xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision fe012bd52dd7638cfa9abeae786c28a75cde939b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <deque>
108 #include <iterator>
109 #include <limits>
110 #include <optional>
111 #include <tuple>
112 
113 using namespace llvm;
114 using namespace PatternMatch;
115 using namespace SwitchCG;
116 
117 #define DEBUG_TYPE "isel"
118 
119 /// LimitFloatPrecision - Generate low-precision inline sequences for
120 /// some float libcalls (6, 8 or 12 bits).
121 static unsigned LimitFloatPrecision;
122 
123 static cl::opt<bool>
124     InsertAssertAlign("insert-assert-align", cl::init(true),
125                       cl::desc("Insert the experimental `assertalign` node."),
126                       cl::ReallyHidden);
127 
128 static cl::opt<unsigned, true>
129     LimitFPPrecision("limit-float-precision",
130                      cl::desc("Generate low-precision inline sequences "
131                               "for some float libcalls"),
132                      cl::location(LimitFloatPrecision), cl::Hidden,
133                      cl::init(0));
134 
135 static cl::opt<unsigned> SwitchPeelThreshold(
136     "switch-peel-threshold", cl::Hidden, cl::init(66),
137     cl::desc("Set the case probability threshold for peeling the case from a "
138              "switch statement. A value greater than 100 will void this "
139              "optimization"));
140 
141 // Limit the width of DAG chains. This is important in general to prevent
142 // DAG-based analysis from blowing up. For example, alias analysis and
143 // load clustering may not complete in reasonable time. It is difficult to
144 // recognize and avoid this situation within each individual analysis, and
145 // future analyses are likely to have the same behavior. Limiting DAG width is
146 // the safe approach and will be especially important with global DAGs.
147 //
148 // MaxParallelChains default is arbitrarily high to avoid affecting
149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
150 // sequence over this should have been converted to llvm.memcpy by the
151 // frontend. It is easy to induce this behavior with .ll code such as:
152 // %buffer = alloca [4096 x i8]
153 // %data = load [4096 x i8]* %argPtr
154 // store [4096 x i8] %data, [4096 x i8]* %buffer
155 static const unsigned MaxParallelChains = 64;
156 
157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
158                                       const SDValue *Parts, unsigned NumParts,
159                                       MVT PartVT, EVT ValueVT, const Value *V,
160                                       SDValue InChain,
161                                       std::optional<CallingConv::ID> CC);
162 
163 /// getCopyFromParts - Create a value that contains the specified legal parts
164 /// combined into the value they represent.  If the parts combine to a type
165 /// larger than ValueVT then AssertOp can be used to specify whether the extra
166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
167 /// (ISD::AssertSext).
168 static SDValue
169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
170                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
171                  SDValue InChain,
172                  std::optional<CallingConv::ID> CC = std::nullopt,
173                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174   // Let the target assemble the parts if it wants to
175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
176   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
177                                                    PartVT, ValueVT, CC))
178     return Val;
179 
180   if (ValueVT.isVector())
181     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
182                                   InChain, CC);
183 
184   assert(NumParts > 0 && "No parts to assemble!");
185   SDValue Val = Parts[0];
186 
187   if (NumParts > 1) {
188     // Assemble the value from multiple parts.
189     if (ValueVT.isInteger()) {
190       unsigned PartBits = PartVT.getSizeInBits();
191       unsigned ValueBits = ValueVT.getSizeInBits();
192 
193       // Assemble the power of 2 part.
194       unsigned RoundParts = llvm::bit_floor(NumParts);
195       unsigned RoundBits = PartBits * RoundParts;
196       EVT RoundVT = RoundBits == ValueBits ?
197         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
198       SDValue Lo, Hi;
199 
200       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
201 
202       if (RoundParts > 2) {
203         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
204                               InChain);
205         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
206                               PartVT, HalfVT, V, InChain);
207       } else {
208         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
209         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
210       }
211 
212       if (DAG.getDataLayout().isBigEndian())
213         std::swap(Lo, Hi);
214 
215       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
216 
217       if (RoundParts < NumParts) {
218         // Assemble the trailing non-power-of-2 part.
219         unsigned OddParts = NumParts - RoundParts;
220         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
221         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
222                               OddVT, V, InChain, CC);
223 
224         // Combine the round and odd parts.
225         Lo = Val;
226         if (DAG.getDataLayout().isBigEndian())
227           std::swap(Lo, Hi);
228         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
229         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
230         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
231                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
232                                          TLI.getShiftAmountTy(
233                                              TotalVT, DAG.getDataLayout())));
234         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
235         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
236       }
237     } else if (PartVT.isFloatingPoint()) {
238       // FP split into multiple FP parts (for ppcf128)
239       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
240              "Unexpected split");
241       SDValue Lo, Hi;
242       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
243       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
244       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
245         std::swap(Lo, Hi);
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
247     } else {
248       // FP split into integer parts (soft fp)
249       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
250              !PartVT.isVector() && "Unexpected split");
251       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
252       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
253                              InChain, CC);
254     }
255   }
256 
257   // There is now one part, held in Val.  Correct it to match ValueVT.
258   // PartEVT is the type of the register class that holds the value.
259   // ValueVT is the type of the inline asm operation.
260   EVT PartEVT = Val.getValueType();
261 
262   if (PartEVT == ValueVT)
263     return Val;
264 
265   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
266       ValueVT.bitsLT(PartEVT)) {
267     // For an FP value in an integer part, we need to truncate to the right
268     // width first.
269     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
270     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
271   }
272 
273   // Handle types that have the same size.
274   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
275     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
276 
277   // Handle types with different sizes.
278   if (PartEVT.isInteger() && ValueVT.isInteger()) {
279     if (ValueVT.bitsLT(PartEVT)) {
280       // For a truncate, see if we have any information to
281       // indicate whether the truncated bits will always be
282       // zero or sign-extension.
283       if (AssertOp)
284         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
285                           DAG.getValueType(ValueVT));
286       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
287     }
288     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
289   }
290 
291   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
292     // FP_ROUND's are always exact here.
293     if (ValueVT.bitsLT(Val.getValueType())) {
294 
295       SDValue NoChange =
296           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
297 
298       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
299               llvm::Attribute::StrictFP)) {
300         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
301                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
302                            NoChange);
303       }
304 
305       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
306     }
307 
308     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309   }
310 
311   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
312   // then truncating.
313   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
314       ValueVT.bitsLT(PartEVT)) {
315     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
316     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317   }
318 
319   report_fatal_error("Unknown mismatch in getCopyFromParts!");
320 }
321 
322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
323                                               const Twine &ErrMsg) {
324   const Instruction *I = dyn_cast_or_null<Instruction>(V);
325   if (!V)
326     return Ctx.emitError(ErrMsg);
327 
328   const char *AsmError = ", possible invalid constraint for vector type";
329   if (const CallInst *CI = dyn_cast<CallInst>(I))
330     if (CI->isInlineAsm())
331       return Ctx.emitError(I, ErrMsg + AsmError);
332 
333   return Ctx.emitError(I, ErrMsg);
334 }
335 
336 /// getCopyFromPartsVector - Create a value that contains the specified legal
337 /// parts combined into the value they represent.  If the parts combine to a
338 /// type larger than ValueVT then AssertOp can be used to specify whether the
339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
340 /// ValueVT (ISD::AssertSext).
341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
342                                       const SDValue *Parts, unsigned NumParts,
343                                       MVT PartVT, EVT ValueVT, const Value *V,
344                                       SDValue InChain,
345                                       std::optional<CallingConv::ID> CallConv) {
346   assert(ValueVT.isVector() && "Not a vector value");
347   assert(NumParts > 0 && "No parts to assemble!");
348   const bool IsABIRegCopy = CallConv.has_value();
349 
350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
351   SDValue Val = Parts[0];
352 
353   // Handle a multi-element vector.
354   if (NumParts > 1) {
355     EVT IntermediateVT;
356     MVT RegisterVT;
357     unsigned NumIntermediates;
358     unsigned NumRegs;
359 
360     if (IsABIRegCopy) {
361       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
362           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
363           NumIntermediates, RegisterVT);
364     } else {
365       NumRegs =
366           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
367                                      NumIntermediates, RegisterVT);
368     }
369 
370     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
371     NumParts = NumRegs; // Silence a compiler warning.
372     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
373     assert(RegisterVT.getSizeInBits() ==
374            Parts[0].getSimpleValueType().getSizeInBits() &&
375            "Part type sizes don't match!");
376 
377     // Assemble the parts into intermediate operands.
378     SmallVector<SDValue, 8> Ops(NumIntermediates);
379     if (NumIntermediates == NumParts) {
380       // If the register was not expanded, truncate or copy the value,
381       // as appropriate.
382       for (unsigned i = 0; i != NumParts; ++i)
383         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
384                                   V, InChain, CallConv);
385     } else if (NumParts > 0) {
386       // If the intermediate type was expanded, build the intermediate
387       // operands from the parts.
388       assert(NumParts % NumIntermediates == 0 &&
389              "Must expand into a divisible number of parts!");
390       unsigned Factor = NumParts / NumIntermediates;
391       for (unsigned i = 0; i != NumIntermediates; ++i)
392         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
393                                   IntermediateVT, V, InChain, CallConv);
394     }
395 
396     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
397     // intermediate operands.
398     EVT BuiltVectorTy =
399         IntermediateVT.isVector()
400             ? EVT::getVectorVT(
401                   *DAG.getContext(), IntermediateVT.getScalarType(),
402                   IntermediateVT.getVectorElementCount() * NumParts)
403             : EVT::getVectorVT(*DAG.getContext(),
404                                IntermediateVT.getScalarType(),
405                                NumIntermediates);
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // Vector/Vector bitcast.
419     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
420       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422     // If the parts vector has more elements than the value vector, then we
423     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
424     // Extract the elements we want.
425     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
426       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
427               ValueVT.getVectorElementCount().getKnownMinValue()) &&
428              (PartEVT.getVectorElementCount().isScalable() ==
429               ValueVT.getVectorElementCount().isScalable()) &&
430              "Cannot narrow, it would be a lossy transformation");
431       PartEVT =
432           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
433                            ValueVT.getVectorElementCount());
434       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
435                         DAG.getVectorIdxConstant(0, DL));
436       if (PartEVT == ValueVT)
437         return Val;
438       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440 
441       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
442       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
443         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444     }
445 
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448   }
449 
450   // Trivial bitcast if the types are the same size and the destination
451   // vector type is legal.
452   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
453       TLI.isTypeLegal(ValueVT))
454     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
455 
456   if (ValueVT.getVectorNumElements() != 1) {
457      // Certain ABIs require that vectors are passed as integers. For vectors
458      // are the same size, this is an obvious bitcast.
459      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
460        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461      } else if (ValueVT.bitsLT(PartEVT)) {
462        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
463        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
464        // Drop the extra bits.
465        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
466        return DAG.getBitcast(ValueVT, Val);
467      }
468 
469      diagnosePossiblyInvalidConstraint(
470          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
471      return DAG.getUNDEF(ValueVT);
472   }
473 
474   // Handle cases such as i8 -> <1 x i1>
475   EVT ValueSVT = ValueVT.getVectorElementType();
476   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
477     unsigned ValueSize = ValueSVT.getSizeInBits();
478     if (ValueSize == PartEVT.getSizeInBits()) {
479       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
480     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
481       // It's possible a scalar floating point type gets softened to integer and
482       // then promoted to a larger integer. If PartEVT is the larger integer
483       // we need to truncate it and then bitcast to the FP type.
484       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
485       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
486       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
487       Val = DAG.getBitcast(ValueSVT, Val);
488     } else {
489       Val = ValueVT.isFloatingPoint()
490                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492     }
493   }
494 
495   return DAG.getBuildVector(ValueVT, DL, Val);
496 }
497 
498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
499                                  SDValue Val, SDValue *Parts, unsigned NumParts,
500                                  MVT PartVT, const Value *V,
501                                  std::optional<CallingConv::ID> CallConv);
502 
503 /// getCopyToParts - Create a series of nodes that contain the specified value
504 /// split into legal parts.  If the parts contain more bits than Val, then, for
505 /// integers, ExtendKind can be used to specify how to generate the extra bits.
506 static void
507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
508                unsigned NumParts, MVT PartVT, const Value *V,
509                std::optional<CallingConv::ID> CallConv = std::nullopt,
510                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
511   // Let the target split the parts if it wants to
512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
513   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
514                                       CallConv))
515     return;
516   EVT ValueVT = Val.getValueType();
517 
518   // Handle the vector case separately.
519   if (ValueVT.isVector())
520     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
521                                 CallConv);
522 
523   unsigned OrigNumParts = NumParts;
524   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
525          "Copying to an illegal type!");
526 
527   if (NumParts == 0)
528     return;
529 
530   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
531   EVT PartEVT = PartVT;
532   if (PartEVT == ValueVT) {
533     assert(NumParts == 1 && "No-op copy with multiple parts!");
534     Parts[0] = Val;
535     return;
536   }
537 
538   unsigned PartBits = PartVT.getSizeInBits();
539   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540     // If the parts cover more bits than the value has, promote the value.
541     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542       assert(NumParts == 1 && "Do not know what to promote to!");
543       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
544     } else {
545       if (ValueVT.isFloatingPoint()) {
546         // FP values need to be bitcast, then extended if they are being put
547         // into a larger container.
548         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
549         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
550       }
551       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
552              ValueVT.isInteger() &&
553              "Unknown mismatch!");
554       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
555       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
556       if (PartVT == MVT::x86mmx)
557         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
558     }
559   } else if (PartBits == ValueVT.getSizeInBits()) {
560     // Different types of the same size.
561     assert(NumParts == 1 && PartEVT != ValueVT);
562     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
564     // If the parts cover less bits than value has, truncate the value.
565     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566            ValueVT.isInteger() &&
567            "Unknown mismatch!");
568     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
570     if (PartVT == MVT::x86mmx)
571       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572   }
573 
574   // The value may have changed - recompute ValueVT.
575   ValueVT = Val.getValueType();
576   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
577          "Failed to tile the value with PartVT!");
578 
579   if (NumParts == 1) {
580     if (PartEVT != ValueVT) {
581       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
582                                         "scalar-to-vector conversion failed");
583       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
584     }
585 
586     Parts[0] = Val;
587     return;
588   }
589 
590   // Expand the value into multiple parts.
591   if (NumParts & (NumParts - 1)) {
592     // The number of parts is not a power of 2.  Split off and copy the tail.
593     assert(PartVT.isInteger() && ValueVT.isInteger() &&
594            "Do not know what to expand to!");
595     unsigned RoundParts = llvm::bit_floor(NumParts);
596     unsigned RoundBits = RoundParts * PartBits;
597     unsigned OddParts = NumParts - RoundParts;
598     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
599       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
600 
601     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
602                    CallConv);
603 
604     if (DAG.getDataLayout().isBigEndian())
605       // The odd parts were reversed by getCopyToParts - unreverse them.
606       std::reverse(Parts + RoundParts, Parts + NumParts);
607 
608     NumParts = RoundParts;
609     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
610     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
611   }
612 
613   // The number of parts is a power of 2.  Repeatedly bisect the value using
614   // EXTRACT_ELEMENT.
615   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
616                          EVT::getIntegerVT(*DAG.getContext(),
617                                            ValueVT.getSizeInBits()),
618                          Val);
619 
620   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
621     for (unsigned i = 0; i < NumParts; i += StepSize) {
622       unsigned ThisBits = StepSize * PartBits / 2;
623       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
624       SDValue &Part0 = Parts[i];
625       SDValue &Part1 = Parts[i+StepSize/2];
626 
627       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
629       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
630                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
631 
632       if (ThisBits == PartBits && ThisVT != PartVT) {
633         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
634         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
635       }
636     }
637   }
638 
639   if (DAG.getDataLayout().isBigEndian())
640     std::reverse(Parts, Parts + OrigNumParts);
641 }
642 
643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
644                                      const SDLoc &DL, EVT PartVT) {
645   if (!PartVT.isVector())
646     return SDValue();
647 
648   EVT ValueVT = Val.getValueType();
649   EVT PartEVT = PartVT.getVectorElementType();
650   EVT ValueEVT = ValueVT.getVectorElementType();
651   ElementCount PartNumElts = PartVT.getVectorElementCount();
652   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
653 
654   // We only support widening vectors with equivalent element types and
655   // fixed/scalable properties. If a target needs to widen a fixed-length type
656   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
657   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
658       PartNumElts.isScalable() != ValueNumElts.isScalable())
659     return SDValue();
660 
661   // Have a try for bf16 because some targets share its ABI with fp16.
662   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
663     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
664            "Cannot widen to illegal type");
665     Val = DAG.getNode(ISD::BITCAST, DL,
666                       ValueVT.changeVectorElementType(MVT::f16), Val);
667   } else if (PartEVT != ValueEVT) {
668     return SDValue();
669   }
670 
671   // Widening a scalable vector to another scalable vector is done by inserting
672   // the vector into a larger undef one.
673   if (PartNumElts.isScalable())
674     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
675                        Val, DAG.getVectorIdxConstant(0, DL));
676 
677   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
678   // undef elements.
679   SmallVector<SDValue, 16> Ops;
680   DAG.ExtractVectorElements(Val, Ops);
681   SDValue EltUndef = DAG.getUNDEF(PartEVT);
682   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
683 
684   // FIXME: Use CONCAT for 2x -> 4x.
685   return DAG.getBuildVector(PartVT, DL, Ops);
686 }
687 
688 /// getCopyToPartsVector - Create a series of nodes that contain the specified
689 /// value split into legal parts.
690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
691                                  SDValue Val, SDValue *Parts, unsigned NumParts,
692                                  MVT PartVT, const Value *V,
693                                  std::optional<CallingConv::ID> CallConv) {
694   EVT ValueVT = Val.getValueType();
695   assert(ValueVT.isVector() && "Not a vector");
696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697   const bool IsABIRegCopy = CallConv.has_value();
698 
699   if (NumParts == 1) {
700     EVT PartEVT = PartVT;
701     if (PartEVT == ValueVT) {
702       // Nothing to do.
703     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
704       // Bitconvert vector->vector case.
705       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
706     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
707       Val = Widened;
708     } else if (PartVT.isVector() &&
709                PartEVT.getVectorElementType().bitsGE(
710                    ValueVT.getVectorElementType()) &&
711                PartEVT.getVectorElementCount() ==
712                    ValueVT.getVectorElementCount()) {
713 
714       // Promoted vector extract
715       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
716     } else if (PartEVT.isVector() &&
717                PartEVT.getVectorElementType() !=
718                    ValueVT.getVectorElementType() &&
719                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
720                    TargetLowering::TypeWidenVector) {
721       // Combination of widening and promotion.
722       EVT WidenVT =
723           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
724                            PartVT.getVectorElementCount());
725       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
726       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
727     } else {
728       // Don't extract an integer from a float vector. This can happen if the
729       // FP type gets softened to integer and then promoted. The promotion
730       // prevents it from being picked up by the earlier bitcast case.
731       if (ValueVT.getVectorElementCount().isScalar() &&
732           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
733         // If we reach this condition and PartVT is FP, this means that
734         // ValueVT is also FP and both have a different size, otherwise we
735         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
736         // would be invalid since that would mean the smaller FP type has to
737         // be extended to the larger one.
738         if (PartVT.isFloatingPoint()) {
739           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
740           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
741         } else
742           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
743                             DAG.getVectorIdxConstant(0, DL));
744       } else {
745         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
746         assert(PartVT.getFixedSizeInBits() > ValueSize &&
747                "lossy conversion of vector to scalar type");
748         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
749         Val = DAG.getBitcast(IntermediateType, Val);
750         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
751       }
752     }
753 
754     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
755     Parts[0] = Val;
756     return;
757   }
758 
759   // Handle a multi-element vector.
760   EVT IntermediateVT;
761   MVT RegisterVT;
762   unsigned NumIntermediates;
763   unsigned NumRegs;
764   if (IsABIRegCopy) {
765     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
766         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767         RegisterVT);
768   } else {
769     NumRegs =
770         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
771                                    NumIntermediates, RegisterVT);
772   }
773 
774   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
775   NumParts = NumRegs; // Silence a compiler warning.
776   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
777 
778   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
779          "Mixing scalable and fixed vectors when copying in parts");
780 
781   std::optional<ElementCount> DestEltCnt;
782 
783   if (IntermediateVT.isVector())
784     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
785   else
786     DestEltCnt = ElementCount::getFixed(NumIntermediates);
787 
788   EVT BuiltVectorTy = EVT::getVectorVT(
789       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
790 
791   if (ValueVT == BuiltVectorTy) {
792     // Nothing to do.
793   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
794     // Bitconvert vector->vector case.
795     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
796   } else {
797     if (BuiltVectorTy.getVectorElementType().bitsGT(
798             ValueVT.getVectorElementType())) {
799       // Integer promotion.
800       ValueVT = EVT::getVectorVT(*DAG.getContext(),
801                                  BuiltVectorTy.getVectorElementType(),
802                                  ValueVT.getVectorElementCount());
803       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
804     }
805 
806     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
807       Val = Widened;
808     }
809   }
810 
811   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
812 
813   // Split the vector into intermediate operands.
814   SmallVector<SDValue, 8> Ops(NumIntermediates);
815   for (unsigned i = 0; i != NumIntermediates; ++i) {
816     if (IntermediateVT.isVector()) {
817       // This does something sensible for scalable vectors - see the
818       // definition of EXTRACT_SUBVECTOR for further details.
819       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
820       Ops[i] =
821           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
822                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
823     } else {
824       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
825                            DAG.getVectorIdxConstant(i, DL));
826     }
827   }
828 
829   // Split the intermediate operands into legal parts.
830   if (NumParts == NumIntermediates) {
831     // If the register was not expanded, promote or copy the value,
832     // as appropriate.
833     for (unsigned i = 0; i != NumParts; ++i)
834       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
835   } else if (NumParts > 0) {
836     // If the intermediate type was expanded, split each the value into
837     // legal parts.
838     assert(NumIntermediates != 0 && "division by zero");
839     assert(NumParts % NumIntermediates == 0 &&
840            "Must expand into a divisible number of parts!");
841     unsigned Factor = NumParts / NumIntermediates;
842     for (unsigned i = 0; i != NumIntermediates; ++i)
843       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
844                      CallConv);
845   }
846 }
847 
848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
849                            EVT valuevt, std::optional<CallingConv::ID> CC)
850     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
851       RegCount(1, regs.size()), CallConv(CC) {}
852 
853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
854                            const DataLayout &DL, unsigned Reg, Type *Ty,
855                            std::optional<CallingConv::ID> CC) {
856   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
857 
858   CallConv = CC;
859 
860   for (EVT ValueVT : ValueVTs) {
861     unsigned NumRegs =
862         isABIMangled()
863             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
864             : TLI.getNumRegisters(Context, ValueVT);
865     MVT RegisterVT =
866         isABIMangled()
867             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
868             : TLI.getRegisterType(Context, ValueVT);
869     for (unsigned i = 0; i != NumRegs; ++i)
870       Regs.push_back(Reg + i);
871     RegVTs.push_back(RegisterVT);
872     RegCount.push_back(NumRegs);
873     Reg += NumRegs;
874   }
875 }
876 
877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
878                                       FunctionLoweringInfo &FuncInfo,
879                                       const SDLoc &dl, SDValue &Chain,
880                                       SDValue *Glue, const Value *V) const {
881   // A Value with type {} or [0 x %t] needs no registers.
882   if (ValueVTs.empty())
883     return SDValue();
884 
885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
886 
887   // Assemble the legal parts into the final values.
888   SmallVector<SDValue, 4> Values(ValueVTs.size());
889   SmallVector<SDValue, 8> Parts;
890   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
891     // Copy the legal parts from the registers.
892     EVT ValueVT = ValueVTs[Value];
893     unsigned NumRegs = RegCount[Value];
894     MVT RegisterVT = isABIMangled()
895                          ? TLI.getRegisterTypeForCallingConv(
896                                *DAG.getContext(), *CallConv, RegVTs[Value])
897                          : RegVTs[Value];
898 
899     Parts.resize(NumRegs);
900     for (unsigned i = 0; i != NumRegs; ++i) {
901       SDValue P;
902       if (!Glue) {
903         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
904       } else {
905         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
906         *Glue = P.getValue(2);
907       }
908 
909       Chain = P.getValue(1);
910       Parts[i] = P;
911 
912       // If the source register was virtual and if we know something about it,
913       // add an assert node.
914       if (!Register::isVirtualRegister(Regs[Part + i]) ||
915           !RegisterVT.isInteger())
916         continue;
917 
918       const FunctionLoweringInfo::LiveOutInfo *LOI =
919         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
920       if (!LOI)
921         continue;
922 
923       unsigned RegSize = RegisterVT.getScalarSizeInBits();
924       unsigned NumSignBits = LOI->NumSignBits;
925       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
926 
927       if (NumZeroBits == RegSize) {
928         // The current value is a zero.
929         // Explicitly express that as it would be easier for
930         // optimizations to kick in.
931         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
932         continue;
933       }
934 
935       // FIXME: We capture more information than the dag can represent.  For
936       // now, just use the tightest assertzext/assertsext possible.
937       bool isSExt;
938       EVT FromVT(MVT::Other);
939       if (NumZeroBits) {
940         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
941         isSExt = false;
942       } else if (NumSignBits > 1) {
943         FromVT =
944             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
945         isSExt = true;
946       } else {
947         continue;
948       }
949       // Add an assertion node.
950       assert(FromVT != MVT::Other);
951       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
952                              RegisterVT, P, DAG.getValueType(FromVT));
953     }
954 
955     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
956                                      RegisterVT, ValueVT, V, Chain, CallConv);
957     Part += NumRegs;
958     Parts.clear();
959   }
960 
961   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
962 }
963 
964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
965                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
966                                  const Value *V,
967                                  ISD::NodeType PreferredExtendType) const {
968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969   ISD::NodeType ExtendKind = PreferredExtendType;
970 
971   // Get the list of the values's legal parts.
972   unsigned NumRegs = Regs.size();
973   SmallVector<SDValue, 8> Parts(NumRegs);
974   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumParts = RegCount[Value];
976 
977     MVT RegisterVT = isABIMangled()
978                          ? TLI.getRegisterTypeForCallingConv(
979                                *DAG.getContext(), *CallConv, RegVTs[Value])
980                          : RegVTs[Value];
981 
982     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
983       ExtendKind = ISD::ZERO_EXTEND;
984 
985     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
986                    NumParts, RegisterVT, V, CallConv, ExtendKind);
987     Part += NumParts;
988   }
989 
990   // Copy the parts into the registers.
991   SmallVector<SDValue, 8> Chains(NumRegs);
992   for (unsigned i = 0; i != NumRegs; ++i) {
993     SDValue Part;
994     if (!Glue) {
995       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
996     } else {
997       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
998       *Glue = Part.getValue(1);
999     }
1000 
1001     Chains[i] = Part.getValue(0);
1002   }
1003 
1004   if (NumRegs == 1 || Glue)
1005     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1006     // flagged to it. That is the CopyToReg nodes and the user are considered
1007     // a single scheduling unit. If we create a TokenFactor and return it as
1008     // chain, then the TokenFactor is both a predecessor (operand) of the
1009     // user as well as a successor (the TF operands are flagged to the user).
1010     // c1, f1 = CopyToReg
1011     // c2, f2 = CopyToReg
1012     // c3     = TokenFactor c1, c2
1013     // ...
1014     //        = op c3, ..., f2
1015     Chain = Chains[NumRegs-1];
1016   else
1017     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1018 }
1019 
1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1021                                         unsigned MatchingIdx, const SDLoc &dl,
1022                                         SelectionDAG &DAG,
1023                                         std::vector<SDValue> &Ops) const {
1024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1025 
1026   InlineAsm::Flag Flag(Code, Regs.size());
1027   if (HasMatching)
1028     Flag.setMatchingOp(MatchingIdx);
1029   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1030     // Put the register class of the virtual registers in the flag word.  That
1031     // way, later passes can recompute register class constraints for inline
1032     // assembly as well as normal instructions.
1033     // Don't do this for tied operands that can use the regclass information
1034     // from the def.
1035     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1036     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1037     Flag.setRegClass(RC->getID());
1038   }
1039 
1040   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1041   Ops.push_back(Res);
1042 
1043   if (Code == InlineAsm::Kind::Clobber) {
1044     // Clobbers should always have a 1:1 mapping with registers, and may
1045     // reference registers that have illegal (e.g. vector) types. Hence, we
1046     // shouldn't try to apply any sort of splitting logic to them.
1047     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1048            "No 1:1 mapping from clobbers to regs?");
1049     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1050     (void)SP;
1051     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1052       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1053       assert(
1054           (Regs[I] != SP ||
1055            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1056           "If we clobbered the stack pointer, MFI should know about it.");
1057     }
1058     return;
1059   }
1060 
1061   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1062     MVT RegisterVT = RegVTs[Value];
1063     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1064                                            RegisterVT);
1065     for (unsigned i = 0; i != NumRegs; ++i) {
1066       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1067       unsigned TheReg = Regs[Reg++];
1068       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1069     }
1070   }
1071 }
1072 
1073 SmallVector<std::pair<unsigned, TypeSize>, 4>
1074 RegsForValue::getRegsAndSizes() const {
1075   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1076   unsigned I = 0;
1077   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1078     unsigned RegCount = std::get<0>(CountAndVT);
1079     MVT RegisterVT = std::get<1>(CountAndVT);
1080     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1081     for (unsigned E = I + RegCount; I != E; ++I)
1082       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1083   }
1084   return OutVec;
1085 }
1086 
1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1088                                AssumptionCache *ac,
1089                                const TargetLibraryInfo *li) {
1090   AA = aa;
1091   AC = ac;
1092   GFI = gfi;
1093   LibInfo = li;
1094   Context = DAG.getContext();
1095   LPadToCallSiteMap.clear();
1096   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1097   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1098       *DAG.getMachineFunction().getFunction().getParent());
1099 }
1100 
1101 void SelectionDAGBuilder::clear() {
1102   NodeMap.clear();
1103   UnusedArgNodeMap.clear();
1104   PendingLoads.clear();
1105   PendingExports.clear();
1106   PendingConstrainedFP.clear();
1107   PendingConstrainedFPStrict.clear();
1108   CurInst = nullptr;
1109   HasTailCall = false;
1110   SDNodeOrder = LowestSDNodeOrder;
1111   StatepointLowering.clear();
1112 }
1113 
1114 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1115   DanglingDebugInfoMap.clear();
1116 }
1117 
1118 // Update DAG root to include dependencies on Pending chains.
1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1120   SDValue Root = DAG.getRoot();
1121 
1122   if (Pending.empty())
1123     return Root;
1124 
1125   // Add current root to PendingChains, unless we already indirectly
1126   // depend on it.
1127   if (Root.getOpcode() != ISD::EntryToken) {
1128     unsigned i = 0, e = Pending.size();
1129     for (; i != e; ++i) {
1130       assert(Pending[i].getNode()->getNumOperands() > 1);
1131       if (Pending[i].getNode()->getOperand(0) == Root)
1132         break;  // Don't add the root if we already indirectly depend on it.
1133     }
1134 
1135     if (i == e)
1136       Pending.push_back(Root);
1137   }
1138 
1139   if (Pending.size() == 1)
1140     Root = Pending[0];
1141   else
1142     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1143 
1144   DAG.setRoot(Root);
1145   Pending.clear();
1146   return Root;
1147 }
1148 
1149 SDValue SelectionDAGBuilder::getMemoryRoot() {
1150   return updateRoot(PendingLoads);
1151 }
1152 
1153 SDValue SelectionDAGBuilder::getRoot() {
1154   // Chain up all pending constrained intrinsics together with all
1155   // pending loads, by simply appending them to PendingLoads and
1156   // then calling getMemoryRoot().
1157   PendingLoads.reserve(PendingLoads.size() +
1158                        PendingConstrainedFP.size() +
1159                        PendingConstrainedFPStrict.size());
1160   PendingLoads.append(PendingConstrainedFP.begin(),
1161                       PendingConstrainedFP.end());
1162   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1163                       PendingConstrainedFPStrict.end());
1164   PendingConstrainedFP.clear();
1165   PendingConstrainedFPStrict.clear();
1166   return getMemoryRoot();
1167 }
1168 
1169 SDValue SelectionDAGBuilder::getControlRoot() {
1170   // We need to emit pending fpexcept.strict constrained intrinsics,
1171   // so append them to the PendingExports list.
1172   PendingExports.append(PendingConstrainedFPStrict.begin(),
1173                         PendingConstrainedFPStrict.end());
1174   PendingConstrainedFPStrict.clear();
1175   return updateRoot(PendingExports);
1176 }
1177 
1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1179                                              DILocalVariable *Variable,
1180                                              DIExpression *Expression,
1181                                              DebugLoc DL) {
1182   assert(Variable && "Missing variable");
1183 
1184   // Check if address has undef value.
1185   if (!Address || isa<UndefValue>(Address) ||
1186       (Address->use_empty() && !isa<Argument>(Address))) {
1187     LLVM_DEBUG(
1188         dbgs()
1189         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1190     return;
1191   }
1192 
1193   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1194 
1195   SDValue &N = NodeMap[Address];
1196   if (!N.getNode() && isa<Argument>(Address))
1197     // Check unused arguments map.
1198     N = UnusedArgNodeMap[Address];
1199   SDDbgValue *SDV;
1200   if (N.getNode()) {
1201     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1202       Address = BCI->getOperand(0);
1203     // Parameters are handled specially.
1204     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1205     if (IsParameter && FINode) {
1206       // Byval parameter. We have a frame index at this point.
1207       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1208                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1209     } else if (isa<Argument>(Address)) {
1210       // Address is an argument, so try to emit its dbg value using
1211       // virtual register info from the FuncInfo.ValueMap.
1212       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                FuncArgumentDbgValueKind::Declare, N);
1214       return;
1215     } else {
1216       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1217                             true, DL, SDNodeOrder);
1218     }
1219     DAG.AddDbgValue(SDV, IsParameter);
1220   } else {
1221     // If Address is an argument then try to emit its dbg value using
1222     // virtual register info from the FuncInfo.ValueMap.
1223     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1224                                   FuncArgumentDbgValueKind::Declare, N)) {
1225       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1226                         << " (could not emit func-arg dbg_value)\n");
1227     }
1228   }
1229   return;
1230 }
1231 
1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1233   // Add SDDbgValue nodes for any var locs here. Do so before updating
1234   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1236     // Add SDDbgValue nodes for any var locs here. Do so before updating
1237     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1238     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1239          It != End; ++It) {
1240       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1241       dropDanglingDebugInfo(Var, It->Expr);
1242       if (It->Values.isKillLocation(It->Expr)) {
1243         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1244         continue;
1245       }
1246       SmallVector<Value *> Values(It->Values.location_ops());
1247       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1248                             It->Values.hasArgList())) {
1249         SmallVector<Value *, 4> Vals(It->Values.location_ops());
1250         addDanglingDebugInfo(Vals,
1251                              FnVarLocs->getDILocalVariable(It->VariableID),
1252                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1253       }
1254     }
1255   }
1256 
1257   // We must skip DbgVariableRecords if they've already been processed above as
1258   // we have just emitted the debug values resulting from assignment tracking
1259   // analysis, making any existing DbgVariableRecords redundant (and probably
1260   // less correct). We still need to process DbgLabelRecords. This does sink
1261   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1262   // be important as it does so deterministcally and ordering between
1263   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1264   // printing).
1265   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1266   // Is there is any debug-info attached to this instruction, in the form of
1267   // DbgRecord non-instruction debug-info records.
1268   for (DbgRecord &DR : I.getDbgRecordRange()) {
1269     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1270       assert(DLR->getLabel() && "Missing label");
1271       SDDbgLabel *SDV =
1272           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1273       DAG.AddDbgLabel(SDV);
1274       continue;
1275     }
1276 
1277     if (SkipDbgVariableRecords)
1278       continue;
1279     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1280     DILocalVariable *Variable = DVR.getVariable();
1281     DIExpression *Expression = DVR.getExpression();
1282     dropDanglingDebugInfo(Variable, Expression);
1283 
1284     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1285       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1286         continue;
1287       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1288                         << "\n");
1289       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1290                          DVR.getDebugLoc());
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with no locations is a kill location.
1295     SmallVector<Value *, 4> Values(DVR.location_ops());
1296     if (Values.empty()) {
1297       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1298                            SDNodeOrder);
1299       continue;
1300     }
1301 
1302     // A DbgVariableRecord with an undef or absent location is also a kill
1303     // location.
1304     if (llvm::any_of(Values,
1305                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1306       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1307                            SDNodeOrder);
1308       continue;
1309     }
1310 
1311     bool IsVariadic = DVR.hasArgList();
1312     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1313                           SDNodeOrder, IsVariadic)) {
1314       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1315                            DVR.getDebugLoc(), SDNodeOrder);
1316     }
1317   }
1318 }
1319 
1320 void SelectionDAGBuilder::visit(const Instruction &I) {
1321   visitDbgInfo(I);
1322 
1323   // Set up outgoing PHI node register values before emitting the terminator.
1324   if (I.isTerminator()) {
1325     HandlePHINodesInSuccessorBlocks(I.getParent());
1326   }
1327 
1328   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1329   if (!isa<DbgInfoIntrinsic>(I))
1330     ++SDNodeOrder;
1331 
1332   CurInst = &I;
1333 
1334   // Set inserted listener only if required.
1335   bool NodeInserted = false;
1336   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1337   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1338   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1339   if (PCSectionsMD || MMRA) {
1340     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1341         DAG, [&](SDNode *) { NodeInserted = true; });
1342   }
1343 
1344   visit(I.getOpcode(), I);
1345 
1346   if (!I.isTerminator() && !HasTailCall &&
1347       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1348     CopyToExportRegsIfNeeded(&I);
1349 
1350   // Handle metadata.
1351   if (PCSectionsMD || MMRA) {
1352     auto It = NodeMap.find(&I);
1353     if (It != NodeMap.end()) {
1354       if (PCSectionsMD)
1355         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1356       if (MMRA)
1357         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1358     } else if (NodeInserted) {
1359       // This should not happen; if it does, don't let it go unnoticed so we can
1360       // fix it. Relevant visit*() function is probably missing a setValue().
1361       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1362              << I.getModule()->getName() << "]\n";
1363       LLVM_DEBUG(I.dump());
1364       assert(false);
1365     }
1366   }
1367 
1368   CurInst = nullptr;
1369 }
1370 
1371 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1372   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1373 }
1374 
1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1376   // Note: this doesn't use InstVisitor, because it has to work with
1377   // ConstantExpr's in addition to instructions.
1378   switch (Opcode) {
1379   default: llvm_unreachable("Unknown instruction type encountered!");
1380     // Build the switch statement using the Instruction.def file.
1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1382     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1383 #include "llvm/IR/Instruction.def"
1384   }
1385 }
1386 
1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1388                                             DILocalVariable *Variable,
1389                                             DebugLoc DL, unsigned Order,
1390                                             SmallVectorImpl<Value *> &Values,
1391                                             DIExpression *Expression) {
1392   // For variadic dbg_values we will now insert an undef.
1393   // FIXME: We can potentially recover these!
1394   SmallVector<SDDbgOperand, 2> Locs;
1395   for (const Value *V : Values) {
1396     auto *Undef = UndefValue::get(V->getType());
1397     Locs.push_back(SDDbgOperand::fromConst(Undef));
1398   }
1399   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1400                                         /*IsIndirect=*/false, DL, Order,
1401                                         /*IsVariadic=*/true);
1402   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1403   return true;
1404 }
1405 
1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1407                                                DILocalVariable *Var,
1408                                                DIExpression *Expr,
1409                                                bool IsVariadic, DebugLoc DL,
1410                                                unsigned Order) {
1411   if (IsVariadic) {
1412     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1413     return;
1414   }
1415   // TODO: Dangling debug info will eventually either be resolved or produce
1416   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1417   // between the original dbg.value location and its resolved DBG_VALUE,
1418   // which we should ideally fill with an extra Undef DBG_VALUE.
1419   assert(Values.size() == 1);
1420   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1421 }
1422 
1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1424                                                 const DIExpression *Expr) {
1425   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1426     DIVariable *DanglingVariable = DDI.getVariable();
1427     DIExpression *DanglingExpr = DDI.getExpression();
1428     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1429       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1430                         << printDDI(nullptr, DDI) << "\n");
1431       return true;
1432     }
1433     return false;
1434   };
1435 
1436   for (auto &DDIMI : DanglingDebugInfoMap) {
1437     DanglingDebugInfoVector &DDIV = DDIMI.second;
1438 
1439     // If debug info is to be dropped, run it through final checks to see
1440     // whether it can be salvaged.
1441     for (auto &DDI : DDIV)
1442       if (isMatchingDbgValue(DDI))
1443         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1444 
1445     erase_if(DDIV, isMatchingDbgValue);
1446   }
1447 }
1448 
1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1450 // generate the debug data structures now that we've seen its definition.
1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1452                                                    SDValue Val) {
1453   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1454   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1455     return;
1456 
1457   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1458   for (auto &DDI : DDIV) {
1459     DebugLoc DL = DDI.getDebugLoc();
1460     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1461     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1462     DILocalVariable *Variable = DDI.getVariable();
1463     DIExpression *Expr = DDI.getExpression();
1464     assert(Variable->isValidLocationForIntrinsic(DL) &&
1465            "Expected inlined-at fields to agree");
1466     SDDbgValue *SDV;
1467     if (Val.getNode()) {
1468       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1469       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1470       // we couldn't resolve it directly when examining the DbgValue intrinsic
1471       // in the first place we should not be more successful here). Unless we
1472       // have some test case that prove this to be correct we should avoid
1473       // calling EmitFuncArgumentDbgValue here.
1474       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1475                                     FuncArgumentDbgValueKind::Value, Val)) {
1476         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1477                           << printDDI(V, DDI) << "\n");
1478         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1479         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1480         // inserted after the definition of Val when emitting the instructions
1481         // after ISel. An alternative could be to teach
1482         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1483         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1484                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1485                    << ValSDNodeOrder << "\n");
1486         SDV = getDbgValue(Val, Variable, Expr, DL,
1487                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1488         DAG.AddDbgValue(SDV, false);
1489       } else
1490         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1491                           << printDDI(V, DDI)
1492                           << " in EmitFuncArgumentDbgValue\n");
1493     } else {
1494       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1495                         << "\n");
1496       auto Undef = UndefValue::get(V->getType());
1497       auto SDV =
1498           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1499       DAG.AddDbgValue(SDV, false);
1500     }
1501   }
1502   DDIV.clear();
1503 }
1504 
1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1506                                                     DanglingDebugInfo &DDI) {
1507   // TODO: For the variadic implementation, instead of only checking the fail
1508   // state of `handleDebugValue`, we need know specifically which values were
1509   // invalid, so that we attempt to salvage only those values when processing
1510   // a DIArgList.
1511   const Value *OrigV = V;
1512   DILocalVariable *Var = DDI.getVariable();
1513   DIExpression *Expr = DDI.getExpression();
1514   DebugLoc DL = DDI.getDebugLoc();
1515   unsigned SDOrder = DDI.getSDNodeOrder();
1516 
1517   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1518   // that DW_OP_stack_value is desired.
1519   bool StackValue = true;
1520 
1521   // Can this Value can be encoded without any further work?
1522   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1523     return;
1524 
1525   // Attempt to salvage back through as many instructions as possible. Bail if
1526   // a non-instruction is seen, such as a constant expression or global
1527   // variable. FIXME: Further work could recover those too.
1528   while (isa<Instruction>(V)) {
1529     const Instruction &VAsInst = *cast<const Instruction>(V);
1530     // Temporary "0", awaiting real implementation.
1531     SmallVector<uint64_t, 16> Ops;
1532     SmallVector<Value *, 4> AdditionalValues;
1533     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1534                              Expr->getNumLocationOperands(), Ops,
1535                              AdditionalValues);
1536     // If we cannot salvage any further, and haven't yet found a suitable debug
1537     // expression, bail out.
1538     if (!V)
1539       break;
1540 
1541     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1542     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1543     // here for variadic dbg_values, remove that condition.
1544     if (!AdditionalValues.empty())
1545       break;
1546 
1547     // New value and expr now represent this debuginfo.
1548     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1549 
1550     // Some kind of simplification occurred: check whether the operand of the
1551     // salvaged debug expression can be encoded in this DAG.
1552     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1553       LLVM_DEBUG(
1554           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1555                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1556       return;
1557     }
1558   }
1559 
1560   // This was the final opportunity to salvage this debug information, and it
1561   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1562   // any earlier variable location.
1563   assert(OrigV && "V shouldn't be null");
1564   auto *Undef = UndefValue::get(OrigV->getType());
1565   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1566   DAG.AddDbgValue(SDV, false);
1567   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1568                     << printDDI(OrigV, DDI) << "\n");
1569 }
1570 
1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1572                                                DIExpression *Expr,
1573                                                DebugLoc DbgLoc,
1574                                                unsigned Order) {
1575   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1576   DIExpression *NewExpr =
1577       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1578   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1579                    /*IsVariadic*/ false);
1580 }
1581 
1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1583                                            DILocalVariable *Var,
1584                                            DIExpression *Expr, DebugLoc DbgLoc,
1585                                            unsigned Order, bool IsVariadic) {
1586   if (Values.empty())
1587     return true;
1588 
1589   // Filter EntryValue locations out early.
1590   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1591     return true;
1592 
1593   SmallVector<SDDbgOperand> LocationOps;
1594   SmallVector<SDNode *> Dependencies;
1595   for (const Value *V : Values) {
1596     // Constant value.
1597     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1598         isa<ConstantPointerNull>(V)) {
1599       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1600       continue;
1601     }
1602 
1603     // Look through IntToPtr constants.
1604     if (auto *CE = dyn_cast<ConstantExpr>(V))
1605       if (CE->getOpcode() == Instruction::IntToPtr) {
1606         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1607         continue;
1608       }
1609 
1610     // If the Value is a frame index, we can create a FrameIndex debug value
1611     // without relying on the DAG at all.
1612     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1613       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1614       if (SI != FuncInfo.StaticAllocaMap.end()) {
1615         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1616         continue;
1617       }
1618     }
1619 
1620     // Do not use getValue() in here; we don't want to generate code at
1621     // this point if it hasn't been done yet.
1622     SDValue N = NodeMap[V];
1623     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1624       N = UnusedArgNodeMap[V];
1625 
1626     if (N.getNode()) {
1627       // Only emit func arg dbg value for non-variadic dbg.values for now.
1628       if (!IsVariadic &&
1629           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1630                                    FuncArgumentDbgValueKind::Value, N))
1631         return true;
1632       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1633         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1634         // describe stack slot locations.
1635         //
1636         // Consider "int x = 0; int *px = &x;". There are two kinds of
1637         // interesting debug values here after optimization:
1638         //
1639         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1640         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1641         //
1642         // Both describe the direct values of their associated variables.
1643         Dependencies.push_back(N.getNode());
1644         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1645         continue;
1646       }
1647       LocationOps.emplace_back(
1648           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1649       continue;
1650     }
1651 
1652     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1653     // Special rules apply for the first dbg.values of parameter variables in a
1654     // function. Identify them by the fact they reference Argument Values, that
1655     // they're parameters, and they are parameters of the current function. We
1656     // need to let them dangle until they get an SDNode.
1657     bool IsParamOfFunc =
1658         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1659     if (IsParamOfFunc)
1660       return false;
1661 
1662     // The value is not used in this block yet (or it would have an SDNode).
1663     // We still want the value to appear for the user if possible -- if it has
1664     // an associated VReg, we can refer to that instead.
1665     auto VMI = FuncInfo.ValueMap.find(V);
1666     if (VMI != FuncInfo.ValueMap.end()) {
1667       unsigned Reg = VMI->second;
1668       // If this is a PHI node, it may be split up into several MI PHI nodes
1669       // (in FunctionLoweringInfo::set).
1670       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1671                        V->getType(), std::nullopt);
1672       if (RFV.occupiesMultipleRegs()) {
1673         // FIXME: We could potentially support variadic dbg_values here.
1674         if (IsVariadic)
1675           return false;
1676         unsigned Offset = 0;
1677         unsigned BitsToDescribe = 0;
1678         if (auto VarSize = Var->getSizeInBits())
1679           BitsToDescribe = *VarSize;
1680         if (auto Fragment = Expr->getFragmentInfo())
1681           BitsToDescribe = Fragment->SizeInBits;
1682         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1683           // Bail out if all bits are described already.
1684           if (Offset >= BitsToDescribe)
1685             break;
1686           // TODO: handle scalable vectors.
1687           unsigned RegisterSize = RegAndSize.second;
1688           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1689                                       ? BitsToDescribe - Offset
1690                                       : RegisterSize;
1691           auto FragmentExpr = DIExpression::createFragmentExpression(
1692               Expr, Offset, FragmentSize);
1693           if (!FragmentExpr)
1694             continue;
1695           SDDbgValue *SDV = DAG.getVRegDbgValue(
1696               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1697           DAG.AddDbgValue(SDV, false);
1698           Offset += RegisterSize;
1699         }
1700         return true;
1701       }
1702       // We can use simple vreg locations for variadic dbg_values as well.
1703       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1704       continue;
1705     }
1706     // We failed to create a SDDbgOperand for V.
1707     return false;
1708   }
1709 
1710   // We have created a SDDbgOperand for each Value in Values.
1711   assert(!LocationOps.empty());
1712   SDDbgValue *SDV =
1713       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1714                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1715   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1716   return true;
1717 }
1718 
1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1720   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1721   for (auto &Pair : DanglingDebugInfoMap)
1722     for (auto &DDI : Pair.second)
1723       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1724   clearDanglingDebugInfo();
1725 }
1726 
1727 /// getCopyFromRegs - If there was virtual register allocated for the value V
1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1730   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1731   SDValue Result;
1732 
1733   if (It != FuncInfo.ValueMap.end()) {
1734     Register InReg = It->second;
1735 
1736     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1737                      DAG.getDataLayout(), InReg, Ty,
1738                      std::nullopt); // This is not an ABI copy.
1739     SDValue Chain = DAG.getEntryNode();
1740     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1741                                  V);
1742     resolveDanglingDebugInfo(V, Result);
1743   }
1744 
1745   return Result;
1746 }
1747 
1748 /// getValue - Return an SDValue for the given Value.
1749 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1750   // If we already have an SDValue for this value, use it. It's important
1751   // to do this first, so that we don't create a CopyFromReg if we already
1752   // have a regular SDValue.
1753   SDValue &N = NodeMap[V];
1754   if (N.getNode()) return N;
1755 
1756   // If there's a virtual register allocated and initialized for this
1757   // value, use it.
1758   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1759     return copyFromReg;
1760 
1761   // Otherwise create a new SDValue and remember it.
1762   SDValue Val = getValueImpl(V);
1763   NodeMap[V] = Val;
1764   resolveDanglingDebugInfo(V, Val);
1765   return Val;
1766 }
1767 
1768 /// getNonRegisterValue - Return an SDValue for the given Value, but
1769 /// don't look in FuncInfo.ValueMap for a virtual register.
1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1771   // If we already have an SDValue for this value, use it.
1772   SDValue &N = NodeMap[V];
1773   if (N.getNode()) {
1774     if (isIntOrFPConstant(N)) {
1775       // Remove the debug location from the node as the node is about to be used
1776       // in a location which may differ from the original debug location.  This
1777       // is relevant to Constant and ConstantFP nodes because they can appear
1778       // as constant expressions inside PHI nodes.
1779       N->setDebugLoc(DebugLoc());
1780     }
1781     return N;
1782   }
1783 
1784   // Otherwise create a new SDValue and remember it.
1785   SDValue Val = getValueImpl(V);
1786   NodeMap[V] = Val;
1787   resolveDanglingDebugInfo(V, Val);
1788   return Val;
1789 }
1790 
1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1792 /// Create an SDValue for the given value.
1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1795 
1796   if (const Constant *C = dyn_cast<Constant>(V)) {
1797     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1798 
1799     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1800       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1801 
1802     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1803       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1804 
1805     if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1806       return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1807                          getValue(CPA->getPointer()), getValue(CPA->getKey()),
1808                          getValue(CPA->getAddrDiscriminator()),
1809                          getValue(CPA->getDiscriminator()));
1810     }
1811 
1812     if (isa<ConstantPointerNull>(C)) {
1813       unsigned AS = V->getType()->getPointerAddressSpace();
1814       return DAG.getConstant(0, getCurSDLoc(),
1815                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1816     }
1817 
1818     if (match(C, m_VScale()))
1819       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1820 
1821     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1822       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1823 
1824     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1825       return DAG.getUNDEF(VT);
1826 
1827     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1828       visit(CE->getOpcode(), *CE);
1829       SDValue N1 = NodeMap[V];
1830       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1831       return N1;
1832     }
1833 
1834     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1835       SmallVector<SDValue, 4> Constants;
1836       for (const Use &U : C->operands()) {
1837         SDNode *Val = getValue(U).getNode();
1838         // If the operand is an empty aggregate, there are no values.
1839         if (!Val) continue;
1840         // Add each leaf value from the operand to the Constants list
1841         // to form a flattened list of all the values.
1842         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1843           Constants.push_back(SDValue(Val, i));
1844       }
1845 
1846       return DAG.getMergeValues(Constants, getCurSDLoc());
1847     }
1848 
1849     if (const ConstantDataSequential *CDS =
1850           dyn_cast<ConstantDataSequential>(C)) {
1851       SmallVector<SDValue, 4> Ops;
1852       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1853         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1854         // Add each leaf value from the operand to the Constants list
1855         // to form a flattened list of all the values.
1856         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1857           Ops.push_back(SDValue(Val, i));
1858       }
1859 
1860       if (isa<ArrayType>(CDS->getType()))
1861         return DAG.getMergeValues(Ops, getCurSDLoc());
1862       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1863     }
1864 
1865     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1866       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1867              "Unknown struct or array constant!");
1868 
1869       SmallVector<EVT, 4> ValueVTs;
1870       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1871       unsigned NumElts = ValueVTs.size();
1872       if (NumElts == 0)
1873         return SDValue(); // empty struct
1874       SmallVector<SDValue, 4> Constants(NumElts);
1875       for (unsigned i = 0; i != NumElts; ++i) {
1876         EVT EltVT = ValueVTs[i];
1877         if (isa<UndefValue>(C))
1878           Constants[i] = DAG.getUNDEF(EltVT);
1879         else if (EltVT.isFloatingPoint())
1880           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1881         else
1882           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1883       }
1884 
1885       return DAG.getMergeValues(Constants, getCurSDLoc());
1886     }
1887 
1888     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1889       return DAG.getBlockAddress(BA, VT);
1890 
1891     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1892       return getValue(Equiv->getGlobalValue());
1893 
1894     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1895       return getValue(NC->getGlobalValue());
1896 
1897     if (VT == MVT::aarch64svcount) {
1898       assert(C->isNullValue() && "Can only zero this target type!");
1899       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1900                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1901     }
1902 
1903     VectorType *VecTy = cast<VectorType>(V->getType());
1904 
1905     // Now that we know the number and type of the elements, get that number of
1906     // elements into the Ops array based on what kind of constant it is.
1907     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1908       SmallVector<SDValue, 16> Ops;
1909       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1910       for (unsigned i = 0; i != NumElements; ++i)
1911         Ops.push_back(getValue(CV->getOperand(i)));
1912 
1913       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1914     }
1915 
1916     if (isa<ConstantAggregateZero>(C)) {
1917       EVT EltVT =
1918           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1919 
1920       SDValue Op;
1921       if (EltVT.isFloatingPoint())
1922         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1923       else
1924         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1925 
1926       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1927     }
1928 
1929     llvm_unreachable("Unknown vector constant");
1930   }
1931 
1932   // If this is a static alloca, generate it as the frameindex instead of
1933   // computation.
1934   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1935     DenseMap<const AllocaInst*, int>::iterator SI =
1936       FuncInfo.StaticAllocaMap.find(AI);
1937     if (SI != FuncInfo.StaticAllocaMap.end())
1938       return DAG.getFrameIndex(
1939           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1940   }
1941 
1942   // If this is an instruction which fast-isel has deferred, select it now.
1943   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1944     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1945 
1946     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1947                      Inst->getType(), std::nullopt);
1948     SDValue Chain = DAG.getEntryNode();
1949     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1950   }
1951 
1952   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1953     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1954 
1955   if (const auto *BB = dyn_cast<BasicBlock>(V))
1956     return DAG.getBasicBlock(FuncInfo.getMBB(BB));
1957 
1958   llvm_unreachable("Can't get register for value!");
1959 }
1960 
1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1962   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1963   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1964   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1965   bool IsSEH = isAsynchronousEHPersonality(Pers);
1966   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1967   if (!IsSEH)
1968     CatchPadMBB->setIsEHScopeEntry();
1969   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1970   if (IsMSVCCXX || IsCoreCLR)
1971     CatchPadMBB->setIsEHFuncletEntry();
1972 }
1973 
1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1975   // Update machine-CFG edge.
1976   MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
1977   FuncInfo.MBB->addSuccessor(TargetMBB);
1978   TargetMBB->setIsEHCatchretTarget(true);
1979   DAG.getMachineFunction().setHasEHCatchret(true);
1980 
1981   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1982   bool IsSEH = isAsynchronousEHPersonality(Pers);
1983   if (IsSEH) {
1984     // If this is not a fall-through branch or optimizations are switched off,
1985     // emit the branch.
1986     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1987         TM.getOptLevel() == CodeGenOptLevel::None)
1988       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1989                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1990     return;
1991   }
1992 
1993   // Figure out the funclet membership for the catchret's successor.
1994   // This will be used by the FuncletLayout pass to determine how to order the
1995   // BB's.
1996   // A 'catchret' returns to the outer scope's color.
1997   Value *ParentPad = I.getCatchSwitchParentPad();
1998   const BasicBlock *SuccessorColor;
1999   if (isa<ConstantTokenNone>(ParentPad))
2000     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2001   else
2002     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2003   assert(SuccessorColor && "No parent funclet for catchret!");
2004   MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2005   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2006 
2007   // Create the terminator node.
2008   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2009                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2010                             DAG.getBasicBlock(SuccessorColorMBB));
2011   DAG.setRoot(Ret);
2012 }
2013 
2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2015   // Don't emit any special code for the cleanuppad instruction. It just marks
2016   // the start of an EH scope/funclet.
2017   FuncInfo.MBB->setIsEHScopeEntry();
2018   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2019   if (Pers != EHPersonality::Wasm_CXX) {
2020     FuncInfo.MBB->setIsEHFuncletEntry();
2021     FuncInfo.MBB->setIsCleanupFuncletEntry();
2022   }
2023 }
2024 
2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2026 // not match, it is OK to add only the first unwind destination catchpad to the
2027 // successors, because there will be at least one invoke instruction within the
2028 // catch scope that points to the next unwind destination, if one exists, so
2029 // CFGSort cannot mess up with BB sorting order.
2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2031 // call within them, and catchpads only consisting of 'catch (...)' have a
2032 // '__cxa_end_catch' call within them, both of which generate invokes in case
2033 // the next unwind destination exists, i.e., the next unwind destination is not
2034 // the caller.)
2035 //
2036 // Having at most one EH pad successor is also simpler and helps later
2037 // transformations.
2038 //
2039 // For example,
2040 // current:
2041 //   invoke void @foo to ... unwind label %catch.dispatch
2042 // catch.dispatch:
2043 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2044 // catch.start:
2045 //   ...
2046 //   ... in this BB or some other child BB dominated by this BB there will be an
2047 //   invoke that points to 'next' BB as an unwind destination
2048 //
2049 // next: ; We don't need to add this to 'current' BB's successor
2050 //   ...
2051 static void findWasmUnwindDestinations(
2052     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2053     BranchProbability Prob,
2054     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2055         &UnwindDests) {
2056   while (EHPadBB) {
2057     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2058     if (isa<CleanupPadInst>(Pad)) {
2059       // Stop on cleanup pads.
2060       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2061       UnwindDests.back().first->setIsEHScopeEntry();
2062       break;
2063     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2064       // Add the catchpad handlers to the possible destinations. We don't
2065       // continue to the unwind destination of the catchswitch for wasm.
2066       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2067         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2068         UnwindDests.back().first->setIsEHScopeEntry();
2069       }
2070       break;
2071     } else {
2072       continue;
2073     }
2074   }
2075 }
2076 
2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2078 /// many places it could ultimately go. In the IR, we have a single unwind
2079 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2080 /// This function skips over imaginary basic blocks that hold catchswitch
2081 /// instructions, and finds all the "real" machine
2082 /// basic block destinations. As those destinations may not be successors of
2083 /// EHPadBB, here we also calculate the edge probability to those destinations.
2084 /// The passed-in Prob is the edge probability to EHPadBB.
2085 static void findUnwindDestinations(
2086     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2087     BranchProbability Prob,
2088     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2089         &UnwindDests) {
2090   EHPersonality Personality =
2091     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2092   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2093   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2094   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2095   bool IsSEH = isAsynchronousEHPersonality(Personality);
2096 
2097   if (IsWasmCXX) {
2098     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2099     assert(UnwindDests.size() <= 1 &&
2100            "There should be at most one unwind destination for wasm");
2101     return;
2102   }
2103 
2104   while (EHPadBB) {
2105     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2106     BasicBlock *NewEHPadBB = nullptr;
2107     if (isa<LandingPadInst>(Pad)) {
2108       // Stop on landingpads. They are not funclets.
2109       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2110       break;
2111     } else if (isa<CleanupPadInst>(Pad)) {
2112       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2113       // personalities.
2114       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2115       UnwindDests.back().first->setIsEHScopeEntry();
2116       UnwindDests.back().first->setIsEHFuncletEntry();
2117       break;
2118     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2119       // Add the catchpad handlers to the possible destinations.
2120       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2121         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2122         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2123         if (IsMSVCCXX || IsCoreCLR)
2124           UnwindDests.back().first->setIsEHFuncletEntry();
2125         if (!IsSEH)
2126           UnwindDests.back().first->setIsEHScopeEntry();
2127       }
2128       NewEHPadBB = CatchSwitch->getUnwindDest();
2129     } else {
2130       continue;
2131     }
2132 
2133     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2134     if (BPI && NewEHPadBB)
2135       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2136     EHPadBB = NewEHPadBB;
2137   }
2138 }
2139 
2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2141   // Update successor info.
2142   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2143   auto UnwindDest = I.getUnwindDest();
2144   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2145   BranchProbability UnwindDestProb =
2146       (BPI && UnwindDest)
2147           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2148           : BranchProbability::getZero();
2149   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2150   for (auto &UnwindDest : UnwindDests) {
2151     UnwindDest.first->setIsEHPad();
2152     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2153   }
2154   FuncInfo.MBB->normalizeSuccProbs();
2155 
2156   // Create the terminator node.
2157   SDValue Ret =
2158       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2159   DAG.setRoot(Ret);
2160 }
2161 
2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2163   report_fatal_error("visitCatchSwitch not yet implemented!");
2164 }
2165 
2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2168   auto &DL = DAG.getDataLayout();
2169   SDValue Chain = getControlRoot();
2170   SmallVector<ISD::OutputArg, 8> Outs;
2171   SmallVector<SDValue, 8> OutVals;
2172 
2173   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2174   // lower
2175   //
2176   //   %val = call <ty> @llvm.experimental.deoptimize()
2177   //   ret <ty> %val
2178   //
2179   // differently.
2180   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2181     LowerDeoptimizingReturn();
2182     return;
2183   }
2184 
2185   if (!FuncInfo.CanLowerReturn) {
2186     Register DemoteReg = FuncInfo.DemoteRegister;
2187     const Function *F = I.getParent()->getParent();
2188 
2189     // Emit a store of the return value through the virtual register.
2190     // Leave Outs empty so that LowerReturn won't try to load return
2191     // registers the usual way.
2192     SmallVector<EVT, 1> PtrValueVTs;
2193     ComputeValueVTs(TLI, DL,
2194                     PointerType::get(F->getContext(),
2195                                      DAG.getDataLayout().getAllocaAddrSpace()),
2196                     PtrValueVTs);
2197 
2198     SDValue RetPtr =
2199         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2200     SDValue RetOp = getValue(I.getOperand(0));
2201 
2202     SmallVector<EVT, 4> ValueVTs, MemVTs;
2203     SmallVector<uint64_t, 4> Offsets;
2204     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2205                     &Offsets, 0);
2206     unsigned NumValues = ValueVTs.size();
2207 
2208     SmallVector<SDValue, 4> Chains(NumValues);
2209     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2210     for (unsigned i = 0; i != NumValues; ++i) {
2211       // An aggregate return value cannot wrap around the address space, so
2212       // offsets to its parts don't wrap either.
2213       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2214                                            TypeSize::getFixed(Offsets[i]));
2215 
2216       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2217       if (MemVTs[i] != ValueVTs[i])
2218         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2219       Chains[i] = DAG.getStore(
2220           Chain, getCurSDLoc(), Val,
2221           // FIXME: better loc info would be nice.
2222           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2223           commonAlignment(BaseAlign, Offsets[i]));
2224     }
2225 
2226     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2227                         MVT::Other, Chains);
2228   } else if (I.getNumOperands() != 0) {
2229     SmallVector<EVT, 4> ValueVTs;
2230     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2231     unsigned NumValues = ValueVTs.size();
2232     if (NumValues) {
2233       SDValue RetOp = getValue(I.getOperand(0));
2234 
2235       const Function *F = I.getParent()->getParent();
2236 
2237       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2238           I.getOperand(0)->getType(), F->getCallingConv(),
2239           /*IsVarArg*/ false, DL);
2240 
2241       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2242       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2243         ExtendKind = ISD::SIGN_EXTEND;
2244       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2245         ExtendKind = ISD::ZERO_EXTEND;
2246 
2247       LLVMContext &Context = F->getContext();
2248       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2249 
2250       for (unsigned j = 0; j != NumValues; ++j) {
2251         EVT VT = ValueVTs[j];
2252 
2253         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2254           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2255 
2256         CallingConv::ID CC = F->getCallingConv();
2257 
2258         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2259         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2260         SmallVector<SDValue, 4> Parts(NumParts);
2261         getCopyToParts(DAG, getCurSDLoc(),
2262                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2263                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2264 
2265         // 'inreg' on function refers to return value
2266         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2267         if (RetInReg)
2268           Flags.setInReg();
2269 
2270         if (I.getOperand(0)->getType()->isPointerTy()) {
2271           Flags.setPointer();
2272           Flags.setPointerAddrSpace(
2273               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2274         }
2275 
2276         if (NeedsRegBlock) {
2277           Flags.setInConsecutiveRegs();
2278           if (j == NumValues - 1)
2279             Flags.setInConsecutiveRegsLast();
2280         }
2281 
2282         // Propagate extension type if any
2283         if (ExtendKind == ISD::SIGN_EXTEND)
2284           Flags.setSExt();
2285         else if (ExtendKind == ISD::ZERO_EXTEND)
2286           Flags.setZExt();
2287 
2288         for (unsigned i = 0; i < NumParts; ++i) {
2289           Outs.push_back(ISD::OutputArg(Flags,
2290                                         Parts[i].getValueType().getSimpleVT(),
2291                                         VT, /*isfixed=*/true, 0, 0));
2292           OutVals.push_back(Parts[i]);
2293         }
2294       }
2295     }
2296   }
2297 
2298   // Push in swifterror virtual register as the last element of Outs. This makes
2299   // sure swifterror virtual register will be returned in the swifterror
2300   // physical register.
2301   const Function *F = I.getParent()->getParent();
2302   if (TLI.supportSwiftError() &&
2303       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2304     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2305     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2306     Flags.setSwiftError();
2307     Outs.push_back(ISD::OutputArg(
2308         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2309         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2310     // Create SDNode for the swifterror virtual register.
2311     OutVals.push_back(
2312         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2313                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2314                         EVT(TLI.getPointerTy(DL))));
2315   }
2316 
2317   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2318   CallingConv::ID CallConv =
2319     DAG.getMachineFunction().getFunction().getCallingConv();
2320   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2321       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2322 
2323   // Verify that the target's LowerReturn behaved as expected.
2324   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2325          "LowerReturn didn't return a valid chain!");
2326 
2327   // Update the DAG with the new chain value resulting from return lowering.
2328   DAG.setRoot(Chain);
2329 }
2330 
2331 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2332 /// created for it, emit nodes to copy the value into the virtual
2333 /// registers.
2334 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2335   // Skip empty types
2336   if (V->getType()->isEmptyTy())
2337     return;
2338 
2339   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2340   if (VMI != FuncInfo.ValueMap.end()) {
2341     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2342            "Unused value assigned virtual registers!");
2343     CopyValueToVirtualRegister(V, VMI->second);
2344   }
2345 }
2346 
2347 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2348 /// the current basic block, add it to ValueMap now so that we'll get a
2349 /// CopyTo/FromReg.
2350 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2351   // No need to export constants.
2352   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2353 
2354   // Already exported?
2355   if (FuncInfo.isExportedInst(V)) return;
2356 
2357   Register Reg = FuncInfo.InitializeRegForValue(V);
2358   CopyValueToVirtualRegister(V, Reg);
2359 }
2360 
2361 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2362                                                      const BasicBlock *FromBB) {
2363   // The operands of the setcc have to be in this block.  We don't know
2364   // how to export them from some other block.
2365   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2366     // Can export from current BB.
2367     if (VI->getParent() == FromBB)
2368       return true;
2369 
2370     // Is already exported, noop.
2371     return FuncInfo.isExportedInst(V);
2372   }
2373 
2374   // If this is an argument, we can export it if the BB is the entry block or
2375   // if it is already exported.
2376   if (isa<Argument>(V)) {
2377     if (FromBB->isEntryBlock())
2378       return true;
2379 
2380     // Otherwise, can only export this if it is already exported.
2381     return FuncInfo.isExportedInst(V);
2382   }
2383 
2384   // Otherwise, constants can always be exported.
2385   return true;
2386 }
2387 
2388 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2389 BranchProbability
2390 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2391                                         const MachineBasicBlock *Dst) const {
2392   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2393   const BasicBlock *SrcBB = Src->getBasicBlock();
2394   const BasicBlock *DstBB = Dst->getBasicBlock();
2395   if (!BPI) {
2396     // If BPI is not available, set the default probability as 1 / N, where N is
2397     // the number of successors.
2398     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2399     return BranchProbability(1, SuccSize);
2400   }
2401   return BPI->getEdgeProbability(SrcBB, DstBB);
2402 }
2403 
2404 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2405                                                MachineBasicBlock *Dst,
2406                                                BranchProbability Prob) {
2407   if (!FuncInfo.BPI)
2408     Src->addSuccessorWithoutProb(Dst);
2409   else {
2410     if (Prob.isUnknown())
2411       Prob = getEdgeProbability(Src, Dst);
2412     Src->addSuccessor(Dst, Prob);
2413   }
2414 }
2415 
2416 static bool InBlock(const Value *V, const BasicBlock *BB) {
2417   if (const Instruction *I = dyn_cast<Instruction>(V))
2418     return I->getParent() == BB;
2419   return true;
2420 }
2421 
2422 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2423 /// This function emits a branch and is used at the leaves of an OR or an
2424 /// AND operator tree.
2425 void
2426 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2427                                                   MachineBasicBlock *TBB,
2428                                                   MachineBasicBlock *FBB,
2429                                                   MachineBasicBlock *CurBB,
2430                                                   MachineBasicBlock *SwitchBB,
2431                                                   BranchProbability TProb,
2432                                                   BranchProbability FProb,
2433                                                   bool InvertCond) {
2434   const BasicBlock *BB = CurBB->getBasicBlock();
2435 
2436   // If the leaf of the tree is a comparison, merge the condition into
2437   // the caseblock.
2438   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2439     // The operands of the cmp have to be in this block.  We don't know
2440     // how to export them from some other block.  If this is the first block
2441     // of the sequence, no exporting is needed.
2442     if (CurBB == SwitchBB ||
2443         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2444          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2445       ISD::CondCode Condition;
2446       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2447         ICmpInst::Predicate Pred =
2448             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2449         Condition = getICmpCondCode(Pred);
2450       } else {
2451         const FCmpInst *FC = cast<FCmpInst>(Cond);
2452         FCmpInst::Predicate Pred =
2453             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2454         Condition = getFCmpCondCode(Pred);
2455         if (TM.Options.NoNaNsFPMath)
2456           Condition = getFCmpCodeWithoutNaN(Condition);
2457       }
2458 
2459       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2460                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2461       SL->SwitchCases.push_back(CB);
2462       return;
2463     }
2464   }
2465 
2466   // Create a CaseBlock record representing this branch.
2467   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2468   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2469                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2470   SL->SwitchCases.push_back(CB);
2471 }
2472 
2473 // Collect dependencies on V recursively. This is used for the cost analysis in
2474 // `shouldKeepJumpConditionsTogether`.
2475 static bool collectInstructionDeps(
2476     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2477     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2478     unsigned Depth = 0) {
2479   // Return false if we have an incomplete count.
2480   if (Depth >= SelectionDAG::MaxRecursionDepth)
2481     return false;
2482 
2483   auto *I = dyn_cast<Instruction>(V);
2484   if (I == nullptr)
2485     return true;
2486 
2487   if (Necessary != nullptr) {
2488     // This instruction is necessary for the other side of the condition so
2489     // don't count it.
2490     if (Necessary->contains(I))
2491       return true;
2492   }
2493 
2494   // Already added this dep.
2495   if (!Deps->try_emplace(I, false).second)
2496     return true;
2497 
2498   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2499     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2500                                 Depth + 1))
2501       return false;
2502   return true;
2503 }
2504 
2505 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2506     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2507     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2508     TargetLoweringBase::CondMergingParams Params) const {
2509   if (I.getNumSuccessors() != 2)
2510     return false;
2511 
2512   if (!I.isConditional())
2513     return false;
2514 
2515   if (Params.BaseCost < 0)
2516     return false;
2517 
2518   // Baseline cost.
2519   InstructionCost CostThresh = Params.BaseCost;
2520 
2521   BranchProbabilityInfo *BPI = nullptr;
2522   if (Params.LikelyBias || Params.UnlikelyBias)
2523     BPI = FuncInfo.BPI;
2524   if (BPI != nullptr) {
2525     // See if we are either likely to get an early out or compute both lhs/rhs
2526     // of the condition.
2527     BasicBlock *IfFalse = I.getSuccessor(0);
2528     BasicBlock *IfTrue = I.getSuccessor(1);
2529 
2530     std::optional<bool> Likely;
2531     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2532       Likely = true;
2533     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2534       Likely = false;
2535 
2536     if (Likely) {
2537       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2538         // Its likely we will have to compute both lhs and rhs of condition
2539         CostThresh += Params.LikelyBias;
2540       else {
2541         if (Params.UnlikelyBias < 0)
2542           return false;
2543         // Its likely we will get an early out.
2544         CostThresh -= Params.UnlikelyBias;
2545       }
2546     }
2547   }
2548 
2549   if (CostThresh <= 0)
2550     return false;
2551 
2552   // Collect "all" instructions that lhs condition is dependent on.
2553   // Use map for stable iteration (to avoid non-determanism of iteration of
2554   // SmallPtrSet). The `bool` value is just a dummy.
2555   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2556   collectInstructionDeps(&LhsDeps, Lhs);
2557   // Collect "all" instructions that rhs condition is dependent on AND are
2558   // dependencies of lhs. This gives us an estimate on which instructions we
2559   // stand to save by splitting the condition.
2560   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2561     return false;
2562   // Add the compare instruction itself unless its a dependency on the LHS.
2563   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2564     if (!LhsDeps.contains(RhsI))
2565       RhsDeps.try_emplace(RhsI, false);
2566 
2567   const auto &TLI = DAG.getTargetLoweringInfo();
2568   const auto &TTI =
2569       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2570 
2571   InstructionCost CostOfIncluding = 0;
2572   // See if this instruction will need to computed independently of whether RHS
2573   // is.
2574   Value *BrCond = I.getCondition();
2575   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2576     for (const auto *U : Ins->users()) {
2577       // If user is independent of RHS calculation we don't need to count it.
2578       if (auto *UIns = dyn_cast<Instruction>(U))
2579         if (UIns != BrCond && !RhsDeps.contains(UIns))
2580           return false;
2581     }
2582     return true;
2583   };
2584 
2585   // Prune instructions from RHS Deps that are dependencies of unrelated
2586   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2587   // arbitrary and just meant to cap the how much time we spend in the pruning
2588   // loop. Its highly unlikely to come into affect.
2589   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2590   // Stop after a certain point. No incorrectness from including too many
2591   // instructions.
2592   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2593     const Instruction *ToDrop = nullptr;
2594     for (const auto &InsPair : RhsDeps) {
2595       if (!ShouldCountInsn(InsPair.first)) {
2596         ToDrop = InsPair.first;
2597         break;
2598       }
2599     }
2600     if (ToDrop == nullptr)
2601       break;
2602     RhsDeps.erase(ToDrop);
2603   }
2604 
2605   for (const auto &InsPair : RhsDeps) {
2606     // Finally accumulate latency that we can only attribute to computing the
2607     // RHS condition. Use latency because we are essentially trying to calculate
2608     // the cost of the dependency chain.
2609     // Possible TODO: We could try to estimate ILP and make this more precise.
2610     CostOfIncluding +=
2611         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2612 
2613     if (CostOfIncluding > CostThresh)
2614       return false;
2615   }
2616   return true;
2617 }
2618 
2619 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2620                                                MachineBasicBlock *TBB,
2621                                                MachineBasicBlock *FBB,
2622                                                MachineBasicBlock *CurBB,
2623                                                MachineBasicBlock *SwitchBB,
2624                                                Instruction::BinaryOps Opc,
2625                                                BranchProbability TProb,
2626                                                BranchProbability FProb,
2627                                                bool InvertCond) {
2628   // Skip over not part of the tree and remember to invert op and operands at
2629   // next level.
2630   Value *NotCond;
2631   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2632       InBlock(NotCond, CurBB->getBasicBlock())) {
2633     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2634                          !InvertCond);
2635     return;
2636   }
2637 
2638   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2639   const Value *BOpOp0, *BOpOp1;
2640   // Compute the effective opcode for Cond, taking into account whether it needs
2641   // to be inverted, e.g.
2642   //   and (not (or A, B)), C
2643   // gets lowered as
2644   //   and (and (not A, not B), C)
2645   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2646   if (BOp) {
2647     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2648                ? Instruction::And
2649                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2650                       ? Instruction::Or
2651                       : (Instruction::BinaryOps)0);
2652     if (InvertCond) {
2653       if (BOpc == Instruction::And)
2654         BOpc = Instruction::Or;
2655       else if (BOpc == Instruction::Or)
2656         BOpc = Instruction::And;
2657     }
2658   }
2659 
2660   // If this node is not part of the or/and tree, emit it as a branch.
2661   // Note that all nodes in the tree should have same opcode.
2662   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2663   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2664       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2665       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2666     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2667                                  TProb, FProb, InvertCond);
2668     return;
2669   }
2670 
2671   //  Create TmpBB after CurBB.
2672   MachineFunction::iterator BBI(CurBB);
2673   MachineFunction &MF = DAG.getMachineFunction();
2674   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2675   CurBB->getParent()->insert(++BBI, TmpBB);
2676 
2677   if (Opc == Instruction::Or) {
2678     // Codegen X | Y as:
2679     // BB1:
2680     //   jmp_if_X TBB
2681     //   jmp TmpBB
2682     // TmpBB:
2683     //   jmp_if_Y TBB
2684     //   jmp FBB
2685     //
2686 
2687     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2688     // The requirement is that
2689     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2690     //     = TrueProb for original BB.
2691     // Assuming the original probabilities are A and B, one choice is to set
2692     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2693     // A/(1+B) and 2B/(1+B). This choice assumes that
2694     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2695     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2696     // TmpBB, but the math is more complicated.
2697 
2698     auto NewTrueProb = TProb / 2;
2699     auto NewFalseProb = TProb / 2 + FProb;
2700     // Emit the LHS condition.
2701     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2702                          NewFalseProb, InvertCond);
2703 
2704     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2705     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2706     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2707     // Emit the RHS condition into TmpBB.
2708     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2709                          Probs[1], InvertCond);
2710   } else {
2711     assert(Opc == Instruction::And && "Unknown merge op!");
2712     // Codegen X & Y as:
2713     // BB1:
2714     //   jmp_if_X TmpBB
2715     //   jmp FBB
2716     // TmpBB:
2717     //   jmp_if_Y TBB
2718     //   jmp FBB
2719     //
2720     //  This requires creation of TmpBB after CurBB.
2721 
2722     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2723     // The requirement is that
2724     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2725     //     = FalseProb for original BB.
2726     // Assuming the original probabilities are A and B, one choice is to set
2727     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2728     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2729     // TrueProb for BB1 * FalseProb for TmpBB.
2730 
2731     auto NewTrueProb = TProb + FProb / 2;
2732     auto NewFalseProb = FProb / 2;
2733     // Emit the LHS condition.
2734     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2735                          NewFalseProb, InvertCond);
2736 
2737     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2738     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2739     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2740     // Emit the RHS condition into TmpBB.
2741     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2742                          Probs[1], InvertCond);
2743   }
2744 }
2745 
2746 /// If the set of cases should be emitted as a series of branches, return true.
2747 /// If we should emit this as a bunch of and/or'd together conditions, return
2748 /// false.
2749 bool
2750 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2751   if (Cases.size() != 2) return true;
2752 
2753   // If this is two comparisons of the same values or'd or and'd together, they
2754   // will get folded into a single comparison, so don't emit two blocks.
2755   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2756        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2757       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2758        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2759     return false;
2760   }
2761 
2762   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2763   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2764   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2765       Cases[0].CC == Cases[1].CC &&
2766       isa<Constant>(Cases[0].CmpRHS) &&
2767       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2768     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2769       return false;
2770     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2771       return false;
2772   }
2773 
2774   return true;
2775 }
2776 
2777 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2778   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2779 
2780   // Update machine-CFG edges.
2781   MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2782 
2783   if (I.isUnconditional()) {
2784     // Update machine-CFG edges.
2785     BrMBB->addSuccessor(Succ0MBB);
2786 
2787     // If this is not a fall-through branch or optimizations are switched off,
2788     // emit the branch.
2789     if (Succ0MBB != NextBlock(BrMBB) ||
2790         TM.getOptLevel() == CodeGenOptLevel::None) {
2791       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2792                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2793       setValue(&I, Br);
2794       DAG.setRoot(Br);
2795     }
2796 
2797     return;
2798   }
2799 
2800   // If this condition is one of the special cases we handle, do special stuff
2801   // now.
2802   const Value *CondVal = I.getCondition();
2803   MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2804 
2805   // If this is a series of conditions that are or'd or and'd together, emit
2806   // this as a sequence of branches instead of setcc's with and/or operations.
2807   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2808   // unpredictable branches, and vector extracts because those jumps are likely
2809   // expensive for any target), this should improve performance.
2810   // For example, instead of something like:
2811   //     cmp A, B
2812   //     C = seteq
2813   //     cmp D, E
2814   //     F = setle
2815   //     or C, F
2816   //     jnz foo
2817   // Emit:
2818   //     cmp A, B
2819   //     je foo
2820   //     cmp D, E
2821   //     jle foo
2822   bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2823   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2824   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2825       BOp->hasOneUse() && !IsUnpredictable) {
2826     Value *Vec;
2827     const Value *BOp0, *BOp1;
2828     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2829     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2830       Opcode = Instruction::And;
2831     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2832       Opcode = Instruction::Or;
2833 
2834     if (Opcode &&
2835         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2836           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2837         !shouldKeepJumpConditionsTogether(
2838             FuncInfo, I, Opcode, BOp0, BOp1,
2839             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2840                 Opcode, BOp0, BOp1))) {
2841       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2842                            getEdgeProbability(BrMBB, Succ0MBB),
2843                            getEdgeProbability(BrMBB, Succ1MBB),
2844                            /*InvertCond=*/false);
2845       // If the compares in later blocks need to use values not currently
2846       // exported from this block, export them now.  This block should always
2847       // be the first entry.
2848       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2849 
2850       // Allow some cases to be rejected.
2851       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2852         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2853           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2854           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2855         }
2856 
2857         // Emit the branch for this block.
2858         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2859         SL->SwitchCases.erase(SL->SwitchCases.begin());
2860         return;
2861       }
2862 
2863       // Okay, we decided not to do this, remove any inserted MBB's and clear
2864       // SwitchCases.
2865       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2866         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2867 
2868       SL->SwitchCases.clear();
2869     }
2870   }
2871 
2872   // Create a CaseBlock record representing this branch.
2873   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2874                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2875                BranchProbability::getUnknown(), BranchProbability::getUnknown(),
2876                IsUnpredictable);
2877 
2878   // Use visitSwitchCase to actually insert the fast branch sequence for this
2879   // cond branch.
2880   visitSwitchCase(CB, BrMBB);
2881 }
2882 
2883 /// visitSwitchCase - Emits the necessary code to represent a single node in
2884 /// the binary search tree resulting from lowering a switch instruction.
2885 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2886                                           MachineBasicBlock *SwitchBB) {
2887   SDValue Cond;
2888   SDValue CondLHS = getValue(CB.CmpLHS);
2889   SDLoc dl = CB.DL;
2890 
2891   if (CB.CC == ISD::SETTRUE) {
2892     // Branch or fall through to TrueBB.
2893     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2894     SwitchBB->normalizeSuccProbs();
2895     if (CB.TrueBB != NextBlock(SwitchBB)) {
2896       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2897                               DAG.getBasicBlock(CB.TrueBB)));
2898     }
2899     return;
2900   }
2901 
2902   auto &TLI = DAG.getTargetLoweringInfo();
2903   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2904 
2905   // Build the setcc now.
2906   if (!CB.CmpMHS) {
2907     // Fold "(X == true)" to X and "(X == false)" to !X to
2908     // handle common cases produced by branch lowering.
2909     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2910         CB.CC == ISD::SETEQ)
2911       Cond = CondLHS;
2912     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2913              CB.CC == ISD::SETEQ) {
2914       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2915       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2916     } else {
2917       SDValue CondRHS = getValue(CB.CmpRHS);
2918 
2919       // If a pointer's DAG type is larger than its memory type then the DAG
2920       // values are zero-extended. This breaks signed comparisons so truncate
2921       // back to the underlying type before doing the compare.
2922       if (CondLHS.getValueType() != MemVT) {
2923         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2924         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2925       }
2926       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2927     }
2928   } else {
2929     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2930 
2931     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2932     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2933 
2934     SDValue CmpOp = getValue(CB.CmpMHS);
2935     EVT VT = CmpOp.getValueType();
2936 
2937     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2938       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2939                           ISD::SETLE);
2940     } else {
2941       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2942                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2943       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2944                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2945     }
2946   }
2947 
2948   // Update successor info
2949   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2950   // TrueBB and FalseBB are always different unless the incoming IR is
2951   // degenerate. This only happens when running llc on weird IR.
2952   if (CB.TrueBB != CB.FalseBB)
2953     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2954   SwitchBB->normalizeSuccProbs();
2955 
2956   // If the lhs block is the next block, invert the condition so that we can
2957   // fall through to the lhs instead of the rhs block.
2958   if (CB.TrueBB == NextBlock(SwitchBB)) {
2959     std::swap(CB.TrueBB, CB.FalseBB);
2960     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2961     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2962   }
2963 
2964   SDNodeFlags Flags;
2965   Flags.setUnpredictable(CB.IsUnpredictable);
2966   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2967                                Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2968 
2969   setValue(CurInst, BrCond);
2970 
2971   // Insert the false branch. Do this even if it's a fall through branch,
2972   // this makes it easier to do DAG optimizations which require inverting
2973   // the branch condition.
2974   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2975                        DAG.getBasicBlock(CB.FalseBB));
2976 
2977   DAG.setRoot(BrCond);
2978 }
2979 
2980 /// visitJumpTable - Emit JumpTable node in the current MBB
2981 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2982   // Emit the code for the jump table
2983   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2984   assert(JT.Reg != -1U && "Should lower JT Header first!");
2985   EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
2986   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2987   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2988   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2989                                     Index.getValue(1), Table, Index);
2990   DAG.setRoot(BrJumpTable);
2991 }
2992 
2993 /// visitJumpTableHeader - This function emits necessary code to produce index
2994 /// in the JumpTable from switch case.
2995 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2996                                                JumpTableHeader &JTH,
2997                                                MachineBasicBlock *SwitchBB) {
2998   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2999   const SDLoc &dl = *JT.SL;
3000 
3001   // Subtract the lowest switch case value from the value being switched on.
3002   SDValue SwitchOp = getValue(JTH.SValue);
3003   EVT VT = SwitchOp.getValueType();
3004   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3005                             DAG.getConstant(JTH.First, dl, VT));
3006 
3007   // The SDNode we just created, which holds the value being switched on minus
3008   // the smallest case value, needs to be copied to a virtual register so it
3009   // can be used as an index into the jump table in a subsequent basic block.
3010   // This value may be smaller or larger than the target's pointer type, and
3011   // therefore require extension or truncating.
3012   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3013   SwitchOp =
3014       DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3015 
3016   Register JumpTableReg =
3017       FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3018   SDValue CopyTo =
3019       DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3020   JT.Reg = JumpTableReg;
3021 
3022   if (!JTH.FallthroughUnreachable) {
3023     // Emit the range check for the jump table, and branch to the default block
3024     // for the switch statement if the value being switched on exceeds the
3025     // largest case in the switch.
3026     SDValue CMP = DAG.getSetCC(
3027         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3028                                    Sub.getValueType()),
3029         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3030 
3031     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3032                                  MVT::Other, CopyTo, CMP,
3033                                  DAG.getBasicBlock(JT.Default));
3034 
3035     // Avoid emitting unnecessary branches to the next block.
3036     if (JT.MBB != NextBlock(SwitchBB))
3037       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3038                            DAG.getBasicBlock(JT.MBB));
3039 
3040     DAG.setRoot(BrCond);
3041   } else {
3042     // Avoid emitting unnecessary branches to the next block.
3043     if (JT.MBB != NextBlock(SwitchBB))
3044       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3045                               DAG.getBasicBlock(JT.MBB)));
3046     else
3047       DAG.setRoot(CopyTo);
3048   }
3049 }
3050 
3051 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3052 /// variable if there exists one.
3053 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3054                                  SDValue &Chain) {
3055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3056   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3057   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3058   MachineFunction &MF = DAG.getMachineFunction();
3059   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3060   MachineSDNode *Node =
3061       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3062   if (Global) {
3063     MachinePointerInfo MPInfo(Global);
3064     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3065                  MachineMemOperand::MODereferenceable;
3066     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3067         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3068         DAG.getEVTAlign(PtrTy));
3069     DAG.setNodeMemRefs(Node, {MemRef});
3070   }
3071   if (PtrTy != PtrMemTy)
3072     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3073   return SDValue(Node, 0);
3074 }
3075 
3076 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3077 /// tail spliced into a stack protector check success bb.
3078 ///
3079 /// For a high level explanation of how this fits into the stack protector
3080 /// generation see the comment on the declaration of class
3081 /// StackProtectorDescriptor.
3082 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3083                                                   MachineBasicBlock *ParentBB) {
3084 
3085   // First create the loads to the guard/stack slot for the comparison.
3086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3087   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3088   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3089 
3090   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3091   int FI = MFI.getStackProtectorIndex();
3092 
3093   SDValue Guard;
3094   SDLoc dl = getCurSDLoc();
3095   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3096   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3097   Align Align =
3098       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3099 
3100   // Generate code to load the content of the guard slot.
3101   SDValue GuardVal = DAG.getLoad(
3102       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3103       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3104       MachineMemOperand::MOVolatile);
3105 
3106   if (TLI.useStackGuardXorFP())
3107     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3108 
3109   // Retrieve guard check function, nullptr if instrumentation is inlined.
3110   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3111     // The target provides a guard check function to validate the guard value.
3112     // Generate a call to that function with the content of the guard slot as
3113     // argument.
3114     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3115     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3116 
3117     TargetLowering::ArgListTy Args;
3118     TargetLowering::ArgListEntry Entry;
3119     Entry.Node = GuardVal;
3120     Entry.Ty = FnTy->getParamType(0);
3121     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3122       Entry.IsInReg = true;
3123     Args.push_back(Entry);
3124 
3125     TargetLowering::CallLoweringInfo CLI(DAG);
3126     CLI.setDebugLoc(getCurSDLoc())
3127         .setChain(DAG.getEntryNode())
3128         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3129                    getValue(GuardCheckFn), std::move(Args));
3130 
3131     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3132     DAG.setRoot(Result.second);
3133     return;
3134   }
3135 
3136   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3137   // Otherwise, emit a volatile load to retrieve the stack guard value.
3138   SDValue Chain = DAG.getEntryNode();
3139   if (TLI.useLoadStackGuardNode()) {
3140     Guard = getLoadStackGuard(DAG, dl, Chain);
3141   } else {
3142     const Value *IRGuard = TLI.getSDagStackGuard(M);
3143     SDValue GuardPtr = getValue(IRGuard);
3144 
3145     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3146                         MachinePointerInfo(IRGuard, 0), Align,
3147                         MachineMemOperand::MOVolatile);
3148   }
3149 
3150   // Perform the comparison via a getsetcc.
3151   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3152                                                         *DAG.getContext(),
3153                                                         Guard.getValueType()),
3154                              Guard, GuardVal, ISD::SETNE);
3155 
3156   // If the guard/stackslot do not equal, branch to failure MBB.
3157   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3158                                MVT::Other, GuardVal.getOperand(0),
3159                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3160   // Otherwise branch to success MBB.
3161   SDValue Br = DAG.getNode(ISD::BR, dl,
3162                            MVT::Other, BrCond,
3163                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3164 
3165   DAG.setRoot(Br);
3166 }
3167 
3168 /// Codegen the failure basic block for a stack protector check.
3169 ///
3170 /// A failure stack protector machine basic block consists simply of a call to
3171 /// __stack_chk_fail().
3172 ///
3173 /// For a high level explanation of how this fits into the stack protector
3174 /// generation see the comment on the declaration of class
3175 /// StackProtectorDescriptor.
3176 void
3177 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3179   TargetLowering::MakeLibCallOptions CallOptions;
3180   CallOptions.setDiscardResult(true);
3181   SDValue Chain =
3182       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3183                       std::nullopt, CallOptions, getCurSDLoc())
3184           .second;
3185   // On PS4/PS5, the "return address" must still be within the calling
3186   // function, even if it's at the very end, so emit an explicit TRAP here.
3187   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3188   if (TM.getTargetTriple().isPS())
3189     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3190   // WebAssembly needs an unreachable instruction after a non-returning call,
3191   // because the function return type can be different from __stack_chk_fail's
3192   // return type (void).
3193   if (TM.getTargetTriple().isWasm())
3194     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3195 
3196   DAG.setRoot(Chain);
3197 }
3198 
3199 /// visitBitTestHeader - This function emits necessary code to produce value
3200 /// suitable for "bit tests"
3201 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3202                                              MachineBasicBlock *SwitchBB) {
3203   SDLoc dl = getCurSDLoc();
3204 
3205   // Subtract the minimum value.
3206   SDValue SwitchOp = getValue(B.SValue);
3207   EVT VT = SwitchOp.getValueType();
3208   SDValue RangeSub =
3209       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3210 
3211   // Determine the type of the test operands.
3212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3213   bool UsePtrType = false;
3214   if (!TLI.isTypeLegal(VT)) {
3215     UsePtrType = true;
3216   } else {
3217     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3218       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3219         // Switch table case range are encoded into series of masks.
3220         // Just use pointer type, it's guaranteed to fit.
3221         UsePtrType = true;
3222         break;
3223       }
3224   }
3225   SDValue Sub = RangeSub;
3226   if (UsePtrType) {
3227     VT = TLI.getPointerTy(DAG.getDataLayout());
3228     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3229   }
3230 
3231   B.RegVT = VT.getSimpleVT();
3232   B.Reg = FuncInfo.CreateReg(B.RegVT);
3233   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3234 
3235   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3236 
3237   if (!B.FallthroughUnreachable)
3238     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3239   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3240   SwitchBB->normalizeSuccProbs();
3241 
3242   SDValue Root = CopyTo;
3243   if (!B.FallthroughUnreachable) {
3244     // Conditional branch to the default block.
3245     SDValue RangeCmp = DAG.getSetCC(dl,
3246         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3247                                RangeSub.getValueType()),
3248         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3249         ISD::SETUGT);
3250 
3251     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3252                        DAG.getBasicBlock(B.Default));
3253   }
3254 
3255   // Avoid emitting unnecessary branches to the next block.
3256   if (MBB != NextBlock(SwitchBB))
3257     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3258 
3259   DAG.setRoot(Root);
3260 }
3261 
3262 /// visitBitTestCase - this function produces one "bit test"
3263 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3264                                            MachineBasicBlock* NextMBB,
3265                                            BranchProbability BranchProbToNext,
3266                                            unsigned Reg,
3267                                            BitTestCase &B,
3268                                            MachineBasicBlock *SwitchBB) {
3269   SDLoc dl = getCurSDLoc();
3270   MVT VT = BB.RegVT;
3271   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3272   SDValue Cmp;
3273   unsigned PopCount = llvm::popcount(B.Mask);
3274   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3275   if (PopCount == 1) {
3276     // Testing for a single bit; just compare the shift count with what it
3277     // would need to be to shift a 1 bit in that position.
3278     Cmp = DAG.getSetCC(
3279         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3280         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3281         ISD::SETEQ);
3282   } else if (PopCount == BB.Range) {
3283     // There is only one zero bit in the range, test for it directly.
3284     Cmp = DAG.getSetCC(
3285         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3286         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3287   } else {
3288     // Make desired shift
3289     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3290                                     DAG.getConstant(1, dl, VT), ShiftOp);
3291 
3292     // Emit bit tests and jumps
3293     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3294                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3295     Cmp = DAG.getSetCC(
3296         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3297         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3298   }
3299 
3300   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3301   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3302   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3303   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3304   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3305   // one as they are relative probabilities (and thus work more like weights),
3306   // and hence we need to normalize them to let the sum of them become one.
3307   SwitchBB->normalizeSuccProbs();
3308 
3309   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3310                               MVT::Other, getControlRoot(),
3311                               Cmp, DAG.getBasicBlock(B.TargetBB));
3312 
3313   // Avoid emitting unnecessary branches to the next block.
3314   if (NextMBB != NextBlock(SwitchBB))
3315     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3316                         DAG.getBasicBlock(NextMBB));
3317 
3318   DAG.setRoot(BrAnd);
3319 }
3320 
3321 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3322   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3323 
3324   // Retrieve successors. Look through artificial IR level blocks like
3325   // catchswitch for successors.
3326   MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3327   const BasicBlock *EHPadBB = I.getSuccessor(1);
3328   MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3329 
3330   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3331   // have to do anything here to lower funclet bundles.
3332   assert(!I.hasOperandBundlesOtherThan(
3333              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3334               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3335               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3336               LLVMContext::OB_clang_arc_attachedcall}) &&
3337          "Cannot lower invokes with arbitrary operand bundles yet!");
3338 
3339   const Value *Callee(I.getCalledOperand());
3340   const Function *Fn = dyn_cast<Function>(Callee);
3341   if (isa<InlineAsm>(Callee))
3342     visitInlineAsm(I, EHPadBB);
3343   else if (Fn && Fn->isIntrinsic()) {
3344     switch (Fn->getIntrinsicID()) {
3345     default:
3346       llvm_unreachable("Cannot invoke this intrinsic");
3347     case Intrinsic::donothing:
3348       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3349     case Intrinsic::seh_try_begin:
3350     case Intrinsic::seh_scope_begin:
3351     case Intrinsic::seh_try_end:
3352     case Intrinsic::seh_scope_end:
3353       if (EHPadMBB)
3354           // a block referenced by EH table
3355           // so dtor-funclet not removed by opts
3356           EHPadMBB->setMachineBlockAddressTaken();
3357       break;
3358     case Intrinsic::experimental_patchpoint_void:
3359     case Intrinsic::experimental_patchpoint:
3360       visitPatchpoint(I, EHPadBB);
3361       break;
3362     case Intrinsic::experimental_gc_statepoint:
3363       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3364       break;
3365     case Intrinsic::wasm_rethrow: {
3366       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3367       // special because it can be invoked, so we manually lower it to a DAG
3368       // node here.
3369       SmallVector<SDValue, 8> Ops;
3370       Ops.push_back(getControlRoot()); // inchain for the terminator node
3371       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3372       Ops.push_back(
3373           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3374                                 TLI.getPointerTy(DAG.getDataLayout())));
3375       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3376       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3377       break;
3378     }
3379     }
3380   } else if (I.hasDeoptState()) {
3381     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3382     // Eventually we will support lowering the @llvm.experimental.deoptimize
3383     // intrinsic, and right now there are no plans to support other intrinsics
3384     // with deopt state.
3385     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3386   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3387     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3388   } else {
3389     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3390   }
3391 
3392   // If the value of the invoke is used outside of its defining block, make it
3393   // available as a virtual register.
3394   // We already took care of the exported value for the statepoint instruction
3395   // during call to the LowerStatepoint.
3396   if (!isa<GCStatepointInst>(I)) {
3397     CopyToExportRegsIfNeeded(&I);
3398   }
3399 
3400   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3401   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3402   BranchProbability EHPadBBProb =
3403       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3404           : BranchProbability::getZero();
3405   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3406 
3407   // Update successor info.
3408   addSuccessorWithProb(InvokeMBB, Return);
3409   for (auto &UnwindDest : UnwindDests) {
3410     UnwindDest.first->setIsEHPad();
3411     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3412   }
3413   InvokeMBB->normalizeSuccProbs();
3414 
3415   // Drop into normal successor.
3416   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3417                           DAG.getBasicBlock(Return)));
3418 }
3419 
3420 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3421   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3422 
3423   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3424   // have to do anything here to lower funclet bundles.
3425   assert(!I.hasOperandBundlesOtherThan(
3426              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3427          "Cannot lower callbrs with arbitrary operand bundles yet!");
3428 
3429   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3430   visitInlineAsm(I);
3431   CopyToExportRegsIfNeeded(&I);
3432 
3433   // Retrieve successors.
3434   SmallPtrSet<BasicBlock *, 8> Dests;
3435   Dests.insert(I.getDefaultDest());
3436   MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3437 
3438   // Update successor info.
3439   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3440   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3441     BasicBlock *Dest = I.getIndirectDest(i);
3442     MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3443     Target->setIsInlineAsmBrIndirectTarget();
3444     Target->setMachineBlockAddressTaken();
3445     Target->setLabelMustBeEmitted();
3446     // Don't add duplicate machine successors.
3447     if (Dests.insert(Dest).second)
3448       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3449   }
3450   CallBrMBB->normalizeSuccProbs();
3451 
3452   // Drop into default successor.
3453   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3454                           MVT::Other, getControlRoot(),
3455                           DAG.getBasicBlock(Return)));
3456 }
3457 
3458 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3459   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3460 }
3461 
3462 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3463   assert(FuncInfo.MBB->isEHPad() &&
3464          "Call to landingpad not in landing pad!");
3465 
3466   // If there aren't registers to copy the values into (e.g., during SjLj
3467   // exceptions), then don't bother to create these DAG nodes.
3468   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3469   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3470   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3471       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3472     return;
3473 
3474   // If landingpad's return type is token type, we don't create DAG nodes
3475   // for its exception pointer and selector value. The extraction of exception
3476   // pointer or selector value from token type landingpads is not currently
3477   // supported.
3478   if (LP.getType()->isTokenTy())
3479     return;
3480 
3481   SmallVector<EVT, 2> ValueVTs;
3482   SDLoc dl = getCurSDLoc();
3483   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3484   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3485 
3486   // Get the two live-in registers as SDValues. The physregs have already been
3487   // copied into virtual registers.
3488   SDValue Ops[2];
3489   if (FuncInfo.ExceptionPointerVirtReg) {
3490     Ops[0] = DAG.getZExtOrTrunc(
3491         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3492                            FuncInfo.ExceptionPointerVirtReg,
3493                            TLI.getPointerTy(DAG.getDataLayout())),
3494         dl, ValueVTs[0]);
3495   } else {
3496     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3497   }
3498   Ops[1] = DAG.getZExtOrTrunc(
3499       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3500                          FuncInfo.ExceptionSelectorVirtReg,
3501                          TLI.getPointerTy(DAG.getDataLayout())),
3502       dl, ValueVTs[1]);
3503 
3504   // Merge into one.
3505   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3506                             DAG.getVTList(ValueVTs), Ops);
3507   setValue(&LP, Res);
3508 }
3509 
3510 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3511                                            MachineBasicBlock *Last) {
3512   // Update JTCases.
3513   for (JumpTableBlock &JTB : SL->JTCases)
3514     if (JTB.first.HeaderBB == First)
3515       JTB.first.HeaderBB = Last;
3516 
3517   // Update BitTestCases.
3518   for (BitTestBlock &BTB : SL->BitTestCases)
3519     if (BTB.Parent == First)
3520       BTB.Parent = Last;
3521 }
3522 
3523 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3524   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3525 
3526   // Update machine-CFG edges with unique successors.
3527   SmallSet<BasicBlock*, 32> Done;
3528   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3529     BasicBlock *BB = I.getSuccessor(i);
3530     bool Inserted = Done.insert(BB).second;
3531     if (!Inserted)
3532         continue;
3533 
3534     MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3535     addSuccessorWithProb(IndirectBrMBB, Succ);
3536   }
3537   IndirectBrMBB->normalizeSuccProbs();
3538 
3539   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3540                           MVT::Other, getControlRoot(),
3541                           getValue(I.getAddress())));
3542 }
3543 
3544 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3545   if (!DAG.getTarget().Options.TrapUnreachable)
3546     return;
3547 
3548   // We may be able to ignore unreachable behind a noreturn call.
3549   if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3550       Call && Call->doesNotReturn()) {
3551     if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3552       return;
3553     // Do not emit an additional trap instruction.
3554     if (Call->isNonContinuableTrap())
3555       return;
3556   }
3557 
3558   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3559 }
3560 
3561 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3562   SDNodeFlags Flags;
3563   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3564     Flags.copyFMF(*FPOp);
3565 
3566   SDValue Op = getValue(I.getOperand(0));
3567   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3568                                     Op, Flags);
3569   setValue(&I, UnNodeValue);
3570 }
3571 
3572 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3573   SDNodeFlags Flags;
3574   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3575     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3576     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3577   }
3578   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3579     Flags.setExact(ExactOp->isExact());
3580   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3581     Flags.setDisjoint(DisjointOp->isDisjoint());
3582   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3583     Flags.copyFMF(*FPOp);
3584 
3585   SDValue Op1 = getValue(I.getOperand(0));
3586   SDValue Op2 = getValue(I.getOperand(1));
3587   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3588                                      Op1, Op2, Flags);
3589   setValue(&I, BinNodeValue);
3590 }
3591 
3592 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3593   SDValue Op1 = getValue(I.getOperand(0));
3594   SDValue Op2 = getValue(I.getOperand(1));
3595 
3596   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3597       Op1.getValueType(), DAG.getDataLayout());
3598 
3599   // Coerce the shift amount to the right type if we can. This exposes the
3600   // truncate or zext to optimization early.
3601   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3602     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3603            "Unexpected shift type");
3604     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3605   }
3606 
3607   bool nuw = false;
3608   bool nsw = false;
3609   bool exact = false;
3610 
3611   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3612 
3613     if (const OverflowingBinaryOperator *OFBinOp =
3614             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3615       nuw = OFBinOp->hasNoUnsignedWrap();
3616       nsw = OFBinOp->hasNoSignedWrap();
3617     }
3618     if (const PossiblyExactOperator *ExactOp =
3619             dyn_cast<const PossiblyExactOperator>(&I))
3620       exact = ExactOp->isExact();
3621   }
3622   SDNodeFlags Flags;
3623   Flags.setExact(exact);
3624   Flags.setNoSignedWrap(nsw);
3625   Flags.setNoUnsignedWrap(nuw);
3626   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3627                             Flags);
3628   setValue(&I, Res);
3629 }
3630 
3631 void SelectionDAGBuilder::visitSDiv(const User &I) {
3632   SDValue Op1 = getValue(I.getOperand(0));
3633   SDValue Op2 = getValue(I.getOperand(1));
3634 
3635   SDNodeFlags Flags;
3636   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3637                  cast<PossiblyExactOperator>(&I)->isExact());
3638   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3639                            Op2, Flags));
3640 }
3641 
3642 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3643   ICmpInst::Predicate predicate = I.getPredicate();
3644   SDValue Op1 = getValue(I.getOperand(0));
3645   SDValue Op2 = getValue(I.getOperand(1));
3646   ISD::CondCode Opcode = getICmpCondCode(predicate);
3647 
3648   auto &TLI = DAG.getTargetLoweringInfo();
3649   EVT MemVT =
3650       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3651 
3652   // If a pointer's DAG type is larger than its memory type then the DAG values
3653   // are zero-extended. This breaks signed comparisons so truncate back to the
3654   // underlying type before doing the compare.
3655   if (Op1.getValueType() != MemVT) {
3656     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3657     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3658   }
3659 
3660   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3661                                                         I.getType());
3662   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3663 }
3664 
3665 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3666   FCmpInst::Predicate predicate = I.getPredicate();
3667   SDValue Op1 = getValue(I.getOperand(0));
3668   SDValue Op2 = getValue(I.getOperand(1));
3669 
3670   ISD::CondCode Condition = getFCmpCondCode(predicate);
3671   auto *FPMO = cast<FPMathOperator>(&I);
3672   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3673     Condition = getFCmpCodeWithoutNaN(Condition);
3674 
3675   SDNodeFlags Flags;
3676   Flags.copyFMF(*FPMO);
3677   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3678 
3679   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3680                                                         I.getType());
3681   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3682 }
3683 
3684 // Check if the condition of the select has one use or two users that are both
3685 // selects with the same condition.
3686 static bool hasOnlySelectUsers(const Value *Cond) {
3687   return llvm::all_of(Cond->users(), [](const Value *V) {
3688     return isa<SelectInst>(V);
3689   });
3690 }
3691 
3692 void SelectionDAGBuilder::visitSelect(const User &I) {
3693   SmallVector<EVT, 4> ValueVTs;
3694   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3695                   ValueVTs);
3696   unsigned NumValues = ValueVTs.size();
3697   if (NumValues == 0) return;
3698 
3699   SmallVector<SDValue, 4> Values(NumValues);
3700   SDValue Cond     = getValue(I.getOperand(0));
3701   SDValue LHSVal   = getValue(I.getOperand(1));
3702   SDValue RHSVal   = getValue(I.getOperand(2));
3703   SmallVector<SDValue, 1> BaseOps(1, Cond);
3704   ISD::NodeType OpCode =
3705       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3706 
3707   bool IsUnaryAbs = false;
3708   bool Negate = false;
3709 
3710   SDNodeFlags Flags;
3711   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3712     Flags.copyFMF(*FPOp);
3713 
3714   Flags.setUnpredictable(
3715       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3716 
3717   // Min/max matching is only viable if all output VTs are the same.
3718   if (all_equal(ValueVTs)) {
3719     EVT VT = ValueVTs[0];
3720     LLVMContext &Ctx = *DAG.getContext();
3721     auto &TLI = DAG.getTargetLoweringInfo();
3722 
3723     // We care about the legality of the operation after it has been type
3724     // legalized.
3725     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3726       VT = TLI.getTypeToTransformTo(Ctx, VT);
3727 
3728     // If the vselect is legal, assume we want to leave this as a vector setcc +
3729     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3730     // min/max is legal on the scalar type.
3731     bool UseScalarMinMax = VT.isVector() &&
3732       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3733 
3734     // ValueTracking's select pattern matching does not account for -0.0,
3735     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3736     // -0.0 is less than +0.0.
3737     const Value *LHS, *RHS;
3738     auto SPR = matchSelectPattern(&I, LHS, RHS);
3739     ISD::NodeType Opc = ISD::DELETED_NODE;
3740     switch (SPR.Flavor) {
3741     case SPF_UMAX:    Opc = ISD::UMAX; break;
3742     case SPF_UMIN:    Opc = ISD::UMIN; break;
3743     case SPF_SMAX:    Opc = ISD::SMAX; break;
3744     case SPF_SMIN:    Opc = ISD::SMIN; break;
3745     case SPF_FMINNUM:
3746       switch (SPR.NaNBehavior) {
3747       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3748       case SPNB_RETURNS_NAN: break;
3749       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3750       case SPNB_RETURNS_ANY:
3751         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3752             (UseScalarMinMax &&
3753              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3754           Opc = ISD::FMINNUM;
3755         break;
3756       }
3757       break;
3758     case SPF_FMAXNUM:
3759       switch (SPR.NaNBehavior) {
3760       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3761       case SPNB_RETURNS_NAN: break;
3762       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3763       case SPNB_RETURNS_ANY:
3764         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3765             (UseScalarMinMax &&
3766              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3767           Opc = ISD::FMAXNUM;
3768         break;
3769       }
3770       break;
3771     case SPF_NABS:
3772       Negate = true;
3773       [[fallthrough]];
3774     case SPF_ABS:
3775       IsUnaryAbs = true;
3776       Opc = ISD::ABS;
3777       break;
3778     default: break;
3779     }
3780 
3781     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3782         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3783          (UseScalarMinMax &&
3784           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3785         // If the underlying comparison instruction is used by any other
3786         // instruction, the consumed instructions won't be destroyed, so it is
3787         // not profitable to convert to a min/max.
3788         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3789       OpCode = Opc;
3790       LHSVal = getValue(LHS);
3791       RHSVal = getValue(RHS);
3792       BaseOps.clear();
3793     }
3794 
3795     if (IsUnaryAbs) {
3796       OpCode = Opc;
3797       LHSVal = getValue(LHS);
3798       BaseOps.clear();
3799     }
3800   }
3801 
3802   if (IsUnaryAbs) {
3803     for (unsigned i = 0; i != NumValues; ++i) {
3804       SDLoc dl = getCurSDLoc();
3805       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3806       Values[i] =
3807           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3808       if (Negate)
3809         Values[i] = DAG.getNegative(Values[i], dl, VT);
3810     }
3811   } else {
3812     for (unsigned i = 0; i != NumValues; ++i) {
3813       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3814       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3815       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3816       Values[i] = DAG.getNode(
3817           OpCode, getCurSDLoc(),
3818           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3819     }
3820   }
3821 
3822   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3823                            DAG.getVTList(ValueVTs), Values));
3824 }
3825 
3826 void SelectionDAGBuilder::visitTrunc(const User &I) {
3827   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3828   SDValue N = getValue(I.getOperand(0));
3829   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3830                                                         I.getType());
3831   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3832 }
3833 
3834 void SelectionDAGBuilder::visitZExt(const User &I) {
3835   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3836   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3837   SDValue N = getValue(I.getOperand(0));
3838   auto &TLI = DAG.getTargetLoweringInfo();
3839   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3840 
3841   SDNodeFlags Flags;
3842   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3843     Flags.setNonNeg(PNI->hasNonNeg());
3844 
3845   // Eagerly use nonneg information to canonicalize towards sign_extend if
3846   // that is the target's preference.
3847   // TODO: Let the target do this later.
3848   if (Flags.hasNonNeg() &&
3849       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3850     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3851     return;
3852   }
3853 
3854   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3855 }
3856 
3857 void SelectionDAGBuilder::visitSExt(const User &I) {
3858   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3859   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3860   SDValue N = getValue(I.getOperand(0));
3861   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3862                                                         I.getType());
3863   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3864 }
3865 
3866 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3867   // FPTrunc is never a no-op cast, no need to check
3868   SDValue N = getValue(I.getOperand(0));
3869   SDLoc dl = getCurSDLoc();
3870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3871   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3872   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3873                            DAG.getTargetConstant(
3874                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3875 }
3876 
3877 void SelectionDAGBuilder::visitFPExt(const User &I) {
3878   // FPExt is never a no-op cast, no need to check
3879   SDValue N = getValue(I.getOperand(0));
3880   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3881                                                         I.getType());
3882   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3883 }
3884 
3885 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3886   // FPToUI is never a no-op cast, no need to check
3887   SDValue N = getValue(I.getOperand(0));
3888   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3889                                                         I.getType());
3890   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3891 }
3892 
3893 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3894   // FPToSI is never a no-op cast, no need to check
3895   SDValue N = getValue(I.getOperand(0));
3896   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3897                                                         I.getType());
3898   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3899 }
3900 
3901 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3902   // UIToFP is never a no-op cast, no need to check
3903   SDValue N = getValue(I.getOperand(0));
3904   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3905                                                         I.getType());
3906   SDNodeFlags Flags;
3907   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3908     Flags.setNonNeg(PNI->hasNonNeg());
3909 
3910   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3911 }
3912 
3913 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3914   // SIToFP is never a no-op cast, no need to check
3915   SDValue N = getValue(I.getOperand(0));
3916   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3917                                                         I.getType());
3918   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3919 }
3920 
3921 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3922   // What to do depends on the size of the integer and the size of the pointer.
3923   // We can either truncate, zero extend, or no-op, accordingly.
3924   SDValue N = getValue(I.getOperand(0));
3925   auto &TLI = DAG.getTargetLoweringInfo();
3926   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3927                                                         I.getType());
3928   EVT PtrMemVT =
3929       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3930   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3931   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3932   setValue(&I, N);
3933 }
3934 
3935 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3936   // What to do depends on the size of the integer and the size of the pointer.
3937   // We can either truncate, zero extend, or no-op, accordingly.
3938   SDValue N = getValue(I.getOperand(0));
3939   auto &TLI = DAG.getTargetLoweringInfo();
3940   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3941   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3942   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3943   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3944   setValue(&I, N);
3945 }
3946 
3947 void SelectionDAGBuilder::visitBitCast(const User &I) {
3948   SDValue N = getValue(I.getOperand(0));
3949   SDLoc dl = getCurSDLoc();
3950   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3951                                                         I.getType());
3952 
3953   // BitCast assures us that source and destination are the same size so this is
3954   // either a BITCAST or a no-op.
3955   if (DestVT != N.getValueType())
3956     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3957                              DestVT, N)); // convert types.
3958   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3959   // might fold any kind of constant expression to an integer constant and that
3960   // is not what we are looking for. Only recognize a bitcast of a genuine
3961   // constant integer as an opaque constant.
3962   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3963     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3964                                  /*isOpaque*/true));
3965   else
3966     setValue(&I, N);            // noop cast.
3967 }
3968 
3969 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3971   const Value *SV = I.getOperand(0);
3972   SDValue N = getValue(SV);
3973   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3974 
3975   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3976   unsigned DestAS = I.getType()->getPointerAddressSpace();
3977 
3978   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3979     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3980 
3981   setValue(&I, N);
3982 }
3983 
3984 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986   SDValue InVec = getValue(I.getOperand(0));
3987   SDValue InVal = getValue(I.getOperand(1));
3988   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3989                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3990   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3991                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3992                            InVec, InVal, InIdx));
3993 }
3994 
3995 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3997   SDValue InVec = getValue(I.getOperand(0));
3998   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3999                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
4000   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
4001                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
4002                            InVec, InIdx));
4003 }
4004 
4005 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4006   SDValue Src1 = getValue(I.getOperand(0));
4007   SDValue Src2 = getValue(I.getOperand(1));
4008   ArrayRef<int> Mask;
4009   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4010     Mask = SVI->getShuffleMask();
4011   else
4012     Mask = cast<ConstantExpr>(I).getShuffleMask();
4013   SDLoc DL = getCurSDLoc();
4014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4015   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4016   EVT SrcVT = Src1.getValueType();
4017 
4018   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4019       VT.isScalableVector()) {
4020     // Canonical splat form of first element of first input vector.
4021     SDValue FirstElt =
4022         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4023                     DAG.getVectorIdxConstant(0, DL));
4024     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4025     return;
4026   }
4027 
4028   // For now, we only handle splats for scalable vectors.
4029   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4030   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4031   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4032 
4033   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4034   unsigned MaskNumElts = Mask.size();
4035 
4036   if (SrcNumElts == MaskNumElts) {
4037     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4038     return;
4039   }
4040 
4041   // Normalize the shuffle vector since mask and vector length don't match.
4042   if (SrcNumElts < MaskNumElts) {
4043     // Mask is longer than the source vectors. We can use concatenate vector to
4044     // make the mask and vectors lengths match.
4045 
4046     if (MaskNumElts % SrcNumElts == 0) {
4047       // Mask length is a multiple of the source vector length.
4048       // Check if the shuffle is some kind of concatenation of the input
4049       // vectors.
4050       unsigned NumConcat = MaskNumElts / SrcNumElts;
4051       bool IsConcat = true;
4052       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4053       for (unsigned i = 0; i != MaskNumElts; ++i) {
4054         int Idx = Mask[i];
4055         if (Idx < 0)
4056           continue;
4057         // Ensure the indices in each SrcVT sized piece are sequential and that
4058         // the same source is used for the whole piece.
4059         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4060             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4061              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4062           IsConcat = false;
4063           break;
4064         }
4065         // Remember which source this index came from.
4066         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4067       }
4068 
4069       // The shuffle is concatenating multiple vectors together. Just emit
4070       // a CONCAT_VECTORS operation.
4071       if (IsConcat) {
4072         SmallVector<SDValue, 8> ConcatOps;
4073         for (auto Src : ConcatSrcs) {
4074           if (Src < 0)
4075             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4076           else if (Src == 0)
4077             ConcatOps.push_back(Src1);
4078           else
4079             ConcatOps.push_back(Src2);
4080         }
4081         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4082         return;
4083       }
4084     }
4085 
4086     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4087     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4088     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4089                                     PaddedMaskNumElts);
4090 
4091     // Pad both vectors with undefs to make them the same length as the mask.
4092     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4093 
4094     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4095     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4096     MOps1[0] = Src1;
4097     MOps2[0] = Src2;
4098 
4099     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4100     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4101 
4102     // Readjust mask for new input vector length.
4103     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4104     for (unsigned i = 0; i != MaskNumElts; ++i) {
4105       int Idx = Mask[i];
4106       if (Idx >= (int)SrcNumElts)
4107         Idx -= SrcNumElts - PaddedMaskNumElts;
4108       MappedOps[i] = Idx;
4109     }
4110 
4111     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4112 
4113     // If the concatenated vector was padded, extract a subvector with the
4114     // correct number of elements.
4115     if (MaskNumElts != PaddedMaskNumElts)
4116       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4117                            DAG.getVectorIdxConstant(0, DL));
4118 
4119     setValue(&I, Result);
4120     return;
4121   }
4122 
4123   if (SrcNumElts > MaskNumElts) {
4124     // Analyze the access pattern of the vector to see if we can extract
4125     // two subvectors and do the shuffle.
4126     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4127     bool CanExtract = true;
4128     for (int Idx : Mask) {
4129       unsigned Input = 0;
4130       if (Idx < 0)
4131         continue;
4132 
4133       if (Idx >= (int)SrcNumElts) {
4134         Input = 1;
4135         Idx -= SrcNumElts;
4136       }
4137 
4138       // If all the indices come from the same MaskNumElts sized portion of
4139       // the sources we can use extract. Also make sure the extract wouldn't
4140       // extract past the end of the source.
4141       int NewStartIdx = alignDown(Idx, MaskNumElts);
4142       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4143           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4144         CanExtract = false;
4145       // Make sure we always update StartIdx as we use it to track if all
4146       // elements are undef.
4147       StartIdx[Input] = NewStartIdx;
4148     }
4149 
4150     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4151       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4152       return;
4153     }
4154     if (CanExtract) {
4155       // Extract appropriate subvector and generate a vector shuffle
4156       for (unsigned Input = 0; Input < 2; ++Input) {
4157         SDValue &Src = Input == 0 ? Src1 : Src2;
4158         if (StartIdx[Input] < 0)
4159           Src = DAG.getUNDEF(VT);
4160         else {
4161           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4162                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4163         }
4164       }
4165 
4166       // Calculate new mask.
4167       SmallVector<int, 8> MappedOps(Mask);
4168       for (int &Idx : MappedOps) {
4169         if (Idx >= (int)SrcNumElts)
4170           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4171         else if (Idx >= 0)
4172           Idx -= StartIdx[0];
4173       }
4174 
4175       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4176       return;
4177     }
4178   }
4179 
4180   // We can't use either concat vectors or extract subvectors so fall back to
4181   // replacing the shuffle with extract and build vector.
4182   // to insert and build vector.
4183   EVT EltVT = VT.getVectorElementType();
4184   SmallVector<SDValue,8> Ops;
4185   for (int Idx : Mask) {
4186     SDValue Res;
4187 
4188     if (Idx < 0) {
4189       Res = DAG.getUNDEF(EltVT);
4190     } else {
4191       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4192       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4193 
4194       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4195                         DAG.getVectorIdxConstant(Idx, DL));
4196     }
4197 
4198     Ops.push_back(Res);
4199   }
4200 
4201   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4202 }
4203 
4204 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4205   ArrayRef<unsigned> Indices = I.getIndices();
4206   const Value *Op0 = I.getOperand(0);
4207   const Value *Op1 = I.getOperand(1);
4208   Type *AggTy = I.getType();
4209   Type *ValTy = Op1->getType();
4210   bool IntoUndef = isa<UndefValue>(Op0);
4211   bool FromUndef = isa<UndefValue>(Op1);
4212 
4213   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4214 
4215   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4216   SmallVector<EVT, 4> AggValueVTs;
4217   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4218   SmallVector<EVT, 4> ValValueVTs;
4219   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4220 
4221   unsigned NumAggValues = AggValueVTs.size();
4222   unsigned NumValValues = ValValueVTs.size();
4223   SmallVector<SDValue, 4> Values(NumAggValues);
4224 
4225   // Ignore an insertvalue that produces an empty object
4226   if (!NumAggValues) {
4227     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4228     return;
4229   }
4230 
4231   SDValue Agg = getValue(Op0);
4232   unsigned i = 0;
4233   // Copy the beginning value(s) from the original aggregate.
4234   for (; i != LinearIndex; ++i)
4235     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4236                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4237   // Copy values from the inserted value(s).
4238   if (NumValValues) {
4239     SDValue Val = getValue(Op1);
4240     for (; i != LinearIndex + NumValValues; ++i)
4241       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4242                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4243   }
4244   // Copy remaining value(s) from the original aggregate.
4245   for (; i != NumAggValues; ++i)
4246     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4247                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4248 
4249   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4250                            DAG.getVTList(AggValueVTs), Values));
4251 }
4252 
4253 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4254   ArrayRef<unsigned> Indices = I.getIndices();
4255   const Value *Op0 = I.getOperand(0);
4256   Type *AggTy = Op0->getType();
4257   Type *ValTy = I.getType();
4258   bool OutOfUndef = isa<UndefValue>(Op0);
4259 
4260   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4261 
4262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4263   SmallVector<EVT, 4> ValValueVTs;
4264   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4265 
4266   unsigned NumValValues = ValValueVTs.size();
4267 
4268   // Ignore a extractvalue that produces an empty object
4269   if (!NumValValues) {
4270     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4271     return;
4272   }
4273 
4274   SmallVector<SDValue, 4> Values(NumValValues);
4275 
4276   SDValue Agg = getValue(Op0);
4277   // Copy out the selected value(s).
4278   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4279     Values[i - LinearIndex] =
4280       OutOfUndef ?
4281         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4282         SDValue(Agg.getNode(), Agg.getResNo() + i);
4283 
4284   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4285                            DAG.getVTList(ValValueVTs), Values));
4286 }
4287 
4288 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4289   Value *Op0 = I.getOperand(0);
4290   // Note that the pointer operand may be a vector of pointers. Take the scalar
4291   // element which holds a pointer.
4292   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4293   SDValue N = getValue(Op0);
4294   SDLoc dl = getCurSDLoc();
4295   auto &TLI = DAG.getTargetLoweringInfo();
4296   GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4297 
4298   // Normalize Vector GEP - all scalar operands should be converted to the
4299   // splat vector.
4300   bool IsVectorGEP = I.getType()->isVectorTy();
4301   ElementCount VectorElementCount =
4302       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4303                   : ElementCount::getFixed(0);
4304 
4305   if (IsVectorGEP && !N.getValueType().isVector()) {
4306     LLVMContext &Context = *DAG.getContext();
4307     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4308     N = DAG.getSplat(VT, dl, N);
4309   }
4310 
4311   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4312        GTI != E; ++GTI) {
4313     const Value *Idx = GTI.getOperand();
4314     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4315       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4316       if (Field) {
4317         // N = N + Offset
4318         uint64_t Offset =
4319             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4320 
4321         // In an inbounds GEP with an offset that is nonnegative even when
4322         // interpreted as signed, assume there is no unsigned overflow.
4323         SDNodeFlags Flags;
4324         if (NW.hasNoUnsignedWrap() ||
4325             (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4326           Flags.setNoUnsignedWrap(true);
4327 
4328         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4329                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4330       }
4331     } else {
4332       // IdxSize is the width of the arithmetic according to IR semantics.
4333       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4334       // (and fix up the result later).
4335       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4336       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4337       TypeSize ElementSize =
4338           GTI.getSequentialElementStride(DAG.getDataLayout());
4339       // We intentionally mask away the high bits here; ElementSize may not
4340       // fit in IdxTy.
4341       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4342       bool ElementScalable = ElementSize.isScalable();
4343 
4344       // If this is a scalar constant or a splat vector of constants,
4345       // handle it quickly.
4346       const auto *C = dyn_cast<Constant>(Idx);
4347       if (C && isa<VectorType>(C->getType()))
4348         C = C->getSplatValue();
4349 
4350       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4351       if (CI && CI->isZero())
4352         continue;
4353       if (CI && !ElementScalable) {
4354         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4355         LLVMContext &Context = *DAG.getContext();
4356         SDValue OffsVal;
4357         if (IsVectorGEP)
4358           OffsVal = DAG.getConstant(
4359               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4360         else
4361           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4362 
4363         // In an inbounds GEP with an offset that is nonnegative even when
4364         // interpreted as signed, assume there is no unsigned overflow.
4365         SDNodeFlags Flags;
4366         if (NW.hasNoUnsignedWrap() ||
4367             (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4368           Flags.setNoUnsignedWrap(true);
4369 
4370         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4371 
4372         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4373         continue;
4374       }
4375 
4376       // N = N + Idx * ElementMul;
4377       SDValue IdxN = getValue(Idx);
4378 
4379       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4380         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4381                                   VectorElementCount);
4382         IdxN = DAG.getSplat(VT, dl, IdxN);
4383       }
4384 
4385       // If the index is smaller or larger than intptr_t, truncate or extend
4386       // it.
4387       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4388 
4389       if (ElementScalable) {
4390         EVT VScaleTy = N.getValueType().getScalarType();
4391         SDValue VScale = DAG.getNode(
4392             ISD::VSCALE, dl, VScaleTy,
4393             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4394         if (IsVectorGEP)
4395           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4396         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4397       } else {
4398         // If this is a multiply by a power of two, turn it into a shl
4399         // immediately.  This is a very common case.
4400         if (ElementMul != 1) {
4401           if (ElementMul.isPowerOf2()) {
4402             unsigned Amt = ElementMul.logBase2();
4403             IdxN = DAG.getNode(ISD::SHL, dl,
4404                                N.getValueType(), IdxN,
4405                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4406           } else {
4407             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4408                                             IdxN.getValueType());
4409             IdxN = DAG.getNode(ISD::MUL, dl,
4410                                N.getValueType(), IdxN, Scale);
4411           }
4412         }
4413       }
4414 
4415       N = DAG.getNode(ISD::ADD, dl,
4416                       N.getValueType(), N, IdxN);
4417     }
4418   }
4419 
4420   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4421   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4422   if (IsVectorGEP) {
4423     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4424     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4425   }
4426 
4427   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4428     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4429 
4430   setValue(&I, N);
4431 }
4432 
4433 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4434   // If this is a fixed sized alloca in the entry block of the function,
4435   // allocate it statically on the stack.
4436   if (FuncInfo.StaticAllocaMap.count(&I))
4437     return;   // getValue will auto-populate this.
4438 
4439   SDLoc dl = getCurSDLoc();
4440   Type *Ty = I.getAllocatedType();
4441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4442   auto &DL = DAG.getDataLayout();
4443   TypeSize TySize = DL.getTypeAllocSize(Ty);
4444   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4445 
4446   SDValue AllocSize = getValue(I.getArraySize());
4447 
4448   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4449   if (AllocSize.getValueType() != IntPtr)
4450     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4451 
4452   if (TySize.isScalable())
4453     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4454                             DAG.getVScale(dl, IntPtr,
4455                                           APInt(IntPtr.getScalarSizeInBits(),
4456                                                 TySize.getKnownMinValue())));
4457   else {
4458     SDValue TySizeValue =
4459         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4460     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4461                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4462   }
4463 
4464   // Handle alignment.  If the requested alignment is less than or equal to
4465   // the stack alignment, ignore it.  If the size is greater than or equal to
4466   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4467   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4468   if (*Alignment <= StackAlign)
4469     Alignment = std::nullopt;
4470 
4471   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4472   // Round the size of the allocation up to the stack alignment size
4473   // by add SA-1 to the size. This doesn't overflow because we're computing
4474   // an address inside an alloca.
4475   SDNodeFlags Flags;
4476   Flags.setNoUnsignedWrap(true);
4477   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4478                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4479 
4480   // Mask out the low bits for alignment purposes.
4481   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4482                           DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4483 
4484   SDValue Ops[] = {
4485       getRoot(), AllocSize,
4486       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4487   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4488   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4489   setValue(&I, DSA);
4490   DAG.setRoot(DSA.getValue(1));
4491 
4492   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4493 }
4494 
4495 static const MDNode *getRangeMetadata(const Instruction &I) {
4496   // If !noundef is not present, then !range violation results in a poison
4497   // value rather than immediate undefined behavior. In theory, transferring
4498   // these annotations to SDAG is fine, but in practice there are key SDAG
4499   // transforms that are known not to be poison-safe, such as folding logical
4500   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4501   // also present.
4502   if (!I.hasMetadata(LLVMContext::MD_noundef))
4503     return nullptr;
4504   return I.getMetadata(LLVMContext::MD_range);
4505 }
4506 
4507 static std::optional<ConstantRange> getRange(const Instruction &I) {
4508   if (const auto *CB = dyn_cast<CallBase>(&I)) {
4509     // see comment in getRangeMetadata about this check
4510     if (CB->hasRetAttr(Attribute::NoUndef))
4511       return CB->getRange();
4512   }
4513   if (const MDNode *Range = getRangeMetadata(I))
4514     return getConstantRangeFromMetadata(*Range);
4515   return std::nullopt;
4516 }
4517 
4518 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4519   if (I.isAtomic())
4520     return visitAtomicLoad(I);
4521 
4522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4523   const Value *SV = I.getOperand(0);
4524   if (TLI.supportSwiftError()) {
4525     // Swifterror values can come from either a function parameter with
4526     // swifterror attribute or an alloca with swifterror attribute.
4527     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4528       if (Arg->hasSwiftErrorAttr())
4529         return visitLoadFromSwiftError(I);
4530     }
4531 
4532     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4533       if (Alloca->isSwiftError())
4534         return visitLoadFromSwiftError(I);
4535     }
4536   }
4537 
4538   SDValue Ptr = getValue(SV);
4539 
4540   Type *Ty = I.getType();
4541   SmallVector<EVT, 4> ValueVTs, MemVTs;
4542   SmallVector<TypeSize, 4> Offsets;
4543   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4544   unsigned NumValues = ValueVTs.size();
4545   if (NumValues == 0)
4546     return;
4547 
4548   Align Alignment = I.getAlign();
4549   AAMDNodes AAInfo = I.getAAMetadata();
4550   const MDNode *Ranges = getRangeMetadata(I);
4551   bool isVolatile = I.isVolatile();
4552   MachineMemOperand::Flags MMOFlags =
4553       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4554 
4555   SDValue Root;
4556   bool ConstantMemory = false;
4557   if (isVolatile)
4558     // Serialize volatile loads with other side effects.
4559     Root = getRoot();
4560   else if (NumValues > MaxParallelChains)
4561     Root = getMemoryRoot();
4562   else if (AA &&
4563            AA->pointsToConstantMemory(MemoryLocation(
4564                SV,
4565                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4566                AAInfo))) {
4567     // Do not serialize (non-volatile) loads of constant memory with anything.
4568     Root = DAG.getEntryNode();
4569     ConstantMemory = true;
4570     MMOFlags |= MachineMemOperand::MOInvariant;
4571   } else {
4572     // Do not serialize non-volatile loads against each other.
4573     Root = DAG.getRoot();
4574   }
4575 
4576   SDLoc dl = getCurSDLoc();
4577 
4578   if (isVolatile)
4579     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4580 
4581   SmallVector<SDValue, 4> Values(NumValues);
4582   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4583 
4584   unsigned ChainI = 0;
4585   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4586     // Serializing loads here may result in excessive register pressure, and
4587     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4588     // could recover a bit by hoisting nodes upward in the chain by recognizing
4589     // they are side-effect free or do not alias. The optimizer should really
4590     // avoid this case by converting large object/array copies to llvm.memcpy
4591     // (MaxParallelChains should always remain as failsafe).
4592     if (ChainI == MaxParallelChains) {
4593       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4594       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4595                                   ArrayRef(Chains.data(), ChainI));
4596       Root = Chain;
4597       ChainI = 0;
4598     }
4599 
4600     // TODO: MachinePointerInfo only supports a fixed length offset.
4601     MachinePointerInfo PtrInfo =
4602         !Offsets[i].isScalable() || Offsets[i].isZero()
4603             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4604             : MachinePointerInfo();
4605 
4606     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4607     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4608                             MMOFlags, AAInfo, Ranges);
4609     Chains[ChainI] = L.getValue(1);
4610 
4611     if (MemVTs[i] != ValueVTs[i])
4612       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4613 
4614     Values[i] = L;
4615   }
4616 
4617   if (!ConstantMemory) {
4618     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4619                                 ArrayRef(Chains.data(), ChainI));
4620     if (isVolatile)
4621       DAG.setRoot(Chain);
4622     else
4623       PendingLoads.push_back(Chain);
4624   }
4625 
4626   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4627                            DAG.getVTList(ValueVTs), Values));
4628 }
4629 
4630 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4631   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4632          "call visitStoreToSwiftError when backend supports swifterror");
4633 
4634   SmallVector<EVT, 4> ValueVTs;
4635   SmallVector<uint64_t, 4> Offsets;
4636   const Value *SrcV = I.getOperand(0);
4637   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4638                   SrcV->getType(), ValueVTs, &Offsets, 0);
4639   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4640          "expect a single EVT for swifterror");
4641 
4642   SDValue Src = getValue(SrcV);
4643   // Create a virtual register, then update the virtual register.
4644   Register VReg =
4645       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4646   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4647   // Chain can be getRoot or getControlRoot.
4648   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4649                                       SDValue(Src.getNode(), Src.getResNo()));
4650   DAG.setRoot(CopyNode);
4651 }
4652 
4653 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4654   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4655          "call visitLoadFromSwiftError when backend supports swifterror");
4656 
4657   assert(!I.isVolatile() &&
4658          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4659          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4660          "Support volatile, non temporal, invariant for load_from_swift_error");
4661 
4662   const Value *SV = I.getOperand(0);
4663   Type *Ty = I.getType();
4664   assert(
4665       (!AA ||
4666        !AA->pointsToConstantMemory(MemoryLocation(
4667            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4668            I.getAAMetadata()))) &&
4669       "load_from_swift_error should not be constant memory");
4670 
4671   SmallVector<EVT, 4> ValueVTs;
4672   SmallVector<uint64_t, 4> Offsets;
4673   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4674                   ValueVTs, &Offsets, 0);
4675   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4676          "expect a single EVT for swifterror");
4677 
4678   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4679   SDValue L = DAG.getCopyFromReg(
4680       getRoot(), getCurSDLoc(),
4681       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4682 
4683   setValue(&I, L);
4684 }
4685 
4686 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4687   if (I.isAtomic())
4688     return visitAtomicStore(I);
4689 
4690   const Value *SrcV = I.getOperand(0);
4691   const Value *PtrV = I.getOperand(1);
4692 
4693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4694   if (TLI.supportSwiftError()) {
4695     // Swifterror values can come from either a function parameter with
4696     // swifterror attribute or an alloca with swifterror attribute.
4697     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4698       if (Arg->hasSwiftErrorAttr())
4699         return visitStoreToSwiftError(I);
4700     }
4701 
4702     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4703       if (Alloca->isSwiftError())
4704         return visitStoreToSwiftError(I);
4705     }
4706   }
4707 
4708   SmallVector<EVT, 4> ValueVTs, MemVTs;
4709   SmallVector<TypeSize, 4> Offsets;
4710   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4711                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4712   unsigned NumValues = ValueVTs.size();
4713   if (NumValues == 0)
4714     return;
4715 
4716   // Get the lowered operands. Note that we do this after
4717   // checking if NumResults is zero, because with zero results
4718   // the operands won't have values in the map.
4719   SDValue Src = getValue(SrcV);
4720   SDValue Ptr = getValue(PtrV);
4721 
4722   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4723   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4724   SDLoc dl = getCurSDLoc();
4725   Align Alignment = I.getAlign();
4726   AAMDNodes AAInfo = I.getAAMetadata();
4727 
4728   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4729 
4730   unsigned ChainI = 0;
4731   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4732     // See visitLoad comments.
4733     if (ChainI == MaxParallelChains) {
4734       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4735                                   ArrayRef(Chains.data(), ChainI));
4736       Root = Chain;
4737       ChainI = 0;
4738     }
4739 
4740     // TODO: MachinePointerInfo only supports a fixed length offset.
4741     MachinePointerInfo PtrInfo =
4742         !Offsets[i].isScalable() || Offsets[i].isZero()
4743             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4744             : MachinePointerInfo();
4745 
4746     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4747     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4748     if (MemVTs[i] != ValueVTs[i])
4749       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4750     SDValue St =
4751         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4752     Chains[ChainI] = St;
4753   }
4754 
4755   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4756                                   ArrayRef(Chains.data(), ChainI));
4757   setValue(&I, StoreNode);
4758   DAG.setRoot(StoreNode);
4759 }
4760 
4761 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4762                                            bool IsCompressing) {
4763   SDLoc sdl = getCurSDLoc();
4764 
4765   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4766                                Align &Alignment) {
4767     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4768     Src0 = I.getArgOperand(0);
4769     Ptr = I.getArgOperand(1);
4770     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4771     Mask = I.getArgOperand(3);
4772   };
4773   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4774                                     Align &Alignment) {
4775     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4776     Src0 = I.getArgOperand(0);
4777     Ptr = I.getArgOperand(1);
4778     Mask = I.getArgOperand(2);
4779     Alignment = I.getParamAlign(1).valueOrOne();
4780   };
4781 
4782   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4783   Align Alignment;
4784   if (IsCompressing)
4785     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4786   else
4787     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4788 
4789   SDValue Ptr = getValue(PtrOperand);
4790   SDValue Src0 = getValue(Src0Operand);
4791   SDValue Mask = getValue(MaskOperand);
4792   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4793 
4794   EVT VT = Src0.getValueType();
4795 
4796   auto MMOFlags = MachineMemOperand::MOStore;
4797   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4798     MMOFlags |= MachineMemOperand::MONonTemporal;
4799 
4800   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4801       MachinePointerInfo(PtrOperand), MMOFlags,
4802       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4803 
4804   const auto &TLI = DAG.getTargetLoweringInfo();
4805   const auto &TTI =
4806       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4807   SDValue StoreNode =
4808       !IsCompressing &&
4809               TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4810           ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4811                                  Mask)
4812           : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4813                                VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4814                                IsCompressing);
4815   DAG.setRoot(StoreNode);
4816   setValue(&I, StoreNode);
4817 }
4818 
4819 // Get a uniform base for the Gather/Scatter intrinsic.
4820 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4821 // We try to represent it as a base pointer + vector of indices.
4822 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4823 // The first operand of the GEP may be a single pointer or a vector of pointers
4824 // Example:
4825 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4826 //  or
4827 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4828 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4829 //
4830 // When the first GEP operand is a single pointer - it is the uniform base we
4831 // are looking for. If first operand of the GEP is a splat vector - we
4832 // extract the splat value and use it as a uniform base.
4833 // In all other cases the function returns 'false'.
4834 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4835                            ISD::MemIndexType &IndexType, SDValue &Scale,
4836                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4837                            uint64_t ElemSize) {
4838   SelectionDAG& DAG = SDB->DAG;
4839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4840   const DataLayout &DL = DAG.getDataLayout();
4841 
4842   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4843 
4844   // Handle splat constant pointer.
4845   if (auto *C = dyn_cast<Constant>(Ptr)) {
4846     C = C->getSplatValue();
4847     if (!C)
4848       return false;
4849 
4850     Base = SDB->getValue(C);
4851 
4852     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4853     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4854     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4855     IndexType = ISD::SIGNED_SCALED;
4856     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4857     return true;
4858   }
4859 
4860   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4861   if (!GEP || GEP->getParent() != CurBB)
4862     return false;
4863 
4864   if (GEP->getNumOperands() != 2)
4865     return false;
4866 
4867   const Value *BasePtr = GEP->getPointerOperand();
4868   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4869 
4870   // Make sure the base is scalar and the index is a vector.
4871   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4872     return false;
4873 
4874   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4875   if (ScaleVal.isScalable())
4876     return false;
4877 
4878   // Target may not support the required addressing mode.
4879   if (ScaleVal != 1 &&
4880       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4881     return false;
4882 
4883   Base = SDB->getValue(BasePtr);
4884   Index = SDB->getValue(IndexVal);
4885   IndexType = ISD::SIGNED_SCALED;
4886 
4887   Scale =
4888       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4889   return true;
4890 }
4891 
4892 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4893   SDLoc sdl = getCurSDLoc();
4894 
4895   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4896   const Value *Ptr = I.getArgOperand(1);
4897   SDValue Src0 = getValue(I.getArgOperand(0));
4898   SDValue Mask = getValue(I.getArgOperand(3));
4899   EVT VT = Src0.getValueType();
4900   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4901                         ->getMaybeAlignValue()
4902                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4904 
4905   SDValue Base;
4906   SDValue Index;
4907   ISD::MemIndexType IndexType;
4908   SDValue Scale;
4909   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4910                                     I.getParent(), VT.getScalarStoreSize());
4911 
4912   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4913   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4914       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4915       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4916   if (!UniformBase) {
4917     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4918     Index = getValue(Ptr);
4919     IndexType = ISD::SIGNED_SCALED;
4920     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4921   }
4922 
4923   EVT IdxVT = Index.getValueType();
4924   EVT EltTy = IdxVT.getVectorElementType();
4925   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4926     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4927     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4928   }
4929 
4930   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4931   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4932                                          Ops, MMO, IndexType, false);
4933   DAG.setRoot(Scatter);
4934   setValue(&I, Scatter);
4935 }
4936 
4937 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4938   SDLoc sdl = getCurSDLoc();
4939 
4940   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4941                               Align &Alignment) {
4942     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4943     Ptr = I.getArgOperand(0);
4944     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4945     Mask = I.getArgOperand(2);
4946     Src0 = I.getArgOperand(3);
4947   };
4948   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4949                                  Align &Alignment) {
4950     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4951     Ptr = I.getArgOperand(0);
4952     Alignment = I.getParamAlign(0).valueOrOne();
4953     Mask = I.getArgOperand(1);
4954     Src0 = I.getArgOperand(2);
4955   };
4956 
4957   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4958   Align Alignment;
4959   if (IsExpanding)
4960     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4961   else
4962     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4963 
4964   SDValue Ptr = getValue(PtrOperand);
4965   SDValue Src0 = getValue(Src0Operand);
4966   SDValue Mask = getValue(MaskOperand);
4967   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4968 
4969   EVT VT = Src0.getValueType();
4970   AAMDNodes AAInfo = I.getAAMetadata();
4971   const MDNode *Ranges = getRangeMetadata(I);
4972 
4973   // Do not serialize masked loads of constant memory with anything.
4974   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4975   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4976 
4977   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4978 
4979   auto MMOFlags = MachineMemOperand::MOLoad;
4980   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4981     MMOFlags |= MachineMemOperand::MONonTemporal;
4982 
4983   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4984       MachinePointerInfo(PtrOperand), MMOFlags,
4985       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4986 
4987   const auto &TLI = DAG.getTargetLoweringInfo();
4988   const auto &TTI =
4989       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4990   // The Load/Res may point to different values and both of them are output
4991   // variables.
4992   SDValue Load;
4993   SDValue Res;
4994   if (!IsExpanding &&
4995       TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
4996     Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
4997   else
4998     Res = Load =
4999         DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5000                           ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5001   if (AddToChain)
5002     PendingLoads.push_back(Load.getValue(1));
5003   setValue(&I, Res);
5004 }
5005 
5006 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5007   SDLoc sdl = getCurSDLoc();
5008 
5009   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5010   const Value *Ptr = I.getArgOperand(0);
5011   SDValue Src0 = getValue(I.getArgOperand(3));
5012   SDValue Mask = getValue(I.getArgOperand(2));
5013 
5014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5015   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5016   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5017                         ->getMaybeAlignValue()
5018                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
5019 
5020   const MDNode *Ranges = getRangeMetadata(I);
5021 
5022   SDValue Root = DAG.getRoot();
5023   SDValue Base;
5024   SDValue Index;
5025   ISD::MemIndexType IndexType;
5026   SDValue Scale;
5027   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5028                                     I.getParent(), VT.getScalarStoreSize());
5029   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5030   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5031       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5032       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5033       Ranges);
5034 
5035   if (!UniformBase) {
5036     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5037     Index = getValue(Ptr);
5038     IndexType = ISD::SIGNED_SCALED;
5039     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5040   }
5041 
5042   EVT IdxVT = Index.getValueType();
5043   EVT EltTy = IdxVT.getVectorElementType();
5044   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5045     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5046     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5047   }
5048 
5049   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5050   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5051                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5052 
5053   PendingLoads.push_back(Gather.getValue(1));
5054   setValue(&I, Gather);
5055 }
5056 
5057 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5058   SDLoc dl = getCurSDLoc();
5059   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5060   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5061   SyncScope::ID SSID = I.getSyncScopeID();
5062 
5063   SDValue InChain = getRoot();
5064 
5065   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5066   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5067 
5068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5069   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5070 
5071   MachineFunction &MF = DAG.getMachineFunction();
5072   MachineMemOperand *MMO = MF.getMachineMemOperand(
5073       MachinePointerInfo(I.getPointerOperand()), Flags,
5074       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5075       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5076 
5077   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5078                                    dl, MemVT, VTs, InChain,
5079                                    getValue(I.getPointerOperand()),
5080                                    getValue(I.getCompareOperand()),
5081                                    getValue(I.getNewValOperand()), MMO);
5082 
5083   SDValue OutChain = L.getValue(2);
5084 
5085   setValue(&I, L);
5086   DAG.setRoot(OutChain);
5087 }
5088 
5089 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5090   SDLoc dl = getCurSDLoc();
5091   ISD::NodeType NT;
5092   switch (I.getOperation()) {
5093   default: llvm_unreachable("Unknown atomicrmw operation");
5094   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5095   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5096   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5097   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5098   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5099   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5100   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5101   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5102   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5103   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5104   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5105   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5106   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5107   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5108   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5109   case AtomicRMWInst::UIncWrap:
5110     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5111     break;
5112   case AtomicRMWInst::UDecWrap:
5113     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5114     break;
5115   case AtomicRMWInst::USubCond:
5116     NT = ISD::ATOMIC_LOAD_USUB_COND;
5117     break;
5118   case AtomicRMWInst::USubSat:
5119     NT = ISD::ATOMIC_LOAD_USUB_SAT;
5120     break;
5121   }
5122   AtomicOrdering Ordering = I.getOrdering();
5123   SyncScope::ID SSID = I.getSyncScopeID();
5124 
5125   SDValue InChain = getRoot();
5126 
5127   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5128   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5129   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5130 
5131   MachineFunction &MF = DAG.getMachineFunction();
5132   MachineMemOperand *MMO = MF.getMachineMemOperand(
5133       MachinePointerInfo(I.getPointerOperand()), Flags,
5134       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5135       AAMDNodes(), nullptr, SSID, Ordering);
5136 
5137   SDValue L =
5138     DAG.getAtomic(NT, dl, MemVT, InChain,
5139                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5140                   MMO);
5141 
5142   SDValue OutChain = L.getValue(1);
5143 
5144   setValue(&I, L);
5145   DAG.setRoot(OutChain);
5146 }
5147 
5148 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5149   SDLoc dl = getCurSDLoc();
5150   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5151   SDValue Ops[3];
5152   Ops[0] = getRoot();
5153   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5154                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5155   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5156                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5157   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5158   setValue(&I, N);
5159   DAG.setRoot(N);
5160 }
5161 
5162 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5163   SDLoc dl = getCurSDLoc();
5164   AtomicOrdering Order = I.getOrdering();
5165   SyncScope::ID SSID = I.getSyncScopeID();
5166 
5167   SDValue InChain = getRoot();
5168 
5169   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5170   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5171   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5172 
5173   if (!TLI.supportsUnalignedAtomics() &&
5174       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5175     report_fatal_error("Cannot generate unaligned atomic load");
5176 
5177   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5178 
5179   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5180       MachinePointerInfo(I.getPointerOperand()), Flags,
5181       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5182       nullptr, SSID, Order);
5183 
5184   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5185 
5186   SDValue Ptr = getValue(I.getPointerOperand());
5187   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5188                             Ptr, MMO);
5189 
5190   SDValue OutChain = L.getValue(1);
5191   if (MemVT != VT)
5192     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5193 
5194   setValue(&I, L);
5195   DAG.setRoot(OutChain);
5196 }
5197 
5198 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5199   SDLoc dl = getCurSDLoc();
5200 
5201   AtomicOrdering Ordering = I.getOrdering();
5202   SyncScope::ID SSID = I.getSyncScopeID();
5203 
5204   SDValue InChain = getRoot();
5205 
5206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5207   EVT MemVT =
5208       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5209 
5210   if (!TLI.supportsUnalignedAtomics() &&
5211       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5212     report_fatal_error("Cannot generate unaligned atomic store");
5213 
5214   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5215 
5216   MachineFunction &MF = DAG.getMachineFunction();
5217   MachineMemOperand *MMO = MF.getMachineMemOperand(
5218       MachinePointerInfo(I.getPointerOperand()), Flags,
5219       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5220       nullptr, SSID, Ordering);
5221 
5222   SDValue Val = getValue(I.getValueOperand());
5223   if (Val.getValueType() != MemVT)
5224     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5225   SDValue Ptr = getValue(I.getPointerOperand());
5226 
5227   SDValue OutChain =
5228       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5229 
5230   setValue(&I, OutChain);
5231   DAG.setRoot(OutChain);
5232 }
5233 
5234 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5235 /// node.
5236 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5237                                                unsigned Intrinsic) {
5238   // Ignore the callsite's attributes. A specific call site may be marked with
5239   // readnone, but the lowering code will expect the chain based on the
5240   // definition.
5241   const Function *F = I.getCalledFunction();
5242   bool HasChain = !F->doesNotAccessMemory();
5243   bool OnlyLoad =
5244       HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5245 
5246   // Build the operand list.
5247   SmallVector<SDValue, 8> Ops;
5248   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5249     if (OnlyLoad) {
5250       // We don't need to serialize loads against other loads.
5251       Ops.push_back(DAG.getRoot());
5252     } else {
5253       Ops.push_back(getRoot());
5254     }
5255   }
5256 
5257   // Info is set by getTgtMemIntrinsic
5258   TargetLowering::IntrinsicInfo Info;
5259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5260   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5261                                                DAG.getMachineFunction(),
5262                                                Intrinsic);
5263 
5264   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5265   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5266       Info.opc == ISD::INTRINSIC_W_CHAIN)
5267     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5268                                         TLI.getPointerTy(DAG.getDataLayout())));
5269 
5270   // Add all operands of the call to the operand list.
5271   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5272     const Value *Arg = I.getArgOperand(i);
5273     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5274       Ops.push_back(getValue(Arg));
5275       continue;
5276     }
5277 
5278     // Use TargetConstant instead of a regular constant for immarg.
5279     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5280     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5281       assert(CI->getBitWidth() <= 64 &&
5282              "large intrinsic immediates not handled");
5283       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5284     } else {
5285       Ops.push_back(
5286           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5287     }
5288   }
5289 
5290   SmallVector<EVT, 4> ValueVTs;
5291   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5292 
5293   if (HasChain)
5294     ValueVTs.push_back(MVT::Other);
5295 
5296   SDVTList VTs = DAG.getVTList(ValueVTs);
5297 
5298   // Propagate fast-math-flags from IR to node(s).
5299   SDNodeFlags Flags;
5300   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5301     Flags.copyFMF(*FPMO);
5302   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5303 
5304   // Create the node.
5305   SDValue Result;
5306 
5307   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5308     auto *Token = Bundle->Inputs[0].get();
5309     SDValue ConvControlToken = getValue(Token);
5310     assert(Ops.back().getValueType() != MVT::Glue &&
5311            "Did not expected another glue node here.");
5312     ConvControlToken =
5313         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5314     Ops.push_back(ConvControlToken);
5315   }
5316 
5317   // In some cases, custom collection of operands from CallInst I may be needed.
5318   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5319   if (IsTgtIntrinsic) {
5320     // This is target intrinsic that touches memory
5321     //
5322     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5323     //       didn't yield anything useful.
5324     MachinePointerInfo MPI;
5325     if (Info.ptrVal)
5326       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5327     else if (Info.fallbackAddressSpace)
5328       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5329     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5330                                      Info.memVT, MPI, Info.align, Info.flags,
5331                                      Info.size, I.getAAMetadata());
5332   } else if (!HasChain) {
5333     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5334   } else if (!I.getType()->isVoidTy()) {
5335     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5336   } else {
5337     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5338   }
5339 
5340   if (HasChain) {
5341     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5342     if (OnlyLoad)
5343       PendingLoads.push_back(Chain);
5344     else
5345       DAG.setRoot(Chain);
5346   }
5347 
5348   if (!I.getType()->isVoidTy()) {
5349     if (!isa<VectorType>(I.getType()))
5350       Result = lowerRangeToAssertZExt(DAG, I, Result);
5351 
5352     MaybeAlign Alignment = I.getRetAlign();
5353 
5354     // Insert `assertalign` node if there's an alignment.
5355     if (InsertAssertAlign && Alignment) {
5356       Result =
5357           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5358     }
5359   }
5360 
5361   setValue(&I, Result);
5362 }
5363 
5364 /// GetSignificand - Get the significand and build it into a floating-point
5365 /// number with exponent of 1:
5366 ///
5367 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5368 ///
5369 /// where Op is the hexadecimal representation of floating point value.
5370 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5371   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5372                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5373   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5374                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5375   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5376 }
5377 
5378 /// GetExponent - Get the exponent:
5379 ///
5380 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5381 ///
5382 /// where Op is the hexadecimal representation of floating point value.
5383 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5384                            const TargetLowering &TLI, const SDLoc &dl) {
5385   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5386                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5387   SDValue t1 = DAG.getNode(
5388       ISD::SRL, dl, MVT::i32, t0,
5389       DAG.getConstant(23, dl,
5390                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5391   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5392                            DAG.getConstant(127, dl, MVT::i32));
5393   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5394 }
5395 
5396 /// getF32Constant - Get 32-bit floating point constant.
5397 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5398                               const SDLoc &dl) {
5399   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5400                            MVT::f32);
5401 }
5402 
5403 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5404                                        SelectionDAG &DAG) {
5405   // TODO: What fast-math-flags should be set on the floating-point nodes?
5406 
5407   //   IntegerPartOfX = ((int32_t)(t0);
5408   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5409 
5410   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5411   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5412   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5413 
5414   //   IntegerPartOfX <<= 23;
5415   IntegerPartOfX =
5416       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5417                   DAG.getConstant(23, dl,
5418                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5419                                       MVT::i32, DAG.getDataLayout())));
5420 
5421   SDValue TwoToFractionalPartOfX;
5422   if (LimitFloatPrecision <= 6) {
5423     // For floating-point precision of 6:
5424     //
5425     //   TwoToFractionalPartOfX =
5426     //     0.997535578f +
5427     //       (0.735607626f + 0.252464424f * x) * x;
5428     //
5429     // error 0.0144103317, which is 6 bits
5430     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5431                              getF32Constant(DAG, 0x3e814304, dl));
5432     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5433                              getF32Constant(DAG, 0x3f3c50c8, dl));
5434     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5435     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5436                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5437   } else if (LimitFloatPrecision <= 12) {
5438     // For floating-point precision of 12:
5439     //
5440     //   TwoToFractionalPartOfX =
5441     //     0.999892986f +
5442     //       (0.696457318f +
5443     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5444     //
5445     // error 0.000107046256, which is 13 to 14 bits
5446     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5447                              getF32Constant(DAG, 0x3da235e3, dl));
5448     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5449                              getF32Constant(DAG, 0x3e65b8f3, dl));
5450     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5451     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5452                              getF32Constant(DAG, 0x3f324b07, dl));
5453     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5454     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5455                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5456   } else { // LimitFloatPrecision <= 18
5457     // For floating-point precision of 18:
5458     //
5459     //   TwoToFractionalPartOfX =
5460     //     0.999999982f +
5461     //       (0.693148872f +
5462     //         (0.240227044f +
5463     //           (0.554906021e-1f +
5464     //             (0.961591928e-2f +
5465     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5466     // error 2.47208000*10^(-7), which is better than 18 bits
5467     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5468                              getF32Constant(DAG, 0x3924b03e, dl));
5469     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5470                              getF32Constant(DAG, 0x3ab24b87, dl));
5471     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5472     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5473                              getF32Constant(DAG, 0x3c1d8c17, dl));
5474     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5475     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5476                              getF32Constant(DAG, 0x3d634a1d, dl));
5477     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5478     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5479                              getF32Constant(DAG, 0x3e75fe14, dl));
5480     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5481     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5482                               getF32Constant(DAG, 0x3f317234, dl));
5483     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5484     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5485                                          getF32Constant(DAG, 0x3f800000, dl));
5486   }
5487 
5488   // Add the exponent into the result in integer domain.
5489   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5490   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5491                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5492 }
5493 
5494 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5495 /// limited-precision mode.
5496 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5497                          const TargetLowering &TLI, SDNodeFlags Flags) {
5498   if (Op.getValueType() == MVT::f32 &&
5499       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5500 
5501     // Put the exponent in the right bit position for later addition to the
5502     // final result:
5503     //
5504     // t0 = Op * log2(e)
5505 
5506     // TODO: What fast-math-flags should be set here?
5507     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5508                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5509     return getLimitedPrecisionExp2(t0, dl, DAG);
5510   }
5511 
5512   // No special expansion.
5513   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5514 }
5515 
5516 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5517 /// limited-precision mode.
5518 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5519                          const TargetLowering &TLI, SDNodeFlags Flags) {
5520   // TODO: What fast-math-flags should be set on the floating-point nodes?
5521 
5522   if (Op.getValueType() == MVT::f32 &&
5523       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5524     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5525 
5526     // Scale the exponent by log(2).
5527     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5528     SDValue LogOfExponent =
5529         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5530                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5531 
5532     // Get the significand and build it into a floating-point number with
5533     // exponent of 1.
5534     SDValue X = GetSignificand(DAG, Op1, dl);
5535 
5536     SDValue LogOfMantissa;
5537     if (LimitFloatPrecision <= 6) {
5538       // For floating-point precision of 6:
5539       //
5540       //   LogofMantissa =
5541       //     -1.1609546f +
5542       //       (1.4034025f - 0.23903021f * x) * x;
5543       //
5544       // error 0.0034276066, which is better than 8 bits
5545       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5546                                getF32Constant(DAG, 0xbe74c456, dl));
5547       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5548                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5549       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5550       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5551                                   getF32Constant(DAG, 0x3f949a29, dl));
5552     } else if (LimitFloatPrecision <= 12) {
5553       // For floating-point precision of 12:
5554       //
5555       //   LogOfMantissa =
5556       //     -1.7417939f +
5557       //       (2.8212026f +
5558       //         (-1.4699568f +
5559       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5560       //
5561       // error 0.000061011436, which is 14 bits
5562       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5563                                getF32Constant(DAG, 0xbd67b6d6, dl));
5564       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5565                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5566       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5567       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5568                                getF32Constant(DAG, 0x3fbc278b, dl));
5569       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5570       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5571                                getF32Constant(DAG, 0x40348e95, dl));
5572       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5573       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5574                                   getF32Constant(DAG, 0x3fdef31a, dl));
5575     } else { // LimitFloatPrecision <= 18
5576       // For floating-point precision of 18:
5577       //
5578       //   LogOfMantissa =
5579       //     -2.1072184f +
5580       //       (4.2372794f +
5581       //         (-3.7029485f +
5582       //           (2.2781945f +
5583       //             (-0.87823314f +
5584       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5585       //
5586       // error 0.0000023660568, which is better than 18 bits
5587       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5588                                getF32Constant(DAG, 0xbc91e5ac, dl));
5589       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5590                                getF32Constant(DAG, 0x3e4350aa, dl));
5591       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5592       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5593                                getF32Constant(DAG, 0x3f60d3e3, dl));
5594       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5595       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5596                                getF32Constant(DAG, 0x4011cdf0, dl));
5597       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5598       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5599                                getF32Constant(DAG, 0x406cfd1c, dl));
5600       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5601       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5602                                getF32Constant(DAG, 0x408797cb, dl));
5603       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5604       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5605                                   getF32Constant(DAG, 0x4006dcab, dl));
5606     }
5607 
5608     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5609   }
5610 
5611   // No special expansion.
5612   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5613 }
5614 
5615 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5616 /// limited-precision mode.
5617 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5618                           const TargetLowering &TLI, SDNodeFlags Flags) {
5619   // TODO: What fast-math-flags should be set on the floating-point nodes?
5620 
5621   if (Op.getValueType() == MVT::f32 &&
5622       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5623     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5624 
5625     // Get the exponent.
5626     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5627 
5628     // Get the significand and build it into a floating-point number with
5629     // exponent of 1.
5630     SDValue X = GetSignificand(DAG, Op1, dl);
5631 
5632     // Different possible minimax approximations of significand in
5633     // floating-point for various degrees of accuracy over [1,2].
5634     SDValue Log2ofMantissa;
5635     if (LimitFloatPrecision <= 6) {
5636       // For floating-point precision of 6:
5637       //
5638       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5639       //
5640       // error 0.0049451742, which is more than 7 bits
5641       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5642                                getF32Constant(DAG, 0xbeb08fe0, dl));
5643       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5644                                getF32Constant(DAG, 0x40019463, dl));
5645       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5646       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5647                                    getF32Constant(DAG, 0x3fd6633d, dl));
5648     } else if (LimitFloatPrecision <= 12) {
5649       // For floating-point precision of 12:
5650       //
5651       //   Log2ofMantissa =
5652       //     -2.51285454f +
5653       //       (4.07009056f +
5654       //         (-2.12067489f +
5655       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5656       //
5657       // error 0.0000876136000, which is better than 13 bits
5658       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5659                                getF32Constant(DAG, 0xbda7262e, dl));
5660       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5661                                getF32Constant(DAG, 0x3f25280b, dl));
5662       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5663       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5664                                getF32Constant(DAG, 0x4007b923, dl));
5665       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5666       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5667                                getF32Constant(DAG, 0x40823e2f, dl));
5668       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5669       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5670                                    getF32Constant(DAG, 0x4020d29c, dl));
5671     } else { // LimitFloatPrecision <= 18
5672       // For floating-point precision of 18:
5673       //
5674       //   Log2ofMantissa =
5675       //     -3.0400495f +
5676       //       (6.1129976f +
5677       //         (-5.3420409f +
5678       //           (3.2865683f +
5679       //             (-1.2669343f +
5680       //               (0.27515199f -
5681       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5682       //
5683       // error 0.0000018516, which is better than 18 bits
5684       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5685                                getF32Constant(DAG, 0xbcd2769e, dl));
5686       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5687                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5688       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5689       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5690                                getF32Constant(DAG, 0x3fa22ae7, dl));
5691       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5692       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5693                                getF32Constant(DAG, 0x40525723, dl));
5694       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5695       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5696                                getF32Constant(DAG, 0x40aaf200, dl));
5697       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5698       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5699                                getF32Constant(DAG, 0x40c39dad, dl));
5700       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5701       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5702                                    getF32Constant(DAG, 0x4042902c, dl));
5703     }
5704 
5705     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5706   }
5707 
5708   // No special expansion.
5709   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5710 }
5711 
5712 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5713 /// limited-precision mode.
5714 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5715                            const TargetLowering &TLI, SDNodeFlags Flags) {
5716   // TODO: What fast-math-flags should be set on the floating-point nodes?
5717 
5718   if (Op.getValueType() == MVT::f32 &&
5719       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5720     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5721 
5722     // Scale the exponent by log10(2) [0.30102999f].
5723     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5724     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5725                                         getF32Constant(DAG, 0x3e9a209a, dl));
5726 
5727     // Get the significand and build it into a floating-point number with
5728     // exponent of 1.
5729     SDValue X = GetSignificand(DAG, Op1, dl);
5730 
5731     SDValue Log10ofMantissa;
5732     if (LimitFloatPrecision <= 6) {
5733       // For floating-point precision of 6:
5734       //
5735       //   Log10ofMantissa =
5736       //     -0.50419619f +
5737       //       (0.60948995f - 0.10380950f * x) * x;
5738       //
5739       // error 0.0014886165, which is 6 bits
5740       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5741                                getF32Constant(DAG, 0xbdd49a13, dl));
5742       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5743                                getF32Constant(DAG, 0x3f1c0789, dl));
5744       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5745       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5746                                     getF32Constant(DAG, 0x3f011300, dl));
5747     } else if (LimitFloatPrecision <= 12) {
5748       // For floating-point precision of 12:
5749       //
5750       //   Log10ofMantissa =
5751       //     -0.64831180f +
5752       //       (0.91751397f +
5753       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5754       //
5755       // error 0.00019228036, which is better than 12 bits
5756       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5757                                getF32Constant(DAG, 0x3d431f31, dl));
5758       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5759                                getF32Constant(DAG, 0x3ea21fb2, dl));
5760       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5761       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5762                                getF32Constant(DAG, 0x3f6ae232, dl));
5763       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5764       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5765                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5766     } else { // LimitFloatPrecision <= 18
5767       // For floating-point precision of 18:
5768       //
5769       //   Log10ofMantissa =
5770       //     -0.84299375f +
5771       //       (1.5327582f +
5772       //         (-1.0688956f +
5773       //           (0.49102474f +
5774       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5775       //
5776       // error 0.0000037995730, which is better than 18 bits
5777       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5778                                getF32Constant(DAG, 0x3c5d51ce, dl));
5779       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5780                                getF32Constant(DAG, 0x3e00685a, dl));
5781       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5782       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5783                                getF32Constant(DAG, 0x3efb6798, dl));
5784       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5785       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5786                                getF32Constant(DAG, 0x3f88d192, dl));
5787       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5788       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5789                                getF32Constant(DAG, 0x3fc4316c, dl));
5790       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5791       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5792                                     getF32Constant(DAG, 0x3f57ce70, dl));
5793     }
5794 
5795     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5796   }
5797 
5798   // No special expansion.
5799   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5800 }
5801 
5802 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5803 /// limited-precision mode.
5804 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5805                           const TargetLowering &TLI, SDNodeFlags Flags) {
5806   if (Op.getValueType() == MVT::f32 &&
5807       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5808     return getLimitedPrecisionExp2(Op, dl, DAG);
5809 
5810   // No special expansion.
5811   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5812 }
5813 
5814 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5815 /// limited-precision mode with x == 10.0f.
5816 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5817                          SelectionDAG &DAG, const TargetLowering &TLI,
5818                          SDNodeFlags Flags) {
5819   bool IsExp10 = false;
5820   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5821       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5822     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5823       APFloat Ten(10.0f);
5824       IsExp10 = LHSC->isExactlyValue(Ten);
5825     }
5826   }
5827 
5828   // TODO: What fast-math-flags should be set on the FMUL node?
5829   if (IsExp10) {
5830     // Put the exponent in the right bit position for later addition to the
5831     // final result:
5832     //
5833     //   #define LOG2OF10 3.3219281f
5834     //   t0 = Op * LOG2OF10;
5835     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5836                              getF32Constant(DAG, 0x40549a78, dl));
5837     return getLimitedPrecisionExp2(t0, dl, DAG);
5838   }
5839 
5840   // No special expansion.
5841   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5842 }
5843 
5844 /// ExpandPowI - Expand a llvm.powi intrinsic.
5845 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5846                           SelectionDAG &DAG) {
5847   // If RHS is a constant, we can expand this out to a multiplication tree if
5848   // it's beneficial on the target, otherwise we end up lowering to a call to
5849   // __powidf2 (for example).
5850   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5851     unsigned Val = RHSC->getSExtValue();
5852 
5853     // powi(x, 0) -> 1.0
5854     if (Val == 0)
5855       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5856 
5857     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5858             Val, DAG.shouldOptForSize())) {
5859       // Get the exponent as a positive value.
5860       if ((int)Val < 0)
5861         Val = -Val;
5862       // We use the simple binary decomposition method to generate the multiply
5863       // sequence.  There are more optimal ways to do this (for example,
5864       // powi(x,15) generates one more multiply than it should), but this has
5865       // the benefit of being both really simple and much better than a libcall.
5866       SDValue Res; // Logically starts equal to 1.0
5867       SDValue CurSquare = LHS;
5868       // TODO: Intrinsics should have fast-math-flags that propagate to these
5869       // nodes.
5870       while (Val) {
5871         if (Val & 1) {
5872           if (Res.getNode())
5873             Res =
5874                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5875           else
5876             Res = CurSquare; // 1.0*CurSquare.
5877         }
5878 
5879         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5880                                 CurSquare, CurSquare);
5881         Val >>= 1;
5882       }
5883 
5884       // If the original was negative, invert the result, producing 1/(x*x*x).
5885       if (RHSC->getSExtValue() < 0)
5886         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5887                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5888       return Res;
5889     }
5890   }
5891 
5892   // Otherwise, expand to a libcall.
5893   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5894 }
5895 
5896 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5897                             SDValue LHS, SDValue RHS, SDValue Scale,
5898                             SelectionDAG &DAG, const TargetLowering &TLI) {
5899   EVT VT = LHS.getValueType();
5900   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5901   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5902   LLVMContext &Ctx = *DAG.getContext();
5903 
5904   // If the type is legal but the operation isn't, this node might survive all
5905   // the way to operation legalization. If we end up there and we do not have
5906   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5907   // node.
5908 
5909   // Coax the legalizer into expanding the node during type legalization instead
5910   // by bumping the size by one bit. This will force it to Promote, enabling the
5911   // early expansion and avoiding the need to expand later.
5912 
5913   // We don't have to do this if Scale is 0; that can always be expanded, unless
5914   // it's a saturating signed operation. Those can experience true integer
5915   // division overflow, a case which we must avoid.
5916 
5917   // FIXME: We wouldn't have to do this (or any of the early
5918   // expansion/promotion) if it was possible to expand a libcall of an
5919   // illegal type during operation legalization. But it's not, so things
5920   // get a bit hacky.
5921   unsigned ScaleInt = Scale->getAsZExtVal();
5922   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5923       (TLI.isTypeLegal(VT) ||
5924        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5925     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5926         Opcode, VT, ScaleInt);
5927     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5928       EVT PromVT;
5929       if (VT.isScalarInteger())
5930         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5931       else if (VT.isVector()) {
5932         PromVT = VT.getVectorElementType();
5933         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5934         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5935       } else
5936         llvm_unreachable("Wrong VT for DIVFIX?");
5937       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5938       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5939       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5940       // For saturating operations, we need to shift up the LHS to get the
5941       // proper saturation width, and then shift down again afterwards.
5942       if (Saturating)
5943         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5944                           DAG.getConstant(1, DL, ShiftTy));
5945       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5946       if (Saturating)
5947         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5948                           DAG.getConstant(1, DL, ShiftTy));
5949       return DAG.getZExtOrTrunc(Res, DL, VT);
5950     }
5951   }
5952 
5953   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5954 }
5955 
5956 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5957 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5958 static void
5959 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5960                      const SDValue &N) {
5961   switch (N.getOpcode()) {
5962   case ISD::CopyFromReg: {
5963     SDValue Op = N.getOperand(1);
5964     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5965                       Op.getValueType().getSizeInBits());
5966     return;
5967   }
5968   case ISD::BITCAST:
5969   case ISD::AssertZext:
5970   case ISD::AssertSext:
5971   case ISD::TRUNCATE:
5972     getUnderlyingArgRegs(Regs, N.getOperand(0));
5973     return;
5974   case ISD::BUILD_PAIR:
5975   case ISD::BUILD_VECTOR:
5976   case ISD::CONCAT_VECTORS:
5977     for (SDValue Op : N->op_values())
5978       getUnderlyingArgRegs(Regs, Op);
5979     return;
5980   default:
5981     return;
5982   }
5983 }
5984 
5985 /// If the DbgValueInst is a dbg_value of a function argument, create the
5986 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5987 /// instruction selection, they will be inserted to the entry BB.
5988 /// We don't currently support this for variadic dbg_values, as they shouldn't
5989 /// appear for function arguments or in the prologue.
5990 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5991     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5992     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5993   const Argument *Arg = dyn_cast<Argument>(V);
5994   if (!Arg)
5995     return false;
5996 
5997   MachineFunction &MF = DAG.getMachineFunction();
5998   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5999 
6000   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6001   // we've been asked to pursue.
6002   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6003                               bool Indirect) {
6004     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6005       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6006       // pointing at the VReg, which will be patched up later.
6007       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6008       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
6009           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6010           /* isKill */ false, /* isDead */ false,
6011           /* isUndef */ false, /* isEarlyClobber */ false,
6012           /* SubReg */ 0, /* isDebug */ true)});
6013 
6014       auto *NewDIExpr = FragExpr;
6015       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6016       // the DIExpression.
6017       if (Indirect)
6018         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6019       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6020       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6021       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6022     } else {
6023       // Create a completely standard DBG_VALUE.
6024       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6025       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6026     }
6027   };
6028 
6029   if (Kind == FuncArgumentDbgValueKind::Value) {
6030     // ArgDbgValues are hoisted to the beginning of the entry block. So we
6031     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6032     // the entry block.
6033     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6034     if (!IsInEntryBlock)
6035       return false;
6036 
6037     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
6038     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6039     // variable that also is a param.
6040     //
6041     // Although, if we are at the top of the entry block already, we can still
6042     // emit using ArgDbgValue. This might catch some situations when the
6043     // dbg.value refers to an argument that isn't used in the entry block, so
6044     // any CopyToReg node would be optimized out and the only way to express
6045     // this DBG_VALUE is by using the physical reg (or FI) as done in this
6046     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
6047     // we should only emit as ArgDbgValue if the Variable is an argument to the
6048     // current function, and the dbg.value intrinsic is found in the entry
6049     // block.
6050     bool VariableIsFunctionInputArg = Variable->isParameter() &&
6051         !DL->getInlinedAt();
6052     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6053     if (!IsInPrologue && !VariableIsFunctionInputArg)
6054       return false;
6055 
6056     // Here we assume that a function argument on IR level only can be used to
6057     // describe one input parameter on source level. If we for example have
6058     // source code like this
6059     //
6060     //    struct A { long x, y; };
6061     //    void foo(struct A a, long b) {
6062     //      ...
6063     //      b = a.x;
6064     //      ...
6065     //    }
6066     //
6067     // and IR like this
6068     //
6069     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6070     //  entry:
6071     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6072     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6073     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6074     //    ...
6075     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6076     //    ...
6077     //
6078     // then the last dbg.value is describing a parameter "b" using a value that
6079     // is an argument. But since we already has used %a1 to describe a parameter
6080     // we should not handle that last dbg.value here (that would result in an
6081     // incorrect hoisting of the DBG_VALUE to the function entry).
6082     // Notice that we allow one dbg.value per IR level argument, to accommodate
6083     // for the situation with fragments above.
6084     // If there is no node for the value being handled, we return true to skip
6085     // the normal generation of debug info, as it would kill existing debug
6086     // info for the parameter in case of duplicates.
6087     if (VariableIsFunctionInputArg) {
6088       unsigned ArgNo = Arg->getArgNo();
6089       if (ArgNo >= FuncInfo.DescribedArgs.size())
6090         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6091       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6092         return !NodeMap[V].getNode();
6093       FuncInfo.DescribedArgs.set(ArgNo);
6094     }
6095   }
6096 
6097   bool IsIndirect = false;
6098   std::optional<MachineOperand> Op;
6099   // Some arguments' frame index is recorded during argument lowering.
6100   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6101   if (FI != std::numeric_limits<int>::max())
6102     Op = MachineOperand::CreateFI(FI);
6103 
6104   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6105   if (!Op && N.getNode()) {
6106     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6107     Register Reg;
6108     if (ArgRegsAndSizes.size() == 1)
6109       Reg = ArgRegsAndSizes.front().first;
6110 
6111     if (Reg && Reg.isVirtual()) {
6112       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6113       Register PR = RegInfo.getLiveInPhysReg(Reg);
6114       if (PR)
6115         Reg = PR;
6116     }
6117     if (Reg) {
6118       Op = MachineOperand::CreateReg(Reg, false);
6119       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6120     }
6121   }
6122 
6123   if (!Op && N.getNode()) {
6124     // Check if frame index is available.
6125     SDValue LCandidate = peekThroughBitcasts(N);
6126     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6127       if (FrameIndexSDNode *FINode =
6128           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6129         Op = MachineOperand::CreateFI(FINode->getIndex());
6130   }
6131 
6132   if (!Op) {
6133     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6134     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6135                                          SplitRegs) {
6136       unsigned Offset = 0;
6137       for (const auto &RegAndSize : SplitRegs) {
6138         // If the expression is already a fragment, the current register
6139         // offset+size might extend beyond the fragment. In this case, only
6140         // the register bits that are inside the fragment are relevant.
6141         int RegFragmentSizeInBits = RegAndSize.second;
6142         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6143           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6144           // The register is entirely outside the expression fragment,
6145           // so is irrelevant for debug info.
6146           if (Offset >= ExprFragmentSizeInBits)
6147             break;
6148           // The register is partially outside the expression fragment, only
6149           // the low bits within the fragment are relevant for debug info.
6150           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6151             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6152           }
6153         }
6154 
6155         auto FragmentExpr = DIExpression::createFragmentExpression(
6156             Expr, Offset, RegFragmentSizeInBits);
6157         Offset += RegAndSize.second;
6158         // If a valid fragment expression cannot be created, the variable's
6159         // correct value cannot be determined and so it is set as Undef.
6160         if (!FragmentExpr) {
6161           SDDbgValue *SDV = DAG.getConstantDbgValue(
6162               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6163           DAG.AddDbgValue(SDV, false);
6164           continue;
6165         }
6166         MachineInstr *NewMI =
6167             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6168                              Kind != FuncArgumentDbgValueKind::Value);
6169         FuncInfo.ArgDbgValues.push_back(NewMI);
6170       }
6171     };
6172 
6173     // Check if ValueMap has reg number.
6174     DenseMap<const Value *, Register>::const_iterator
6175       VMI = FuncInfo.ValueMap.find(V);
6176     if (VMI != FuncInfo.ValueMap.end()) {
6177       const auto &TLI = DAG.getTargetLoweringInfo();
6178       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6179                        V->getType(), std::nullopt);
6180       if (RFV.occupiesMultipleRegs()) {
6181         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6182         return true;
6183       }
6184 
6185       Op = MachineOperand::CreateReg(VMI->second, false);
6186       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6187     } else if (ArgRegsAndSizes.size() > 1) {
6188       // This was split due to the calling convention, and no virtual register
6189       // mapping exists for the value.
6190       splitMultiRegDbgValue(ArgRegsAndSizes);
6191       return true;
6192     }
6193   }
6194 
6195   if (!Op)
6196     return false;
6197 
6198   assert(Variable->isValidLocationForIntrinsic(DL) &&
6199          "Expected inlined-at fields to agree");
6200   MachineInstr *NewMI = nullptr;
6201 
6202   if (Op->isReg())
6203     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6204   else
6205     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6206                     Variable, Expr);
6207 
6208   // Otherwise, use ArgDbgValues.
6209   FuncInfo.ArgDbgValues.push_back(NewMI);
6210   return true;
6211 }
6212 
6213 /// Return the appropriate SDDbgValue based on N.
6214 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6215                                              DILocalVariable *Variable,
6216                                              DIExpression *Expr,
6217                                              const DebugLoc &dl,
6218                                              unsigned DbgSDNodeOrder) {
6219   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6220     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6221     // stack slot locations.
6222     //
6223     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6224     // debug values here after optimization:
6225     //
6226     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6227     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6228     //
6229     // Both describe the direct values of their associated variables.
6230     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6231                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6232   }
6233   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6234                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6235 }
6236 
6237 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6238   switch (Intrinsic) {
6239   case Intrinsic::smul_fix:
6240     return ISD::SMULFIX;
6241   case Intrinsic::umul_fix:
6242     return ISD::UMULFIX;
6243   case Intrinsic::smul_fix_sat:
6244     return ISD::SMULFIXSAT;
6245   case Intrinsic::umul_fix_sat:
6246     return ISD::UMULFIXSAT;
6247   case Intrinsic::sdiv_fix:
6248     return ISD::SDIVFIX;
6249   case Intrinsic::udiv_fix:
6250     return ISD::UDIVFIX;
6251   case Intrinsic::sdiv_fix_sat:
6252     return ISD::SDIVFIXSAT;
6253   case Intrinsic::udiv_fix_sat:
6254     return ISD::UDIVFIXSAT;
6255   default:
6256     llvm_unreachable("Unhandled fixed point intrinsic");
6257   }
6258 }
6259 
6260 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6261                                            const char *FunctionName) {
6262   assert(FunctionName && "FunctionName must not be nullptr");
6263   SDValue Callee = DAG.getExternalSymbol(
6264       FunctionName,
6265       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6266   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6267 }
6268 
6269 /// Given a @llvm.call.preallocated.setup, return the corresponding
6270 /// preallocated call.
6271 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6272   assert(cast<CallBase>(PreallocatedSetup)
6273                  ->getCalledFunction()
6274                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6275          "expected call_preallocated_setup Value");
6276   for (const auto *U : PreallocatedSetup->users()) {
6277     auto *UseCall = cast<CallBase>(U);
6278     const Function *Fn = UseCall->getCalledFunction();
6279     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6280       return UseCall;
6281     }
6282   }
6283   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6284 }
6285 
6286 /// If DI is a debug value with an EntryValue expression, lower it using the
6287 /// corresponding physical register of the associated Argument value
6288 /// (guaranteed to exist by the verifier).
6289 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6290     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6291     DIExpression *Expr, DebugLoc DbgLoc) {
6292   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6293     return false;
6294 
6295   // These properties are guaranteed by the verifier.
6296   const Argument *Arg = cast<Argument>(Values[0]);
6297   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6298 
6299   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6300   if (ArgIt == FuncInfo.ValueMap.end()) {
6301     LLVM_DEBUG(
6302         dbgs() << "Dropping dbg.value: expression is entry_value but "
6303                   "couldn't find an associated register for the Argument\n");
6304     return true;
6305   }
6306   Register ArgVReg = ArgIt->getSecond();
6307 
6308   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6309     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6310       SDDbgValue *SDV = DAG.getVRegDbgValue(
6311           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6312       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6313       return true;
6314     }
6315   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6316                        "couldn't find a physical register\n");
6317   return true;
6318 }
6319 
6320 /// Lower the call to the specified intrinsic function.
6321 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6322                                                   unsigned Intrinsic) {
6323   SDLoc sdl = getCurSDLoc();
6324   switch (Intrinsic) {
6325   case Intrinsic::experimental_convergence_anchor:
6326     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6327     break;
6328   case Intrinsic::experimental_convergence_entry:
6329     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6330     break;
6331   case Intrinsic::experimental_convergence_loop: {
6332     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6333     auto *Token = Bundle->Inputs[0].get();
6334     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6335                              getValue(Token)));
6336     break;
6337   }
6338   }
6339 }
6340 
6341 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6342                                                unsigned IntrinsicID) {
6343   // For now, we're only lowering an 'add' histogram.
6344   // We can add others later, e.g. saturating adds, min/max.
6345   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6346          "Tried to lower unsupported histogram type");
6347   SDLoc sdl = getCurSDLoc();
6348   Value *Ptr = I.getOperand(0);
6349   SDValue Inc = getValue(I.getOperand(1));
6350   SDValue Mask = getValue(I.getOperand(2));
6351 
6352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6353   DataLayout TargetDL = DAG.getDataLayout();
6354   EVT VT = Inc.getValueType();
6355   Align Alignment = DAG.getEVTAlign(VT);
6356 
6357   const MDNode *Ranges = getRangeMetadata(I);
6358 
6359   SDValue Root = DAG.getRoot();
6360   SDValue Base;
6361   SDValue Index;
6362   ISD::MemIndexType IndexType;
6363   SDValue Scale;
6364   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6365                                     I.getParent(), VT.getScalarStoreSize());
6366 
6367   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6368 
6369   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6370       MachinePointerInfo(AS),
6371       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6372       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6373 
6374   if (!UniformBase) {
6375     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6376     Index = getValue(Ptr);
6377     IndexType = ISD::SIGNED_SCALED;
6378     Scale =
6379         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6380   }
6381 
6382   EVT IdxVT = Index.getValueType();
6383   EVT EltTy = IdxVT.getVectorElementType();
6384   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6385     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6386     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6387   }
6388 
6389   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6390 
6391   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6392   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6393                                              Ops, MMO, IndexType);
6394 
6395   setValue(&I, Histogram);
6396   DAG.setRoot(Histogram);
6397 }
6398 
6399 /// Lower the call to the specified intrinsic function.
6400 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6401                                              unsigned Intrinsic) {
6402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6403   SDLoc sdl = getCurSDLoc();
6404   DebugLoc dl = getCurDebugLoc();
6405   SDValue Res;
6406 
6407   SDNodeFlags Flags;
6408   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6409     Flags.copyFMF(*FPOp);
6410 
6411   switch (Intrinsic) {
6412   default:
6413     // By default, turn this into a target intrinsic node.
6414     visitTargetIntrinsic(I, Intrinsic);
6415     return;
6416   case Intrinsic::vscale: {
6417     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6418     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6419     return;
6420   }
6421   case Intrinsic::vastart:  visitVAStart(I); return;
6422   case Intrinsic::vaend:    visitVAEnd(I); return;
6423   case Intrinsic::vacopy:   visitVACopy(I); return;
6424   case Intrinsic::returnaddress:
6425     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6426                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6427                              getValue(I.getArgOperand(0))));
6428     return;
6429   case Intrinsic::addressofreturnaddress:
6430     setValue(&I,
6431              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6432                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6433     return;
6434   case Intrinsic::sponentry:
6435     setValue(&I,
6436              DAG.getNode(ISD::SPONENTRY, sdl,
6437                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6438     return;
6439   case Intrinsic::frameaddress:
6440     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6441                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6442                              getValue(I.getArgOperand(0))));
6443     return;
6444   case Intrinsic::read_volatile_register:
6445   case Intrinsic::read_register: {
6446     Value *Reg = I.getArgOperand(0);
6447     SDValue Chain = getRoot();
6448     SDValue RegName =
6449         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6450     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6451     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6452       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6453     setValue(&I, Res);
6454     DAG.setRoot(Res.getValue(1));
6455     return;
6456   }
6457   case Intrinsic::write_register: {
6458     Value *Reg = I.getArgOperand(0);
6459     Value *RegValue = I.getArgOperand(1);
6460     SDValue Chain = getRoot();
6461     SDValue RegName =
6462         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6463     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6464                             RegName, getValue(RegValue)));
6465     return;
6466   }
6467   case Intrinsic::memcpy: {
6468     const auto &MCI = cast<MemCpyInst>(I);
6469     SDValue Op1 = getValue(I.getArgOperand(0));
6470     SDValue Op2 = getValue(I.getArgOperand(1));
6471     SDValue Op3 = getValue(I.getArgOperand(2));
6472     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6473     Align DstAlign = MCI.getDestAlign().valueOrOne();
6474     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6475     Align Alignment = std::min(DstAlign, SrcAlign);
6476     bool isVol = MCI.isVolatile();
6477     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6478     // node.
6479     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6480     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6481                                /* AlwaysInline */ false, &I, std::nullopt,
6482                                MachinePointerInfo(I.getArgOperand(0)),
6483                                MachinePointerInfo(I.getArgOperand(1)),
6484                                I.getAAMetadata(), AA);
6485     updateDAGForMaybeTailCall(MC);
6486     return;
6487   }
6488   case Intrinsic::memcpy_inline: {
6489     const auto &MCI = cast<MemCpyInlineInst>(I);
6490     SDValue Dst = getValue(I.getArgOperand(0));
6491     SDValue Src = getValue(I.getArgOperand(1));
6492     SDValue Size = getValue(I.getArgOperand(2));
6493     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6494     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6495     Align DstAlign = MCI.getDestAlign().valueOrOne();
6496     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6497     Align Alignment = std::min(DstAlign, SrcAlign);
6498     bool isVol = MCI.isVolatile();
6499     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6500     // node.
6501     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6502                                /* AlwaysInline */ true, &I, std::nullopt,
6503                                MachinePointerInfo(I.getArgOperand(0)),
6504                                MachinePointerInfo(I.getArgOperand(1)),
6505                                I.getAAMetadata(), AA);
6506     updateDAGForMaybeTailCall(MC);
6507     return;
6508   }
6509   case Intrinsic::memset: {
6510     const auto &MSI = cast<MemSetInst>(I);
6511     SDValue Op1 = getValue(I.getArgOperand(0));
6512     SDValue Op2 = getValue(I.getArgOperand(1));
6513     SDValue Op3 = getValue(I.getArgOperand(2));
6514     // @llvm.memset defines 0 and 1 to both mean no alignment.
6515     Align Alignment = MSI.getDestAlign().valueOrOne();
6516     bool isVol = MSI.isVolatile();
6517     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6518     SDValue MS = DAG.getMemset(
6519         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6520         &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6521     updateDAGForMaybeTailCall(MS);
6522     return;
6523   }
6524   case Intrinsic::memset_inline: {
6525     const auto &MSII = cast<MemSetInlineInst>(I);
6526     SDValue Dst = getValue(I.getArgOperand(0));
6527     SDValue Value = getValue(I.getArgOperand(1));
6528     SDValue Size = getValue(I.getArgOperand(2));
6529     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6530     // @llvm.memset defines 0 and 1 to both mean no alignment.
6531     Align DstAlign = MSII.getDestAlign().valueOrOne();
6532     bool isVol = MSII.isVolatile();
6533     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6534     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6535                                /* AlwaysInline */ true, &I,
6536                                MachinePointerInfo(I.getArgOperand(0)),
6537                                I.getAAMetadata());
6538     updateDAGForMaybeTailCall(MC);
6539     return;
6540   }
6541   case Intrinsic::memmove: {
6542     const auto &MMI = cast<MemMoveInst>(I);
6543     SDValue Op1 = getValue(I.getArgOperand(0));
6544     SDValue Op2 = getValue(I.getArgOperand(1));
6545     SDValue Op3 = getValue(I.getArgOperand(2));
6546     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6547     Align DstAlign = MMI.getDestAlign().valueOrOne();
6548     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6549     Align Alignment = std::min(DstAlign, SrcAlign);
6550     bool isVol = MMI.isVolatile();
6551     // FIXME: Support passing different dest/src alignments to the memmove DAG
6552     // node.
6553     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6554     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6555                                 /* OverrideTailCall */ std::nullopt,
6556                                 MachinePointerInfo(I.getArgOperand(0)),
6557                                 MachinePointerInfo(I.getArgOperand(1)),
6558                                 I.getAAMetadata(), AA);
6559     updateDAGForMaybeTailCall(MM);
6560     return;
6561   }
6562   case Intrinsic::memcpy_element_unordered_atomic: {
6563     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6564     SDValue Dst = getValue(MI.getRawDest());
6565     SDValue Src = getValue(MI.getRawSource());
6566     SDValue Length = getValue(MI.getLength());
6567 
6568     Type *LengthTy = MI.getLength()->getType();
6569     unsigned ElemSz = MI.getElementSizeInBytes();
6570     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6571     SDValue MC =
6572         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6573                             isTC, MachinePointerInfo(MI.getRawDest()),
6574                             MachinePointerInfo(MI.getRawSource()));
6575     updateDAGForMaybeTailCall(MC);
6576     return;
6577   }
6578   case Intrinsic::memmove_element_unordered_atomic: {
6579     auto &MI = cast<AtomicMemMoveInst>(I);
6580     SDValue Dst = getValue(MI.getRawDest());
6581     SDValue Src = getValue(MI.getRawSource());
6582     SDValue Length = getValue(MI.getLength());
6583 
6584     Type *LengthTy = MI.getLength()->getType();
6585     unsigned ElemSz = MI.getElementSizeInBytes();
6586     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6587     SDValue MC =
6588         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6589                              isTC, MachinePointerInfo(MI.getRawDest()),
6590                              MachinePointerInfo(MI.getRawSource()));
6591     updateDAGForMaybeTailCall(MC);
6592     return;
6593   }
6594   case Intrinsic::memset_element_unordered_atomic: {
6595     auto &MI = cast<AtomicMemSetInst>(I);
6596     SDValue Dst = getValue(MI.getRawDest());
6597     SDValue Val = getValue(MI.getValue());
6598     SDValue Length = getValue(MI.getLength());
6599 
6600     Type *LengthTy = MI.getLength()->getType();
6601     unsigned ElemSz = MI.getElementSizeInBytes();
6602     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6603     SDValue MC =
6604         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6605                             isTC, MachinePointerInfo(MI.getRawDest()));
6606     updateDAGForMaybeTailCall(MC);
6607     return;
6608   }
6609   case Intrinsic::call_preallocated_setup: {
6610     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6611     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6612     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6613                               getRoot(), SrcValue);
6614     setValue(&I, Res);
6615     DAG.setRoot(Res);
6616     return;
6617   }
6618   case Intrinsic::call_preallocated_arg: {
6619     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6620     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6621     SDValue Ops[3];
6622     Ops[0] = getRoot();
6623     Ops[1] = SrcValue;
6624     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6625                                    MVT::i32); // arg index
6626     SDValue Res = DAG.getNode(
6627         ISD::PREALLOCATED_ARG, sdl,
6628         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6629     setValue(&I, Res);
6630     DAG.setRoot(Res.getValue(1));
6631     return;
6632   }
6633   case Intrinsic::dbg_declare: {
6634     const auto &DI = cast<DbgDeclareInst>(I);
6635     // Debug intrinsics are handled separately in assignment tracking mode.
6636     // Some intrinsics are handled right after Argument lowering.
6637     if (AssignmentTrackingEnabled ||
6638         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6639       return;
6640     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6641     DILocalVariable *Variable = DI.getVariable();
6642     DIExpression *Expression = DI.getExpression();
6643     dropDanglingDebugInfo(Variable, Expression);
6644     // Assume dbg.declare can not currently use DIArgList, i.e.
6645     // it is non-variadic.
6646     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6647     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6648                        DI.getDebugLoc());
6649     return;
6650   }
6651   case Intrinsic::dbg_label: {
6652     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6653     DILabel *Label = DI.getLabel();
6654     assert(Label && "Missing label");
6655 
6656     SDDbgLabel *SDV;
6657     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6658     DAG.AddDbgLabel(SDV);
6659     return;
6660   }
6661   case Intrinsic::dbg_assign: {
6662     // Debug intrinsics are handled separately in assignment tracking mode.
6663     if (AssignmentTrackingEnabled)
6664       return;
6665     // If assignment tracking hasn't been enabled then fall through and treat
6666     // the dbg.assign as a dbg.value.
6667     [[fallthrough]];
6668   }
6669   case Intrinsic::dbg_value: {
6670     // Debug intrinsics are handled separately in assignment tracking mode.
6671     if (AssignmentTrackingEnabled)
6672       return;
6673     const DbgValueInst &DI = cast<DbgValueInst>(I);
6674     assert(DI.getVariable() && "Missing variable");
6675 
6676     DILocalVariable *Variable = DI.getVariable();
6677     DIExpression *Expression = DI.getExpression();
6678     dropDanglingDebugInfo(Variable, Expression);
6679 
6680     if (DI.isKillLocation()) {
6681       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6682       return;
6683     }
6684 
6685     SmallVector<Value *, 4> Values(DI.getValues());
6686     if (Values.empty())
6687       return;
6688 
6689     bool IsVariadic = DI.hasArgList();
6690     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6691                           SDNodeOrder, IsVariadic))
6692       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6693                            DI.getDebugLoc(), SDNodeOrder);
6694     return;
6695   }
6696 
6697   case Intrinsic::eh_typeid_for: {
6698     // Find the type id for the given typeinfo.
6699     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6700     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6701     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6702     setValue(&I, Res);
6703     return;
6704   }
6705 
6706   case Intrinsic::eh_return_i32:
6707   case Intrinsic::eh_return_i64:
6708     DAG.getMachineFunction().setCallsEHReturn(true);
6709     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6710                             MVT::Other,
6711                             getControlRoot(),
6712                             getValue(I.getArgOperand(0)),
6713                             getValue(I.getArgOperand(1))));
6714     return;
6715   case Intrinsic::eh_unwind_init:
6716     DAG.getMachineFunction().setCallsUnwindInit(true);
6717     return;
6718   case Intrinsic::eh_dwarf_cfa:
6719     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6720                              TLI.getPointerTy(DAG.getDataLayout()),
6721                              getValue(I.getArgOperand(0))));
6722     return;
6723   case Intrinsic::eh_sjlj_callsite: {
6724     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6725     assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6726 
6727     FuncInfo.setCurrentCallSite(CI->getZExtValue());
6728     return;
6729   }
6730   case Intrinsic::eh_sjlj_functioncontext: {
6731     // Get and store the index of the function context.
6732     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6733     AllocaInst *FnCtx =
6734       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6735     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6736     MFI.setFunctionContextIndex(FI);
6737     return;
6738   }
6739   case Intrinsic::eh_sjlj_setjmp: {
6740     SDValue Ops[2];
6741     Ops[0] = getRoot();
6742     Ops[1] = getValue(I.getArgOperand(0));
6743     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6744                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6745     setValue(&I, Op.getValue(0));
6746     DAG.setRoot(Op.getValue(1));
6747     return;
6748   }
6749   case Intrinsic::eh_sjlj_longjmp:
6750     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6751                             getRoot(), getValue(I.getArgOperand(0))));
6752     return;
6753   case Intrinsic::eh_sjlj_setup_dispatch:
6754     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6755                             getRoot()));
6756     return;
6757   case Intrinsic::masked_gather:
6758     visitMaskedGather(I);
6759     return;
6760   case Intrinsic::masked_load:
6761     visitMaskedLoad(I);
6762     return;
6763   case Intrinsic::masked_scatter:
6764     visitMaskedScatter(I);
6765     return;
6766   case Intrinsic::masked_store:
6767     visitMaskedStore(I);
6768     return;
6769   case Intrinsic::masked_expandload:
6770     visitMaskedLoad(I, true /* IsExpanding */);
6771     return;
6772   case Intrinsic::masked_compressstore:
6773     visitMaskedStore(I, true /* IsCompressing */);
6774     return;
6775   case Intrinsic::powi:
6776     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6777                             getValue(I.getArgOperand(1)), DAG));
6778     return;
6779   case Intrinsic::log:
6780     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6781     return;
6782   case Intrinsic::log2:
6783     setValue(&I,
6784              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6785     return;
6786   case Intrinsic::log10:
6787     setValue(&I,
6788              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6789     return;
6790   case Intrinsic::exp:
6791     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6792     return;
6793   case Intrinsic::exp2:
6794     setValue(&I,
6795              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6796     return;
6797   case Intrinsic::pow:
6798     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6799                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6800     return;
6801   case Intrinsic::sqrt:
6802   case Intrinsic::fabs:
6803   case Intrinsic::sin:
6804   case Intrinsic::cos:
6805   case Intrinsic::tan:
6806   case Intrinsic::asin:
6807   case Intrinsic::acos:
6808   case Intrinsic::atan:
6809   case Intrinsic::sinh:
6810   case Intrinsic::cosh:
6811   case Intrinsic::tanh:
6812   case Intrinsic::exp10:
6813   case Intrinsic::floor:
6814   case Intrinsic::ceil:
6815   case Intrinsic::trunc:
6816   case Intrinsic::rint:
6817   case Intrinsic::nearbyint:
6818   case Intrinsic::round:
6819   case Intrinsic::roundeven:
6820   case Intrinsic::canonicalize: {
6821     unsigned Opcode;
6822     // clang-format off
6823     switch (Intrinsic) {
6824     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6825     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6826     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6827     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6828     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6829     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6830     case Intrinsic::asin:         Opcode = ISD::FASIN;         break;
6831     case Intrinsic::acos:         Opcode = ISD::FACOS;         break;
6832     case Intrinsic::atan:         Opcode = ISD::FATAN;         break;
6833     case Intrinsic::sinh:         Opcode = ISD::FSINH;         break;
6834     case Intrinsic::cosh:         Opcode = ISD::FCOSH;         break;
6835     case Intrinsic::tanh:         Opcode = ISD::FTANH;         break;
6836     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6837     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6838     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6839     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6840     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6841     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6842     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6843     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6844     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6845     }
6846     // clang-format on
6847 
6848     setValue(&I, DAG.getNode(Opcode, sdl,
6849                              getValue(I.getArgOperand(0)).getValueType(),
6850                              getValue(I.getArgOperand(0)), Flags));
6851     return;
6852   }
6853   case Intrinsic::lround:
6854   case Intrinsic::llround:
6855   case Intrinsic::lrint:
6856   case Intrinsic::llrint: {
6857     unsigned Opcode;
6858     // clang-format off
6859     switch (Intrinsic) {
6860     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6861     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6862     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6863     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6864     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6865     }
6866     // clang-format on
6867 
6868     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6869     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6870                              getValue(I.getArgOperand(0))));
6871     return;
6872   }
6873   case Intrinsic::minnum:
6874     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6875                              getValue(I.getArgOperand(0)).getValueType(),
6876                              getValue(I.getArgOperand(0)),
6877                              getValue(I.getArgOperand(1)), Flags));
6878     return;
6879   case Intrinsic::maxnum:
6880     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6881                              getValue(I.getArgOperand(0)).getValueType(),
6882                              getValue(I.getArgOperand(0)),
6883                              getValue(I.getArgOperand(1)), Flags));
6884     return;
6885   case Intrinsic::minimum:
6886     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6887                              getValue(I.getArgOperand(0)).getValueType(),
6888                              getValue(I.getArgOperand(0)),
6889                              getValue(I.getArgOperand(1)), Flags));
6890     return;
6891   case Intrinsic::maximum:
6892     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6893                              getValue(I.getArgOperand(0)).getValueType(),
6894                              getValue(I.getArgOperand(0)),
6895                              getValue(I.getArgOperand(1)), Flags));
6896     return;
6897   case Intrinsic::minimumnum:
6898     setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6899                              getValue(I.getArgOperand(0)).getValueType(),
6900                              getValue(I.getArgOperand(0)),
6901                              getValue(I.getArgOperand(1)), Flags));
6902     return;
6903   case Intrinsic::maximumnum:
6904     setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
6905                              getValue(I.getArgOperand(0)).getValueType(),
6906                              getValue(I.getArgOperand(0)),
6907                              getValue(I.getArgOperand(1)), Flags));
6908     return;
6909   case Intrinsic::copysign:
6910     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6911                              getValue(I.getArgOperand(0)).getValueType(),
6912                              getValue(I.getArgOperand(0)),
6913                              getValue(I.getArgOperand(1)), Flags));
6914     return;
6915   case Intrinsic::ldexp:
6916     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6917                              getValue(I.getArgOperand(0)).getValueType(),
6918                              getValue(I.getArgOperand(0)),
6919                              getValue(I.getArgOperand(1)), Flags));
6920     return;
6921   case Intrinsic::frexp: {
6922     SmallVector<EVT, 2> ValueVTs;
6923     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6924     SDVTList VTs = DAG.getVTList(ValueVTs);
6925     setValue(&I,
6926              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6927     return;
6928   }
6929   case Intrinsic::arithmetic_fence: {
6930     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6931                              getValue(I.getArgOperand(0)).getValueType(),
6932                              getValue(I.getArgOperand(0)), Flags));
6933     return;
6934   }
6935   case Intrinsic::fma:
6936     setValue(&I, DAG.getNode(
6937                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6938                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6939                      getValue(I.getArgOperand(2)), Flags));
6940     return;
6941 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6942   case Intrinsic::INTRINSIC:
6943 #include "llvm/IR/ConstrainedOps.def"
6944     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6945     return;
6946 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6947 #include "llvm/IR/VPIntrinsics.def"
6948     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6949     return;
6950   case Intrinsic::fptrunc_round: {
6951     // Get the last argument, the metadata and convert it to an integer in the
6952     // call
6953     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6954     std::optional<RoundingMode> RoundMode =
6955         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6956 
6957     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6958 
6959     // Propagate fast-math-flags from IR to node(s).
6960     SDNodeFlags Flags;
6961     Flags.copyFMF(*cast<FPMathOperator>(&I));
6962     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6963 
6964     SDValue Result;
6965     Result = DAG.getNode(
6966         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6967         DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
6968     setValue(&I, Result);
6969 
6970     return;
6971   }
6972   case Intrinsic::fmuladd: {
6973     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6974     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6975         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6976       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6977                                getValue(I.getArgOperand(0)).getValueType(),
6978                                getValue(I.getArgOperand(0)),
6979                                getValue(I.getArgOperand(1)),
6980                                getValue(I.getArgOperand(2)), Flags));
6981     } else {
6982       // TODO: Intrinsic calls should have fast-math-flags.
6983       SDValue Mul = DAG.getNode(
6984           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6985           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6986       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6987                                 getValue(I.getArgOperand(0)).getValueType(),
6988                                 Mul, getValue(I.getArgOperand(2)), Flags);
6989       setValue(&I, Add);
6990     }
6991     return;
6992   }
6993   case Intrinsic::convert_to_fp16:
6994     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6995                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6996                                          getValue(I.getArgOperand(0)),
6997                                          DAG.getTargetConstant(0, sdl,
6998                                                                MVT::i32))));
6999     return;
7000   case Intrinsic::convert_from_fp16:
7001     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7002                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
7003                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7004                                          getValue(I.getArgOperand(0)))));
7005     return;
7006   case Intrinsic::fptosi_sat: {
7007     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7008     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7009                              getValue(I.getArgOperand(0)),
7010                              DAG.getValueType(VT.getScalarType())));
7011     return;
7012   }
7013   case Intrinsic::fptoui_sat: {
7014     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7015     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7016                              getValue(I.getArgOperand(0)),
7017                              DAG.getValueType(VT.getScalarType())));
7018     return;
7019   }
7020   case Intrinsic::set_rounding:
7021     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7022                       {getRoot(), getValue(I.getArgOperand(0))});
7023     setValue(&I, Res);
7024     DAG.setRoot(Res.getValue(0));
7025     return;
7026   case Intrinsic::is_fpclass: {
7027     const DataLayout DLayout = DAG.getDataLayout();
7028     EVT DestVT = TLI.getValueType(DLayout, I.getType());
7029     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7030     FPClassTest Test = static_cast<FPClassTest>(
7031         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7032     MachineFunction &MF = DAG.getMachineFunction();
7033     const Function &F = MF.getFunction();
7034     SDValue Op = getValue(I.getArgOperand(0));
7035     SDNodeFlags Flags;
7036     Flags.setNoFPExcept(
7037         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7038     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7039     // expansion can use illegal types. Making expansion early allows
7040     // legalizing these types prior to selection.
7041     if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7042         !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7043       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7044       setValue(&I, Result);
7045       return;
7046     }
7047 
7048     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7049     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7050     setValue(&I, V);
7051     return;
7052   }
7053   case Intrinsic::get_fpenv: {
7054     const DataLayout DLayout = DAG.getDataLayout();
7055     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7056     Align TempAlign = DAG.getEVTAlign(EnvVT);
7057     SDValue Chain = getRoot();
7058     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7059     // and temporary storage in stack.
7060     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7061       Res = DAG.getNode(
7062           ISD::GET_FPENV, sdl,
7063           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7064                         MVT::Other),
7065           Chain);
7066     } else {
7067       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7068       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7069       auto MPI =
7070           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7071       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7072           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7073           TempAlign);
7074       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7075       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7076     }
7077     setValue(&I, Res);
7078     DAG.setRoot(Res.getValue(1));
7079     return;
7080   }
7081   case Intrinsic::set_fpenv: {
7082     const DataLayout DLayout = DAG.getDataLayout();
7083     SDValue Env = getValue(I.getArgOperand(0));
7084     EVT EnvVT = Env.getValueType();
7085     Align TempAlign = DAG.getEVTAlign(EnvVT);
7086     SDValue Chain = getRoot();
7087     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7088     // environment from memory.
7089     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7090       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7091     } else {
7092       // Allocate space in stack, copy environment bits into it and use this
7093       // memory in SET_FPENV_MEM.
7094       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7095       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7096       auto MPI =
7097           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7098       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7099                            MachineMemOperand::MOStore);
7100       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7101           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7102           TempAlign);
7103       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7104     }
7105     DAG.setRoot(Chain);
7106     return;
7107   }
7108   case Intrinsic::reset_fpenv:
7109     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7110     return;
7111   case Intrinsic::get_fpmode:
7112     Res = DAG.getNode(
7113         ISD::GET_FPMODE, sdl,
7114         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7115                       MVT::Other),
7116         DAG.getRoot());
7117     setValue(&I, Res);
7118     DAG.setRoot(Res.getValue(1));
7119     return;
7120   case Intrinsic::set_fpmode:
7121     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7122                       getValue(I.getArgOperand(0)));
7123     DAG.setRoot(Res);
7124     return;
7125   case Intrinsic::reset_fpmode: {
7126     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7127     DAG.setRoot(Res);
7128     return;
7129   }
7130   case Intrinsic::pcmarker: {
7131     SDValue Tmp = getValue(I.getArgOperand(0));
7132     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7133     return;
7134   }
7135   case Intrinsic::readcyclecounter: {
7136     SDValue Op = getRoot();
7137     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7138                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7139     setValue(&I, Res);
7140     DAG.setRoot(Res.getValue(1));
7141     return;
7142   }
7143   case Intrinsic::readsteadycounter: {
7144     SDValue Op = getRoot();
7145     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7146                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7147     setValue(&I, Res);
7148     DAG.setRoot(Res.getValue(1));
7149     return;
7150   }
7151   case Intrinsic::bitreverse:
7152     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7153                              getValue(I.getArgOperand(0)).getValueType(),
7154                              getValue(I.getArgOperand(0))));
7155     return;
7156   case Intrinsic::bswap:
7157     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7158                              getValue(I.getArgOperand(0)).getValueType(),
7159                              getValue(I.getArgOperand(0))));
7160     return;
7161   case Intrinsic::cttz: {
7162     SDValue Arg = getValue(I.getArgOperand(0));
7163     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7164     EVT Ty = Arg.getValueType();
7165     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7166                              sdl, Ty, Arg));
7167     return;
7168   }
7169   case Intrinsic::ctlz: {
7170     SDValue Arg = getValue(I.getArgOperand(0));
7171     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7172     EVT Ty = Arg.getValueType();
7173     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7174                              sdl, Ty, Arg));
7175     return;
7176   }
7177   case Intrinsic::ctpop: {
7178     SDValue Arg = getValue(I.getArgOperand(0));
7179     EVT Ty = Arg.getValueType();
7180     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7181     return;
7182   }
7183   case Intrinsic::fshl:
7184   case Intrinsic::fshr: {
7185     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7186     SDValue X = getValue(I.getArgOperand(0));
7187     SDValue Y = getValue(I.getArgOperand(1));
7188     SDValue Z = getValue(I.getArgOperand(2));
7189     EVT VT = X.getValueType();
7190 
7191     if (X == Y) {
7192       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7193       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7194     } else {
7195       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7196       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7197     }
7198     return;
7199   }
7200   case Intrinsic::sadd_sat: {
7201     SDValue Op1 = getValue(I.getArgOperand(0));
7202     SDValue Op2 = getValue(I.getArgOperand(1));
7203     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7204     return;
7205   }
7206   case Intrinsic::uadd_sat: {
7207     SDValue Op1 = getValue(I.getArgOperand(0));
7208     SDValue Op2 = getValue(I.getArgOperand(1));
7209     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7210     return;
7211   }
7212   case Intrinsic::ssub_sat: {
7213     SDValue Op1 = getValue(I.getArgOperand(0));
7214     SDValue Op2 = getValue(I.getArgOperand(1));
7215     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7216     return;
7217   }
7218   case Intrinsic::usub_sat: {
7219     SDValue Op1 = getValue(I.getArgOperand(0));
7220     SDValue Op2 = getValue(I.getArgOperand(1));
7221     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7222     return;
7223   }
7224   case Intrinsic::sshl_sat: {
7225     SDValue Op1 = getValue(I.getArgOperand(0));
7226     SDValue Op2 = getValue(I.getArgOperand(1));
7227     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7228     return;
7229   }
7230   case Intrinsic::ushl_sat: {
7231     SDValue Op1 = getValue(I.getArgOperand(0));
7232     SDValue Op2 = getValue(I.getArgOperand(1));
7233     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7234     return;
7235   }
7236   case Intrinsic::smul_fix:
7237   case Intrinsic::umul_fix:
7238   case Intrinsic::smul_fix_sat:
7239   case Intrinsic::umul_fix_sat: {
7240     SDValue Op1 = getValue(I.getArgOperand(0));
7241     SDValue Op2 = getValue(I.getArgOperand(1));
7242     SDValue Op3 = getValue(I.getArgOperand(2));
7243     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7244                              Op1.getValueType(), Op1, Op2, Op3));
7245     return;
7246   }
7247   case Intrinsic::sdiv_fix:
7248   case Intrinsic::udiv_fix:
7249   case Intrinsic::sdiv_fix_sat:
7250   case Intrinsic::udiv_fix_sat: {
7251     SDValue Op1 = getValue(I.getArgOperand(0));
7252     SDValue Op2 = getValue(I.getArgOperand(1));
7253     SDValue Op3 = getValue(I.getArgOperand(2));
7254     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7255                               Op1, Op2, Op3, DAG, TLI));
7256     return;
7257   }
7258   case Intrinsic::smax: {
7259     SDValue Op1 = getValue(I.getArgOperand(0));
7260     SDValue Op2 = getValue(I.getArgOperand(1));
7261     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7262     return;
7263   }
7264   case Intrinsic::smin: {
7265     SDValue Op1 = getValue(I.getArgOperand(0));
7266     SDValue Op2 = getValue(I.getArgOperand(1));
7267     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7268     return;
7269   }
7270   case Intrinsic::umax: {
7271     SDValue Op1 = getValue(I.getArgOperand(0));
7272     SDValue Op2 = getValue(I.getArgOperand(1));
7273     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7274     return;
7275   }
7276   case Intrinsic::umin: {
7277     SDValue Op1 = getValue(I.getArgOperand(0));
7278     SDValue Op2 = getValue(I.getArgOperand(1));
7279     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7280     return;
7281   }
7282   case Intrinsic::abs: {
7283     // TODO: Preserve "int min is poison" arg in SDAG?
7284     SDValue Op1 = getValue(I.getArgOperand(0));
7285     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7286     return;
7287   }
7288   case Intrinsic::scmp: {
7289     SDValue Op1 = getValue(I.getArgOperand(0));
7290     SDValue Op2 = getValue(I.getArgOperand(1));
7291     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7292     setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7293     break;
7294   }
7295   case Intrinsic::ucmp: {
7296     SDValue Op1 = getValue(I.getArgOperand(0));
7297     SDValue Op2 = getValue(I.getArgOperand(1));
7298     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7299     setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7300     break;
7301   }
7302   case Intrinsic::stacksave: {
7303     SDValue Op = getRoot();
7304     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7305     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7306     setValue(&I, Res);
7307     DAG.setRoot(Res.getValue(1));
7308     return;
7309   }
7310   case Intrinsic::stackrestore:
7311     Res = getValue(I.getArgOperand(0));
7312     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7313     return;
7314   case Intrinsic::get_dynamic_area_offset: {
7315     SDValue Op = getRoot();
7316     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7317     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7318     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7319     // target.
7320     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7321       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7322                          " intrinsic!");
7323     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7324                       Op);
7325     DAG.setRoot(Op);
7326     setValue(&I, Res);
7327     return;
7328   }
7329   case Intrinsic::stackguard: {
7330     MachineFunction &MF = DAG.getMachineFunction();
7331     const Module &M = *MF.getFunction().getParent();
7332     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7333     SDValue Chain = getRoot();
7334     if (TLI.useLoadStackGuardNode()) {
7335       Res = getLoadStackGuard(DAG, sdl, Chain);
7336       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7337     } else {
7338       const Value *Global = TLI.getSDagStackGuard(M);
7339       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7340       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7341                         MachinePointerInfo(Global, 0), Align,
7342                         MachineMemOperand::MOVolatile);
7343     }
7344     if (TLI.useStackGuardXorFP())
7345       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7346     DAG.setRoot(Chain);
7347     setValue(&I, Res);
7348     return;
7349   }
7350   case Intrinsic::stackprotector: {
7351     // Emit code into the DAG to store the stack guard onto the stack.
7352     MachineFunction &MF = DAG.getMachineFunction();
7353     MachineFrameInfo &MFI = MF.getFrameInfo();
7354     SDValue Src, Chain = getRoot();
7355 
7356     if (TLI.useLoadStackGuardNode())
7357       Src = getLoadStackGuard(DAG, sdl, Chain);
7358     else
7359       Src = getValue(I.getArgOperand(0));   // The guard's value.
7360 
7361     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7362 
7363     int FI = FuncInfo.StaticAllocaMap[Slot];
7364     MFI.setStackProtectorIndex(FI);
7365     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7366 
7367     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7368 
7369     // Store the stack protector onto the stack.
7370     Res = DAG.getStore(
7371         Chain, sdl, Src, FIN,
7372         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7373         MaybeAlign(), MachineMemOperand::MOVolatile);
7374     setValue(&I, Res);
7375     DAG.setRoot(Res);
7376     return;
7377   }
7378   case Intrinsic::objectsize:
7379     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7380 
7381   case Intrinsic::is_constant:
7382     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7383 
7384   case Intrinsic::annotation:
7385   case Intrinsic::ptr_annotation:
7386   case Intrinsic::launder_invariant_group:
7387   case Intrinsic::strip_invariant_group:
7388     // Drop the intrinsic, but forward the value
7389     setValue(&I, getValue(I.getOperand(0)));
7390     return;
7391 
7392   case Intrinsic::assume:
7393   case Intrinsic::experimental_noalias_scope_decl:
7394   case Intrinsic::var_annotation:
7395   case Intrinsic::sideeffect:
7396     // Discard annotate attributes, noalias scope declarations, assumptions, and
7397     // artificial side-effects.
7398     return;
7399 
7400   case Intrinsic::codeview_annotation: {
7401     // Emit a label associated with this metadata.
7402     MachineFunction &MF = DAG.getMachineFunction();
7403     MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7404     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7405     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7406     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7407     DAG.setRoot(Res);
7408     return;
7409   }
7410 
7411   case Intrinsic::init_trampoline: {
7412     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7413 
7414     SDValue Ops[6];
7415     Ops[0] = getRoot();
7416     Ops[1] = getValue(I.getArgOperand(0));
7417     Ops[2] = getValue(I.getArgOperand(1));
7418     Ops[3] = getValue(I.getArgOperand(2));
7419     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7420     Ops[5] = DAG.getSrcValue(F);
7421 
7422     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7423 
7424     DAG.setRoot(Res);
7425     return;
7426   }
7427   case Intrinsic::adjust_trampoline:
7428     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7429                              TLI.getPointerTy(DAG.getDataLayout()),
7430                              getValue(I.getArgOperand(0))));
7431     return;
7432   case Intrinsic::gcroot: {
7433     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7434            "only valid in functions with gc specified, enforced by Verifier");
7435     assert(GFI && "implied by previous");
7436     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7437     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7438 
7439     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7440     GFI->addStackRoot(FI->getIndex(), TypeMap);
7441     return;
7442   }
7443   case Intrinsic::gcread:
7444   case Intrinsic::gcwrite:
7445     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7446   case Intrinsic::get_rounding:
7447     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7448     setValue(&I, Res);
7449     DAG.setRoot(Res.getValue(1));
7450     return;
7451 
7452   case Intrinsic::expect:
7453     // Just replace __builtin_expect(exp, c) with EXP.
7454     setValue(&I, getValue(I.getArgOperand(0)));
7455     return;
7456 
7457   case Intrinsic::ubsantrap:
7458   case Intrinsic::debugtrap:
7459   case Intrinsic::trap: {
7460     StringRef TrapFuncName =
7461         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7462     if (TrapFuncName.empty()) {
7463       switch (Intrinsic) {
7464       case Intrinsic::trap:
7465         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7466         break;
7467       case Intrinsic::debugtrap:
7468         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7469         break;
7470       case Intrinsic::ubsantrap:
7471         DAG.setRoot(DAG.getNode(
7472             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7473             DAG.getTargetConstant(
7474                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7475                 MVT::i32)));
7476         break;
7477       default: llvm_unreachable("unknown trap intrinsic");
7478       }
7479       DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7480                              I.hasFnAttr(Attribute::NoMerge));
7481       return;
7482     }
7483     TargetLowering::ArgListTy Args;
7484     if (Intrinsic == Intrinsic::ubsantrap) {
7485       Args.push_back(TargetLoweringBase::ArgListEntry());
7486       Args[0].Val = I.getArgOperand(0);
7487       Args[0].Node = getValue(Args[0].Val);
7488       Args[0].Ty = Args[0].Val->getType();
7489     }
7490 
7491     TargetLowering::CallLoweringInfo CLI(DAG);
7492     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7493         CallingConv::C, I.getType(),
7494         DAG.getExternalSymbol(TrapFuncName.data(),
7495                               TLI.getPointerTy(DAG.getDataLayout())),
7496         std::move(Args));
7497     CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7498     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7499     DAG.setRoot(Result.second);
7500     return;
7501   }
7502 
7503   case Intrinsic::allow_runtime_check:
7504   case Intrinsic::allow_ubsan_check:
7505     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7506     return;
7507 
7508   case Intrinsic::uadd_with_overflow:
7509   case Intrinsic::sadd_with_overflow:
7510   case Intrinsic::usub_with_overflow:
7511   case Intrinsic::ssub_with_overflow:
7512   case Intrinsic::umul_with_overflow:
7513   case Intrinsic::smul_with_overflow: {
7514     ISD::NodeType Op;
7515     switch (Intrinsic) {
7516     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7517     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7518     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7519     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7520     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7521     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7522     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7523     }
7524     SDValue Op1 = getValue(I.getArgOperand(0));
7525     SDValue Op2 = getValue(I.getArgOperand(1));
7526 
7527     EVT ResultVT = Op1.getValueType();
7528     EVT OverflowVT = MVT::i1;
7529     if (ResultVT.isVector())
7530       OverflowVT = EVT::getVectorVT(
7531           *Context, OverflowVT, ResultVT.getVectorElementCount());
7532 
7533     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7534     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7535     return;
7536   }
7537   case Intrinsic::prefetch: {
7538     SDValue Ops[5];
7539     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7540     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7541     Ops[0] = DAG.getRoot();
7542     Ops[1] = getValue(I.getArgOperand(0));
7543     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7544                                    MVT::i32);
7545     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7546                                    MVT::i32);
7547     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7548                                    MVT::i32);
7549     SDValue Result = DAG.getMemIntrinsicNode(
7550         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7551         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7552         /* align */ std::nullopt, Flags);
7553 
7554     // Chain the prefetch in parallel with any pending loads, to stay out of
7555     // the way of later optimizations.
7556     PendingLoads.push_back(Result);
7557     Result = getRoot();
7558     DAG.setRoot(Result);
7559     return;
7560   }
7561   case Intrinsic::lifetime_start:
7562   case Intrinsic::lifetime_end: {
7563     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7564     // Stack coloring is not enabled in O0, discard region information.
7565     if (TM.getOptLevel() == CodeGenOptLevel::None)
7566       return;
7567 
7568     const int64_t ObjectSize =
7569         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7570     Value *const ObjectPtr = I.getArgOperand(1);
7571     SmallVector<const Value *, 4> Allocas;
7572     getUnderlyingObjects(ObjectPtr, Allocas);
7573 
7574     for (const Value *Alloca : Allocas) {
7575       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7576 
7577       // Could not find an Alloca.
7578       if (!LifetimeObject)
7579         continue;
7580 
7581       // First check that the Alloca is static, otherwise it won't have a
7582       // valid frame index.
7583       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7584       if (SI == FuncInfo.StaticAllocaMap.end())
7585         return;
7586 
7587       const int FrameIndex = SI->second;
7588       int64_t Offset;
7589       if (GetPointerBaseWithConstantOffset(
7590               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7591         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7592       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7593                                 Offset);
7594       DAG.setRoot(Res);
7595     }
7596     return;
7597   }
7598   case Intrinsic::pseudoprobe: {
7599     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7600     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7601     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7602     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7603     DAG.setRoot(Res);
7604     return;
7605   }
7606   case Intrinsic::invariant_start:
7607     // Discard region information.
7608     setValue(&I,
7609              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7610     return;
7611   case Intrinsic::invariant_end:
7612     // Discard region information.
7613     return;
7614   case Intrinsic::clear_cache: {
7615     SDValue InputChain = DAG.getRoot();
7616     SDValue StartVal = getValue(I.getArgOperand(0));
7617     SDValue EndVal = getValue(I.getArgOperand(1));
7618     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7619                       {InputChain, StartVal, EndVal});
7620     setValue(&I, Res);
7621     DAG.setRoot(Res);
7622     return;
7623   }
7624   case Intrinsic::donothing:
7625   case Intrinsic::seh_try_begin:
7626   case Intrinsic::seh_scope_begin:
7627   case Intrinsic::seh_try_end:
7628   case Intrinsic::seh_scope_end:
7629     // ignore
7630     return;
7631   case Intrinsic::experimental_stackmap:
7632     visitStackmap(I);
7633     return;
7634   case Intrinsic::experimental_patchpoint_void:
7635   case Intrinsic::experimental_patchpoint:
7636     visitPatchpoint(I);
7637     return;
7638   case Intrinsic::experimental_gc_statepoint:
7639     LowerStatepoint(cast<GCStatepointInst>(I));
7640     return;
7641   case Intrinsic::experimental_gc_result:
7642     visitGCResult(cast<GCResultInst>(I));
7643     return;
7644   case Intrinsic::experimental_gc_relocate:
7645     visitGCRelocate(cast<GCRelocateInst>(I));
7646     return;
7647   case Intrinsic::instrprof_cover:
7648     llvm_unreachable("instrprof failed to lower a cover");
7649   case Intrinsic::instrprof_increment:
7650     llvm_unreachable("instrprof failed to lower an increment");
7651   case Intrinsic::instrprof_timestamp:
7652     llvm_unreachable("instrprof failed to lower a timestamp");
7653   case Intrinsic::instrprof_value_profile:
7654     llvm_unreachable("instrprof failed to lower a value profiling call");
7655   case Intrinsic::instrprof_mcdc_parameters:
7656     llvm_unreachable("instrprof failed to lower mcdc parameters");
7657   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7658     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7659   case Intrinsic::localescape: {
7660     MachineFunction &MF = DAG.getMachineFunction();
7661     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7662 
7663     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7664     // is the same on all targets.
7665     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7666       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7667       if (isa<ConstantPointerNull>(Arg))
7668         continue; // Skip null pointers. They represent a hole in index space.
7669       AllocaInst *Slot = cast<AllocaInst>(Arg);
7670       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7671              "can only escape static allocas");
7672       int FI = FuncInfo.StaticAllocaMap[Slot];
7673       MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7674           GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7675       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7676               TII->get(TargetOpcode::LOCAL_ESCAPE))
7677           .addSym(FrameAllocSym)
7678           .addFrameIndex(FI);
7679     }
7680 
7681     return;
7682   }
7683 
7684   case Intrinsic::localrecover: {
7685     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7686     MachineFunction &MF = DAG.getMachineFunction();
7687 
7688     // Get the symbol that defines the frame offset.
7689     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7690     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7691     unsigned IdxVal =
7692         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7693     MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7694         GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7695 
7696     Value *FP = I.getArgOperand(1);
7697     SDValue FPVal = getValue(FP);
7698     EVT PtrVT = FPVal.getValueType();
7699 
7700     // Create a MCSymbol for the label to avoid any target lowering
7701     // that would make this PC relative.
7702     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7703     SDValue OffsetVal =
7704         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7705 
7706     // Add the offset to the FP.
7707     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7708     setValue(&I, Add);
7709 
7710     return;
7711   }
7712 
7713   case Intrinsic::fake_use: {
7714     Value *V = I.getArgOperand(0);
7715     SDValue Ops[2];
7716     // For Values not declared or previously used in this basic block, the
7717     // NodeMap will not have an entry, and `getValue` will assert if V has no
7718     // valid register value.
7719     auto FakeUseValue = [&]() -> SDValue {
7720       SDValue &N = NodeMap[V];
7721       if (N.getNode())
7722         return N;
7723 
7724       // If there's a virtual register allocated and initialized for this
7725       // value, use it.
7726       if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7727         return copyFromReg;
7728       // FIXME: Do we want to preserve constants? It seems pointless.
7729       if (isa<Constant>(V))
7730         return getValue(V);
7731       return SDValue();
7732     }();
7733     if (!FakeUseValue || FakeUseValue.isUndef())
7734       return;
7735     Ops[0] = getRoot();
7736     Ops[1] = FakeUseValue;
7737     // Also, do not translate a fake use with an undef operand, or any other
7738     // empty SDValues.
7739     if (!Ops[1] || Ops[1].isUndef())
7740       return;
7741     DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7742     return;
7743   }
7744 
7745   case Intrinsic::eh_exceptionpointer:
7746   case Intrinsic::eh_exceptioncode: {
7747     // Get the exception pointer vreg, copy from it, and resize it to fit.
7748     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7749     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7750     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7751     Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7752     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7753     if (Intrinsic == Intrinsic::eh_exceptioncode)
7754       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7755     setValue(&I, N);
7756     return;
7757   }
7758   case Intrinsic::xray_customevent: {
7759     // Here we want to make sure that the intrinsic behaves as if it has a
7760     // specific calling convention.
7761     const auto &Triple = DAG.getTarget().getTargetTriple();
7762     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7763       return;
7764 
7765     SmallVector<SDValue, 8> Ops;
7766 
7767     // We want to say that we always want the arguments in registers.
7768     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7769     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7770     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7771     SDValue Chain = getRoot();
7772     Ops.push_back(LogEntryVal);
7773     Ops.push_back(StrSizeVal);
7774     Ops.push_back(Chain);
7775 
7776     // We need to enforce the calling convention for the callsite, so that
7777     // argument ordering is enforced correctly, and that register allocation can
7778     // see that some registers may be assumed clobbered and have to preserve
7779     // them across calls to the intrinsic.
7780     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7781                                            sdl, NodeTys, Ops);
7782     SDValue patchableNode = SDValue(MN, 0);
7783     DAG.setRoot(patchableNode);
7784     setValue(&I, patchableNode);
7785     return;
7786   }
7787   case Intrinsic::xray_typedevent: {
7788     // Here we want to make sure that the intrinsic behaves as if it has a
7789     // specific calling convention.
7790     const auto &Triple = DAG.getTarget().getTargetTriple();
7791     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7792       return;
7793 
7794     SmallVector<SDValue, 8> Ops;
7795 
7796     // We want to say that we always want the arguments in registers.
7797     // It's unclear to me how manipulating the selection DAG here forces callers
7798     // to provide arguments in registers instead of on the stack.
7799     SDValue LogTypeId = getValue(I.getArgOperand(0));
7800     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7801     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7802     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7803     SDValue Chain = getRoot();
7804     Ops.push_back(LogTypeId);
7805     Ops.push_back(LogEntryVal);
7806     Ops.push_back(StrSizeVal);
7807     Ops.push_back(Chain);
7808 
7809     // We need to enforce the calling convention for the callsite, so that
7810     // argument ordering is enforced correctly, and that register allocation can
7811     // see that some registers may be assumed clobbered and have to preserve
7812     // them across calls to the intrinsic.
7813     MachineSDNode *MN = DAG.getMachineNode(
7814         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7815     SDValue patchableNode = SDValue(MN, 0);
7816     DAG.setRoot(patchableNode);
7817     setValue(&I, patchableNode);
7818     return;
7819   }
7820   case Intrinsic::experimental_deoptimize:
7821     LowerDeoptimizeCall(&I);
7822     return;
7823   case Intrinsic::stepvector:
7824     visitStepVector(I);
7825     return;
7826   case Intrinsic::vector_reduce_fadd:
7827   case Intrinsic::vector_reduce_fmul:
7828   case Intrinsic::vector_reduce_add:
7829   case Intrinsic::vector_reduce_mul:
7830   case Intrinsic::vector_reduce_and:
7831   case Intrinsic::vector_reduce_or:
7832   case Intrinsic::vector_reduce_xor:
7833   case Intrinsic::vector_reduce_smax:
7834   case Intrinsic::vector_reduce_smin:
7835   case Intrinsic::vector_reduce_umax:
7836   case Intrinsic::vector_reduce_umin:
7837   case Intrinsic::vector_reduce_fmax:
7838   case Intrinsic::vector_reduce_fmin:
7839   case Intrinsic::vector_reduce_fmaximum:
7840   case Intrinsic::vector_reduce_fminimum:
7841     visitVectorReduce(I, Intrinsic);
7842     return;
7843 
7844   case Intrinsic::icall_branch_funnel: {
7845     SmallVector<SDValue, 16> Ops;
7846     Ops.push_back(getValue(I.getArgOperand(0)));
7847 
7848     int64_t Offset;
7849     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7850         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7851     if (!Base)
7852       report_fatal_error(
7853           "llvm.icall.branch.funnel operand must be a GlobalValue");
7854     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7855 
7856     struct BranchFunnelTarget {
7857       int64_t Offset;
7858       SDValue Target;
7859     };
7860     SmallVector<BranchFunnelTarget, 8> Targets;
7861 
7862     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7863       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7864           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7865       if (ElemBase != Base)
7866         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7867                            "to the same GlobalValue");
7868 
7869       SDValue Val = getValue(I.getArgOperand(Op + 1));
7870       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7871       if (!GA)
7872         report_fatal_error(
7873             "llvm.icall.branch.funnel operand must be a GlobalValue");
7874       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7875                                      GA->getGlobal(), sdl, Val.getValueType(),
7876                                      GA->getOffset())});
7877     }
7878     llvm::sort(Targets,
7879                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7880                  return T1.Offset < T2.Offset;
7881                });
7882 
7883     for (auto &T : Targets) {
7884       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7885       Ops.push_back(T.Target);
7886     }
7887 
7888     Ops.push_back(DAG.getRoot()); // Chain
7889     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7890                                  MVT::Other, Ops),
7891               0);
7892     DAG.setRoot(N);
7893     setValue(&I, N);
7894     HasTailCall = true;
7895     return;
7896   }
7897 
7898   case Intrinsic::wasm_landingpad_index:
7899     // Information this intrinsic contained has been transferred to
7900     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7901     // delete it now.
7902     return;
7903 
7904   case Intrinsic::aarch64_settag:
7905   case Intrinsic::aarch64_settag_zero: {
7906     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7907     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7908     SDValue Val = TSI.EmitTargetCodeForSetTag(
7909         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7910         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7911         ZeroMemory);
7912     DAG.setRoot(Val);
7913     setValue(&I, Val);
7914     return;
7915   }
7916   case Intrinsic::amdgcn_cs_chain: {
7917     assert(I.arg_size() == 5 && "Additional args not supported yet");
7918     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7919            "Non-zero flags not supported yet");
7920 
7921     // At this point we don't care if it's amdgpu_cs_chain or
7922     // amdgpu_cs_chain_preserve.
7923     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7924 
7925     Type *RetTy = I.getType();
7926     assert(RetTy->isVoidTy() && "Should not return");
7927 
7928     SDValue Callee = getValue(I.getOperand(0));
7929 
7930     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7931     // We'll also tack the value of the EXEC mask at the end.
7932     TargetLowering::ArgListTy Args;
7933     Args.reserve(3);
7934 
7935     for (unsigned Idx : {2, 3, 1}) {
7936       TargetLowering::ArgListEntry Arg;
7937       Arg.Node = getValue(I.getOperand(Idx));
7938       Arg.Ty = I.getOperand(Idx)->getType();
7939       Arg.setAttributes(&I, Idx);
7940       Args.push_back(Arg);
7941     }
7942 
7943     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7944     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7945     Args[2].IsInReg = true; // EXEC should be inreg
7946 
7947     TargetLowering::CallLoweringInfo CLI(DAG);
7948     CLI.setDebugLoc(getCurSDLoc())
7949         .setChain(getRoot())
7950         .setCallee(CC, RetTy, Callee, std::move(Args))
7951         .setNoReturn(true)
7952         .setTailCall(true)
7953         .setConvergent(I.isConvergent());
7954     CLI.CB = &I;
7955     std::pair<SDValue, SDValue> Result =
7956         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7957     (void)Result;
7958     assert(!Result.first.getNode() && !Result.second.getNode() &&
7959            "Should've lowered as tail call");
7960 
7961     HasTailCall = true;
7962     return;
7963   }
7964   case Intrinsic::ptrmask: {
7965     SDValue Ptr = getValue(I.getOperand(0));
7966     SDValue Mask = getValue(I.getOperand(1));
7967 
7968     // On arm64_32, pointers are 32 bits when stored in memory, but
7969     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7970     // match the index type, but the pointer is 64 bits, so the the mask must be
7971     // zero-extended up to 64 bits to match the pointer.
7972     EVT PtrVT =
7973         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7974     EVT MemVT =
7975         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7976     assert(PtrVT == Ptr.getValueType());
7977     assert(MemVT == Mask.getValueType());
7978     if (MemVT != PtrVT)
7979       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7980 
7981     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7982     return;
7983   }
7984   case Intrinsic::threadlocal_address: {
7985     setValue(&I, getValue(I.getOperand(0)));
7986     return;
7987   }
7988   case Intrinsic::get_active_lane_mask: {
7989     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7990     SDValue Index = getValue(I.getOperand(0));
7991     EVT ElementVT = Index.getValueType();
7992 
7993     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7994       visitTargetIntrinsic(I, Intrinsic);
7995       return;
7996     }
7997 
7998     SDValue TripCount = getValue(I.getOperand(1));
7999     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8000                                  CCVT.getVectorElementCount());
8001 
8002     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8003     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8004     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8005     SDValue VectorInduction = DAG.getNode(
8006         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8007     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8008                                  VectorTripCount, ISD::CondCode::SETULT);
8009     setValue(&I, SetCC);
8010     return;
8011   }
8012   case Intrinsic::experimental_get_vector_length: {
8013     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8014            "Expected positive VF");
8015     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8016     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8017 
8018     SDValue Count = getValue(I.getOperand(0));
8019     EVT CountVT = Count.getValueType();
8020 
8021     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8022       visitTargetIntrinsic(I, Intrinsic);
8023       return;
8024     }
8025 
8026     // Expand to a umin between the trip count and the maximum elements the type
8027     // can hold.
8028     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8029 
8030     // Extend the trip count to at least the result VT.
8031     if (CountVT.bitsLT(VT)) {
8032       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8033       CountVT = VT;
8034     }
8035 
8036     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8037                                          ElementCount::get(VF, IsScalable));
8038 
8039     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8040     // Clip to the result type if needed.
8041     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8042 
8043     setValue(&I, Trunc);
8044     return;
8045   }
8046   case Intrinsic::experimental_vector_partial_reduce_add: {
8047 
8048     if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) {
8049       visitTargetIntrinsic(I, Intrinsic);
8050       return;
8051     }
8052 
8053     setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()),
8054                                          getValue(I.getOperand(0)),
8055                                          getValue(I.getOperand(1))));
8056     return;
8057   }
8058   case Intrinsic::experimental_cttz_elts: {
8059     auto DL = getCurSDLoc();
8060     SDValue Op = getValue(I.getOperand(0));
8061     EVT OpVT = Op.getValueType();
8062 
8063     if (!TLI.shouldExpandCttzElements(OpVT)) {
8064       visitTargetIntrinsic(I, Intrinsic);
8065       return;
8066     }
8067 
8068     if (OpVT.getScalarType() != MVT::i1) {
8069       // Compare the input vector elements to zero & use to count trailing zeros
8070       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8071       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8072                               OpVT.getVectorElementCount());
8073       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8074     }
8075 
8076     // If the zero-is-poison flag is set, we can assume the upper limit
8077     // of the result is VF-1.
8078     bool ZeroIsPoison =
8079         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8080     ConstantRange VScaleRange(1, true); // Dummy value.
8081     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8082       VScaleRange = getVScaleRange(I.getCaller(), 64);
8083     unsigned EltWidth = TLI.getBitWidthForCttzElements(
8084         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8085 
8086     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8087 
8088     // Create the new vector type & get the vector length
8089     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8090                                  OpVT.getVectorElementCount());
8091 
8092     SDValue VL =
8093         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8094 
8095     SDValue StepVec = DAG.getStepVector(DL, NewVT);
8096     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8097     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8098     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8099     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8100     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8101     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8102 
8103     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8104     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8105 
8106     setValue(&I, Ret);
8107     return;
8108   }
8109   case Intrinsic::vector_insert: {
8110     SDValue Vec = getValue(I.getOperand(0));
8111     SDValue SubVec = getValue(I.getOperand(1));
8112     SDValue Index = getValue(I.getOperand(2));
8113 
8114     // The intrinsic's index type is i64, but the SDNode requires an index type
8115     // suitable for the target. Convert the index as required.
8116     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8117     if (Index.getValueType() != VectorIdxTy)
8118       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8119 
8120     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8121     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8122                              Index));
8123     return;
8124   }
8125   case Intrinsic::vector_extract: {
8126     SDValue Vec = getValue(I.getOperand(0));
8127     SDValue Index = getValue(I.getOperand(1));
8128     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8129 
8130     // The intrinsic's index type is i64, but the SDNode requires an index type
8131     // suitable for the target. Convert the index as required.
8132     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8133     if (Index.getValueType() != VectorIdxTy)
8134       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8135 
8136     setValue(&I,
8137              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8138     return;
8139   }
8140   case Intrinsic::vector_reverse:
8141     visitVectorReverse(I);
8142     return;
8143   case Intrinsic::vector_splice:
8144     visitVectorSplice(I);
8145     return;
8146   case Intrinsic::callbr_landingpad:
8147     visitCallBrLandingPad(I);
8148     return;
8149   case Intrinsic::vector_interleave2:
8150     visitVectorInterleave(I);
8151     return;
8152   case Intrinsic::vector_deinterleave2:
8153     visitVectorDeinterleave(I);
8154     return;
8155   case Intrinsic::experimental_vector_compress:
8156     setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8157                              getValue(I.getArgOperand(0)).getValueType(),
8158                              getValue(I.getArgOperand(0)),
8159                              getValue(I.getArgOperand(1)),
8160                              getValue(I.getArgOperand(2)), Flags));
8161     return;
8162   case Intrinsic::experimental_convergence_anchor:
8163   case Intrinsic::experimental_convergence_entry:
8164   case Intrinsic::experimental_convergence_loop:
8165     visitConvergenceControl(I, Intrinsic);
8166     return;
8167   case Intrinsic::experimental_vector_histogram_add: {
8168     visitVectorHistogram(I, Intrinsic);
8169     return;
8170   }
8171   }
8172 }
8173 
8174 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8175     const ConstrainedFPIntrinsic &FPI) {
8176   SDLoc sdl = getCurSDLoc();
8177 
8178   // We do not need to serialize constrained FP intrinsics against
8179   // each other or against (nonvolatile) loads, so they can be
8180   // chained like loads.
8181   SDValue Chain = DAG.getRoot();
8182   SmallVector<SDValue, 4> Opers;
8183   Opers.push_back(Chain);
8184   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8185     Opers.push_back(getValue(FPI.getArgOperand(I)));
8186 
8187   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8188     assert(Result.getNode()->getNumValues() == 2);
8189 
8190     // Push node to the appropriate list so that future instructions can be
8191     // chained up correctly.
8192     SDValue OutChain = Result.getValue(1);
8193     switch (EB) {
8194     case fp::ExceptionBehavior::ebIgnore:
8195       // The only reason why ebIgnore nodes still need to be chained is that
8196       // they might depend on the current rounding mode, and therefore must
8197       // not be moved across instruction that may change that mode.
8198       [[fallthrough]];
8199     case fp::ExceptionBehavior::ebMayTrap:
8200       // These must not be moved across calls or instructions that may change
8201       // floating-point exception masks.
8202       PendingConstrainedFP.push_back(OutChain);
8203       break;
8204     case fp::ExceptionBehavior::ebStrict:
8205       // These must not be moved across calls or instructions that may change
8206       // floating-point exception masks or read floating-point exception flags.
8207       // In addition, they cannot be optimized out even if unused.
8208       PendingConstrainedFPStrict.push_back(OutChain);
8209       break;
8210     }
8211   };
8212 
8213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8214   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8215   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8216   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8217 
8218   SDNodeFlags Flags;
8219   if (EB == fp::ExceptionBehavior::ebIgnore)
8220     Flags.setNoFPExcept(true);
8221 
8222   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8223     Flags.copyFMF(*FPOp);
8224 
8225   unsigned Opcode;
8226   switch (FPI.getIntrinsicID()) {
8227   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8228 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8229   case Intrinsic::INTRINSIC:                                                   \
8230     Opcode = ISD::STRICT_##DAGN;                                               \
8231     break;
8232 #include "llvm/IR/ConstrainedOps.def"
8233   case Intrinsic::experimental_constrained_fmuladd: {
8234     Opcode = ISD::STRICT_FMA;
8235     // Break fmuladd into fmul and fadd.
8236     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8237         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8238       Opers.pop_back();
8239       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8240       pushOutChain(Mul, EB);
8241       Opcode = ISD::STRICT_FADD;
8242       Opers.clear();
8243       Opers.push_back(Mul.getValue(1));
8244       Opers.push_back(Mul.getValue(0));
8245       Opers.push_back(getValue(FPI.getArgOperand(2)));
8246     }
8247     break;
8248   }
8249   }
8250 
8251   // A few strict DAG nodes carry additional operands that are not
8252   // set up by the default code above.
8253   switch (Opcode) {
8254   default: break;
8255   case ISD::STRICT_FP_ROUND:
8256     Opers.push_back(
8257         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8258     break;
8259   case ISD::STRICT_FSETCC:
8260   case ISD::STRICT_FSETCCS: {
8261     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8262     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8263     if (TM.Options.NoNaNsFPMath)
8264       Condition = getFCmpCodeWithoutNaN(Condition);
8265     Opers.push_back(DAG.getCondCode(Condition));
8266     break;
8267   }
8268   }
8269 
8270   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8271   pushOutChain(Result, EB);
8272 
8273   SDValue FPResult = Result.getValue(0);
8274   setValue(&FPI, FPResult);
8275 }
8276 
8277 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8278   std::optional<unsigned> ResOPC;
8279   switch (VPIntrin.getIntrinsicID()) {
8280   case Intrinsic::vp_ctlz: {
8281     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8282     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8283     break;
8284   }
8285   case Intrinsic::vp_cttz: {
8286     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8287     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8288     break;
8289   }
8290   case Intrinsic::vp_cttz_elts: {
8291     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8292     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8293     break;
8294   }
8295 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8296   case Intrinsic::VPID:                                                        \
8297     ResOPC = ISD::VPSD;                                                        \
8298     break;
8299 #include "llvm/IR/VPIntrinsics.def"
8300   }
8301 
8302   if (!ResOPC)
8303     llvm_unreachable(
8304         "Inconsistency: no SDNode available for this VPIntrinsic!");
8305 
8306   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8307       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8308     if (VPIntrin.getFastMathFlags().allowReassoc())
8309       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8310                                                 : ISD::VP_REDUCE_FMUL;
8311   }
8312 
8313   return *ResOPC;
8314 }
8315 
8316 void SelectionDAGBuilder::visitVPLoad(
8317     const VPIntrinsic &VPIntrin, EVT VT,
8318     const SmallVectorImpl<SDValue> &OpValues) {
8319   SDLoc DL = getCurSDLoc();
8320   Value *PtrOperand = VPIntrin.getArgOperand(0);
8321   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8322   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8323   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8324   SDValue LD;
8325   // Do not serialize variable-length loads of constant memory with
8326   // anything.
8327   if (!Alignment)
8328     Alignment = DAG.getEVTAlign(VT);
8329   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8330   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8331   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8332   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8333       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8334       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8335   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8336                      MMO, false /*IsExpanding */);
8337   if (AddToChain)
8338     PendingLoads.push_back(LD.getValue(1));
8339   setValue(&VPIntrin, LD);
8340 }
8341 
8342 void SelectionDAGBuilder::visitVPGather(
8343     const VPIntrinsic &VPIntrin, EVT VT,
8344     const SmallVectorImpl<SDValue> &OpValues) {
8345   SDLoc DL = getCurSDLoc();
8346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8347   Value *PtrOperand = VPIntrin.getArgOperand(0);
8348   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8349   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8350   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8351   SDValue LD;
8352   if (!Alignment)
8353     Alignment = DAG.getEVTAlign(VT.getScalarType());
8354   unsigned AS =
8355     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8356   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8357       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8358       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8359   SDValue Base, Index, Scale;
8360   ISD::MemIndexType IndexType;
8361   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8362                                     this, VPIntrin.getParent(),
8363                                     VT.getScalarStoreSize());
8364   if (!UniformBase) {
8365     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8366     Index = getValue(PtrOperand);
8367     IndexType = ISD::SIGNED_SCALED;
8368     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8369   }
8370   EVT IdxVT = Index.getValueType();
8371   EVT EltTy = IdxVT.getVectorElementType();
8372   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8373     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8374     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8375   }
8376   LD = DAG.getGatherVP(
8377       DAG.getVTList(VT, MVT::Other), VT, DL,
8378       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8379       IndexType);
8380   PendingLoads.push_back(LD.getValue(1));
8381   setValue(&VPIntrin, LD);
8382 }
8383 
8384 void SelectionDAGBuilder::visitVPStore(
8385     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8386   SDLoc DL = getCurSDLoc();
8387   Value *PtrOperand = VPIntrin.getArgOperand(1);
8388   EVT VT = OpValues[0].getValueType();
8389   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8390   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8391   SDValue ST;
8392   if (!Alignment)
8393     Alignment = DAG.getEVTAlign(VT);
8394   SDValue Ptr = OpValues[1];
8395   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8396   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8397       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8398       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8399   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8400                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8401                       /* IsTruncating */ false, /*IsCompressing*/ false);
8402   DAG.setRoot(ST);
8403   setValue(&VPIntrin, ST);
8404 }
8405 
8406 void SelectionDAGBuilder::visitVPScatter(
8407     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8408   SDLoc DL = getCurSDLoc();
8409   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8410   Value *PtrOperand = VPIntrin.getArgOperand(1);
8411   EVT VT = OpValues[0].getValueType();
8412   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8413   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8414   SDValue ST;
8415   if (!Alignment)
8416     Alignment = DAG.getEVTAlign(VT.getScalarType());
8417   unsigned AS =
8418       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8419   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8420       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8421       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8422   SDValue Base, Index, Scale;
8423   ISD::MemIndexType IndexType;
8424   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8425                                     this, VPIntrin.getParent(),
8426                                     VT.getScalarStoreSize());
8427   if (!UniformBase) {
8428     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8429     Index = getValue(PtrOperand);
8430     IndexType = ISD::SIGNED_SCALED;
8431     Scale =
8432       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8433   }
8434   EVT IdxVT = Index.getValueType();
8435   EVT EltTy = IdxVT.getVectorElementType();
8436   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8437     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8438     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8439   }
8440   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8441                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8442                          OpValues[2], OpValues[3]},
8443                         MMO, IndexType);
8444   DAG.setRoot(ST);
8445   setValue(&VPIntrin, ST);
8446 }
8447 
8448 void SelectionDAGBuilder::visitVPStridedLoad(
8449     const VPIntrinsic &VPIntrin, EVT VT,
8450     const SmallVectorImpl<SDValue> &OpValues) {
8451   SDLoc DL = getCurSDLoc();
8452   Value *PtrOperand = VPIntrin.getArgOperand(0);
8453   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8454   if (!Alignment)
8455     Alignment = DAG.getEVTAlign(VT.getScalarType());
8456   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8457   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8458   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8459   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8460   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8461   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8462   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8463       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8464       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8465 
8466   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8467                                     OpValues[2], OpValues[3], MMO,
8468                                     false /*IsExpanding*/);
8469 
8470   if (AddToChain)
8471     PendingLoads.push_back(LD.getValue(1));
8472   setValue(&VPIntrin, LD);
8473 }
8474 
8475 void SelectionDAGBuilder::visitVPStridedStore(
8476     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8477   SDLoc DL = getCurSDLoc();
8478   Value *PtrOperand = VPIntrin.getArgOperand(1);
8479   EVT VT = OpValues[0].getValueType();
8480   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8481   if (!Alignment)
8482     Alignment = DAG.getEVTAlign(VT.getScalarType());
8483   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8484   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8485   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8486       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8487       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8488 
8489   SDValue ST = DAG.getStridedStoreVP(
8490       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8491       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8492       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8493       /*IsCompressing*/ false);
8494 
8495   DAG.setRoot(ST);
8496   setValue(&VPIntrin, ST);
8497 }
8498 
8499 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8500   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8501   SDLoc DL = getCurSDLoc();
8502 
8503   ISD::CondCode Condition;
8504   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8505   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8506   if (IsFP) {
8507     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8508     // flags, but calls that don't return floating-point types can't be
8509     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8510     Condition = getFCmpCondCode(CondCode);
8511     if (TM.Options.NoNaNsFPMath)
8512       Condition = getFCmpCodeWithoutNaN(Condition);
8513   } else {
8514     Condition = getICmpCondCode(CondCode);
8515   }
8516 
8517   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8518   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8519   // #2 is the condition code
8520   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8521   SDValue EVL = getValue(VPIntrin.getOperand(4));
8522   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8523   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8524          "Unexpected target EVL type");
8525   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8526 
8527   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8528                                                         VPIntrin.getType());
8529   setValue(&VPIntrin,
8530            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8531 }
8532 
8533 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8534     const VPIntrinsic &VPIntrin) {
8535   SDLoc DL = getCurSDLoc();
8536   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8537 
8538   auto IID = VPIntrin.getIntrinsicID();
8539 
8540   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8541     return visitVPCmp(*CmpI);
8542 
8543   SmallVector<EVT, 4> ValueVTs;
8544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8545   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8546   SDVTList VTs = DAG.getVTList(ValueVTs);
8547 
8548   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8549 
8550   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8551   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8552          "Unexpected target EVL type");
8553 
8554   // Request operands.
8555   SmallVector<SDValue, 7> OpValues;
8556   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8557     auto Op = getValue(VPIntrin.getArgOperand(I));
8558     if (I == EVLParamPos)
8559       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8560     OpValues.push_back(Op);
8561   }
8562 
8563   switch (Opcode) {
8564   default: {
8565     SDNodeFlags SDFlags;
8566     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8567       SDFlags.copyFMF(*FPMO);
8568     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8569     setValue(&VPIntrin, Result);
8570     break;
8571   }
8572   case ISD::VP_LOAD:
8573     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8574     break;
8575   case ISD::VP_GATHER:
8576     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8577     break;
8578   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8579     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8580     break;
8581   case ISD::VP_STORE:
8582     visitVPStore(VPIntrin, OpValues);
8583     break;
8584   case ISD::VP_SCATTER:
8585     visitVPScatter(VPIntrin, OpValues);
8586     break;
8587   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8588     visitVPStridedStore(VPIntrin, OpValues);
8589     break;
8590   case ISD::VP_FMULADD: {
8591     assert(OpValues.size() == 5 && "Unexpected number of operands");
8592     SDNodeFlags SDFlags;
8593     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8594       SDFlags.copyFMF(*FPMO);
8595     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8596         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8597       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8598     } else {
8599       SDValue Mul = DAG.getNode(
8600           ISD::VP_FMUL, DL, VTs,
8601           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8602       SDValue Add =
8603           DAG.getNode(ISD::VP_FADD, DL, VTs,
8604                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8605       setValue(&VPIntrin, Add);
8606     }
8607     break;
8608   }
8609   case ISD::VP_IS_FPCLASS: {
8610     const DataLayout DLayout = DAG.getDataLayout();
8611     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8612     auto Constant = OpValues[1]->getAsZExtVal();
8613     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8614     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8615                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8616     setValue(&VPIntrin, V);
8617     return;
8618   }
8619   case ISD::VP_INTTOPTR: {
8620     SDValue N = OpValues[0];
8621     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8622     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8623     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8624                                OpValues[2]);
8625     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8626                              OpValues[2]);
8627     setValue(&VPIntrin, N);
8628     break;
8629   }
8630   case ISD::VP_PTRTOINT: {
8631     SDValue N = OpValues[0];
8632     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8633                                                           VPIntrin.getType());
8634     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8635                                        VPIntrin.getOperand(0)->getType());
8636     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8637                                OpValues[2]);
8638     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8639                              OpValues[2]);
8640     setValue(&VPIntrin, N);
8641     break;
8642   }
8643   case ISD::VP_ABS:
8644   case ISD::VP_CTLZ:
8645   case ISD::VP_CTLZ_ZERO_UNDEF:
8646   case ISD::VP_CTTZ:
8647   case ISD::VP_CTTZ_ZERO_UNDEF:
8648   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8649   case ISD::VP_CTTZ_ELTS: {
8650     SDValue Result =
8651         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8652     setValue(&VPIntrin, Result);
8653     break;
8654   }
8655   }
8656 }
8657 
8658 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8659                                           const BasicBlock *EHPadBB,
8660                                           MCSymbol *&BeginLabel) {
8661   MachineFunction &MF = DAG.getMachineFunction();
8662 
8663   // Insert a label before the invoke call to mark the try range.  This can be
8664   // used to detect deletion of the invoke via the MachineModuleInfo.
8665   BeginLabel = MF.getContext().createTempSymbol();
8666 
8667   // For SjLj, keep track of which landing pads go with which invokes
8668   // so as to maintain the ordering of pads in the LSDA.
8669   unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8670   if (CallSiteIndex) {
8671     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8672     LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8673 
8674     // Now that the call site is handled, stop tracking it.
8675     FuncInfo.setCurrentCallSite(0);
8676   }
8677 
8678   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8679 }
8680 
8681 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8682                                         const BasicBlock *EHPadBB,
8683                                         MCSymbol *BeginLabel) {
8684   assert(BeginLabel && "BeginLabel should've been set");
8685 
8686   MachineFunction &MF = DAG.getMachineFunction();
8687 
8688   // Insert a label at the end of the invoke call to mark the try range.  This
8689   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8690   MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8691   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8692 
8693   // Inform MachineModuleInfo of range.
8694   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8695   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8696   // actually use outlined funclets and their LSDA info style.
8697   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8698     assert(II && "II should've been set");
8699     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8700     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8701   } else if (!isScopedEHPersonality(Pers)) {
8702     assert(EHPadBB);
8703     MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
8704   }
8705 
8706   return Chain;
8707 }
8708 
8709 std::pair<SDValue, SDValue>
8710 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8711                                     const BasicBlock *EHPadBB) {
8712   MCSymbol *BeginLabel = nullptr;
8713 
8714   if (EHPadBB) {
8715     // Both PendingLoads and PendingExports must be flushed here;
8716     // this call might not return.
8717     (void)getRoot();
8718     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8719     CLI.setChain(getRoot());
8720   }
8721 
8722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8723   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8724 
8725   assert((CLI.IsTailCall || Result.second.getNode()) &&
8726          "Non-null chain expected with non-tail call!");
8727   assert((Result.second.getNode() || !Result.first.getNode()) &&
8728          "Null value expected with tail call!");
8729 
8730   if (!Result.second.getNode()) {
8731     // As a special case, a null chain means that a tail call has been emitted
8732     // and the DAG root is already updated.
8733     HasTailCall = true;
8734 
8735     // Since there's no actual continuation from this block, nothing can be
8736     // relying on us setting vregs for them.
8737     PendingExports.clear();
8738   } else {
8739     DAG.setRoot(Result.second);
8740   }
8741 
8742   if (EHPadBB) {
8743     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8744                            BeginLabel));
8745     Result.second = getRoot();
8746   }
8747 
8748   return Result;
8749 }
8750 
8751 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8752                                       bool isTailCall, bool isMustTailCall,
8753                                       const BasicBlock *EHPadBB,
8754                                       const TargetLowering::PtrAuthInfo *PAI) {
8755   auto &DL = DAG.getDataLayout();
8756   FunctionType *FTy = CB.getFunctionType();
8757   Type *RetTy = CB.getType();
8758 
8759   TargetLowering::ArgListTy Args;
8760   Args.reserve(CB.arg_size());
8761 
8762   const Value *SwiftErrorVal = nullptr;
8763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8764 
8765   if (isTailCall) {
8766     // Avoid emitting tail calls in functions with the disable-tail-calls
8767     // attribute.
8768     auto *Caller = CB.getParent()->getParent();
8769     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8770         "true" && !isMustTailCall)
8771       isTailCall = false;
8772 
8773     // We can't tail call inside a function with a swifterror argument. Lowering
8774     // does not support this yet. It would have to move into the swifterror
8775     // register before the call.
8776     if (TLI.supportSwiftError() &&
8777         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8778       isTailCall = false;
8779   }
8780 
8781   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8782     TargetLowering::ArgListEntry Entry;
8783     const Value *V = *I;
8784 
8785     // Skip empty types
8786     if (V->getType()->isEmptyTy())
8787       continue;
8788 
8789     SDValue ArgNode = getValue(V);
8790     Entry.Node = ArgNode; Entry.Ty = V->getType();
8791 
8792     Entry.setAttributes(&CB, I - CB.arg_begin());
8793 
8794     // Use swifterror virtual register as input to the call.
8795     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8796       SwiftErrorVal = V;
8797       // We find the virtual register for the actual swifterror argument.
8798       // Instead of using the Value, we use the virtual register instead.
8799       Entry.Node =
8800           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8801                           EVT(TLI.getPointerTy(DL)));
8802     }
8803 
8804     Args.push_back(Entry);
8805 
8806     // If we have an explicit sret argument that is an Instruction, (i.e., it
8807     // might point to function-local memory), we can't meaningfully tail-call.
8808     if (Entry.IsSRet && isa<Instruction>(V))
8809       isTailCall = false;
8810   }
8811 
8812   // If call site has a cfguardtarget operand bundle, create and add an
8813   // additional ArgListEntry.
8814   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8815     TargetLowering::ArgListEntry Entry;
8816     Value *V = Bundle->Inputs[0];
8817     SDValue ArgNode = getValue(V);
8818     Entry.Node = ArgNode;
8819     Entry.Ty = V->getType();
8820     Entry.IsCFGuardTarget = true;
8821     Args.push_back(Entry);
8822   }
8823 
8824   // Check if target-independent constraints permit a tail call here.
8825   // Target-dependent constraints are checked within TLI->LowerCallTo.
8826   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8827     isTailCall = false;
8828 
8829   // Disable tail calls if there is an swifterror argument. Targets have not
8830   // been updated to support tail calls.
8831   if (TLI.supportSwiftError() && SwiftErrorVal)
8832     isTailCall = false;
8833 
8834   ConstantInt *CFIType = nullptr;
8835   if (CB.isIndirectCall()) {
8836     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8837       if (!TLI.supportKCFIBundles())
8838         report_fatal_error(
8839             "Target doesn't support calls with kcfi operand bundles.");
8840       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8841       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8842     }
8843   }
8844 
8845   SDValue ConvControlToken;
8846   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8847     auto *Token = Bundle->Inputs[0].get();
8848     ConvControlToken = getValue(Token);
8849   }
8850 
8851   TargetLowering::CallLoweringInfo CLI(DAG);
8852   CLI.setDebugLoc(getCurSDLoc())
8853       .setChain(getRoot())
8854       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8855       .setTailCall(isTailCall)
8856       .setConvergent(CB.isConvergent())
8857       .setIsPreallocated(
8858           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8859       .setCFIType(CFIType)
8860       .setConvergenceControlToken(ConvControlToken);
8861 
8862   // Set the pointer authentication info if we have it.
8863   if (PAI) {
8864     if (!TLI.supportPtrAuthBundles())
8865       report_fatal_error(
8866           "This target doesn't support calls with ptrauth operand bundles.");
8867     CLI.setPtrAuth(*PAI);
8868   }
8869 
8870   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8871 
8872   if (Result.first.getNode()) {
8873     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8874     setValue(&CB, Result.first);
8875   }
8876 
8877   // The last element of CLI.InVals has the SDValue for swifterror return.
8878   // Here we copy it to a virtual register and update SwiftErrorMap for
8879   // book-keeping.
8880   if (SwiftErrorVal && TLI.supportSwiftError()) {
8881     // Get the last element of InVals.
8882     SDValue Src = CLI.InVals.back();
8883     Register VReg =
8884         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8885     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8886     DAG.setRoot(CopyNode);
8887   }
8888 }
8889 
8890 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8891                              SelectionDAGBuilder &Builder) {
8892   // Check to see if this load can be trivially constant folded, e.g. if the
8893   // input is from a string literal.
8894   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8895     // Cast pointer to the type we really want to load.
8896     Type *LoadTy =
8897         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8898     if (LoadVT.isVector())
8899       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8900 
8901     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8902                                          PointerType::getUnqual(LoadTy));
8903 
8904     if (const Constant *LoadCst =
8905             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8906                                          LoadTy, Builder.DAG.getDataLayout()))
8907       return Builder.getValue(LoadCst);
8908   }
8909 
8910   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8911   // still constant memory, the input chain can be the entry node.
8912   SDValue Root;
8913   bool ConstantMemory = false;
8914 
8915   // Do not serialize (non-volatile) loads of constant memory with anything.
8916   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8917     Root = Builder.DAG.getEntryNode();
8918     ConstantMemory = true;
8919   } else {
8920     // Do not serialize non-volatile loads against each other.
8921     Root = Builder.DAG.getRoot();
8922   }
8923 
8924   SDValue Ptr = Builder.getValue(PtrVal);
8925   SDValue LoadVal =
8926       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8927                           MachinePointerInfo(PtrVal), Align(1));
8928 
8929   if (!ConstantMemory)
8930     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8931   return LoadVal;
8932 }
8933 
8934 /// Record the value for an instruction that produces an integer result,
8935 /// converting the type where necessary.
8936 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8937                                                   SDValue Value,
8938                                                   bool IsSigned) {
8939   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8940                                                     I.getType(), true);
8941   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8942   setValue(&I, Value);
8943 }
8944 
8945 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8946 /// true and lower it. Otherwise return false, and it will be lowered like a
8947 /// normal call.
8948 /// The caller already checked that \p I calls the appropriate LibFunc with a
8949 /// correct prototype.
8950 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8951   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8952   const Value *Size = I.getArgOperand(2);
8953   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8954   if (CSize && CSize->getZExtValue() == 0) {
8955     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8956                                                           I.getType(), true);
8957     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8958     return true;
8959   }
8960 
8961   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8962   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8963       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8964       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8965   if (Res.first.getNode()) {
8966     processIntegerCallValue(I, Res.first, true);
8967     PendingLoads.push_back(Res.second);
8968     return true;
8969   }
8970 
8971   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8972   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8973   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8974     return false;
8975 
8976   // If the target has a fast compare for the given size, it will return a
8977   // preferred load type for that size. Require that the load VT is legal and
8978   // that the target supports unaligned loads of that type. Otherwise, return
8979   // INVALID.
8980   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8981     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8982     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8983     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8984       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8985       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8986       // TODO: Check alignment of src and dest ptrs.
8987       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8988       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8989       if (!TLI.isTypeLegal(LVT) ||
8990           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8991           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8992         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8993     }
8994 
8995     return LVT;
8996   };
8997 
8998   // This turns into unaligned loads. We only do this if the target natively
8999   // supports the MVT we'll be loading or if it is small enough (<= 4) that
9000   // we'll only produce a small number of byte loads.
9001   MVT LoadVT;
9002   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9003   switch (NumBitsToCompare) {
9004   default:
9005     return false;
9006   case 16:
9007     LoadVT = MVT::i16;
9008     break;
9009   case 32:
9010     LoadVT = MVT::i32;
9011     break;
9012   case 64:
9013   case 128:
9014   case 256:
9015     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9016     break;
9017   }
9018 
9019   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9020     return false;
9021 
9022   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9023   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9024 
9025   // Bitcast to a wide integer type if the loads are vectors.
9026   if (LoadVT.isVector()) {
9027     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9028     LoadL = DAG.getBitcast(CmpVT, LoadL);
9029     LoadR = DAG.getBitcast(CmpVT, LoadR);
9030   }
9031 
9032   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9033   processIntegerCallValue(I, Cmp, false);
9034   return true;
9035 }
9036 
9037 /// See if we can lower a memchr call into an optimized form. If so, return
9038 /// true and lower it. Otherwise return false, and it will be lowered like a
9039 /// normal call.
9040 /// The caller already checked that \p I calls the appropriate LibFunc with a
9041 /// correct prototype.
9042 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9043   const Value *Src = I.getArgOperand(0);
9044   const Value *Char = I.getArgOperand(1);
9045   const Value *Length = I.getArgOperand(2);
9046 
9047   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9048   std::pair<SDValue, SDValue> Res =
9049     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9050                                 getValue(Src), getValue(Char), getValue(Length),
9051                                 MachinePointerInfo(Src));
9052   if (Res.first.getNode()) {
9053     setValue(&I, Res.first);
9054     PendingLoads.push_back(Res.second);
9055     return true;
9056   }
9057 
9058   return false;
9059 }
9060 
9061 /// See if we can lower a mempcpy call into an optimized form. If so, return
9062 /// true and lower it. Otherwise return false, and it will be lowered like a
9063 /// normal call.
9064 /// The caller already checked that \p I calls the appropriate LibFunc with a
9065 /// correct prototype.
9066 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9067   SDValue Dst = getValue(I.getArgOperand(0));
9068   SDValue Src = getValue(I.getArgOperand(1));
9069   SDValue Size = getValue(I.getArgOperand(2));
9070 
9071   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9072   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9073   // DAG::getMemcpy needs Alignment to be defined.
9074   Align Alignment = std::min(DstAlign, SrcAlign);
9075 
9076   SDLoc sdl = getCurSDLoc();
9077 
9078   // In the mempcpy context we need to pass in a false value for isTailCall
9079   // because the return pointer needs to be adjusted by the size of
9080   // the copied memory.
9081   SDValue Root = getMemoryRoot();
9082   SDValue MC = DAG.getMemcpy(
9083       Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9084       std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9085       MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9086   assert(MC.getNode() != nullptr &&
9087          "** memcpy should not be lowered as TailCall in mempcpy context **");
9088   DAG.setRoot(MC);
9089 
9090   // Check if Size needs to be truncated or extended.
9091   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9092 
9093   // Adjust return pointer to point just past the last dst byte.
9094   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9095                                     Dst, Size);
9096   setValue(&I, DstPlusSize);
9097   return true;
9098 }
9099 
9100 /// See if we can lower a strcpy call into an optimized form.  If so, return
9101 /// true and lower it, otherwise return false and it will be lowered like a
9102 /// normal call.
9103 /// The caller already checked that \p I calls the appropriate LibFunc with a
9104 /// correct prototype.
9105 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9106   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9107 
9108   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9109   std::pair<SDValue, SDValue> Res =
9110     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9111                                 getValue(Arg0), getValue(Arg1),
9112                                 MachinePointerInfo(Arg0),
9113                                 MachinePointerInfo(Arg1), isStpcpy);
9114   if (Res.first.getNode()) {
9115     setValue(&I, Res.first);
9116     DAG.setRoot(Res.second);
9117     return true;
9118   }
9119 
9120   return false;
9121 }
9122 
9123 /// See if we can lower a strcmp call into an optimized form.  If so, return
9124 /// true and lower it, otherwise return false and it will be lowered like a
9125 /// normal call.
9126 /// The caller already checked that \p I calls the appropriate LibFunc with a
9127 /// correct prototype.
9128 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9129   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9130 
9131   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9132   std::pair<SDValue, SDValue> Res =
9133     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9134                                 getValue(Arg0), getValue(Arg1),
9135                                 MachinePointerInfo(Arg0),
9136                                 MachinePointerInfo(Arg1));
9137   if (Res.first.getNode()) {
9138     processIntegerCallValue(I, Res.first, true);
9139     PendingLoads.push_back(Res.second);
9140     return true;
9141   }
9142 
9143   return false;
9144 }
9145 
9146 /// See if we can lower a strlen call into an optimized form.  If so, return
9147 /// true and lower it, otherwise return false and it will be lowered like a
9148 /// normal call.
9149 /// The caller already checked that \p I calls the appropriate LibFunc with a
9150 /// correct prototype.
9151 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9152   const Value *Arg0 = I.getArgOperand(0);
9153 
9154   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9155   std::pair<SDValue, SDValue> Res =
9156     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9157                                 getValue(Arg0), MachinePointerInfo(Arg0));
9158   if (Res.first.getNode()) {
9159     processIntegerCallValue(I, Res.first, false);
9160     PendingLoads.push_back(Res.second);
9161     return true;
9162   }
9163 
9164   return false;
9165 }
9166 
9167 /// See if we can lower a strnlen call into an optimized form.  If so, return
9168 /// true and lower it, otherwise return false and it will be lowered like a
9169 /// normal call.
9170 /// The caller already checked that \p I calls the appropriate LibFunc with a
9171 /// correct prototype.
9172 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9173   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9174 
9175   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9176   std::pair<SDValue, SDValue> Res =
9177     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9178                                  getValue(Arg0), getValue(Arg1),
9179                                  MachinePointerInfo(Arg0));
9180   if (Res.first.getNode()) {
9181     processIntegerCallValue(I, Res.first, false);
9182     PendingLoads.push_back(Res.second);
9183     return true;
9184   }
9185 
9186   return false;
9187 }
9188 
9189 /// See if we can lower a unary floating-point operation into an SDNode with
9190 /// the specified Opcode.  If so, return true and lower it, otherwise return
9191 /// false and it will be lowered like a normal call.
9192 /// The caller already checked that \p I calls the appropriate LibFunc with a
9193 /// correct prototype.
9194 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9195                                               unsigned Opcode) {
9196   // We already checked this call's prototype; verify it doesn't modify errno.
9197   if (!I.onlyReadsMemory())
9198     return false;
9199 
9200   SDNodeFlags Flags;
9201   Flags.copyFMF(cast<FPMathOperator>(I));
9202 
9203   SDValue Tmp = getValue(I.getArgOperand(0));
9204   setValue(&I,
9205            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9206   return true;
9207 }
9208 
9209 /// See if we can lower a binary floating-point operation into an SDNode with
9210 /// the specified Opcode. If so, return true and lower it. Otherwise return
9211 /// false, and it will be lowered like a normal call.
9212 /// The caller already checked that \p I calls the appropriate LibFunc with a
9213 /// correct prototype.
9214 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9215                                                unsigned Opcode) {
9216   // We already checked this call's prototype; verify it doesn't modify errno.
9217   if (!I.onlyReadsMemory())
9218     return false;
9219 
9220   SDNodeFlags Flags;
9221   Flags.copyFMF(cast<FPMathOperator>(I));
9222 
9223   SDValue Tmp0 = getValue(I.getArgOperand(0));
9224   SDValue Tmp1 = getValue(I.getArgOperand(1));
9225   EVT VT = Tmp0.getValueType();
9226   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9227   return true;
9228 }
9229 
9230 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9231   // Handle inline assembly differently.
9232   if (I.isInlineAsm()) {
9233     visitInlineAsm(I);
9234     return;
9235   }
9236 
9237   diagnoseDontCall(I);
9238 
9239   if (Function *F = I.getCalledFunction()) {
9240     if (F->isDeclaration()) {
9241       // Is this an LLVM intrinsic or a target-specific intrinsic?
9242       unsigned IID = F->getIntrinsicID();
9243       if (!IID)
9244         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9245           IID = II->getIntrinsicID(F);
9246 
9247       if (IID) {
9248         visitIntrinsicCall(I, IID);
9249         return;
9250       }
9251     }
9252 
9253     // Check for well-known libc/libm calls.  If the function is internal, it
9254     // can't be a library call.  Don't do the check if marked as nobuiltin for
9255     // some reason or the call site requires strict floating point semantics.
9256     LibFunc Func;
9257     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9258         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9259         LibInfo->hasOptimizedCodeGen(Func)) {
9260       switch (Func) {
9261       default: break;
9262       case LibFunc_bcmp:
9263         if (visitMemCmpBCmpCall(I))
9264           return;
9265         break;
9266       case LibFunc_copysign:
9267       case LibFunc_copysignf:
9268       case LibFunc_copysignl:
9269         // We already checked this call's prototype; verify it doesn't modify
9270         // errno.
9271         if (I.onlyReadsMemory()) {
9272           SDValue LHS = getValue(I.getArgOperand(0));
9273           SDValue RHS = getValue(I.getArgOperand(1));
9274           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9275                                    LHS.getValueType(), LHS, RHS));
9276           return;
9277         }
9278         break;
9279       case LibFunc_fabs:
9280       case LibFunc_fabsf:
9281       case LibFunc_fabsl:
9282         if (visitUnaryFloatCall(I, ISD::FABS))
9283           return;
9284         break;
9285       case LibFunc_fmin:
9286       case LibFunc_fminf:
9287       case LibFunc_fminl:
9288         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9289           return;
9290         break;
9291       case LibFunc_fmax:
9292       case LibFunc_fmaxf:
9293       case LibFunc_fmaxl:
9294         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9295           return;
9296         break;
9297       case LibFunc_fminimum_num:
9298       case LibFunc_fminimum_numf:
9299       case LibFunc_fminimum_numl:
9300         if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9301           return;
9302         break;
9303       case LibFunc_fmaximum_num:
9304       case LibFunc_fmaximum_numf:
9305       case LibFunc_fmaximum_numl:
9306         if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9307           return;
9308         break;
9309       case LibFunc_sin:
9310       case LibFunc_sinf:
9311       case LibFunc_sinl:
9312         if (visitUnaryFloatCall(I, ISD::FSIN))
9313           return;
9314         break;
9315       case LibFunc_cos:
9316       case LibFunc_cosf:
9317       case LibFunc_cosl:
9318         if (visitUnaryFloatCall(I, ISD::FCOS))
9319           return;
9320         break;
9321       case LibFunc_tan:
9322       case LibFunc_tanf:
9323       case LibFunc_tanl:
9324         if (visitUnaryFloatCall(I, ISD::FTAN))
9325           return;
9326         break;
9327       case LibFunc_asin:
9328       case LibFunc_asinf:
9329       case LibFunc_asinl:
9330         if (visitUnaryFloatCall(I, ISD::FASIN))
9331           return;
9332         break;
9333       case LibFunc_acos:
9334       case LibFunc_acosf:
9335       case LibFunc_acosl:
9336         if (visitUnaryFloatCall(I, ISD::FACOS))
9337           return;
9338         break;
9339       case LibFunc_atan:
9340       case LibFunc_atanf:
9341       case LibFunc_atanl:
9342         if (visitUnaryFloatCall(I, ISD::FATAN))
9343           return;
9344         break;
9345       case LibFunc_sinh:
9346       case LibFunc_sinhf:
9347       case LibFunc_sinhl:
9348         if (visitUnaryFloatCall(I, ISD::FSINH))
9349           return;
9350         break;
9351       case LibFunc_cosh:
9352       case LibFunc_coshf:
9353       case LibFunc_coshl:
9354         if (visitUnaryFloatCall(I, ISD::FCOSH))
9355           return;
9356         break;
9357       case LibFunc_tanh:
9358       case LibFunc_tanhf:
9359       case LibFunc_tanhl:
9360         if (visitUnaryFloatCall(I, ISD::FTANH))
9361           return;
9362         break;
9363       case LibFunc_sqrt:
9364       case LibFunc_sqrtf:
9365       case LibFunc_sqrtl:
9366       case LibFunc_sqrt_finite:
9367       case LibFunc_sqrtf_finite:
9368       case LibFunc_sqrtl_finite:
9369         if (visitUnaryFloatCall(I, ISD::FSQRT))
9370           return;
9371         break;
9372       case LibFunc_floor:
9373       case LibFunc_floorf:
9374       case LibFunc_floorl:
9375         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9376           return;
9377         break;
9378       case LibFunc_nearbyint:
9379       case LibFunc_nearbyintf:
9380       case LibFunc_nearbyintl:
9381         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9382           return;
9383         break;
9384       case LibFunc_ceil:
9385       case LibFunc_ceilf:
9386       case LibFunc_ceill:
9387         if (visitUnaryFloatCall(I, ISD::FCEIL))
9388           return;
9389         break;
9390       case LibFunc_rint:
9391       case LibFunc_rintf:
9392       case LibFunc_rintl:
9393         if (visitUnaryFloatCall(I, ISD::FRINT))
9394           return;
9395         break;
9396       case LibFunc_round:
9397       case LibFunc_roundf:
9398       case LibFunc_roundl:
9399         if (visitUnaryFloatCall(I, ISD::FROUND))
9400           return;
9401         break;
9402       case LibFunc_trunc:
9403       case LibFunc_truncf:
9404       case LibFunc_truncl:
9405         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9406           return;
9407         break;
9408       case LibFunc_log2:
9409       case LibFunc_log2f:
9410       case LibFunc_log2l:
9411         if (visitUnaryFloatCall(I, ISD::FLOG2))
9412           return;
9413         break;
9414       case LibFunc_exp2:
9415       case LibFunc_exp2f:
9416       case LibFunc_exp2l:
9417         if (visitUnaryFloatCall(I, ISD::FEXP2))
9418           return;
9419         break;
9420       case LibFunc_exp10:
9421       case LibFunc_exp10f:
9422       case LibFunc_exp10l:
9423         if (visitUnaryFloatCall(I, ISD::FEXP10))
9424           return;
9425         break;
9426       case LibFunc_ldexp:
9427       case LibFunc_ldexpf:
9428       case LibFunc_ldexpl:
9429         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9430           return;
9431         break;
9432       case LibFunc_memcmp:
9433         if (visitMemCmpBCmpCall(I))
9434           return;
9435         break;
9436       case LibFunc_mempcpy:
9437         if (visitMemPCpyCall(I))
9438           return;
9439         break;
9440       case LibFunc_memchr:
9441         if (visitMemChrCall(I))
9442           return;
9443         break;
9444       case LibFunc_strcpy:
9445         if (visitStrCpyCall(I, false))
9446           return;
9447         break;
9448       case LibFunc_stpcpy:
9449         if (visitStrCpyCall(I, true))
9450           return;
9451         break;
9452       case LibFunc_strcmp:
9453         if (visitStrCmpCall(I))
9454           return;
9455         break;
9456       case LibFunc_strlen:
9457         if (visitStrLenCall(I))
9458           return;
9459         break;
9460       case LibFunc_strnlen:
9461         if (visitStrNLenCall(I))
9462           return;
9463         break;
9464       }
9465     }
9466   }
9467 
9468   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9469     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9470     return;
9471   }
9472 
9473   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9474   // have to do anything here to lower funclet bundles.
9475   // CFGuardTarget bundles are lowered in LowerCallTo.
9476   assert(!I.hasOperandBundlesOtherThan(
9477              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9478               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9479               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9480               LLVMContext::OB_convergencectrl}) &&
9481          "Cannot lower calls with arbitrary operand bundles!");
9482 
9483   SDValue Callee = getValue(I.getCalledOperand());
9484 
9485   if (I.hasDeoptState())
9486     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9487   else
9488     // Check if we can potentially perform a tail call. More detailed checking
9489     // is be done within LowerCallTo, after more information about the call is
9490     // known.
9491     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9492 }
9493 
9494 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9495     const CallBase &CB, const BasicBlock *EHPadBB) {
9496   auto PAB = CB.getOperandBundle("ptrauth");
9497   const Value *CalleeV = CB.getCalledOperand();
9498 
9499   // Gather the call ptrauth data from the operand bundle:
9500   //   [ i32 <key>, i64 <discriminator> ]
9501   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9502   const Value *Discriminator = PAB->Inputs[1];
9503 
9504   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9505   assert(Discriminator->getType()->isIntegerTy(64) &&
9506          "Invalid ptrauth discriminator");
9507 
9508   // Look through ptrauth constants to find the raw callee.
9509   // Do a direct unauthenticated call if we found it and everything matches.
9510   if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9511     if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9512                                          DAG.getDataLayout()))
9513       return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9514                          CB.isMustTailCall(), EHPadBB);
9515 
9516   // Functions should never be ptrauth-called directly.
9517   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9518 
9519   // Otherwise, do an authenticated indirect call.
9520   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9521                                      getValue(Discriminator)};
9522 
9523   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9524               EHPadBB, &PAI);
9525 }
9526 
9527 namespace {
9528 
9529 /// AsmOperandInfo - This contains information for each constraint that we are
9530 /// lowering.
9531 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9532 public:
9533   /// CallOperand - If this is the result output operand or a clobber
9534   /// this is null, otherwise it is the incoming operand to the CallInst.
9535   /// This gets modified as the asm is processed.
9536   SDValue CallOperand;
9537 
9538   /// AssignedRegs - If this is a register or register class operand, this
9539   /// contains the set of register corresponding to the operand.
9540   RegsForValue AssignedRegs;
9541 
9542   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9543     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9544   }
9545 
9546   /// Whether or not this operand accesses memory
9547   bool hasMemory(const TargetLowering &TLI) const {
9548     // Indirect operand accesses access memory.
9549     if (isIndirect)
9550       return true;
9551 
9552     for (const auto &Code : Codes)
9553       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9554         return true;
9555 
9556     return false;
9557   }
9558 };
9559 
9560 
9561 } // end anonymous namespace
9562 
9563 /// Make sure that the output operand \p OpInfo and its corresponding input
9564 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9565 /// out).
9566 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9567                                SDISelAsmOperandInfo &MatchingOpInfo,
9568                                SelectionDAG &DAG) {
9569   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9570     return;
9571 
9572   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9573   const auto &TLI = DAG.getTargetLoweringInfo();
9574 
9575   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9576       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9577                                        OpInfo.ConstraintVT);
9578   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9579       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9580                                        MatchingOpInfo.ConstraintVT);
9581   const bool OutOpIsIntOrFP =
9582       OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9583   const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9584                              MatchingOpInfo.ConstraintVT.isFloatingPoint();
9585   if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9586     // FIXME: error out in a more elegant fashion
9587     report_fatal_error("Unsupported asm: input constraint"
9588                        " with a matching output constraint of"
9589                        " incompatible type!");
9590   }
9591   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9592 }
9593 
9594 /// Get a direct memory input to behave well as an indirect operand.
9595 /// This may introduce stores, hence the need for a \p Chain.
9596 /// \return The (possibly updated) chain.
9597 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9598                                         SDISelAsmOperandInfo &OpInfo,
9599                                         SelectionDAG &DAG) {
9600   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9601 
9602   // If we don't have an indirect input, put it in the constpool if we can,
9603   // otherwise spill it to a stack slot.
9604   // TODO: This isn't quite right. We need to handle these according to
9605   // the addressing mode that the constraint wants. Also, this may take
9606   // an additional register for the computation and we don't want that
9607   // either.
9608 
9609   // If the operand is a float, integer, or vector constant, spill to a
9610   // constant pool entry to get its address.
9611   const Value *OpVal = OpInfo.CallOperandVal;
9612   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9613       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9614     OpInfo.CallOperand = DAG.getConstantPool(
9615         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9616     return Chain;
9617   }
9618 
9619   // Otherwise, create a stack slot and emit a store to it before the asm.
9620   Type *Ty = OpVal->getType();
9621   auto &DL = DAG.getDataLayout();
9622   TypeSize TySize = DL.getTypeAllocSize(Ty);
9623   MachineFunction &MF = DAG.getMachineFunction();
9624   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9625   int StackID = 0;
9626   if (TySize.isScalable())
9627     StackID = TFI->getStackIDForScalableVectors();
9628   int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9629                                                  DL.getPrefTypeAlign(Ty), false,
9630                                                  nullptr, StackID);
9631   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9632   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9633                             MachinePointerInfo::getFixedStack(MF, SSFI),
9634                             TLI.getMemValueType(DL, Ty));
9635   OpInfo.CallOperand = StackSlot;
9636 
9637   return Chain;
9638 }
9639 
9640 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9641 /// specified operand.  We prefer to assign virtual registers, to allow the
9642 /// register allocator to handle the assignment process.  However, if the asm
9643 /// uses features that we can't model on machineinstrs, we have SDISel do the
9644 /// allocation.  This produces generally horrible, but correct, code.
9645 ///
9646 ///   OpInfo describes the operand
9647 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9648 static std::optional<unsigned>
9649 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9650                      SDISelAsmOperandInfo &OpInfo,
9651                      SDISelAsmOperandInfo &RefOpInfo) {
9652   LLVMContext &Context = *DAG.getContext();
9653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9654 
9655   MachineFunction &MF = DAG.getMachineFunction();
9656   SmallVector<unsigned, 4> Regs;
9657   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9658 
9659   // No work to do for memory/address operands.
9660   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9661       OpInfo.ConstraintType == TargetLowering::C_Address)
9662     return std::nullopt;
9663 
9664   // If this is a constraint for a single physreg, or a constraint for a
9665   // register class, find it.
9666   unsigned AssignedReg;
9667   const TargetRegisterClass *RC;
9668   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9669       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9670   // RC is unset only on failure. Return immediately.
9671   if (!RC)
9672     return std::nullopt;
9673 
9674   // Get the actual register value type.  This is important, because the user
9675   // may have asked for (e.g.) the AX register in i32 type.  We need to
9676   // remember that AX is actually i16 to get the right extension.
9677   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9678 
9679   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9680     // If this is an FP operand in an integer register (or visa versa), or more
9681     // generally if the operand value disagrees with the register class we plan
9682     // to stick it in, fix the operand type.
9683     //
9684     // If this is an input value, the bitcast to the new type is done now.
9685     // Bitcast for output value is done at the end of visitInlineAsm().
9686     if ((OpInfo.Type == InlineAsm::isOutput ||
9687          OpInfo.Type == InlineAsm::isInput) &&
9688         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9689       // Try to convert to the first EVT that the reg class contains.  If the
9690       // types are identical size, use a bitcast to convert (e.g. two differing
9691       // vector types).  Note: output bitcast is done at the end of
9692       // visitInlineAsm().
9693       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9694         // Exclude indirect inputs while they are unsupported because the code
9695         // to perform the load is missing and thus OpInfo.CallOperand still
9696         // refers to the input address rather than the pointed-to value.
9697         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9698           OpInfo.CallOperand =
9699               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9700         OpInfo.ConstraintVT = RegVT;
9701         // If the operand is an FP value and we want it in integer registers,
9702         // use the corresponding integer type. This turns an f64 value into
9703         // i64, which can be passed with two i32 values on a 32-bit machine.
9704       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9705         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9706         if (OpInfo.Type == InlineAsm::isInput)
9707           OpInfo.CallOperand =
9708               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9709         OpInfo.ConstraintVT = VT;
9710       }
9711     }
9712   }
9713 
9714   // No need to allocate a matching input constraint since the constraint it's
9715   // matching to has already been allocated.
9716   if (OpInfo.isMatchingInputConstraint())
9717     return std::nullopt;
9718 
9719   EVT ValueVT = OpInfo.ConstraintVT;
9720   if (OpInfo.ConstraintVT == MVT::Other)
9721     ValueVT = RegVT;
9722 
9723   // Initialize NumRegs.
9724   unsigned NumRegs = 1;
9725   if (OpInfo.ConstraintVT != MVT::Other)
9726     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9727 
9728   // If this is a constraint for a specific physical register, like {r17},
9729   // assign it now.
9730 
9731   // If this associated to a specific register, initialize iterator to correct
9732   // place. If virtual, make sure we have enough registers
9733 
9734   // Initialize iterator if necessary
9735   TargetRegisterClass::iterator I = RC->begin();
9736   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9737 
9738   // Do not check for single registers.
9739   if (AssignedReg) {
9740     I = std::find(I, RC->end(), AssignedReg);
9741     if (I == RC->end()) {
9742       // RC does not contain the selected register, which indicates a
9743       // mismatch between the register and the required type/bitwidth.
9744       return {AssignedReg};
9745     }
9746   }
9747 
9748   for (; NumRegs; --NumRegs, ++I) {
9749     assert(I != RC->end() && "Ran out of registers to allocate!");
9750     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9751     Regs.push_back(R);
9752   }
9753 
9754   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9755   return std::nullopt;
9756 }
9757 
9758 static unsigned
9759 findMatchingInlineAsmOperand(unsigned OperandNo,
9760                              const std::vector<SDValue> &AsmNodeOperands) {
9761   // Scan until we find the definition we already emitted of this operand.
9762   unsigned CurOp = InlineAsm::Op_FirstOperand;
9763   for (; OperandNo; --OperandNo) {
9764     // Advance to the next operand.
9765     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9766     const InlineAsm::Flag F(OpFlag);
9767     assert(
9768         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9769         "Skipped past definitions?");
9770     CurOp += F.getNumOperandRegisters() + 1;
9771   }
9772   return CurOp;
9773 }
9774 
9775 namespace {
9776 
9777 class ExtraFlags {
9778   unsigned Flags = 0;
9779 
9780 public:
9781   explicit ExtraFlags(const CallBase &Call) {
9782     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9783     if (IA->hasSideEffects())
9784       Flags |= InlineAsm::Extra_HasSideEffects;
9785     if (IA->isAlignStack())
9786       Flags |= InlineAsm::Extra_IsAlignStack;
9787     if (Call.isConvergent())
9788       Flags |= InlineAsm::Extra_IsConvergent;
9789     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9790   }
9791 
9792   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9793     // Ideally, we would only check against memory constraints.  However, the
9794     // meaning of an Other constraint can be target-specific and we can't easily
9795     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9796     // for Other constraints as well.
9797     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9798         OpInfo.ConstraintType == TargetLowering::C_Other) {
9799       if (OpInfo.Type == InlineAsm::isInput)
9800         Flags |= InlineAsm::Extra_MayLoad;
9801       else if (OpInfo.Type == InlineAsm::isOutput)
9802         Flags |= InlineAsm::Extra_MayStore;
9803       else if (OpInfo.Type == InlineAsm::isClobber)
9804         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9805     }
9806   }
9807 
9808   unsigned get() const { return Flags; }
9809 };
9810 
9811 } // end anonymous namespace
9812 
9813 static bool isFunction(SDValue Op) {
9814   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9815     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9816       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9817 
9818       // In normal "call dllimport func" instruction (non-inlineasm) it force
9819       // indirect access by specifing call opcode. And usually specially print
9820       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9821       // not do in this way now. (In fact, this is similar with "Data Access"
9822       // action). So here we ignore dllimport function.
9823       if (Fn && !Fn->hasDLLImportStorageClass())
9824         return true;
9825     }
9826   }
9827   return false;
9828 }
9829 
9830 /// visitInlineAsm - Handle a call to an InlineAsm object.
9831 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9832                                          const BasicBlock *EHPadBB) {
9833   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9834 
9835   /// ConstraintOperands - Information about all of the constraints.
9836   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9837 
9838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9839   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9840       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9841 
9842   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9843   // AsmDialect, MayLoad, MayStore).
9844   bool HasSideEffect = IA->hasSideEffects();
9845   ExtraFlags ExtraInfo(Call);
9846 
9847   for (auto &T : TargetConstraints) {
9848     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9849     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9850 
9851     if (OpInfo.CallOperandVal)
9852       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9853 
9854     if (!HasSideEffect)
9855       HasSideEffect = OpInfo.hasMemory(TLI);
9856 
9857     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9858     // FIXME: Could we compute this on OpInfo rather than T?
9859 
9860     // Compute the constraint code and ConstraintType to use.
9861     TLI.ComputeConstraintToUse(T, SDValue());
9862 
9863     if (T.ConstraintType == TargetLowering::C_Immediate &&
9864         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9865       // We've delayed emitting a diagnostic like the "n" constraint because
9866       // inlining could cause an integer showing up.
9867       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9868                                           "' expects an integer constant "
9869                                           "expression");
9870 
9871     ExtraInfo.update(T);
9872   }
9873 
9874   // We won't need to flush pending loads if this asm doesn't touch
9875   // memory and is nonvolatile.
9876   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9877 
9878   bool EmitEHLabels = isa<InvokeInst>(Call);
9879   if (EmitEHLabels) {
9880     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9881   }
9882   bool IsCallBr = isa<CallBrInst>(Call);
9883 
9884   if (IsCallBr || EmitEHLabels) {
9885     // If this is a callbr or invoke we need to flush pending exports since
9886     // inlineasm_br and invoke are terminators.
9887     // We need to do this before nodes are glued to the inlineasm_br node.
9888     Chain = getControlRoot();
9889   }
9890 
9891   MCSymbol *BeginLabel = nullptr;
9892   if (EmitEHLabels) {
9893     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9894   }
9895 
9896   int OpNo = -1;
9897   SmallVector<StringRef> AsmStrs;
9898   IA->collectAsmStrs(AsmStrs);
9899 
9900   // Second pass over the constraints: compute which constraint option to use.
9901   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9902     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9903       OpNo++;
9904 
9905     // If this is an output operand with a matching input operand, look up the
9906     // matching input. If their types mismatch, e.g. one is an integer, the
9907     // other is floating point, or their sizes are different, flag it as an
9908     // error.
9909     if (OpInfo.hasMatchingInput()) {
9910       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9911       patchMatchingInput(OpInfo, Input, DAG);
9912     }
9913 
9914     // Compute the constraint code and ConstraintType to use.
9915     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9916 
9917     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9918          OpInfo.Type == InlineAsm::isClobber) ||
9919         OpInfo.ConstraintType == TargetLowering::C_Address)
9920       continue;
9921 
9922     // In Linux PIC model, there are 4 cases about value/label addressing:
9923     //
9924     // 1: Function call or Label jmp inside the module.
9925     // 2: Data access (such as global variable, static variable) inside module.
9926     // 3: Function call or Label jmp outside the module.
9927     // 4: Data access (such as global variable) outside the module.
9928     //
9929     // Due to current llvm inline asm architecture designed to not "recognize"
9930     // the asm code, there are quite troubles for us to treat mem addressing
9931     // differently for same value/adress used in different instuctions.
9932     // For example, in pic model, call a func may in plt way or direclty
9933     // pc-related, but lea/mov a function adress may use got.
9934     //
9935     // Here we try to "recognize" function call for the case 1 and case 3 in
9936     // inline asm. And try to adjust the constraint for them.
9937     //
9938     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9939     // label, so here we don't handle jmp function label now, but we need to
9940     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9941     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9942         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9943         TM.getCodeModel() != CodeModel::Large) {
9944       OpInfo.isIndirect = false;
9945       OpInfo.ConstraintType = TargetLowering::C_Address;
9946     }
9947 
9948     // If this is a memory input, and if the operand is not indirect, do what we
9949     // need to provide an address for the memory input.
9950     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9951         !OpInfo.isIndirect) {
9952       assert((OpInfo.isMultipleAlternative ||
9953               (OpInfo.Type == InlineAsm::isInput)) &&
9954              "Can only indirectify direct input operands!");
9955 
9956       // Memory operands really want the address of the value.
9957       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9958 
9959       // There is no longer a Value* corresponding to this operand.
9960       OpInfo.CallOperandVal = nullptr;
9961 
9962       // It is now an indirect operand.
9963       OpInfo.isIndirect = true;
9964     }
9965 
9966   }
9967 
9968   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9969   std::vector<SDValue> AsmNodeOperands;
9970   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9971   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9972       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9973 
9974   // If we have a !srcloc metadata node associated with it, we want to attach
9975   // this to the ultimately generated inline asm machineinstr.  To do this, we
9976   // pass in the third operand as this (potentially null) inline asm MDNode.
9977   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9978   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9979 
9980   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9981   // bits as operand 3.
9982   AsmNodeOperands.push_back(DAG.getTargetConstant(
9983       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9984 
9985   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9986   // this, assign virtual and physical registers for inputs and otput.
9987   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9988     // Assign Registers.
9989     SDISelAsmOperandInfo &RefOpInfo =
9990         OpInfo.isMatchingInputConstraint()
9991             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9992             : OpInfo;
9993     const auto RegError =
9994         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9995     if (RegError) {
9996       const MachineFunction &MF = DAG.getMachineFunction();
9997       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9998       const char *RegName = TRI.getName(*RegError);
9999       emitInlineAsmError(Call, "register '" + Twine(RegName) +
10000                                    "' allocated for constraint '" +
10001                                    Twine(OpInfo.ConstraintCode) +
10002                                    "' does not match required type");
10003       return;
10004     }
10005 
10006     auto DetectWriteToReservedRegister = [&]() {
10007       const MachineFunction &MF = DAG.getMachineFunction();
10008       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10009       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
10010         if (Register::isPhysicalRegister(Reg) &&
10011             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10012           const char *RegName = TRI.getName(Reg);
10013           emitInlineAsmError(Call, "write to reserved register '" +
10014                                        Twine(RegName) + "'");
10015           return true;
10016         }
10017       }
10018       return false;
10019     };
10020     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10021             (OpInfo.Type == InlineAsm::isInput &&
10022              !OpInfo.isMatchingInputConstraint())) &&
10023            "Only address as input operand is allowed.");
10024 
10025     switch (OpInfo.Type) {
10026     case InlineAsm::isOutput:
10027       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10028         const InlineAsm::ConstraintCode ConstraintID =
10029             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10030         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10031                "Failed to convert memory constraint code to constraint id.");
10032 
10033         // Add information to the INLINEASM node to know about this output.
10034         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10035         OpFlags.setMemConstraint(ConstraintID);
10036         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10037                                                         MVT::i32));
10038         AsmNodeOperands.push_back(OpInfo.CallOperand);
10039       } else {
10040         // Otherwise, this outputs to a register (directly for C_Register /
10041         // C_RegisterClass, and a target-defined fashion for
10042         // C_Immediate/C_Other). Find a register that we can use.
10043         if (OpInfo.AssignedRegs.Regs.empty()) {
10044           emitInlineAsmError(
10045               Call, "couldn't allocate output register for constraint '" +
10046                         Twine(OpInfo.ConstraintCode) + "'");
10047           return;
10048         }
10049 
10050         if (DetectWriteToReservedRegister())
10051           return;
10052 
10053         // Add information to the INLINEASM node to know that this register is
10054         // set.
10055         OpInfo.AssignedRegs.AddInlineAsmOperands(
10056             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10057                                   : InlineAsm::Kind::RegDef,
10058             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10059       }
10060       break;
10061 
10062     case InlineAsm::isInput:
10063     case InlineAsm::isLabel: {
10064       SDValue InOperandVal = OpInfo.CallOperand;
10065 
10066       if (OpInfo.isMatchingInputConstraint()) {
10067         // If this is required to match an output register we have already set,
10068         // just use its register.
10069         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10070                                                   AsmNodeOperands);
10071         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10072         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10073           if (OpInfo.isIndirect) {
10074             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10075             emitInlineAsmError(Call, "inline asm not supported yet: "
10076                                      "don't know how to handle tied "
10077                                      "indirect register inputs");
10078             return;
10079           }
10080 
10081           SmallVector<unsigned, 4> Regs;
10082           MachineFunction &MF = DAG.getMachineFunction();
10083           MachineRegisterInfo &MRI = MF.getRegInfo();
10084           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10085           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10086           Register TiedReg = R->getReg();
10087           MVT RegVT = R->getSimpleValueType(0);
10088           const TargetRegisterClass *RC =
10089               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
10090               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10091                                       : TRI.getMinimalPhysRegClass(TiedReg);
10092           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10093             Regs.push_back(MRI.createVirtualRegister(RC));
10094 
10095           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10096 
10097           SDLoc dl = getCurSDLoc();
10098           // Use the produced MatchedRegs object to
10099           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10100           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10101                                            OpInfo.getMatchedOperand(), dl, DAG,
10102                                            AsmNodeOperands);
10103           break;
10104         }
10105 
10106         assert(Flag.isMemKind() && "Unknown matching constraint!");
10107         assert(Flag.getNumOperandRegisters() == 1 &&
10108                "Unexpected number of operands");
10109         // Add information to the INLINEASM node to know about this input.
10110         // See InlineAsm.h isUseOperandTiedToDef.
10111         Flag.clearMemConstraint();
10112         Flag.setMatchingOp(OpInfo.getMatchedOperand());
10113         AsmNodeOperands.push_back(DAG.getTargetConstant(
10114             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10115         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10116         break;
10117       }
10118 
10119       // Treat indirect 'X' constraint as memory.
10120       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10121           OpInfo.isIndirect)
10122         OpInfo.ConstraintType = TargetLowering::C_Memory;
10123 
10124       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10125           OpInfo.ConstraintType == TargetLowering::C_Other) {
10126         std::vector<SDValue> Ops;
10127         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10128                                           Ops, DAG);
10129         if (Ops.empty()) {
10130           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10131             if (isa<ConstantSDNode>(InOperandVal)) {
10132               emitInlineAsmError(Call, "value out of range for constraint '" +
10133                                            Twine(OpInfo.ConstraintCode) + "'");
10134               return;
10135             }
10136 
10137           emitInlineAsmError(Call,
10138                              "invalid operand for inline asm constraint '" +
10139                                  Twine(OpInfo.ConstraintCode) + "'");
10140           return;
10141         }
10142 
10143         // Add information to the INLINEASM node to know about this input.
10144         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10145         AsmNodeOperands.push_back(DAG.getTargetConstant(
10146             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10147         llvm::append_range(AsmNodeOperands, Ops);
10148         break;
10149       }
10150 
10151       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10152         assert((OpInfo.isIndirect ||
10153                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10154                "Operand must be indirect to be a mem!");
10155         assert(InOperandVal.getValueType() ==
10156                    TLI.getPointerTy(DAG.getDataLayout()) &&
10157                "Memory operands expect pointer values");
10158 
10159         const InlineAsm::ConstraintCode ConstraintID =
10160             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10161         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10162                "Failed to convert memory constraint code to constraint id.");
10163 
10164         // Add information to the INLINEASM node to know about this input.
10165         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10166         ResOpType.setMemConstraint(ConstraintID);
10167         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10168                                                         getCurSDLoc(),
10169                                                         MVT::i32));
10170         AsmNodeOperands.push_back(InOperandVal);
10171         break;
10172       }
10173 
10174       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10175         const InlineAsm::ConstraintCode ConstraintID =
10176             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10177         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10178                "Failed to convert memory constraint code to constraint id.");
10179 
10180         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10181 
10182         SDValue AsmOp = InOperandVal;
10183         if (isFunction(InOperandVal)) {
10184           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10185           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10186           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10187                                              InOperandVal.getValueType(),
10188                                              GA->getOffset());
10189         }
10190 
10191         // Add information to the INLINEASM node to know about this input.
10192         ResOpType.setMemConstraint(ConstraintID);
10193 
10194         AsmNodeOperands.push_back(
10195             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10196 
10197         AsmNodeOperands.push_back(AsmOp);
10198         break;
10199       }
10200 
10201       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10202           OpInfo.ConstraintType != TargetLowering::C_Register) {
10203         emitInlineAsmError(Call, "unknown asm constraint '" +
10204                                      Twine(OpInfo.ConstraintCode) + "'");
10205         return;
10206       }
10207 
10208       // TODO: Support this.
10209       if (OpInfo.isIndirect) {
10210         emitInlineAsmError(
10211             Call, "Don't know how to handle indirect register inputs yet "
10212                   "for constraint '" +
10213                       Twine(OpInfo.ConstraintCode) + "'");
10214         return;
10215       }
10216 
10217       // Copy the input into the appropriate registers.
10218       if (OpInfo.AssignedRegs.Regs.empty()) {
10219         emitInlineAsmError(Call,
10220                            "couldn't allocate input reg for constraint '" +
10221                                Twine(OpInfo.ConstraintCode) + "'");
10222         return;
10223       }
10224 
10225       if (DetectWriteToReservedRegister())
10226         return;
10227 
10228       SDLoc dl = getCurSDLoc();
10229 
10230       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10231                                         &Call);
10232 
10233       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10234                                                0, dl, DAG, AsmNodeOperands);
10235       break;
10236     }
10237     case InlineAsm::isClobber:
10238       // Add the clobbered value to the operand list, so that the register
10239       // allocator is aware that the physreg got clobbered.
10240       if (!OpInfo.AssignedRegs.Regs.empty())
10241         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10242                                                  false, 0, getCurSDLoc(), DAG,
10243                                                  AsmNodeOperands);
10244       break;
10245     }
10246   }
10247 
10248   // Finish up input operands.  Set the input chain and add the flag last.
10249   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10250   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10251 
10252   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10253   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10254                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10255   Glue = Chain.getValue(1);
10256 
10257   // Do additional work to generate outputs.
10258 
10259   SmallVector<EVT, 1> ResultVTs;
10260   SmallVector<SDValue, 1> ResultValues;
10261   SmallVector<SDValue, 8> OutChains;
10262 
10263   llvm::Type *CallResultType = Call.getType();
10264   ArrayRef<Type *> ResultTypes;
10265   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10266     ResultTypes = StructResult->elements();
10267   else if (!CallResultType->isVoidTy())
10268     ResultTypes = ArrayRef(CallResultType);
10269 
10270   auto CurResultType = ResultTypes.begin();
10271   auto handleRegAssign = [&](SDValue V) {
10272     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10273     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10274     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10275     ++CurResultType;
10276     // If the type of the inline asm call site return value is different but has
10277     // same size as the type of the asm output bitcast it.  One example of this
10278     // is for vectors with different width / number of elements.  This can
10279     // happen for register classes that can contain multiple different value
10280     // types.  The preg or vreg allocated may not have the same VT as was
10281     // expected.
10282     //
10283     // This can also happen for a return value that disagrees with the register
10284     // class it is put in, eg. a double in a general-purpose register on a
10285     // 32-bit machine.
10286     if (ResultVT != V.getValueType() &&
10287         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10288       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10289     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10290              V.getValueType().isInteger()) {
10291       // If a result value was tied to an input value, the computed result
10292       // may have a wider width than the expected result.  Extract the
10293       // relevant portion.
10294       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10295     }
10296     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10297     ResultVTs.push_back(ResultVT);
10298     ResultValues.push_back(V);
10299   };
10300 
10301   // Deal with output operands.
10302   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10303     if (OpInfo.Type == InlineAsm::isOutput) {
10304       SDValue Val;
10305       // Skip trivial output operands.
10306       if (OpInfo.AssignedRegs.Regs.empty())
10307         continue;
10308 
10309       switch (OpInfo.ConstraintType) {
10310       case TargetLowering::C_Register:
10311       case TargetLowering::C_RegisterClass:
10312         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10313                                                   Chain, &Glue, &Call);
10314         break;
10315       case TargetLowering::C_Immediate:
10316       case TargetLowering::C_Other:
10317         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10318                                               OpInfo, DAG);
10319         break;
10320       case TargetLowering::C_Memory:
10321         break; // Already handled.
10322       case TargetLowering::C_Address:
10323         break; // Silence warning.
10324       case TargetLowering::C_Unknown:
10325         assert(false && "Unexpected unknown constraint");
10326       }
10327 
10328       // Indirect output manifest as stores. Record output chains.
10329       if (OpInfo.isIndirect) {
10330         const Value *Ptr = OpInfo.CallOperandVal;
10331         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10332         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10333                                      MachinePointerInfo(Ptr));
10334         OutChains.push_back(Store);
10335       } else {
10336         // generate CopyFromRegs to associated registers.
10337         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10338         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10339           for (const SDValue &V : Val->op_values())
10340             handleRegAssign(V);
10341         } else
10342           handleRegAssign(Val);
10343       }
10344     }
10345   }
10346 
10347   // Set results.
10348   if (!ResultValues.empty()) {
10349     assert(CurResultType == ResultTypes.end() &&
10350            "Mismatch in number of ResultTypes");
10351     assert(ResultValues.size() == ResultTypes.size() &&
10352            "Mismatch in number of output operands in asm result");
10353 
10354     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10355                             DAG.getVTList(ResultVTs), ResultValues);
10356     setValue(&Call, V);
10357   }
10358 
10359   // Collect store chains.
10360   if (!OutChains.empty())
10361     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10362 
10363   if (EmitEHLabels) {
10364     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10365   }
10366 
10367   // Only Update Root if inline assembly has a memory effect.
10368   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10369       EmitEHLabels)
10370     DAG.setRoot(Chain);
10371 }
10372 
10373 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10374                                              const Twine &Message) {
10375   LLVMContext &Ctx = *DAG.getContext();
10376   Ctx.emitError(&Call, Message);
10377 
10378   // Make sure we leave the DAG in a valid state
10379   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10380   SmallVector<EVT, 1> ValueVTs;
10381   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10382 
10383   if (ValueVTs.empty())
10384     return;
10385 
10386   SmallVector<SDValue, 1> Ops;
10387   for (const EVT &VT : ValueVTs)
10388     Ops.push_back(DAG.getUNDEF(VT));
10389 
10390   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10391 }
10392 
10393 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10394   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10395                           MVT::Other, getRoot(),
10396                           getValue(I.getArgOperand(0)),
10397                           DAG.getSrcValue(I.getArgOperand(0))));
10398 }
10399 
10400 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10402   const DataLayout &DL = DAG.getDataLayout();
10403   SDValue V = DAG.getVAArg(
10404       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10405       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10406       DL.getABITypeAlign(I.getType()).value());
10407   DAG.setRoot(V.getValue(1));
10408 
10409   if (I.getType()->isPointerTy())
10410     V = DAG.getPtrExtOrTrunc(
10411         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10412   setValue(&I, V);
10413 }
10414 
10415 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10416   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10417                           MVT::Other, getRoot(),
10418                           getValue(I.getArgOperand(0)),
10419                           DAG.getSrcValue(I.getArgOperand(0))));
10420 }
10421 
10422 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10423   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10424                           MVT::Other, getRoot(),
10425                           getValue(I.getArgOperand(0)),
10426                           getValue(I.getArgOperand(1)),
10427                           DAG.getSrcValue(I.getArgOperand(0)),
10428                           DAG.getSrcValue(I.getArgOperand(1))));
10429 }
10430 
10431 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10432                                                     const Instruction &I,
10433                                                     SDValue Op) {
10434   std::optional<ConstantRange> CR = getRange(I);
10435 
10436   if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10437     return Op;
10438 
10439   APInt Lo = CR->getUnsignedMin();
10440   if (!Lo.isMinValue())
10441     return Op;
10442 
10443   APInt Hi = CR->getUnsignedMax();
10444   unsigned Bits = std::max(Hi.getActiveBits(),
10445                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10446 
10447   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10448 
10449   SDLoc SL = getCurSDLoc();
10450 
10451   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10452                              DAG.getValueType(SmallVT));
10453   unsigned NumVals = Op.getNode()->getNumValues();
10454   if (NumVals == 1)
10455     return ZExt;
10456 
10457   SmallVector<SDValue, 4> Ops;
10458 
10459   Ops.push_back(ZExt);
10460   for (unsigned I = 1; I != NumVals; ++I)
10461     Ops.push_back(Op.getValue(I));
10462 
10463   return DAG.getMergeValues(Ops, SL);
10464 }
10465 
10466 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10467 /// the call being lowered.
10468 ///
10469 /// This is a helper for lowering intrinsics that follow a target calling
10470 /// convention or require stack pointer adjustment. Only a subset of the
10471 /// intrinsic's operands need to participate in the calling convention.
10472 void SelectionDAGBuilder::populateCallLoweringInfo(
10473     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10474     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10475     AttributeSet RetAttrs, bool IsPatchPoint) {
10476   TargetLowering::ArgListTy Args;
10477   Args.reserve(NumArgs);
10478 
10479   // Populate the argument list.
10480   // Attributes for args start at offset 1, after the return attribute.
10481   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10482        ArgI != ArgE; ++ArgI) {
10483     const Value *V = Call->getOperand(ArgI);
10484 
10485     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10486 
10487     TargetLowering::ArgListEntry Entry;
10488     Entry.Node = getValue(V);
10489     Entry.Ty = V->getType();
10490     Entry.setAttributes(Call, ArgI);
10491     Args.push_back(Entry);
10492   }
10493 
10494   CLI.setDebugLoc(getCurSDLoc())
10495       .setChain(getRoot())
10496       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10497                  RetAttrs)
10498       .setDiscardResult(Call->use_empty())
10499       .setIsPatchPoint(IsPatchPoint)
10500       .setIsPreallocated(
10501           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10502 }
10503 
10504 /// Add a stack map intrinsic call's live variable operands to a stackmap
10505 /// or patchpoint target node's operand list.
10506 ///
10507 /// Constants are converted to TargetConstants purely as an optimization to
10508 /// avoid constant materialization and register allocation.
10509 ///
10510 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10511 /// generate addess computation nodes, and so FinalizeISel can convert the
10512 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10513 /// address materialization and register allocation, but may also be required
10514 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10515 /// alloca in the entry block, then the runtime may assume that the alloca's
10516 /// StackMap location can be read immediately after compilation and that the
10517 /// location is valid at any point during execution (this is similar to the
10518 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10519 /// only available in a register, then the runtime would need to trap when
10520 /// execution reaches the StackMap in order to read the alloca's location.
10521 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10522                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10523                                 SelectionDAGBuilder &Builder) {
10524   SelectionDAG &DAG = Builder.DAG;
10525   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10526     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10527 
10528     // Things on the stack are pointer-typed, meaning that they are already
10529     // legal and can be emitted directly to target nodes.
10530     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10531       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10532     } else {
10533       // Otherwise emit a target independent node to be legalised.
10534       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10535     }
10536   }
10537 }
10538 
10539 /// Lower llvm.experimental.stackmap.
10540 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10541   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10542   //                                  [live variables...])
10543 
10544   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10545 
10546   SDValue Chain, InGlue, Callee;
10547   SmallVector<SDValue, 32> Ops;
10548 
10549   SDLoc DL = getCurSDLoc();
10550   Callee = getValue(CI.getCalledOperand());
10551 
10552   // The stackmap intrinsic only records the live variables (the arguments
10553   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10554   // intrinsic, this won't be lowered to a function call. This means we don't
10555   // have to worry about calling conventions and target specific lowering code.
10556   // Instead we perform the call lowering right here.
10557   //
10558   // chain, flag = CALLSEQ_START(chain, 0, 0)
10559   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10560   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10561   //
10562   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10563   InGlue = Chain.getValue(1);
10564 
10565   // Add the STACKMAP operands, starting with DAG house-keeping.
10566   Ops.push_back(Chain);
10567   Ops.push_back(InGlue);
10568 
10569   // Add the <id>, <numShadowBytes> operands.
10570   //
10571   // These do not require legalisation, and can be emitted directly to target
10572   // constant nodes.
10573   SDValue ID = getValue(CI.getArgOperand(0));
10574   assert(ID.getValueType() == MVT::i64);
10575   SDValue IDConst =
10576       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10577   Ops.push_back(IDConst);
10578 
10579   SDValue Shad = getValue(CI.getArgOperand(1));
10580   assert(Shad.getValueType() == MVT::i32);
10581   SDValue ShadConst =
10582       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10583   Ops.push_back(ShadConst);
10584 
10585   // Add the live variables.
10586   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10587 
10588   // Create the STACKMAP node.
10589   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10590   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10591   InGlue = Chain.getValue(1);
10592 
10593   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10594 
10595   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10596 
10597   // Set the root to the target-lowered call chain.
10598   DAG.setRoot(Chain);
10599 
10600   // Inform the Frame Information that we have a stackmap in this function.
10601   FuncInfo.MF->getFrameInfo().setHasStackMap();
10602 }
10603 
10604 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10605 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10606                                           const BasicBlock *EHPadBB) {
10607   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10608   //                                         i32 <numBytes>,
10609   //                                         i8* <target>,
10610   //                                         i32 <numArgs>,
10611   //                                         [Args...],
10612   //                                         [live variables...])
10613 
10614   CallingConv::ID CC = CB.getCallingConv();
10615   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10616   bool HasDef = !CB.getType()->isVoidTy();
10617   SDLoc dl = getCurSDLoc();
10618   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10619 
10620   // Handle immediate and symbolic callees.
10621   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10622     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10623                                    /*isTarget=*/true);
10624   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10625     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10626                                          SDLoc(SymbolicCallee),
10627                                          SymbolicCallee->getValueType(0));
10628 
10629   // Get the real number of arguments participating in the call <numArgs>
10630   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10631   unsigned NumArgs = NArgVal->getAsZExtVal();
10632 
10633   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10634   // Intrinsics include all meta-operands up to but not including CC.
10635   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10636   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10637          "Not enough arguments provided to the patchpoint intrinsic");
10638 
10639   // For AnyRegCC the arguments are lowered later on manually.
10640   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10641   Type *ReturnTy =
10642       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10643 
10644   TargetLowering::CallLoweringInfo CLI(DAG);
10645   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10646                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10647   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10648 
10649   SDNode *CallEnd = Result.second.getNode();
10650   if (CallEnd->getOpcode() == ISD::EH_LABEL)
10651     CallEnd = CallEnd->getOperand(0).getNode();
10652   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10653     CallEnd = CallEnd->getOperand(0).getNode();
10654 
10655   /// Get a call instruction from the call sequence chain.
10656   /// Tail calls are not allowed.
10657   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10658          "Expected a callseq node.");
10659   SDNode *Call = CallEnd->getOperand(0).getNode();
10660   bool HasGlue = Call->getGluedNode();
10661 
10662   // Replace the target specific call node with the patchable intrinsic.
10663   SmallVector<SDValue, 8> Ops;
10664 
10665   // Push the chain.
10666   Ops.push_back(*(Call->op_begin()));
10667 
10668   // Optionally, push the glue (if any).
10669   if (HasGlue)
10670     Ops.push_back(*(Call->op_end() - 1));
10671 
10672   // Push the register mask info.
10673   if (HasGlue)
10674     Ops.push_back(*(Call->op_end() - 2));
10675   else
10676     Ops.push_back(*(Call->op_end() - 1));
10677 
10678   // Add the <id> and <numBytes> constants.
10679   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10680   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10681   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10682   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10683 
10684   // Add the callee.
10685   Ops.push_back(Callee);
10686 
10687   // Adjust <numArgs> to account for any arguments that have been passed on the
10688   // stack instead.
10689   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10690   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10691   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10692   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10693 
10694   // Add the calling convention
10695   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10696 
10697   // Add the arguments we omitted previously. The register allocator should
10698   // place these in any free register.
10699   if (IsAnyRegCC)
10700     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10701       Ops.push_back(getValue(CB.getArgOperand(i)));
10702 
10703   // Push the arguments from the call instruction.
10704   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10705   Ops.append(Call->op_begin() + 2, e);
10706 
10707   // Push live variables for the stack map.
10708   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10709 
10710   SDVTList NodeTys;
10711   if (IsAnyRegCC && HasDef) {
10712     // Create the return types based on the intrinsic definition
10713     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10714     SmallVector<EVT, 3> ValueVTs;
10715     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10716     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10717 
10718     // There is always a chain and a glue type at the end
10719     ValueVTs.push_back(MVT::Other);
10720     ValueVTs.push_back(MVT::Glue);
10721     NodeTys = DAG.getVTList(ValueVTs);
10722   } else
10723     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10724 
10725   // Replace the target specific call node with a PATCHPOINT node.
10726   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10727 
10728   // Update the NodeMap.
10729   if (HasDef) {
10730     if (IsAnyRegCC)
10731       setValue(&CB, SDValue(PPV.getNode(), 0));
10732     else
10733       setValue(&CB, Result.first);
10734   }
10735 
10736   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10737   // call sequence. Furthermore the location of the chain and glue can change
10738   // when the AnyReg calling convention is used and the intrinsic returns a
10739   // value.
10740   if (IsAnyRegCC && HasDef) {
10741     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10742     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10743     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10744   } else
10745     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10746   DAG.DeleteNode(Call);
10747 
10748   // Inform the Frame Information that we have a patchpoint in this function.
10749   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10750 }
10751 
10752 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10753                                             unsigned Intrinsic) {
10754   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10755   SDValue Op1 = getValue(I.getArgOperand(0));
10756   SDValue Op2;
10757   if (I.arg_size() > 1)
10758     Op2 = getValue(I.getArgOperand(1));
10759   SDLoc dl = getCurSDLoc();
10760   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10761   SDValue Res;
10762   SDNodeFlags SDFlags;
10763   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10764     SDFlags.copyFMF(*FPMO);
10765 
10766   switch (Intrinsic) {
10767   case Intrinsic::vector_reduce_fadd:
10768     if (SDFlags.hasAllowReassociation())
10769       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10770                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10771                         SDFlags);
10772     else
10773       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10774     break;
10775   case Intrinsic::vector_reduce_fmul:
10776     if (SDFlags.hasAllowReassociation())
10777       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10778                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10779                         SDFlags);
10780     else
10781       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10782     break;
10783   case Intrinsic::vector_reduce_add:
10784     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10785     break;
10786   case Intrinsic::vector_reduce_mul:
10787     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10788     break;
10789   case Intrinsic::vector_reduce_and:
10790     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10791     break;
10792   case Intrinsic::vector_reduce_or:
10793     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10794     break;
10795   case Intrinsic::vector_reduce_xor:
10796     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10797     break;
10798   case Intrinsic::vector_reduce_smax:
10799     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10800     break;
10801   case Intrinsic::vector_reduce_smin:
10802     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10803     break;
10804   case Intrinsic::vector_reduce_umax:
10805     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10806     break;
10807   case Intrinsic::vector_reduce_umin:
10808     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10809     break;
10810   case Intrinsic::vector_reduce_fmax:
10811     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10812     break;
10813   case Intrinsic::vector_reduce_fmin:
10814     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10815     break;
10816   case Intrinsic::vector_reduce_fmaximum:
10817     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10818     break;
10819   case Intrinsic::vector_reduce_fminimum:
10820     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10821     break;
10822   default:
10823     llvm_unreachable("Unhandled vector reduce intrinsic");
10824   }
10825   setValue(&I, Res);
10826 }
10827 
10828 /// Returns an AttributeList representing the attributes applied to the return
10829 /// value of the given call.
10830 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10831   SmallVector<Attribute::AttrKind, 2> Attrs;
10832   if (CLI.RetSExt)
10833     Attrs.push_back(Attribute::SExt);
10834   if (CLI.RetZExt)
10835     Attrs.push_back(Attribute::ZExt);
10836   if (CLI.IsInReg)
10837     Attrs.push_back(Attribute::InReg);
10838 
10839   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10840                             Attrs);
10841 }
10842 
10843 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10844 /// implementation, which just calls LowerCall.
10845 /// FIXME: When all targets are
10846 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10847 std::pair<SDValue, SDValue>
10848 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10849   // Handle the incoming return values from the call.
10850   CLI.Ins.clear();
10851   Type *OrigRetTy = CLI.RetTy;
10852   SmallVector<EVT, 4> RetTys;
10853   SmallVector<TypeSize, 4> Offsets;
10854   auto &DL = CLI.DAG.getDataLayout();
10855   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10856 
10857   if (CLI.IsPostTypeLegalization) {
10858     // If we are lowering a libcall after legalization, split the return type.
10859     SmallVector<EVT, 4> OldRetTys;
10860     SmallVector<TypeSize, 4> OldOffsets;
10861     RetTys.swap(OldRetTys);
10862     Offsets.swap(OldOffsets);
10863 
10864     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10865       EVT RetVT = OldRetTys[i];
10866       uint64_t Offset = OldOffsets[i];
10867       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10868       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10869       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10870       RetTys.append(NumRegs, RegisterVT);
10871       for (unsigned j = 0; j != NumRegs; ++j)
10872         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10873     }
10874   }
10875 
10876   SmallVector<ISD::OutputArg, 4> Outs;
10877   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10878 
10879   bool CanLowerReturn =
10880       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10881                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10882 
10883   SDValue DemoteStackSlot;
10884   int DemoteStackIdx = -100;
10885   if (!CanLowerReturn) {
10886     // FIXME: equivalent assert?
10887     // assert(!CS.hasInAllocaArgument() &&
10888     //        "sret demotion is incompatible with inalloca");
10889     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10890     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10891     MachineFunction &MF = CLI.DAG.getMachineFunction();
10892     DemoteStackIdx =
10893         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10894     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10895                                               DL.getAllocaAddrSpace());
10896 
10897     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10898     ArgListEntry Entry;
10899     Entry.Node = DemoteStackSlot;
10900     Entry.Ty = StackSlotPtrType;
10901     Entry.IsSExt = false;
10902     Entry.IsZExt = false;
10903     Entry.IsInReg = false;
10904     Entry.IsSRet = true;
10905     Entry.IsNest = false;
10906     Entry.IsByVal = false;
10907     Entry.IsByRef = false;
10908     Entry.IsReturned = false;
10909     Entry.IsSwiftSelf = false;
10910     Entry.IsSwiftAsync = false;
10911     Entry.IsSwiftError = false;
10912     Entry.IsCFGuardTarget = false;
10913     Entry.Alignment = Alignment;
10914     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10915     CLI.NumFixedArgs += 1;
10916     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10917     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10918 
10919     // sret demotion isn't compatible with tail-calls, since the sret argument
10920     // points into the callers stack frame.
10921     CLI.IsTailCall = false;
10922   } else {
10923     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10924         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10925     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10926       ISD::ArgFlagsTy Flags;
10927       if (NeedsRegBlock) {
10928         Flags.setInConsecutiveRegs();
10929         if (I == RetTys.size() - 1)
10930           Flags.setInConsecutiveRegsLast();
10931       }
10932       EVT VT = RetTys[I];
10933       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10934                                                      CLI.CallConv, VT);
10935       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10936                                                        CLI.CallConv, VT);
10937       for (unsigned i = 0; i != NumRegs; ++i) {
10938         ISD::InputArg MyFlags;
10939         MyFlags.Flags = Flags;
10940         MyFlags.VT = RegisterVT;
10941         MyFlags.ArgVT = VT;
10942         MyFlags.Used = CLI.IsReturnValueUsed;
10943         if (CLI.RetTy->isPointerTy()) {
10944           MyFlags.Flags.setPointer();
10945           MyFlags.Flags.setPointerAddrSpace(
10946               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10947         }
10948         if (CLI.RetSExt)
10949           MyFlags.Flags.setSExt();
10950         if (CLI.RetZExt)
10951           MyFlags.Flags.setZExt();
10952         if (CLI.IsInReg)
10953           MyFlags.Flags.setInReg();
10954         CLI.Ins.push_back(MyFlags);
10955       }
10956     }
10957   }
10958 
10959   // We push in swifterror return as the last element of CLI.Ins.
10960   ArgListTy &Args = CLI.getArgs();
10961   if (supportSwiftError()) {
10962     for (const ArgListEntry &Arg : Args) {
10963       if (Arg.IsSwiftError) {
10964         ISD::InputArg MyFlags;
10965         MyFlags.VT = getPointerTy(DL);
10966         MyFlags.ArgVT = EVT(getPointerTy(DL));
10967         MyFlags.Flags.setSwiftError();
10968         CLI.Ins.push_back(MyFlags);
10969       }
10970     }
10971   }
10972 
10973   // Handle all of the outgoing arguments.
10974   CLI.Outs.clear();
10975   CLI.OutVals.clear();
10976   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10977     SmallVector<EVT, 4> ValueVTs;
10978     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10979     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10980     Type *FinalType = Args[i].Ty;
10981     if (Args[i].IsByVal)
10982       FinalType = Args[i].IndirectType;
10983     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10984         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10985     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10986          ++Value) {
10987       EVT VT = ValueVTs[Value];
10988       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10989       SDValue Op = SDValue(Args[i].Node.getNode(),
10990                            Args[i].Node.getResNo() + Value);
10991       ISD::ArgFlagsTy Flags;
10992 
10993       // Certain targets (such as MIPS), may have a different ABI alignment
10994       // for a type depending on the context. Give the target a chance to
10995       // specify the alignment it wants.
10996       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10997       Flags.setOrigAlign(OriginalAlignment);
10998 
10999       if (Args[i].Ty->isPointerTy()) {
11000         Flags.setPointer();
11001         Flags.setPointerAddrSpace(
11002             cast<PointerType>(Args[i].Ty)->getAddressSpace());
11003       }
11004       if (Args[i].IsZExt)
11005         Flags.setZExt();
11006       if (Args[i].IsSExt)
11007         Flags.setSExt();
11008       if (Args[i].IsInReg) {
11009         // If we are using vectorcall calling convention, a structure that is
11010         // passed InReg - is surely an HVA
11011         if (CLI.CallConv == CallingConv::X86_VectorCall &&
11012             isa<StructType>(FinalType)) {
11013           // The first value of a structure is marked
11014           if (0 == Value)
11015             Flags.setHvaStart();
11016           Flags.setHva();
11017         }
11018         // Set InReg Flag
11019         Flags.setInReg();
11020       }
11021       if (Args[i].IsSRet)
11022         Flags.setSRet();
11023       if (Args[i].IsSwiftSelf)
11024         Flags.setSwiftSelf();
11025       if (Args[i].IsSwiftAsync)
11026         Flags.setSwiftAsync();
11027       if (Args[i].IsSwiftError)
11028         Flags.setSwiftError();
11029       if (Args[i].IsCFGuardTarget)
11030         Flags.setCFGuardTarget();
11031       if (Args[i].IsByVal)
11032         Flags.setByVal();
11033       if (Args[i].IsByRef)
11034         Flags.setByRef();
11035       if (Args[i].IsPreallocated) {
11036         Flags.setPreallocated();
11037         // Set the byval flag for CCAssignFn callbacks that don't know about
11038         // preallocated.  This way we can know how many bytes we should've
11039         // allocated and how many bytes a callee cleanup function will pop.  If
11040         // we port preallocated to more targets, we'll have to add custom
11041         // preallocated handling in the various CC lowering callbacks.
11042         Flags.setByVal();
11043       }
11044       if (Args[i].IsInAlloca) {
11045         Flags.setInAlloca();
11046         // Set the byval flag for CCAssignFn callbacks that don't know about
11047         // inalloca.  This way we can know how many bytes we should've allocated
11048         // and how many bytes a callee cleanup function will pop.  If we port
11049         // inalloca to more targets, we'll have to add custom inalloca handling
11050         // in the various CC lowering callbacks.
11051         Flags.setByVal();
11052       }
11053       Align MemAlign;
11054       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11055         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11056         Flags.setByValSize(FrameSize);
11057 
11058         // info is not there but there are cases it cannot get right.
11059         if (auto MA = Args[i].Alignment)
11060           MemAlign = *MA;
11061         else
11062           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11063       } else if (auto MA = Args[i].Alignment) {
11064         MemAlign = *MA;
11065       } else {
11066         MemAlign = OriginalAlignment;
11067       }
11068       Flags.setMemAlign(MemAlign);
11069       if (Args[i].IsNest)
11070         Flags.setNest();
11071       if (NeedsRegBlock)
11072         Flags.setInConsecutiveRegs();
11073 
11074       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11075                                                  CLI.CallConv, VT);
11076       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11077                                                         CLI.CallConv, VT);
11078       SmallVector<SDValue, 4> Parts(NumParts);
11079       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11080 
11081       if (Args[i].IsSExt)
11082         ExtendKind = ISD::SIGN_EXTEND;
11083       else if (Args[i].IsZExt)
11084         ExtendKind = ISD::ZERO_EXTEND;
11085 
11086       // Conservatively only handle 'returned' on non-vectors that can be lowered,
11087       // for now.
11088       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11089           CanLowerReturn) {
11090         assert((CLI.RetTy == Args[i].Ty ||
11091                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11092                  CLI.RetTy->getPointerAddressSpace() ==
11093                      Args[i].Ty->getPointerAddressSpace())) &&
11094                RetTys.size() == NumValues && "unexpected use of 'returned'");
11095         // Before passing 'returned' to the target lowering code, ensure that
11096         // either the register MVT and the actual EVT are the same size or that
11097         // the return value and argument are extended in the same way; in these
11098         // cases it's safe to pass the argument register value unchanged as the
11099         // return register value (although it's at the target's option whether
11100         // to do so)
11101         // TODO: allow code generation to take advantage of partially preserved
11102         // registers rather than clobbering the entire register when the
11103         // parameter extension method is not compatible with the return
11104         // extension method
11105         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11106             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11107              CLI.RetZExt == Args[i].IsZExt))
11108           Flags.setReturned();
11109       }
11110 
11111       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11112                      CLI.CallConv, ExtendKind);
11113 
11114       for (unsigned j = 0; j != NumParts; ++j) {
11115         // if it isn't first piece, alignment must be 1
11116         // For scalable vectors the scalable part is currently handled
11117         // by individual targets, so we just use the known minimum size here.
11118         ISD::OutputArg MyFlags(
11119             Flags, Parts[j].getValueType().getSimpleVT(), VT,
11120             i < CLI.NumFixedArgs, i,
11121             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11122         if (NumParts > 1 && j == 0)
11123           MyFlags.Flags.setSplit();
11124         else if (j != 0) {
11125           MyFlags.Flags.setOrigAlign(Align(1));
11126           if (j == NumParts - 1)
11127             MyFlags.Flags.setSplitEnd();
11128         }
11129 
11130         CLI.Outs.push_back(MyFlags);
11131         CLI.OutVals.push_back(Parts[j]);
11132       }
11133 
11134       if (NeedsRegBlock && Value == NumValues - 1)
11135         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11136     }
11137   }
11138 
11139   SmallVector<SDValue, 4> InVals;
11140   CLI.Chain = LowerCall(CLI, InVals);
11141 
11142   // Update CLI.InVals to use outside of this function.
11143   CLI.InVals = InVals;
11144 
11145   // Verify that the target's LowerCall behaved as expected.
11146   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11147          "LowerCall didn't return a valid chain!");
11148   assert((!CLI.IsTailCall || InVals.empty()) &&
11149          "LowerCall emitted a return value for a tail call!");
11150   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11151          "LowerCall didn't emit the correct number of values!");
11152 
11153   // For a tail call, the return value is merely live-out and there aren't
11154   // any nodes in the DAG representing it. Return a special value to
11155   // indicate that a tail call has been emitted and no more Instructions
11156   // should be processed in the current block.
11157   if (CLI.IsTailCall) {
11158     CLI.DAG.setRoot(CLI.Chain);
11159     return std::make_pair(SDValue(), SDValue());
11160   }
11161 
11162 #ifndef NDEBUG
11163   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11164     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11165     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11166            "LowerCall emitted a value with the wrong type!");
11167   }
11168 #endif
11169 
11170   SmallVector<SDValue, 4> ReturnValues;
11171   if (!CanLowerReturn) {
11172     // The instruction result is the result of loading from the
11173     // hidden sret parameter.
11174     SmallVector<EVT, 1> PVTs;
11175     Type *PtrRetTy =
11176         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11177 
11178     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11179     assert(PVTs.size() == 1 && "Pointers should fit in one register");
11180     EVT PtrVT = PVTs[0];
11181 
11182     unsigned NumValues = RetTys.size();
11183     ReturnValues.resize(NumValues);
11184     SmallVector<SDValue, 4> Chains(NumValues);
11185 
11186     // An aggregate return value cannot wrap around the address space, so
11187     // offsets to its parts don't wrap either.
11188     SDNodeFlags Flags;
11189     Flags.setNoUnsignedWrap(true);
11190 
11191     MachineFunction &MF = CLI.DAG.getMachineFunction();
11192     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11193     for (unsigned i = 0; i < NumValues; ++i) {
11194       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11195                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
11196                                                         PtrVT), Flags);
11197       SDValue L = CLI.DAG.getLoad(
11198           RetTys[i], CLI.DL, CLI.Chain, Add,
11199           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11200                                             DemoteStackIdx, Offsets[i]),
11201           HiddenSRetAlign);
11202       ReturnValues[i] = L;
11203       Chains[i] = L.getValue(1);
11204     }
11205 
11206     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11207   } else {
11208     // Collect the legal value parts into potentially illegal values
11209     // that correspond to the original function's return values.
11210     std::optional<ISD::NodeType> AssertOp;
11211     if (CLI.RetSExt)
11212       AssertOp = ISD::AssertSext;
11213     else if (CLI.RetZExt)
11214       AssertOp = ISD::AssertZext;
11215     unsigned CurReg = 0;
11216     for (EVT VT : RetTys) {
11217       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11218                                                      CLI.CallConv, VT);
11219       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11220                                                        CLI.CallConv, VT);
11221 
11222       ReturnValues.push_back(getCopyFromParts(
11223           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11224           CLI.Chain, CLI.CallConv, AssertOp));
11225       CurReg += NumRegs;
11226     }
11227 
11228     // For a function returning void, there is no return value. We can't create
11229     // such a node, so we just return a null return value in that case. In
11230     // that case, nothing will actually look at the value.
11231     if (ReturnValues.empty())
11232       return std::make_pair(SDValue(), CLI.Chain);
11233   }
11234 
11235   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11236                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11237   return std::make_pair(Res, CLI.Chain);
11238 }
11239 
11240 /// Places new result values for the node in Results (their number
11241 /// and types must exactly match those of the original return values of
11242 /// the node), or leaves Results empty, which indicates that the node is not
11243 /// to be custom lowered after all.
11244 void TargetLowering::LowerOperationWrapper(SDNode *N,
11245                                            SmallVectorImpl<SDValue> &Results,
11246                                            SelectionDAG &DAG) const {
11247   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11248 
11249   if (!Res.getNode())
11250     return;
11251 
11252   // If the original node has one result, take the return value from
11253   // LowerOperation as is. It might not be result number 0.
11254   if (N->getNumValues() == 1) {
11255     Results.push_back(Res);
11256     return;
11257   }
11258 
11259   // If the original node has multiple results, then the return node should
11260   // have the same number of results.
11261   assert((N->getNumValues() == Res->getNumValues()) &&
11262       "Lowering returned the wrong number of results!");
11263 
11264   // Places new result values base on N result number.
11265   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11266     Results.push_back(Res.getValue(I));
11267 }
11268 
11269 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11270   llvm_unreachable("LowerOperation not implemented for this target!");
11271 }
11272 
11273 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11274                                                      unsigned Reg,
11275                                                      ISD::NodeType ExtendType) {
11276   SDValue Op = getNonRegisterValue(V);
11277   assert((Op.getOpcode() != ISD::CopyFromReg ||
11278           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11279          "Copy from a reg to the same reg!");
11280   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11281 
11282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11283   // If this is an InlineAsm we have to match the registers required, not the
11284   // notional registers required by the type.
11285 
11286   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11287                    std::nullopt); // This is not an ABI copy.
11288   SDValue Chain = DAG.getEntryNode();
11289 
11290   if (ExtendType == ISD::ANY_EXTEND) {
11291     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11292     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11293       ExtendType = PreferredExtendIt->second;
11294   }
11295   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11296   PendingExports.push_back(Chain);
11297 }
11298 
11299 #include "llvm/CodeGen/SelectionDAGISel.h"
11300 
11301 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11302 /// entry block, return true.  This includes arguments used by switches, since
11303 /// the switch may expand into multiple basic blocks.
11304 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11305   // With FastISel active, we may be splitting blocks, so force creation
11306   // of virtual registers for all non-dead arguments.
11307   if (FastISel)
11308     return A->use_empty();
11309 
11310   const BasicBlock &Entry = A->getParent()->front();
11311   for (const User *U : A->users())
11312     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11313       return false;  // Use not in entry block.
11314 
11315   return true;
11316 }
11317 
11318 using ArgCopyElisionMapTy =
11319     DenseMap<const Argument *,
11320              std::pair<const AllocaInst *, const StoreInst *>>;
11321 
11322 /// Scan the entry block of the function in FuncInfo for arguments that look
11323 /// like copies into a local alloca. Record any copied arguments in
11324 /// ArgCopyElisionCandidates.
11325 static void
11326 findArgumentCopyElisionCandidates(const DataLayout &DL,
11327                                   FunctionLoweringInfo *FuncInfo,
11328                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11329   // Record the state of every static alloca used in the entry block. Argument
11330   // allocas are all used in the entry block, so we need approximately as many
11331   // entries as we have arguments.
11332   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11333   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11334   unsigned NumArgs = FuncInfo->Fn->arg_size();
11335   StaticAllocas.reserve(NumArgs * 2);
11336 
11337   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11338     if (!V)
11339       return nullptr;
11340     V = V->stripPointerCasts();
11341     const auto *AI = dyn_cast<AllocaInst>(V);
11342     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11343       return nullptr;
11344     auto Iter = StaticAllocas.insert({AI, Unknown});
11345     return &Iter.first->second;
11346   };
11347 
11348   // Look for stores of arguments to static allocas. Look through bitcasts and
11349   // GEPs to handle type coercions, as long as the alloca is fully initialized
11350   // by the store. Any non-store use of an alloca escapes it and any subsequent
11351   // unanalyzed store might write it.
11352   // FIXME: Handle structs initialized with multiple stores.
11353   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11354     // Look for stores, and handle non-store uses conservatively.
11355     const auto *SI = dyn_cast<StoreInst>(&I);
11356     if (!SI) {
11357       // We will look through cast uses, so ignore them completely.
11358       if (I.isCast())
11359         continue;
11360       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11361       // to allocas.
11362       if (I.isDebugOrPseudoInst())
11363         continue;
11364       // This is an unknown instruction. Assume it escapes or writes to all
11365       // static alloca operands.
11366       for (const Use &U : I.operands()) {
11367         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11368           *Info = StaticAllocaInfo::Clobbered;
11369       }
11370       continue;
11371     }
11372 
11373     // If the stored value is a static alloca, mark it as escaped.
11374     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11375       *Info = StaticAllocaInfo::Clobbered;
11376 
11377     // Check if the destination is a static alloca.
11378     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11379     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11380     if (!Info)
11381       continue;
11382     const AllocaInst *AI = cast<AllocaInst>(Dst);
11383 
11384     // Skip allocas that have been initialized or clobbered.
11385     if (*Info != StaticAllocaInfo::Unknown)
11386       continue;
11387 
11388     // Check if the stored value is an argument, and that this store fully
11389     // initializes the alloca.
11390     // If the argument type has padding bits we can't directly forward a pointer
11391     // as the upper bits may contain garbage.
11392     // Don't elide copies from the same argument twice.
11393     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11394     const auto *Arg = dyn_cast<Argument>(Val);
11395     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11396         Arg->getType()->isEmptyTy() ||
11397         DL.getTypeStoreSize(Arg->getType()) !=
11398             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11399         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11400         ArgCopyElisionCandidates.count(Arg)) {
11401       *Info = StaticAllocaInfo::Clobbered;
11402       continue;
11403     }
11404 
11405     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11406                       << '\n');
11407 
11408     // Mark this alloca and store for argument copy elision.
11409     *Info = StaticAllocaInfo::Elidable;
11410     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11411 
11412     // Stop scanning if we've seen all arguments. This will happen early in -O0
11413     // builds, which is useful, because -O0 builds have large entry blocks and
11414     // many allocas.
11415     if (ArgCopyElisionCandidates.size() == NumArgs)
11416       break;
11417   }
11418 }
11419 
11420 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11421 /// ArgVal is a load from a suitable fixed stack object.
11422 static void tryToElideArgumentCopy(
11423     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11424     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11425     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11426     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11427     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11428   // Check if this is a load from a fixed stack object.
11429   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11430   if (!LNode)
11431     return;
11432   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11433   if (!FINode)
11434     return;
11435 
11436   // Check that the fixed stack object is the right size and alignment.
11437   // Look at the alignment that the user wrote on the alloca instead of looking
11438   // at the stack object.
11439   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11440   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11441   const AllocaInst *AI = ArgCopyIter->second.first;
11442   int FixedIndex = FINode->getIndex();
11443   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11444   int OldIndex = AllocaIndex;
11445   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11446   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11447     LLVM_DEBUG(
11448         dbgs() << "  argument copy elision failed due to bad fixed stack "
11449                   "object size\n");
11450     return;
11451   }
11452   Align RequiredAlignment = AI->getAlign();
11453   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11454     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11455                          "greater than stack argument alignment ("
11456                       << DebugStr(RequiredAlignment) << " vs "
11457                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11458     return;
11459   }
11460 
11461   // Perform the elision. Delete the old stack object and replace its only use
11462   // in the variable info map. Mark the stack object as mutable and aliased.
11463   LLVM_DEBUG({
11464     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11465            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11466            << '\n';
11467   });
11468   MFI.RemoveStackObject(OldIndex);
11469   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11470   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11471   AllocaIndex = FixedIndex;
11472   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11473   for (SDValue ArgVal : ArgVals)
11474     Chains.push_back(ArgVal.getValue(1));
11475 
11476   // Avoid emitting code for the store implementing the copy.
11477   const StoreInst *SI = ArgCopyIter->second.second;
11478   ElidedArgCopyInstrs.insert(SI);
11479 
11480   // Check for uses of the argument again so that we can avoid exporting ArgVal
11481   // if it is't used by anything other than the store.
11482   for (const Value *U : Arg.users()) {
11483     if (U != SI) {
11484       ArgHasUses = true;
11485       break;
11486     }
11487   }
11488 }
11489 
11490 void SelectionDAGISel::LowerArguments(const Function &F) {
11491   SelectionDAG &DAG = SDB->DAG;
11492   SDLoc dl = SDB->getCurSDLoc();
11493   const DataLayout &DL = DAG.getDataLayout();
11494   SmallVector<ISD::InputArg, 16> Ins;
11495 
11496   // In Naked functions we aren't going to save any registers.
11497   if (F.hasFnAttribute(Attribute::Naked))
11498     return;
11499 
11500   if (!FuncInfo->CanLowerReturn) {
11501     // Put in an sret pointer parameter before all the other parameters.
11502     SmallVector<EVT, 1> ValueVTs;
11503     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11504                     PointerType::get(F.getContext(),
11505                                      DAG.getDataLayout().getAllocaAddrSpace()),
11506                     ValueVTs);
11507 
11508     // NOTE: Assuming that a pointer will never break down to more than one VT
11509     // or one register.
11510     ISD::ArgFlagsTy Flags;
11511     Flags.setSRet();
11512     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11513     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11514                          ISD::InputArg::NoArgIndex, 0);
11515     Ins.push_back(RetArg);
11516   }
11517 
11518   // Look for stores of arguments to static allocas. Mark such arguments with a
11519   // flag to ask the target to give us the memory location of that argument if
11520   // available.
11521   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11522   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11523                                     ArgCopyElisionCandidates);
11524 
11525   // Set up the incoming argument description vector.
11526   for (const Argument &Arg : F.args()) {
11527     unsigned ArgNo = Arg.getArgNo();
11528     SmallVector<EVT, 4> ValueVTs;
11529     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11530     bool isArgValueUsed = !Arg.use_empty();
11531     unsigned PartBase = 0;
11532     Type *FinalType = Arg.getType();
11533     if (Arg.hasAttribute(Attribute::ByVal))
11534       FinalType = Arg.getParamByValType();
11535     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11536         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11537     for (unsigned Value = 0, NumValues = ValueVTs.size();
11538          Value != NumValues; ++Value) {
11539       EVT VT = ValueVTs[Value];
11540       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11541       ISD::ArgFlagsTy Flags;
11542 
11543 
11544       if (Arg.getType()->isPointerTy()) {
11545         Flags.setPointer();
11546         Flags.setPointerAddrSpace(
11547             cast<PointerType>(Arg.getType())->getAddressSpace());
11548       }
11549       if (Arg.hasAttribute(Attribute::ZExt))
11550         Flags.setZExt();
11551       if (Arg.hasAttribute(Attribute::SExt))
11552         Flags.setSExt();
11553       if (Arg.hasAttribute(Attribute::InReg)) {
11554         // If we are using vectorcall calling convention, a structure that is
11555         // passed InReg - is surely an HVA
11556         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11557             isa<StructType>(Arg.getType())) {
11558           // The first value of a structure is marked
11559           if (0 == Value)
11560             Flags.setHvaStart();
11561           Flags.setHva();
11562         }
11563         // Set InReg Flag
11564         Flags.setInReg();
11565       }
11566       if (Arg.hasAttribute(Attribute::StructRet))
11567         Flags.setSRet();
11568       if (Arg.hasAttribute(Attribute::SwiftSelf))
11569         Flags.setSwiftSelf();
11570       if (Arg.hasAttribute(Attribute::SwiftAsync))
11571         Flags.setSwiftAsync();
11572       if (Arg.hasAttribute(Attribute::SwiftError))
11573         Flags.setSwiftError();
11574       if (Arg.hasAttribute(Attribute::ByVal))
11575         Flags.setByVal();
11576       if (Arg.hasAttribute(Attribute::ByRef))
11577         Flags.setByRef();
11578       if (Arg.hasAttribute(Attribute::InAlloca)) {
11579         Flags.setInAlloca();
11580         // Set the byval flag for CCAssignFn callbacks that don't know about
11581         // inalloca.  This way we can know how many bytes we should've allocated
11582         // and how many bytes a callee cleanup function will pop.  If we port
11583         // inalloca to more targets, we'll have to add custom inalloca handling
11584         // in the various CC lowering callbacks.
11585         Flags.setByVal();
11586       }
11587       if (Arg.hasAttribute(Attribute::Preallocated)) {
11588         Flags.setPreallocated();
11589         // Set the byval flag for CCAssignFn callbacks that don't know about
11590         // preallocated.  This way we can know how many bytes we should've
11591         // allocated and how many bytes a callee cleanup function will pop.  If
11592         // we port preallocated to more targets, we'll have to add custom
11593         // preallocated handling in the various CC lowering callbacks.
11594         Flags.setByVal();
11595       }
11596 
11597       // Certain targets (such as MIPS), may have a different ABI alignment
11598       // for a type depending on the context. Give the target a chance to
11599       // specify the alignment it wants.
11600       const Align OriginalAlignment(
11601           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11602       Flags.setOrigAlign(OriginalAlignment);
11603 
11604       Align MemAlign;
11605       Type *ArgMemTy = nullptr;
11606       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11607           Flags.isByRef()) {
11608         if (!ArgMemTy)
11609           ArgMemTy = Arg.getPointeeInMemoryValueType();
11610 
11611         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11612 
11613         // For in-memory arguments, size and alignment should be passed from FE.
11614         // BE will guess if this info is not there but there are cases it cannot
11615         // get right.
11616         if (auto ParamAlign = Arg.getParamStackAlign())
11617           MemAlign = *ParamAlign;
11618         else if ((ParamAlign = Arg.getParamAlign()))
11619           MemAlign = *ParamAlign;
11620         else
11621           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11622         if (Flags.isByRef())
11623           Flags.setByRefSize(MemSize);
11624         else
11625           Flags.setByValSize(MemSize);
11626       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11627         MemAlign = *ParamAlign;
11628       } else {
11629         MemAlign = OriginalAlignment;
11630       }
11631       Flags.setMemAlign(MemAlign);
11632 
11633       if (Arg.hasAttribute(Attribute::Nest))
11634         Flags.setNest();
11635       if (NeedsRegBlock)
11636         Flags.setInConsecutiveRegs();
11637       if (ArgCopyElisionCandidates.count(&Arg))
11638         Flags.setCopyElisionCandidate();
11639       if (Arg.hasAttribute(Attribute::Returned))
11640         Flags.setReturned();
11641 
11642       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11643           *CurDAG->getContext(), F.getCallingConv(), VT);
11644       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11645           *CurDAG->getContext(), F.getCallingConv(), VT);
11646       for (unsigned i = 0; i != NumRegs; ++i) {
11647         // For scalable vectors, use the minimum size; individual targets
11648         // are responsible for handling scalable vector arguments and
11649         // return values.
11650         ISD::InputArg MyFlags(
11651             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11652             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11653         if (NumRegs > 1 && i == 0)
11654           MyFlags.Flags.setSplit();
11655         // if it isn't first piece, alignment must be 1
11656         else if (i > 0) {
11657           MyFlags.Flags.setOrigAlign(Align(1));
11658           if (i == NumRegs - 1)
11659             MyFlags.Flags.setSplitEnd();
11660         }
11661         Ins.push_back(MyFlags);
11662       }
11663       if (NeedsRegBlock && Value == NumValues - 1)
11664         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11665       PartBase += VT.getStoreSize().getKnownMinValue();
11666     }
11667   }
11668 
11669   // Call the target to set up the argument values.
11670   SmallVector<SDValue, 8> InVals;
11671   SDValue NewRoot = TLI->LowerFormalArguments(
11672       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11673 
11674   // Verify that the target's LowerFormalArguments behaved as expected.
11675   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11676          "LowerFormalArguments didn't return a valid chain!");
11677   assert(InVals.size() == Ins.size() &&
11678          "LowerFormalArguments didn't emit the correct number of values!");
11679   LLVM_DEBUG({
11680     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11681       assert(InVals[i].getNode() &&
11682              "LowerFormalArguments emitted a null value!");
11683       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11684              "LowerFormalArguments emitted a value with the wrong type!");
11685     }
11686   });
11687 
11688   // Update the DAG with the new chain value resulting from argument lowering.
11689   DAG.setRoot(NewRoot);
11690 
11691   // Set up the argument values.
11692   unsigned i = 0;
11693   if (!FuncInfo->CanLowerReturn) {
11694     // Create a virtual register for the sret pointer, and put in a copy
11695     // from the sret argument into it.
11696     SmallVector<EVT, 1> ValueVTs;
11697     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11698                     PointerType::get(F.getContext(),
11699                                      DAG.getDataLayout().getAllocaAddrSpace()),
11700                     ValueVTs);
11701     MVT VT = ValueVTs[0].getSimpleVT();
11702     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11703     std::optional<ISD::NodeType> AssertOp;
11704     SDValue ArgValue =
11705         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11706                          F.getCallingConv(), AssertOp);
11707 
11708     MachineFunction& MF = SDB->DAG.getMachineFunction();
11709     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11710     Register SRetReg =
11711         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11712     FuncInfo->DemoteRegister = SRetReg;
11713     NewRoot =
11714         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11715     DAG.setRoot(NewRoot);
11716 
11717     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11718     ++i;
11719   }
11720 
11721   SmallVector<SDValue, 4> Chains;
11722   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11723   for (const Argument &Arg : F.args()) {
11724     SmallVector<SDValue, 4> ArgValues;
11725     SmallVector<EVT, 4> ValueVTs;
11726     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11727     unsigned NumValues = ValueVTs.size();
11728     if (NumValues == 0)
11729       continue;
11730 
11731     bool ArgHasUses = !Arg.use_empty();
11732 
11733     // Elide the copying store if the target loaded this argument from a
11734     // suitable fixed stack object.
11735     if (Ins[i].Flags.isCopyElisionCandidate()) {
11736       unsigned NumParts = 0;
11737       for (EVT VT : ValueVTs)
11738         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11739                                                        F.getCallingConv(), VT);
11740 
11741       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11742                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11743                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11744     }
11745 
11746     // If this argument is unused then remember its value. It is used to generate
11747     // debugging information.
11748     bool isSwiftErrorArg =
11749         TLI->supportSwiftError() &&
11750         Arg.hasAttribute(Attribute::SwiftError);
11751     if (!ArgHasUses && !isSwiftErrorArg) {
11752       SDB->setUnusedArgValue(&Arg, InVals[i]);
11753 
11754       // Also remember any frame index for use in FastISel.
11755       if (FrameIndexSDNode *FI =
11756           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11757         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11758     }
11759 
11760     for (unsigned Val = 0; Val != NumValues; ++Val) {
11761       EVT VT = ValueVTs[Val];
11762       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11763                                                       F.getCallingConv(), VT);
11764       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11765           *CurDAG->getContext(), F.getCallingConv(), VT);
11766 
11767       // Even an apparent 'unused' swifterror argument needs to be returned. So
11768       // we do generate a copy for it that can be used on return from the
11769       // function.
11770       if (ArgHasUses || isSwiftErrorArg) {
11771         std::optional<ISD::NodeType> AssertOp;
11772         if (Arg.hasAttribute(Attribute::SExt))
11773           AssertOp = ISD::AssertSext;
11774         else if (Arg.hasAttribute(Attribute::ZExt))
11775           AssertOp = ISD::AssertZext;
11776 
11777         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11778                                              PartVT, VT, nullptr, NewRoot,
11779                                              F.getCallingConv(), AssertOp));
11780       }
11781 
11782       i += NumParts;
11783     }
11784 
11785     // We don't need to do anything else for unused arguments.
11786     if (ArgValues.empty())
11787       continue;
11788 
11789     // Note down frame index.
11790     if (FrameIndexSDNode *FI =
11791         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11792       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11793 
11794     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11795                                      SDB->getCurSDLoc());
11796 
11797     SDB->setValue(&Arg, Res);
11798     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11799       // We want to associate the argument with the frame index, among
11800       // involved operands, that correspond to the lowest address. The
11801       // getCopyFromParts function, called earlier, is swapping the order of
11802       // the operands to BUILD_PAIR depending on endianness. The result of
11803       // that swapping is that the least significant bits of the argument will
11804       // be in the first operand of the BUILD_PAIR node, and the most
11805       // significant bits will be in the second operand.
11806       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11807       if (LoadSDNode *LNode =
11808           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11809         if (FrameIndexSDNode *FI =
11810             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11811           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11812     }
11813 
11814     // Analyses past this point are naive and don't expect an assertion.
11815     if (Res.getOpcode() == ISD::AssertZext)
11816       Res = Res.getOperand(0);
11817 
11818     // Update the SwiftErrorVRegDefMap.
11819     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11820       Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11821       if (Reg.isVirtual())
11822         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11823                                    Reg);
11824     }
11825 
11826     // If this argument is live outside of the entry block, insert a copy from
11827     // wherever we got it to the vreg that other BB's will reference it as.
11828     if (Res.getOpcode() == ISD::CopyFromReg) {
11829       // If we can, though, try to skip creating an unnecessary vreg.
11830       // FIXME: This isn't very clean... it would be nice to make this more
11831       // general.
11832       Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11833       if (Reg.isVirtual()) {
11834         FuncInfo->ValueMap[&Arg] = Reg;
11835         continue;
11836       }
11837     }
11838     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11839       FuncInfo->InitializeRegForValue(&Arg);
11840       SDB->CopyToExportRegsIfNeeded(&Arg);
11841     }
11842   }
11843 
11844   if (!Chains.empty()) {
11845     Chains.push_back(NewRoot);
11846     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11847   }
11848 
11849   DAG.setRoot(NewRoot);
11850 
11851   assert(i == InVals.size() && "Argument register count mismatch!");
11852 
11853   // If any argument copy elisions occurred and we have debug info, update the
11854   // stale frame indices used in the dbg.declare variable info table.
11855   if (!ArgCopyElisionFrameIndexMap.empty()) {
11856     for (MachineFunction::VariableDbgInfo &VI :
11857          MF->getInStackSlotVariableDbgInfo()) {
11858       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11859       if (I != ArgCopyElisionFrameIndexMap.end())
11860         VI.updateStackSlot(I->second);
11861     }
11862   }
11863 
11864   // Finally, if the target has anything special to do, allow it to do so.
11865   emitFunctionEntryCode();
11866 }
11867 
11868 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11869 /// ensure constants are generated when needed.  Remember the virtual registers
11870 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11871 /// directly add them, because expansion might result in multiple MBB's for one
11872 /// BB.  As such, the start of the BB might correspond to a different MBB than
11873 /// the end.
11874 void
11875 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11877 
11878   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11879 
11880   // Check PHI nodes in successors that expect a value to be available from this
11881   // block.
11882   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11883     if (!isa<PHINode>(SuccBB->begin())) continue;
11884     MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
11885 
11886     // If this terminator has multiple identical successors (common for
11887     // switches), only handle each succ once.
11888     if (!SuccsHandled.insert(SuccMBB).second)
11889       continue;
11890 
11891     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11892 
11893     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11894     // nodes and Machine PHI nodes, but the incoming operands have not been
11895     // emitted yet.
11896     for (const PHINode &PN : SuccBB->phis()) {
11897       // Ignore dead phi's.
11898       if (PN.use_empty())
11899         continue;
11900 
11901       // Skip empty types
11902       if (PN.getType()->isEmptyTy())
11903         continue;
11904 
11905       unsigned Reg;
11906       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11907 
11908       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11909         unsigned &RegOut = ConstantsOut[C];
11910         if (RegOut == 0) {
11911           RegOut = FuncInfo.CreateRegs(C);
11912           // We need to zero/sign extend ConstantInt phi operands to match
11913           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11914           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11915           if (auto *CI = dyn_cast<ConstantInt>(C))
11916             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11917                                                     : ISD::ZERO_EXTEND;
11918           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11919         }
11920         Reg = RegOut;
11921       } else {
11922         DenseMap<const Value *, Register>::iterator I =
11923           FuncInfo.ValueMap.find(PHIOp);
11924         if (I != FuncInfo.ValueMap.end())
11925           Reg = I->second;
11926         else {
11927           assert(isa<AllocaInst>(PHIOp) &&
11928                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11929                  "Didn't codegen value into a register!??");
11930           Reg = FuncInfo.CreateRegs(PHIOp);
11931           CopyValueToVirtualRegister(PHIOp, Reg);
11932         }
11933       }
11934 
11935       // Remember that this register needs to added to the machine PHI node as
11936       // the input for this MBB.
11937       SmallVector<EVT, 4> ValueVTs;
11938       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11939       for (EVT VT : ValueVTs) {
11940         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11941         for (unsigned i = 0; i != NumRegisters; ++i)
11942           FuncInfo.PHINodesToUpdate.push_back(
11943               std::make_pair(&*MBBI++, Reg + i));
11944         Reg += NumRegisters;
11945       }
11946     }
11947   }
11948 
11949   ConstantsOut.clear();
11950 }
11951 
11952 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11953   MachineFunction::iterator I(MBB);
11954   if (++I == FuncInfo.MF->end())
11955     return nullptr;
11956   return &*I;
11957 }
11958 
11959 /// During lowering new call nodes can be created (such as memset, etc.).
11960 /// Those will become new roots of the current DAG, but complications arise
11961 /// when they are tail calls. In such cases, the call lowering will update
11962 /// the root, but the builder still needs to know that a tail call has been
11963 /// lowered in order to avoid generating an additional return.
11964 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11965   // If the node is null, we do have a tail call.
11966   if (MaybeTC.getNode() != nullptr)
11967     DAG.setRoot(MaybeTC);
11968   else
11969     HasTailCall = true;
11970 }
11971 
11972 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11973                                         MachineBasicBlock *SwitchMBB,
11974                                         MachineBasicBlock *DefaultMBB) {
11975   MachineFunction *CurMF = FuncInfo.MF;
11976   MachineBasicBlock *NextMBB = nullptr;
11977   MachineFunction::iterator BBI(W.MBB);
11978   if (++BBI != FuncInfo.MF->end())
11979     NextMBB = &*BBI;
11980 
11981   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11982 
11983   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11984 
11985   if (Size == 2 && W.MBB == SwitchMBB) {
11986     // If any two of the cases has the same destination, and if one value
11987     // is the same as the other, but has one bit unset that the other has set,
11988     // use bit manipulation to do two compares at once.  For example:
11989     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11990     // TODO: This could be extended to merge any 2 cases in switches with 3
11991     // cases.
11992     // TODO: Handle cases where W.CaseBB != SwitchBB.
11993     CaseCluster &Small = *W.FirstCluster;
11994     CaseCluster &Big = *W.LastCluster;
11995 
11996     if (Small.Low == Small.High && Big.Low == Big.High &&
11997         Small.MBB == Big.MBB) {
11998       const APInt &SmallValue = Small.Low->getValue();
11999       const APInt &BigValue = Big.Low->getValue();
12000 
12001       // Check that there is only one bit different.
12002       APInt CommonBit = BigValue ^ SmallValue;
12003       if (CommonBit.isPowerOf2()) {
12004         SDValue CondLHS = getValue(Cond);
12005         EVT VT = CondLHS.getValueType();
12006         SDLoc DL = getCurSDLoc();
12007 
12008         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12009                                  DAG.getConstant(CommonBit, DL, VT));
12010         SDValue Cond = DAG.getSetCC(
12011             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12012             ISD::SETEQ);
12013 
12014         // Update successor info.
12015         // Both Small and Big will jump to Small.BB, so we sum up the
12016         // probabilities.
12017         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12018         if (BPI)
12019           addSuccessorWithProb(
12020               SwitchMBB, DefaultMBB,
12021               // The default destination is the first successor in IR.
12022               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12023         else
12024           addSuccessorWithProb(SwitchMBB, DefaultMBB);
12025 
12026         // Insert the true branch.
12027         SDValue BrCond =
12028             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12029                         DAG.getBasicBlock(Small.MBB));
12030         // Insert the false branch.
12031         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12032                              DAG.getBasicBlock(DefaultMBB));
12033 
12034         DAG.setRoot(BrCond);
12035         return;
12036       }
12037     }
12038   }
12039 
12040   if (TM.getOptLevel() != CodeGenOptLevel::None) {
12041     // Here, we order cases by probability so the most likely case will be
12042     // checked first. However, two clusters can have the same probability in
12043     // which case their relative ordering is non-deterministic. So we use Low
12044     // as a tie-breaker as clusters are guaranteed to never overlap.
12045     llvm::sort(W.FirstCluster, W.LastCluster + 1,
12046                [](const CaseCluster &a, const CaseCluster &b) {
12047       return a.Prob != b.Prob ?
12048              a.Prob > b.Prob :
12049              a.Low->getValue().slt(b.Low->getValue());
12050     });
12051 
12052     // Rearrange the case blocks so that the last one falls through if possible
12053     // without changing the order of probabilities.
12054     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12055       --I;
12056       if (I->Prob > W.LastCluster->Prob)
12057         break;
12058       if (I->Kind == CC_Range && I->MBB == NextMBB) {
12059         std::swap(*I, *W.LastCluster);
12060         break;
12061       }
12062     }
12063   }
12064 
12065   // Compute total probability.
12066   BranchProbability DefaultProb = W.DefaultProb;
12067   BranchProbability UnhandledProbs = DefaultProb;
12068   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12069     UnhandledProbs += I->Prob;
12070 
12071   MachineBasicBlock *CurMBB = W.MBB;
12072   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12073     bool FallthroughUnreachable = false;
12074     MachineBasicBlock *Fallthrough;
12075     if (I == W.LastCluster) {
12076       // For the last cluster, fall through to the default destination.
12077       Fallthrough = DefaultMBB;
12078       FallthroughUnreachable = isa<UnreachableInst>(
12079           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12080     } else {
12081       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12082       CurMF->insert(BBI, Fallthrough);
12083       // Put Cond in a virtual register to make it available from the new blocks.
12084       ExportFromCurrentBlock(Cond);
12085     }
12086     UnhandledProbs -= I->Prob;
12087 
12088     switch (I->Kind) {
12089       case CC_JumpTable: {
12090         // FIXME: Optimize away range check based on pivot comparisons.
12091         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12092         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12093 
12094         // The jump block hasn't been inserted yet; insert it here.
12095         MachineBasicBlock *JumpMBB = JT->MBB;
12096         CurMF->insert(BBI, JumpMBB);
12097 
12098         auto JumpProb = I->Prob;
12099         auto FallthroughProb = UnhandledProbs;
12100 
12101         // If the default statement is a target of the jump table, we evenly
12102         // distribute the default probability to successors of CurMBB. Also
12103         // update the probability on the edge from JumpMBB to Fallthrough.
12104         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12105                                               SE = JumpMBB->succ_end();
12106              SI != SE; ++SI) {
12107           if (*SI == DefaultMBB) {
12108             JumpProb += DefaultProb / 2;
12109             FallthroughProb -= DefaultProb / 2;
12110             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12111             JumpMBB->normalizeSuccProbs();
12112             break;
12113           }
12114         }
12115 
12116         // If the default clause is unreachable, propagate that knowledge into
12117         // JTH->FallthroughUnreachable which will use it to suppress the range
12118         // check.
12119         //
12120         // However, don't do this if we're doing branch target enforcement,
12121         // because a table branch _without_ a range check can be a tempting JOP
12122         // gadget - out-of-bounds inputs that are impossible in correct
12123         // execution become possible again if an attacker can influence the
12124         // control flow. So if an attacker doesn't already have a BTI bypass
12125         // available, we don't want them to be able to get one out of this
12126         // table branch.
12127         if (FallthroughUnreachable) {
12128           Function &CurFunc = CurMF->getFunction();
12129           if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12130             JTH->FallthroughUnreachable = true;
12131         }
12132 
12133         if (!JTH->FallthroughUnreachable)
12134           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12135         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12136         CurMBB->normalizeSuccProbs();
12137 
12138         // The jump table header will be inserted in our current block, do the
12139         // range check, and fall through to our fallthrough block.
12140         JTH->HeaderBB = CurMBB;
12141         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12142 
12143         // If we're in the right place, emit the jump table header right now.
12144         if (CurMBB == SwitchMBB) {
12145           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12146           JTH->Emitted = true;
12147         }
12148         break;
12149       }
12150       case CC_BitTests: {
12151         // FIXME: Optimize away range check based on pivot comparisons.
12152         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12153 
12154         // The bit test blocks haven't been inserted yet; insert them here.
12155         for (BitTestCase &BTC : BTB->Cases)
12156           CurMF->insert(BBI, BTC.ThisBB);
12157 
12158         // Fill in fields of the BitTestBlock.
12159         BTB->Parent = CurMBB;
12160         BTB->Default = Fallthrough;
12161 
12162         BTB->DefaultProb = UnhandledProbs;
12163         // If the cases in bit test don't form a contiguous range, we evenly
12164         // distribute the probability on the edge to Fallthrough to two
12165         // successors of CurMBB.
12166         if (!BTB->ContiguousRange) {
12167           BTB->Prob += DefaultProb / 2;
12168           BTB->DefaultProb -= DefaultProb / 2;
12169         }
12170 
12171         if (FallthroughUnreachable)
12172           BTB->FallthroughUnreachable = true;
12173 
12174         // If we're in the right place, emit the bit test header right now.
12175         if (CurMBB == SwitchMBB) {
12176           visitBitTestHeader(*BTB, SwitchMBB);
12177           BTB->Emitted = true;
12178         }
12179         break;
12180       }
12181       case CC_Range: {
12182         const Value *RHS, *LHS, *MHS;
12183         ISD::CondCode CC;
12184         if (I->Low == I->High) {
12185           // Check Cond == I->Low.
12186           CC = ISD::SETEQ;
12187           LHS = Cond;
12188           RHS=I->Low;
12189           MHS = nullptr;
12190         } else {
12191           // Check I->Low <= Cond <= I->High.
12192           CC = ISD::SETLE;
12193           LHS = I->Low;
12194           MHS = Cond;
12195           RHS = I->High;
12196         }
12197 
12198         // If Fallthrough is unreachable, fold away the comparison.
12199         if (FallthroughUnreachable)
12200           CC = ISD::SETTRUE;
12201 
12202         // The false probability is the sum of all unhandled cases.
12203         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12204                      getCurSDLoc(), I->Prob, UnhandledProbs);
12205 
12206         if (CurMBB == SwitchMBB)
12207           visitSwitchCase(CB, SwitchMBB);
12208         else
12209           SL->SwitchCases.push_back(CB);
12210 
12211         break;
12212       }
12213     }
12214     CurMBB = Fallthrough;
12215   }
12216 }
12217 
12218 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12219                                         const SwitchWorkListItem &W,
12220                                         Value *Cond,
12221                                         MachineBasicBlock *SwitchMBB) {
12222   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12223          "Clusters not sorted?");
12224   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12225 
12226   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12227       SL->computeSplitWorkItemInfo(W);
12228 
12229   // Use the first element on the right as pivot since we will make less-than
12230   // comparisons against it.
12231   CaseClusterIt PivotCluster = FirstRight;
12232   assert(PivotCluster > W.FirstCluster);
12233   assert(PivotCluster <= W.LastCluster);
12234 
12235   CaseClusterIt FirstLeft = W.FirstCluster;
12236   CaseClusterIt LastRight = W.LastCluster;
12237 
12238   const ConstantInt *Pivot = PivotCluster->Low;
12239 
12240   // New blocks will be inserted immediately after the current one.
12241   MachineFunction::iterator BBI(W.MBB);
12242   ++BBI;
12243 
12244   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12245   // we can branch to its destination directly if it's squeezed exactly in
12246   // between the known lower bound and Pivot - 1.
12247   MachineBasicBlock *LeftMBB;
12248   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12249       FirstLeft->Low == W.GE &&
12250       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12251     LeftMBB = FirstLeft->MBB;
12252   } else {
12253     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12254     FuncInfo.MF->insert(BBI, LeftMBB);
12255     WorkList.push_back(
12256         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12257     // Put Cond in a virtual register to make it available from the new blocks.
12258     ExportFromCurrentBlock(Cond);
12259   }
12260 
12261   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12262   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12263   // directly if RHS.High equals the current upper bound.
12264   MachineBasicBlock *RightMBB;
12265   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12266       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12267     RightMBB = FirstRight->MBB;
12268   } else {
12269     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12270     FuncInfo.MF->insert(BBI, RightMBB);
12271     WorkList.push_back(
12272         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12273     // Put Cond in a virtual register to make it available from the new blocks.
12274     ExportFromCurrentBlock(Cond);
12275   }
12276 
12277   // Create the CaseBlock record that will be used to lower the branch.
12278   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12279                getCurSDLoc(), LeftProb, RightProb);
12280 
12281   if (W.MBB == SwitchMBB)
12282     visitSwitchCase(CB, SwitchMBB);
12283   else
12284     SL->SwitchCases.push_back(CB);
12285 }
12286 
12287 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12288 // from the swith statement.
12289 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12290                                             BranchProbability PeeledCaseProb) {
12291   if (PeeledCaseProb == BranchProbability::getOne())
12292     return BranchProbability::getZero();
12293   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12294 
12295   uint32_t Numerator = CaseProb.getNumerator();
12296   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12297   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12298 }
12299 
12300 // Try to peel the top probability case if it exceeds the threshold.
12301 // Return current MachineBasicBlock for the switch statement if the peeling
12302 // does not occur.
12303 // If the peeling is performed, return the newly created MachineBasicBlock
12304 // for the peeled switch statement. Also update Clusters to remove the peeled
12305 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12306 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12307     const SwitchInst &SI, CaseClusterVector &Clusters,
12308     BranchProbability &PeeledCaseProb) {
12309   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12310   // Don't perform if there is only one cluster or optimizing for size.
12311   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12312       TM.getOptLevel() == CodeGenOptLevel::None ||
12313       SwitchMBB->getParent()->getFunction().hasMinSize())
12314     return SwitchMBB;
12315 
12316   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12317   unsigned PeeledCaseIndex = 0;
12318   bool SwitchPeeled = false;
12319   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12320     CaseCluster &CC = Clusters[Index];
12321     if (CC.Prob < TopCaseProb)
12322       continue;
12323     TopCaseProb = CC.Prob;
12324     PeeledCaseIndex = Index;
12325     SwitchPeeled = true;
12326   }
12327   if (!SwitchPeeled)
12328     return SwitchMBB;
12329 
12330   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12331                     << TopCaseProb << "\n");
12332 
12333   // Record the MBB for the peeled switch statement.
12334   MachineFunction::iterator BBI(SwitchMBB);
12335   ++BBI;
12336   MachineBasicBlock *PeeledSwitchMBB =
12337       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12338   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12339 
12340   ExportFromCurrentBlock(SI.getCondition());
12341   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12342   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12343                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12344   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12345 
12346   Clusters.erase(PeeledCaseIt);
12347   for (CaseCluster &CC : Clusters) {
12348     LLVM_DEBUG(
12349         dbgs() << "Scale the probablity for one cluster, before scaling: "
12350                << CC.Prob << "\n");
12351     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12352     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12353   }
12354   PeeledCaseProb = TopCaseProb;
12355   return PeeledSwitchMBB;
12356 }
12357 
12358 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12359   // Extract cases from the switch.
12360   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12361   CaseClusterVector Clusters;
12362   Clusters.reserve(SI.getNumCases());
12363   for (auto I : SI.cases()) {
12364     MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12365     const ConstantInt *CaseVal = I.getCaseValue();
12366     BranchProbability Prob =
12367         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12368             : BranchProbability(1, SI.getNumCases() + 1);
12369     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12370   }
12371 
12372   MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12373 
12374   // Cluster adjacent cases with the same destination. We do this at all
12375   // optimization levels because it's cheap to do and will make codegen faster
12376   // if there are many clusters.
12377   sortAndRangeify(Clusters);
12378 
12379   // The branch probablity of the peeled case.
12380   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12381   MachineBasicBlock *PeeledSwitchMBB =
12382       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12383 
12384   // If there is only the default destination, jump there directly.
12385   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12386   if (Clusters.empty()) {
12387     assert(PeeledSwitchMBB == SwitchMBB);
12388     SwitchMBB->addSuccessor(DefaultMBB);
12389     if (DefaultMBB != NextBlock(SwitchMBB)) {
12390       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12391                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12392     }
12393     return;
12394   }
12395 
12396   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12397                      DAG.getBFI());
12398   SL->findBitTestClusters(Clusters, &SI);
12399 
12400   LLVM_DEBUG({
12401     dbgs() << "Case clusters: ";
12402     for (const CaseCluster &C : Clusters) {
12403       if (C.Kind == CC_JumpTable)
12404         dbgs() << "JT:";
12405       if (C.Kind == CC_BitTests)
12406         dbgs() << "BT:";
12407 
12408       C.Low->getValue().print(dbgs(), true);
12409       if (C.Low != C.High) {
12410         dbgs() << '-';
12411         C.High->getValue().print(dbgs(), true);
12412       }
12413       dbgs() << ' ';
12414     }
12415     dbgs() << '\n';
12416   });
12417 
12418   assert(!Clusters.empty());
12419   SwitchWorkList WorkList;
12420   CaseClusterIt First = Clusters.begin();
12421   CaseClusterIt Last = Clusters.end() - 1;
12422   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12423   // Scale the branchprobability for DefaultMBB if the peel occurs and
12424   // DefaultMBB is not replaced.
12425   if (PeeledCaseProb != BranchProbability::getZero() &&
12426       DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12427     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12428   WorkList.push_back(
12429       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12430 
12431   while (!WorkList.empty()) {
12432     SwitchWorkListItem W = WorkList.pop_back_val();
12433     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12434 
12435     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12436         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12437       // For optimized builds, lower large range as a balanced binary tree.
12438       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12439       continue;
12440     }
12441 
12442     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12443   }
12444 }
12445 
12446 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12448   auto DL = getCurSDLoc();
12449   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12450   setValue(&I, DAG.getStepVector(DL, ResultVT));
12451 }
12452 
12453 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12455   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12456 
12457   SDLoc DL = getCurSDLoc();
12458   SDValue V = getValue(I.getOperand(0));
12459   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12460 
12461   if (VT.isScalableVector()) {
12462     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12463     return;
12464   }
12465 
12466   // Use VECTOR_SHUFFLE for the fixed-length vector
12467   // to maintain existing behavior.
12468   SmallVector<int, 8> Mask;
12469   unsigned NumElts = VT.getVectorMinNumElements();
12470   for (unsigned i = 0; i != NumElts; ++i)
12471     Mask.push_back(NumElts - 1 - i);
12472 
12473   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12474 }
12475 
12476 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12477   auto DL = getCurSDLoc();
12478   SDValue InVec = getValue(I.getOperand(0));
12479   EVT OutVT =
12480       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12481 
12482   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12483 
12484   // ISD Node needs the input vectors split into two equal parts
12485   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12486                            DAG.getVectorIdxConstant(0, DL));
12487   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12488                            DAG.getVectorIdxConstant(OutNumElts, DL));
12489 
12490   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12491   // legalisation and combines.
12492   if (OutVT.isFixedLengthVector()) {
12493     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12494                                         createStrideMask(0, 2, OutNumElts));
12495     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12496                                        createStrideMask(1, 2, OutNumElts));
12497     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12498     setValue(&I, Res);
12499     return;
12500   }
12501 
12502   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12503                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12504   setValue(&I, Res);
12505 }
12506 
12507 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12508   auto DL = getCurSDLoc();
12509   EVT InVT = getValue(I.getOperand(0)).getValueType();
12510   SDValue InVec0 = getValue(I.getOperand(0));
12511   SDValue InVec1 = getValue(I.getOperand(1));
12512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12513   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12514 
12515   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12516   // legalisation and combines.
12517   if (OutVT.isFixedLengthVector()) {
12518     unsigned NumElts = InVT.getVectorMinNumElements();
12519     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12520     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12521                                       createInterleaveMask(NumElts, 2)));
12522     return;
12523   }
12524 
12525   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12526                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12527   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12528                     Res.getValue(1));
12529   setValue(&I, Res);
12530 }
12531 
12532 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12533   SmallVector<EVT, 4> ValueVTs;
12534   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12535                   ValueVTs);
12536   unsigned NumValues = ValueVTs.size();
12537   if (NumValues == 0) return;
12538 
12539   SmallVector<SDValue, 4> Values(NumValues);
12540   SDValue Op = getValue(I.getOperand(0));
12541 
12542   for (unsigned i = 0; i != NumValues; ++i)
12543     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12544                             SDValue(Op.getNode(), Op.getResNo() + i));
12545 
12546   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12547                            DAG.getVTList(ValueVTs), Values));
12548 }
12549 
12550 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12552   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12553 
12554   SDLoc DL = getCurSDLoc();
12555   SDValue V1 = getValue(I.getOperand(0));
12556   SDValue V2 = getValue(I.getOperand(1));
12557   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12558 
12559   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12560   if (VT.isScalableVector()) {
12561     setValue(
12562         &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12563                         DAG.getSignedConstant(
12564                             Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12565     return;
12566   }
12567 
12568   unsigned NumElts = VT.getVectorNumElements();
12569 
12570   uint64_t Idx = (NumElts + Imm) % NumElts;
12571 
12572   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12573   SmallVector<int, 8> Mask;
12574   for (unsigned i = 0; i < NumElts; ++i)
12575     Mask.push_back(Idx + i);
12576   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12577 }
12578 
12579 // Consider the following MIR after SelectionDAG, which produces output in
12580 // phyregs in the first case or virtregs in the second case.
12581 //
12582 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12583 // %5:gr32 = COPY $ebx
12584 // %6:gr32 = COPY $edx
12585 // %1:gr32 = COPY %6:gr32
12586 // %0:gr32 = COPY %5:gr32
12587 //
12588 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12589 // %1:gr32 = COPY %6:gr32
12590 // %0:gr32 = COPY %5:gr32
12591 //
12592 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12593 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12594 //
12595 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12596 // to a single virtreg (such as %0). The remaining outputs monotonically
12597 // increase in virtreg number from there. If a callbr has no outputs, then it
12598 // should not have a corresponding callbr landingpad; in fact, the callbr
12599 // landingpad would not even be able to refer to such a callbr.
12600 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12601   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12602   // There is definitely at least one copy.
12603   assert(MI->getOpcode() == TargetOpcode::COPY &&
12604          "start of copy chain MUST be COPY");
12605   Reg = MI->getOperand(1).getReg();
12606   MI = MRI.def_begin(Reg)->getParent();
12607   // There may be an optional second copy.
12608   if (MI->getOpcode() == TargetOpcode::COPY) {
12609     assert(Reg.isVirtual() && "expected COPY of virtual register");
12610     Reg = MI->getOperand(1).getReg();
12611     assert(Reg.isPhysical() && "expected COPY of physical register");
12612     MI = MRI.def_begin(Reg)->getParent();
12613   }
12614   // The start of the chain must be an INLINEASM_BR.
12615   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12616          "end of copy chain MUST be INLINEASM_BR");
12617   return Reg;
12618 }
12619 
12620 // We must do this walk rather than the simpler
12621 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12622 // otherwise we will end up with copies of virtregs only valid along direct
12623 // edges.
12624 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12625   SmallVector<EVT, 8> ResultVTs;
12626   SmallVector<SDValue, 8> ResultValues;
12627   const auto *CBR =
12628       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12629 
12630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12631   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12632   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12633 
12634   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12635   SDValue Chain = DAG.getRoot();
12636 
12637   // Re-parse the asm constraints string.
12638   TargetLowering::AsmOperandInfoVector TargetConstraints =
12639       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12640   for (auto &T : TargetConstraints) {
12641     SDISelAsmOperandInfo OpInfo(T);
12642     if (OpInfo.Type != InlineAsm::isOutput)
12643       continue;
12644 
12645     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12646     // individual constraint.
12647     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12648 
12649     switch (OpInfo.ConstraintType) {
12650     case TargetLowering::C_Register:
12651     case TargetLowering::C_RegisterClass: {
12652       // Fill in OpInfo.AssignedRegs.Regs.
12653       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12654 
12655       // getRegistersForValue may produce 1 to many registers based on whether
12656       // the OpInfo.ConstraintVT is legal on the target or not.
12657       for (unsigned &Reg : OpInfo.AssignedRegs.Regs) {
12658         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12659         if (Register::isPhysicalRegister(OriginalDef))
12660           FuncInfo.MBB->addLiveIn(OriginalDef);
12661         // Update the assigned registers to use the original defs.
12662         Reg = OriginalDef;
12663       }
12664 
12665       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12666           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12667       ResultValues.push_back(V);
12668       ResultVTs.push_back(OpInfo.ConstraintVT);
12669       break;
12670     }
12671     case TargetLowering::C_Other: {
12672       SDValue Flag;
12673       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12674                                                   OpInfo, DAG);
12675       ++InitialDef;
12676       ResultValues.push_back(V);
12677       ResultVTs.push_back(OpInfo.ConstraintVT);
12678       break;
12679     }
12680     default:
12681       break;
12682     }
12683   }
12684   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12685                           DAG.getVTList(ResultVTs), ResultValues);
12686   setValue(&I, V);
12687 }
12688