 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3267 return; 3268 } 3269 if (CanExtract) { 3270 // Extract appropriate subvector and generate a vector shuffle 3271 for (unsigned Input = 0; Input < 2; ++Input) { 3272 SDValue &Src = Input == 0 ? Src1 : Src2; 3273 if (StartIdx[Input] < 0) 3274 Src = DAG.getUNDEF(VT); 3275 else { 3276 Src = DAG.getNode( 3277 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3278 DAG.getConstant(StartIdx[Input], DL, 3279 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3280 } 3281 } 3282 3283 // Calculate new mask. 3284 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3285 for (int &Idx : MappedOps) { 3286 if (Idx >= (int)SrcNumElts) 3287 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3288 else if (Idx >= 0) 3289 Idx -= StartIdx[0]; 3290 } 3291 3292 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3293 return; 3294 } 3295 } 3296 3297 // We can't use either concat vectors or extract subvectors so fall back to 3298 // replacing the shuffle with extract and build vector. 3299 // to insert and build vector. 3300 EVT EltVT = VT.getVectorElementType(); 3301 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3302 SmallVector<SDValue,8> Ops; 3303 for (int Idx : Mask) { 3304 SDValue Res; 3305 3306 if (Idx < 0) { 3307 Res = DAG.getUNDEF(EltVT); 3308 } else { 3309 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3310 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3311 3312 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3313 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3314 } 3315 3316 Ops.push_back(Res); 3317 } 3318 3319 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3320 } 3321 3322 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3323 ArrayRef<unsigned> Indices; 3324 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3325 Indices = IV->getIndices(); 3326 else 3327 Indices = cast<ConstantExpr>(&I)->getIndices(); 3328 3329 const Value *Op0 = I.getOperand(0); 3330 const Value *Op1 = I.getOperand(1); 3331 Type *AggTy = I.getType(); 3332 Type *ValTy = Op1->getType(); 3333 bool IntoUndef = isa<UndefValue>(Op0); 3334 bool FromUndef = isa<UndefValue>(Op1); 3335 3336 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3337 3338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3339 SmallVector<EVT, 4> AggValueVTs; 3340 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3341 SmallVector<EVT, 4> ValValueVTs; 3342 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3343 3344 unsigned NumAggValues = AggValueVTs.size(); 3345 unsigned NumValValues = ValValueVTs.size(); 3346 SmallVector<SDValue, 4> Values(NumAggValues); 3347 3348 // Ignore an insertvalue that produces an empty object 3349 if (!NumAggValues) { 3350 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3351 return; 3352 } 3353 3354 SDValue Agg = getValue(Op0); 3355 unsigned i = 0; 3356 // Copy the beginning value(s) from the original aggregate. 3357 for (; i != LinearIndex; ++i) 3358 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3359 SDValue(Agg.getNode(), Agg.getResNo() + i); 3360 // Copy values from the inserted value(s). 3361 if (NumValValues) { 3362 SDValue Val = getValue(Op1); 3363 for (; i != LinearIndex + NumValValues; ++i) 3364 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3365 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3366 } 3367 // Copy remaining value(s) from the original aggregate. 3368 for (; i != NumAggValues; ++i) 3369 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3370 SDValue(Agg.getNode(), Agg.getResNo() + i); 3371 3372 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3373 DAG.getVTList(AggValueVTs), Values)); 3374 } 3375 3376 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3377 ArrayRef<unsigned> Indices; 3378 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3379 Indices = EV->getIndices(); 3380 else 3381 Indices = cast<ConstantExpr>(&I)->getIndices(); 3382 3383 const Value *Op0 = I.getOperand(0); 3384 Type *AggTy = Op0->getType(); 3385 Type *ValTy = I.getType(); 3386 bool OutOfUndef = isa<UndefValue>(Op0); 3387 3388 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3389 3390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3391 SmallVector<EVT, 4> ValValueVTs; 3392 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3393 3394 unsigned NumValValues = ValValueVTs.size(); 3395 3396 // Ignore a extractvalue that produces an empty object 3397 if (!NumValValues) { 3398 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3399 return; 3400 } 3401 3402 SmallVector<SDValue, 4> Values(NumValValues); 3403 3404 SDValue Agg = getValue(Op0); 3405 // Copy out the selected value(s). 3406 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3407 Values[i - LinearIndex] = 3408 OutOfUndef ? 3409 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3410 SDValue(Agg.getNode(), Agg.getResNo() + i); 3411 3412 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3413 DAG.getVTList(ValValueVTs), Values)); 3414 } 3415 3416 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3417 Value *Op0 = I.getOperand(0); 3418 // Note that the pointer operand may be a vector of pointers. Take the scalar 3419 // element which holds a pointer. 3420 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3421 SDValue N = getValue(Op0); 3422 SDLoc dl = getCurSDLoc(); 3423 3424 // Normalize Vector GEP - all scalar operands should be converted to the 3425 // splat vector. 3426 unsigned VectorWidth = I.getType()->isVectorTy() ? 3427 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3428 3429 if (VectorWidth && !N.getValueType().isVector()) { 3430 LLVMContext &Context = *DAG.getContext(); 3431 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3432 N = DAG.getSplatBuildVector(VT, dl, N); 3433 } 3434 3435 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3436 GTI != E; ++GTI) { 3437 const Value *Idx = GTI.getOperand(); 3438 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3439 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3440 if (Field) { 3441 // N = N + Offset 3442 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3443 3444 // In an inbounds GEP with an offset that is nonnegative even when 3445 // interpreted as signed, assume there is no unsigned overflow. 3446 SDNodeFlags Flags; 3447 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3448 Flags.setNoUnsignedWrap(true); 3449 3450 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3451 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3452 } 3453 } else { 3454 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3455 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3456 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3457 3458 // If this is a scalar constant or a splat vector of constants, 3459 // handle it quickly. 3460 const auto *CI = dyn_cast<ConstantInt>(Idx); 3461 if (!CI && isa<ConstantDataVector>(Idx) && 3462 cast<ConstantDataVector>(Idx)->getSplatValue()) 3463 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3464 3465 if (CI) { 3466 if (CI->isZero()) 3467 continue; 3468 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3469 LLVMContext &Context = *DAG.getContext(); 3470 SDValue OffsVal = VectorWidth ? 3471 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3472 DAG.getConstant(Offs, dl, IdxTy); 3473 3474 // In an inbouds GEP with an offset that is nonnegative even when 3475 // interpreted as signed, assume there is no unsigned overflow. 3476 SDNodeFlags Flags; 3477 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3478 Flags.setNoUnsignedWrap(true); 3479 3480 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3481 continue; 3482 } 3483 3484 // N = N + Idx * ElementSize; 3485 SDValue IdxN = getValue(Idx); 3486 3487 if (!IdxN.getValueType().isVector() && VectorWidth) { 3488 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3489 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3490 } 3491 3492 // If the index is smaller or larger than intptr_t, truncate or extend 3493 // it. 3494 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3495 3496 // If this is a multiply by a power of two, turn it into a shl 3497 // immediately. This is a very common case. 3498 if (ElementSize != 1) { 3499 if (ElementSize.isPowerOf2()) { 3500 unsigned Amt = ElementSize.logBase2(); 3501 IdxN = DAG.getNode(ISD::SHL, dl, 3502 N.getValueType(), IdxN, 3503 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3504 } else { 3505 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3506 IdxN = DAG.getNode(ISD::MUL, dl, 3507 N.getValueType(), IdxN, Scale); 3508 } 3509 } 3510 3511 N = DAG.getNode(ISD::ADD, dl, 3512 N.getValueType(), N, IdxN); 3513 } 3514 } 3515 3516 setValue(&I, N); 3517 } 3518 3519 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3520 // If this is a fixed sized alloca in the entry block of the function, 3521 // allocate it statically on the stack. 3522 if (FuncInfo.StaticAllocaMap.count(&I)) 3523 return; // getValue will auto-populate this. 3524 3525 SDLoc dl = getCurSDLoc(); 3526 Type *Ty = I.getAllocatedType(); 3527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3528 auto &DL = DAG.getDataLayout(); 3529 uint64_t TySize = DL.getTypeAllocSize(Ty); 3530 unsigned Align = 3531 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3532 3533 SDValue AllocSize = getValue(I.getArraySize()); 3534 3535 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3536 if (AllocSize.getValueType() != IntPtr) 3537 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3538 3539 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3540 AllocSize, 3541 DAG.getConstant(TySize, dl, IntPtr)); 3542 3543 // Handle alignment. If the requested alignment is less than or equal to 3544 // the stack alignment, ignore it. If the size is greater than or equal to 3545 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3546 unsigned StackAlign = 3547 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3548 if (Align <= StackAlign) 3549 Align = 0; 3550 3551 // Round the size of the allocation up to the stack alignment size 3552 // by add SA-1 to the size. This doesn't overflow because we're computing 3553 // an address inside an alloca. 3554 SDNodeFlags Flags; 3555 Flags.setNoUnsignedWrap(true); 3556 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3557 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3558 3559 // Mask out the low bits for alignment purposes. 3560 AllocSize = 3561 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3562 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3563 3564 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3565 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3566 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3567 setValue(&I, DSA); 3568 DAG.setRoot(DSA.getValue(1)); 3569 3570 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3571 } 3572 3573 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3574 if (I.isAtomic()) 3575 return visitAtomicLoad(I); 3576 3577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3578 const Value *SV = I.getOperand(0); 3579 if (TLI.supportSwiftError()) { 3580 // Swifterror values can come from either a function parameter with 3581 // swifterror attribute or an alloca with swifterror attribute. 3582 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3583 if (Arg->hasSwiftErrorAttr()) 3584 return visitLoadFromSwiftError(I); 3585 } 3586 3587 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3588 if (Alloca->isSwiftError()) 3589 return visitLoadFromSwiftError(I); 3590 } 3591 } 3592 3593 SDValue Ptr = getValue(SV); 3594 3595 Type *Ty = I.getType(); 3596 3597 bool isVolatile = I.isVolatile(); 3598 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3599 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3600 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3601 unsigned Alignment = I.getAlignment(); 3602 3603 AAMDNodes AAInfo; 3604 I.getAAMetadata(AAInfo); 3605 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3606 3607 SmallVector<EVT, 4> ValueVTs; 3608 SmallVector<uint64_t, 4> Offsets; 3609 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3610 unsigned NumValues = ValueVTs.size(); 3611 if (NumValues == 0) 3612 return; 3613 3614 SDValue Root; 3615 bool ConstantMemory = false; 3616 if (isVolatile || NumValues > MaxParallelChains) 3617 // Serialize volatile loads with other side effects. 3618 Root = getRoot(); 3619 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3620 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3621 // Do not serialize (non-volatile) loads of constant memory with anything. 3622 Root = DAG.getEntryNode(); 3623 ConstantMemory = true; 3624 } else { 3625 // Do not serialize non-volatile loads against each other. 3626 Root = DAG.getRoot(); 3627 } 3628 3629 SDLoc dl = getCurSDLoc(); 3630 3631 if (isVolatile) 3632 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3633 3634 // An aggregate load cannot wrap around the address space, so offsets to its 3635 // parts don't wrap either. 3636 SDNodeFlags Flags; 3637 Flags.setNoUnsignedWrap(true); 3638 3639 SmallVector<SDValue, 4> Values(NumValues); 3640 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3641 EVT PtrVT = Ptr.getValueType(); 3642 unsigned ChainI = 0; 3643 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3644 // Serializing loads here may result in excessive register pressure, and 3645 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3646 // could recover a bit by hoisting nodes upward in the chain by recognizing 3647 // they are side-effect free or do not alias. The optimizer should really 3648 // avoid this case by converting large object/array copies to llvm.memcpy 3649 // (MaxParallelChains should always remain as failsafe). 3650 if (ChainI == MaxParallelChains) { 3651 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3652 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3653 makeArrayRef(Chains.data(), ChainI)); 3654 Root = Chain; 3655 ChainI = 0; 3656 } 3657 SDValue A = DAG.getNode(ISD::ADD, dl, 3658 PtrVT, Ptr, 3659 DAG.getConstant(Offsets[i], dl, PtrVT), 3660 Flags); 3661 auto MMOFlags = MachineMemOperand::MONone; 3662 if (isVolatile) 3663 MMOFlags |= MachineMemOperand::MOVolatile; 3664 if (isNonTemporal) 3665 MMOFlags |= MachineMemOperand::MONonTemporal; 3666 if (isInvariant) 3667 MMOFlags |= MachineMemOperand::MOInvariant; 3668 if (isDereferenceable) 3669 MMOFlags |= MachineMemOperand::MODereferenceable; 3670 MMOFlags |= TLI.getMMOFlags(I); 3671 3672 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3673 MachinePointerInfo(SV, Offsets[i]), Alignment, 3674 MMOFlags, AAInfo, Ranges); 3675 3676 Values[i] = L; 3677 Chains[ChainI] = L.getValue(1); 3678 } 3679 3680 if (!ConstantMemory) { 3681 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3682 makeArrayRef(Chains.data(), ChainI)); 3683 if (isVolatile) 3684 DAG.setRoot(Chain); 3685 else 3686 PendingLoads.push_back(Chain); 3687 } 3688 3689 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3690 DAG.getVTList(ValueVTs), Values)); 3691 } 3692 3693 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3694 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3695 "call visitStoreToSwiftError when backend supports swifterror"); 3696 3697 SmallVector<EVT, 4> ValueVTs; 3698 SmallVector<uint64_t, 4> Offsets; 3699 const Value *SrcV = I.getOperand(0); 3700 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3701 SrcV->getType(), ValueVTs, &Offsets); 3702 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3703 "expect a single EVT for swifterror"); 3704 3705 SDValue Src = getValue(SrcV); 3706 // Create a virtual register, then update the virtual register. 3707 unsigned VReg; bool CreatedVReg; 3708 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3709 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3710 // Chain can be getRoot or getControlRoot. 3711 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3712 SDValue(Src.getNode(), Src.getResNo())); 3713 DAG.setRoot(CopyNode); 3714 if (CreatedVReg) 3715 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3716 } 3717 3718 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3719 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3720 "call visitLoadFromSwiftError when backend supports swifterror"); 3721 3722 assert(!I.isVolatile() && 3723 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3724 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3725 "Support volatile, non temporal, invariant for load_from_swift_error"); 3726 3727 const Value *SV = I.getOperand(0); 3728 Type *Ty = I.getType(); 3729 AAMDNodes AAInfo; 3730 I.getAAMetadata(AAInfo); 3731 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3732 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3733 "load_from_swift_error should not be constant memory"); 3734 3735 SmallVector<EVT, 4> ValueVTs; 3736 SmallVector<uint64_t, 4> Offsets; 3737 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3738 ValueVTs, &Offsets); 3739 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3740 "expect a single EVT for swifterror"); 3741 3742 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3743 SDValue L = DAG.getCopyFromReg( 3744 getRoot(), getCurSDLoc(), 3745 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3746 ValueVTs[0]); 3747 3748 setValue(&I, L); 3749 } 3750 3751 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3752 if (I.isAtomic()) 3753 return visitAtomicStore(I); 3754 3755 const Value *SrcV = I.getOperand(0); 3756 const Value *PtrV = I.getOperand(1); 3757 3758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3759 if (TLI.supportSwiftError()) { 3760 // Swifterror values can come from either a function parameter with 3761 // swifterror attribute or an alloca with swifterror attribute. 3762 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3763 if (Arg->hasSwiftErrorAttr()) 3764 return visitStoreToSwiftError(I); 3765 } 3766 3767 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3768 if (Alloca->isSwiftError()) 3769 return visitStoreToSwiftError(I); 3770 } 3771 } 3772 3773 SmallVector<EVT, 4> ValueVTs; 3774 SmallVector<uint64_t, 4> Offsets; 3775 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3776 SrcV->getType(), ValueVTs, &Offsets); 3777 unsigned NumValues = ValueVTs.size(); 3778 if (NumValues == 0) 3779 return; 3780 3781 // Get the lowered operands. Note that we do this after 3782 // checking if NumResults is zero, because with zero results 3783 // the operands won't have values in the map. 3784 SDValue Src = getValue(SrcV); 3785 SDValue Ptr = getValue(PtrV); 3786 3787 SDValue Root = getRoot(); 3788 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3789 SDLoc dl = getCurSDLoc(); 3790 EVT PtrVT = Ptr.getValueType(); 3791 unsigned Alignment = I.getAlignment(); 3792 AAMDNodes AAInfo; 3793 I.getAAMetadata(AAInfo); 3794 3795 auto MMOFlags = MachineMemOperand::MONone; 3796 if (I.isVolatile()) 3797 MMOFlags |= MachineMemOperand::MOVolatile; 3798 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3799 MMOFlags |= MachineMemOperand::MONonTemporal; 3800 MMOFlags |= TLI.getMMOFlags(I); 3801 3802 // An aggregate load cannot wrap around the address space, so offsets to its 3803 // parts don't wrap either. 3804 SDNodeFlags Flags; 3805 Flags.setNoUnsignedWrap(true); 3806 3807 unsigned ChainI = 0; 3808 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3809 // See visitLoad comments. 3810 if (ChainI == MaxParallelChains) { 3811 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3812 makeArrayRef(Chains.data(), ChainI)); 3813 Root = Chain; 3814 ChainI = 0; 3815 } 3816 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3817 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3818 SDValue St = DAG.getStore( 3819 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3820 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3821 Chains[ChainI] = St; 3822 } 3823 3824 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3825 makeArrayRef(Chains.data(), ChainI)); 3826 DAG.setRoot(StoreNode); 3827 } 3828 3829 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3830 bool IsCompressing) { 3831 SDLoc sdl = getCurSDLoc(); 3832 3833 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3834 unsigned& Alignment) { 3835 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3836 Src0 = I.getArgOperand(0); 3837 Ptr = I.getArgOperand(1); 3838 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3839 Mask = I.getArgOperand(3); 3840 }; 3841 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3842 unsigned& Alignment) { 3843 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3844 Src0 = I.getArgOperand(0); 3845 Ptr = I.getArgOperand(1); 3846 Mask = I.getArgOperand(2); 3847 Alignment = 0; 3848 }; 3849 3850 Value *PtrOperand, *MaskOperand, *Src0Operand; 3851 unsigned Alignment; 3852 if (IsCompressing) 3853 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3854 else 3855 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3856 3857 SDValue Ptr = getValue(PtrOperand); 3858 SDValue Src0 = getValue(Src0Operand); 3859 SDValue Mask = getValue(MaskOperand); 3860 3861 EVT VT = Src0.getValueType(); 3862 if (!Alignment) 3863 Alignment = DAG.getEVTAlignment(VT); 3864 3865 AAMDNodes AAInfo; 3866 I.getAAMetadata(AAInfo); 3867 3868 MachineMemOperand *MMO = 3869 DAG.getMachineFunction(). 3870 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3871 MachineMemOperand::MOStore, VT.getStoreSize(), 3872 Alignment, AAInfo); 3873 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3874 MMO, false /* Truncating */, 3875 IsCompressing); 3876 DAG.setRoot(StoreNode); 3877 setValue(&I, StoreNode); 3878 } 3879 3880 // Get a uniform base for the Gather/Scatter intrinsic. 3881 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3882 // We try to represent it as a base pointer + vector of indices. 3883 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3884 // The first operand of the GEP may be a single pointer or a vector of pointers 3885 // Example: 3886 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3887 // or 3888 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3889 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3890 // 3891 // When the first GEP operand is a single pointer - it is the uniform base we 3892 // are looking for. If first operand of the GEP is a splat vector - we 3893 // extract the splat value and use it as a uniform base. 3894 // In all other cases the function returns 'false'. 3895 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3896 SDValue &Scale, SelectionDAGBuilder* SDB) { 3897 SelectionDAG& DAG = SDB->DAG; 3898 LLVMContext &Context = *DAG.getContext(); 3899 3900 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3901 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3902 if (!GEP) 3903 return false; 3904 3905 const Value *GEPPtr = GEP->getPointerOperand(); 3906 if (!GEPPtr->getType()->isVectorTy()) 3907 Ptr = GEPPtr; 3908 else if (!(Ptr = getSplatValue(GEPPtr))) 3909 return false; 3910 3911 unsigned FinalIndex = GEP->getNumOperands() - 1; 3912 Value *IndexVal = GEP->getOperand(FinalIndex); 3913 3914 // Ensure all the other indices are 0. 3915 for (unsigned i = 1; i < FinalIndex; ++i) { 3916 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3917 if (!C || !C->isZero()) 3918 return false; 3919 } 3920 3921 // The operands of the GEP may be defined in another basic block. 3922 // In this case we'll not find nodes for the operands. 3923 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3924 return false; 3925 3926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3927 const DataLayout &DL = DAG.getDataLayout(); 3928 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3929 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3930 Base = SDB->getValue(Ptr); 3931 Index = SDB->getValue(IndexVal); 3932 3933 if (!Index.getValueType().isVector()) { 3934 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3935 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3936 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3937 } 3938 return true; 3939 } 3940 3941 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3942 SDLoc sdl = getCurSDLoc(); 3943 3944 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3945 const Value *Ptr = I.getArgOperand(1); 3946 SDValue Src0 = getValue(I.getArgOperand(0)); 3947 SDValue Mask = getValue(I.getArgOperand(3)); 3948 EVT VT = Src0.getValueType(); 3949 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3950 if (!Alignment) 3951 Alignment = DAG.getEVTAlignment(VT); 3952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3953 3954 AAMDNodes AAInfo; 3955 I.getAAMetadata(AAInfo); 3956 3957 SDValue Base; 3958 SDValue Index; 3959 SDValue Scale; 3960 const Value *BasePtr = Ptr; 3961 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3962 3963 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3964 MachineMemOperand *MMO = DAG.getMachineFunction(). 3965 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3966 MachineMemOperand::MOStore, VT.getStoreSize(), 3967 Alignment, AAInfo); 3968 if (!UniformBase) { 3969 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3970 Index = getValue(Ptr); 3971 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3972 } 3973 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3974 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3975 Ops, MMO); 3976 DAG.setRoot(Scatter); 3977 setValue(&I, Scatter); 3978 } 3979 3980 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3981 SDLoc sdl = getCurSDLoc(); 3982 3983 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3984 unsigned& Alignment) { 3985 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3986 Ptr = I.getArgOperand(0); 3987 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3988 Mask = I.getArgOperand(2); 3989 Src0 = I.getArgOperand(3); 3990 }; 3991 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3992 unsigned& Alignment) { 3993 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3994 Ptr = I.getArgOperand(0); 3995 Alignment = 0; 3996 Mask = I.getArgOperand(1); 3997 Src0 = I.getArgOperand(2); 3998 }; 3999 4000 Value *PtrOperand, *MaskOperand, *Src0Operand; 4001 unsigned Alignment; 4002 if (IsExpanding) 4003 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4004 else 4005 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4006 4007 SDValue Ptr = getValue(PtrOperand); 4008 SDValue Src0 = getValue(Src0Operand); 4009 SDValue Mask = getValue(MaskOperand); 4010 4011 EVT VT = Src0.getValueType(); 4012 if (!Alignment) 4013 Alignment = DAG.getEVTAlignment(VT); 4014 4015 AAMDNodes AAInfo; 4016 I.getAAMetadata(AAInfo); 4017 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4018 4019 // Do not serialize masked loads of constant memory with anything. 4020 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4021 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4022 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4023 4024 MachineMemOperand *MMO = 4025 DAG.getMachineFunction(). 4026 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4027 MachineMemOperand::MOLoad, VT.getStoreSize(), 4028 Alignment, AAInfo, Ranges); 4029 4030 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4031 ISD::NON_EXTLOAD, IsExpanding); 4032 if (AddToChain) { 4033 SDValue OutChain = Load.getValue(1); 4034 DAG.setRoot(OutChain); 4035 } 4036 setValue(&I, Load); 4037 } 4038 4039 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4040 SDLoc sdl = getCurSDLoc(); 4041 4042 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4043 const Value *Ptr = I.getArgOperand(0); 4044 SDValue Src0 = getValue(I.getArgOperand(3)); 4045 SDValue Mask = getValue(I.getArgOperand(2)); 4046 4047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4048 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4049 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4050 if (!Alignment) 4051 Alignment = DAG.getEVTAlignment(VT); 4052 4053 AAMDNodes AAInfo; 4054 I.getAAMetadata(AAInfo); 4055 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4056 4057 SDValue Root = DAG.getRoot(); 4058 SDValue Base; 4059 SDValue Index; 4060 SDValue Scale; 4061 const Value *BasePtr = Ptr; 4062 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4063 bool ConstantMemory = false; 4064 if (UniformBase && 4065 AA && AA->pointsToConstantMemory(MemoryLocation( 4066 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4067 AAInfo))) { 4068 // Do not serialize (non-volatile) loads of constant memory with anything. 4069 Root = DAG.getEntryNode(); 4070 ConstantMemory = true; 4071 } 4072 4073 MachineMemOperand *MMO = 4074 DAG.getMachineFunction(). 4075 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4076 MachineMemOperand::MOLoad, VT.getStoreSize(), 4077 Alignment, AAInfo, Ranges); 4078 4079 if (!UniformBase) { 4080 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4081 Index = getValue(Ptr); 4082 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4083 } 4084 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4085 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4086 Ops, MMO); 4087 4088 SDValue OutChain = Gather.getValue(1); 4089 if (!ConstantMemory) 4090 PendingLoads.push_back(OutChain); 4091 setValue(&I, Gather); 4092 } 4093 4094 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4095 SDLoc dl = getCurSDLoc(); 4096 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4097 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4098 SyncScope::ID SSID = I.getSyncScopeID(); 4099 4100 SDValue InChain = getRoot(); 4101 4102 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4103 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4104 SDValue L = DAG.getAtomicCmpSwap( 4105 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4106 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4107 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4108 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4109 4110 SDValue OutChain = L.getValue(2); 4111 4112 setValue(&I, L); 4113 DAG.setRoot(OutChain); 4114 } 4115 4116 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4117 SDLoc dl = getCurSDLoc(); 4118 ISD::NodeType NT; 4119 switch (I.getOperation()) { 4120 default: llvm_unreachable("Unknown atomicrmw operation"); 4121 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4122 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4123 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4124 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4125 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4126 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4127 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4128 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4129 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4130 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4131 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4132 } 4133 AtomicOrdering Order = I.getOrdering(); 4134 SyncScope::ID SSID = I.getSyncScopeID(); 4135 4136 SDValue InChain = getRoot(); 4137 4138 SDValue L = 4139 DAG.getAtomic(NT, dl, 4140 getValue(I.getValOperand()).getSimpleValueType(), 4141 InChain, 4142 getValue(I.getPointerOperand()), 4143 getValue(I.getValOperand()), 4144 I.getPointerOperand(), 4145 /* Alignment=*/ 0, Order, SSID); 4146 4147 SDValue OutChain = L.getValue(1); 4148 4149 setValue(&I, L); 4150 DAG.setRoot(OutChain); 4151 } 4152 4153 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4154 SDLoc dl = getCurSDLoc(); 4155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4156 SDValue Ops[3]; 4157 Ops[0] = getRoot(); 4158 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4159 TLI.getFenceOperandTy(DAG.getDataLayout())); 4160 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4161 TLI.getFenceOperandTy(DAG.getDataLayout())); 4162 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4163 } 4164 4165 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4166 SDLoc dl = getCurSDLoc(); 4167 AtomicOrdering Order = I.getOrdering(); 4168 SyncScope::ID SSID = I.getSyncScopeID(); 4169 4170 SDValue InChain = getRoot(); 4171 4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4173 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4174 4175 if (!TLI.supportsUnalignedAtomics() && 4176 I.getAlignment() < VT.getStoreSize()) 4177 report_fatal_error("Cannot generate unaligned atomic load"); 4178 4179 MachineMemOperand *MMO = 4180 DAG.getMachineFunction(). 4181 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4182 MachineMemOperand::MOVolatile | 4183 MachineMemOperand::MOLoad, 4184 VT.getStoreSize(), 4185 I.getAlignment() ? I.getAlignment() : 4186 DAG.getEVTAlignment(VT), 4187 AAMDNodes(), nullptr, SSID, Order); 4188 4189 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4190 SDValue L = 4191 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4192 getValue(I.getPointerOperand()), MMO); 4193 4194 SDValue OutChain = L.getValue(1); 4195 4196 setValue(&I, L); 4197 DAG.setRoot(OutChain); 4198 } 4199 4200 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4201 SDLoc dl = getCurSDLoc(); 4202 4203 AtomicOrdering Order = I.getOrdering(); 4204 SyncScope::ID SSID = I.getSyncScopeID(); 4205 4206 SDValue InChain = getRoot(); 4207 4208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4209 EVT VT = 4210 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4211 4212 if (I.getAlignment() < VT.getStoreSize()) 4213 report_fatal_error("Cannot generate unaligned atomic store"); 4214 4215 SDValue OutChain = 4216 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4217 InChain, 4218 getValue(I.getPointerOperand()), 4219 getValue(I.getValueOperand()), 4220 I.getPointerOperand(), I.getAlignment(), 4221 Order, SSID); 4222 4223 DAG.setRoot(OutChain); 4224 } 4225 4226 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4227 /// node. 4228 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4229 unsigned Intrinsic) { 4230 // Ignore the callsite's attributes. A specific call site may be marked with 4231 // readnone, but the lowering code will expect the chain based on the 4232 // definition. 4233 const Function *F = I.getCalledFunction(); 4234 bool HasChain = !F->doesNotAccessMemory(); 4235 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4236 4237 // Build the operand list. 4238 SmallVector<SDValue, 8> Ops; 4239 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4240 if (OnlyLoad) { 4241 // We don't need to serialize loads against other loads. 4242 Ops.push_back(DAG.getRoot()); 4243 } else { 4244 Ops.push_back(getRoot()); 4245 } 4246 } 4247 4248 // Info is set by getTgtMemInstrinsic 4249 TargetLowering::IntrinsicInfo Info; 4250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4251 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4252 DAG.getMachineFunction(), 4253 Intrinsic); 4254 4255 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4256 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4257 Info.opc == ISD::INTRINSIC_W_CHAIN) 4258 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4259 TLI.getPointerTy(DAG.getDataLayout()))); 4260 4261 // Add all operands of the call to the operand list. 4262 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4263 SDValue Op = getValue(I.getArgOperand(i)); 4264 Ops.push_back(Op); 4265 } 4266 4267 SmallVector<EVT, 4> ValueVTs; 4268 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4269 4270 if (HasChain) 4271 ValueVTs.push_back(MVT::Other); 4272 4273 SDVTList VTs = DAG.getVTList(ValueVTs); 4274 4275 // Create the node. 4276 SDValue Result; 4277 if (IsTgtIntrinsic) { 4278 // This is target intrinsic that touches memory 4279 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4280 Ops, Info.memVT, 4281 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4282 Info.flags, Info.size); 4283 } else if (!HasChain) { 4284 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4285 } else if (!I.getType()->isVoidTy()) { 4286 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4287 } else { 4288 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4289 } 4290 4291 if (HasChain) { 4292 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4293 if (OnlyLoad) 4294 PendingLoads.push_back(Chain); 4295 else 4296 DAG.setRoot(Chain); 4297 } 4298 4299 if (!I.getType()->isVoidTy()) { 4300 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4301 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4302 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4303 } else 4304 Result = lowerRangeToAssertZExt(DAG, I, Result); 4305 4306 setValue(&I, Result); 4307 } 4308 } 4309 4310 /// GetSignificand - Get the significand and build it into a floating-point 4311 /// number with exponent of 1: 4312 /// 4313 /// Op = (Op & 0x007fffff) | 0x3f800000; 4314 /// 4315 /// where Op is the hexadecimal representation of floating point value. 4316 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4317 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4318 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4319 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4320 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4321 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4322 } 4323 4324 /// GetExponent - Get the exponent: 4325 /// 4326 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4327 /// 4328 /// where Op is the hexadecimal representation of floating point value. 4329 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4330 const TargetLowering &TLI, const SDLoc &dl) { 4331 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4332 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4333 SDValue t1 = DAG.getNode( 4334 ISD::SRL, dl, MVT::i32, t0, 4335 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4336 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4337 DAG.getConstant(127, dl, MVT::i32)); 4338 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4339 } 4340 4341 /// getF32Constant - Get 32-bit floating point constant. 4342 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4343 const SDLoc &dl) { 4344 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4345 MVT::f32); 4346 } 4347 4348 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4349 SelectionDAG &DAG) { 4350 // TODO: What fast-math-flags should be set on the floating-point nodes? 4351 4352 // IntegerPartOfX = ((int32_t)(t0); 4353 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4354 4355 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4356 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4357 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4358 4359 // IntegerPartOfX <<= 23; 4360 IntegerPartOfX = DAG.getNode( 4361 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4362 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4363 DAG.getDataLayout()))); 4364 4365 SDValue TwoToFractionalPartOfX; 4366 if (LimitFloatPrecision <= 6) { 4367 // For floating-point precision of 6: 4368 // 4369 // TwoToFractionalPartOfX = 4370 // 0.997535578f + 4371 // (0.735607626f + 0.252464424f * x) * x; 4372 // 4373 // error 0.0144103317, which is 6 bits 4374 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4375 getF32Constant(DAG, 0x3e814304, dl)); 4376 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4377 getF32Constant(DAG, 0x3f3c50c8, dl)); 4378 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4379 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4380 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4381 } else if (LimitFloatPrecision <= 12) { 4382 // For floating-point precision of 12: 4383 // 4384 // TwoToFractionalPartOfX = 4385 // 0.999892986f + 4386 // (0.696457318f + 4387 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4388 // 4389 // error 0.000107046256, which is 13 to 14 bits 4390 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4391 getF32Constant(DAG, 0x3da235e3, dl)); 4392 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4393 getF32Constant(DAG, 0x3e65b8f3, dl)); 4394 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4395 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4396 getF32Constant(DAG, 0x3f324b07, dl)); 4397 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4398 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4399 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4400 } else { // LimitFloatPrecision <= 18 4401 // For floating-point precision of 18: 4402 // 4403 // TwoToFractionalPartOfX = 4404 // 0.999999982f + 4405 // (0.693148872f + 4406 // (0.240227044f + 4407 // (0.554906021e-1f + 4408 // (0.961591928e-2f + 4409 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4410 // error 2.47208000*10^(-7), which is better than 18 bits 4411 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4412 getF32Constant(DAG, 0x3924b03e, dl)); 4413 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4414 getF32Constant(DAG, 0x3ab24b87, dl)); 4415 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4416 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4417 getF32Constant(DAG, 0x3c1d8c17, dl)); 4418 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4419 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4420 getF32Constant(DAG, 0x3d634a1d, dl)); 4421 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4422 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4423 getF32Constant(DAG, 0x3e75fe14, dl)); 4424 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4425 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4426 getF32Constant(DAG, 0x3f317234, dl)); 4427 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4428 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4429 getF32Constant(DAG, 0x3f800000, dl)); 4430 } 4431 4432 // Add the exponent into the result in integer domain. 4433 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4434 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4435 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4436 } 4437 4438 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4439 /// limited-precision mode. 4440 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4441 const TargetLowering &TLI) { 4442 if (Op.getValueType() == MVT::f32 && 4443 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4444 4445 // Put the exponent in the right bit position for later addition to the 4446 // final result: 4447 // 4448 // #define LOG2OFe 1.4426950f 4449 // t0 = Op * LOG2OFe 4450 4451 // TODO: What fast-math-flags should be set here? 4452 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4453 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4454 return getLimitedPrecisionExp2(t0, dl, DAG); 4455 } 4456 4457 // No special expansion. 4458 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4459 } 4460 4461 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4462 /// limited-precision mode. 4463 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4464 const TargetLowering &TLI) { 4465 // TODO: What fast-math-flags should be set on the floating-point nodes? 4466 4467 if (Op.getValueType() == MVT::f32 && 4468 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4469 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4470 4471 // Scale the exponent by log(2) [0.69314718f]. 4472 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4473 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4474 getF32Constant(DAG, 0x3f317218, dl)); 4475 4476 // Get the significand and build it into a floating-point number with 4477 // exponent of 1. 4478 SDValue X = GetSignificand(DAG, Op1, dl); 4479 4480 SDValue LogOfMantissa; 4481 if (LimitFloatPrecision <= 6) { 4482 // For floating-point precision of 6: 4483 // 4484 // LogofMantissa = 4485 // -1.1609546f + 4486 // (1.4034025f - 0.23903021f * x) * x; 4487 // 4488 // error 0.0034276066, which is better than 8 bits 4489 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4490 getF32Constant(DAG, 0xbe74c456, dl)); 4491 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4492 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4493 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4494 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4495 getF32Constant(DAG, 0x3f949a29, dl)); 4496 } else if (LimitFloatPrecision <= 12) { 4497 // For floating-point precision of 12: 4498 // 4499 // LogOfMantissa = 4500 // -1.7417939f + 4501 // (2.8212026f + 4502 // (-1.4699568f + 4503 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4504 // 4505 // error 0.000061011436, which is 14 bits 4506 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4507 getF32Constant(DAG, 0xbd67b6d6, dl)); 4508 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4509 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4510 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4511 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4512 getF32Constant(DAG, 0x3fbc278b, dl)); 4513 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4514 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4515 getF32Constant(DAG, 0x40348e95, dl)); 4516 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4517 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4518 getF32Constant(DAG, 0x3fdef31a, dl)); 4519 } else { // LimitFloatPrecision <= 18 4520 // For floating-point precision of 18: 4521 // 4522 // LogOfMantissa = 4523 // -2.1072184f + 4524 // (4.2372794f + 4525 // (-3.7029485f + 4526 // (2.2781945f + 4527 // (-0.87823314f + 4528 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4529 // 4530 // error 0.0000023660568, which is better than 18 bits 4531 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4532 getF32Constant(DAG, 0xbc91e5ac, dl)); 4533 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4534 getF32Constant(DAG, 0x3e4350aa, dl)); 4535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4536 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4537 getF32Constant(DAG, 0x3f60d3e3, dl)); 4538 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4539 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4540 getF32Constant(DAG, 0x4011cdf0, dl)); 4541 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4542 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4543 getF32Constant(DAG, 0x406cfd1c, dl)); 4544 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4545 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4546 getF32Constant(DAG, 0x408797cb, dl)); 4547 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4548 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4549 getF32Constant(DAG, 0x4006dcab, dl)); 4550 } 4551 4552 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4553 } 4554 4555 // No special expansion. 4556 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4557 } 4558 4559 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4560 /// limited-precision mode. 4561 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4562 const TargetLowering &TLI) { 4563 // TODO: What fast-math-flags should be set on the floating-point nodes? 4564 4565 if (Op.getValueType() == MVT::f32 && 4566 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4567 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4568 4569 // Get the exponent. 4570 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4571 4572 // Get the significand and build it into a floating-point number with 4573 // exponent of 1. 4574 SDValue X = GetSignificand(DAG, Op1, dl); 4575 4576 // Different possible minimax approximations of significand in 4577 // floating-point for various degrees of accuracy over [1,2]. 4578 SDValue Log2ofMantissa; 4579 if (LimitFloatPrecision <= 6) { 4580 // For floating-point precision of 6: 4581 // 4582 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4583 // 4584 // error 0.0049451742, which is more than 7 bits 4585 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4586 getF32Constant(DAG, 0xbeb08fe0, dl)); 4587 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4588 getF32Constant(DAG, 0x40019463, dl)); 4589 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4590 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4591 getF32Constant(DAG, 0x3fd6633d, dl)); 4592 } else if (LimitFloatPrecision <= 12) { 4593 // For floating-point precision of 12: 4594 // 4595 // Log2ofMantissa = 4596 // -2.51285454f + 4597 // (4.07009056f + 4598 // (-2.12067489f + 4599 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4600 // 4601 // error 0.0000876136000, which is better than 13 bits 4602 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4603 getF32Constant(DAG, 0xbda7262e, dl)); 4604 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4605 getF32Constant(DAG, 0x3f25280b, dl)); 4606 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4607 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4608 getF32Constant(DAG, 0x4007b923, dl)); 4609 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4610 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4611 getF32Constant(DAG, 0x40823e2f, dl)); 4612 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4613 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4614 getF32Constant(DAG, 0x4020d29c, dl)); 4615 } else { // LimitFloatPrecision <= 18 4616 // For floating-point precision of 18: 4617 // 4618 // Log2ofMantissa = 4619 // -3.0400495f + 4620 // (6.1129976f + 4621 // (-5.3420409f + 4622 // (3.2865683f + 4623 // (-1.2669343f + 4624 // (0.27515199f - 4625 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4626 // 4627 // error 0.0000018516, which is better than 18 bits 4628 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4629 getF32Constant(DAG, 0xbcd2769e, dl)); 4630 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4631 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4632 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4633 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4634 getF32Constant(DAG, 0x3fa22ae7, dl)); 4635 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4636 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4637 getF32Constant(DAG, 0x40525723, dl)); 4638 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4639 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4640 getF32Constant(DAG, 0x40aaf200, dl)); 4641 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4642 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4643 getF32Constant(DAG, 0x40c39dad, dl)); 4644 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4645 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4646 getF32Constant(DAG, 0x4042902c, dl)); 4647 } 4648 4649 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4650 } 4651 4652 // No special expansion. 4653 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4654 } 4655 4656 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4657 /// limited-precision mode. 4658 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4659 const TargetLowering &TLI) { 4660 // TODO: What fast-math-flags should be set on the floating-point nodes? 4661 4662 if (Op.getValueType() == MVT::f32 && 4663 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4664 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4665 4666 // Scale the exponent by log10(2) [0.30102999f]. 4667 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4668 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4669 getF32Constant(DAG, 0x3e9a209a, dl)); 4670 4671 // Get the significand and build it into a floating-point number with 4672 // exponent of 1. 4673 SDValue X = GetSignificand(DAG, Op1, dl); 4674 4675 SDValue Log10ofMantissa; 4676 if (LimitFloatPrecision <= 6) { 4677 // For floating-point precision of 6: 4678 // 4679 // Log10ofMantissa = 4680 // -0.50419619f + 4681 // (0.60948995f - 0.10380950f * x) * x; 4682 // 4683 // error 0.0014886165, which is 6 bits 4684 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4685 getF32Constant(DAG, 0xbdd49a13, dl)); 4686 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4687 getF32Constant(DAG, 0x3f1c0789, dl)); 4688 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4689 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4690 getF32Constant(DAG, 0x3f011300, dl)); 4691 } else if (LimitFloatPrecision <= 12) { 4692 // For floating-point precision of 12: 4693 // 4694 // Log10ofMantissa = 4695 // -0.64831180f + 4696 // (0.91751397f + 4697 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4698 // 4699 // error 0.00019228036, which is better than 12 bits 4700 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4701 getF32Constant(DAG, 0x3d431f31, dl)); 4702 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4703 getF32Constant(DAG, 0x3ea21fb2, dl)); 4704 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4705 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4706 getF32Constant(DAG, 0x3f6ae232, dl)); 4707 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4708 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4709 getF32Constant(DAG, 0x3f25f7c3, dl)); 4710 } else { // LimitFloatPrecision <= 18 4711 // For floating-point precision of 18: 4712 // 4713 // Log10ofMantissa = 4714 // -0.84299375f + 4715 // (1.5327582f + 4716 // (-1.0688956f + 4717 // (0.49102474f + 4718 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4719 // 4720 // error 0.0000037995730, which is better than 18 bits 4721 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4722 getF32Constant(DAG, 0x3c5d51ce, dl)); 4723 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4724 getF32Constant(DAG, 0x3e00685a, dl)); 4725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4726 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4727 getF32Constant(DAG, 0x3efb6798, dl)); 4728 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4729 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4730 getF32Constant(DAG, 0x3f88d192, dl)); 4731 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4732 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4733 getF32Constant(DAG, 0x3fc4316c, dl)); 4734 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4735 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4736 getF32Constant(DAG, 0x3f57ce70, dl)); 4737 } 4738 4739 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4740 } 4741 4742 // No special expansion. 4743 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4744 } 4745 4746 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4747 /// limited-precision mode. 4748 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4749 const TargetLowering &TLI) { 4750 if (Op.getValueType() == MVT::f32 && 4751 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4752 return getLimitedPrecisionExp2(Op, dl, DAG); 4753 4754 // No special expansion. 4755 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4756 } 4757 4758 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4759 /// limited-precision mode with x == 10.0f. 4760 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4761 SelectionDAG &DAG, const TargetLowering &TLI) { 4762 bool IsExp10 = false; 4763 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4764 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4765 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4766 APFloat Ten(10.0f); 4767 IsExp10 = LHSC->isExactlyValue(Ten); 4768 } 4769 } 4770 4771 // TODO: What fast-math-flags should be set on the FMUL node? 4772 if (IsExp10) { 4773 // Put the exponent in the right bit position for later addition to the 4774 // final result: 4775 // 4776 // #define LOG2OF10 3.3219281f 4777 // t0 = Op * LOG2OF10; 4778 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4779 getF32Constant(DAG, 0x40549a78, dl)); 4780 return getLimitedPrecisionExp2(t0, dl, DAG); 4781 } 4782 4783 // No special expansion. 4784 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4785 } 4786 4787 /// ExpandPowI - Expand a llvm.powi intrinsic. 4788 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4789 SelectionDAG &DAG) { 4790 // If RHS is a constant, we can expand this out to a multiplication tree, 4791 // otherwise we end up lowering to a call to __powidf2 (for example). When 4792 // optimizing for size, we only want to do this if the expansion would produce 4793 // a small number of multiplies, otherwise we do the full expansion. 4794 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4795 // Get the exponent as a positive value. 4796 unsigned Val = RHSC->getSExtValue(); 4797 if ((int)Val < 0) Val = -Val; 4798 4799 // powi(x, 0) -> 1.0 4800 if (Val == 0) 4801 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4802 4803 const Function &F = DAG.getMachineFunction().getFunction(); 4804 if (!F.optForSize() || 4805 // If optimizing for size, don't insert too many multiplies. 4806 // This inserts up to 5 multiplies. 4807 countPopulation(Val) + Log2_32(Val) < 7) { 4808 // We use the simple binary decomposition method to generate the multiply 4809 // sequence. There are more optimal ways to do this (for example, 4810 // powi(x,15) generates one more multiply than it should), but this has 4811 // the benefit of being both really simple and much better than a libcall. 4812 SDValue Res; // Logically starts equal to 1.0 4813 SDValue CurSquare = LHS; 4814 // TODO: Intrinsics should have fast-math-flags that propagate to these 4815 // nodes. 4816 while (Val) { 4817 if (Val & 1) { 4818 if (Res.getNode()) 4819 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4820 else 4821 Res = CurSquare; // 1.0*CurSquare. 4822 } 4823 4824 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4825 CurSquare, CurSquare); 4826 Val >>= 1; 4827 } 4828 4829 // If the original was negative, invert the result, producing 1/(x*x*x). 4830 if (RHSC->getSExtValue() < 0) 4831 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4832 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4833 return Res; 4834 } 4835 } 4836 4837 // Otherwise, expand to a libcall. 4838 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4839 } 4840 4841 // getUnderlyingArgReg - Find underlying register used for a truncated or 4842 // bitcasted argument. 4843 static unsigned getUnderlyingArgReg(const SDValue &N) { 4844 switch (N.getOpcode()) { 4845 case ISD::CopyFromReg: 4846 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4847 case ISD::BITCAST: 4848 case ISD::AssertZext: 4849 case ISD::AssertSext: 4850 case ISD::TRUNCATE: 4851 return getUnderlyingArgReg(N.getOperand(0)); 4852 default: 4853 return 0; 4854 } 4855 } 4856 4857 /// If the DbgValueInst is a dbg_value of a function argument, create the 4858 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4859 /// instruction selection, they will be inserted to the entry BB. 4860 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4861 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4862 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4863 const Argument *Arg = dyn_cast<Argument>(V); 4864 if (!Arg) 4865 return false; 4866 4867 MachineFunction &MF = DAG.getMachineFunction(); 4868 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4869 4870 bool IsIndirect = false; 4871 Optional<MachineOperand> Op; 4872 // Some arguments' frame index is recorded during argument lowering. 4873 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4874 if (FI != std::numeric_limits<int>::max()) 4875 Op = MachineOperand::CreateFI(FI); 4876 4877 if (!Op && N.getNode()) { 4878 unsigned Reg = getUnderlyingArgReg(N); 4879 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4880 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4881 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4882 if (PR) 4883 Reg = PR; 4884 } 4885 if (Reg) { 4886 Op = MachineOperand::CreateReg(Reg, false); 4887 IsIndirect = IsDbgDeclare; 4888 } 4889 } 4890 4891 if (!Op && N.getNode()) 4892 // Check if frame index is available. 4893 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4894 if (FrameIndexSDNode *FINode = 4895 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4896 Op = MachineOperand::CreateFI(FINode->getIndex()); 4897 4898 if (!Op) { 4899 // Check if ValueMap has reg number. 4900 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4901 if (VMI != FuncInfo.ValueMap.end()) { 4902 const auto &TLI = DAG.getTargetLoweringInfo(); 4903 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4904 V->getType(), isABIRegCopy(V)); 4905 if (RFV.occupiesMultipleRegs()) { 4906 unsigned Offset = 0; 4907 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4908 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4909 auto FragmentExpr = DIExpression::createFragmentExpression( 4910 Expr, Offset, RegAndSize.second); 4911 if (!FragmentExpr) 4912 continue; 4913 FuncInfo.ArgDbgValues.push_back( 4914 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4915 Op->getReg(), Variable, *FragmentExpr)); 4916 Offset += RegAndSize.second; 4917 } 4918 return true; 4919 } 4920 Op = MachineOperand::CreateReg(VMI->second, false); 4921 IsIndirect = IsDbgDeclare; 4922 } 4923 } 4924 4925 if (!Op) 4926 return false; 4927 4928 assert(Variable->isValidLocationForIntrinsic(DL) && 4929 "Expected inlined-at fields to agree"); 4930 if (Op->isReg()) 4931 FuncInfo.ArgDbgValues.push_back( 4932 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4933 Op->getReg(), Variable, Expr)); 4934 else 4935 FuncInfo.ArgDbgValues.push_back( 4936 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4937 .add(*Op) 4938 .addImm(0) 4939 .addMetadata(Variable) 4940 .addMetadata(Expr)); 4941 4942 return true; 4943 } 4944 4945 /// Return the appropriate SDDbgValue based on N. 4946 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4947 DILocalVariable *Variable, 4948 DIExpression *Expr, 4949 const DebugLoc &dl, 4950 unsigned DbgSDNodeOrder) { 4951 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4952 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4953 // stack slot locations as such instead of as indirectly addressed 4954 // locations. 4955 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4956 DbgSDNodeOrder); 4957 } 4958 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4959 DbgSDNodeOrder); 4960 } 4961 4962 // VisualStudio defines setjmp as _setjmp 4963 #if defined(_MSC_VER) && defined(setjmp) && \ 4964 !defined(setjmp_undefined_for_msvc) 4965 # pragma push_macro("setjmp") 4966 # undef setjmp 4967 # define setjmp_undefined_for_msvc 4968 #endif 4969 4970 /// Lower the call to the specified intrinsic function. If we want to emit this 4971 /// as a call to a named external function, return the name. Otherwise, lower it 4972 /// and return null. 4973 const char * 4974 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4976 SDLoc sdl = getCurSDLoc(); 4977 DebugLoc dl = getCurDebugLoc(); 4978 SDValue Res; 4979 4980 switch (Intrinsic) { 4981 default: 4982 // By default, turn this into a target intrinsic node. 4983 visitTargetIntrinsic(I, Intrinsic); 4984 return nullptr; 4985 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4986 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4987 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4988 case Intrinsic::returnaddress: 4989 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4990 TLI.getPointerTy(DAG.getDataLayout()), 4991 getValue(I.getArgOperand(0)))); 4992 return nullptr; 4993 case Intrinsic::addressofreturnaddress: 4994 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4995 TLI.getPointerTy(DAG.getDataLayout()))); 4996 return nullptr; 4997 case Intrinsic::frameaddress: 4998 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4999 TLI.getPointerTy(DAG.getDataLayout()), 5000 getValue(I.getArgOperand(0)))); 5001 return nullptr; 5002 case Intrinsic::read_register: { 5003 Value *Reg = I.getArgOperand(0); 5004 SDValue Chain = getRoot(); 5005 SDValue RegName = 5006 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5007 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5008 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5009 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5010 setValue(&I, Res); 5011 DAG.setRoot(Res.getValue(1)); 5012 return nullptr; 5013 } 5014 case Intrinsic::write_register: { 5015 Value *Reg = I.getArgOperand(0); 5016 Value *RegValue = I.getArgOperand(1); 5017 SDValue Chain = getRoot(); 5018 SDValue RegName = 5019 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5020 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5021 RegName, getValue(RegValue))); 5022 return nullptr; 5023 } 5024 case Intrinsic::setjmp: 5025 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5026 case Intrinsic::longjmp: 5027 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5028 case Intrinsic::memcpy: { 5029 const auto &MCI = cast<MemCpyInst>(I); 5030 SDValue Op1 = getValue(I.getArgOperand(0)); 5031 SDValue Op2 = getValue(I.getArgOperand(1)); 5032 SDValue Op3 = getValue(I.getArgOperand(2)); 5033 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5034 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5035 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5036 unsigned Align = MinAlign(DstAlign, SrcAlign); 5037 bool isVol = MCI.isVolatile(); 5038 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5039 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5040 // node. 5041 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5042 false, isTC, 5043 MachinePointerInfo(I.getArgOperand(0)), 5044 MachinePointerInfo(I.getArgOperand(1))); 5045 updateDAGForMaybeTailCall(MC); 5046 return nullptr; 5047 } 5048 case Intrinsic::memset: { 5049 const auto &MSI = cast<MemSetInst>(I); 5050 SDValue Op1 = getValue(I.getArgOperand(0)); 5051 SDValue Op2 = getValue(I.getArgOperand(1)); 5052 SDValue Op3 = getValue(I.getArgOperand(2)); 5053 // @llvm.memset defines 0 and 1 to both mean no alignment. 5054 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5055 bool isVol = MSI.isVolatile(); 5056 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5057 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5058 isTC, MachinePointerInfo(I.getArgOperand(0))); 5059 updateDAGForMaybeTailCall(MS); 5060 return nullptr; 5061 } 5062 case Intrinsic::memmove: { 5063 const auto &MMI = cast<MemMoveInst>(I); 5064 SDValue Op1 = getValue(I.getArgOperand(0)); 5065 SDValue Op2 = getValue(I.getArgOperand(1)); 5066 SDValue Op3 = getValue(I.getArgOperand(2)); 5067 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5068 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5069 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5070 unsigned Align = MinAlign(DstAlign, SrcAlign); 5071 bool isVol = MMI.isVolatile(); 5072 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5073 // FIXME: Support passing different dest/src alignments to the memmove DAG 5074 // node. 5075 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5076 isTC, MachinePointerInfo(I.getArgOperand(0)), 5077 MachinePointerInfo(I.getArgOperand(1))); 5078 updateDAGForMaybeTailCall(MM); 5079 return nullptr; 5080 } 5081 case Intrinsic::memcpy_element_unordered_atomic: { 5082 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5083 SDValue Dst = getValue(MI.getRawDest()); 5084 SDValue Src = getValue(MI.getRawSource()); 5085 SDValue Length = getValue(MI.getLength()); 5086 5087 unsigned DstAlign = MI.getDestAlignment(); 5088 unsigned SrcAlign = MI.getSourceAlignment(); 5089 Type *LengthTy = MI.getLength()->getType(); 5090 unsigned ElemSz = MI.getElementSizeInBytes(); 5091 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5092 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5093 SrcAlign, Length, LengthTy, ElemSz, isTC, 5094 MachinePointerInfo(MI.getRawDest()), 5095 MachinePointerInfo(MI.getRawSource())); 5096 updateDAGForMaybeTailCall(MC); 5097 return nullptr; 5098 } 5099 case Intrinsic::memmove_element_unordered_atomic: { 5100 auto &MI = cast<AtomicMemMoveInst>(I); 5101 SDValue Dst = getValue(MI.getRawDest()); 5102 SDValue Src = getValue(MI.getRawSource()); 5103 SDValue Length = getValue(MI.getLength()); 5104 5105 unsigned DstAlign = MI.getDestAlignment(); 5106 unsigned SrcAlign = MI.getSourceAlignment(); 5107 Type *LengthTy = MI.getLength()->getType(); 5108 unsigned ElemSz = MI.getElementSizeInBytes(); 5109 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5110 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5111 SrcAlign, Length, LengthTy, ElemSz, isTC, 5112 MachinePointerInfo(MI.getRawDest()), 5113 MachinePointerInfo(MI.getRawSource())); 5114 updateDAGForMaybeTailCall(MC); 5115 return nullptr; 5116 } 5117 case Intrinsic::memset_element_unordered_atomic: { 5118 auto &MI = cast<AtomicMemSetInst>(I); 5119 SDValue Dst = getValue(MI.getRawDest()); 5120 SDValue Val = getValue(MI.getValue()); 5121 SDValue Length = getValue(MI.getLength()); 5122 5123 unsigned DstAlign = MI.getDestAlignment(); 5124 Type *LengthTy = MI.getLength()->getType(); 5125 unsigned ElemSz = MI.getElementSizeInBytes(); 5126 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5127 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5128 LengthTy, ElemSz, isTC, 5129 MachinePointerInfo(MI.getRawDest())); 5130 updateDAGForMaybeTailCall(MC); 5131 return nullptr; 5132 } 5133 case Intrinsic::dbg_addr: 5134 case Intrinsic::dbg_declare: { 5135 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5136 DILocalVariable *Variable = DI.getVariable(); 5137 DIExpression *Expression = DI.getExpression(); 5138 dropDanglingDebugInfo(Variable, Expression); 5139 assert(Variable && "Missing variable"); 5140 5141 // Check if address has undef value. 5142 const Value *Address = DI.getVariableLocation(); 5143 if (!Address || isa<UndefValue>(Address) || 5144 (Address->use_empty() && !isa<Argument>(Address))) { 5145 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5146 return nullptr; 5147 } 5148 5149 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5150 5151 // Check if this variable can be described by a frame index, typically 5152 // either as a static alloca or a byval parameter. 5153 int FI = std::numeric_limits<int>::max(); 5154 if (const auto *AI = 5155 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5156 if (AI->isStaticAlloca()) { 5157 auto I = FuncInfo.StaticAllocaMap.find(AI); 5158 if (I != FuncInfo.StaticAllocaMap.end()) 5159 FI = I->second; 5160 } 5161 } else if (const auto *Arg = dyn_cast<Argument>( 5162 Address->stripInBoundsConstantOffsets())) { 5163 FI = FuncInfo.getArgumentFrameIndex(Arg); 5164 } 5165 5166 // llvm.dbg.addr is control dependent and always generates indirect 5167 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5168 // the MachineFunction variable table. 5169 if (FI != std::numeric_limits<int>::max()) { 5170 if (Intrinsic == Intrinsic::dbg_addr) { 5171 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5172 FI, dl, SDNodeOrder); 5173 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5174 } 5175 return nullptr; 5176 } 5177 5178 SDValue &N = NodeMap[Address]; 5179 if (!N.getNode() && isa<Argument>(Address)) 5180 // Check unused arguments map. 5181 N = UnusedArgNodeMap[Address]; 5182 SDDbgValue *SDV; 5183 if (N.getNode()) { 5184 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5185 Address = BCI->getOperand(0); 5186 // Parameters are handled specially. 5187 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5188 if (isParameter && FINode) { 5189 // Byval parameter. We have a frame index at this point. 5190 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5191 FINode->getIndex(), dl, SDNodeOrder); 5192 } else if (isa<Argument>(Address)) { 5193 // Address is an argument, so try to emit its dbg value using 5194 // virtual register info from the FuncInfo.ValueMap. 5195 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5196 return nullptr; 5197 } else { 5198 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5199 true, dl, SDNodeOrder); 5200 } 5201 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5202 } else { 5203 // If Address is an argument then try to emit its dbg value using 5204 // virtual register info from the FuncInfo.ValueMap. 5205 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5206 N)) { 5207 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5208 } 5209 } 5210 return nullptr; 5211 } 5212 case Intrinsic::dbg_label: { 5213 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5214 DILabel *Label = DI.getLabel(); 5215 assert(Label && "Missing label"); 5216 5217 SDDbgLabel *SDV; 5218 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5219 DAG.AddDbgLabel(SDV); 5220 return nullptr; 5221 } 5222 case Intrinsic::dbg_value: { 5223 const DbgValueInst &DI = cast<DbgValueInst>(I); 5224 assert(DI.getVariable() && "Missing variable"); 5225 5226 DILocalVariable *Variable = DI.getVariable(); 5227 DIExpression *Expression = DI.getExpression(); 5228 dropDanglingDebugInfo(Variable, Expression); 5229 const Value *V = DI.getValue(); 5230 if (!V) 5231 return nullptr; 5232 5233 SDDbgValue *SDV; 5234 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5235 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5236 DAG.AddDbgValue(SDV, nullptr, false); 5237 return nullptr; 5238 } 5239 5240 // Do not use getValue() in here; we don't want to generate code at 5241 // this point if it hasn't been done yet. 5242 SDValue N = NodeMap[V]; 5243 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5244 N = UnusedArgNodeMap[V]; 5245 if (N.getNode()) { 5246 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5247 return nullptr; 5248 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5249 DAG.AddDbgValue(SDV, N.getNode(), false); 5250 return nullptr; 5251 } 5252 5253 // PHI nodes have already been selected, so we should know which VReg that 5254 // is assigns to already. 5255 if (isa<PHINode>(V)) { 5256 auto VMI = FuncInfo.ValueMap.find(V); 5257 if (VMI != FuncInfo.ValueMap.end()) { 5258 unsigned Reg = VMI->second; 5259 // The PHI node may be split up into several MI PHI nodes (in 5260 // FunctionLoweringInfo::set). 5261 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5262 V->getType(), false); 5263 if (RFV.occupiesMultipleRegs()) { 5264 unsigned Offset = 0; 5265 unsigned BitsToDescribe = 0; 5266 if (auto VarSize = Variable->getSizeInBits()) 5267 BitsToDescribe = *VarSize; 5268 if (auto Fragment = Expression->getFragmentInfo()) 5269 BitsToDescribe = Fragment->SizeInBits; 5270 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5271 unsigned RegisterSize = RegAndSize.second; 5272 // Bail out if all bits are described already. 5273 if (Offset >= BitsToDescribe) 5274 break; 5275 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5276 ? BitsToDescribe - Offset 5277 : RegisterSize; 5278 auto FragmentExpr = DIExpression::createFragmentExpression( 5279 Expression, Offset, FragmentSize); 5280 if (!FragmentExpr) 5281 continue; 5282 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5283 false, dl, SDNodeOrder); 5284 DAG.AddDbgValue(SDV, nullptr, false); 5285 Offset += RegisterSize; 5286 } 5287 } else { 5288 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5289 SDNodeOrder); 5290 DAG.AddDbgValue(SDV, nullptr, false); 5291 } 5292 return nullptr; 5293 } 5294 } 5295 5296 // TODO: When we get here we will either drop the dbg.value completely, or 5297 // we try to move it forward by letting it dangle for awhile. So we should 5298 // probably add an extra DbgValue to the DAG here, with a reference to 5299 // "noreg", to indicate that we have lost the debug location for the 5300 // variable. 5301 5302 if (!V->use_empty() ) { 5303 // Do not call getValue(V) yet, as we don't want to generate code. 5304 // Remember it for later. 5305 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5306 DanglingDebugInfoMap[V].push_back(DDI); 5307 return nullptr; 5308 } 5309 5310 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5311 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5312 return nullptr; 5313 } 5314 5315 case Intrinsic::eh_typeid_for: { 5316 // Find the type id for the given typeinfo. 5317 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5318 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5319 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5320 setValue(&I, Res); 5321 return nullptr; 5322 } 5323 5324 case Intrinsic::eh_return_i32: 5325 case Intrinsic::eh_return_i64: 5326 DAG.getMachineFunction().setCallsEHReturn(true); 5327 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5328 MVT::Other, 5329 getControlRoot(), 5330 getValue(I.getArgOperand(0)), 5331 getValue(I.getArgOperand(1)))); 5332 return nullptr; 5333 case Intrinsic::eh_unwind_init: 5334 DAG.getMachineFunction().setCallsUnwindInit(true); 5335 return nullptr; 5336 case Intrinsic::eh_dwarf_cfa: 5337 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5338 TLI.getPointerTy(DAG.getDataLayout()), 5339 getValue(I.getArgOperand(0)))); 5340 return nullptr; 5341 case Intrinsic::eh_sjlj_callsite: { 5342 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5343 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5344 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5345 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5346 5347 MMI.setCurrentCallSite(CI->getZExtValue()); 5348 return nullptr; 5349 } 5350 case Intrinsic::eh_sjlj_functioncontext: { 5351 // Get and store the index of the function context. 5352 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5353 AllocaInst *FnCtx = 5354 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5355 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5356 MFI.setFunctionContextIndex(FI); 5357 return nullptr; 5358 } 5359 case Intrinsic::eh_sjlj_setjmp: { 5360 SDValue Ops[2]; 5361 Ops[0] = getRoot(); 5362 Ops[1] = getValue(I.getArgOperand(0)); 5363 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5364 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5365 setValue(&I, Op.getValue(0)); 5366 DAG.setRoot(Op.getValue(1)); 5367 return nullptr; 5368 } 5369 case Intrinsic::eh_sjlj_longjmp: 5370 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5371 getRoot(), getValue(I.getArgOperand(0)))); 5372 return nullptr; 5373 case Intrinsic::eh_sjlj_setup_dispatch: 5374 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5375 getRoot())); 5376 return nullptr; 5377 case Intrinsic::masked_gather: 5378 visitMaskedGather(I); 5379 return nullptr; 5380 case Intrinsic::masked_load: 5381 visitMaskedLoad(I); 5382 return nullptr; 5383 case Intrinsic::masked_scatter: 5384 visitMaskedScatter(I); 5385 return nullptr; 5386 case Intrinsic::masked_store: 5387 visitMaskedStore(I); 5388 return nullptr; 5389 case Intrinsic::masked_expandload: 5390 visitMaskedLoad(I, true /* IsExpanding */); 5391 return nullptr; 5392 case Intrinsic::masked_compressstore: 5393 visitMaskedStore(I, true /* IsCompressing */); 5394 return nullptr; 5395 case Intrinsic::x86_mmx_pslli_w: 5396 case Intrinsic::x86_mmx_pslli_d: 5397 case Intrinsic::x86_mmx_pslli_q: 5398 case Intrinsic::x86_mmx_psrli_w: 5399 case Intrinsic::x86_mmx_psrli_d: 5400 case Intrinsic::x86_mmx_psrli_q: 5401 case Intrinsic::x86_mmx_psrai_w: 5402 case Intrinsic::x86_mmx_psrai_d: { 5403 SDValue ShAmt = getValue(I.getArgOperand(1)); 5404 if (isa<ConstantSDNode>(ShAmt)) { 5405 visitTargetIntrinsic(I, Intrinsic); 5406 return nullptr; 5407 } 5408 unsigned NewIntrinsic = 0; 5409 EVT ShAmtVT = MVT::v2i32; 5410 switch (Intrinsic) { 5411 case Intrinsic::x86_mmx_pslli_w: 5412 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5413 break; 5414 case Intrinsic::x86_mmx_pslli_d: 5415 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5416 break; 5417 case Intrinsic::x86_mmx_pslli_q: 5418 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5419 break; 5420 case Intrinsic::x86_mmx_psrli_w: 5421 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5422 break; 5423 case Intrinsic::x86_mmx_psrli_d: 5424 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5425 break; 5426 case Intrinsic::x86_mmx_psrli_q: 5427 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5428 break; 5429 case Intrinsic::x86_mmx_psrai_w: 5430 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5431 break; 5432 case Intrinsic::x86_mmx_psrai_d: 5433 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5434 break; 5435 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5436 } 5437 5438 // The vector shift intrinsics with scalars uses 32b shift amounts but 5439 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5440 // to be zero. 5441 // We must do this early because v2i32 is not a legal type. 5442 SDValue ShOps[2]; 5443 ShOps[0] = ShAmt; 5444 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5445 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5446 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5447 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5448 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5449 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5450 getValue(I.getArgOperand(0)), ShAmt); 5451 setValue(&I, Res); 5452 return nullptr; 5453 } 5454 case Intrinsic::powi: 5455 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5456 getValue(I.getArgOperand(1)), DAG)); 5457 return nullptr; 5458 case Intrinsic::log: 5459 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5460 return nullptr; 5461 case Intrinsic::log2: 5462 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5463 return nullptr; 5464 case Intrinsic::log10: 5465 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5466 return nullptr; 5467 case Intrinsic::exp: 5468 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5469 return nullptr; 5470 case Intrinsic::exp2: 5471 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5472 return nullptr; 5473 case Intrinsic::pow: 5474 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5475 getValue(I.getArgOperand(1)), DAG, TLI)); 5476 return nullptr; 5477 case Intrinsic::sqrt: 5478 case Intrinsic::fabs: 5479 case Intrinsic::sin: 5480 case Intrinsic::cos: 5481 case Intrinsic::floor: 5482 case Intrinsic::ceil: 5483 case Intrinsic::trunc: 5484 case Intrinsic::rint: 5485 case Intrinsic::nearbyint: 5486 case Intrinsic::round: 5487 case Intrinsic::canonicalize: { 5488 unsigned Opcode; 5489 switch (Intrinsic) { 5490 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5491 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5492 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5493 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5494 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5495 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5496 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5497 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5498 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5499 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5500 case Intrinsic::round: Opcode = ISD::FROUND; break; 5501 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5502 } 5503 5504 setValue(&I, DAG.getNode(Opcode, sdl, 5505 getValue(I.getArgOperand(0)).getValueType(), 5506 getValue(I.getArgOperand(0)))); 5507 return nullptr; 5508 } 5509 case Intrinsic::minnum: { 5510 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5511 unsigned Opc = 5512 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5513 ? ISD::FMINNAN 5514 : ISD::FMINNUM; 5515 setValue(&I, DAG.getNode(Opc, sdl, VT, 5516 getValue(I.getArgOperand(0)), 5517 getValue(I.getArgOperand(1)))); 5518 return nullptr; 5519 } 5520 case Intrinsic::maxnum: { 5521 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5522 unsigned Opc = 5523 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5524 ? ISD::FMAXNAN 5525 : ISD::FMAXNUM; 5526 setValue(&I, DAG.getNode(Opc, sdl, VT, 5527 getValue(I.getArgOperand(0)), 5528 getValue(I.getArgOperand(1)))); 5529 return nullptr; 5530 } 5531 case Intrinsic::copysign: 5532 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5533 getValue(I.getArgOperand(0)).getValueType(), 5534 getValue(I.getArgOperand(0)), 5535 getValue(I.getArgOperand(1)))); 5536 return nullptr; 5537 case Intrinsic::fma: 5538 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5539 getValue(I.getArgOperand(0)).getValueType(), 5540 getValue(I.getArgOperand(0)), 5541 getValue(I.getArgOperand(1)), 5542 getValue(I.getArgOperand(2)))); 5543 return nullptr; 5544 case Intrinsic::experimental_constrained_fadd: 5545 case Intrinsic::experimental_constrained_fsub: 5546 case Intrinsic::experimental_constrained_fmul: 5547 case Intrinsic::experimental_constrained_fdiv: 5548 case Intrinsic::experimental_constrained_frem: 5549 case Intrinsic::experimental_constrained_fma: 5550 case Intrinsic::experimental_constrained_sqrt: 5551 case Intrinsic::experimental_constrained_pow: 5552 case Intrinsic::experimental_constrained_powi: 5553 case Intrinsic::experimental_constrained_sin: 5554 case Intrinsic::experimental_constrained_cos: 5555 case Intrinsic::experimental_constrained_exp: 5556 case Intrinsic::experimental_constrained_exp2: 5557 case Intrinsic::experimental_constrained_log: 5558 case Intrinsic::experimental_constrained_log10: 5559 case Intrinsic::experimental_constrained_log2: 5560 case Intrinsic::experimental_constrained_rint: 5561 case Intrinsic::experimental_constrained_nearbyint: 5562 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5563 return nullptr; 5564 case Intrinsic::fmuladd: { 5565 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5566 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5567 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5568 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5569 getValue(I.getArgOperand(0)).getValueType(), 5570 getValue(I.getArgOperand(0)), 5571 getValue(I.getArgOperand(1)), 5572 getValue(I.getArgOperand(2)))); 5573 } else { 5574 // TODO: Intrinsic calls should have fast-math-flags. 5575 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5576 getValue(I.getArgOperand(0)).getValueType(), 5577 getValue(I.getArgOperand(0)), 5578 getValue(I.getArgOperand(1))); 5579 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5580 getValue(I.getArgOperand(0)).getValueType(), 5581 Mul, 5582 getValue(I.getArgOperand(2))); 5583 setValue(&I, Add); 5584 } 5585 return nullptr; 5586 } 5587 case Intrinsic::convert_to_fp16: 5588 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5589 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5590 getValue(I.getArgOperand(0)), 5591 DAG.getTargetConstant(0, sdl, 5592 MVT::i32)))); 5593 return nullptr; 5594 case Intrinsic::convert_from_fp16: 5595 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5596 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5597 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5598 getValue(I.getArgOperand(0))))); 5599 return nullptr; 5600 case Intrinsic::pcmarker: { 5601 SDValue Tmp = getValue(I.getArgOperand(0)); 5602 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5603 return nullptr; 5604 } 5605 case Intrinsic::readcyclecounter: { 5606 SDValue Op = getRoot(); 5607 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5608 DAG.getVTList(MVT::i64, MVT::Other), Op); 5609 setValue(&I, Res); 5610 DAG.setRoot(Res.getValue(1)); 5611 return nullptr; 5612 } 5613 case Intrinsic::bitreverse: 5614 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5615 getValue(I.getArgOperand(0)).getValueType(), 5616 getValue(I.getArgOperand(0)))); 5617 return nullptr; 5618 case Intrinsic::bswap: 5619 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5620 getValue(I.getArgOperand(0)).getValueType(), 5621 getValue(I.getArgOperand(0)))); 5622 return nullptr; 5623 case Intrinsic::cttz: { 5624 SDValue Arg = getValue(I.getArgOperand(0)); 5625 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5626 EVT Ty = Arg.getValueType(); 5627 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5628 sdl, Ty, Arg)); 5629 return nullptr; 5630 } 5631 case Intrinsic::ctlz: { 5632 SDValue Arg = getValue(I.getArgOperand(0)); 5633 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5634 EVT Ty = Arg.getValueType(); 5635 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5636 sdl, Ty, Arg)); 5637 return nullptr; 5638 } 5639 case Intrinsic::ctpop: { 5640 SDValue Arg = getValue(I.getArgOperand(0)); 5641 EVT Ty = Arg.getValueType(); 5642 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5643 return nullptr; 5644 } 5645 case Intrinsic::stacksave: { 5646 SDValue Op = getRoot(); 5647 Res = DAG.getNode( 5648 ISD::STACKSAVE, sdl, 5649 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5650 setValue(&I, Res); 5651 DAG.setRoot(Res.getValue(1)); 5652 return nullptr; 5653 } 5654 case Intrinsic::stackrestore: 5655 Res = getValue(I.getArgOperand(0)); 5656 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5657 return nullptr; 5658 case Intrinsic::get_dynamic_area_offset: { 5659 SDValue Op = getRoot(); 5660 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5661 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5662 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5663 // target. 5664 if (PtrTy != ResTy) 5665 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5666 " intrinsic!"); 5667 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5668 Op); 5669 DAG.setRoot(Op); 5670 setValue(&I, Res); 5671 return nullptr; 5672 } 5673 case Intrinsic::stackguard: { 5674 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5675 MachineFunction &MF = DAG.getMachineFunction(); 5676 const Module &M = *MF.getFunction().getParent(); 5677 SDValue Chain = getRoot(); 5678 if (TLI.useLoadStackGuardNode()) { 5679 Res = getLoadStackGuard(DAG, sdl, Chain); 5680 } else { 5681 const Value *Global = TLI.getSDagStackGuard(M); 5682 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5683 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5684 MachinePointerInfo(Global, 0), Align, 5685 MachineMemOperand::MOVolatile); 5686 } 5687 if (TLI.useStackGuardXorFP()) 5688 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5689 DAG.setRoot(Chain); 5690 setValue(&I, Res); 5691 return nullptr; 5692 } 5693 case Intrinsic::stackprotector: { 5694 // Emit code into the DAG to store the stack guard onto the stack. 5695 MachineFunction &MF = DAG.getMachineFunction(); 5696 MachineFrameInfo &MFI = MF.getFrameInfo(); 5697 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5698 SDValue Src, Chain = getRoot(); 5699 5700 if (TLI.useLoadStackGuardNode()) 5701 Src = getLoadStackGuard(DAG, sdl, Chain); 5702 else 5703 Src = getValue(I.getArgOperand(0)); // The guard's value. 5704 5705 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5706 5707 int FI = FuncInfo.StaticAllocaMap[Slot]; 5708 MFI.setStackProtectorIndex(FI); 5709 5710 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5711 5712 // Store the stack protector onto the stack. 5713 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5714 DAG.getMachineFunction(), FI), 5715 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5716 setValue(&I, Res); 5717 DAG.setRoot(Res); 5718 return nullptr; 5719 } 5720 case Intrinsic::objectsize: { 5721 // If we don't know by now, we're never going to know. 5722 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5723 5724 assert(CI && "Non-constant type in __builtin_object_size?"); 5725 5726 SDValue Arg = getValue(I.getCalledValue()); 5727 EVT Ty = Arg.getValueType(); 5728 5729 if (CI->isZero()) 5730 Res = DAG.getConstant(-1ULL, sdl, Ty); 5731 else 5732 Res = DAG.getConstant(0, sdl, Ty); 5733 5734 setValue(&I, Res); 5735 return nullptr; 5736 } 5737 case Intrinsic::annotation: 5738 case Intrinsic::ptr_annotation: 5739 case Intrinsic::launder_invariant_group: 5740 // Drop the intrinsic, but forward the value 5741 setValue(&I, getValue(I.getOperand(0))); 5742 return nullptr; 5743 case Intrinsic::assume: 5744 case Intrinsic::var_annotation: 5745 case Intrinsic::sideeffect: 5746 // Discard annotate attributes, assumptions, and artificial side-effects. 5747 return nullptr; 5748 5749 case Intrinsic::codeview_annotation: { 5750 // Emit a label associated with this metadata. 5751 MachineFunction &MF = DAG.getMachineFunction(); 5752 MCSymbol *Label = 5753 MF.getMMI().getContext().createTempSymbol("annotation", true); 5754 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5755 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5756 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5757 DAG.setRoot(Res); 5758 return nullptr; 5759 } 5760 5761 case Intrinsic::init_trampoline: { 5762 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5763 5764 SDValue Ops[6]; 5765 Ops[0] = getRoot(); 5766 Ops[1] = getValue(I.getArgOperand(0)); 5767 Ops[2] = getValue(I.getArgOperand(1)); 5768 Ops[3] = getValue(I.getArgOperand(2)); 5769 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5770 Ops[5] = DAG.getSrcValue(F); 5771 5772 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5773 5774 DAG.setRoot(Res); 5775 return nullptr; 5776 } 5777 case Intrinsic::adjust_trampoline: 5778 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5779 TLI.getPointerTy(DAG.getDataLayout()), 5780 getValue(I.getArgOperand(0)))); 5781 return nullptr; 5782 case Intrinsic::gcroot: { 5783 assert(DAG.getMachineFunction().getFunction().hasGC() && 5784 "only valid in functions with gc specified, enforced by Verifier"); 5785 assert(GFI && "implied by previous"); 5786 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5787 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5788 5789 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5790 GFI->addStackRoot(FI->getIndex(), TypeMap); 5791 return nullptr; 5792 } 5793 case Intrinsic::gcread: 5794 case Intrinsic::gcwrite: 5795 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5796 case Intrinsic::flt_rounds: 5797 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5798 return nullptr; 5799 5800 case Intrinsic::expect: 5801 // Just replace __builtin_expect(exp, c) with EXP. 5802 setValue(&I, getValue(I.getArgOperand(0))); 5803 return nullptr; 5804 5805 case Intrinsic::debugtrap: 5806 case Intrinsic::trap: { 5807 StringRef TrapFuncName = 5808 I.getAttributes() 5809 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5810 .getValueAsString(); 5811 if (TrapFuncName.empty()) { 5812 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5813 ISD::TRAP : ISD::DEBUGTRAP; 5814 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5815 return nullptr; 5816 } 5817 TargetLowering::ArgListTy Args; 5818 5819 TargetLowering::CallLoweringInfo CLI(DAG); 5820 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5821 CallingConv::C, I.getType(), 5822 DAG.getExternalSymbol(TrapFuncName.data(), 5823 TLI.getPointerTy(DAG.getDataLayout())), 5824 std::move(Args)); 5825 5826 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5827 DAG.setRoot(Result.second); 5828 return nullptr; 5829 } 5830 5831 case Intrinsic::uadd_with_overflow: 5832 case Intrinsic::sadd_with_overflow: 5833 case Intrinsic::usub_with_overflow: 5834 case Intrinsic::ssub_with_overflow: 5835 case Intrinsic::umul_with_overflow: 5836 case Intrinsic::smul_with_overflow: { 5837 ISD::NodeType Op; 5838 switch (Intrinsic) { 5839 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5840 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5841 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5842 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5843 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5844 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5845 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5846 } 5847 SDValue Op1 = getValue(I.getArgOperand(0)); 5848 SDValue Op2 = getValue(I.getArgOperand(1)); 5849 5850 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5851 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5852 return nullptr; 5853 } 5854 case Intrinsic::prefetch: { 5855 SDValue Ops[5]; 5856 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5857 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5858 Ops[0] = DAG.getRoot(); 5859 Ops[1] = getValue(I.getArgOperand(0)); 5860 Ops[2] = getValue(I.getArgOperand(1)); 5861 Ops[3] = getValue(I.getArgOperand(2)); 5862 Ops[4] = getValue(I.getArgOperand(3)); 5863 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5864 DAG.getVTList(MVT::Other), Ops, 5865 EVT::getIntegerVT(*Context, 8), 5866 MachinePointerInfo(I.getArgOperand(0)), 5867 0, /* align */ 5868 Flags); 5869 5870 // Chain the prefetch in parallell with any pending loads, to stay out of 5871 // the way of later optimizations. 5872 PendingLoads.push_back(Result); 5873 Result = getRoot(); 5874 DAG.setRoot(Result); 5875 return nullptr; 5876 } 5877 case Intrinsic::lifetime_start: 5878 case Intrinsic::lifetime_end: { 5879 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5880 // Stack coloring is not enabled in O0, discard region information. 5881 if (TM.getOptLevel() == CodeGenOpt::None) 5882 return nullptr; 5883 5884 SmallVector<Value *, 4> Allocas; 5885 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5886 5887 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5888 E = Allocas.end(); Object != E; ++Object) { 5889 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5890 5891 // Could not find an Alloca. 5892 if (!LifetimeObject) 5893 continue; 5894 5895 // First check that the Alloca is static, otherwise it won't have a 5896 // valid frame index. 5897 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5898 if (SI == FuncInfo.StaticAllocaMap.end()) 5899 return nullptr; 5900 5901 int FI = SI->second; 5902 5903 SDValue Ops[2]; 5904 Ops[0] = getRoot(); 5905 Ops[1] = 5906 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5907 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5908 5909 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5910 DAG.setRoot(Res); 5911 } 5912 return nullptr; 5913 } 5914 case Intrinsic::invariant_start: 5915 // Discard region information. 5916 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5917 return nullptr; 5918 case Intrinsic::invariant_end: 5919 // Discard region information. 5920 return nullptr; 5921 case Intrinsic::clear_cache: 5922 return TLI.getClearCacheBuiltinName(); 5923 case Intrinsic::donothing: 5924 // ignore 5925 return nullptr; 5926 case Intrinsic::experimental_stackmap: 5927 visitStackmap(I); 5928 return nullptr; 5929 case Intrinsic::experimental_patchpoint_void: 5930 case Intrinsic::experimental_patchpoint_i64: 5931 visitPatchpoint(&I); 5932 return nullptr; 5933 case Intrinsic::experimental_gc_statepoint: 5934 LowerStatepoint(ImmutableStatepoint(&I)); 5935 return nullptr; 5936 case Intrinsic::experimental_gc_result: 5937 visitGCResult(cast<GCResultInst>(I)); 5938 return nullptr; 5939 case Intrinsic::experimental_gc_relocate: 5940 visitGCRelocate(cast<GCRelocateInst>(I)); 5941 return nullptr; 5942 case Intrinsic::instrprof_increment: 5943 llvm_unreachable("instrprof failed to lower an increment"); 5944 case Intrinsic::instrprof_value_profile: 5945 llvm_unreachable("instrprof failed to lower a value profiling call"); 5946 case Intrinsic::localescape: { 5947 MachineFunction &MF = DAG.getMachineFunction(); 5948 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5949 5950 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5951 // is the same on all targets. 5952 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5953 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5954 if (isa<ConstantPointerNull>(Arg)) 5955 continue; // Skip null pointers. They represent a hole in index space. 5956 AllocaInst *Slot = cast<AllocaInst>(Arg); 5957 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5958 "can only escape static allocas"); 5959 int FI = FuncInfo.StaticAllocaMap[Slot]; 5960 MCSymbol *FrameAllocSym = 5961 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5962 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5964 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5965 .addSym(FrameAllocSym) 5966 .addFrameIndex(FI); 5967 } 5968 5969 return nullptr; 5970 } 5971 5972 case Intrinsic::localrecover: { 5973 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5974 MachineFunction &MF = DAG.getMachineFunction(); 5975 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5976 5977 // Get the symbol that defines the frame offset. 5978 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5979 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5980 unsigned IdxVal = 5981 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5982 MCSymbol *FrameAllocSym = 5983 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5984 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5985 5986 // Create a MCSymbol for the label to avoid any target lowering 5987 // that would make this PC relative. 5988 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5989 SDValue OffsetVal = 5990 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5991 5992 // Add the offset to the FP. 5993 Value *FP = I.getArgOperand(1); 5994 SDValue FPVal = getValue(FP); 5995 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5996 setValue(&I, Add); 5997 5998 return nullptr; 5999 } 6000 6001 case Intrinsic::eh_exceptionpointer: 6002 case Intrinsic::eh_exceptioncode: { 6003 // Get the exception pointer vreg, copy from it, and resize it to fit. 6004 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6005 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6006 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6007 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6008 SDValue N = 6009 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6010 if (Intrinsic == Intrinsic::eh_exceptioncode) 6011 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6012 setValue(&I, N); 6013 return nullptr; 6014 } 6015 case Intrinsic::xray_customevent: { 6016 // Here we want to make sure that the intrinsic behaves as if it has a 6017 // specific calling convention, and only for x86_64. 6018 // FIXME: Support other platforms later. 6019 const auto &Triple = DAG.getTarget().getTargetTriple(); 6020 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6021 return nullptr; 6022 6023 SDLoc DL = getCurSDLoc(); 6024 SmallVector<SDValue, 8> Ops; 6025 6026 // We want to say that we always want the arguments in registers. 6027 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6028 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6029 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6030 SDValue Chain = getRoot(); 6031 Ops.push_back(LogEntryVal); 6032 Ops.push_back(StrSizeVal); 6033 Ops.push_back(Chain); 6034 6035 // We need to enforce the calling convention for the callsite, so that 6036 // argument ordering is enforced correctly, and that register allocation can 6037 // see that some registers may be assumed clobbered and have to preserve 6038 // them across calls to the intrinsic. 6039 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6040 DL, NodeTys, Ops); 6041 SDValue patchableNode = SDValue(MN, 0); 6042 DAG.setRoot(patchableNode); 6043 setValue(&I, patchableNode); 6044 return nullptr; 6045 } 6046 case Intrinsic::xray_typedevent: { 6047 // Here we want to make sure that the intrinsic behaves as if it has a 6048 // specific calling convention, and only for x86_64. 6049 // FIXME: Support other platforms later. 6050 const auto &Triple = DAG.getTarget().getTargetTriple(); 6051 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6052 return nullptr; 6053 6054 SDLoc DL = getCurSDLoc(); 6055 SmallVector<SDValue, 8> Ops; 6056 6057 // We want to say that we always want the arguments in registers. 6058 // It's unclear to me how manipulating the selection DAG here forces callers 6059 // to provide arguments in registers instead of on the stack. 6060 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6061 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6062 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6063 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6064 SDValue Chain = getRoot(); 6065 Ops.push_back(LogTypeId); 6066 Ops.push_back(LogEntryVal); 6067 Ops.push_back(StrSizeVal); 6068 Ops.push_back(Chain); 6069 6070 // We need to enforce the calling convention for the callsite, so that 6071 // argument ordering is enforced correctly, and that register allocation can 6072 // see that some registers may be assumed clobbered and have to preserve 6073 // them across calls to the intrinsic. 6074 MachineSDNode *MN = DAG.getMachineNode( 6075 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6076 SDValue patchableNode = SDValue(MN, 0); 6077 DAG.setRoot(patchableNode); 6078 setValue(&I, patchableNode); 6079 return nullptr; 6080 } 6081 case Intrinsic::experimental_deoptimize: 6082 LowerDeoptimizeCall(&I); 6083 return nullptr; 6084 6085 case Intrinsic::experimental_vector_reduce_fadd: 6086 case Intrinsic::experimental_vector_reduce_fmul: 6087 case Intrinsic::experimental_vector_reduce_add: 6088 case Intrinsic::experimental_vector_reduce_mul: 6089 case Intrinsic::experimental_vector_reduce_and: 6090 case Intrinsic::experimental_vector_reduce_or: 6091 case Intrinsic::experimental_vector_reduce_xor: 6092 case Intrinsic::experimental_vector_reduce_smax: 6093 case Intrinsic::experimental_vector_reduce_smin: 6094 case Intrinsic::experimental_vector_reduce_umax: 6095 case Intrinsic::experimental_vector_reduce_umin: 6096 case Intrinsic::experimental_vector_reduce_fmax: 6097 case Intrinsic::experimental_vector_reduce_fmin: 6098 visitVectorReduce(I, Intrinsic); 6099 return nullptr; 6100 6101 case Intrinsic::icall_branch_funnel: { 6102 SmallVector<SDValue, 16> Ops; 6103 Ops.push_back(DAG.getRoot()); 6104 Ops.push_back(getValue(I.getArgOperand(0))); 6105 6106 int64_t Offset; 6107 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6108 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6109 if (!Base) 6110 report_fatal_error( 6111 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6112 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6113 6114 struct BranchFunnelTarget { 6115 int64_t Offset; 6116 SDValue Target; 6117 }; 6118 SmallVector<BranchFunnelTarget, 8> Targets; 6119 6120 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6121 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6122 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6123 if (ElemBase != Base) 6124 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6125 "to the same GlobalValue"); 6126 6127 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6128 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6129 if (!GA) 6130 report_fatal_error( 6131 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6132 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6133 GA->getGlobal(), getCurSDLoc(), 6134 Val.getValueType(), GA->getOffset())}); 6135 } 6136 llvm::sort(Targets.begin(), Targets.end(), 6137 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6138 return T1.Offset < T2.Offset; 6139 }); 6140 6141 for (auto &T : Targets) { 6142 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6143 Ops.push_back(T.Target); 6144 } 6145 6146 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6147 getCurSDLoc(), MVT::Other, Ops), 6148 0); 6149 DAG.setRoot(N); 6150 setValue(&I, N); 6151 HasTailCall = true; 6152 return nullptr; 6153 } 6154 } 6155 } 6156 6157 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6158 const ConstrainedFPIntrinsic &FPI) { 6159 SDLoc sdl = getCurSDLoc(); 6160 unsigned Opcode; 6161 switch (FPI.getIntrinsicID()) { 6162 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6163 case Intrinsic::experimental_constrained_fadd: 6164 Opcode = ISD::STRICT_FADD; 6165 break; 6166 case Intrinsic::experimental_constrained_fsub: 6167 Opcode = ISD::STRICT_FSUB; 6168 break; 6169 case Intrinsic::experimental_constrained_fmul: 6170 Opcode = ISD::STRICT_FMUL; 6171 break; 6172 case Intrinsic::experimental_constrained_fdiv: 6173 Opcode = ISD::STRICT_FDIV; 6174 break; 6175 case Intrinsic::experimental_constrained_frem: 6176 Opcode = ISD::STRICT_FREM; 6177 break; 6178 case Intrinsic::experimental_constrained_fma: 6179 Opcode = ISD::STRICT_FMA; 6180 break; 6181 case Intrinsic::experimental_constrained_sqrt: 6182 Opcode = ISD::STRICT_FSQRT; 6183 break; 6184 case Intrinsic::experimental_constrained_pow: 6185 Opcode = ISD::STRICT_FPOW; 6186 break; 6187 case Intrinsic::experimental_constrained_powi: 6188 Opcode = ISD::STRICT_FPOWI; 6189 break; 6190 case Intrinsic::experimental_constrained_sin: 6191 Opcode = ISD::STRICT_FSIN; 6192 break; 6193 case Intrinsic::experimental_constrained_cos: 6194 Opcode = ISD::STRICT_FCOS; 6195 break; 6196 case Intrinsic::experimental_constrained_exp: 6197 Opcode = ISD::STRICT_FEXP; 6198 break; 6199 case Intrinsic::experimental_constrained_exp2: 6200 Opcode = ISD::STRICT_FEXP2; 6201 break; 6202 case Intrinsic::experimental_constrained_log: 6203 Opcode = ISD::STRICT_FLOG; 6204 break; 6205 case Intrinsic::experimental_constrained_log10: 6206 Opcode = ISD::STRICT_FLOG10; 6207 break; 6208 case Intrinsic::experimental_constrained_log2: 6209 Opcode = ISD::STRICT_FLOG2; 6210 break; 6211 case Intrinsic::experimental_constrained_rint: 6212 Opcode = ISD::STRICT_FRINT; 6213 break; 6214 case Intrinsic::experimental_constrained_nearbyint: 6215 Opcode = ISD::STRICT_FNEARBYINT; 6216 break; 6217 } 6218 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6219 SDValue Chain = getRoot(); 6220 SmallVector<EVT, 4> ValueVTs; 6221 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6222 ValueVTs.push_back(MVT::Other); // Out chain 6223 6224 SDVTList VTs = DAG.getVTList(ValueVTs); 6225 SDValue Result; 6226 if (FPI.isUnaryOp()) 6227 Result = DAG.getNode(Opcode, sdl, VTs, 6228 { Chain, getValue(FPI.getArgOperand(0)) }); 6229 else if (FPI.isTernaryOp()) 6230 Result = DAG.getNode(Opcode, sdl, VTs, 6231 { Chain, getValue(FPI.getArgOperand(0)), 6232 getValue(FPI.getArgOperand(1)), 6233 getValue(FPI.getArgOperand(2)) }); 6234 else 6235 Result = DAG.getNode(Opcode, sdl, VTs, 6236 { Chain, getValue(FPI.getArgOperand(0)), 6237 getValue(FPI.getArgOperand(1)) }); 6238 6239 assert(Result.getNode()->getNumValues() == 2); 6240 SDValue OutChain = Result.getValue(1); 6241 DAG.setRoot(OutChain); 6242 SDValue FPResult = Result.getValue(0); 6243 setValue(&FPI, FPResult); 6244 } 6245 6246 std::pair<SDValue, SDValue> 6247 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6248 const BasicBlock *EHPadBB) { 6249 MachineFunction &MF = DAG.getMachineFunction(); 6250 MachineModuleInfo &MMI = MF.getMMI(); 6251 MCSymbol *BeginLabel = nullptr; 6252 6253 if (EHPadBB) { 6254 // Insert a label before the invoke call to mark the try range. This can be 6255 // used to detect deletion of the invoke via the MachineModuleInfo. 6256 BeginLabel = MMI.getContext().createTempSymbol(); 6257 6258 // For SjLj, keep track of which landing pads go with which invokes 6259 // so as to maintain the ordering of pads in the LSDA. 6260 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6261 if (CallSiteIndex) { 6262 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6263 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6264 6265 // Now that the call site is handled, stop tracking it. 6266 MMI.setCurrentCallSite(0); 6267 } 6268 6269 // Both PendingLoads and PendingExports must be flushed here; 6270 // this call might not return. 6271 (void)getRoot(); 6272 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6273 6274 CLI.setChain(getRoot()); 6275 } 6276 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6277 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6278 6279 assert((CLI.IsTailCall || Result.second.getNode()) && 6280 "Non-null chain expected with non-tail call!"); 6281 assert((Result.second.getNode() || !Result.first.getNode()) && 6282 "Null value expected with tail call!"); 6283 6284 if (!Result.second.getNode()) { 6285 // As a special case, a null chain means that a tail call has been emitted 6286 // and the DAG root is already updated. 6287 HasTailCall = true; 6288 6289 // Since there's no actual continuation from this block, nothing can be 6290 // relying on us setting vregs for them. 6291 PendingExports.clear(); 6292 } else { 6293 DAG.setRoot(Result.second); 6294 } 6295 6296 if (EHPadBB) { 6297 // Insert a label at the end of the invoke call to mark the try range. This 6298 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6299 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6300 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6301 6302 // Inform MachineModuleInfo of range. 6303 if (MF.hasEHFunclets()) { 6304 assert(CLI.CS); 6305 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6306 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6307 BeginLabel, EndLabel); 6308 } else { 6309 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6310 } 6311 } 6312 6313 return Result; 6314 } 6315 6316 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6317 bool isTailCall, 6318 const BasicBlock *EHPadBB) { 6319 auto &DL = DAG.getDataLayout(); 6320 FunctionType *FTy = CS.getFunctionType(); 6321 Type *RetTy = CS.getType(); 6322 6323 TargetLowering::ArgListTy Args; 6324 Args.reserve(CS.arg_size()); 6325 6326 const Value *SwiftErrorVal = nullptr; 6327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6328 6329 // We can't tail call inside a function with a swifterror argument. Lowering 6330 // does not support this yet. It would have to move into the swifterror 6331 // register before the call. 6332 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6333 if (TLI.supportSwiftError() && 6334 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6335 isTailCall = false; 6336 6337 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6338 i != e; ++i) { 6339 TargetLowering::ArgListEntry Entry; 6340 const Value *V = *i; 6341 6342 // Skip empty types 6343 if (V->getType()->isEmptyTy()) 6344 continue; 6345 6346 SDValue ArgNode = getValue(V); 6347 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6348 6349 Entry.setAttributes(&CS, i - CS.arg_begin()); 6350 6351 // Use swifterror virtual register as input to the call. 6352 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6353 SwiftErrorVal = V; 6354 // We find the virtual register for the actual swifterror argument. 6355 // Instead of using the Value, we use the virtual register instead. 6356 Entry.Node = DAG.getRegister(FuncInfo 6357 .getOrCreateSwiftErrorVRegUseAt( 6358 CS.getInstruction(), FuncInfo.MBB, V) 6359 .first, 6360 EVT(TLI.getPointerTy(DL))); 6361 } 6362 6363 Args.push_back(Entry); 6364 6365 // If we have an explicit sret argument that is an Instruction, (i.e., it 6366 // might point to function-local memory), we can't meaningfully tail-call. 6367 if (Entry.IsSRet && isa<Instruction>(V)) 6368 isTailCall = false; 6369 } 6370 6371 // Check if target-independent constraints permit a tail call here. 6372 // Target-dependent constraints are checked within TLI->LowerCallTo. 6373 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6374 isTailCall = false; 6375 6376 // Disable tail calls if there is an swifterror argument. Targets have not 6377 // been updated to support tail calls. 6378 if (TLI.supportSwiftError() && SwiftErrorVal) 6379 isTailCall = false; 6380 6381 TargetLowering::CallLoweringInfo CLI(DAG); 6382 CLI.setDebugLoc(getCurSDLoc()) 6383 .setChain(getRoot()) 6384 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6385 .setTailCall(isTailCall) 6386 .setConvergent(CS.isConvergent()); 6387 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6388 6389 if (Result.first.getNode()) { 6390 const Instruction *Inst = CS.getInstruction(); 6391 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6392 setValue(Inst, Result.first); 6393 } 6394 6395 // The last element of CLI.InVals has the SDValue for swifterror return. 6396 // Here we copy it to a virtual register and update SwiftErrorMap for 6397 // book-keeping. 6398 if (SwiftErrorVal && TLI.supportSwiftError()) { 6399 // Get the last element of InVals. 6400 SDValue Src = CLI.InVals.back(); 6401 unsigned VReg; bool CreatedVReg; 6402 std::tie(VReg, CreatedVReg) = 6403 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6404 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6405 // We update the virtual register for the actual swifterror argument. 6406 if (CreatedVReg) 6407 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6408 DAG.setRoot(CopyNode); 6409 } 6410 } 6411 6412 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6413 SelectionDAGBuilder &Builder) { 6414 // Check to see if this load can be trivially constant folded, e.g. if the 6415 // input is from a string literal. 6416 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6417 // Cast pointer to the type we really want to load. 6418 Type *LoadTy = 6419 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6420 if (LoadVT.isVector()) 6421 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6422 6423 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6424 PointerType::getUnqual(LoadTy)); 6425 6426 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6427 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6428 return Builder.getValue(LoadCst); 6429 } 6430 6431 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6432 // still constant memory, the input chain can be the entry node. 6433 SDValue Root; 6434 bool ConstantMemory = false; 6435 6436 // Do not serialize (non-volatile) loads of constant memory with anything. 6437 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6438 Root = Builder.DAG.getEntryNode(); 6439 ConstantMemory = true; 6440 } else { 6441 // Do not serialize non-volatile loads against each other. 6442 Root = Builder.DAG.getRoot(); 6443 } 6444 6445 SDValue Ptr = Builder.getValue(PtrVal); 6446 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6447 Ptr, MachinePointerInfo(PtrVal), 6448 /* Alignment = */ 1); 6449 6450 if (!ConstantMemory) 6451 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6452 return LoadVal; 6453 } 6454 6455 /// Record the value for an instruction that produces an integer result, 6456 /// converting the type where necessary. 6457 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6458 SDValue Value, 6459 bool IsSigned) { 6460 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6461 I.getType(), true); 6462 if (IsSigned) 6463 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6464 else 6465 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6466 setValue(&I, Value); 6467 } 6468 6469 /// See if we can lower a memcmp call into an optimized form. If so, return 6470 /// true and lower it. Otherwise return false, and it will be lowered like a 6471 /// normal call. 6472 /// The caller already checked that \p I calls the appropriate LibFunc with a 6473 /// correct prototype. 6474 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6475 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6476 const Value *Size = I.getArgOperand(2); 6477 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6478 if (CSize && CSize->getZExtValue() == 0) { 6479 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6480 I.getType(), true); 6481 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6482 return true; 6483 } 6484 6485 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6486 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6487 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6488 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6489 if (Res.first.getNode()) { 6490 processIntegerCallValue(I, Res.first, true); 6491 PendingLoads.push_back(Res.second); 6492 return true; 6493 } 6494 6495 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6496 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6497 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6498 return false; 6499 6500 // If the target has a fast compare for the given size, it will return a 6501 // preferred load type for that size. Require that the load VT is legal and 6502 // that the target supports unaligned loads of that type. Otherwise, return 6503 // INVALID. 6504 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6506 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6507 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6508 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6509 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6510 // TODO: Check alignment of src and dest ptrs. 6511 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6512 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6513 if (!TLI.isTypeLegal(LVT) || 6514 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6515 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6516 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6517 } 6518 6519 return LVT; 6520 }; 6521 6522 // This turns into unaligned loads. We only do this if the target natively 6523 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6524 // we'll only produce a small number of byte loads. 6525 MVT LoadVT; 6526 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6527 switch (NumBitsToCompare) { 6528 default: 6529 return false; 6530 case 16: 6531 LoadVT = MVT::i16; 6532 break; 6533 case 32: 6534 LoadVT = MVT::i32; 6535 break; 6536 case 64: 6537 case 128: 6538 case 256: 6539 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6540 break; 6541 } 6542 6543 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6544 return false; 6545 6546 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6547 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6548 6549 // Bitcast to a wide integer type if the loads are vectors. 6550 if (LoadVT.isVector()) { 6551 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6552 LoadL = DAG.getBitcast(CmpVT, LoadL); 6553 LoadR = DAG.getBitcast(CmpVT, LoadR); 6554 } 6555 6556 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6557 processIntegerCallValue(I, Cmp, false); 6558 return true; 6559 } 6560 6561 /// See if we can lower a memchr call into an optimized form. If so, return 6562 /// true and lower it. Otherwise return false, and it will be lowered like a 6563 /// normal call. 6564 /// The caller already checked that \p I calls the appropriate LibFunc with a 6565 /// correct prototype. 6566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6567 const Value *Src = I.getArgOperand(0); 6568 const Value *Char = I.getArgOperand(1); 6569 const Value *Length = I.getArgOperand(2); 6570 6571 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6572 std::pair<SDValue, SDValue> Res = 6573 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6574 getValue(Src), getValue(Char), getValue(Length), 6575 MachinePointerInfo(Src)); 6576 if (Res.first.getNode()) { 6577 setValue(&I, Res.first); 6578 PendingLoads.push_back(Res.second); 6579 return true; 6580 } 6581 6582 return false; 6583 } 6584 6585 /// See if we can lower a mempcpy call into an optimized form. If so, return 6586 /// true and lower it. Otherwise return false, and it will be lowered like a 6587 /// normal call. 6588 /// The caller already checked that \p I calls the appropriate LibFunc with a 6589 /// correct prototype. 6590 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6591 SDValue Dst = getValue(I.getArgOperand(0)); 6592 SDValue Src = getValue(I.getArgOperand(1)); 6593 SDValue Size = getValue(I.getArgOperand(2)); 6594 6595 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6596 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6597 unsigned Align = std::min(DstAlign, SrcAlign); 6598 if (Align == 0) // Alignment of one or both could not be inferred. 6599 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6600 6601 bool isVol = false; 6602 SDLoc sdl = getCurSDLoc(); 6603 6604 // In the mempcpy context we need to pass in a false value for isTailCall 6605 // because the return pointer needs to be adjusted by the size of 6606 // the copied memory. 6607 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6608 false, /*isTailCall=*/false, 6609 MachinePointerInfo(I.getArgOperand(0)), 6610 MachinePointerInfo(I.getArgOperand(1))); 6611 assert(MC.getNode() != nullptr && 6612 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6613 DAG.setRoot(MC); 6614 6615 // Check if Size needs to be truncated or extended. 6616 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6617 6618 // Adjust return pointer to point just past the last dst byte. 6619 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6620 Dst, Size); 6621 setValue(&I, DstPlusSize); 6622 return true; 6623 } 6624 6625 /// See if we can lower a strcpy call into an optimized form. If so, return 6626 /// true and lower it, otherwise return false and it will be lowered like a 6627 /// normal call. 6628 /// The caller already checked that \p I calls the appropriate LibFunc with a 6629 /// correct prototype. 6630 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6631 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6632 6633 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6634 std::pair<SDValue, SDValue> Res = 6635 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6636 getValue(Arg0), getValue(Arg1), 6637 MachinePointerInfo(Arg0), 6638 MachinePointerInfo(Arg1), isStpcpy); 6639 if (Res.first.getNode()) { 6640 setValue(&I, Res.first); 6641 DAG.setRoot(Res.second); 6642 return true; 6643 } 6644 6645 return false; 6646 } 6647 6648 /// See if we can lower a strcmp call into an optimized form. If so, return 6649 /// true and lower it, otherwise return false and it will be lowered like a 6650 /// normal call. 6651 /// The caller already checked that \p I calls the appropriate LibFunc with a 6652 /// correct prototype. 6653 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6654 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6655 6656 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6657 std::pair<SDValue, SDValue> Res = 6658 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6659 getValue(Arg0), getValue(Arg1), 6660 MachinePointerInfo(Arg0), 6661 MachinePointerInfo(Arg1)); 6662 if (Res.first.getNode()) { 6663 processIntegerCallValue(I, Res.first, true); 6664 PendingLoads.push_back(Res.second); 6665 return true; 6666 } 6667 6668 return false; 6669 } 6670 6671 /// See if we can lower a strlen call into an optimized form. If so, return 6672 /// true and lower it, otherwise return false and it will be lowered like a 6673 /// normal call. 6674 /// The caller already checked that \p I calls the appropriate LibFunc with a 6675 /// correct prototype. 6676 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6677 const Value *Arg0 = I.getArgOperand(0); 6678 6679 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6680 std::pair<SDValue, SDValue> Res = 6681 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6682 getValue(Arg0), MachinePointerInfo(Arg0)); 6683 if (Res.first.getNode()) { 6684 processIntegerCallValue(I, Res.first, false); 6685 PendingLoads.push_back(Res.second); 6686 return true; 6687 } 6688 6689 return false; 6690 } 6691 6692 /// See if we can lower a strnlen call into an optimized form. If so, return 6693 /// true and lower it, otherwise return false and it will be lowered like a 6694 /// normal call. 6695 /// The caller already checked that \p I calls the appropriate LibFunc with a 6696 /// correct prototype. 6697 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6698 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6699 6700 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6701 std::pair<SDValue, SDValue> Res = 6702 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6703 getValue(Arg0), getValue(Arg1), 6704 MachinePointerInfo(Arg0)); 6705 if (Res.first.getNode()) { 6706 processIntegerCallValue(I, Res.first, false); 6707 PendingLoads.push_back(Res.second); 6708 return true; 6709 } 6710 6711 return false; 6712 } 6713 6714 /// See if we can lower a unary floating-point operation into an SDNode with 6715 /// the specified Opcode. If so, return true and lower it, otherwise return 6716 /// false and it will be lowered like a normal call. 6717 /// The caller already checked that \p I calls the appropriate LibFunc with a 6718 /// correct prototype. 6719 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6720 unsigned Opcode) { 6721 // We already checked this call's prototype; verify it doesn't modify errno. 6722 if (!I.onlyReadsMemory()) 6723 return false; 6724 6725 SDValue Tmp = getValue(I.getArgOperand(0)); 6726 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6727 return true; 6728 } 6729 6730 /// See if we can lower a binary floating-point operation into an SDNode with 6731 /// the specified Opcode. If so, return true and lower it. Otherwise return 6732 /// false, and it will be lowered like a normal call. 6733 /// The caller already checked that \p I calls the appropriate LibFunc with a 6734 /// correct prototype. 6735 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6736 unsigned Opcode) { 6737 // We already checked this call's prototype; verify it doesn't modify errno. 6738 if (!I.onlyReadsMemory()) 6739 return false; 6740 6741 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6742 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6743 EVT VT = Tmp0.getValueType(); 6744 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6745 return true; 6746 } 6747 6748 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6749 // Handle inline assembly differently. 6750 if (isa<InlineAsm>(I.getCalledValue())) { 6751 visitInlineAsm(&I); 6752 return; 6753 } 6754 6755 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6756 computeUsesVAFloatArgument(I, MMI); 6757 6758 const char *RenameFn = nullptr; 6759 if (Function *F = I.getCalledFunction()) { 6760 if (F->isDeclaration()) { 6761 // Is this an LLVM intrinsic or a target-specific intrinsic? 6762 unsigned IID = F->getIntrinsicID(); 6763 if (!IID) 6764 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6765 IID = II->getIntrinsicID(F); 6766 6767 if (IID) { 6768 RenameFn = visitIntrinsicCall(I, IID); 6769 if (!RenameFn) 6770 return; 6771 } 6772 } 6773 6774 // Check for well-known libc/libm calls. If the function is internal, it 6775 // can't be a library call. Don't do the check if marked as nobuiltin for 6776 // some reason or the call site requires strict floating point semantics. 6777 LibFunc Func; 6778 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6779 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6780 LibInfo->hasOptimizedCodeGen(Func)) { 6781 switch (Func) { 6782 default: break; 6783 case LibFunc_copysign: 6784 case LibFunc_copysignf: 6785 case LibFunc_copysignl: 6786 // We already checked this call's prototype; verify it doesn't modify 6787 // errno. 6788 if (I.onlyReadsMemory()) { 6789 SDValue LHS = getValue(I.getArgOperand(0)); 6790 SDValue RHS = getValue(I.getArgOperand(1)); 6791 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6792 LHS.getValueType(), LHS, RHS)); 6793 return; 6794 } 6795 break; 6796 case LibFunc_fabs: 6797 case LibFunc_fabsf: 6798 case LibFunc_fabsl: 6799 if (visitUnaryFloatCall(I, ISD::FABS)) 6800 return; 6801 break; 6802 case LibFunc_fmin: 6803 case LibFunc_fminf: 6804 case LibFunc_fminl: 6805 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6806 return; 6807 break; 6808 case LibFunc_fmax: 6809 case LibFunc_fmaxf: 6810 case LibFunc_fmaxl: 6811 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6812 return; 6813 break; 6814 case LibFunc_sin: 6815 case LibFunc_sinf: 6816 case LibFunc_sinl: 6817 if (visitUnaryFloatCall(I, ISD::FSIN)) 6818 return; 6819 break; 6820 case LibFunc_cos: 6821 case LibFunc_cosf: 6822 case LibFunc_cosl: 6823 if (visitUnaryFloatCall(I, ISD::FCOS)) 6824 return; 6825 break; 6826 case LibFunc_sqrt: 6827 case LibFunc_sqrtf: 6828 case LibFunc_sqrtl: 6829 case LibFunc_sqrt_finite: 6830 case LibFunc_sqrtf_finite: 6831 case LibFunc_sqrtl_finite: 6832 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6833 return; 6834 break; 6835 case LibFunc_floor: 6836 case LibFunc_floorf: 6837 case LibFunc_floorl: 6838 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6839 return; 6840 break; 6841 case LibFunc_nearbyint: 6842 case LibFunc_nearbyintf: 6843 case LibFunc_nearbyintl: 6844 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6845 return; 6846 break; 6847 case LibFunc_ceil: 6848 case LibFunc_ceilf: 6849 case LibFunc_ceill: 6850 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6851 return; 6852 break; 6853 case LibFunc_rint: 6854 case LibFunc_rintf: 6855 case LibFunc_rintl: 6856 if (visitUnaryFloatCall(I, ISD::FRINT)) 6857 return; 6858 break; 6859 case LibFunc_round: 6860 case LibFunc_roundf: 6861 case LibFunc_roundl: 6862 if (visitUnaryFloatCall(I, ISD::FROUND)) 6863 return; 6864 break; 6865 case LibFunc_trunc: 6866 case LibFunc_truncf: 6867 case LibFunc_truncl: 6868 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6869 return; 6870 break; 6871 case LibFunc_log2: 6872 case LibFunc_log2f: 6873 case LibFunc_log2l: 6874 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6875 return; 6876 break; 6877 case LibFunc_exp2: 6878 case LibFunc_exp2f: 6879 case LibFunc_exp2l: 6880 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6881 return; 6882 break; 6883 case LibFunc_memcmp: 6884 if (visitMemCmpCall(I)) 6885 return; 6886 break; 6887 case LibFunc_mempcpy: 6888 if (visitMemPCpyCall(I)) 6889 return; 6890 break; 6891 case LibFunc_memchr: 6892 if (visitMemChrCall(I)) 6893 return; 6894 break; 6895 case LibFunc_strcpy: 6896 if (visitStrCpyCall(I, false)) 6897 return; 6898 break; 6899 case LibFunc_stpcpy: 6900 if (visitStrCpyCall(I, true)) 6901 return; 6902 break; 6903 case LibFunc_strcmp: 6904 if (visitStrCmpCall(I)) 6905 return; 6906 break; 6907 case LibFunc_strlen: 6908 if (visitStrLenCall(I)) 6909 return; 6910 break; 6911 case LibFunc_strnlen: 6912 if (visitStrNLenCall(I)) 6913 return; 6914 break; 6915 } 6916 } 6917 } 6918 6919 SDValue Callee; 6920 if (!RenameFn) 6921 Callee = getValue(I.getCalledValue()); 6922 else 6923 Callee = DAG.getExternalSymbol( 6924 RenameFn, 6925 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6926 6927 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6928 // have to do anything here to lower funclet bundles. 6929 assert(!I.hasOperandBundlesOtherThan( 6930 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6931 "Cannot lower calls with arbitrary operand bundles!"); 6932 6933 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6934 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6935 else 6936 // Check if we can potentially perform a tail call. More detailed checking 6937 // is be done within LowerCallTo, after more information about the call is 6938 // known. 6939 LowerCallTo(&I, Callee, I.isTailCall()); 6940 } 6941 6942 namespace { 6943 6944 /// AsmOperandInfo - This contains information for each constraint that we are 6945 /// lowering. 6946 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6947 public: 6948 /// CallOperand - If this is the result output operand or a clobber 6949 /// this is null, otherwise it is the incoming operand to the CallInst. 6950 /// This gets modified as the asm is processed. 6951 SDValue CallOperand; 6952 6953 /// AssignedRegs - If this is a register or register class operand, this 6954 /// contains the set of register corresponding to the operand. 6955 RegsForValue AssignedRegs; 6956 6957 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6958 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6959 } 6960 6961 /// Whether or not this operand accesses memory 6962 bool hasMemory(const TargetLowering &TLI) const { 6963 // Indirect operand accesses access memory. 6964 if (isIndirect) 6965 return true; 6966 6967 for (const auto &Code : Codes) 6968 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6969 return true; 6970 6971 return false; 6972 } 6973 6974 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6975 /// corresponds to. If there is no Value* for this operand, it returns 6976 /// MVT::Other. 6977 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6978 const DataLayout &DL) const { 6979 if (!CallOperandVal) return MVT::Other; 6980 6981 if (isa<BasicBlock>(CallOperandVal)) 6982 return TLI.getPointerTy(DL); 6983 6984 llvm::Type *OpTy = CallOperandVal->getType(); 6985 6986 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6987 // If this is an indirect operand, the operand is a pointer to the 6988 // accessed type. 6989 if (isIndirect) { 6990 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6991 if (!PtrTy) 6992 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6993 OpTy = PtrTy->getElementType(); 6994 } 6995 6996 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6997 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6998 if (STy->getNumElements() == 1) 6999 OpTy = STy->getElementType(0); 7000 7001 // If OpTy is not a single value, it may be a struct/union that we 7002 // can tile with integers. 7003 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7004 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7005 switch (BitSize) { 7006 default: break; 7007 case 1: 7008 case 8: 7009 case 16: 7010 case 32: 7011 case 64: 7012 case 128: 7013 OpTy = IntegerType::get(Context, BitSize); 7014 break; 7015 } 7016 } 7017 7018 return TLI.getValueType(DL, OpTy, true); 7019 } 7020 }; 7021 7022 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7023 7024 } // end anonymous namespace 7025 7026 /// Make sure that the output operand \p OpInfo and its corresponding input 7027 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7028 /// out). 7029 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7030 SDISelAsmOperandInfo &MatchingOpInfo, 7031 SelectionDAG &DAG) { 7032 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7033 return; 7034 7035 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7036 const auto &TLI = DAG.getTargetLoweringInfo(); 7037 7038 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7039 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7040 OpInfo.ConstraintVT); 7041 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7042 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7043 MatchingOpInfo.ConstraintVT); 7044 if ((OpInfo.ConstraintVT.isInteger() != 7045 MatchingOpInfo.ConstraintVT.isInteger()) || 7046 (MatchRC.second != InputRC.second)) { 7047 // FIXME: error out in a more elegant fashion 7048 report_fatal_error("Unsupported asm: input constraint" 7049 " with a matching output constraint of" 7050 " incompatible type!"); 7051 } 7052 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7053 } 7054 7055 /// Get a direct memory input to behave well as an indirect operand. 7056 /// This may introduce stores, hence the need for a \p Chain. 7057 /// \return The (possibly updated) chain. 7058 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7059 SDISelAsmOperandInfo &OpInfo, 7060 SelectionDAG &DAG) { 7061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7062 7063 // If we don't have an indirect input, put it in the constpool if we can, 7064 // otherwise spill it to a stack slot. 7065 // TODO: This isn't quite right. We need to handle these according to 7066 // the addressing mode that the constraint wants. Also, this may take 7067 // an additional register for the computation and we don't want that 7068 // either. 7069 7070 // If the operand is a float, integer, or vector constant, spill to a 7071 // constant pool entry to get its address. 7072 const Value *OpVal = OpInfo.CallOperandVal; 7073 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7074 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7075 OpInfo.CallOperand = DAG.getConstantPool( 7076 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7077 return Chain; 7078 } 7079 7080 // Otherwise, create a stack slot and emit a store to it before the asm. 7081 Type *Ty = OpVal->getType(); 7082 auto &DL = DAG.getDataLayout(); 7083 uint64_t TySize = DL.getTypeAllocSize(Ty); 7084 unsigned Align = DL.getPrefTypeAlignment(Ty); 7085 MachineFunction &MF = DAG.getMachineFunction(); 7086 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7087 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7088 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7089 MachinePointerInfo::getFixedStack(MF, SSFI)); 7090 OpInfo.CallOperand = StackSlot; 7091 7092 return Chain; 7093 } 7094 7095 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7096 /// specified operand. We prefer to assign virtual registers, to allow the 7097 /// register allocator to handle the assignment process. However, if the asm 7098 /// uses features that we can't model on machineinstrs, we have SDISel do the 7099 /// allocation. This produces generally horrible, but correct, code. 7100 /// 7101 /// OpInfo describes the operand. 7102 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7103 const SDLoc &DL, 7104 SDISelAsmOperandInfo &OpInfo) { 7105 LLVMContext &Context = *DAG.getContext(); 7106 7107 MachineFunction &MF = DAG.getMachineFunction(); 7108 SmallVector<unsigned, 4> Regs; 7109 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7110 7111 // If this is a constraint for a single physreg, or a constraint for a 7112 // register class, find it. 7113 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7114 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7115 OpInfo.ConstraintVT); 7116 7117 unsigned NumRegs = 1; 7118 if (OpInfo.ConstraintVT != MVT::Other) { 7119 // If this is a FP input in an integer register (or visa versa) insert a bit 7120 // cast of the input value. More generally, handle any case where the input 7121 // value disagrees with the register class we plan to stick this in. 7122 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7123 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7124 // Try to convert to the first EVT that the reg class contains. If the 7125 // types are identical size, use a bitcast to convert (e.g. two differing 7126 // vector types). 7127 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7128 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7129 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7130 RegVT, OpInfo.CallOperand); 7131 OpInfo.ConstraintVT = RegVT; 7132 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7133 // If the input is a FP value and we want it in FP registers, do a 7134 // bitcast to the corresponding integer type. This turns an f64 value 7135 // into i64, which can be passed with two i32 values on a 32-bit 7136 // machine. 7137 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7138 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7139 RegVT, OpInfo.CallOperand); 7140 OpInfo.ConstraintVT = RegVT; 7141 } 7142 } 7143 7144 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7145 } 7146 7147 MVT RegVT; 7148 EVT ValueVT = OpInfo.ConstraintVT; 7149 7150 // If this is a constraint for a specific physical register, like {r17}, 7151 // assign it now. 7152 if (unsigned AssignedReg = PhysReg.first) { 7153 const TargetRegisterClass *RC = PhysReg.second; 7154 if (OpInfo.ConstraintVT == MVT::Other) 7155 ValueVT = *TRI.legalclasstypes_begin(*RC); 7156 7157 // Get the actual register value type. This is important, because the user 7158 // may have asked for (e.g.) the AX register in i32 type. We need to 7159 // remember that AX is actually i16 to get the right extension. 7160 RegVT = *TRI.legalclasstypes_begin(*RC); 7161 7162 // This is a explicit reference to a physical register. 7163 Regs.push_back(AssignedReg); 7164 7165 // If this is an expanded reference, add the rest of the regs to Regs. 7166 if (NumRegs != 1) { 7167 TargetRegisterClass::iterator I = RC->begin(); 7168 for (; *I != AssignedReg; ++I) 7169 assert(I != RC->end() && "Didn't find reg!"); 7170 7171 // Already added the first reg. 7172 --NumRegs; ++I; 7173 for (; NumRegs; --NumRegs, ++I) { 7174 assert(I != RC->end() && "Ran out of registers to allocate!"); 7175 Regs.push_back(*I); 7176 } 7177 } 7178 7179 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7180 return; 7181 } 7182 7183 // Otherwise, if this was a reference to an LLVM register class, create vregs 7184 // for this reference. 7185 if (const TargetRegisterClass *RC = PhysReg.second) { 7186 RegVT = *TRI.legalclasstypes_begin(*RC); 7187 if (OpInfo.ConstraintVT == MVT::Other) 7188 ValueVT = RegVT; 7189 7190 // Create the appropriate number of virtual registers. 7191 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7192 for (; NumRegs; --NumRegs) 7193 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7194 7195 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7196 return; 7197 } 7198 7199 // Otherwise, we couldn't allocate enough registers for this. 7200 } 7201 7202 static unsigned 7203 findMatchingInlineAsmOperand(unsigned OperandNo, 7204 const std::vector<SDValue> &AsmNodeOperands) { 7205 // Scan until we find the definition we already emitted of this operand. 7206 unsigned CurOp = InlineAsm::Op_FirstOperand; 7207 for (; OperandNo; --OperandNo) { 7208 // Advance to the next operand. 7209 unsigned OpFlag = 7210 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7211 assert((InlineAsm::isRegDefKind(OpFlag) || 7212 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7213 InlineAsm::isMemKind(OpFlag)) && 7214 "Skipped past definitions?"); 7215 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7216 } 7217 return CurOp; 7218 } 7219 7220 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7221 /// \return true if it has succeeded, false otherwise 7222 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7223 MVT RegVT, SelectionDAG &DAG) { 7224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7225 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7226 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7227 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7228 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7229 else 7230 return false; 7231 } 7232 return true; 7233 } 7234 7235 namespace { 7236 7237 class ExtraFlags { 7238 unsigned Flags = 0; 7239 7240 public: 7241 explicit ExtraFlags(ImmutableCallSite CS) { 7242 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7243 if (IA->hasSideEffects()) 7244 Flags |= InlineAsm::Extra_HasSideEffects; 7245 if (IA->isAlignStack()) 7246 Flags |= InlineAsm::Extra_IsAlignStack; 7247 if (CS.isConvergent()) 7248 Flags |= InlineAsm::Extra_IsConvergent; 7249 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7250 } 7251 7252 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7253 // Ideally, we would only check against memory constraints. However, the 7254 // meaning of an Other constraint can be target-specific and we can't easily 7255 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7256 // for Other constraints as well. 7257 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7258 OpInfo.ConstraintType == TargetLowering::C_Other) { 7259 if (OpInfo.Type == InlineAsm::isInput) 7260 Flags |= InlineAsm::Extra_MayLoad; 7261 else if (OpInfo.Type == InlineAsm::isOutput) 7262 Flags |= InlineAsm::Extra_MayStore; 7263 else if (OpInfo.Type == InlineAsm::isClobber) 7264 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7265 } 7266 } 7267 7268 unsigned get() const { return Flags; } 7269 }; 7270 7271 } // end anonymous namespace 7272 7273 /// visitInlineAsm - Handle a call to an InlineAsm object. 7274 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7275 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7276 7277 /// ConstraintOperands - Information about all of the constraints. 7278 SDISelAsmOperandInfoVector ConstraintOperands; 7279 7280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7281 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7282 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7283 7284 bool hasMemory = false; 7285 7286 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7287 ExtraFlags ExtraInfo(CS); 7288 7289 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7290 unsigned ResNo = 0; // ResNo - The result number of the next output. 7291 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7292 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7293 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7294 7295 MVT OpVT = MVT::Other; 7296 7297 // Compute the value type for each operand. 7298 if (OpInfo.Type == InlineAsm::isInput || 7299 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7300 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7301 7302 // Process the call argument. BasicBlocks are labels, currently appearing 7303 // only in asm's. 7304 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7305 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7306 } else { 7307 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7308 } 7309 7310 OpVT = 7311 OpInfo 7312 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7313 .getSimpleVT(); 7314 } 7315 7316 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7317 // The return value of the call is this value. As such, there is no 7318 // corresponding argument. 7319 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7320 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7321 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7322 STy->getElementType(ResNo)); 7323 } else { 7324 assert(ResNo == 0 && "Asm only has one result!"); 7325 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7326 } 7327 ++ResNo; 7328 } 7329 7330 OpInfo.ConstraintVT = OpVT; 7331 7332 if (!hasMemory) 7333 hasMemory = OpInfo.hasMemory(TLI); 7334 7335 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7336 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7337 auto TargetConstraint = TargetConstraints[i]; 7338 7339 // Compute the constraint code and ConstraintType to use. 7340 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7341 7342 ExtraInfo.update(TargetConstraint); 7343 } 7344 7345 SDValue Chain, Flag; 7346 7347 // We won't need to flush pending loads if this asm doesn't touch 7348 // memory and is nonvolatile. 7349 if (hasMemory || IA->hasSideEffects()) 7350 Chain = getRoot(); 7351 else 7352 Chain = DAG.getRoot(); 7353 7354 // Second pass over the constraints: compute which constraint option to use 7355 // and assign registers to constraints that want a specific physreg. 7356 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7357 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7358 7359 // If this is an output operand with a matching input operand, look up the 7360 // matching input. If their types mismatch, e.g. one is an integer, the 7361 // other is floating point, or their sizes are different, flag it as an 7362 // error. 7363 if (OpInfo.hasMatchingInput()) { 7364 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7365 patchMatchingInput(OpInfo, Input, DAG); 7366 } 7367 7368 // Compute the constraint code and ConstraintType to use. 7369 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7370 7371 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7372 OpInfo.Type == InlineAsm::isClobber) 7373 continue; 7374 7375 // If this is a memory input, and if the operand is not indirect, do what we 7376 // need to provide an address for the memory input. 7377 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7378 !OpInfo.isIndirect) { 7379 assert((OpInfo.isMultipleAlternative || 7380 (OpInfo.Type == InlineAsm::isInput)) && 7381 "Can only indirectify direct input operands!"); 7382 7383 // Memory operands really want the address of the value. 7384 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7385 7386 // There is no longer a Value* corresponding to this operand. 7387 OpInfo.CallOperandVal = nullptr; 7388 7389 // It is now an indirect operand. 7390 OpInfo.isIndirect = true; 7391 } 7392 7393 // If this constraint is for a specific register, allocate it before 7394 // anything else. 7395 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7396 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7397 } 7398 7399 // Third pass - Loop over all of the operands, assigning virtual or physregs 7400 // to register class operands. 7401 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7402 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7403 7404 // C_Register operands have already been allocated, Other/Memory don't need 7405 // to be. 7406 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7407 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7408 } 7409 7410 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7411 std::vector<SDValue> AsmNodeOperands; 7412 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7413 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7414 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7415 7416 // If we have a !srcloc metadata node associated with it, we want to attach 7417 // this to the ultimately generated inline asm machineinstr. To do this, we 7418 // pass in the third operand as this (potentially null) inline asm MDNode. 7419 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7420 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7421 7422 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7423 // bits as operand 3. 7424 AsmNodeOperands.push_back(DAG.getTargetConstant( 7425 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7426 7427 // Loop over all of the inputs, copying the operand values into the 7428 // appropriate registers and processing the output regs. 7429 RegsForValue RetValRegs; 7430 7431 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7432 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7433 7434 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7435 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7436 7437 switch (OpInfo.Type) { 7438 case InlineAsm::isOutput: 7439 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7440 OpInfo.ConstraintType != TargetLowering::C_Register) { 7441 // Memory output, or 'other' output (e.g. 'X' constraint). 7442 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7443 7444 unsigned ConstraintID = 7445 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7446 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7447 "Failed to convert memory constraint code to constraint id."); 7448 7449 // Add information to the INLINEASM node to know about this output. 7450 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7451 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7452 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7453 MVT::i32)); 7454 AsmNodeOperands.push_back(OpInfo.CallOperand); 7455 break; 7456 } 7457 7458 // Otherwise, this is a register or register class output. 7459 7460 // Copy the output from the appropriate register. Find a register that 7461 // we can use. 7462 if (OpInfo.AssignedRegs.Regs.empty()) { 7463 emitInlineAsmError( 7464 CS, "couldn't allocate output register for constraint '" + 7465 Twine(OpInfo.ConstraintCode) + "'"); 7466 return; 7467 } 7468 7469 // If this is an indirect operand, store through the pointer after the 7470 // asm. 7471 if (OpInfo.isIndirect) { 7472 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7473 OpInfo.CallOperandVal)); 7474 } else { 7475 // This is the result value of the call. 7476 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7477 // Concatenate this output onto the outputs list. 7478 RetValRegs.append(OpInfo.AssignedRegs); 7479 } 7480 7481 // Add information to the INLINEASM node to know that this register is 7482 // set. 7483 OpInfo.AssignedRegs 7484 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7485 ? InlineAsm::Kind_RegDefEarlyClobber 7486 : InlineAsm::Kind_RegDef, 7487 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7488 break; 7489 7490 case InlineAsm::isInput: { 7491 SDValue InOperandVal = OpInfo.CallOperand; 7492 7493 if (OpInfo.isMatchingInputConstraint()) { 7494 // If this is required to match an output register we have already set, 7495 // just use its register. 7496 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7497 AsmNodeOperands); 7498 unsigned OpFlag = 7499 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7500 if (InlineAsm::isRegDefKind(OpFlag) || 7501 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7502 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7503 if (OpInfo.isIndirect) { 7504 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7505 emitInlineAsmError(CS, "inline asm not supported yet:" 7506 " don't know how to handle tied " 7507 "indirect register inputs"); 7508 return; 7509 } 7510 7511 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7512 SmallVector<unsigned, 4> Regs; 7513 7514 if (!createVirtualRegs(Regs, 7515 InlineAsm::getNumOperandRegisters(OpFlag), 7516 RegVT, DAG)) { 7517 emitInlineAsmError(CS, "inline asm error: This value type register " 7518 "class is not natively supported!"); 7519 return; 7520 } 7521 7522 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7523 7524 SDLoc dl = getCurSDLoc(); 7525 // Use the produced MatchedRegs object to 7526 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7527 CS.getInstruction()); 7528 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7529 true, OpInfo.getMatchedOperand(), dl, 7530 DAG, AsmNodeOperands); 7531 break; 7532 } 7533 7534 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7535 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7536 "Unexpected number of operands"); 7537 // Add information to the INLINEASM node to know about this input. 7538 // See InlineAsm.h isUseOperandTiedToDef. 7539 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7540 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7541 OpInfo.getMatchedOperand()); 7542 AsmNodeOperands.push_back(DAG.getTargetConstant( 7543 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7544 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7545 break; 7546 } 7547 7548 // Treat indirect 'X' constraint as memory. 7549 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7550 OpInfo.isIndirect) 7551 OpInfo.ConstraintType = TargetLowering::C_Memory; 7552 7553 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7554 std::vector<SDValue> Ops; 7555 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7556 Ops, DAG); 7557 if (Ops.empty()) { 7558 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7559 Twine(OpInfo.ConstraintCode) + "'"); 7560 return; 7561 } 7562 7563 // Add information to the INLINEASM node to know about this input. 7564 unsigned ResOpType = 7565 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7566 AsmNodeOperands.push_back(DAG.getTargetConstant( 7567 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7568 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7569 break; 7570 } 7571 7572 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7573 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7574 assert(InOperandVal.getValueType() == 7575 TLI.getPointerTy(DAG.getDataLayout()) && 7576 "Memory operands expect pointer values"); 7577 7578 unsigned ConstraintID = 7579 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7580 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7581 "Failed to convert memory constraint code to constraint id."); 7582 7583 // Add information to the INLINEASM node to know about this input. 7584 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7585 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7586 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7587 getCurSDLoc(), 7588 MVT::i32)); 7589 AsmNodeOperands.push_back(InOperandVal); 7590 break; 7591 } 7592 7593 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7594 OpInfo.ConstraintType == TargetLowering::C_Register) && 7595 "Unknown constraint type!"); 7596 7597 // TODO: Support this. 7598 if (OpInfo.isIndirect) { 7599 emitInlineAsmError( 7600 CS, "Don't know how to handle indirect register inputs yet " 7601 "for constraint '" + 7602 Twine(OpInfo.ConstraintCode) + "'"); 7603 return; 7604 } 7605 7606 // Copy the input into the appropriate registers. 7607 if (OpInfo.AssignedRegs.Regs.empty()) { 7608 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7609 Twine(OpInfo.ConstraintCode) + "'"); 7610 return; 7611 } 7612 7613 SDLoc dl = getCurSDLoc(); 7614 7615 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7616 Chain, &Flag, CS.getInstruction()); 7617 7618 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7619 dl, DAG, AsmNodeOperands); 7620 break; 7621 } 7622 case InlineAsm::isClobber: 7623 // Add the clobbered value to the operand list, so that the register 7624 // allocator is aware that the physreg got clobbered. 7625 if (!OpInfo.AssignedRegs.Regs.empty()) 7626 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7627 false, 0, getCurSDLoc(), DAG, 7628 AsmNodeOperands); 7629 break; 7630 } 7631 } 7632 7633 // Finish up input operands. Set the input chain and add the flag last. 7634 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7635 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7636 7637 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7638 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7639 Flag = Chain.getValue(1); 7640 7641 // If this asm returns a register value, copy the result from that register 7642 // and set it as the value of the call. 7643 if (!RetValRegs.Regs.empty()) { 7644 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7645 Chain, &Flag, CS.getInstruction()); 7646 7647 // FIXME: Why don't we do this for inline asms with MRVs? 7648 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7649 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7650 7651 // If any of the results of the inline asm is a vector, it may have the 7652 // wrong width/num elts. This can happen for register classes that can 7653 // contain multiple different value types. The preg or vreg allocated may 7654 // not have the same VT as was expected. Convert it to the right type 7655 // with bit_convert. 7656 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7657 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7658 ResultType, Val); 7659 7660 } else if (ResultType != Val.getValueType() && 7661 ResultType.isInteger() && Val.getValueType().isInteger()) { 7662 // If a result value was tied to an input value, the computed result may 7663 // have a wider width than the expected result. Extract the relevant 7664 // portion. 7665 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7666 } 7667 7668 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7669 } 7670 7671 setValue(CS.getInstruction(), Val); 7672 // Don't need to use this as a chain in this case. 7673 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7674 return; 7675 } 7676 7677 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7678 7679 // Process indirect outputs, first output all of the flagged copies out of 7680 // physregs. 7681 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7682 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7683 const Value *Ptr = IndirectStoresToEmit[i].second; 7684 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7685 Chain, &Flag, IA); 7686 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7687 } 7688 7689 // Emit the non-flagged stores from the physregs. 7690 SmallVector<SDValue, 8> OutChains; 7691 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7692 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7693 getValue(StoresToEmit[i].second), 7694 MachinePointerInfo(StoresToEmit[i].second)); 7695 OutChains.push_back(Val); 7696 } 7697 7698 if (!OutChains.empty()) 7699 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7700 7701 DAG.setRoot(Chain); 7702 } 7703 7704 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7705 const Twine &Message) { 7706 LLVMContext &Ctx = *DAG.getContext(); 7707 Ctx.emitError(CS.getInstruction(), Message); 7708 7709 // Make sure we leave the DAG in a valid state 7710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7711 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7712 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7713 } 7714 7715 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7716 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7717 MVT::Other, getRoot(), 7718 getValue(I.getArgOperand(0)), 7719 DAG.getSrcValue(I.getArgOperand(0)))); 7720 } 7721 7722 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7724 const DataLayout &DL = DAG.getDataLayout(); 7725 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7726 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7727 DAG.getSrcValue(I.getOperand(0)), 7728 DL.getABITypeAlignment(I.getType())); 7729 setValue(&I, V); 7730 DAG.setRoot(V.getValue(1)); 7731 } 7732 7733 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7734 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7735 MVT::Other, getRoot(), 7736 getValue(I.getArgOperand(0)), 7737 DAG.getSrcValue(I.getArgOperand(0)))); 7738 } 7739 7740 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7741 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7742 MVT::Other, getRoot(), 7743 getValue(I.getArgOperand(0)), 7744 getValue(I.getArgOperand(1)), 7745 DAG.getSrcValue(I.getArgOperand(0)), 7746 DAG.getSrcValue(I.getArgOperand(1)))); 7747 } 7748 7749 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7750 const Instruction &I, 7751 SDValue Op) { 7752 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7753 if (!Range) 7754 return Op; 7755 7756 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7757 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7758 return Op; 7759 7760 APInt Lo = CR.getUnsignedMin(); 7761 if (!Lo.isMinValue()) 7762 return Op; 7763 7764 APInt Hi = CR.getUnsignedMax(); 7765 unsigned Bits = Hi.getActiveBits(); 7766 7767 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7768 7769 SDLoc SL = getCurSDLoc(); 7770 7771 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7772 DAG.getValueType(SmallVT)); 7773 unsigned NumVals = Op.getNode()->getNumValues(); 7774 if (NumVals == 1) 7775 return ZExt; 7776 7777 SmallVector<SDValue, 4> Ops; 7778 7779 Ops.push_back(ZExt); 7780 for (unsigned I = 1; I != NumVals; ++I) 7781 Ops.push_back(Op.getValue(I)); 7782 7783 return DAG.getMergeValues(Ops, SL); 7784 } 7785 7786 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7787 /// the call being lowered. 7788 /// 7789 /// This is a helper for lowering intrinsics that follow a target calling 7790 /// convention or require stack pointer adjustment. Only a subset of the 7791 /// intrinsic's operands need to participate in the calling convention. 7792 void SelectionDAGBuilder::populateCallLoweringInfo( 7793 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7794 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7795 bool IsPatchPoint) { 7796 TargetLowering::ArgListTy Args; 7797 Args.reserve(NumArgs); 7798 7799 // Populate the argument list. 7800 // Attributes for args start at offset 1, after the return attribute. 7801 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7802 ArgI != ArgE; ++ArgI) { 7803 const Value *V = CS->getOperand(ArgI); 7804 7805 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7806 7807 TargetLowering::ArgListEntry Entry; 7808 Entry.Node = getValue(V); 7809 Entry.Ty = V->getType(); 7810 Entry.setAttributes(&CS, ArgI); 7811 Args.push_back(Entry); 7812 } 7813 7814 CLI.setDebugLoc(getCurSDLoc()) 7815 .setChain(getRoot()) 7816 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7817 .setDiscardResult(CS->use_empty()) 7818 .setIsPatchPoint(IsPatchPoint); 7819 } 7820 7821 /// Add a stack map intrinsic call's live variable operands to a stackmap 7822 /// or patchpoint target node's operand list. 7823 /// 7824 /// Constants are converted to TargetConstants purely as an optimization to 7825 /// avoid constant materialization and register allocation. 7826 /// 7827 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7828 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7829 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7830 /// address materialization and register allocation, but may also be required 7831 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7832 /// alloca in the entry block, then the runtime may assume that the alloca's 7833 /// StackMap location can be read immediately after compilation and that the 7834 /// location is valid at any point during execution (this is similar to the 7835 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7836 /// only available in a register, then the runtime would need to trap when 7837 /// execution reaches the StackMap in order to read the alloca's location. 7838 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7839 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7840 SelectionDAGBuilder &Builder) { 7841 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7842 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7843 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7844 Ops.push_back( 7845 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7846 Ops.push_back( 7847 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7848 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7849 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7850 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7851 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7852 } else 7853 Ops.push_back(OpVal); 7854 } 7855 } 7856 7857 /// Lower llvm.experimental.stackmap directly to its target opcode. 7858 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7859 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7860 // [live variables...]) 7861 7862 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7863 7864 SDValue Chain, InFlag, Callee, NullPtr; 7865 SmallVector<SDValue, 32> Ops; 7866 7867 SDLoc DL = getCurSDLoc(); 7868 Callee = getValue(CI.getCalledValue()); 7869 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7870 7871 // The stackmap intrinsic only records the live variables (the arguemnts 7872 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7873 // intrinsic, this won't be lowered to a function call. This means we don't 7874 // have to worry about calling conventions and target specific lowering code. 7875 // Instead we perform the call lowering right here. 7876 // 7877 // chain, flag = CALLSEQ_START(chain, 0, 0) 7878 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7879 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7880 // 7881 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7882 InFlag = Chain.getValue(1); 7883 7884 // Add the <id> and <numBytes> constants. 7885 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7886 Ops.push_back(DAG.getTargetConstant( 7887 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7888 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7889 Ops.push_back(DAG.getTargetConstant( 7890 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7891 MVT::i32)); 7892 7893 // Push live variables for the stack map. 7894 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7895 7896 // We are not pushing any register mask info here on the operands list, 7897 // because the stackmap doesn't clobber anything. 7898 7899 // Push the chain and the glue flag. 7900 Ops.push_back(Chain); 7901 Ops.push_back(InFlag); 7902 7903 // Create the STACKMAP node. 7904 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7905 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7906 Chain = SDValue(SM, 0); 7907 InFlag = Chain.getValue(1); 7908 7909 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7910 7911 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7912 7913 // Set the root to the target-lowered call chain. 7914 DAG.setRoot(Chain); 7915 7916 // Inform the Frame Information that we have a stackmap in this function. 7917 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7918 } 7919 7920 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7921 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7922 const BasicBlock *EHPadBB) { 7923 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7924 // i32 <numBytes>, 7925 // i8* <target>, 7926 // i32 <numArgs>, 7927 // [Args...], 7928 // [live variables...]) 7929 7930 CallingConv::ID CC = CS.getCallingConv(); 7931 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7932 bool HasDef = !CS->getType()->isVoidTy(); 7933 SDLoc dl = getCurSDLoc(); 7934 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7935 7936 // Handle immediate and symbolic callees. 7937 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7938 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7939 /*isTarget=*/true); 7940 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7941 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7942 SDLoc(SymbolicCallee), 7943 SymbolicCallee->getValueType(0)); 7944 7945 // Get the real number of arguments participating in the call <numArgs> 7946 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7947 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7948 7949 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7950 // Intrinsics include all meta-operands up to but not including CC. 7951 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7952 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7953 "Not enough arguments provided to the patchpoint intrinsic"); 7954 7955 // For AnyRegCC the arguments are lowered later on manually. 7956 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7957 Type *ReturnTy = 7958 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7959 7960 TargetLowering::CallLoweringInfo CLI(DAG); 7961 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7962 true); 7963 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7964 7965 SDNode *CallEnd = Result.second.getNode(); 7966 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7967 CallEnd = CallEnd->getOperand(0).getNode(); 7968 7969 /// Get a call instruction from the call sequence chain. 7970 /// Tail calls are not allowed. 7971 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7972 "Expected a callseq node."); 7973 SDNode *Call = CallEnd->getOperand(0).getNode(); 7974 bool HasGlue = Call->getGluedNode(); 7975 7976 // Replace the target specific call node with the patchable intrinsic. 7977 SmallVector<SDValue, 8> Ops; 7978 7979 // Add the <id> and <numBytes> constants. 7980 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7981 Ops.push_back(DAG.getTargetConstant( 7982 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7983 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7984 Ops.push_back(DAG.getTargetConstant( 7985 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7986 MVT::i32)); 7987 7988 // Add the callee. 7989 Ops.push_back(Callee); 7990 7991 // Adjust <numArgs> to account for any arguments that have been passed on the 7992 // stack instead. 7993 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7994 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7995 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7996 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7997 7998 // Add the calling convention 7999 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8000 8001 // Add the arguments we omitted previously. The register allocator should 8002 // place these in any free register. 8003 if (IsAnyRegCC) 8004 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8005 Ops.push_back(getValue(CS.getArgument(i))); 8006 8007 // Push the arguments from the call instruction up to the register mask. 8008 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8009 Ops.append(Call->op_begin() + 2, e); 8010 8011 // Push live variables for the stack map. 8012 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8013 8014 // Push the register mask info. 8015 if (HasGlue) 8016 Ops.push_back(*(Call->op_end()-2)); 8017 else 8018 Ops.push_back(*(Call->op_end()-1)); 8019 8020 // Push the chain (this is originally the first operand of the call, but 8021 // becomes now the last or second to last operand). 8022 Ops.push_back(*(Call->op_begin())); 8023 8024 // Push the glue flag (last operand). 8025 if (HasGlue) 8026 Ops.push_back(*(Call->op_end()-1)); 8027 8028 SDVTList NodeTys; 8029 if (IsAnyRegCC && HasDef) { 8030 // Create the return types based on the intrinsic definition 8031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8032 SmallVector<EVT, 3> ValueVTs; 8033 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8034 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8035 8036 // There is always a chain and a glue type at the end 8037 ValueVTs.push_back(MVT::Other); 8038 ValueVTs.push_back(MVT::Glue); 8039 NodeTys = DAG.getVTList(ValueVTs); 8040 } else 8041 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8042 8043 // Replace the target specific call node with a PATCHPOINT node. 8044 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8045 dl, NodeTys, Ops); 8046 8047 // Update the NodeMap. 8048 if (HasDef) { 8049 if (IsAnyRegCC) 8050 setValue(CS.getInstruction(), SDValue(MN, 0)); 8051 else 8052 setValue(CS.getInstruction(), Result.first); 8053 } 8054 8055 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8056 // call sequence. Furthermore the location of the chain and glue can change 8057 // when the AnyReg calling convention is used and the intrinsic returns a 8058 // value. 8059 if (IsAnyRegCC && HasDef) { 8060 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8061 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8062 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8063 } else 8064 DAG.ReplaceAllUsesWith(Call, MN); 8065 DAG.DeleteNode(Call); 8066 8067 // Inform the Frame Information that we have a patchpoint in this function. 8068 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8069 } 8070 8071 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8072 unsigned Intrinsic) { 8073 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8074 SDValue Op1 = getValue(I.getArgOperand(0)); 8075 SDValue Op2; 8076 if (I.getNumArgOperands() > 1) 8077 Op2 = getValue(I.getArgOperand(1)); 8078 SDLoc dl = getCurSDLoc(); 8079 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8080 SDValue Res; 8081 FastMathFlags FMF; 8082 if (isa<FPMathOperator>(I)) 8083 FMF = I.getFastMathFlags(); 8084 SDNodeFlags SDFlags; 8085 SDFlags.setNoNaNs(FMF.noNaNs()); 8086 8087 switch (Intrinsic) { 8088 case Intrinsic::experimental_vector_reduce_fadd: 8089 if (FMF.isFast()) 8090 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8091 else 8092 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8093 break; 8094 case Intrinsic::experimental_vector_reduce_fmul: 8095 if (FMF.isFast()) 8096 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8097 else 8098 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8099 break; 8100 case Intrinsic::experimental_vector_reduce_add: 8101 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8102 break; 8103 case Intrinsic::experimental_vector_reduce_mul: 8104 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8105 break; 8106 case Intrinsic::experimental_vector_reduce_and: 8107 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8108 break; 8109 case Intrinsic::experimental_vector_reduce_or: 8110 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8111 break; 8112 case Intrinsic::experimental_vector_reduce_xor: 8113 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8114 break; 8115 case Intrinsic::experimental_vector_reduce_smax: 8116 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8117 break; 8118 case Intrinsic::experimental_vector_reduce_smin: 8119 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8120 break; 8121 case Intrinsic::experimental_vector_reduce_umax: 8122 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8123 break; 8124 case Intrinsic::experimental_vector_reduce_umin: 8125 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8126 break; 8127 case Intrinsic::experimental_vector_reduce_fmax: 8128 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8129 break; 8130 case Intrinsic::experimental_vector_reduce_fmin: 8131 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8132 break; 8133 default: 8134 llvm_unreachable("Unhandled vector reduce intrinsic"); 8135 } 8136 setValue(&I, Res); 8137 } 8138 8139 /// Returns an AttributeList representing the attributes applied to the return 8140 /// value of the given call. 8141 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8142 SmallVector<Attribute::AttrKind, 2> Attrs; 8143 if (CLI.RetSExt) 8144 Attrs.push_back(Attribute::SExt); 8145 if (CLI.RetZExt) 8146 Attrs.push_back(Attribute::ZExt); 8147 if (CLI.IsInReg) 8148 Attrs.push_back(Attribute::InReg); 8149 8150 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8151 Attrs); 8152 } 8153 8154 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8155 /// implementation, which just calls LowerCall. 8156 /// FIXME: When all targets are 8157 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8158 std::pair<SDValue, SDValue> 8159 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8160 // Handle the incoming return values from the call. 8161 CLI.Ins.clear(); 8162 Type *OrigRetTy = CLI.RetTy; 8163 SmallVector<EVT, 4> RetTys; 8164 SmallVector<uint64_t, 4> Offsets; 8165 auto &DL = CLI.DAG.getDataLayout(); 8166 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8167 8168 if (CLI.IsPostTypeLegalization) { 8169 // If we are lowering a libcall after legalization, split the return type. 8170 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8171 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8172 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8173 EVT RetVT = OldRetTys[i]; 8174 uint64_t Offset = OldOffsets[i]; 8175 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8176 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8177 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8178 RetTys.append(NumRegs, RegisterVT); 8179 for (unsigned j = 0; j != NumRegs; ++j) 8180 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8181 } 8182 } 8183 8184 SmallVector<ISD::OutputArg, 4> Outs; 8185 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8186 8187 bool CanLowerReturn = 8188 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8189 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8190 8191 SDValue DemoteStackSlot; 8192 int DemoteStackIdx = -100; 8193 if (!CanLowerReturn) { 8194 // FIXME: equivalent assert? 8195 // assert(!CS.hasInAllocaArgument() && 8196 // "sret demotion is incompatible with inalloca"); 8197 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8198 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8199 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8200 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8201 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8202 8203 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8204 ArgListEntry Entry; 8205 Entry.Node = DemoteStackSlot; 8206 Entry.Ty = StackSlotPtrType; 8207 Entry.IsSExt = false; 8208 Entry.IsZExt = false; 8209 Entry.IsInReg = false; 8210 Entry.IsSRet = true; 8211 Entry.IsNest = false; 8212 Entry.IsByVal = false; 8213 Entry.IsReturned = false; 8214 Entry.IsSwiftSelf = false; 8215 Entry.IsSwiftError = false; 8216 Entry.Alignment = Align; 8217 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8218 CLI.NumFixedArgs += 1; 8219 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8220 8221 // sret demotion isn't compatible with tail-calls, since the sret argument 8222 // points into the callers stack frame. 8223 CLI.IsTailCall = false; 8224 } else { 8225 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8226 EVT VT = RetTys[I]; 8227 MVT RegisterVT = 8228 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8229 unsigned NumRegs = 8230 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8231 for (unsigned i = 0; i != NumRegs; ++i) { 8232 ISD::InputArg MyFlags; 8233 MyFlags.VT = RegisterVT; 8234 MyFlags.ArgVT = VT; 8235 MyFlags.Used = CLI.IsReturnValueUsed; 8236 if (CLI.RetSExt) 8237 MyFlags.Flags.setSExt(); 8238 if (CLI.RetZExt) 8239 MyFlags.Flags.setZExt(); 8240 if (CLI.IsInReg) 8241 MyFlags.Flags.setInReg(); 8242 CLI.Ins.push_back(MyFlags); 8243 } 8244 } 8245 } 8246 8247 // We push in swifterror return as the last element of CLI.Ins. 8248 ArgListTy &Args = CLI.getArgs(); 8249 if (supportSwiftError()) { 8250 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8251 if (Args[i].IsSwiftError) { 8252 ISD::InputArg MyFlags; 8253 MyFlags.VT = getPointerTy(DL); 8254 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8255 MyFlags.Flags.setSwiftError(); 8256 CLI.Ins.push_back(MyFlags); 8257 } 8258 } 8259 } 8260 8261 // Handle all of the outgoing arguments. 8262 CLI.Outs.clear(); 8263 CLI.OutVals.clear(); 8264 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8265 SmallVector<EVT, 4> ValueVTs; 8266 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8267 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8268 Type *FinalType = Args[i].Ty; 8269 if (Args[i].IsByVal) 8270 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8271 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8272 FinalType, CLI.CallConv, CLI.IsVarArg); 8273 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8274 ++Value) { 8275 EVT VT = ValueVTs[Value]; 8276 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8277 SDValue Op = SDValue(Args[i].Node.getNode(), 8278 Args[i].Node.getResNo() + Value); 8279 ISD::ArgFlagsTy Flags; 8280 8281 // Certain targets (such as MIPS), may have a different ABI alignment 8282 // for a type depending on the context. Give the target a chance to 8283 // specify the alignment it wants. 8284 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8285 8286 if (Args[i].IsZExt) 8287 Flags.setZExt(); 8288 if (Args[i].IsSExt) 8289 Flags.setSExt(); 8290 if (Args[i].IsInReg) { 8291 // If we are using vectorcall calling convention, a structure that is 8292 // passed InReg - is surely an HVA 8293 if (CLI.CallConv == CallingConv::X86_VectorCall && 8294 isa<StructType>(FinalType)) { 8295 // The first value of a structure is marked 8296 if (0 == Value) 8297 Flags.setHvaStart(); 8298 Flags.setHva(); 8299 } 8300 // Set InReg Flag 8301 Flags.setInReg(); 8302 } 8303 if (Args[i].IsSRet) 8304 Flags.setSRet(); 8305 if (Args[i].IsSwiftSelf) 8306 Flags.setSwiftSelf(); 8307 if (Args[i].IsSwiftError) 8308 Flags.setSwiftError(); 8309 if (Args[i].IsByVal) 8310 Flags.setByVal(); 8311 if (Args[i].IsInAlloca) { 8312 Flags.setInAlloca(); 8313 // Set the byval flag for CCAssignFn callbacks that don't know about 8314 // inalloca. This way we can know how many bytes we should've allocated 8315 // and how many bytes a callee cleanup function will pop. If we port 8316 // inalloca to more targets, we'll have to add custom inalloca handling 8317 // in the various CC lowering callbacks. 8318 Flags.setByVal(); 8319 } 8320 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8321 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8322 Type *ElementTy = Ty->getElementType(); 8323 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8324 // For ByVal, alignment should come from FE. BE will guess if this 8325 // info is not there but there are cases it cannot get right. 8326 unsigned FrameAlign; 8327 if (Args[i].Alignment) 8328 FrameAlign = Args[i].Alignment; 8329 else 8330 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8331 Flags.setByValAlign(FrameAlign); 8332 } 8333 if (Args[i].IsNest) 8334 Flags.setNest(); 8335 if (NeedsRegBlock) 8336 Flags.setInConsecutiveRegs(); 8337 Flags.setOrigAlign(OriginalAlignment); 8338 8339 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8340 unsigned NumParts = 8341 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8342 SmallVector<SDValue, 4> Parts(NumParts); 8343 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8344 8345 if (Args[i].IsSExt) 8346 ExtendKind = ISD::SIGN_EXTEND; 8347 else if (Args[i].IsZExt) 8348 ExtendKind = ISD::ZERO_EXTEND; 8349 8350 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8351 // for now. 8352 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8353 CanLowerReturn) { 8354 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8355 "unexpected use of 'returned'"); 8356 // Before passing 'returned' to the target lowering code, ensure that 8357 // either the register MVT and the actual EVT are the same size or that 8358 // the return value and argument are extended in the same way; in these 8359 // cases it's safe to pass the argument register value unchanged as the 8360 // return register value (although it's at the target's option whether 8361 // to do so) 8362 // TODO: allow code generation to take advantage of partially preserved 8363 // registers rather than clobbering the entire register when the 8364 // parameter extension method is not compatible with the return 8365 // extension method 8366 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8367 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8368 CLI.RetZExt == Args[i].IsZExt)) 8369 Flags.setReturned(); 8370 } 8371 8372 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8373 CLI.CS.getInstruction(), ExtendKind, true); 8374 8375 for (unsigned j = 0; j != NumParts; ++j) { 8376 // if it isn't first piece, alignment must be 1 8377 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8378 i < CLI.NumFixedArgs, 8379 i, j*Parts[j].getValueType().getStoreSize()); 8380 if (NumParts > 1 && j == 0) 8381 MyFlags.Flags.setSplit(); 8382 else if (j != 0) { 8383 MyFlags.Flags.setOrigAlign(1); 8384 if (j == NumParts - 1) 8385 MyFlags.Flags.setSplitEnd(); 8386 } 8387 8388 CLI.Outs.push_back(MyFlags); 8389 CLI.OutVals.push_back(Parts[j]); 8390 } 8391 8392 if (NeedsRegBlock && Value == NumValues - 1) 8393 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8394 } 8395 } 8396 8397 SmallVector<SDValue, 4> InVals; 8398 CLI.Chain = LowerCall(CLI, InVals); 8399 8400 // Update CLI.InVals to use outside of this function. 8401 CLI.InVals = InVals; 8402 8403 // Verify that the target's LowerCall behaved as expected. 8404 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8405 "LowerCall didn't return a valid chain!"); 8406 assert((!CLI.IsTailCall || InVals.empty()) && 8407 "LowerCall emitted a return value for a tail call!"); 8408 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8409 "LowerCall didn't emit the correct number of values!"); 8410 8411 // For a tail call, the return value is merely live-out and there aren't 8412 // any nodes in the DAG representing it. Return a special value to 8413 // indicate that a tail call has been emitted and no more Instructions 8414 // should be processed in the current block. 8415 if (CLI.IsTailCall) { 8416 CLI.DAG.setRoot(CLI.Chain); 8417 return std::make_pair(SDValue(), SDValue()); 8418 } 8419 8420 #ifndef NDEBUG 8421 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8422 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8423 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8424 "LowerCall emitted a value with the wrong type!"); 8425 } 8426 #endif 8427 8428 SmallVector<SDValue, 4> ReturnValues; 8429 if (!CanLowerReturn) { 8430 // The instruction result is the result of loading from the 8431 // hidden sret parameter. 8432 SmallVector<EVT, 1> PVTs; 8433 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8434 8435 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8436 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8437 EVT PtrVT = PVTs[0]; 8438 8439 unsigned NumValues = RetTys.size(); 8440 ReturnValues.resize(NumValues); 8441 SmallVector<SDValue, 4> Chains(NumValues); 8442 8443 // An aggregate return value cannot wrap around the address space, so 8444 // offsets to its parts don't wrap either. 8445 SDNodeFlags Flags; 8446 Flags.setNoUnsignedWrap(true); 8447 8448 for (unsigned i = 0; i < NumValues; ++i) { 8449 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8450 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8451 PtrVT), Flags); 8452 SDValue L = CLI.DAG.getLoad( 8453 RetTys[i], CLI.DL, CLI.Chain, Add, 8454 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8455 DemoteStackIdx, Offsets[i]), 8456 /* Alignment = */ 1); 8457 ReturnValues[i] = L; 8458 Chains[i] = L.getValue(1); 8459 } 8460 8461 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8462 } else { 8463 // Collect the legal value parts into potentially illegal values 8464 // that correspond to the original function's return values. 8465 Optional<ISD::NodeType> AssertOp; 8466 if (CLI.RetSExt) 8467 AssertOp = ISD::AssertSext; 8468 else if (CLI.RetZExt) 8469 AssertOp = ISD::AssertZext; 8470 unsigned CurReg = 0; 8471 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8472 EVT VT = RetTys[I]; 8473 MVT RegisterVT = 8474 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8475 unsigned NumRegs = 8476 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8477 8478 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8479 NumRegs, RegisterVT, VT, nullptr, 8480 AssertOp, true)); 8481 CurReg += NumRegs; 8482 } 8483 8484 // For a function returning void, there is no return value. We can't create 8485 // such a node, so we just return a null return value in that case. In 8486 // that case, nothing will actually look at the value. 8487 if (ReturnValues.empty()) 8488 return std::make_pair(SDValue(), CLI.Chain); 8489 } 8490 8491 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8492 CLI.DAG.getVTList(RetTys), ReturnValues); 8493 return std::make_pair(Res, CLI.Chain); 8494 } 8495 8496 void TargetLowering::LowerOperationWrapper(SDNode *N, 8497 SmallVectorImpl<SDValue> &Results, 8498 SelectionDAG &DAG) const { 8499 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8500 Results.push_back(Res); 8501 } 8502 8503 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8504 llvm_unreachable("LowerOperation not implemented for this target!"); 8505 } 8506 8507 void 8508 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8509 SDValue Op = getNonRegisterValue(V); 8510 assert((Op.getOpcode() != ISD::CopyFromReg || 8511 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8512 "Copy from a reg to the same reg!"); 8513 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8514 8515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8516 // If this is an InlineAsm we have to match the registers required, not the 8517 // notional registers required by the type. 8518 8519 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8520 V->getType(), isABIRegCopy(V)); 8521 SDValue Chain = DAG.getEntryNode(); 8522 8523 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8524 FuncInfo.PreferredExtendType.end()) 8525 ? ISD::ANY_EXTEND 8526 : FuncInfo.PreferredExtendType[V]; 8527 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8528 PendingExports.push_back(Chain); 8529 } 8530 8531 #include "llvm/CodeGen/SelectionDAGISel.h" 8532 8533 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8534 /// entry block, return true. This includes arguments used by switches, since 8535 /// the switch may expand into multiple basic blocks. 8536 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8537 // With FastISel active, we may be splitting blocks, so force creation 8538 // of virtual registers for all non-dead arguments. 8539 if (FastISel) 8540 return A->use_empty(); 8541 8542 const BasicBlock &Entry = A->getParent()->front(); 8543 for (const User *U : A->users()) 8544 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8545 return false; // Use not in entry block. 8546 8547 return true; 8548 } 8549 8550 using ArgCopyElisionMapTy = 8551 DenseMap<const Argument *, 8552 std::pair<const AllocaInst *, const StoreInst *>>; 8553 8554 /// Scan the entry block of the function in FuncInfo for arguments that look 8555 /// like copies into a local alloca. Record any copied arguments in 8556 /// ArgCopyElisionCandidates. 8557 static void 8558 findArgumentCopyElisionCandidates(const DataLayout &DL, 8559 FunctionLoweringInfo *FuncInfo, 8560 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8561 // Record the state of every static alloca used in the entry block. Argument 8562 // allocas are all used in the entry block, so we need approximately as many 8563 // entries as we have arguments. 8564 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8565 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8566 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8567 StaticAllocas.reserve(NumArgs * 2); 8568 8569 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8570 if (!V) 8571 return nullptr; 8572 V = V->stripPointerCasts(); 8573 const auto *AI = dyn_cast<AllocaInst>(V); 8574 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8575 return nullptr; 8576 auto Iter = StaticAllocas.insert({AI, Unknown}); 8577 return &Iter.first->second; 8578 }; 8579 8580 // Look for stores of arguments to static allocas. Look through bitcasts and 8581 // GEPs to handle type coercions, as long as the alloca is fully initialized 8582 // by the store. Any non-store use of an alloca escapes it and any subsequent 8583 // unanalyzed store might write it. 8584 // FIXME: Handle structs initialized with multiple stores. 8585 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8586 // Look for stores, and handle non-store uses conservatively. 8587 const auto *SI = dyn_cast<StoreInst>(&I); 8588 if (!SI) { 8589 // We will look through cast uses, so ignore them completely. 8590 if (I.isCast()) 8591 continue; 8592 // Ignore debug info intrinsics, they don't escape or store to allocas. 8593 if (isa<DbgInfoIntrinsic>(I)) 8594 continue; 8595 // This is an unknown instruction. Assume it escapes or writes to all 8596 // static alloca operands. 8597 for (const Use &U : I.operands()) { 8598 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8599 *Info = StaticAllocaInfo::Clobbered; 8600 } 8601 continue; 8602 } 8603 8604 // If the stored value is a static alloca, mark it as escaped. 8605 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8606 *Info = StaticAllocaInfo::Clobbered; 8607 8608 // Check if the destination is a static alloca. 8609 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8610 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8611 if (!Info) 8612 continue; 8613 const AllocaInst *AI = cast<AllocaInst>(Dst); 8614 8615 // Skip allocas that have been initialized or clobbered. 8616 if (*Info != StaticAllocaInfo::Unknown) 8617 continue; 8618 8619 // Check if the stored value is an argument, and that this store fully 8620 // initializes the alloca. Don't elide copies from the same argument twice. 8621 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8622 const auto *Arg = dyn_cast<Argument>(Val); 8623 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8624 Arg->getType()->isEmptyTy() || 8625 DL.getTypeStoreSize(Arg->getType()) != 8626 DL.getTypeAllocSize(AI->getAllocatedType()) || 8627 ArgCopyElisionCandidates.count(Arg)) { 8628 *Info = StaticAllocaInfo::Clobbered; 8629 continue; 8630 } 8631 8632 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8633 8634 // Mark this alloca and store for argument copy elision. 8635 *Info = StaticAllocaInfo::Elidable; 8636 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8637 8638 // Stop scanning if we've seen all arguments. This will happen early in -O0 8639 // builds, which is useful, because -O0 builds have large entry blocks and 8640 // many allocas. 8641 if (ArgCopyElisionCandidates.size() == NumArgs) 8642 break; 8643 } 8644 } 8645 8646 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8647 /// ArgVal is a load from a suitable fixed stack object. 8648 static void tryToElideArgumentCopy( 8649 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8650 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8651 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8652 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8653 SDValue ArgVal, bool &ArgHasUses) { 8654 // Check if this is a load from a fixed stack object. 8655 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8656 if (!LNode) 8657 return; 8658 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8659 if (!FINode) 8660 return; 8661 8662 // Check that the fixed stack object is the right size and alignment. 8663 // Look at the alignment that the user wrote on the alloca instead of looking 8664 // at the stack object. 8665 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8666 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8667 const AllocaInst *AI = ArgCopyIter->second.first; 8668 int FixedIndex = FINode->getIndex(); 8669 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8670 int OldIndex = AllocaIndex; 8671 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8672 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8673 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8674 "object size\n"); 8675 return; 8676 } 8677 unsigned RequiredAlignment = AI->getAlignment(); 8678 if (!RequiredAlignment) { 8679 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8680 AI->getAllocatedType()); 8681 } 8682 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8683 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8684 "greater than stack argument alignment (" 8685 << RequiredAlignment << " vs " 8686 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8687 return; 8688 } 8689 8690 // Perform the elision. Delete the old stack object and replace its only use 8691 // in the variable info map. Mark the stack object as mutable. 8692 DEBUG({ 8693 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8694 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8695 << '\n'; 8696 }); 8697 MFI.RemoveStackObject(OldIndex); 8698 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8699 AllocaIndex = FixedIndex; 8700 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8701 Chains.push_back(ArgVal.getValue(1)); 8702 8703 // Avoid emitting code for the store implementing the copy. 8704 const StoreInst *SI = ArgCopyIter->second.second; 8705 ElidedArgCopyInstrs.insert(SI); 8706 8707 // Check for uses of the argument again so that we can avoid exporting ArgVal 8708 // if it is't used by anything other than the store. 8709 for (const Value *U : Arg.users()) { 8710 if (U != SI) { 8711 ArgHasUses = true; 8712 break; 8713 } 8714 } 8715 } 8716 8717 void SelectionDAGISel::LowerArguments(const Function &F) { 8718 SelectionDAG &DAG = SDB->DAG; 8719 SDLoc dl = SDB->getCurSDLoc(); 8720 const DataLayout &DL = DAG.getDataLayout(); 8721 SmallVector<ISD::InputArg, 16> Ins; 8722 8723 if (!FuncInfo->CanLowerReturn) { 8724 // Put in an sret pointer parameter before all the other parameters. 8725 SmallVector<EVT, 1> ValueVTs; 8726 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8727 F.getReturnType()->getPointerTo( 8728 DAG.getDataLayout().getAllocaAddrSpace()), 8729 ValueVTs); 8730 8731 // NOTE: Assuming that a pointer will never break down to more than one VT 8732 // or one register. 8733 ISD::ArgFlagsTy Flags; 8734 Flags.setSRet(); 8735 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8736 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8737 ISD::InputArg::NoArgIndex, 0); 8738 Ins.push_back(RetArg); 8739 } 8740 8741 // Look for stores of arguments to static allocas. Mark such arguments with a 8742 // flag to ask the target to give us the memory location of that argument if 8743 // available. 8744 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8745 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8746 8747 // Set up the incoming argument description vector. 8748 for (const Argument &Arg : F.args()) { 8749 unsigned ArgNo = Arg.getArgNo(); 8750 SmallVector<EVT, 4> ValueVTs; 8751 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8752 bool isArgValueUsed = !Arg.use_empty(); 8753 unsigned PartBase = 0; 8754 Type *FinalType = Arg.getType(); 8755 if (Arg.hasAttribute(Attribute::ByVal)) 8756 FinalType = cast<PointerType>(FinalType)->getElementType(); 8757 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8758 FinalType, F.getCallingConv(), F.isVarArg()); 8759 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8760 Value != NumValues; ++Value) { 8761 EVT VT = ValueVTs[Value]; 8762 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8763 ISD::ArgFlagsTy Flags; 8764 8765 // Certain targets (such as MIPS), may have a different ABI alignment 8766 // for a type depending on the context. Give the target a chance to 8767 // specify the alignment it wants. 8768 unsigned OriginalAlignment = 8769 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8770 8771 if (Arg.hasAttribute(Attribute::ZExt)) 8772 Flags.setZExt(); 8773 if (Arg.hasAttribute(Attribute::SExt)) 8774 Flags.setSExt(); 8775 if (Arg.hasAttribute(Attribute::InReg)) { 8776 // If we are using vectorcall calling convention, a structure that is 8777 // passed InReg - is surely an HVA 8778 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8779 isa<StructType>(Arg.getType())) { 8780 // The first value of a structure is marked 8781 if (0 == Value) 8782 Flags.setHvaStart(); 8783 Flags.setHva(); 8784 } 8785 // Set InReg Flag 8786 Flags.setInReg(); 8787 } 8788 if (Arg.hasAttribute(Attribute::StructRet)) 8789 Flags.setSRet(); 8790 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8791 Flags.setSwiftSelf(); 8792 if (Arg.hasAttribute(Attribute::SwiftError)) 8793 Flags.setSwiftError(); 8794 if (Arg.hasAttribute(Attribute::ByVal)) 8795 Flags.setByVal(); 8796 if (Arg.hasAttribute(Attribute::InAlloca)) { 8797 Flags.setInAlloca(); 8798 // Set the byval flag for CCAssignFn callbacks that don't know about 8799 // inalloca. This way we can know how many bytes we should've allocated 8800 // and how many bytes a callee cleanup function will pop. If we port 8801 // inalloca to more targets, we'll have to add custom inalloca handling 8802 // in the various CC lowering callbacks. 8803 Flags.setByVal(); 8804 } 8805 if (F.getCallingConv() == CallingConv::X86_INTR) { 8806 // IA Interrupt passes frame (1st parameter) by value in the stack. 8807 if (ArgNo == 0) 8808 Flags.setByVal(); 8809 } 8810 if (Flags.isByVal() || Flags.isInAlloca()) { 8811 PointerType *Ty = cast<PointerType>(Arg.getType()); 8812 Type *ElementTy = Ty->getElementType(); 8813 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8814 // For ByVal, alignment should be passed from FE. BE will guess if 8815 // this info is not there but there are cases it cannot get right. 8816 unsigned FrameAlign; 8817 if (Arg.getParamAlignment()) 8818 FrameAlign = Arg.getParamAlignment(); 8819 else 8820 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8821 Flags.setByValAlign(FrameAlign); 8822 } 8823 if (Arg.hasAttribute(Attribute::Nest)) 8824 Flags.setNest(); 8825 if (NeedsRegBlock) 8826 Flags.setInConsecutiveRegs(); 8827 Flags.setOrigAlign(OriginalAlignment); 8828 if (ArgCopyElisionCandidates.count(&Arg)) 8829 Flags.setCopyElisionCandidate(); 8830 8831 MVT RegisterVT = 8832 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8833 unsigned NumRegs = 8834 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8835 for (unsigned i = 0; i != NumRegs; ++i) { 8836 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8837 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8838 if (NumRegs > 1 && i == 0) 8839 MyFlags.Flags.setSplit(); 8840 // if it isn't first piece, alignment must be 1 8841 else if (i > 0) { 8842 MyFlags.Flags.setOrigAlign(1); 8843 if (i == NumRegs - 1) 8844 MyFlags.Flags.setSplitEnd(); 8845 } 8846 Ins.push_back(MyFlags); 8847 } 8848 if (NeedsRegBlock && Value == NumValues - 1) 8849 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8850 PartBase += VT.getStoreSize(); 8851 } 8852 } 8853 8854 // Call the target to set up the argument values. 8855 SmallVector<SDValue, 8> InVals; 8856 SDValue NewRoot = TLI->LowerFormalArguments( 8857 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8858 8859 // Verify that the target's LowerFormalArguments behaved as expected. 8860 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8861 "LowerFormalArguments didn't return a valid chain!"); 8862 assert(InVals.size() == Ins.size() && 8863 "LowerFormalArguments didn't emit the correct number of values!"); 8864 DEBUG({ 8865 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8866 assert(InVals[i].getNode() && 8867 "LowerFormalArguments emitted a null value!"); 8868 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8869 "LowerFormalArguments emitted a value with the wrong type!"); 8870 } 8871 }); 8872 8873 // Update the DAG with the new chain value resulting from argument lowering. 8874 DAG.setRoot(NewRoot); 8875 8876 // Set up the argument values. 8877 unsigned i = 0; 8878 if (!FuncInfo->CanLowerReturn) { 8879 // Create a virtual register for the sret pointer, and put in a copy 8880 // from the sret argument into it. 8881 SmallVector<EVT, 1> ValueVTs; 8882 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8883 F.getReturnType()->getPointerTo( 8884 DAG.getDataLayout().getAllocaAddrSpace()), 8885 ValueVTs); 8886 MVT VT = ValueVTs[0].getSimpleVT(); 8887 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8888 Optional<ISD::NodeType> AssertOp = None; 8889 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8890 RegVT, VT, nullptr, AssertOp); 8891 8892 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8893 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8894 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8895 FuncInfo->DemoteRegister = SRetReg; 8896 NewRoot = 8897 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8898 DAG.setRoot(NewRoot); 8899 8900 // i indexes lowered arguments. Bump it past the hidden sret argument. 8901 ++i; 8902 } 8903 8904 SmallVector<SDValue, 4> Chains; 8905 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8906 for (const Argument &Arg : F.args()) { 8907 SmallVector<SDValue, 4> ArgValues; 8908 SmallVector<EVT, 4> ValueVTs; 8909 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8910 unsigned NumValues = ValueVTs.size(); 8911 if (NumValues == 0) 8912 continue; 8913 8914 bool ArgHasUses = !Arg.use_empty(); 8915 8916 // Elide the copying store if the target loaded this argument from a 8917 // suitable fixed stack object. 8918 if (Ins[i].Flags.isCopyElisionCandidate()) { 8919 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8920 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8921 InVals[i], ArgHasUses); 8922 } 8923 8924 // If this argument is unused then remember its value. It is used to generate 8925 // debugging information. 8926 bool isSwiftErrorArg = 8927 TLI->supportSwiftError() && 8928 Arg.hasAttribute(Attribute::SwiftError); 8929 if (!ArgHasUses && !isSwiftErrorArg) { 8930 SDB->setUnusedArgValue(&Arg, InVals[i]); 8931 8932 // Also remember any frame index for use in FastISel. 8933 if (FrameIndexSDNode *FI = 8934 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8935 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8936 } 8937 8938 for (unsigned Val = 0; Val != NumValues; ++Val) { 8939 EVT VT = ValueVTs[Val]; 8940 MVT PartVT = 8941 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8942 unsigned NumParts = 8943 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8944 8945 // Even an apparant 'unused' swifterror argument needs to be returned. So 8946 // we do generate a copy for it that can be used on return from the 8947 // function. 8948 if (ArgHasUses || isSwiftErrorArg) { 8949 Optional<ISD::NodeType> AssertOp; 8950 if (Arg.hasAttribute(Attribute::SExt)) 8951 AssertOp = ISD::AssertSext; 8952 else if (Arg.hasAttribute(Attribute::ZExt)) 8953 AssertOp = ISD::AssertZext; 8954 8955 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8956 PartVT, VT, nullptr, AssertOp, 8957 true)); 8958 } 8959 8960 i += NumParts; 8961 } 8962 8963 // We don't need to do anything else for unused arguments. 8964 if (ArgValues.empty()) 8965 continue; 8966 8967 // Note down frame index. 8968 if (FrameIndexSDNode *FI = 8969 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8970 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8971 8972 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8973 SDB->getCurSDLoc()); 8974 8975 SDB->setValue(&Arg, Res); 8976 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8977 // We want to associate the argument with the frame index, among 8978 // involved operands, that correspond to the lowest address. The 8979 // getCopyFromParts function, called earlier, is swapping the order of 8980 // the operands to BUILD_PAIR depending on endianness. The result of 8981 // that swapping is that the least significant bits of the argument will 8982 // be in the first operand of the BUILD_PAIR node, and the most 8983 // significant bits will be in the second operand. 8984 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8985 if (LoadSDNode *LNode = 8986 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 8987 if (FrameIndexSDNode *FI = 8988 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8989 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8990 } 8991 8992 // Update the SwiftErrorVRegDefMap. 8993 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8994 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8995 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8996 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8997 FuncInfo->SwiftErrorArg, Reg); 8998 } 8999 9000 // If this argument is live outside of the entry block, insert a copy from 9001 // wherever we got it to the vreg that other BB's will reference it as. 9002 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9003 // If we can, though, try to skip creating an unnecessary vreg. 9004 // FIXME: This isn't very clean... it would be nice to make this more 9005 // general. It's also subtly incompatible with the hacks FastISel 9006 // uses with vregs. 9007 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9008 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9009 FuncInfo->ValueMap[&Arg] = Reg; 9010 continue; 9011 } 9012 } 9013 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9014 FuncInfo->InitializeRegForValue(&Arg); 9015 SDB->CopyToExportRegsIfNeeded(&Arg); 9016 } 9017 } 9018 9019 if (!Chains.empty()) { 9020 Chains.push_back(NewRoot); 9021 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9022 } 9023 9024 DAG.setRoot(NewRoot); 9025 9026 assert(i == InVals.size() && "Argument register count mismatch!"); 9027 9028 // If any argument copy elisions occurred and we have debug info, update the 9029 // stale frame indices used in the dbg.declare variable info table. 9030 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9031 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9032 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9033 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9034 if (I != ArgCopyElisionFrameIndexMap.end()) 9035 VI.Slot = I->second; 9036 } 9037 } 9038 9039 // Finally, if the target has anything special to do, allow it to do so. 9040 EmitFunctionEntryCode(); 9041 } 9042 9043 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9044 /// ensure constants are generated when needed. Remember the virtual registers 9045 /// that need to be added to the Machine PHI nodes as input. We cannot just 9046 /// directly add them, because expansion might result in multiple MBB's for one 9047 /// BB. As such, the start of the BB might correspond to a different MBB than 9048 /// the end. 9049 void 9050 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9051 const TerminatorInst *TI = LLVMBB->getTerminator(); 9052 9053 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9054 9055 // Check PHI nodes in successors that expect a value to be available from this 9056 // block. 9057 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9058 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9059 if (!isa<PHINode>(SuccBB->begin())) continue; 9060 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9061 9062 // If this terminator has multiple identical successors (common for 9063 // switches), only handle each succ once. 9064 if (!SuccsHandled.insert(SuccMBB).second) 9065 continue; 9066 9067 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9068 9069 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9070 // nodes and Machine PHI nodes, but the incoming operands have not been 9071 // emitted yet. 9072 for (const PHINode &PN : SuccBB->phis()) { 9073 // Ignore dead phi's. 9074 if (PN.use_empty()) 9075 continue; 9076 9077 // Skip empty types 9078 if (PN.getType()->isEmptyTy()) 9079 continue; 9080 9081 unsigned Reg; 9082 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9083 9084 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9085 unsigned &RegOut = ConstantsOut[C]; 9086 if (RegOut == 0) { 9087 RegOut = FuncInfo.CreateRegs(C->getType()); 9088 CopyValueToVirtualRegister(C, RegOut); 9089 } 9090 Reg = RegOut; 9091 } else { 9092 DenseMap<const Value *, unsigned>::iterator I = 9093 FuncInfo.ValueMap.find(PHIOp); 9094 if (I != FuncInfo.ValueMap.end()) 9095 Reg = I->second; 9096 else { 9097 assert(isa<AllocaInst>(PHIOp) && 9098 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9099 "Didn't codegen value into a register!??"); 9100 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9101 CopyValueToVirtualRegister(PHIOp, Reg); 9102 } 9103 } 9104 9105 // Remember that this register needs to added to the machine PHI node as 9106 // the input for this MBB. 9107 SmallVector<EVT, 4> ValueVTs; 9108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9109 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9110 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9111 EVT VT = ValueVTs[vti]; 9112 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9113 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9114 FuncInfo.PHINodesToUpdate.push_back( 9115 std::make_pair(&*MBBI++, Reg + i)); 9116 Reg += NumRegisters; 9117 } 9118 } 9119 } 9120 9121 ConstantsOut.clear(); 9122 } 9123 9124 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9125 /// is 0. 9126 MachineBasicBlock * 9127 SelectionDAGBuilder::StackProtectorDescriptor:: 9128 AddSuccessorMBB(const BasicBlock *BB, 9129 MachineBasicBlock *ParentMBB, 9130 bool IsLikely, 9131 MachineBasicBlock *SuccMBB) { 9132 // If SuccBB has not been created yet, create it. 9133 if (!SuccMBB) { 9134 MachineFunction *MF = ParentMBB->getParent(); 9135 MachineFunction::iterator BBI(ParentMBB); 9136 SuccMBB = MF->CreateMachineBasicBlock(BB); 9137 MF->insert(++BBI, SuccMBB); 9138 } 9139 // Add it as a successor of ParentMBB. 9140 ParentMBB->addSuccessor( 9141 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9142 return SuccMBB; 9143 } 9144 9145 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9146 MachineFunction::iterator I(MBB); 9147 if (++I == FuncInfo.MF->end()) 9148 return nullptr; 9149 return &*I; 9150 } 9151 9152 /// During lowering new call nodes can be created (such as memset, etc.). 9153 /// Those will become new roots of the current DAG, but complications arise 9154 /// when they are tail calls. In such cases, the call lowering will update 9155 /// the root, but the builder still needs to know that a tail call has been 9156 /// lowered in order to avoid generating an additional return. 9157 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9158 // If the node is null, we do have a tail call. 9159 if (MaybeTC.getNode() != nullptr) 9160 DAG.setRoot(MaybeTC); 9161 else 9162 HasTailCall = true; 9163 } 9164 9165 uint64_t 9166 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9167 unsigned First, unsigned Last) const { 9168 assert(Last >= First); 9169 const APInt &LowCase = Clusters[First].Low->getValue(); 9170 const APInt &HighCase = Clusters[Last].High->getValue(); 9171 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9172 9173 // FIXME: A range of consecutive cases has 100% density, but only requires one 9174 // comparison to lower. We should discriminate against such consecutive ranges 9175 // in jump tables. 9176 9177 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9178 } 9179 9180 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9181 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9182 unsigned Last) const { 9183 assert(Last >= First); 9184 assert(TotalCases[Last] >= TotalCases[First]); 9185 uint64_t NumCases = 9186 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9187 return NumCases; 9188 } 9189 9190 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9191 unsigned First, unsigned Last, 9192 const SwitchInst *SI, 9193 MachineBasicBlock *DefaultMBB, 9194 CaseCluster &JTCluster) { 9195 assert(First <= Last); 9196 9197 auto Prob = BranchProbability::getZero(); 9198 unsigned NumCmps = 0; 9199 std::vector<MachineBasicBlock*> Table; 9200 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9201 9202 // Initialize probabilities in JTProbs. 9203 for (unsigned I = First; I <= Last; ++I) 9204 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9205 9206 for (unsigned I = First; I <= Last; ++I) { 9207 assert(Clusters[I].Kind == CC_Range); 9208 Prob += Clusters[I].Prob; 9209 const APInt &Low = Clusters[I].Low->getValue(); 9210 const APInt &High = Clusters[I].High->getValue(); 9211 NumCmps += (Low == High) ? 1 : 2; 9212 if (I != First) { 9213 // Fill the gap between this and the previous cluster. 9214 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9215 assert(PreviousHigh.slt(Low)); 9216 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9217 for (uint64_t J = 0; J < Gap; J++) 9218 Table.push_back(DefaultMBB); 9219 } 9220 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9221 for (uint64_t J = 0; J < ClusterSize; ++J) 9222 Table.push_back(Clusters[I].MBB); 9223 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9224 } 9225 9226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9227 unsigned NumDests = JTProbs.size(); 9228 if (TLI.isSuitableForBitTests( 9229 NumDests, NumCmps, Clusters[First].Low->getValue(), 9230 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9231 // Clusters[First..Last] should be lowered as bit tests instead. 9232 return false; 9233 } 9234 9235 // Create the MBB that will load from and jump through the table. 9236 // Note: We create it here, but it's not inserted into the function yet. 9237 MachineFunction *CurMF = FuncInfo.MF; 9238 MachineBasicBlock *JumpTableMBB = 9239 CurMF->CreateMachineBasicBlock(SI->getParent()); 9240 9241 // Add successors. Note: use table order for determinism. 9242 SmallPtrSet<MachineBasicBlock *, 8> Done; 9243 for (MachineBasicBlock *Succ : Table) { 9244 if (Done.count(Succ)) 9245 continue; 9246 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9247 Done.insert(Succ); 9248 } 9249 JumpTableMBB->normalizeSuccProbs(); 9250 9251 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9252 ->createJumpTableIndex(Table); 9253 9254 // Set up the jump table info. 9255 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9256 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9257 Clusters[Last].High->getValue(), SI->getCondition(), 9258 nullptr, false); 9259 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9260 9261 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9262 JTCases.size() - 1, Prob); 9263 return true; 9264 } 9265 9266 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9267 const SwitchInst *SI, 9268 MachineBasicBlock *DefaultMBB) { 9269 #ifndef NDEBUG 9270 // Clusters must be non-empty, sorted, and only contain Range clusters. 9271 assert(!Clusters.empty()); 9272 for (CaseCluster &C : Clusters) 9273 assert(C.Kind == CC_Range); 9274 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9275 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9276 #endif 9277 9278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9279 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9280 return; 9281 9282 const int64_t N = Clusters.size(); 9283 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9284 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9285 9286 if (N < 2 || N < MinJumpTableEntries) 9287 return; 9288 9289 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9290 SmallVector<unsigned, 8> TotalCases(N); 9291 for (unsigned i = 0; i < N; ++i) { 9292 const APInt &Hi = Clusters[i].High->getValue(); 9293 const APInt &Lo = Clusters[i].Low->getValue(); 9294 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9295 if (i != 0) 9296 TotalCases[i] += TotalCases[i - 1]; 9297 } 9298 9299 // Cheap case: the whole range may be suitable for jump table. 9300 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9301 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9302 assert(NumCases < UINT64_MAX / 100); 9303 assert(Range >= NumCases); 9304 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9305 CaseCluster JTCluster; 9306 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9307 Clusters[0] = JTCluster; 9308 Clusters.resize(1); 9309 return; 9310 } 9311 } 9312 9313 // The algorithm below is not suitable for -O0. 9314 if (TM.getOptLevel() == CodeGenOpt::None) 9315 return; 9316 9317 // Split Clusters into minimum number of dense partitions. The algorithm uses 9318 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9319 // for the Case Statement'" (1994), but builds the MinPartitions array in 9320 // reverse order to make it easier to reconstruct the partitions in ascending 9321 // order. In the choice between two optimal partitionings, it picks the one 9322 // which yields more jump tables. 9323 9324 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9325 SmallVector<unsigned, 8> MinPartitions(N); 9326 // LastElement[i] is the last element of the partition starting at i. 9327 SmallVector<unsigned, 8> LastElement(N); 9328 // PartitionsScore[i] is used to break ties when choosing between two 9329 // partitionings resulting in the same number of partitions. 9330 SmallVector<unsigned, 8> PartitionsScore(N); 9331 // For PartitionsScore, a small number of comparisons is considered as good as 9332 // a jump table and a single comparison is considered better than a jump 9333 // table. 9334 enum PartitionScores : unsigned { 9335 NoTable = 0, 9336 Table = 1, 9337 FewCases = 1, 9338 SingleCase = 2 9339 }; 9340 9341 // Base case: There is only one way to partition Clusters[N-1]. 9342 MinPartitions[N - 1] = 1; 9343 LastElement[N - 1] = N - 1; 9344 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9345 9346 // Note: loop indexes are signed to avoid underflow. 9347 for (int64_t i = N - 2; i >= 0; i--) { 9348 // Find optimal partitioning of Clusters[i..N-1]. 9349 // Baseline: Put Clusters[i] into a partition on its own. 9350 MinPartitions[i] = MinPartitions[i + 1] + 1; 9351 LastElement[i] = i; 9352 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9353 9354 // Search for a solution that results in fewer partitions. 9355 for (int64_t j = N - 1; j > i; j--) { 9356 // Try building a partition from Clusters[i..j]. 9357 uint64_t Range = getJumpTableRange(Clusters, i, j); 9358 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9359 assert(NumCases < UINT64_MAX / 100); 9360 assert(Range >= NumCases); 9361 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9362 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9363 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9364 int64_t NumEntries = j - i + 1; 9365 9366 if (NumEntries == 1) 9367 Score += PartitionScores::SingleCase; 9368 else if (NumEntries <= SmallNumberOfEntries) 9369 Score += PartitionScores::FewCases; 9370 else if (NumEntries >= MinJumpTableEntries) 9371 Score += PartitionScores::Table; 9372 9373 // If this leads to fewer partitions, or to the same number of 9374 // partitions with better score, it is a better partitioning. 9375 if (NumPartitions < MinPartitions[i] || 9376 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9377 MinPartitions[i] = NumPartitions; 9378 LastElement[i] = j; 9379 PartitionsScore[i] = Score; 9380 } 9381 } 9382 } 9383 } 9384 9385 // Iterate over the partitions, replacing some with jump tables in-place. 9386 unsigned DstIndex = 0; 9387 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9388 Last = LastElement[First]; 9389 assert(Last >= First); 9390 assert(DstIndex <= First); 9391 unsigned NumClusters = Last - First + 1; 9392 9393 CaseCluster JTCluster; 9394 if (NumClusters >= MinJumpTableEntries && 9395 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9396 Clusters[DstIndex++] = JTCluster; 9397 } else { 9398 for (unsigned I = First; I <= Last; ++I) 9399 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9400 } 9401 } 9402 Clusters.resize(DstIndex); 9403 } 9404 9405 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9406 unsigned First, unsigned Last, 9407 const SwitchInst *SI, 9408 CaseCluster &BTCluster) { 9409 assert(First <= Last); 9410 if (First == Last) 9411 return false; 9412 9413 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9414 unsigned NumCmps = 0; 9415 for (int64_t I = First; I <= Last; ++I) { 9416 assert(Clusters[I].Kind == CC_Range); 9417 Dests.set(Clusters[I].MBB->getNumber()); 9418 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9419 } 9420 unsigned NumDests = Dests.count(); 9421 9422 APInt Low = Clusters[First].Low->getValue(); 9423 APInt High = Clusters[Last].High->getValue(); 9424 assert(Low.slt(High)); 9425 9426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9427 const DataLayout &DL = DAG.getDataLayout(); 9428 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9429 return false; 9430 9431 APInt LowBound; 9432 APInt CmpRange; 9433 9434 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9435 assert(TLI.rangeFitsInWord(Low, High, DL) && 9436 "Case range must fit in bit mask!"); 9437 9438 // Check if the clusters cover a contiguous range such that no value in the 9439 // range will jump to the default statement. 9440 bool ContiguousRange = true; 9441 for (int64_t I = First + 1; I <= Last; ++I) { 9442 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9443 ContiguousRange = false; 9444 break; 9445 } 9446 } 9447 9448 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9449 // Optimize the case where all the case values fit in a word without having 9450 // to subtract minValue. In this case, we can optimize away the subtraction. 9451 LowBound = APInt::getNullValue(Low.getBitWidth()); 9452 CmpRange = High; 9453 ContiguousRange = false; 9454 } else { 9455 LowBound = Low; 9456 CmpRange = High - Low; 9457 } 9458 9459 CaseBitsVector CBV; 9460 auto TotalProb = BranchProbability::getZero(); 9461 for (unsigned i = First; i <= Last; ++i) { 9462 // Find the CaseBits for this destination. 9463 unsigned j; 9464 for (j = 0; j < CBV.size(); ++j) 9465 if (CBV[j].BB == Clusters[i].MBB) 9466 break; 9467 if (j == CBV.size()) 9468 CBV.push_back( 9469 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9470 CaseBits *CB = &CBV[j]; 9471 9472 // Update Mask, Bits and ExtraProb. 9473 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9474 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9475 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9476 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9477 CB->Bits += Hi - Lo + 1; 9478 CB->ExtraProb += Clusters[i].Prob; 9479 TotalProb += Clusters[i].Prob; 9480 } 9481 9482 BitTestInfo BTI; 9483 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9484 // Sort by probability first, number of bits second, bit mask third. 9485 if (a.ExtraProb != b.ExtraProb) 9486 return a.ExtraProb > b.ExtraProb; 9487 if (a.Bits != b.Bits) 9488 return a.Bits > b.Bits; 9489 return a.Mask < b.Mask; 9490 }); 9491 9492 for (auto &CB : CBV) { 9493 MachineBasicBlock *BitTestBB = 9494 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9495 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9496 } 9497 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9498 SI->getCondition(), -1U, MVT::Other, false, 9499 ContiguousRange, nullptr, nullptr, std::move(BTI), 9500 TotalProb); 9501 9502 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9503 BitTestCases.size() - 1, TotalProb); 9504 return true; 9505 } 9506 9507 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9508 const SwitchInst *SI) { 9509 // Partition Clusters into as few subsets as possible, where each subset has a 9510 // range that fits in a machine word and has <= 3 unique destinations. 9511 9512 #ifndef NDEBUG 9513 // Clusters must be sorted and contain Range or JumpTable clusters. 9514 assert(!Clusters.empty()); 9515 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9516 for (const CaseCluster &C : Clusters) 9517 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9518 for (unsigned i = 1; i < Clusters.size(); ++i) 9519 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9520 #endif 9521 9522 // The algorithm below is not suitable for -O0. 9523 if (TM.getOptLevel() == CodeGenOpt::None) 9524 return; 9525 9526 // If target does not have legal shift left, do not emit bit tests at all. 9527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9528 const DataLayout &DL = DAG.getDataLayout(); 9529 9530 EVT PTy = TLI.getPointerTy(DL); 9531 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9532 return; 9533 9534 int BitWidth = PTy.getSizeInBits(); 9535 const int64_t N = Clusters.size(); 9536 9537 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9538 SmallVector<unsigned, 8> MinPartitions(N); 9539 // LastElement[i] is the last element of the partition starting at i. 9540 SmallVector<unsigned, 8> LastElement(N); 9541 9542 // FIXME: This might not be the best algorithm for finding bit test clusters. 9543 9544 // Base case: There is only one way to partition Clusters[N-1]. 9545 MinPartitions[N - 1] = 1; 9546 LastElement[N - 1] = N - 1; 9547 9548 // Note: loop indexes are signed to avoid underflow. 9549 for (int64_t i = N - 2; i >= 0; --i) { 9550 // Find optimal partitioning of Clusters[i..N-1]. 9551 // Baseline: Put Clusters[i] into a partition on its own. 9552 MinPartitions[i] = MinPartitions[i + 1] + 1; 9553 LastElement[i] = i; 9554 9555 // Search for a solution that results in fewer partitions. 9556 // Note: the search is limited by BitWidth, reducing time complexity. 9557 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9558 // Try building a partition from Clusters[i..j]. 9559 9560 // Check the range. 9561 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9562 Clusters[j].High->getValue(), DL)) 9563 continue; 9564 9565 // Check nbr of destinations and cluster types. 9566 // FIXME: This works, but doesn't seem very efficient. 9567 bool RangesOnly = true; 9568 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9569 for (int64_t k = i; k <= j; k++) { 9570 if (Clusters[k].Kind != CC_Range) { 9571 RangesOnly = false; 9572 break; 9573 } 9574 Dests.set(Clusters[k].MBB->getNumber()); 9575 } 9576 if (!RangesOnly || Dests.count() > 3) 9577 break; 9578 9579 // Check if it's a better partition. 9580 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9581 if (NumPartitions < MinPartitions[i]) { 9582 // Found a better partition. 9583 MinPartitions[i] = NumPartitions; 9584 LastElement[i] = j; 9585 } 9586 } 9587 } 9588 9589 // Iterate over the partitions, replacing with bit-test clusters in-place. 9590 unsigned DstIndex = 0; 9591 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9592 Last = LastElement[First]; 9593 assert(First <= Last); 9594 assert(DstIndex <= First); 9595 9596 CaseCluster BitTestCluster; 9597 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9598 Clusters[DstIndex++] = BitTestCluster; 9599 } else { 9600 size_t NumClusters = Last - First + 1; 9601 std::memmove(&Clusters[DstIndex], &Clusters[First], 9602 sizeof(Clusters[0]) * NumClusters); 9603 DstIndex += NumClusters; 9604 } 9605 } 9606 Clusters.resize(DstIndex); 9607 } 9608 9609 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9610 MachineBasicBlock *SwitchMBB, 9611 MachineBasicBlock *DefaultMBB) { 9612 MachineFunction *CurMF = FuncInfo.MF; 9613 MachineBasicBlock *NextMBB = nullptr; 9614 MachineFunction::iterator BBI(W.MBB); 9615 if (++BBI != FuncInfo.MF->end()) 9616 NextMBB = &*BBI; 9617 9618 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9619 9620 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9621 9622 if (Size == 2 && W.MBB == SwitchMBB) { 9623 // If any two of the cases has the same destination, and if one value 9624 // is the same as the other, but has one bit unset that the other has set, 9625 // use bit manipulation to do two compares at once. For example: 9626 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9627 // TODO: This could be extended to merge any 2 cases in switches with 3 9628 // cases. 9629 // TODO: Handle cases where W.CaseBB != SwitchBB. 9630 CaseCluster &Small = *W.FirstCluster; 9631 CaseCluster &Big = *W.LastCluster; 9632 9633 if (Small.Low == Small.High && Big.Low == Big.High && 9634 Small.MBB == Big.MBB) { 9635 const APInt &SmallValue = Small.Low->getValue(); 9636 const APInt &BigValue = Big.Low->getValue(); 9637 9638 // Check that there is only one bit different. 9639 APInt CommonBit = BigValue ^ SmallValue; 9640 if (CommonBit.isPowerOf2()) { 9641 SDValue CondLHS = getValue(Cond); 9642 EVT VT = CondLHS.getValueType(); 9643 SDLoc DL = getCurSDLoc(); 9644 9645 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9646 DAG.getConstant(CommonBit, DL, VT)); 9647 SDValue Cond = DAG.getSetCC( 9648 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9649 ISD::SETEQ); 9650 9651 // Update successor info. 9652 // Both Small and Big will jump to Small.BB, so we sum up the 9653 // probabilities. 9654 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9655 if (BPI) 9656 addSuccessorWithProb( 9657 SwitchMBB, DefaultMBB, 9658 // The default destination is the first successor in IR. 9659 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9660 else 9661 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9662 9663 // Insert the true branch. 9664 SDValue BrCond = 9665 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9666 DAG.getBasicBlock(Small.MBB)); 9667 // Insert the false branch. 9668 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9669 DAG.getBasicBlock(DefaultMBB)); 9670 9671 DAG.setRoot(BrCond); 9672 return; 9673 } 9674 } 9675 } 9676 9677 if (TM.getOptLevel() != CodeGenOpt::None) { 9678 // Here, we order cases by probability so the most likely case will be 9679 // checked first. However, two clusters can have the same probability in 9680 // which case their relative ordering is non-deterministic. So we use Low 9681 // as a tie-breaker as clusters are guaranteed to never overlap. 9682 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9683 [](const CaseCluster &a, const CaseCluster &b) { 9684 return a.Prob != b.Prob ? 9685 a.Prob > b.Prob : 9686 a.Low->getValue().slt(b.Low->getValue()); 9687 }); 9688 9689 // Rearrange the case blocks so that the last one falls through if possible 9690 // without changing the order of probabilities. 9691 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9692 --I; 9693 if (I->Prob > W.LastCluster->Prob) 9694 break; 9695 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9696 std::swap(*I, *W.LastCluster); 9697 break; 9698 } 9699 } 9700 } 9701 9702 // Compute total probability. 9703 BranchProbability DefaultProb = W.DefaultProb; 9704 BranchProbability UnhandledProbs = DefaultProb; 9705 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9706 UnhandledProbs += I->Prob; 9707 9708 MachineBasicBlock *CurMBB = W.MBB; 9709 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9710 MachineBasicBlock *Fallthrough; 9711 if (I == W.LastCluster) { 9712 // For the last cluster, fall through to the default destination. 9713 Fallthrough = DefaultMBB; 9714 } else { 9715 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9716 CurMF->insert(BBI, Fallthrough); 9717 // Put Cond in a virtual register to make it available from the new blocks. 9718 ExportFromCurrentBlock(Cond); 9719 } 9720 UnhandledProbs -= I->Prob; 9721 9722 switch (I->Kind) { 9723 case CC_JumpTable: { 9724 // FIXME: Optimize away range check based on pivot comparisons. 9725 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9726 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9727 9728 // The jump block hasn't been inserted yet; insert it here. 9729 MachineBasicBlock *JumpMBB = JT->MBB; 9730 CurMF->insert(BBI, JumpMBB); 9731 9732 auto JumpProb = I->Prob; 9733 auto FallthroughProb = UnhandledProbs; 9734 9735 // If the default statement is a target of the jump table, we evenly 9736 // distribute the default probability to successors of CurMBB. Also 9737 // update the probability on the edge from JumpMBB to Fallthrough. 9738 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9739 SE = JumpMBB->succ_end(); 9740 SI != SE; ++SI) { 9741 if (*SI == DefaultMBB) { 9742 JumpProb += DefaultProb / 2; 9743 FallthroughProb -= DefaultProb / 2; 9744 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9745 JumpMBB->normalizeSuccProbs(); 9746 break; 9747 } 9748 } 9749 9750 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9751 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9752 CurMBB->normalizeSuccProbs(); 9753 9754 // The jump table header will be inserted in our current block, do the 9755 // range check, and fall through to our fallthrough block. 9756 JTH->HeaderBB = CurMBB; 9757 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9758 9759 // If we're in the right place, emit the jump table header right now. 9760 if (CurMBB == SwitchMBB) { 9761 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9762 JTH->Emitted = true; 9763 } 9764 break; 9765 } 9766 case CC_BitTests: { 9767 // FIXME: Optimize away range check based on pivot comparisons. 9768 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9769 9770 // The bit test blocks haven't been inserted yet; insert them here. 9771 for (BitTestCase &BTC : BTB->Cases) 9772 CurMF->insert(BBI, BTC.ThisBB); 9773 9774 // Fill in fields of the BitTestBlock. 9775 BTB->Parent = CurMBB; 9776 BTB->Default = Fallthrough; 9777 9778 BTB->DefaultProb = UnhandledProbs; 9779 // If the cases in bit test don't form a contiguous range, we evenly 9780 // distribute the probability on the edge to Fallthrough to two 9781 // successors of CurMBB. 9782 if (!BTB->ContiguousRange) { 9783 BTB->Prob += DefaultProb / 2; 9784 BTB->DefaultProb -= DefaultProb / 2; 9785 } 9786 9787 // If we're in the right place, emit the bit test header right now. 9788 if (CurMBB == SwitchMBB) { 9789 visitBitTestHeader(*BTB, SwitchMBB); 9790 BTB->Emitted = true; 9791 } 9792 break; 9793 } 9794 case CC_Range: { 9795 const Value *RHS, *LHS, *MHS; 9796 ISD::CondCode CC; 9797 if (I->Low == I->High) { 9798 // Check Cond == I->Low. 9799 CC = ISD::SETEQ; 9800 LHS = Cond; 9801 RHS=I->Low; 9802 MHS = nullptr; 9803 } else { 9804 // Check I->Low <= Cond <= I->High. 9805 CC = ISD::SETLE; 9806 LHS = I->Low; 9807 MHS = Cond; 9808 RHS = I->High; 9809 } 9810 9811 // The false probability is the sum of all unhandled cases. 9812 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9813 getCurSDLoc(), I->Prob, UnhandledProbs); 9814 9815 if (CurMBB == SwitchMBB) 9816 visitSwitchCase(CB, SwitchMBB); 9817 else 9818 SwitchCases.push_back(CB); 9819 9820 break; 9821 } 9822 } 9823 CurMBB = Fallthrough; 9824 } 9825 } 9826 9827 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9828 CaseClusterIt First, 9829 CaseClusterIt Last) { 9830 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9831 if (X.Prob != CC.Prob) 9832 return X.Prob > CC.Prob; 9833 9834 // Ties are broken by comparing the case value. 9835 return X.Low->getValue().slt(CC.Low->getValue()); 9836 }); 9837 } 9838 9839 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9840 const SwitchWorkListItem &W, 9841 Value *Cond, 9842 MachineBasicBlock *SwitchMBB) { 9843 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9844 "Clusters not sorted?"); 9845 9846 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9847 9848 // Balance the tree based on branch probabilities to create a near-optimal (in 9849 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9850 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9851 CaseClusterIt LastLeft = W.FirstCluster; 9852 CaseClusterIt FirstRight = W.LastCluster; 9853 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9854 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9855 9856 // Move LastLeft and FirstRight towards each other from opposite directions to 9857 // find a partitioning of the clusters which balances the probability on both 9858 // sides. If LeftProb and RightProb are equal, alternate which side is 9859 // taken to ensure 0-probability nodes are distributed evenly. 9860 unsigned I = 0; 9861 while (LastLeft + 1 < FirstRight) { 9862 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9863 LeftProb += (++LastLeft)->Prob; 9864 else 9865 RightProb += (--FirstRight)->Prob; 9866 I++; 9867 } 9868 9869 while (true) { 9870 // Our binary search tree differs from a typical BST in that ours can have up 9871 // to three values in each leaf. The pivot selection above doesn't take that 9872 // into account, which means the tree might require more nodes and be less 9873 // efficient. We compensate for this here. 9874 9875 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9876 unsigned NumRight = W.LastCluster - FirstRight + 1; 9877 9878 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9879 // If one side has less than 3 clusters, and the other has more than 3, 9880 // consider taking a cluster from the other side. 9881 9882 if (NumLeft < NumRight) { 9883 // Consider moving the first cluster on the right to the left side. 9884 CaseCluster &CC = *FirstRight; 9885 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9886 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9887 if (LeftSideRank <= RightSideRank) { 9888 // Moving the cluster to the left does not demote it. 9889 ++LastLeft; 9890 ++FirstRight; 9891 continue; 9892 } 9893 } else { 9894 assert(NumRight < NumLeft); 9895 // Consider moving the last element on the left to the right side. 9896 CaseCluster &CC = *LastLeft; 9897 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9898 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9899 if (RightSideRank <= LeftSideRank) { 9900 // Moving the cluster to the right does not demot it. 9901 --LastLeft; 9902 --FirstRight; 9903 continue; 9904 } 9905 } 9906 } 9907 break; 9908 } 9909 9910 assert(LastLeft + 1 == FirstRight); 9911 assert(LastLeft >= W.FirstCluster); 9912 assert(FirstRight <= W.LastCluster); 9913 9914 // Use the first element on the right as pivot since we will make less-than 9915 // comparisons against it. 9916 CaseClusterIt PivotCluster = FirstRight; 9917 assert(PivotCluster > W.FirstCluster); 9918 assert(PivotCluster <= W.LastCluster); 9919 9920 CaseClusterIt FirstLeft = W.FirstCluster; 9921 CaseClusterIt LastRight = W.LastCluster; 9922 9923 const ConstantInt *Pivot = PivotCluster->Low; 9924 9925 // New blocks will be inserted immediately after the current one. 9926 MachineFunction::iterator BBI(W.MBB); 9927 ++BBI; 9928 9929 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9930 // we can branch to its destination directly if it's squeezed exactly in 9931 // between the known lower bound and Pivot - 1. 9932 MachineBasicBlock *LeftMBB; 9933 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9934 FirstLeft->Low == W.GE && 9935 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9936 LeftMBB = FirstLeft->MBB; 9937 } else { 9938 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9939 FuncInfo.MF->insert(BBI, LeftMBB); 9940 WorkList.push_back( 9941 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9942 // Put Cond in a virtual register to make it available from the new blocks. 9943 ExportFromCurrentBlock(Cond); 9944 } 9945 9946 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9947 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9948 // directly if RHS.High equals the current upper bound. 9949 MachineBasicBlock *RightMBB; 9950 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9951 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9952 RightMBB = FirstRight->MBB; 9953 } else { 9954 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9955 FuncInfo.MF->insert(BBI, RightMBB); 9956 WorkList.push_back( 9957 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9958 // Put Cond in a virtual register to make it available from the new blocks. 9959 ExportFromCurrentBlock(Cond); 9960 } 9961 9962 // Create the CaseBlock record that will be used to lower the branch. 9963 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9964 getCurSDLoc(), LeftProb, RightProb); 9965 9966 if (W.MBB == SwitchMBB) 9967 visitSwitchCase(CB, SwitchMBB); 9968 else 9969 SwitchCases.push_back(CB); 9970 } 9971 9972 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9973 // from the swith statement. 9974 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9975 BranchProbability PeeledCaseProb) { 9976 if (PeeledCaseProb == BranchProbability::getOne()) 9977 return BranchProbability::getZero(); 9978 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9979 9980 uint32_t Numerator = CaseProb.getNumerator(); 9981 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9982 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9983 } 9984 9985 // Try to peel the top probability case if it exceeds the threshold. 9986 // Return current MachineBasicBlock for the switch statement if the peeling 9987 // does not occur. 9988 // If the peeling is performed, return the newly created MachineBasicBlock 9989 // for the peeled switch statement. Also update Clusters to remove the peeled 9990 // case. PeeledCaseProb is the BranchProbability for the peeled case. 9991 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 9992 const SwitchInst &SI, CaseClusterVector &Clusters, 9993 BranchProbability &PeeledCaseProb) { 9994 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9995 // Don't perform if there is only one cluster or optimizing for size. 9996 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 9997 TM.getOptLevel() == CodeGenOpt::None || 9998 SwitchMBB->getParent()->getFunction().optForMinSize()) 9999 return SwitchMBB; 10000 10001 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10002 unsigned PeeledCaseIndex = 0; 10003 bool SwitchPeeled = false; 10004 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10005 CaseCluster &CC = Clusters[Index]; 10006 if (CC.Prob < TopCaseProb) 10007 continue; 10008 TopCaseProb = CC.Prob; 10009 PeeledCaseIndex = Index; 10010 SwitchPeeled = true; 10011 } 10012 if (!SwitchPeeled) 10013 return SwitchMBB; 10014 10015 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 10016 << "\n"); 10017 10018 // Record the MBB for the peeled switch statement. 10019 MachineFunction::iterator BBI(SwitchMBB); 10020 ++BBI; 10021 MachineBasicBlock *PeeledSwitchMBB = 10022 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10023 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10024 10025 ExportFromCurrentBlock(SI.getCondition()); 10026 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10027 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10028 nullptr, nullptr, TopCaseProb.getCompl()}; 10029 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10030 10031 Clusters.erase(PeeledCaseIt); 10032 for (CaseCluster &CC : Clusters) { 10033 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 10034 << CC.Prob << "\n"); 10035 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10036 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10037 } 10038 PeeledCaseProb = TopCaseProb; 10039 return PeeledSwitchMBB; 10040 } 10041 10042 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10043 // Extract cases from the switch. 10044 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10045 CaseClusterVector Clusters; 10046 Clusters.reserve(SI.getNumCases()); 10047 for (auto I : SI.cases()) { 10048 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10049 const ConstantInt *CaseVal = I.getCaseValue(); 10050 BranchProbability Prob = 10051 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10052 : BranchProbability(1, SI.getNumCases() + 1); 10053 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10054 } 10055 10056 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10057 10058 // Cluster adjacent cases with the same destination. We do this at all 10059 // optimization levels because it's cheap to do and will make codegen faster 10060 // if there are many clusters. 10061 sortAndRangeify(Clusters); 10062 10063 if (TM.getOptLevel() != CodeGenOpt::None) { 10064 // Replace an unreachable default with the most popular destination. 10065 // FIXME: Exploit unreachable default more aggressively. 10066 bool UnreachableDefault = 10067 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10068 if (UnreachableDefault && !Clusters.empty()) { 10069 DenseMap<const BasicBlock *, unsigned> Popularity; 10070 unsigned MaxPop = 0; 10071 const BasicBlock *MaxBB = nullptr; 10072 for (auto I : SI.cases()) { 10073 const BasicBlock *BB = I.getCaseSuccessor(); 10074 if (++Popularity[BB] > MaxPop) { 10075 MaxPop = Popularity[BB]; 10076 MaxBB = BB; 10077 } 10078 } 10079 // Set new default. 10080 assert(MaxPop > 0 && MaxBB); 10081 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10082 10083 // Remove cases that were pointing to the destination that is now the 10084 // default. 10085 CaseClusterVector New; 10086 New.reserve(Clusters.size()); 10087 for (CaseCluster &CC : Clusters) { 10088 if (CC.MBB != DefaultMBB) 10089 New.push_back(CC); 10090 } 10091 Clusters = std::move(New); 10092 } 10093 } 10094 10095 // The branch probablity of the peeled case. 10096 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10097 MachineBasicBlock *PeeledSwitchMBB = 10098 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10099 10100 // If there is only the default destination, jump there directly. 10101 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10102 if (Clusters.empty()) { 10103 assert(PeeledSwitchMBB == SwitchMBB); 10104 SwitchMBB->addSuccessor(DefaultMBB); 10105 if (DefaultMBB != NextBlock(SwitchMBB)) { 10106 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10107 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10108 } 10109 return; 10110 } 10111 10112 findJumpTables(Clusters, &SI, DefaultMBB); 10113 findBitTestClusters(Clusters, &SI); 10114 10115 DEBUG({ 10116 dbgs() << "Case clusters: "; 10117 for (const CaseCluster &C : Clusters) { 10118 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 10119 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 10120 10121 C.Low->getValue().print(dbgs(), true); 10122 if (C.Low != C.High) { 10123 dbgs() << '-'; 10124 C.High->getValue().print(dbgs(), true); 10125 } 10126 dbgs() << ' '; 10127 } 10128 dbgs() << '\n'; 10129 }); 10130 10131 assert(!Clusters.empty()); 10132 SwitchWorkList WorkList; 10133 CaseClusterIt First = Clusters.begin(); 10134 CaseClusterIt Last = Clusters.end() - 1; 10135 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10136 // Scale the branchprobability for DefaultMBB if the peel occurs and 10137 // DefaultMBB is not replaced. 10138 if (PeeledCaseProb != BranchProbability::getZero() && 10139 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10140 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10141 WorkList.push_back( 10142 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10143 10144 while (!WorkList.empty()) { 10145 SwitchWorkListItem W = WorkList.back(); 10146 WorkList.pop_back(); 10147 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10148 10149 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10150 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10151 // For optimized builds, lower large range as a balanced binary tree. 10152 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10153 continue; 10154 } 10155 10156 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10157 } 10158 } 10159