1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.hasBigEndianPartOrdering(ValueVT)) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 281 : ISD::BUILD_VECTOR, 282 DL, ValueVT, Ops); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 757 } 758 759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 760 /// specified value into the registers specified by this object. This uses 761 /// Chain/Flag as the input and updates them for the output Chain/Flag. 762 /// If the Flag pointer is NULL, no flag is used. 763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 764 SDValue &Chain, SDValue *Flag, 765 const Value *V) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 // Get the list of the values's legal parts. 769 unsigned NumRegs = Regs.size(); 770 SmallVector<SDValue, 8> Parts(NumRegs); 771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 772 EVT ValueVT = ValueVTs[Value]; 773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 774 MVT RegisterVT = RegVTs[Value]; 775 ISD::NodeType ExtendKind = 776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 777 778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 780 Part += NumParts; 781 } 782 783 // Copy the parts into the registers. 784 SmallVector<SDValue, 8> Chains(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue Part; 787 if (!Flag) { 788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 789 } else { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 791 *Flag = Part.getValue(1); 792 } 793 794 Chains[i] = Part.getValue(0); 795 } 796 797 if (NumRegs == 1 || Flag) 798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 799 // flagged to it. That is the CopyToReg nodes and the user are considered 800 // a single scheduling unit. If we create a TokenFactor and return it as 801 // chain, then the TokenFactor is both a predecessor (operand) of the 802 // user as well as a successor (the TF operands are flagged to the user). 803 // c1, f1 = CopyToReg 804 // c2, f2 = CopyToReg 805 // c3 = TokenFactor c1, c2 806 // ... 807 // = op c3, ..., f2 808 Chain = Chains[NumRegs-1]; 809 else 810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 811 } 812 813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 814 /// operand list. This adds the code marker and includes the number of 815 /// values added into it. 816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 817 unsigned MatchingIdx, 818 SelectionDAG &DAG, 819 std::vector<SDValue> &Ops) const { 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 823 if (HasMatching) 824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 825 else if (!Regs.empty() && 826 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 827 // Put the register class of the virtual registers in the flag word. That 828 // way, later passes can recompute register class constraints for inline 829 // assembly as well as normal instructions. 830 // Don't do this for tied operands that can use the regclass information 831 // from the def. 832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 835 } 836 837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 838 Ops.push_back(Res); 839 840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 843 MVT RegisterVT = RegVTs[Value]; 844 for (unsigned i = 0; i != NumRegs; ++i) { 845 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 846 unsigned TheReg = Regs[Reg++]; 847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 848 849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 850 // If we clobbered the stack pointer, MFI should know about it. 851 assert(DAG.getMachineFunction().getFrameInfo()-> 852 hasInlineAsmWithSPAdjust()); 853 } 854 } 855 } 856 } 857 858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 859 const TargetLibraryInfo *li) { 860 AA = &aa; 861 GFI = gfi; 862 LibInfo = li; 863 DL = DAG.getTarget().getDataLayout(); 864 Context = DAG.getContext(); 865 LPadToCallSiteMap.clear(); 866 } 867 868 /// clear - Clear out the current SelectionDAG and the associated 869 /// state and prepare this SelectionDAGBuilder object to be used 870 /// for a new block. This doesn't clear out information about 871 /// additional blocks that are needed to complete switch lowering 872 /// or PHI node updating; that information is cleared out as it is 873 /// consumed. 874 void SelectionDAGBuilder::clear() { 875 NodeMap.clear(); 876 UnusedArgNodeMap.clear(); 877 PendingLoads.clear(); 878 PendingExports.clear(); 879 CurInst = nullptr; 880 HasTailCall = false; 881 SDNodeOrder = LowestSDNodeOrder; 882 } 883 884 /// clearDanglingDebugInfo - Clear the dangling debug information 885 /// map. This function is separated from the clear so that debug 886 /// information that is dangling in a basic block can be properly 887 /// resolved in a different basic block. This allows the 888 /// SelectionDAG to resolve dangling debug information attached 889 /// to PHI nodes. 890 void SelectionDAGBuilder::clearDanglingDebugInfo() { 891 DanglingDebugInfoMap.clear(); 892 } 893 894 /// getRoot - Return the current virtual root of the Selection DAG, 895 /// flushing any PendingLoad items. This must be done before emitting 896 /// a store or any other node that may need to be ordered after any 897 /// prior load instructions. 898 /// 899 SDValue SelectionDAGBuilder::getRoot() { 900 if (PendingLoads.empty()) 901 return DAG.getRoot(); 902 903 if (PendingLoads.size() == 1) { 904 SDValue Root = PendingLoads[0]; 905 DAG.setRoot(Root); 906 PendingLoads.clear(); 907 return Root; 908 } 909 910 // Otherwise, we have to make a token factor node. 911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 912 PendingLoads); 913 PendingLoads.clear(); 914 DAG.setRoot(Root); 915 return Root; 916 } 917 918 /// getControlRoot - Similar to getRoot, but instead of flushing all the 919 /// PendingLoad items, flush all the PendingExports items. It is necessary 920 /// to do this before emitting a terminator instruction. 921 /// 922 SDValue SelectionDAGBuilder::getControlRoot() { 923 SDValue Root = DAG.getRoot(); 924 925 if (PendingExports.empty()) 926 return Root; 927 928 // Turn all of the CopyToReg chains into one factored node. 929 if (Root.getOpcode() != ISD::EntryToken) { 930 unsigned i = 0, e = PendingExports.size(); 931 for (; i != e; ++i) { 932 assert(PendingExports[i].getNode()->getNumOperands() > 1); 933 if (PendingExports[i].getNode()->getOperand(0) == Root) 934 break; // Don't add the root if we already indirectly depend on it. 935 } 936 937 if (i == e) 938 PendingExports.push_back(Root); 939 } 940 941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 942 PendingExports); 943 PendingExports.clear(); 944 DAG.setRoot(Root); 945 return Root; 946 } 947 948 void SelectionDAGBuilder::visit(const Instruction &I) { 949 // Set up outgoing PHI node register values before emitting the terminator. 950 if (isa<TerminatorInst>(&I)) 951 HandlePHINodesInSuccessorBlocks(I.getParent()); 952 953 ++SDNodeOrder; 954 955 CurInst = &I; 956 957 visit(I.getOpcode(), I); 958 959 if (!isa<TerminatorInst>(&I) && !HasTailCall) 960 CopyToExportRegsIfNeeded(&I); 961 962 CurInst = nullptr; 963 } 964 965 void SelectionDAGBuilder::visitPHI(const PHINode &) { 966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 967 } 968 969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 970 // Note: this doesn't use InstVisitor, because it has to work with 971 // ConstantExpr's in addition to instructions. 972 switch (Opcode) { 973 default: llvm_unreachable("Unknown instruction type encountered!"); 974 // Build the switch statement using the Instruction.def file. 975 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 977 #include "llvm/IR/Instruction.def" 978 } 979 } 980 981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 982 // generate the debug data structures now that we've seen its definition. 983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 984 SDValue Val) { 985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 986 if (DDI.getDI()) { 987 const DbgValueInst *DI = DDI.getDI(); 988 DebugLoc dl = DDI.getdl(); 989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 990 MDNode *Variable = DI->getVariable(); 991 uint64_t Offset = DI->getOffset(); 992 // A dbg.value for an alloca is always indirect. 993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), IsIndirect, 999 Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(Constants, getCurSDLoc()); 1096 } 1097 1098 if (const ConstantDataSequential *CDS = 1099 dyn_cast<ConstantDataSequential>(C)) { 1100 SmallVector<SDValue, 4> Ops; 1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Ops.push_back(SDValue(Val, i)); 1107 } 1108 1109 if (isa<ArrayType>(CDS->getType())) 1110 return DAG.getMergeValues(Ops, getCurSDLoc()); 1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1112 VT, Ops); 1113 } 1114 1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1117 "Unknown struct or array constant!"); 1118 1119 SmallVector<EVT, 4> ValueVTs; 1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1121 unsigned NumElts = ValueVTs.size(); 1122 if (NumElts == 0) 1123 return SDValue(); // empty struct 1124 SmallVector<SDValue, 4> Constants(NumElts); 1125 for (unsigned i = 0; i != NumElts; ++i) { 1126 EVT EltVT = ValueVTs[i]; 1127 if (isa<UndefValue>(C)) 1128 Constants[i] = DAG.getUNDEF(EltVT); 1129 else if (EltVT.isFloatingPoint()) 1130 Constants[i] = DAG.getConstantFP(0, EltVT); 1131 else 1132 Constants[i] = DAG.getConstant(0, EltVT); 1133 } 1134 1135 return DAG.getMergeValues(Constants, getCurSDLoc()); 1136 } 1137 1138 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1139 return DAG.getBlockAddress(BA, VT); 1140 1141 VectorType *VecTy = cast<VectorType>(V->getType()); 1142 unsigned NumElements = VecTy->getNumElements(); 1143 1144 // Now that we know the number and type of the elements, get that number of 1145 // elements into the Ops array based on what kind of constant it is. 1146 SmallVector<SDValue, 16> Ops; 1147 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1148 for (unsigned i = 0; i != NumElements; ++i) 1149 Ops.push_back(getValue(CV->getOperand(i))); 1150 } else { 1151 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1152 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1153 1154 SDValue Op; 1155 if (EltVT.isFloatingPoint()) 1156 Op = DAG.getConstantFP(0, EltVT); 1157 else 1158 Op = DAG.getConstant(0, EltVT); 1159 Ops.assign(NumElements, Op); 1160 } 1161 1162 // Create a BUILD_VECTOR node. 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1173 } 1174 1175 // If this is an instruction which fast-isel has deferred, select it now. 1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1178 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1179 SDValue Chain = DAG.getEntryNode(); 1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1181 } 1182 1183 llvm_unreachable("Can't get register for value!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1187 const TargetLowering *TLI = TM.getTargetLowering(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i])); 1216 Chains[i] = 1217 DAG.getStore(Chain, getCurSDLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1219 // FIXME: better loc info would be nice. 1220 Add, MachinePointerInfo(), false, false, 0); 1221 } 1222 1223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1224 MVT::Other, Chains); 1225 } else if (I.getNumOperands() != 0) { 1226 SmallVector<EVT, 4> ValueVTs; 1227 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1228 unsigned NumValues = ValueVTs.size(); 1229 if (NumValues) { 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1232 EVT VT = ValueVTs[j]; 1233 1234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1235 1236 const Function *F = I.getParent()->getParent(); 1237 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1238 Attribute::SExt)) 1239 ExtendKind = ISD::SIGN_EXTEND; 1240 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::ZExt)) 1242 ExtendKind = ISD::ZERO_EXTEND; 1243 1244 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1245 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1246 1247 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1248 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1249 SmallVector<SDValue, 4> Parts(NumParts); 1250 getCopyToParts(DAG, getCurSDLoc(), 1251 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1252 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1253 1254 // 'inreg' on function refers to return value 1255 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1256 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1257 Attribute::InReg)) 1258 Flags.setInReg(); 1259 1260 // Propagate extension type if any 1261 if (ExtendKind == ISD::SIGN_EXTEND) 1262 Flags.setSExt(); 1263 else if (ExtendKind == ISD::ZERO_EXTEND) 1264 Flags.setZExt(); 1265 1266 for (unsigned i = 0; i < NumParts; ++i) { 1267 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1268 VT, /*isfixed=*/true, 0, 0)); 1269 OutVals.push_back(Parts[i]); 1270 } 1271 } 1272 } 1273 } 1274 1275 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1276 CallingConv::ID CallConv = 1277 DAG.getMachineFunction().getFunction()->getCallingConv(); 1278 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1279 Outs, OutVals, getCurSDLoc(), 1280 DAG); 1281 1282 // Verify that the target's LowerReturn behaved as expected. 1283 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1284 "LowerReturn didn't return a valid chain!"); 1285 1286 // Update the DAG with the new chain value resulting from return lowering. 1287 DAG.setRoot(Chain); 1288 } 1289 1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1291 /// created for it, emit nodes to copy the value into the virtual 1292 /// registers. 1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1294 // Skip empty types 1295 if (V->getType()->isEmptyTy()) 1296 return; 1297 1298 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1299 if (VMI != FuncInfo.ValueMap.end()) { 1300 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1301 CopyValueToVirtualRegister(V, VMI->second); 1302 } 1303 } 1304 1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1306 /// the current basic block, add it to ValueMap now so that we'll get a 1307 /// CopyTo/FromReg. 1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1309 // No need to export constants. 1310 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1311 1312 // Already exported? 1313 if (FuncInfo.isExportedInst(V)) return; 1314 1315 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1316 CopyValueToVirtualRegister(V, Reg); 1317 } 1318 1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1320 const BasicBlock *FromBB) { 1321 // The operands of the setcc have to be in this block. We don't know 1322 // how to export them from some other block. 1323 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1324 // Can export from current BB. 1325 if (VI->getParent() == FromBB) 1326 return true; 1327 1328 // Is already exported, noop. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // If this is an argument, we can export it if the BB is the entry block or 1333 // if it is already exported. 1334 if (isa<Argument>(V)) { 1335 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1336 return true; 1337 1338 // Otherwise, can only export this if it is already exported. 1339 return FuncInfo.isExportedInst(V); 1340 } 1341 1342 // Otherwise, constants can always be exported. 1343 return true; 1344 } 1345 1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1348 const MachineBasicBlock *Dst) const { 1349 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1350 if (!BPI) 1351 return 0; 1352 const BasicBlock *SrcBB = Src->getBasicBlock(); 1353 const BasicBlock *DstBB = Dst->getBasicBlock(); 1354 return BPI->getEdgeWeight(SrcBB, DstBB); 1355 } 1356 1357 void SelectionDAGBuilder:: 1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1359 uint32_t Weight /* = 0 */) { 1360 if (!Weight) 1361 Weight = getEdgeWeight(Src, Dst); 1362 Src->addSuccessor(Dst, Weight); 1363 } 1364 1365 1366 static bool InBlock(const Value *V, const BasicBlock *BB) { 1367 if (const Instruction *I = dyn_cast<Instruction>(V)) 1368 return I->getParent() == BB; 1369 return true; 1370 } 1371 1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1373 /// This function emits a branch and is used at the leaves of an OR or an 1374 /// AND operator tree. 1375 /// 1376 void 1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1378 MachineBasicBlock *TBB, 1379 MachineBasicBlock *FBB, 1380 MachineBasicBlock *CurBB, 1381 MachineBasicBlock *SwitchBB, 1382 uint32_t TWeight, 1383 uint32_t FWeight) { 1384 const BasicBlock *BB = CurBB->getBasicBlock(); 1385 1386 // If the leaf of the tree is a comparison, merge the condition into 1387 // the caseblock. 1388 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1389 // The operands of the cmp have to be in this block. We don't know 1390 // how to export them from some other block. If this is the first block 1391 // of the sequence, no exporting is needed. 1392 if (CurBB == SwitchBB || 1393 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1394 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1395 ISD::CondCode Condition; 1396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1397 Condition = getICmpCondCode(IC->getPredicate()); 1398 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1399 Condition = getFCmpCondCode(FC->getPredicate()); 1400 if (TM.Options.NoNaNsFPMath) 1401 Condition = getFCmpCodeWithoutNaN(Condition); 1402 } else { 1403 Condition = ISD::SETEQ; // silence warning. 1404 llvm_unreachable("Unknown compare instruction"); 1405 } 1406 1407 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1408 TBB, FBB, CurBB, TWeight, FWeight); 1409 SwitchCases.push_back(CB); 1410 return; 1411 } 1412 } 1413 1414 // Create a CaseBlock record representing this branch. 1415 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1416 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1417 SwitchCases.push_back(CB); 1418 } 1419 1420 /// Scale down both weights to fit into uint32_t. 1421 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1422 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1423 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1424 NewTrue = NewTrue / Scale; 1425 NewFalse = NewFalse / Scale; 1426 } 1427 1428 /// FindMergedConditions - If Cond is an expression like 1429 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1430 MachineBasicBlock *TBB, 1431 MachineBasicBlock *FBB, 1432 MachineBasicBlock *CurBB, 1433 MachineBasicBlock *SwitchBB, 1434 unsigned Opc, uint32_t TWeight, 1435 uint32_t FWeight) { 1436 // If this node is not part of the or/and tree, emit it as a branch. 1437 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1438 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1439 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1440 BOp->getParent() != CurBB->getBasicBlock() || 1441 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1442 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1443 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1444 TWeight, FWeight); 1445 return; 1446 } 1447 1448 // Create TmpBB after CurBB. 1449 MachineFunction::iterator BBI = CurBB; 1450 MachineFunction &MF = DAG.getMachineFunction(); 1451 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1452 CurBB->getParent()->insert(++BBI, TmpBB); 1453 1454 if (Opc == Instruction::Or) { 1455 // Codegen X | Y as: 1456 // BB1: 1457 // jmp_if_X TBB 1458 // jmp TmpBB 1459 // TmpBB: 1460 // jmp_if_Y TBB 1461 // jmp FBB 1462 // 1463 1464 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1465 // The requirement is that 1466 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1467 // = TrueProb for orignal BB. 1468 // Assuming the orignal weights are A and B, one choice is to set BB1's 1469 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1470 // assumes that 1471 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1472 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1473 // TmpBB, but the math is more complicated. 1474 1475 uint64_t NewTrueWeight = TWeight; 1476 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1477 ScaleWeights(NewTrueWeight, NewFalseWeight); 1478 // Emit the LHS condition. 1479 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1480 NewTrueWeight, NewFalseWeight); 1481 1482 NewTrueWeight = TWeight; 1483 NewFalseWeight = 2 * (uint64_t)FWeight; 1484 ScaleWeights(NewTrueWeight, NewFalseWeight); 1485 // Emit the RHS condition into TmpBB. 1486 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1487 NewTrueWeight, NewFalseWeight); 1488 } else { 1489 assert(Opc == Instruction::And && "Unknown merge op!"); 1490 // Codegen X & Y as: 1491 // BB1: 1492 // jmp_if_X TmpBB 1493 // jmp FBB 1494 // TmpBB: 1495 // jmp_if_Y TBB 1496 // jmp FBB 1497 // 1498 // This requires creation of TmpBB after CurBB. 1499 1500 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1501 // The requirement is that 1502 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1503 // = FalseProb for orignal BB. 1504 // Assuming the orignal weights are A and B, one choice is to set BB1's 1505 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1506 // assumes that 1507 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1508 1509 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1510 uint64_t NewFalseWeight = FWeight; 1511 ScaleWeights(NewTrueWeight, NewFalseWeight); 1512 // Emit the LHS condition. 1513 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1514 NewTrueWeight, NewFalseWeight); 1515 1516 NewTrueWeight = 2 * (uint64_t)TWeight; 1517 NewFalseWeight = FWeight; 1518 ScaleWeights(NewTrueWeight, NewFalseWeight); 1519 // Emit the RHS condition into TmpBB. 1520 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1521 NewTrueWeight, NewFalseWeight); 1522 } 1523 } 1524 1525 /// If the set of cases should be emitted as a series of branches, return true. 1526 /// If we should emit this as a bunch of and/or'd together conditions, return 1527 /// false. 1528 bool 1529 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1530 if (Cases.size() != 2) return true; 1531 1532 // If this is two comparisons of the same values or'd or and'd together, they 1533 // will get folded into a single comparison, so don't emit two blocks. 1534 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1535 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1536 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1537 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1538 return false; 1539 } 1540 1541 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1542 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1543 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1544 Cases[0].CC == Cases[1].CC && 1545 isa<Constant>(Cases[0].CmpRHS) && 1546 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1547 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1548 return false; 1549 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1550 return false; 1551 } 1552 1553 return true; 1554 } 1555 1556 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1557 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1558 1559 // Update machine-CFG edges. 1560 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1561 1562 // Figure out which block is immediately after the current one. 1563 MachineBasicBlock *NextBlock = nullptr; 1564 MachineFunction::iterator BBI = BrMBB; 1565 if (++BBI != FuncInfo.MF->end()) 1566 NextBlock = BBI; 1567 1568 if (I.isUnconditional()) { 1569 // Update machine-CFG edges. 1570 BrMBB->addSuccessor(Succ0MBB); 1571 1572 // If this is not a fall-through branch or optimizations are switched off, 1573 // emit the branch. 1574 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1575 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1576 MVT::Other, getControlRoot(), 1577 DAG.getBasicBlock(Succ0MBB))); 1578 1579 return; 1580 } 1581 1582 // If this condition is one of the special cases we handle, do special stuff 1583 // now. 1584 const Value *CondVal = I.getCondition(); 1585 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1586 1587 // If this is a series of conditions that are or'd or and'd together, emit 1588 // this as a sequence of branches instead of setcc's with and/or operations. 1589 // As long as jumps are not expensive, this should improve performance. 1590 // For example, instead of something like: 1591 // cmp A, B 1592 // C = seteq 1593 // cmp D, E 1594 // F = setle 1595 // or C, F 1596 // jnz foo 1597 // Emit: 1598 // cmp A, B 1599 // je foo 1600 // cmp D, E 1601 // jle foo 1602 // 1603 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1604 if (!TM.getTargetLowering()->isJumpExpensive() && 1605 BOp->hasOneUse() && 1606 (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1815 GuardPtr, MachinePointerInfo(IRGuard, 0), 1816 true, false, false, Align); 1817 1818 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1819 StackSlotPtr, 1820 MachinePointerInfo::getFixedStack(FI), 1821 true, false, false, Align); 1822 1823 // Perform the comparison via a subtract/getsetcc. 1824 EVT VT = Guard.getValueType(); 1825 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1826 1827 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1828 TLI->getSetCCResultType(*DAG.getContext(), 1829 Sub.getValueType()), 1830 Sub, DAG.getConstant(0, VT), 1831 ISD::SETNE); 1832 1833 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1834 // branch to failure MBB. 1835 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1836 MVT::Other, StackSlot.getOperand(0), 1837 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1838 // Otherwise branch to success MBB. 1839 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1840 MVT::Other, BrCond, 1841 DAG.getBasicBlock(SPD.getSuccessMBB())); 1842 1843 DAG.setRoot(Br); 1844 } 1845 1846 /// Codegen the failure basic block for a stack protector check. 1847 /// 1848 /// A failure stack protector machine basic block consists simply of a call to 1849 /// __stack_chk_fail(). 1850 /// 1851 /// For a high level explanation of how this fits into the stack protector 1852 /// generation see the comment on the declaration of class 1853 /// StackProtectorDescriptor. 1854 void 1855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1856 const TargetLowering *TLI = TM.getTargetLowering(); 1857 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1858 MVT::isVoid, nullptr, 0, false, 1859 getCurSDLoc(), false, false).second; 1860 DAG.setRoot(Chain); 1861 } 1862 1863 /// visitBitTestHeader - This function emits necessary code to produce value 1864 /// suitable for "bit tests" 1865 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1866 MachineBasicBlock *SwitchBB) { 1867 // Subtract the minimum value 1868 SDValue SwitchOp = getValue(B.SValue); 1869 EVT VT = SwitchOp.getValueType(); 1870 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1871 DAG.getConstant(B.First, VT)); 1872 1873 // Check range 1874 const TargetLowering *TLI = TM.getTargetLowering(); 1875 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1876 TLI->getSetCCResultType(*DAG.getContext(), 1877 Sub.getValueType()), 1878 Sub, DAG.getConstant(B.Range, VT), 1879 ISD::SETUGT); 1880 1881 // Determine the type of the test operands. 1882 bool UsePtrType = false; 1883 if (!TLI->isTypeLegal(VT)) 1884 UsePtrType = true; 1885 else { 1886 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1887 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1888 // Switch table case range are encoded into series of masks. 1889 // Just use pointer type, it's guaranteed to fit. 1890 UsePtrType = true; 1891 break; 1892 } 1893 } 1894 if (UsePtrType) { 1895 VT = TLI->getPointerTy(); 1896 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1897 } 1898 1899 B.RegVT = VT.getSimpleVT(); 1900 B.Reg = FuncInfo.CreateReg(B.RegVT); 1901 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1902 B.Reg, Sub); 1903 1904 // Set NextBlock to be the MBB immediately after the current one, if any. 1905 // This is used to avoid emitting unnecessary branches to the next block. 1906 MachineBasicBlock *NextBlock = nullptr; 1907 MachineFunction::iterator BBI = SwitchBB; 1908 if (++BBI != FuncInfo.MF->end()) 1909 NextBlock = BBI; 1910 1911 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1912 1913 addSuccessorWithWeight(SwitchBB, B.Default); 1914 addSuccessorWithWeight(SwitchBB, MBB); 1915 1916 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1917 MVT::Other, CopyTo, RangeCmp, 1918 DAG.getBasicBlock(B.Default)); 1919 1920 if (MBB != NextBlock) 1921 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1922 DAG.getBasicBlock(MBB)); 1923 1924 DAG.setRoot(BrRange); 1925 } 1926 1927 /// visitBitTestCase - this function produces one "bit test" 1928 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1929 MachineBasicBlock* NextMBB, 1930 uint32_t BranchWeightToNext, 1931 unsigned Reg, 1932 BitTestCase &B, 1933 MachineBasicBlock *SwitchBB) { 1934 MVT VT = BB.RegVT; 1935 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1936 Reg, VT); 1937 SDValue Cmp; 1938 unsigned PopCount = CountPopulation_64(B.Mask); 1939 const TargetLowering *TLI = TM.getTargetLowering(); 1940 if (PopCount == 1) { 1941 // Testing for a single bit; just compare the shift count with what it 1942 // would need to be to shift a 1 bit in that position. 1943 Cmp = DAG.getSetCC(getCurSDLoc(), 1944 TLI->getSetCCResultType(*DAG.getContext(), VT), 1945 ShiftOp, 1946 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1947 ISD::SETEQ); 1948 } else if (PopCount == BB.Range) { 1949 // There is only one zero bit in the range, test for it directly. 1950 Cmp = DAG.getSetCC(getCurSDLoc(), 1951 TLI->getSetCCResultType(*DAG.getContext(), VT), 1952 ShiftOp, 1953 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1954 ISD::SETNE); 1955 } else { 1956 // Make desired shift 1957 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1958 DAG.getConstant(1, VT), ShiftOp); 1959 1960 // Emit bit tests and jumps 1961 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1962 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1963 Cmp = DAG.getSetCC(getCurSDLoc(), 1964 TLI->getSetCCResultType(*DAG.getContext(), VT), 1965 AndOp, DAG.getConstant(0, VT), 1966 ISD::SETNE); 1967 } 1968 1969 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1970 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1971 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1972 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1973 1974 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1975 MVT::Other, getControlRoot(), 1976 Cmp, DAG.getBasicBlock(B.TargetBB)); 1977 1978 // Set NextBlock to be the MBB immediately after the current one, if any. 1979 // This is used to avoid emitting unnecessary branches to the next block. 1980 MachineBasicBlock *NextBlock = nullptr; 1981 MachineFunction::iterator BBI = SwitchBB; 1982 if (++BBI != FuncInfo.MF->end()) 1983 NextBlock = BBI; 1984 1985 if (NextMBB != NextBlock) 1986 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1987 DAG.getBasicBlock(NextMBB)); 1988 1989 DAG.setRoot(BrAnd); 1990 } 1991 1992 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1993 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1994 1995 // Retrieve successors. 1996 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1997 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1998 1999 const Value *Callee(I.getCalledValue()); 2000 const Function *Fn = dyn_cast<Function>(Callee); 2001 if (isa<InlineAsm>(Callee)) 2002 visitInlineAsm(&I); 2003 else if (Fn && Fn->isIntrinsic()) { 2004 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2005 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2006 } else 2007 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2008 2009 // If the value of the invoke is used outside of its defining block, make it 2010 // available as a virtual register. 2011 CopyToExportRegsIfNeeded(&I); 2012 2013 // Update successor info 2014 addSuccessorWithWeight(InvokeMBB, Return); 2015 addSuccessorWithWeight(InvokeMBB, LandingPad); 2016 2017 // Drop into normal successor. 2018 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2019 MVT::Other, getControlRoot(), 2020 DAG.getBasicBlock(Return))); 2021 } 2022 2023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2024 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2025 } 2026 2027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2028 assert(FuncInfo.MBB->isLandingPad() && 2029 "Call to landingpad not in landing pad!"); 2030 2031 MachineBasicBlock *MBB = FuncInfo.MBB; 2032 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2033 AddLandingPadInfo(LP, MMI, MBB); 2034 2035 // If there aren't registers to copy the values into (e.g., during SjLj 2036 // exceptions), then don't bother to create these DAG nodes. 2037 const TargetLowering *TLI = TM.getTargetLowering(); 2038 if (TLI->getExceptionPointerRegister() == 0 && 2039 TLI->getExceptionSelectorRegister() == 0) 2040 return; 2041 2042 SmallVector<EVT, 2> ValueVTs; 2043 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2044 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2045 2046 // Get the two live-in registers as SDValues. The physregs have already been 2047 // copied into virtual registers. 2048 SDValue Ops[2]; 2049 Ops[0] = DAG.getZExtOrTrunc( 2050 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2051 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2052 getCurSDLoc(), ValueVTs[0]); 2053 Ops[1] = DAG.getZExtOrTrunc( 2054 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2055 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2056 getCurSDLoc(), ValueVTs[1]); 2057 2058 // Merge into one. 2059 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2060 DAG.getVTList(ValueVTs), Ops); 2061 setValue(&LP, Res); 2062 } 2063 2064 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2065 /// small case ranges). 2066 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2067 CaseRecVector& WorkList, 2068 const Value* SV, 2069 MachineBasicBlock *Default, 2070 MachineBasicBlock *SwitchBB) { 2071 // Size is the number of Cases represented by this range. 2072 size_t Size = CR.Range.second - CR.Range.first; 2073 if (Size > 3) 2074 return false; 2075 2076 // Get the MachineFunction which holds the current MBB. This is used when 2077 // inserting any additional MBBs necessary to represent the switch. 2078 MachineFunction *CurMF = FuncInfo.MF; 2079 2080 // Figure out which block is immediately after the current one. 2081 MachineBasicBlock *NextBlock = nullptr; 2082 MachineFunction::iterator BBI = CR.CaseBB; 2083 2084 if (++BBI != FuncInfo.MF->end()) 2085 NextBlock = BBI; 2086 2087 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2088 // If any two of the cases has the same destination, and if one value 2089 // is the same as the other, but has one bit unset that the other has set, 2090 // use bit manipulation to do two compares at once. For example: 2091 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2092 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2093 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2094 if (Size == 2 && CR.CaseBB == SwitchBB) { 2095 Case &Small = *CR.Range.first; 2096 Case &Big = *(CR.Range.second-1); 2097 2098 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2099 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2100 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2101 2102 // Check that there is only one bit different. 2103 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2104 (SmallValue | BigValue) == BigValue) { 2105 // Isolate the common bit. 2106 APInt CommonBit = BigValue & ~SmallValue; 2107 assert((SmallValue | CommonBit) == BigValue && 2108 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2109 2110 SDValue CondLHS = getValue(SV); 2111 EVT VT = CondLHS.getValueType(); 2112 SDLoc DL = getCurSDLoc(); 2113 2114 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2115 DAG.getConstant(CommonBit, VT)); 2116 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2117 Or, DAG.getConstant(BigValue, VT), 2118 ISD::SETEQ); 2119 2120 // Update successor info. 2121 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2122 addSuccessorWithWeight(SwitchBB, Small.BB, 2123 Small.ExtraWeight + Big.ExtraWeight); 2124 addSuccessorWithWeight(SwitchBB, Default, 2125 // The default destination is the first successor in IR. 2126 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2127 2128 // Insert the true branch. 2129 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2130 getControlRoot(), Cond, 2131 DAG.getBasicBlock(Small.BB)); 2132 2133 // Insert the false branch. 2134 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2135 DAG.getBasicBlock(Default)); 2136 2137 DAG.setRoot(BrCond); 2138 return true; 2139 } 2140 } 2141 } 2142 2143 // Order cases by weight so the most likely case will be checked first. 2144 uint32_t UnhandledWeights = 0; 2145 if (BPI) { 2146 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2147 uint32_t IWeight = I->ExtraWeight; 2148 UnhandledWeights += IWeight; 2149 for (CaseItr J = CR.Range.first; J < I; ++J) { 2150 uint32_t JWeight = J->ExtraWeight; 2151 if (IWeight > JWeight) 2152 std::swap(*I, *J); 2153 } 2154 } 2155 } 2156 // Rearrange the case blocks so that the last one falls through if possible. 2157 Case &BackCase = *(CR.Range.second-1); 2158 if (Size > 1 && 2159 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2160 // The last case block won't fall through into 'NextBlock' if we emit the 2161 // branches in this order. See if rearranging a case value would help. 2162 // We start at the bottom as it's the case with the least weight. 2163 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2164 if (I->BB == NextBlock) { 2165 std::swap(*I, BackCase); 2166 break; 2167 } 2168 } 2169 2170 // Create a CaseBlock record representing a conditional branch to 2171 // the Case's target mbb if the value being switched on SV is equal 2172 // to C. 2173 MachineBasicBlock *CurBlock = CR.CaseBB; 2174 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2175 MachineBasicBlock *FallThrough; 2176 if (I != E-1) { 2177 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2178 CurMF->insert(BBI, FallThrough); 2179 2180 // Put SV in a virtual register to make it available from the new blocks. 2181 ExportFromCurrentBlock(SV); 2182 } else { 2183 // If the last case doesn't match, go to the default block. 2184 FallThrough = Default; 2185 } 2186 2187 const Value *RHS, *LHS, *MHS; 2188 ISD::CondCode CC; 2189 if (I->High == I->Low) { 2190 // This is just small small case range :) containing exactly 1 case 2191 CC = ISD::SETEQ; 2192 LHS = SV; RHS = I->High; MHS = nullptr; 2193 } else { 2194 CC = ISD::SETLE; 2195 LHS = I->Low; MHS = SV; RHS = I->High; 2196 } 2197 2198 // The false weight should be sum of all un-handled cases. 2199 UnhandledWeights -= I->ExtraWeight; 2200 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2201 /* me */ CurBlock, 2202 /* trueweight */ I->ExtraWeight, 2203 /* falseweight */ UnhandledWeights); 2204 2205 // If emitting the first comparison, just call visitSwitchCase to emit the 2206 // code into the current block. Otherwise, push the CaseBlock onto the 2207 // vector to be later processed by SDISel, and insert the node's MBB 2208 // before the next MBB. 2209 if (CurBlock == SwitchBB) 2210 visitSwitchCase(CB, SwitchBB); 2211 else 2212 SwitchCases.push_back(CB); 2213 2214 CurBlock = FallThrough; 2215 } 2216 2217 return true; 2218 } 2219 2220 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2221 return TLI.supportJumpTables() && 2222 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2223 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2224 } 2225 2226 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2227 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2228 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2229 return (LastExt - FirstExt + 1ULL); 2230 } 2231 2232 /// handleJTSwitchCase - Emit jumptable for current switch case range 2233 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2234 CaseRecVector &WorkList, 2235 const Value *SV, 2236 MachineBasicBlock *Default, 2237 MachineBasicBlock *SwitchBB) { 2238 Case& FrontCase = *CR.Range.first; 2239 Case& BackCase = *(CR.Range.second-1); 2240 2241 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2242 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2243 2244 APInt TSize(First.getBitWidth(), 0); 2245 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2246 TSize += I->size(); 2247 2248 const TargetLowering *TLI = TM.getTargetLowering(); 2249 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2250 return false; 2251 2252 APInt Range = ComputeRange(First, Last); 2253 // The density is TSize / Range. Require at least 40%. 2254 // It should not be possible for IntTSize to saturate for sane code, but make 2255 // sure we handle Range saturation correctly. 2256 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2257 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2258 if (IntTSize * 10 < IntRange * 4) 2259 return false; 2260 2261 DEBUG(dbgs() << "Lowering jump table\n" 2262 << "First entry: " << First << ". Last entry: " << Last << '\n' 2263 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2264 2265 // Get the MachineFunction which holds the current MBB. This is used when 2266 // inserting any additional MBBs necessary to represent the switch. 2267 MachineFunction *CurMF = FuncInfo.MF; 2268 2269 // Figure out which block is immediately after the current one. 2270 MachineFunction::iterator BBI = CR.CaseBB; 2271 ++BBI; 2272 2273 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2274 2275 // Create a new basic block to hold the code for loading the address 2276 // of the jump table, and jumping to it. Update successor information; 2277 // we will either branch to the default case for the switch, or the jump 2278 // table. 2279 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2280 CurMF->insert(BBI, JumpTableBB); 2281 2282 addSuccessorWithWeight(CR.CaseBB, Default); 2283 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2284 2285 // Build a vector of destination BBs, corresponding to each target 2286 // of the jump table. If the value of the jump table slot corresponds to 2287 // a case statement, push the case's BB onto the vector, otherwise, push 2288 // the default BB. 2289 std::vector<MachineBasicBlock*> DestBBs; 2290 APInt TEI = First; 2291 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2292 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2293 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2294 2295 if (Low.sle(TEI) && TEI.sle(High)) { 2296 DestBBs.push_back(I->BB); 2297 if (TEI==High) 2298 ++I; 2299 } else { 2300 DestBBs.push_back(Default); 2301 } 2302 } 2303 2304 // Calculate weight for each unique destination in CR. 2305 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2306 if (FuncInfo.BPI) 2307 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2308 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2309 DestWeights.find(I->BB); 2310 if (Itr != DestWeights.end()) 2311 Itr->second += I->ExtraWeight; 2312 else 2313 DestWeights[I->BB] = I->ExtraWeight; 2314 } 2315 2316 // Update successor info. Add one edge to each unique successor. 2317 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2318 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2319 E = DestBBs.end(); I != E; ++I) { 2320 if (!SuccsHandled[(*I)->getNumber()]) { 2321 SuccsHandled[(*I)->getNumber()] = true; 2322 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2323 DestWeights.find(*I); 2324 addSuccessorWithWeight(JumpTableBB, *I, 2325 Itr != DestWeights.end() ? Itr->second : 0); 2326 } 2327 } 2328 2329 // Create a jump table index for this jump table. 2330 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2331 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2332 ->createJumpTableIndex(DestBBs); 2333 2334 // Set the jump table information so that we can codegen it as a second 2335 // MachineBasicBlock 2336 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2337 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2338 if (CR.CaseBB == SwitchBB) 2339 visitJumpTableHeader(JT, JTH, SwitchBB); 2340 2341 JTCases.push_back(JumpTableBlock(JTH, JT)); 2342 return true; 2343 } 2344 2345 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2346 /// 2 subtrees. 2347 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2348 CaseRecVector& WorkList, 2349 const Value* SV, 2350 MachineBasicBlock* Default, 2351 MachineBasicBlock* SwitchBB) { 2352 // Get the MachineFunction which holds the current MBB. This is used when 2353 // inserting any additional MBBs necessary to represent the switch. 2354 MachineFunction *CurMF = FuncInfo.MF; 2355 2356 // Figure out which block is immediately after the current one. 2357 MachineFunction::iterator BBI = CR.CaseBB; 2358 ++BBI; 2359 2360 Case& FrontCase = *CR.Range.first; 2361 Case& BackCase = *(CR.Range.second-1); 2362 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2363 2364 // Size is the number of Cases represented by this range. 2365 unsigned Size = CR.Range.second - CR.Range.first; 2366 2367 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2368 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2369 double FMetric = 0; 2370 CaseItr Pivot = CR.Range.first + Size/2; 2371 2372 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2373 // (heuristically) allow us to emit JumpTable's later. 2374 APInt TSize(First.getBitWidth(), 0); 2375 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2376 I!=E; ++I) 2377 TSize += I->size(); 2378 2379 APInt LSize = FrontCase.size(); 2380 APInt RSize = TSize-LSize; 2381 DEBUG(dbgs() << "Selecting best pivot: \n" 2382 << "First: " << First << ", Last: " << Last <<'\n' 2383 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2384 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2385 J!=E; ++I, ++J) { 2386 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2387 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2388 APInt Range = ComputeRange(LEnd, RBegin); 2389 assert((Range - 2ULL).isNonNegative() && 2390 "Invalid case distance"); 2391 // Use volatile double here to avoid excess precision issues on some hosts, 2392 // e.g. that use 80-bit X87 registers. 2393 volatile double LDensity = 2394 (double)LSize.roundToDouble() / 2395 (LEnd - First + 1ULL).roundToDouble(); 2396 volatile double RDensity = 2397 (double)RSize.roundToDouble() / 2398 (Last - RBegin + 1ULL).roundToDouble(); 2399 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2400 // Should always split in some non-trivial place 2401 DEBUG(dbgs() <<"=>Step\n" 2402 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2403 << "LDensity: " << LDensity 2404 << ", RDensity: " << RDensity << '\n' 2405 << "Metric: " << Metric << '\n'); 2406 if (FMetric < Metric) { 2407 Pivot = J; 2408 FMetric = Metric; 2409 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2410 } 2411 2412 LSize += J->size(); 2413 RSize -= J->size(); 2414 } 2415 2416 const TargetLowering *TLI = TM.getTargetLowering(); 2417 if (areJTsAllowed(*TLI)) { 2418 // If our case is dense we *really* should handle it earlier! 2419 assert((FMetric > 0) && "Should handle dense range earlier!"); 2420 } else { 2421 Pivot = CR.Range.first + Size/2; 2422 } 2423 2424 CaseRange LHSR(CR.Range.first, Pivot); 2425 CaseRange RHSR(Pivot, CR.Range.second); 2426 const Constant *C = Pivot->Low; 2427 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2428 2429 // We know that we branch to the LHS if the Value being switched on is 2430 // less than the Pivot value, C. We use this to optimize our binary 2431 // tree a bit, by recognizing that if SV is greater than or equal to the 2432 // LHS's Case Value, and that Case Value is exactly one less than the 2433 // Pivot's Value, then we can branch directly to the LHS's Target, 2434 // rather than creating a leaf node for it. 2435 if ((LHSR.second - LHSR.first) == 1 && 2436 LHSR.first->High == CR.GE && 2437 cast<ConstantInt>(C)->getValue() == 2438 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2439 TrueBB = LHSR.first->BB; 2440 } else { 2441 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2442 CurMF->insert(BBI, TrueBB); 2443 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2444 2445 // Put SV in a virtual register to make it available from the new blocks. 2446 ExportFromCurrentBlock(SV); 2447 } 2448 2449 // Similar to the optimization above, if the Value being switched on is 2450 // known to be less than the Constant CR.LT, and the current Case Value 2451 // is CR.LT - 1, then we can branch directly to the target block for 2452 // the current Case Value, rather than emitting a RHS leaf node for it. 2453 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2454 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2455 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2456 FalseBB = RHSR.first->BB; 2457 } else { 2458 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2459 CurMF->insert(BBI, FalseBB); 2460 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2461 2462 // Put SV in a virtual register to make it available from the new blocks. 2463 ExportFromCurrentBlock(SV); 2464 } 2465 2466 // Create a CaseBlock record representing a conditional branch to 2467 // the LHS node if the value being switched on SV is less than C. 2468 // Otherwise, branch to LHS. 2469 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2470 2471 if (CR.CaseBB == SwitchBB) 2472 visitSwitchCase(CB, SwitchBB); 2473 else 2474 SwitchCases.push_back(CB); 2475 2476 return true; 2477 } 2478 2479 /// handleBitTestsSwitchCase - if current case range has few destination and 2480 /// range span less, than machine word bitwidth, encode case range into series 2481 /// of masks and emit bit tests with these masks. 2482 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2483 CaseRecVector& WorkList, 2484 const Value* SV, 2485 MachineBasicBlock* Default, 2486 MachineBasicBlock* SwitchBB) { 2487 const TargetLowering *TLI = TM.getTargetLowering(); 2488 EVT PTy = TLI->getPointerTy(); 2489 unsigned IntPtrBits = PTy.getSizeInBits(); 2490 2491 Case& FrontCase = *CR.Range.first; 2492 Case& BackCase = *(CR.Range.second-1); 2493 2494 // Get the MachineFunction which holds the current MBB. This is used when 2495 // inserting any additional MBBs necessary to represent the switch. 2496 MachineFunction *CurMF = FuncInfo.MF; 2497 2498 // If target does not have legal shift left, do not emit bit tests at all. 2499 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2500 return false; 2501 2502 size_t numCmps = 0; 2503 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2504 I!=E; ++I) { 2505 // Single case counts one, case range - two. 2506 numCmps += (I->Low == I->High ? 1 : 2); 2507 } 2508 2509 // Count unique destinations 2510 SmallSet<MachineBasicBlock*, 4> Dests; 2511 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2512 Dests.insert(I->BB); 2513 if (Dests.size() > 3) 2514 // Don't bother the code below, if there are too much unique destinations 2515 return false; 2516 } 2517 DEBUG(dbgs() << "Total number of unique destinations: " 2518 << Dests.size() << '\n' 2519 << "Total number of comparisons: " << numCmps << '\n'); 2520 2521 // Compute span of values. 2522 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2523 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2524 APInt cmpRange = maxValue - minValue; 2525 2526 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2527 << "Low bound: " << minValue << '\n' 2528 << "High bound: " << maxValue << '\n'); 2529 2530 if (cmpRange.uge(IntPtrBits) || 2531 (!(Dests.size() == 1 && numCmps >= 3) && 2532 !(Dests.size() == 2 && numCmps >= 5) && 2533 !(Dests.size() >= 3 && numCmps >= 6))) 2534 return false; 2535 2536 DEBUG(dbgs() << "Emitting bit tests\n"); 2537 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2538 2539 // Optimize the case where all the case values fit in a 2540 // word without having to subtract minValue. In this case, 2541 // we can optimize away the subtraction. 2542 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2543 cmpRange = maxValue; 2544 } else { 2545 lowBound = minValue; 2546 } 2547 2548 CaseBitsVector CasesBits; 2549 unsigned i, count = 0; 2550 2551 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2552 MachineBasicBlock* Dest = I->BB; 2553 for (i = 0; i < count; ++i) 2554 if (Dest == CasesBits[i].BB) 2555 break; 2556 2557 if (i == count) { 2558 assert((count < 3) && "Too much destinations to test!"); 2559 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2560 count++; 2561 } 2562 2563 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2564 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2565 2566 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2567 uint64_t hi = (highValue - lowBound).getZExtValue(); 2568 CasesBits[i].ExtraWeight += I->ExtraWeight; 2569 2570 for (uint64_t j = lo; j <= hi; j++) { 2571 CasesBits[i].Mask |= 1ULL << j; 2572 CasesBits[i].Bits++; 2573 } 2574 2575 } 2576 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2577 2578 BitTestInfo BTC; 2579 2580 // Figure out which block is immediately after the current one. 2581 MachineFunction::iterator BBI = CR.CaseBB; 2582 ++BBI; 2583 2584 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2585 2586 DEBUG(dbgs() << "Cases:\n"); 2587 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2588 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2589 << ", Bits: " << CasesBits[i].Bits 2590 << ", BB: " << CasesBits[i].BB << '\n'); 2591 2592 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2593 CurMF->insert(BBI, CaseBB); 2594 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2595 CaseBB, 2596 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2597 2598 // Put SV in a virtual register to make it available from the new blocks. 2599 ExportFromCurrentBlock(SV); 2600 } 2601 2602 BitTestBlock BTB(lowBound, cmpRange, SV, 2603 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2604 CR.CaseBB, Default, BTC); 2605 2606 if (CR.CaseBB == SwitchBB) 2607 visitBitTestHeader(BTB, SwitchBB); 2608 2609 BitTestCases.push_back(BTB); 2610 2611 return true; 2612 } 2613 2614 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2615 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2616 const SwitchInst& SI) { 2617 size_t numCmps = 0; 2618 2619 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2620 // Start with "simple" cases 2621 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2622 i != e; ++i) { 2623 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2624 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2625 2626 uint32_t ExtraWeight = 2627 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2628 2629 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2630 SMBB, ExtraWeight)); 2631 } 2632 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2633 2634 // Merge case into clusters 2635 if (Cases.size() >= 2) 2636 // Must recompute end() each iteration because it may be 2637 // invalidated by erase if we hold on to it 2638 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2639 J != Cases.end(); ) { 2640 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2641 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2642 MachineBasicBlock* nextBB = J->BB; 2643 MachineBasicBlock* currentBB = I->BB; 2644 2645 // If the two neighboring cases go to the same destination, merge them 2646 // into a single case. 2647 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2648 I->High = J->High; 2649 I->ExtraWeight += J->ExtraWeight; 2650 J = Cases.erase(J); 2651 } else { 2652 I = J++; 2653 } 2654 } 2655 2656 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2657 if (I->Low != I->High) 2658 // A range counts double, since it requires two compares. 2659 ++numCmps; 2660 } 2661 2662 return numCmps; 2663 } 2664 2665 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2666 MachineBasicBlock *Last) { 2667 // Update JTCases. 2668 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2669 if (JTCases[i].first.HeaderBB == First) 2670 JTCases[i].first.HeaderBB = Last; 2671 2672 // Update BitTestCases. 2673 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2674 if (BitTestCases[i].Parent == First) 2675 BitTestCases[i].Parent = Last; 2676 } 2677 2678 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2679 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2680 2681 // Figure out which block is immediately after the current one. 2682 MachineBasicBlock *NextBlock = nullptr; 2683 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2684 2685 // If there is only the default destination, branch to it if it is not the 2686 // next basic block. Otherwise, just fall through. 2687 if (!SI.getNumCases()) { 2688 // Update machine-CFG edges. 2689 2690 // If this is not a fall-through branch, emit the branch. 2691 SwitchMBB->addSuccessor(Default); 2692 if (Default != NextBlock) 2693 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2694 MVT::Other, getControlRoot(), 2695 DAG.getBasicBlock(Default))); 2696 2697 return; 2698 } 2699 2700 // If there are any non-default case statements, create a vector of Cases 2701 // representing each one, and sort the vector so that we can efficiently 2702 // create a binary search tree from them. 2703 CaseVector Cases; 2704 size_t numCmps = Clusterify(Cases, SI); 2705 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2706 << ". Total compares: " << numCmps << '\n'); 2707 (void)numCmps; 2708 2709 // Get the Value to be switched on and default basic blocks, which will be 2710 // inserted into CaseBlock records, representing basic blocks in the binary 2711 // search tree. 2712 const Value *SV = SI.getCondition(); 2713 2714 // Push the initial CaseRec onto the worklist 2715 CaseRecVector WorkList; 2716 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2717 CaseRange(Cases.begin(),Cases.end()))); 2718 2719 while (!WorkList.empty()) { 2720 // Grab a record representing a case range to process off the worklist 2721 CaseRec CR = WorkList.back(); 2722 WorkList.pop_back(); 2723 2724 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2725 continue; 2726 2727 // If the range has few cases (two or less) emit a series of specific 2728 // tests. 2729 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2730 continue; 2731 2732 // If the switch has more than N blocks, and is at least 40% dense, and the 2733 // target supports indirect branches, then emit a jump table rather than 2734 // lowering the switch to a binary tree of conditional branches. 2735 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2736 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2737 continue; 2738 2739 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2740 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2741 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2742 } 2743 } 2744 2745 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2746 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2747 2748 // Update machine-CFG edges with unique successors. 2749 SmallSet<BasicBlock*, 32> Done; 2750 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2751 BasicBlock *BB = I.getSuccessor(i); 2752 bool Inserted = Done.insert(BB); 2753 if (!Inserted) 2754 continue; 2755 2756 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2757 addSuccessorWithWeight(IndirectBrMBB, Succ); 2758 } 2759 2760 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2761 MVT::Other, getControlRoot(), 2762 getValue(I.getAddress()))); 2763 } 2764 2765 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2766 if (DAG.getTarget().Options.TrapUnreachable) 2767 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2768 } 2769 2770 void SelectionDAGBuilder::visitFSub(const User &I) { 2771 // -0.0 - X --> fneg 2772 Type *Ty = I.getType(); 2773 if (isa<Constant>(I.getOperand(0)) && 2774 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2775 SDValue Op2 = getValue(I.getOperand(1)); 2776 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2777 Op2.getValueType(), Op2)); 2778 return; 2779 } 2780 2781 visitBinary(I, ISD::FSUB); 2782 } 2783 2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2785 SDValue Op1 = getValue(I.getOperand(0)); 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 2788 bool nuw = false; 2789 bool nsw = false; 2790 bool exact = false; 2791 if (const OverflowingBinaryOperator *OFBinOp = 2792 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2793 nuw = OFBinOp->hasNoUnsignedWrap(); 2794 nsw = OFBinOp->hasNoSignedWrap(); 2795 } 2796 if (const PossiblyExactOperator *ExactOp = 2797 dyn_cast<const PossiblyExactOperator>(&I)) 2798 exact = ExactOp->isExact(); 2799 2800 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2801 Op1, Op2, nuw, nsw, exact); 2802 setValue(&I, BinNodeValue); 2803 } 2804 2805 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2806 SDValue Op1 = getValue(I.getOperand(0)); 2807 SDValue Op2 = getValue(I.getOperand(1)); 2808 2809 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2810 2811 // Coerce the shift amount to the right type if we can. 2812 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2813 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2814 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2815 SDLoc DL = getCurSDLoc(); 2816 2817 // If the operand is smaller than the shift count type, promote it. 2818 if (ShiftSize > Op2Size) 2819 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2820 2821 // If the operand is larger than the shift count type but the shift 2822 // count type has enough bits to represent any shift value, truncate 2823 // it now. This is a common case and it exposes the truncate to 2824 // optimization early. 2825 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2826 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2827 // Otherwise we'll need to temporarily settle for some other convenient 2828 // type. Type legalization will make adjustments once the shiftee is split. 2829 else 2830 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2831 } 2832 2833 bool nuw = false; 2834 bool nsw = false; 2835 bool exact = false; 2836 2837 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2838 2839 if (const OverflowingBinaryOperator *OFBinOp = 2840 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2841 nuw = OFBinOp->hasNoUnsignedWrap(); 2842 nsw = OFBinOp->hasNoSignedWrap(); 2843 } 2844 if (const PossiblyExactOperator *ExactOp = 2845 dyn_cast<const PossiblyExactOperator>(&I)) 2846 exact = ExactOp->isExact(); 2847 } 2848 2849 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2850 nuw, nsw, exact); 2851 setValue(&I, Res); 2852 } 2853 2854 void SelectionDAGBuilder::visitSDiv(const User &I) { 2855 SDValue Op1 = getValue(I.getOperand(0)); 2856 SDValue Op2 = getValue(I.getOperand(1)); 2857 2858 // Turn exact SDivs into multiplications. 2859 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2860 // exact bit. 2861 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2862 !isa<ConstantSDNode>(Op1) && 2863 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2864 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2865 getCurSDLoc(), DAG)); 2866 else 2867 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2868 Op1, Op2)); 2869 } 2870 2871 void SelectionDAGBuilder::visitICmp(const User &I) { 2872 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2873 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2874 predicate = IC->getPredicate(); 2875 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2876 predicate = ICmpInst::Predicate(IC->getPredicate()); 2877 SDValue Op1 = getValue(I.getOperand(0)); 2878 SDValue Op2 = getValue(I.getOperand(1)); 2879 ISD::CondCode Opcode = getICmpCondCode(predicate); 2880 2881 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2882 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2883 } 2884 2885 void SelectionDAGBuilder::visitFCmp(const User &I) { 2886 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2887 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2888 predicate = FC->getPredicate(); 2889 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2890 predicate = FCmpInst::Predicate(FC->getPredicate()); 2891 SDValue Op1 = getValue(I.getOperand(0)); 2892 SDValue Op2 = getValue(I.getOperand(1)); 2893 ISD::CondCode Condition = getFCmpCondCode(predicate); 2894 if (TM.Options.NoNaNsFPMath) 2895 Condition = getFCmpCodeWithoutNaN(Condition); 2896 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2897 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2898 } 2899 2900 void SelectionDAGBuilder::visitSelect(const User &I) { 2901 SmallVector<EVT, 4> ValueVTs; 2902 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2903 unsigned NumValues = ValueVTs.size(); 2904 if (NumValues == 0) return; 2905 2906 SmallVector<SDValue, 4> Values(NumValues); 2907 SDValue Cond = getValue(I.getOperand(0)); 2908 SDValue TrueVal = getValue(I.getOperand(1)); 2909 SDValue FalseVal = getValue(I.getOperand(2)); 2910 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2911 ISD::VSELECT : ISD::SELECT; 2912 2913 for (unsigned i = 0; i != NumValues; ++i) 2914 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2915 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2916 Cond, 2917 SDValue(TrueVal.getNode(), 2918 TrueVal.getResNo() + i), 2919 SDValue(FalseVal.getNode(), 2920 FalseVal.getResNo() + i)); 2921 2922 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2923 DAG.getVTList(ValueVTs), Values)); 2924 } 2925 2926 void SelectionDAGBuilder::visitTrunc(const User &I) { 2927 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2928 SDValue N = getValue(I.getOperand(0)); 2929 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2930 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2931 } 2932 2933 void SelectionDAGBuilder::visitZExt(const User &I) { 2934 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2935 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2936 SDValue N = getValue(I.getOperand(0)); 2937 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2938 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2939 } 2940 2941 void SelectionDAGBuilder::visitSExt(const User &I) { 2942 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2943 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2944 SDValue N = getValue(I.getOperand(0)); 2945 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2946 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2947 } 2948 2949 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2950 // FPTrunc is never a no-op cast, no need to check 2951 SDValue N = getValue(I.getOperand(0)); 2952 const TargetLowering *TLI = TM.getTargetLowering(); 2953 EVT DestVT = TLI->getValueType(I.getType()); 2954 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2955 DestVT, N, 2956 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2957 } 2958 2959 void SelectionDAGBuilder::visitFPExt(const User &I) { 2960 // FPExt is never a no-op cast, no need to check 2961 SDValue N = getValue(I.getOperand(0)); 2962 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2963 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2964 } 2965 2966 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2967 // FPToUI is never a no-op cast, no need to check 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2970 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2971 } 2972 2973 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2974 // FPToSI is never a no-op cast, no need to check 2975 SDValue N = getValue(I.getOperand(0)); 2976 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2977 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2978 } 2979 2980 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2981 // UIToFP is never a no-op cast, no need to check 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2984 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2985 } 2986 2987 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2988 // SIToFP is never a no-op cast, no need to check 2989 SDValue N = getValue(I.getOperand(0)); 2990 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2991 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2995 // What to do depends on the size of the integer and the size of the pointer. 2996 // We can either truncate, zero extend, or no-op, accordingly. 2997 SDValue N = getValue(I.getOperand(0)); 2998 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2999 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3000 } 3001 3002 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3003 // What to do depends on the size of the integer and the size of the pointer. 3004 // We can either truncate, zero extend, or no-op, accordingly. 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3007 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3008 } 3009 3010 void SelectionDAGBuilder::visitBitCast(const User &I) { 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3013 3014 // BitCast assures us that source and destination are the same size so this is 3015 // either a BITCAST or a no-op. 3016 if (DestVT != N.getValueType()) 3017 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3018 DestVT, N)); // convert types. 3019 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3020 // might fold any kind of constant expression to an integer constant and that 3021 // is not what we are looking for. Only regcognize a bitcast of a genuine 3022 // constant integer as an opaque constant. 3023 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3024 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3025 /*isOpaque*/true)); 3026 else 3027 setValue(&I, N); // noop cast. 3028 } 3029 3030 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3032 const Value *SV = I.getOperand(0); 3033 SDValue N = getValue(SV); 3034 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3035 3036 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3037 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3038 3039 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3040 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3041 3042 setValue(&I, N); 3043 } 3044 3045 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3047 SDValue InVec = getValue(I.getOperand(0)); 3048 SDValue InVal = getValue(I.getOperand(1)); 3049 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3050 getCurSDLoc(), TLI.getVectorIdxTy()); 3051 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3052 TM.getTargetLowering()->getValueType(I.getType()), 3053 InVec, InVal, InIdx)); 3054 } 3055 3056 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 SDValue InVec = getValue(I.getOperand(0)); 3059 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3060 getCurSDLoc(), TLI.getVectorIdxTy()); 3061 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3062 TM.getTargetLowering()->getValueType(I.getType()), 3063 InVec, InIdx)); 3064 } 3065 3066 // Utility for visitShuffleVector - Return true if every element in Mask, 3067 // beginning from position Pos and ending in Pos+Size, falls within the 3068 // specified sequential range [L, L+Pos). or is undef. 3069 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3070 unsigned Pos, unsigned Size, int Low) { 3071 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3072 if (Mask[i] >= 0 && Mask[i] != Low) 3073 return false; 3074 return true; 3075 } 3076 3077 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3078 SDValue Src1 = getValue(I.getOperand(0)); 3079 SDValue Src2 = getValue(I.getOperand(1)); 3080 3081 SmallVector<int, 8> Mask; 3082 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3083 unsigned MaskNumElts = Mask.size(); 3084 3085 const TargetLowering *TLI = TM.getTargetLowering(); 3086 EVT VT = TLI->getValueType(I.getType()); 3087 EVT SrcVT = Src1.getValueType(); 3088 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3089 3090 if (SrcNumElts == MaskNumElts) { 3091 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3092 &Mask[0])); 3093 return; 3094 } 3095 3096 // Normalize the shuffle vector since mask and vector length don't match. 3097 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3098 // Mask is longer than the source vectors and is a multiple of the source 3099 // vectors. We can use concatenate vector to make the mask and vectors 3100 // lengths match. 3101 if (SrcNumElts*2 == MaskNumElts) { 3102 // First check for Src1 in low and Src2 in high 3103 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3104 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3105 // The shuffle is concatenating two vectors together. 3106 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3107 VT, Src1, Src2)); 3108 return; 3109 } 3110 // Then check for Src2 in low and Src1 in high 3111 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3112 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3113 // The shuffle is concatenating two vectors together. 3114 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3115 VT, Src2, Src1)); 3116 return; 3117 } 3118 } 3119 3120 // Pad both vectors with undefs to make them the same length as the mask. 3121 unsigned NumConcat = MaskNumElts / SrcNumElts; 3122 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3123 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3124 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3125 3126 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3127 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3128 MOps1[0] = Src1; 3129 MOps2[0] = Src2; 3130 3131 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3132 getCurSDLoc(), VT, MOps1); 3133 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3134 getCurSDLoc(), VT, MOps2); 3135 3136 // Readjust mask for new input vector length. 3137 SmallVector<int, 8> MappedOps; 3138 for (unsigned i = 0; i != MaskNumElts; ++i) { 3139 int Idx = Mask[i]; 3140 if (Idx >= (int)SrcNumElts) 3141 Idx -= SrcNumElts - MaskNumElts; 3142 MappedOps.push_back(Idx); 3143 } 3144 3145 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3146 &MappedOps[0])); 3147 return; 3148 } 3149 3150 if (SrcNumElts > MaskNumElts) { 3151 // Analyze the access pattern of the vector to see if we can extract 3152 // two subvectors and do the shuffle. The analysis is done by calculating 3153 // the range of elements the mask access on both vectors. 3154 int MinRange[2] = { static_cast<int>(SrcNumElts), 3155 static_cast<int>(SrcNumElts)}; 3156 int MaxRange[2] = {-1, -1}; 3157 3158 for (unsigned i = 0; i != MaskNumElts; ++i) { 3159 int Idx = Mask[i]; 3160 unsigned Input = 0; 3161 if (Idx < 0) 3162 continue; 3163 3164 if (Idx >= (int)SrcNumElts) { 3165 Input = 1; 3166 Idx -= SrcNumElts; 3167 } 3168 if (Idx > MaxRange[Input]) 3169 MaxRange[Input] = Idx; 3170 if (Idx < MinRange[Input]) 3171 MinRange[Input] = Idx; 3172 } 3173 3174 // Check if the access is smaller than the vector size and can we find 3175 // a reasonable extract index. 3176 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3177 // Extract. 3178 int StartIdx[2]; // StartIdx to extract from 3179 for (unsigned Input = 0; Input < 2; ++Input) { 3180 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3181 RangeUse[Input] = 0; // Unused 3182 StartIdx[Input] = 0; 3183 continue; 3184 } 3185 3186 // Find a good start index that is a multiple of the mask length. Then 3187 // see if the rest of the elements are in range. 3188 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3189 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3190 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3191 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3192 } 3193 3194 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3195 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3196 return; 3197 } 3198 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3199 // Extract appropriate subvector and generate a vector shuffle 3200 for (unsigned Input = 0; Input < 2; ++Input) { 3201 SDValue &Src = Input == 0 ? Src1 : Src2; 3202 if (RangeUse[Input] == 0) 3203 Src = DAG.getUNDEF(VT); 3204 else 3205 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3206 Src, DAG.getConstant(StartIdx[Input], 3207 TLI->getVectorIdxTy())); 3208 } 3209 3210 // Calculate new mask. 3211 SmallVector<int, 8> MappedOps; 3212 for (unsigned i = 0; i != MaskNumElts; ++i) { 3213 int Idx = Mask[i]; 3214 if (Idx >= 0) { 3215 if (Idx < (int)SrcNumElts) 3216 Idx -= StartIdx[0]; 3217 else 3218 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3219 } 3220 MappedOps.push_back(Idx); 3221 } 3222 3223 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3224 &MappedOps[0])); 3225 return; 3226 } 3227 } 3228 3229 // We can't use either concat vectors or extract subvectors so fall back to 3230 // replacing the shuffle with extract and build vector. 3231 // to insert and build vector. 3232 EVT EltVT = VT.getVectorElementType(); 3233 EVT IdxVT = TLI->getVectorIdxTy(); 3234 SmallVector<SDValue,8> Ops; 3235 for (unsigned i = 0; i != MaskNumElts; ++i) { 3236 int Idx = Mask[i]; 3237 SDValue Res; 3238 3239 if (Idx < 0) { 3240 Res = DAG.getUNDEF(EltVT); 3241 } else { 3242 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3243 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3244 3245 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3246 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3247 } 3248 3249 Ops.push_back(Res); 3250 } 3251 3252 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3253 } 3254 3255 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3256 const Value *Op0 = I.getOperand(0); 3257 const Value *Op1 = I.getOperand(1); 3258 Type *AggTy = I.getType(); 3259 Type *ValTy = Op1->getType(); 3260 bool IntoUndef = isa<UndefValue>(Op0); 3261 bool FromUndef = isa<UndefValue>(Op1); 3262 3263 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3264 3265 const TargetLowering *TLI = TM.getTargetLowering(); 3266 SmallVector<EVT, 4> AggValueVTs; 3267 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3268 SmallVector<EVT, 4> ValValueVTs; 3269 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3270 3271 unsigned NumAggValues = AggValueVTs.size(); 3272 unsigned NumValValues = ValValueVTs.size(); 3273 SmallVector<SDValue, 4> Values(NumAggValues); 3274 3275 SDValue Agg = getValue(Op0); 3276 unsigned i = 0; 3277 // Copy the beginning value(s) from the original aggregate. 3278 for (; i != LinearIndex; ++i) 3279 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3280 SDValue(Agg.getNode(), Agg.getResNo() + i); 3281 // Copy values from the inserted value(s). 3282 if (NumValValues) { 3283 SDValue Val = getValue(Op1); 3284 for (; i != LinearIndex + NumValValues; ++i) 3285 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3286 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3287 } 3288 // Copy remaining value(s) from the original aggregate. 3289 for (; i != NumAggValues; ++i) 3290 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3291 SDValue(Agg.getNode(), Agg.getResNo() + i); 3292 3293 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3294 DAG.getVTList(AggValueVTs), Values)); 3295 } 3296 3297 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3298 const Value *Op0 = I.getOperand(0); 3299 Type *AggTy = Op0->getType(); 3300 Type *ValTy = I.getType(); 3301 bool OutOfUndef = isa<UndefValue>(Op0); 3302 3303 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3304 3305 const TargetLowering *TLI = TM.getTargetLowering(); 3306 SmallVector<EVT, 4> ValValueVTs; 3307 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3308 3309 unsigned NumValValues = ValValueVTs.size(); 3310 3311 // Ignore a extractvalue that produces an empty object 3312 if (!NumValValues) { 3313 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3314 return; 3315 } 3316 3317 SmallVector<SDValue, 4> Values(NumValValues); 3318 3319 SDValue Agg = getValue(Op0); 3320 // Copy out the selected value(s). 3321 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3322 Values[i - LinearIndex] = 3323 OutOfUndef ? 3324 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3325 SDValue(Agg.getNode(), Agg.getResNo() + i); 3326 3327 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3328 DAG.getVTList(ValValueVTs), Values)); 3329 } 3330 3331 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3332 Value *Op0 = I.getOperand(0); 3333 // Note that the pointer operand may be a vector of pointers. Take the scalar 3334 // element which holds a pointer. 3335 Type *Ty = Op0->getType()->getScalarType(); 3336 unsigned AS = Ty->getPointerAddressSpace(); 3337 SDValue N = getValue(Op0); 3338 3339 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3340 OI != E; ++OI) { 3341 const Value *Idx = *OI; 3342 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3343 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3344 if (Field) { 3345 // N = N + Offset 3346 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3347 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3348 DAG.getConstant(Offset, N.getValueType())); 3349 } 3350 3351 Ty = StTy->getElementType(Field); 3352 } else { 3353 Ty = cast<SequentialType>(Ty)->getElementType(); 3354 3355 // If this is a constant subscript, handle it quickly. 3356 const TargetLowering *TLI = TM.getTargetLowering(); 3357 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3358 if (CI->isZero()) continue; 3359 uint64_t Offs = 3360 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3361 SDValue OffsVal; 3362 EVT PTy = TLI->getPointerTy(AS); 3363 unsigned PtrBits = PTy.getSizeInBits(); 3364 if (PtrBits < 64) 3365 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3366 DAG.getConstant(Offs, MVT::i64)); 3367 else 3368 OffsVal = DAG.getConstant(Offs, PTy); 3369 3370 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3371 OffsVal); 3372 continue; 3373 } 3374 3375 // N = N + Idx * ElementSize; 3376 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3377 DL->getTypeAllocSize(Ty)); 3378 SDValue IdxN = getValue(Idx); 3379 3380 // If the index is smaller or larger than intptr_t, truncate or extend 3381 // it. 3382 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3383 3384 // If this is a multiply by a power of two, turn it into a shl 3385 // immediately. This is a very common case. 3386 if (ElementSize != 1) { 3387 if (ElementSize.isPowerOf2()) { 3388 unsigned Amt = ElementSize.logBase2(); 3389 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3390 N.getValueType(), IdxN, 3391 DAG.getConstant(Amt, IdxN.getValueType())); 3392 } else { 3393 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3394 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3395 N.getValueType(), IdxN, Scale); 3396 } 3397 } 3398 3399 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3400 N.getValueType(), N, IdxN); 3401 } 3402 } 3403 3404 setValue(&I, N); 3405 } 3406 3407 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3408 // If this is a fixed sized alloca in the entry block of the function, 3409 // allocate it statically on the stack. 3410 if (FuncInfo.StaticAllocaMap.count(&I)) 3411 return; // getValue will auto-populate this. 3412 3413 Type *Ty = I.getAllocatedType(); 3414 const TargetLowering *TLI = TM.getTargetLowering(); 3415 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3416 unsigned Align = 3417 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3418 I.getAlignment()); 3419 3420 SDValue AllocSize = getValue(I.getArraySize()); 3421 3422 EVT IntPtr = TLI->getPointerTy(); 3423 if (AllocSize.getValueType() != IntPtr) 3424 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3425 3426 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3427 AllocSize, 3428 DAG.getConstant(TySize, IntPtr)); 3429 3430 // Handle alignment. If the requested alignment is less than or equal to 3431 // the stack alignment, ignore it. If the size is greater than or equal to 3432 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3433 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3434 if (Align <= StackAlign) 3435 Align = 0; 3436 3437 // Round the size of the allocation up to the stack alignment size 3438 // by add SA-1 to the size. 3439 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3440 AllocSize.getValueType(), AllocSize, 3441 DAG.getIntPtrConstant(StackAlign-1)); 3442 3443 // Mask out the low bits for alignment purposes. 3444 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3445 AllocSize.getValueType(), AllocSize, 3446 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3447 3448 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3449 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3450 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3451 setValue(&I, DSA); 3452 DAG.setRoot(DSA.getValue(1)); 3453 3454 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3455 } 3456 3457 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3458 if (I.isAtomic()) 3459 return visitAtomicLoad(I); 3460 3461 const Value *SV = I.getOperand(0); 3462 SDValue Ptr = getValue(SV); 3463 3464 Type *Ty = I.getType(); 3465 3466 bool isVolatile = I.isVolatile(); 3467 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3468 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3469 unsigned Alignment = I.getAlignment(); 3470 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3471 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3472 3473 SmallVector<EVT, 4> ValueVTs; 3474 SmallVector<uint64_t, 4> Offsets; 3475 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3476 unsigned NumValues = ValueVTs.size(); 3477 if (NumValues == 0) 3478 return; 3479 3480 SDValue Root; 3481 bool ConstantMemory = false; 3482 if (isVolatile || NumValues > MaxParallelChains) 3483 // Serialize volatile loads with other side effects. 3484 Root = getRoot(); 3485 else if (AA->pointsToConstantMemory( 3486 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3487 // Do not serialize (non-volatile) loads of constant memory with anything. 3488 Root = DAG.getEntryNode(); 3489 ConstantMemory = true; 3490 } else { 3491 // Do not serialize non-volatile loads against each other. 3492 Root = DAG.getRoot(); 3493 } 3494 3495 const TargetLowering *TLI = TM.getTargetLowering(); 3496 if (isVolatile) 3497 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3498 3499 SmallVector<SDValue, 4> Values(NumValues); 3500 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3501 NumValues)); 3502 EVT PtrVT = Ptr.getValueType(); 3503 unsigned ChainI = 0; 3504 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3505 // Serializing loads here may result in excessive register pressure, and 3506 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3507 // could recover a bit by hoisting nodes upward in the chain by recognizing 3508 // they are side-effect free or do not alias. The optimizer should really 3509 // avoid this case by converting large object/array copies to llvm.memcpy 3510 // (MaxParallelChains should always remain as failsafe). 3511 if (ChainI == MaxParallelChains) { 3512 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3513 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3514 makeArrayRef(Chains.data(), ChainI)); 3515 Root = Chain; 3516 ChainI = 0; 3517 } 3518 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3519 PtrVT, Ptr, 3520 DAG.getConstant(Offsets[i], PtrVT)); 3521 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3522 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3523 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3524 Ranges); 3525 3526 Values[i] = L; 3527 Chains[ChainI] = L.getValue(1); 3528 } 3529 3530 if (!ConstantMemory) { 3531 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3532 makeArrayRef(Chains.data(), ChainI)); 3533 if (isVolatile) 3534 DAG.setRoot(Chain); 3535 else 3536 PendingLoads.push_back(Chain); 3537 } 3538 3539 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3540 DAG.getVTList(ValueVTs), Values)); 3541 } 3542 3543 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3544 if (I.isAtomic()) 3545 return visitAtomicStore(I); 3546 3547 const Value *SrcV = I.getOperand(0); 3548 const Value *PtrV = I.getOperand(1); 3549 3550 SmallVector<EVT, 4> ValueVTs; 3551 SmallVector<uint64_t, 4> Offsets; 3552 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3553 unsigned NumValues = ValueVTs.size(); 3554 if (NumValues == 0) 3555 return; 3556 3557 // Get the lowered operands. Note that we do this after 3558 // checking if NumResults is zero, because with zero results 3559 // the operands won't have values in the map. 3560 SDValue Src = getValue(SrcV); 3561 SDValue Ptr = getValue(PtrV); 3562 3563 SDValue Root = getRoot(); 3564 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3565 NumValues)); 3566 EVT PtrVT = Ptr.getValueType(); 3567 bool isVolatile = I.isVolatile(); 3568 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3569 unsigned Alignment = I.getAlignment(); 3570 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3571 3572 unsigned ChainI = 0; 3573 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3574 // See visitLoad comments. 3575 if (ChainI == MaxParallelChains) { 3576 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3577 makeArrayRef(Chains.data(), ChainI)); 3578 Root = Chain; 3579 ChainI = 0; 3580 } 3581 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3582 DAG.getConstant(Offsets[i], PtrVT)); 3583 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3584 SDValue(Src.getNode(), Src.getResNo() + i), 3585 Add, MachinePointerInfo(PtrV, Offsets[i]), 3586 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3587 Chains[ChainI] = St; 3588 } 3589 3590 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3591 makeArrayRef(Chains.data(), ChainI)); 3592 DAG.setRoot(StoreNode); 3593 } 3594 3595 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3596 SynchronizationScope Scope, 3597 bool Before, SDLoc dl, 3598 SelectionDAG &DAG, 3599 const TargetLowering &TLI) { 3600 // Fence, if necessary 3601 if (Before) { 3602 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3603 Order = Release; 3604 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3605 return Chain; 3606 } else { 3607 if (Order == AcquireRelease) 3608 Order = Acquire; 3609 else if (Order == Release || Order == Monotonic || Order == Unordered) 3610 return Chain; 3611 } 3612 SDValue Ops[3]; 3613 Ops[0] = Chain; 3614 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3615 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3616 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3617 } 3618 3619 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3620 SDLoc dl = getCurSDLoc(); 3621 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3622 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3623 SynchronizationScope Scope = I.getSynchScope(); 3624 3625 SDValue InChain = getRoot(); 3626 3627 const TargetLowering *TLI = TM.getTargetLowering(); 3628 if (TLI->getInsertFencesForAtomic()) 3629 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3630 DAG, *TLI); 3631 3632 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3633 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3634 SDValue L = DAG.getAtomicCmpSwap( 3635 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3636 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3637 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3638 0 /* Alignment */, 3639 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3640 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3641 3642 SDValue OutChain = L.getValue(2); 3643 3644 if (TLI->getInsertFencesForAtomic()) 3645 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3646 DAG, *TLI); 3647 3648 setValue(&I, L); 3649 DAG.setRoot(OutChain); 3650 } 3651 3652 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3653 SDLoc dl = getCurSDLoc(); 3654 ISD::NodeType NT; 3655 switch (I.getOperation()) { 3656 default: llvm_unreachable("Unknown atomicrmw operation"); 3657 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3658 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3659 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3660 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3661 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3662 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3663 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3664 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3665 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3666 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3667 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3668 } 3669 AtomicOrdering Order = I.getOrdering(); 3670 SynchronizationScope Scope = I.getSynchScope(); 3671 3672 SDValue InChain = getRoot(); 3673 3674 const TargetLowering *TLI = TM.getTargetLowering(); 3675 if (TLI->getInsertFencesForAtomic()) 3676 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3677 DAG, *TLI); 3678 3679 SDValue L = 3680 DAG.getAtomic(NT, dl, 3681 getValue(I.getValOperand()).getSimpleValueType(), 3682 InChain, 3683 getValue(I.getPointerOperand()), 3684 getValue(I.getValOperand()), 3685 I.getPointerOperand(), 0 /* Alignment */, 3686 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3687 Scope); 3688 3689 SDValue OutChain = L.getValue(1); 3690 3691 if (TLI->getInsertFencesForAtomic()) 3692 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3693 DAG, *TLI); 3694 3695 setValue(&I, L); 3696 DAG.setRoot(OutChain); 3697 } 3698 3699 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3700 SDLoc dl = getCurSDLoc(); 3701 const TargetLowering *TLI = TM.getTargetLowering(); 3702 SDValue Ops[3]; 3703 Ops[0] = getRoot(); 3704 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3705 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3706 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3707 } 3708 3709 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3710 SDLoc dl = getCurSDLoc(); 3711 AtomicOrdering Order = I.getOrdering(); 3712 SynchronizationScope Scope = I.getSynchScope(); 3713 3714 SDValue InChain = getRoot(); 3715 3716 const TargetLowering *TLI = TM.getTargetLowering(); 3717 EVT VT = TLI->getValueType(I.getType()); 3718 3719 if (I.getAlignment() < VT.getSizeInBits() / 8) 3720 report_fatal_error("Cannot generate unaligned atomic load"); 3721 3722 MachineMemOperand *MMO = 3723 DAG.getMachineFunction(). 3724 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3725 MachineMemOperand::MOVolatile | 3726 MachineMemOperand::MOLoad, 3727 VT.getStoreSize(), 3728 I.getAlignment() ? I.getAlignment() : 3729 DAG.getEVTAlignment(VT)); 3730 3731 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3732 SDValue L = 3733 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3734 getValue(I.getPointerOperand()), MMO, 3735 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3736 Scope); 3737 3738 SDValue OutChain = L.getValue(1); 3739 3740 if (TLI->getInsertFencesForAtomic()) 3741 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3742 DAG, *TLI); 3743 3744 setValue(&I, L); 3745 DAG.setRoot(OutChain); 3746 } 3747 3748 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3749 SDLoc dl = getCurSDLoc(); 3750 3751 AtomicOrdering Order = I.getOrdering(); 3752 SynchronizationScope Scope = I.getSynchScope(); 3753 3754 SDValue InChain = getRoot(); 3755 3756 const TargetLowering *TLI = TM.getTargetLowering(); 3757 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3758 3759 if (I.getAlignment() < VT.getSizeInBits() / 8) 3760 report_fatal_error("Cannot generate unaligned atomic store"); 3761 3762 if (TLI->getInsertFencesForAtomic()) 3763 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3764 DAG, *TLI); 3765 3766 SDValue OutChain = 3767 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3768 InChain, 3769 getValue(I.getPointerOperand()), 3770 getValue(I.getValueOperand()), 3771 I.getPointerOperand(), I.getAlignment(), 3772 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3773 Scope); 3774 3775 if (TLI->getInsertFencesForAtomic()) 3776 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3777 DAG, *TLI); 3778 3779 DAG.setRoot(OutChain); 3780 } 3781 3782 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3783 /// node. 3784 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3785 unsigned Intrinsic) { 3786 bool HasChain = !I.doesNotAccessMemory(); 3787 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3788 3789 // Build the operand list. 3790 SmallVector<SDValue, 8> Ops; 3791 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3792 if (OnlyLoad) { 3793 // We don't need to serialize loads against other loads. 3794 Ops.push_back(DAG.getRoot()); 3795 } else { 3796 Ops.push_back(getRoot()); 3797 } 3798 } 3799 3800 // Info is set by getTgtMemInstrinsic 3801 TargetLowering::IntrinsicInfo Info; 3802 const TargetLowering *TLI = TM.getTargetLowering(); 3803 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3804 3805 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3806 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3807 Info.opc == ISD::INTRINSIC_W_CHAIN) 3808 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3809 3810 // Add all operands of the call to the operand list. 3811 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3812 SDValue Op = getValue(I.getArgOperand(i)); 3813 Ops.push_back(Op); 3814 } 3815 3816 SmallVector<EVT, 4> ValueVTs; 3817 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3818 3819 if (HasChain) 3820 ValueVTs.push_back(MVT::Other); 3821 3822 SDVTList VTs = DAG.getVTList(ValueVTs); 3823 3824 // Create the node. 3825 SDValue Result; 3826 if (IsTgtIntrinsic) { 3827 // This is target intrinsic that touches memory 3828 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3829 VTs, Ops, Info.memVT, 3830 MachinePointerInfo(Info.ptrVal, Info.offset), 3831 Info.align, Info.vol, 3832 Info.readMem, Info.writeMem); 3833 } else if (!HasChain) { 3834 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3835 } else if (!I.getType()->isVoidTy()) { 3836 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3837 } else { 3838 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3839 } 3840 3841 if (HasChain) { 3842 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3843 if (OnlyLoad) 3844 PendingLoads.push_back(Chain); 3845 else 3846 DAG.setRoot(Chain); 3847 } 3848 3849 if (!I.getType()->isVoidTy()) { 3850 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3851 EVT VT = TLI->getValueType(PTy); 3852 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3853 } 3854 3855 setValue(&I, Result); 3856 } 3857 } 3858 3859 /// GetSignificand - Get the significand and build it into a floating-point 3860 /// number with exponent of 1: 3861 /// 3862 /// Op = (Op & 0x007fffff) | 0x3f800000; 3863 /// 3864 /// where Op is the hexadecimal representation of floating point value. 3865 static SDValue 3866 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3867 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3868 DAG.getConstant(0x007fffff, MVT::i32)); 3869 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3870 DAG.getConstant(0x3f800000, MVT::i32)); 3871 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3872 } 3873 3874 /// GetExponent - Get the exponent: 3875 /// 3876 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3877 /// 3878 /// where Op is the hexadecimal representation of floating point value. 3879 static SDValue 3880 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3881 SDLoc dl) { 3882 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3883 DAG.getConstant(0x7f800000, MVT::i32)); 3884 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3885 DAG.getConstant(23, TLI.getPointerTy())); 3886 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3887 DAG.getConstant(127, MVT::i32)); 3888 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3889 } 3890 3891 /// getF32Constant - Get 32-bit floating point constant. 3892 static SDValue 3893 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3894 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3895 MVT::f32); 3896 } 3897 3898 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3899 /// limited-precision mode. 3900 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3901 const TargetLowering &TLI) { 3902 if (Op.getValueType() == MVT::f32 && 3903 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3904 3905 // Put the exponent in the right bit position for later addition to the 3906 // final result: 3907 // 3908 // #define LOG2OFe 1.4426950f 3909 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3910 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3911 getF32Constant(DAG, 0x3fb8aa3b)); 3912 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3913 3914 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3915 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3916 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3917 3918 // IntegerPartOfX <<= 23; 3919 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3920 DAG.getConstant(23, TLI.getPointerTy())); 3921 3922 SDValue TwoToFracPartOfX; 3923 if (LimitFloatPrecision <= 6) { 3924 // For floating-point precision of 6: 3925 // 3926 // TwoToFractionalPartOfX = 3927 // 0.997535578f + 3928 // (0.735607626f + 0.252464424f * x) * x; 3929 // 3930 // error 0.0144103317, which is 6 bits 3931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3932 getF32Constant(DAG, 0x3e814304)); 3933 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3934 getF32Constant(DAG, 0x3f3c50c8)); 3935 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3936 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3937 getF32Constant(DAG, 0x3f7f5e7e)); 3938 } else if (LimitFloatPrecision <= 12) { 3939 // For floating-point precision of 12: 3940 // 3941 // TwoToFractionalPartOfX = 3942 // 0.999892986f + 3943 // (0.696457318f + 3944 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3945 // 3946 // 0.000107046256 error, which is 13 to 14 bits 3947 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3948 getF32Constant(DAG, 0x3da235e3)); 3949 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3950 getF32Constant(DAG, 0x3e65b8f3)); 3951 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3952 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3953 getF32Constant(DAG, 0x3f324b07)); 3954 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3955 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3956 getF32Constant(DAG, 0x3f7ff8fd)); 3957 } else { // LimitFloatPrecision <= 18 3958 // For floating-point precision of 18: 3959 // 3960 // TwoToFractionalPartOfX = 3961 // 0.999999982f + 3962 // (0.693148872f + 3963 // (0.240227044f + 3964 // (0.554906021e-1f + 3965 // (0.961591928e-2f + 3966 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3967 // 3968 // error 2.47208000*10^(-7), which is better than 18 bits 3969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3970 getF32Constant(DAG, 0x3924b03e)); 3971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3972 getF32Constant(DAG, 0x3ab24b87)); 3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3975 getF32Constant(DAG, 0x3c1d8c17)); 3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3977 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3978 getF32Constant(DAG, 0x3d634a1d)); 3979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3981 getF32Constant(DAG, 0x3e75fe14)); 3982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3983 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3984 getF32Constant(DAG, 0x3f317234)); 3985 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3986 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3987 getF32Constant(DAG, 0x3f800000)); 3988 } 3989 3990 // Add the exponent into the result in integer domain. 3991 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3992 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3993 DAG.getNode(ISD::ADD, dl, MVT::i32, 3994 t13, IntegerPartOfX)); 3995 } 3996 3997 // No special expansion. 3998 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3999 } 4000 4001 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4002 /// limited-precision mode. 4003 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4004 const TargetLowering &TLI) { 4005 if (Op.getValueType() == MVT::f32 && 4006 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4007 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4008 4009 // Scale the exponent by log(2) [0.69314718f]. 4010 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4011 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4012 getF32Constant(DAG, 0x3f317218)); 4013 4014 // Get the significand and build it into a floating-point number with 4015 // exponent of 1. 4016 SDValue X = GetSignificand(DAG, Op1, dl); 4017 4018 SDValue LogOfMantissa; 4019 if (LimitFloatPrecision <= 6) { 4020 // For floating-point precision of 6: 4021 // 4022 // LogofMantissa = 4023 // -1.1609546f + 4024 // (1.4034025f - 0.23903021f * x) * x; 4025 // 4026 // error 0.0034276066, which is better than 8 bits 4027 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4028 getF32Constant(DAG, 0xbe74c456)); 4029 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4030 getF32Constant(DAG, 0x3fb3a2b1)); 4031 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4032 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4033 getF32Constant(DAG, 0x3f949a29)); 4034 } else if (LimitFloatPrecision <= 12) { 4035 // For floating-point precision of 12: 4036 // 4037 // LogOfMantissa = 4038 // -1.7417939f + 4039 // (2.8212026f + 4040 // (-1.4699568f + 4041 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4042 // 4043 // error 0.000061011436, which is 14 bits 4044 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4045 getF32Constant(DAG, 0xbd67b6d6)); 4046 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4047 getF32Constant(DAG, 0x3ee4f4b8)); 4048 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4049 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4050 getF32Constant(DAG, 0x3fbc278b)); 4051 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4052 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4053 getF32Constant(DAG, 0x40348e95)); 4054 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4055 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4056 getF32Constant(DAG, 0x3fdef31a)); 4057 } else { // LimitFloatPrecision <= 18 4058 // For floating-point precision of 18: 4059 // 4060 // LogOfMantissa = 4061 // -2.1072184f + 4062 // (4.2372794f + 4063 // (-3.7029485f + 4064 // (2.2781945f + 4065 // (-0.87823314f + 4066 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4067 // 4068 // error 0.0000023660568, which is better than 18 bits 4069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4070 getF32Constant(DAG, 0xbc91e5ac)); 4071 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4072 getF32Constant(DAG, 0x3e4350aa)); 4073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4074 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4075 getF32Constant(DAG, 0x3f60d3e3)); 4076 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4077 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4078 getF32Constant(DAG, 0x4011cdf0)); 4079 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4080 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4081 getF32Constant(DAG, 0x406cfd1c)); 4082 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4083 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4084 getF32Constant(DAG, 0x408797cb)); 4085 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4086 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4087 getF32Constant(DAG, 0x4006dcab)); 4088 } 4089 4090 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4091 } 4092 4093 // No special expansion. 4094 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4095 } 4096 4097 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4098 /// limited-precision mode. 4099 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4100 const TargetLowering &TLI) { 4101 if (Op.getValueType() == MVT::f32 && 4102 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4103 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4104 4105 // Get the exponent. 4106 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4107 4108 // Get the significand and build it into a floating-point number with 4109 // exponent of 1. 4110 SDValue X = GetSignificand(DAG, Op1, dl); 4111 4112 // Different possible minimax approximations of significand in 4113 // floating-point for various degrees of accuracy over [1,2]. 4114 SDValue Log2ofMantissa; 4115 if (LimitFloatPrecision <= 6) { 4116 // For floating-point precision of 6: 4117 // 4118 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4119 // 4120 // error 0.0049451742, which is more than 7 bits 4121 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4122 getF32Constant(DAG, 0xbeb08fe0)); 4123 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4124 getF32Constant(DAG, 0x40019463)); 4125 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4126 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4127 getF32Constant(DAG, 0x3fd6633d)); 4128 } else if (LimitFloatPrecision <= 12) { 4129 // For floating-point precision of 12: 4130 // 4131 // Log2ofMantissa = 4132 // -2.51285454f + 4133 // (4.07009056f + 4134 // (-2.12067489f + 4135 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4136 // 4137 // error 0.0000876136000, which is better than 13 bits 4138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4139 getF32Constant(DAG, 0xbda7262e)); 4140 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4141 getF32Constant(DAG, 0x3f25280b)); 4142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4143 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4144 getF32Constant(DAG, 0x4007b923)); 4145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4146 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4147 getF32Constant(DAG, 0x40823e2f)); 4148 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4149 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4150 getF32Constant(DAG, 0x4020d29c)); 4151 } else { // LimitFloatPrecision <= 18 4152 // For floating-point precision of 18: 4153 // 4154 // Log2ofMantissa = 4155 // -3.0400495f + 4156 // (6.1129976f + 4157 // (-5.3420409f + 4158 // (3.2865683f + 4159 // (-1.2669343f + 4160 // (0.27515199f - 4161 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4162 // 4163 // error 0.0000018516, which is better than 18 bits 4164 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4165 getF32Constant(DAG, 0xbcd2769e)); 4166 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4167 getF32Constant(DAG, 0x3e8ce0b9)); 4168 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4169 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4170 getF32Constant(DAG, 0x3fa22ae7)); 4171 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4172 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4173 getF32Constant(DAG, 0x40525723)); 4174 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4175 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4176 getF32Constant(DAG, 0x40aaf200)); 4177 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4178 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4179 getF32Constant(DAG, 0x40c39dad)); 4180 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4181 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4182 getF32Constant(DAG, 0x4042902c)); 4183 } 4184 4185 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4186 } 4187 4188 // No special expansion. 4189 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4190 } 4191 4192 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4193 /// limited-precision mode. 4194 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4195 const TargetLowering &TLI) { 4196 if (Op.getValueType() == MVT::f32 && 4197 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4198 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4199 4200 // Scale the exponent by log10(2) [0.30102999f]. 4201 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4202 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4203 getF32Constant(DAG, 0x3e9a209a)); 4204 4205 // Get the significand and build it into a floating-point number with 4206 // exponent of 1. 4207 SDValue X = GetSignificand(DAG, Op1, dl); 4208 4209 SDValue Log10ofMantissa; 4210 if (LimitFloatPrecision <= 6) { 4211 // For floating-point precision of 6: 4212 // 4213 // Log10ofMantissa = 4214 // -0.50419619f + 4215 // (0.60948995f - 0.10380950f * x) * x; 4216 // 4217 // error 0.0014886165, which is 6 bits 4218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4219 getF32Constant(DAG, 0xbdd49a13)); 4220 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4221 getF32Constant(DAG, 0x3f1c0789)); 4222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4223 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4224 getF32Constant(DAG, 0x3f011300)); 4225 } else if (LimitFloatPrecision <= 12) { 4226 // For floating-point precision of 12: 4227 // 4228 // Log10ofMantissa = 4229 // -0.64831180f + 4230 // (0.91751397f + 4231 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4232 // 4233 // error 0.00019228036, which is better than 12 bits 4234 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4235 getF32Constant(DAG, 0x3d431f31)); 4236 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4237 getF32Constant(DAG, 0x3ea21fb2)); 4238 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4239 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4240 getF32Constant(DAG, 0x3f6ae232)); 4241 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4242 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4243 getF32Constant(DAG, 0x3f25f7c3)); 4244 } else { // LimitFloatPrecision <= 18 4245 // For floating-point precision of 18: 4246 // 4247 // Log10ofMantissa = 4248 // -0.84299375f + 4249 // (1.5327582f + 4250 // (-1.0688956f + 4251 // (0.49102474f + 4252 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4253 // 4254 // error 0.0000037995730, which is better than 18 bits 4255 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4256 getF32Constant(DAG, 0x3c5d51ce)); 4257 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4258 getF32Constant(DAG, 0x3e00685a)); 4259 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4260 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4261 getF32Constant(DAG, 0x3efb6798)); 4262 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4263 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4264 getF32Constant(DAG, 0x3f88d192)); 4265 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4266 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4267 getF32Constant(DAG, 0x3fc4316c)); 4268 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4269 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4270 getF32Constant(DAG, 0x3f57ce70)); 4271 } 4272 4273 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4274 } 4275 4276 // No special expansion. 4277 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4278 } 4279 4280 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4281 /// limited-precision mode. 4282 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4283 const TargetLowering &TLI) { 4284 if (Op.getValueType() == MVT::f32 && 4285 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4286 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4287 4288 // FractionalPartOfX = x - (float)IntegerPartOfX; 4289 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4290 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4291 4292 // IntegerPartOfX <<= 23; 4293 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4294 DAG.getConstant(23, TLI.getPointerTy())); 4295 4296 SDValue TwoToFractionalPartOfX; 4297 if (LimitFloatPrecision <= 6) { 4298 // For floating-point precision of 6: 4299 // 4300 // TwoToFractionalPartOfX = 4301 // 0.997535578f + 4302 // (0.735607626f + 0.252464424f * x) * x; 4303 // 4304 // error 0.0144103317, which is 6 bits 4305 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4306 getF32Constant(DAG, 0x3e814304)); 4307 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4308 getF32Constant(DAG, 0x3f3c50c8)); 4309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4310 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4311 getF32Constant(DAG, 0x3f7f5e7e)); 4312 } else if (LimitFloatPrecision <= 12) { 4313 // For floating-point precision of 12: 4314 // 4315 // TwoToFractionalPartOfX = 4316 // 0.999892986f + 4317 // (0.696457318f + 4318 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4319 // 4320 // error 0.000107046256, which is 13 to 14 bits 4321 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4322 getF32Constant(DAG, 0x3da235e3)); 4323 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4324 getF32Constant(DAG, 0x3e65b8f3)); 4325 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4326 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4327 getF32Constant(DAG, 0x3f324b07)); 4328 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4329 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4330 getF32Constant(DAG, 0x3f7ff8fd)); 4331 } else { // LimitFloatPrecision <= 18 4332 // For floating-point precision of 18: 4333 // 4334 // TwoToFractionalPartOfX = 4335 // 0.999999982f + 4336 // (0.693148872f + 4337 // (0.240227044f + 4338 // (0.554906021e-1f + 4339 // (0.961591928e-2f + 4340 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4341 // error 2.47208000*10^(-7), which is better than 18 bits 4342 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4343 getF32Constant(DAG, 0x3924b03e)); 4344 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4345 getF32Constant(DAG, 0x3ab24b87)); 4346 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4347 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4348 getF32Constant(DAG, 0x3c1d8c17)); 4349 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4350 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4351 getF32Constant(DAG, 0x3d634a1d)); 4352 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4353 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4354 getF32Constant(DAG, 0x3e75fe14)); 4355 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4356 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4357 getF32Constant(DAG, 0x3f317234)); 4358 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4359 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4360 getF32Constant(DAG, 0x3f800000)); 4361 } 4362 4363 // Add the exponent into the result in integer domain. 4364 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4365 TwoToFractionalPartOfX); 4366 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4367 DAG.getNode(ISD::ADD, dl, MVT::i32, 4368 t13, IntegerPartOfX)); 4369 } 4370 4371 // No special expansion. 4372 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4373 } 4374 4375 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4376 /// limited-precision mode with x == 10.0f. 4377 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4378 SelectionDAG &DAG, const TargetLowering &TLI) { 4379 bool IsExp10 = false; 4380 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4381 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4382 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4383 APFloat Ten(10.0f); 4384 IsExp10 = LHSC->isExactlyValue(Ten); 4385 } 4386 } 4387 4388 if (IsExp10) { 4389 // Put the exponent in the right bit position for later addition to the 4390 // final result: 4391 // 4392 // #define LOG2OF10 3.3219281f 4393 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4394 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4395 getF32Constant(DAG, 0x40549a78)); 4396 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4397 4398 // FractionalPartOfX = x - (float)IntegerPartOfX; 4399 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4400 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4401 4402 // IntegerPartOfX <<= 23; 4403 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4404 DAG.getConstant(23, TLI.getPointerTy())); 4405 4406 SDValue TwoToFractionalPartOfX; 4407 if (LimitFloatPrecision <= 6) { 4408 // For floating-point precision of 6: 4409 // 4410 // twoToFractionalPartOfX = 4411 // 0.997535578f + 4412 // (0.735607626f + 0.252464424f * x) * x; 4413 // 4414 // error 0.0144103317, which is 6 bits 4415 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4416 getF32Constant(DAG, 0x3e814304)); 4417 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4418 getF32Constant(DAG, 0x3f3c50c8)); 4419 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4420 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4421 getF32Constant(DAG, 0x3f7f5e7e)); 4422 } else if (LimitFloatPrecision <= 12) { 4423 // For floating-point precision of 12: 4424 // 4425 // TwoToFractionalPartOfX = 4426 // 0.999892986f + 4427 // (0.696457318f + 4428 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4429 // 4430 // error 0.000107046256, which is 13 to 14 bits 4431 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4432 getF32Constant(DAG, 0x3da235e3)); 4433 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4434 getF32Constant(DAG, 0x3e65b8f3)); 4435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4436 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4437 getF32Constant(DAG, 0x3f324b07)); 4438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4439 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4440 getF32Constant(DAG, 0x3f7ff8fd)); 4441 } else { // LimitFloatPrecision <= 18 4442 // For floating-point precision of 18: 4443 // 4444 // TwoToFractionalPartOfX = 4445 // 0.999999982f + 4446 // (0.693148872f + 4447 // (0.240227044f + 4448 // (0.554906021e-1f + 4449 // (0.961591928e-2f + 4450 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4451 // error 2.47208000*10^(-7), which is better than 18 bits 4452 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4453 getF32Constant(DAG, 0x3924b03e)); 4454 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4455 getF32Constant(DAG, 0x3ab24b87)); 4456 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4457 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4458 getF32Constant(DAG, 0x3c1d8c17)); 4459 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4460 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4461 getF32Constant(DAG, 0x3d634a1d)); 4462 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4463 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4464 getF32Constant(DAG, 0x3e75fe14)); 4465 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4466 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4467 getF32Constant(DAG, 0x3f317234)); 4468 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4469 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4470 getF32Constant(DAG, 0x3f800000)); 4471 } 4472 4473 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4474 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4475 DAG.getNode(ISD::ADD, dl, MVT::i32, 4476 t13, IntegerPartOfX)); 4477 } 4478 4479 // No special expansion. 4480 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4481 } 4482 4483 4484 /// ExpandPowI - Expand a llvm.powi intrinsic. 4485 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4486 SelectionDAG &DAG) { 4487 // If RHS is a constant, we can expand this out to a multiplication tree, 4488 // otherwise we end up lowering to a call to __powidf2 (for example). When 4489 // optimizing for size, we only want to do this if the expansion would produce 4490 // a small number of multiplies, otherwise we do the full expansion. 4491 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4492 // Get the exponent as a positive value. 4493 unsigned Val = RHSC->getSExtValue(); 4494 if ((int)Val < 0) Val = -Val; 4495 4496 // powi(x, 0) -> 1.0 4497 if (Val == 0) 4498 return DAG.getConstantFP(1.0, LHS.getValueType()); 4499 4500 const Function *F = DAG.getMachineFunction().getFunction(); 4501 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4502 Attribute::OptimizeForSize) || 4503 // If optimizing for size, don't insert too many multiplies. This 4504 // inserts up to 5 multiplies. 4505 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4506 // We use the simple binary decomposition method to generate the multiply 4507 // sequence. There are more optimal ways to do this (for example, 4508 // powi(x,15) generates one more multiply than it should), but this has 4509 // the benefit of being both really simple and much better than a libcall. 4510 SDValue Res; // Logically starts equal to 1.0 4511 SDValue CurSquare = LHS; 4512 while (Val) { 4513 if (Val & 1) { 4514 if (Res.getNode()) 4515 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4516 else 4517 Res = CurSquare; // 1.0*CurSquare. 4518 } 4519 4520 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4521 CurSquare, CurSquare); 4522 Val >>= 1; 4523 } 4524 4525 // If the original was negative, invert the result, producing 1/(x*x*x). 4526 if (RHSC->getSExtValue() < 0) 4527 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4528 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4529 return Res; 4530 } 4531 } 4532 4533 // Otherwise, expand to a libcall. 4534 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4535 } 4536 4537 // getTruncatedArgReg - Find underlying register used for an truncated 4538 // argument. 4539 static unsigned getTruncatedArgReg(const SDValue &N) { 4540 if (N.getOpcode() != ISD::TRUNCATE) 4541 return 0; 4542 4543 const SDValue &Ext = N.getOperand(0); 4544 if (Ext.getOpcode() == ISD::AssertZext || 4545 Ext.getOpcode() == ISD::AssertSext) { 4546 const SDValue &CFR = Ext.getOperand(0); 4547 if (CFR.getOpcode() == ISD::CopyFromReg) 4548 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4549 if (CFR.getOpcode() == ISD::TRUNCATE) 4550 return getTruncatedArgReg(CFR); 4551 } 4552 return 0; 4553 } 4554 4555 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4556 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4557 /// At the end of instruction selection, they will be inserted to the entry BB. 4558 bool 4559 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4560 int64_t Offset, bool IsIndirect, 4561 const SDValue &N) { 4562 const Argument *Arg = dyn_cast<Argument>(V); 4563 if (!Arg) 4564 return false; 4565 4566 MachineFunction &MF = DAG.getMachineFunction(); 4567 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4568 4569 // Ignore inlined function arguments here. 4570 DIVariable DV(Variable); 4571 if (DV.isInlinedFnArgument(MF.getFunction())) 4572 return false; 4573 4574 Optional<MachineOperand> Op; 4575 // Some arguments' frame index is recorded during argument lowering. 4576 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4577 Op = MachineOperand::CreateFI(FI); 4578 4579 if (!Op && N.getNode()) { 4580 unsigned Reg; 4581 if (N.getOpcode() == ISD::CopyFromReg) 4582 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4583 else 4584 Reg = getTruncatedArgReg(N); 4585 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4586 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4587 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4588 if (PR) 4589 Reg = PR; 4590 } 4591 if (Reg) 4592 Op = MachineOperand::CreateReg(Reg, false); 4593 } 4594 4595 if (!Op) { 4596 // Check if ValueMap has reg number. 4597 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4598 if (VMI != FuncInfo.ValueMap.end()) 4599 Op = MachineOperand::CreateReg(VMI->second, false); 4600 } 4601 4602 if (!Op && N.getNode()) 4603 // Check if frame index is available. 4604 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4605 if (FrameIndexSDNode *FINode = 4606 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4607 Op = MachineOperand::CreateFI(FINode->getIndex()); 4608 4609 if (!Op) 4610 return false; 4611 4612 if (Op->isReg()) 4613 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4614 TII->get(TargetOpcode::DBG_VALUE), 4615 IsIndirect, 4616 Op->getReg(), Offset, Variable)); 4617 else 4618 FuncInfo.ArgDbgValues.push_back( 4619 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4620 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4621 4622 return true; 4623 } 4624 4625 // VisualStudio defines setjmp as _setjmp 4626 #if defined(_MSC_VER) && defined(setjmp) && \ 4627 !defined(setjmp_undefined_for_msvc) 4628 # pragma push_macro("setjmp") 4629 # undef setjmp 4630 # define setjmp_undefined_for_msvc 4631 #endif 4632 4633 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4634 /// we want to emit this as a call to a named external function, return the name 4635 /// otherwise lower it and return null. 4636 const char * 4637 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4638 const TargetLowering *TLI = TM.getTargetLowering(); 4639 SDLoc sdl = getCurSDLoc(); 4640 DebugLoc dl = getCurDebugLoc(); 4641 SDValue Res; 4642 4643 switch (Intrinsic) { 4644 default: 4645 // By default, turn this into a target intrinsic node. 4646 visitTargetIntrinsic(I, Intrinsic); 4647 return nullptr; 4648 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4649 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4650 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4651 case Intrinsic::returnaddress: 4652 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4653 getValue(I.getArgOperand(0)))); 4654 return nullptr; 4655 case Intrinsic::frameaddress: 4656 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4657 getValue(I.getArgOperand(0)))); 4658 return nullptr; 4659 case Intrinsic::read_register: { 4660 Value *Reg = I.getArgOperand(0); 4661 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4662 EVT VT = TM.getTargetLowering()->getValueType(I.getType()); 4663 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4664 return nullptr; 4665 } 4666 case Intrinsic::write_register: { 4667 Value *Reg = I.getArgOperand(0); 4668 Value *RegValue = I.getArgOperand(1); 4669 SDValue Chain = getValue(RegValue).getOperand(0); 4670 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4671 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4672 RegName, getValue(RegValue))); 4673 return nullptr; 4674 } 4675 case Intrinsic::setjmp: 4676 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4677 case Intrinsic::longjmp: 4678 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4679 case Intrinsic::memcpy: { 4680 // Assert for address < 256 since we support only user defined address 4681 // spaces. 4682 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4683 < 256 && 4684 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4685 < 256 && 4686 "Unknown address space"); 4687 SDValue Op1 = getValue(I.getArgOperand(0)); 4688 SDValue Op2 = getValue(I.getArgOperand(1)); 4689 SDValue Op3 = getValue(I.getArgOperand(2)); 4690 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4691 if (!Align) 4692 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4693 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4694 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4695 MachinePointerInfo(I.getArgOperand(0)), 4696 MachinePointerInfo(I.getArgOperand(1)))); 4697 return nullptr; 4698 } 4699 case Intrinsic::memset: { 4700 // Assert for address < 256 since we support only user defined address 4701 // spaces. 4702 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4703 < 256 && 4704 "Unknown address space"); 4705 SDValue Op1 = getValue(I.getArgOperand(0)); 4706 SDValue Op2 = getValue(I.getArgOperand(1)); 4707 SDValue Op3 = getValue(I.getArgOperand(2)); 4708 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4709 if (!Align) 4710 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4711 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4712 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4713 MachinePointerInfo(I.getArgOperand(0)))); 4714 return nullptr; 4715 } 4716 case Intrinsic::memmove: { 4717 // Assert for address < 256 since we support only user defined address 4718 // spaces. 4719 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4720 < 256 && 4721 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4722 < 256 && 4723 "Unknown address space"); 4724 SDValue Op1 = getValue(I.getArgOperand(0)); 4725 SDValue Op2 = getValue(I.getArgOperand(1)); 4726 SDValue Op3 = getValue(I.getArgOperand(2)); 4727 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4728 if (!Align) 4729 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4730 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4731 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4732 MachinePointerInfo(I.getArgOperand(0)), 4733 MachinePointerInfo(I.getArgOperand(1)))); 4734 return nullptr; 4735 } 4736 case Intrinsic::dbg_declare: { 4737 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4738 MDNode *Variable = DI.getVariable(); 4739 const Value *Address = DI.getAddress(); 4740 DIVariable DIVar(Variable); 4741 assert((!DIVar || DIVar.isVariable()) && 4742 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4743 if (!Address || !DIVar) { 4744 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4745 return nullptr; 4746 } 4747 4748 // Check if address has undef value. 4749 if (isa<UndefValue>(Address) || 4750 (Address->use_empty() && !isa<Argument>(Address))) { 4751 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4752 return nullptr; 4753 } 4754 4755 SDValue &N = NodeMap[Address]; 4756 if (!N.getNode() && isa<Argument>(Address)) 4757 // Check unused arguments map. 4758 N = UnusedArgNodeMap[Address]; 4759 SDDbgValue *SDV; 4760 if (N.getNode()) { 4761 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4762 Address = BCI->getOperand(0); 4763 // Parameters are handled specially. 4764 bool isParameter = 4765 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4766 isa<Argument>(Address)); 4767 4768 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4769 4770 if (isParameter && !AI) { 4771 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4772 if (FINode) 4773 // Byval parameter. We have a frame index at this point. 4774 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4775 0, dl, SDNodeOrder); 4776 else { 4777 // Address is an argument, so try to emit its dbg value using 4778 // virtual register info from the FuncInfo.ValueMap. 4779 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4780 return nullptr; 4781 } 4782 } else if (AI) 4783 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4784 true, 0, dl, SDNodeOrder); 4785 else { 4786 // Can't do anything with other non-AI cases yet. 4787 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4788 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4789 DEBUG(Address->dump()); 4790 return nullptr; 4791 } 4792 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4793 } else { 4794 // If Address is an argument then try to emit its dbg value using 4795 // virtual register info from the FuncInfo.ValueMap. 4796 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4797 // If variable is pinned by a alloca in dominating bb then 4798 // use StaticAllocaMap. 4799 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4800 if (AI->getParent() != DI.getParent()) { 4801 DenseMap<const AllocaInst*, int>::iterator SI = 4802 FuncInfo.StaticAllocaMap.find(AI); 4803 if (SI != FuncInfo.StaticAllocaMap.end()) { 4804 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4805 0, dl, SDNodeOrder); 4806 DAG.AddDbgValue(SDV, nullptr, false); 4807 return nullptr; 4808 } 4809 } 4810 } 4811 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4812 } 4813 } 4814 return nullptr; 4815 } 4816 case Intrinsic::dbg_value: { 4817 const DbgValueInst &DI = cast<DbgValueInst>(I); 4818 DIVariable DIVar(DI.getVariable()); 4819 assert((!DIVar || DIVar.isVariable()) && 4820 "Variable in DbgValueInst should be either null or a DIVariable."); 4821 if (!DIVar) 4822 return nullptr; 4823 4824 MDNode *Variable = DI.getVariable(); 4825 uint64_t Offset = DI.getOffset(); 4826 const Value *V = DI.getValue(); 4827 if (!V) 4828 return nullptr; 4829 4830 SDDbgValue *SDV; 4831 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4832 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4833 DAG.AddDbgValue(SDV, nullptr, false); 4834 } else { 4835 // Do not use getValue() in here; we don't want to generate code at 4836 // this point if it hasn't been done yet. 4837 SDValue N = NodeMap[V]; 4838 if (!N.getNode() && isa<Argument>(V)) 4839 // Check unused arguments map. 4840 N = UnusedArgNodeMap[V]; 4841 if (N.getNode()) { 4842 // A dbg.value for an alloca is always indirect. 4843 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4844 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4845 SDV = DAG.getDbgValue(Variable, N.getNode(), 4846 N.getResNo(), IsIndirect, 4847 Offset, dl, SDNodeOrder); 4848 DAG.AddDbgValue(SDV, N.getNode(), false); 4849 } 4850 } else if (!V->use_empty() ) { 4851 // Do not call getValue(V) yet, as we don't want to generate code. 4852 // Remember it for later. 4853 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4854 DanglingDebugInfoMap[V] = DDI; 4855 } else { 4856 // We may expand this to cover more cases. One case where we have no 4857 // data available is an unreferenced parameter. 4858 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4859 } 4860 } 4861 4862 // Build a debug info table entry. 4863 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4864 V = BCI->getOperand(0); 4865 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4866 // Don't handle byval struct arguments or VLAs, for example. 4867 if (!AI) { 4868 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4869 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4870 return nullptr; 4871 } 4872 DenseMap<const AllocaInst*, int>::iterator SI = 4873 FuncInfo.StaticAllocaMap.find(AI); 4874 if (SI == FuncInfo.StaticAllocaMap.end()) 4875 return nullptr; // VLAs. 4876 return nullptr; 4877 } 4878 4879 case Intrinsic::eh_typeid_for: { 4880 // Find the type id for the given typeinfo. 4881 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4882 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4883 Res = DAG.getConstant(TypeID, MVT::i32); 4884 setValue(&I, Res); 4885 return nullptr; 4886 } 4887 4888 case Intrinsic::eh_return_i32: 4889 case Intrinsic::eh_return_i64: 4890 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4891 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4892 MVT::Other, 4893 getControlRoot(), 4894 getValue(I.getArgOperand(0)), 4895 getValue(I.getArgOperand(1)))); 4896 return nullptr; 4897 case Intrinsic::eh_unwind_init: 4898 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4899 return nullptr; 4900 case Intrinsic::eh_dwarf_cfa: { 4901 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4902 TLI->getPointerTy()); 4903 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4904 CfaArg.getValueType(), 4905 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4906 CfaArg.getValueType()), 4907 CfaArg); 4908 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4909 TLI->getPointerTy(), 4910 DAG.getConstant(0, TLI->getPointerTy())); 4911 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4912 FA, Offset)); 4913 return nullptr; 4914 } 4915 case Intrinsic::eh_sjlj_callsite: { 4916 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4917 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4918 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4919 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4920 4921 MMI.setCurrentCallSite(CI->getZExtValue()); 4922 return nullptr; 4923 } 4924 case Intrinsic::eh_sjlj_functioncontext: { 4925 // Get and store the index of the function context. 4926 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4927 AllocaInst *FnCtx = 4928 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4929 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4930 MFI->setFunctionContextIndex(FI); 4931 return nullptr; 4932 } 4933 case Intrinsic::eh_sjlj_setjmp: { 4934 SDValue Ops[2]; 4935 Ops[0] = getRoot(); 4936 Ops[1] = getValue(I.getArgOperand(0)); 4937 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4938 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4939 setValue(&I, Op.getValue(0)); 4940 DAG.setRoot(Op.getValue(1)); 4941 return nullptr; 4942 } 4943 case Intrinsic::eh_sjlj_longjmp: { 4944 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4945 getRoot(), getValue(I.getArgOperand(0)))); 4946 return nullptr; 4947 } 4948 4949 case Intrinsic::x86_mmx_pslli_w: 4950 case Intrinsic::x86_mmx_pslli_d: 4951 case Intrinsic::x86_mmx_pslli_q: 4952 case Intrinsic::x86_mmx_psrli_w: 4953 case Intrinsic::x86_mmx_psrli_d: 4954 case Intrinsic::x86_mmx_psrli_q: 4955 case Intrinsic::x86_mmx_psrai_w: 4956 case Intrinsic::x86_mmx_psrai_d: { 4957 SDValue ShAmt = getValue(I.getArgOperand(1)); 4958 if (isa<ConstantSDNode>(ShAmt)) { 4959 visitTargetIntrinsic(I, Intrinsic); 4960 return nullptr; 4961 } 4962 unsigned NewIntrinsic = 0; 4963 EVT ShAmtVT = MVT::v2i32; 4964 switch (Intrinsic) { 4965 case Intrinsic::x86_mmx_pslli_w: 4966 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4967 break; 4968 case Intrinsic::x86_mmx_pslli_d: 4969 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4970 break; 4971 case Intrinsic::x86_mmx_pslli_q: 4972 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4973 break; 4974 case Intrinsic::x86_mmx_psrli_w: 4975 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4976 break; 4977 case Intrinsic::x86_mmx_psrli_d: 4978 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4979 break; 4980 case Intrinsic::x86_mmx_psrli_q: 4981 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4982 break; 4983 case Intrinsic::x86_mmx_psrai_w: 4984 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4985 break; 4986 case Intrinsic::x86_mmx_psrai_d: 4987 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4988 break; 4989 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4990 } 4991 4992 // The vector shift intrinsics with scalars uses 32b shift amounts but 4993 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4994 // to be zero. 4995 // We must do this early because v2i32 is not a legal type. 4996 SDValue ShOps[2]; 4997 ShOps[0] = ShAmt; 4998 ShOps[1] = DAG.getConstant(0, MVT::i32); 4999 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5000 EVT DestVT = TLI->getValueType(I.getType()); 5001 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5002 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5003 DAG.getConstant(NewIntrinsic, MVT::i32), 5004 getValue(I.getArgOperand(0)), ShAmt); 5005 setValue(&I, Res); 5006 return nullptr; 5007 } 5008 case Intrinsic::x86_avx_vinsertf128_pd_256: 5009 case Intrinsic::x86_avx_vinsertf128_ps_256: 5010 case Intrinsic::x86_avx_vinsertf128_si_256: 5011 case Intrinsic::x86_avx2_vinserti128: { 5012 EVT DestVT = TLI->getValueType(I.getType()); 5013 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5014 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5015 ElVT.getVectorNumElements(); 5016 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5017 getValue(I.getArgOperand(0)), 5018 getValue(I.getArgOperand(1)), 5019 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5020 setValue(&I, Res); 5021 return nullptr; 5022 } 5023 case Intrinsic::x86_avx_vextractf128_pd_256: 5024 case Intrinsic::x86_avx_vextractf128_ps_256: 5025 case Intrinsic::x86_avx_vextractf128_si_256: 5026 case Intrinsic::x86_avx2_vextracti128: { 5027 EVT DestVT = TLI->getValueType(I.getType()); 5028 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5029 DestVT.getVectorNumElements(); 5030 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5031 getValue(I.getArgOperand(0)), 5032 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5033 setValue(&I, Res); 5034 return nullptr; 5035 } 5036 case Intrinsic::convertff: 5037 case Intrinsic::convertfsi: 5038 case Intrinsic::convertfui: 5039 case Intrinsic::convertsif: 5040 case Intrinsic::convertuif: 5041 case Intrinsic::convertss: 5042 case Intrinsic::convertsu: 5043 case Intrinsic::convertus: 5044 case Intrinsic::convertuu: { 5045 ISD::CvtCode Code = ISD::CVT_INVALID; 5046 switch (Intrinsic) { 5047 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5048 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5049 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5050 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5051 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5052 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5053 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5054 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5055 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5056 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5057 } 5058 EVT DestVT = TLI->getValueType(I.getType()); 5059 const Value *Op1 = I.getArgOperand(0); 5060 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5061 DAG.getValueType(DestVT), 5062 DAG.getValueType(getValue(Op1).getValueType()), 5063 getValue(I.getArgOperand(1)), 5064 getValue(I.getArgOperand(2)), 5065 Code); 5066 setValue(&I, Res); 5067 return nullptr; 5068 } 5069 case Intrinsic::powi: 5070 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5071 getValue(I.getArgOperand(1)), DAG)); 5072 return nullptr; 5073 case Intrinsic::log: 5074 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5075 return nullptr; 5076 case Intrinsic::log2: 5077 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5078 return nullptr; 5079 case Intrinsic::log10: 5080 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5081 return nullptr; 5082 case Intrinsic::exp: 5083 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5084 return nullptr; 5085 case Intrinsic::exp2: 5086 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5087 return nullptr; 5088 case Intrinsic::pow: 5089 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5090 getValue(I.getArgOperand(1)), DAG, *TLI)); 5091 return nullptr; 5092 case Intrinsic::sqrt: 5093 case Intrinsic::fabs: 5094 case Intrinsic::sin: 5095 case Intrinsic::cos: 5096 case Intrinsic::floor: 5097 case Intrinsic::ceil: 5098 case Intrinsic::trunc: 5099 case Intrinsic::rint: 5100 case Intrinsic::nearbyint: 5101 case Intrinsic::round: { 5102 unsigned Opcode; 5103 switch (Intrinsic) { 5104 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5105 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5106 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5107 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5108 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5109 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5110 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5111 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5112 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5113 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5114 case Intrinsic::round: Opcode = ISD::FROUND; break; 5115 } 5116 5117 setValue(&I, DAG.getNode(Opcode, sdl, 5118 getValue(I.getArgOperand(0)).getValueType(), 5119 getValue(I.getArgOperand(0)))); 5120 return nullptr; 5121 } 5122 case Intrinsic::copysign: 5123 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5124 getValue(I.getArgOperand(0)).getValueType(), 5125 getValue(I.getArgOperand(0)), 5126 getValue(I.getArgOperand(1)))); 5127 return nullptr; 5128 case Intrinsic::fma: 5129 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5130 getValue(I.getArgOperand(0)).getValueType(), 5131 getValue(I.getArgOperand(0)), 5132 getValue(I.getArgOperand(1)), 5133 getValue(I.getArgOperand(2)))); 5134 return nullptr; 5135 case Intrinsic::fmuladd: { 5136 EVT VT = TLI->getValueType(I.getType()); 5137 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5138 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5139 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5140 getValue(I.getArgOperand(0)).getValueType(), 5141 getValue(I.getArgOperand(0)), 5142 getValue(I.getArgOperand(1)), 5143 getValue(I.getArgOperand(2)))); 5144 } else { 5145 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5146 getValue(I.getArgOperand(0)).getValueType(), 5147 getValue(I.getArgOperand(0)), 5148 getValue(I.getArgOperand(1))); 5149 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5150 getValue(I.getArgOperand(0)).getValueType(), 5151 Mul, 5152 getValue(I.getArgOperand(2))); 5153 setValue(&I, Add); 5154 } 5155 return nullptr; 5156 } 5157 case Intrinsic::convert_to_fp16: 5158 setValue(&I, DAG.getNode(ISD::FP_TO_FP16, sdl, 5159 MVT::i16, getValue(I.getArgOperand(0)))); 5160 return nullptr; 5161 case Intrinsic::convert_from_fp16: 5162 setValue(&I, 5163 DAG.getNode(ISD::FP16_TO_FP, sdl, TLI->getValueType(I.getType()), 5164 getValue(I.getArgOperand(0)))); 5165 return nullptr; 5166 case Intrinsic::pcmarker: { 5167 SDValue Tmp = getValue(I.getArgOperand(0)); 5168 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5169 return nullptr; 5170 } 5171 case Intrinsic::readcyclecounter: { 5172 SDValue Op = getRoot(); 5173 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5174 DAG.getVTList(MVT::i64, MVT::Other), Op); 5175 setValue(&I, Res); 5176 DAG.setRoot(Res.getValue(1)); 5177 return nullptr; 5178 } 5179 case Intrinsic::bswap: 5180 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5181 getValue(I.getArgOperand(0)).getValueType(), 5182 getValue(I.getArgOperand(0)))); 5183 return nullptr; 5184 case Intrinsic::cttz: { 5185 SDValue Arg = getValue(I.getArgOperand(0)); 5186 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5187 EVT Ty = Arg.getValueType(); 5188 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5189 sdl, Ty, Arg)); 5190 return nullptr; 5191 } 5192 case Intrinsic::ctlz: { 5193 SDValue Arg = getValue(I.getArgOperand(0)); 5194 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5195 EVT Ty = Arg.getValueType(); 5196 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5197 sdl, Ty, Arg)); 5198 return nullptr; 5199 } 5200 case Intrinsic::ctpop: { 5201 SDValue Arg = getValue(I.getArgOperand(0)); 5202 EVT Ty = Arg.getValueType(); 5203 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5204 return nullptr; 5205 } 5206 case Intrinsic::stacksave: { 5207 SDValue Op = getRoot(); 5208 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5209 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5210 setValue(&I, Res); 5211 DAG.setRoot(Res.getValue(1)); 5212 return nullptr; 5213 } 5214 case Intrinsic::stackrestore: { 5215 Res = getValue(I.getArgOperand(0)); 5216 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5217 return nullptr; 5218 } 5219 case Intrinsic::stackprotector: { 5220 // Emit code into the DAG to store the stack guard onto the stack. 5221 MachineFunction &MF = DAG.getMachineFunction(); 5222 MachineFrameInfo *MFI = MF.getFrameInfo(); 5223 EVT PtrTy = TLI->getPointerTy(); 5224 5225 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5226 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5227 5228 int FI = FuncInfo.StaticAllocaMap[Slot]; 5229 MFI->setStackProtectorIndex(FI); 5230 5231 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5232 5233 // Store the stack protector onto the stack. 5234 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5235 MachinePointerInfo::getFixedStack(FI), 5236 true, false, 0); 5237 setValue(&I, Res); 5238 DAG.setRoot(Res); 5239 return nullptr; 5240 } 5241 case Intrinsic::objectsize: { 5242 // If we don't know by now, we're never going to know. 5243 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5244 5245 assert(CI && "Non-constant type in __builtin_object_size?"); 5246 5247 SDValue Arg = getValue(I.getCalledValue()); 5248 EVT Ty = Arg.getValueType(); 5249 5250 if (CI->isZero()) 5251 Res = DAG.getConstant(-1ULL, Ty); 5252 else 5253 Res = DAG.getConstant(0, Ty); 5254 5255 setValue(&I, Res); 5256 return nullptr; 5257 } 5258 case Intrinsic::annotation: 5259 case Intrinsic::ptr_annotation: 5260 // Drop the intrinsic, but forward the value 5261 setValue(&I, getValue(I.getOperand(0))); 5262 return nullptr; 5263 case Intrinsic::var_annotation: 5264 // Discard annotate attributes 5265 return nullptr; 5266 5267 case Intrinsic::init_trampoline: { 5268 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5269 5270 SDValue Ops[6]; 5271 Ops[0] = getRoot(); 5272 Ops[1] = getValue(I.getArgOperand(0)); 5273 Ops[2] = getValue(I.getArgOperand(1)); 5274 Ops[3] = getValue(I.getArgOperand(2)); 5275 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5276 Ops[5] = DAG.getSrcValue(F); 5277 5278 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5279 5280 DAG.setRoot(Res); 5281 return nullptr; 5282 } 5283 case Intrinsic::adjust_trampoline: { 5284 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5285 TLI->getPointerTy(), 5286 getValue(I.getArgOperand(0)))); 5287 return nullptr; 5288 } 5289 case Intrinsic::gcroot: 5290 if (GFI) { 5291 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5292 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5293 5294 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5295 GFI->addStackRoot(FI->getIndex(), TypeMap); 5296 } 5297 return nullptr; 5298 case Intrinsic::gcread: 5299 case Intrinsic::gcwrite: 5300 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5301 case Intrinsic::flt_rounds: 5302 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5303 return nullptr; 5304 5305 case Intrinsic::expect: { 5306 // Just replace __builtin_expect(exp, c) with EXP. 5307 setValue(&I, getValue(I.getArgOperand(0))); 5308 return nullptr; 5309 } 5310 5311 case Intrinsic::debugtrap: 5312 case Intrinsic::trap: { 5313 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5314 if (TrapFuncName.empty()) { 5315 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5316 ISD::TRAP : ISD::DEBUGTRAP; 5317 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5318 return nullptr; 5319 } 5320 TargetLowering::ArgListTy Args; 5321 5322 TargetLowering::CallLoweringInfo CLI(DAG); 5323 CLI.setDebugLoc(sdl).setChain(getRoot()) 5324 .setCallee(CallingConv::C, I.getType(), 5325 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5326 std::move(Args), 0); 5327 5328 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5329 DAG.setRoot(Result.second); 5330 return nullptr; 5331 } 5332 5333 case Intrinsic::uadd_with_overflow: 5334 case Intrinsic::sadd_with_overflow: 5335 case Intrinsic::usub_with_overflow: 5336 case Intrinsic::ssub_with_overflow: 5337 case Intrinsic::umul_with_overflow: 5338 case Intrinsic::smul_with_overflow: { 5339 ISD::NodeType Op; 5340 switch (Intrinsic) { 5341 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5342 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5343 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5344 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5345 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5346 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5347 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5348 } 5349 SDValue Op1 = getValue(I.getArgOperand(0)); 5350 SDValue Op2 = getValue(I.getArgOperand(1)); 5351 5352 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5353 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5354 return nullptr; 5355 } 5356 case Intrinsic::prefetch: { 5357 SDValue Ops[5]; 5358 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5359 Ops[0] = getRoot(); 5360 Ops[1] = getValue(I.getArgOperand(0)); 5361 Ops[2] = getValue(I.getArgOperand(1)); 5362 Ops[3] = getValue(I.getArgOperand(2)); 5363 Ops[4] = getValue(I.getArgOperand(3)); 5364 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5365 DAG.getVTList(MVT::Other), Ops, 5366 EVT::getIntegerVT(*Context, 8), 5367 MachinePointerInfo(I.getArgOperand(0)), 5368 0, /* align */ 5369 false, /* volatile */ 5370 rw==0, /* read */ 5371 rw==1)); /* write */ 5372 return nullptr; 5373 } 5374 case Intrinsic::lifetime_start: 5375 case Intrinsic::lifetime_end: { 5376 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5377 // Stack coloring is not enabled in O0, discard region information. 5378 if (TM.getOptLevel() == CodeGenOpt::None) 5379 return nullptr; 5380 5381 SmallVector<Value *, 4> Allocas; 5382 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5383 5384 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5385 E = Allocas.end(); Object != E; ++Object) { 5386 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5387 5388 // Could not find an Alloca. 5389 if (!LifetimeObject) 5390 continue; 5391 5392 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5393 5394 SDValue Ops[2]; 5395 Ops[0] = getRoot(); 5396 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5397 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5398 5399 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5400 DAG.setRoot(Res); 5401 } 5402 return nullptr; 5403 } 5404 case Intrinsic::invariant_start: 5405 // Discard region information. 5406 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5407 return nullptr; 5408 case Intrinsic::invariant_end: 5409 // Discard region information. 5410 return nullptr; 5411 case Intrinsic::stackprotectorcheck: { 5412 // Do not actually emit anything for this basic block. Instead we initialize 5413 // the stack protector descriptor and export the guard variable so we can 5414 // access it in FinishBasicBlock. 5415 const BasicBlock *BB = I.getParent(); 5416 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5417 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5418 5419 // Flush our exports since we are going to process a terminator. 5420 (void)getControlRoot(); 5421 return nullptr; 5422 } 5423 case Intrinsic::clear_cache: 5424 return TLI->getClearCacheBuiltinName(); 5425 case Intrinsic::donothing: 5426 // ignore 5427 return nullptr; 5428 case Intrinsic::experimental_stackmap: { 5429 visitStackmap(I); 5430 return nullptr; 5431 } 5432 case Intrinsic::experimental_patchpoint_void: 5433 case Intrinsic::experimental_patchpoint_i64: { 5434 visitPatchpoint(I); 5435 return nullptr; 5436 } 5437 } 5438 } 5439 5440 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5441 bool isTailCall, 5442 MachineBasicBlock *LandingPad) { 5443 const TargetLowering *TLI = TM.getTargetLowering(); 5444 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5445 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5446 Type *RetTy = FTy->getReturnType(); 5447 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5448 MCSymbol *BeginLabel = nullptr; 5449 5450 TargetLowering::ArgListTy Args; 5451 TargetLowering::ArgListEntry Entry; 5452 Args.reserve(CS.arg_size()); 5453 5454 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5455 i != e; ++i) { 5456 const Value *V = *i; 5457 5458 // Skip empty types 5459 if (V->getType()->isEmptyTy()) 5460 continue; 5461 5462 SDValue ArgNode = getValue(V); 5463 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5464 5465 // Skip the first return-type Attribute to get to params. 5466 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5467 Args.push_back(Entry); 5468 } 5469 5470 if (LandingPad) { 5471 // Insert a label before the invoke call to mark the try range. This can be 5472 // used to detect deletion of the invoke via the MachineModuleInfo. 5473 BeginLabel = MMI.getContext().CreateTempSymbol(); 5474 5475 // For SjLj, keep track of which landing pads go with which invokes 5476 // so as to maintain the ordering of pads in the LSDA. 5477 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5478 if (CallSiteIndex) { 5479 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5480 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5481 5482 // Now that the call site is handled, stop tracking it. 5483 MMI.setCurrentCallSite(0); 5484 } 5485 5486 // Both PendingLoads and PendingExports must be flushed here; 5487 // this call might not return. 5488 (void)getRoot(); 5489 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5490 } 5491 5492 // Check if target-independent constraints permit a tail call here. 5493 // Target-dependent constraints are checked within TLI->LowerCallTo. 5494 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5495 isTailCall = false; 5496 5497 TargetLowering::CallLoweringInfo CLI(DAG); 5498 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5499 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5500 5501 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5502 assert((isTailCall || Result.second.getNode()) && 5503 "Non-null chain expected with non-tail call!"); 5504 assert((Result.second.getNode() || !Result.first.getNode()) && 5505 "Null value expected with tail call!"); 5506 if (Result.first.getNode()) 5507 setValue(CS.getInstruction(), Result.first); 5508 5509 if (!Result.second.getNode()) { 5510 // As a special case, a null chain means that a tail call has been emitted 5511 // and the DAG root is already updated. 5512 HasTailCall = true; 5513 5514 // Since there's no actual continuation from this block, nothing can be 5515 // relying on us setting vregs for them. 5516 PendingExports.clear(); 5517 } else { 5518 DAG.setRoot(Result.second); 5519 } 5520 5521 if (LandingPad) { 5522 // Insert a label at the end of the invoke call to mark the try range. This 5523 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5524 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5525 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5526 5527 // Inform MachineModuleInfo of range. 5528 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5529 } 5530 } 5531 5532 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5533 /// value is equal or not-equal to zero. 5534 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5535 for (const User *U : V->users()) { 5536 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5537 if (IC->isEquality()) 5538 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5539 if (C->isNullValue()) 5540 continue; 5541 // Unknown instruction. 5542 return false; 5543 } 5544 return true; 5545 } 5546 5547 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5548 Type *LoadTy, 5549 SelectionDAGBuilder &Builder) { 5550 5551 // Check to see if this load can be trivially constant folded, e.g. if the 5552 // input is from a string literal. 5553 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5554 // Cast pointer to the type we really want to load. 5555 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5556 PointerType::getUnqual(LoadTy)); 5557 5558 if (const Constant *LoadCst = 5559 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5560 Builder.DL)) 5561 return Builder.getValue(LoadCst); 5562 } 5563 5564 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5565 // still constant memory, the input chain can be the entry node. 5566 SDValue Root; 5567 bool ConstantMemory = false; 5568 5569 // Do not serialize (non-volatile) loads of constant memory with anything. 5570 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5571 Root = Builder.DAG.getEntryNode(); 5572 ConstantMemory = true; 5573 } else { 5574 // Do not serialize non-volatile loads against each other. 5575 Root = Builder.DAG.getRoot(); 5576 } 5577 5578 SDValue Ptr = Builder.getValue(PtrVal); 5579 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5580 Ptr, MachinePointerInfo(PtrVal), 5581 false /*volatile*/, 5582 false /*nontemporal*/, 5583 false /*isinvariant*/, 1 /* align=1 */); 5584 5585 if (!ConstantMemory) 5586 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5587 return LoadVal; 5588 } 5589 5590 /// processIntegerCallValue - Record the value for an instruction that 5591 /// produces an integer result, converting the type where necessary. 5592 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5593 SDValue Value, 5594 bool IsSigned) { 5595 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5596 if (IsSigned) 5597 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5598 else 5599 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5600 setValue(&I, Value); 5601 } 5602 5603 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5604 /// If so, return true and lower it, otherwise return false and it will be 5605 /// lowered like a normal call. 5606 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5607 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5608 if (I.getNumArgOperands() != 3) 5609 return false; 5610 5611 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5612 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5613 !I.getArgOperand(2)->getType()->isIntegerTy() || 5614 !I.getType()->isIntegerTy()) 5615 return false; 5616 5617 const Value *Size = I.getArgOperand(2); 5618 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5619 if (CSize && CSize->getZExtValue() == 0) { 5620 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5621 setValue(&I, DAG.getConstant(0, CallVT)); 5622 return true; 5623 } 5624 5625 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5626 std::pair<SDValue, SDValue> Res = 5627 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5628 getValue(LHS), getValue(RHS), getValue(Size), 5629 MachinePointerInfo(LHS), 5630 MachinePointerInfo(RHS)); 5631 if (Res.first.getNode()) { 5632 processIntegerCallValue(I, Res.first, true); 5633 PendingLoads.push_back(Res.second); 5634 return true; 5635 } 5636 5637 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5638 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5639 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5640 bool ActuallyDoIt = true; 5641 MVT LoadVT; 5642 Type *LoadTy; 5643 switch (CSize->getZExtValue()) { 5644 default: 5645 LoadVT = MVT::Other; 5646 LoadTy = nullptr; 5647 ActuallyDoIt = false; 5648 break; 5649 case 2: 5650 LoadVT = MVT::i16; 5651 LoadTy = Type::getInt16Ty(CSize->getContext()); 5652 break; 5653 case 4: 5654 LoadVT = MVT::i32; 5655 LoadTy = Type::getInt32Ty(CSize->getContext()); 5656 break; 5657 case 8: 5658 LoadVT = MVT::i64; 5659 LoadTy = Type::getInt64Ty(CSize->getContext()); 5660 break; 5661 /* 5662 case 16: 5663 LoadVT = MVT::v4i32; 5664 LoadTy = Type::getInt32Ty(CSize->getContext()); 5665 LoadTy = VectorType::get(LoadTy, 4); 5666 break; 5667 */ 5668 } 5669 5670 // This turns into unaligned loads. We only do this if the target natively 5671 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5672 // we'll only produce a small number of byte loads. 5673 5674 // Require that we can find a legal MVT, and only do this if the target 5675 // supports unaligned loads of that type. Expanding into byte loads would 5676 // bloat the code. 5677 const TargetLowering *TLI = TM.getTargetLowering(); 5678 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5679 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5680 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5681 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5682 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5683 if (!TLI->isTypeLegal(LoadVT) || 5684 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5685 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5686 ActuallyDoIt = false; 5687 } 5688 5689 if (ActuallyDoIt) { 5690 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5691 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5692 5693 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5694 ISD::SETNE); 5695 processIntegerCallValue(I, Res, false); 5696 return true; 5697 } 5698 } 5699 5700 5701 return false; 5702 } 5703 5704 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5705 /// form. If so, return true and lower it, otherwise return false and it 5706 /// will be lowered like a normal call. 5707 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5708 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5709 if (I.getNumArgOperands() != 3) 5710 return false; 5711 5712 const Value *Src = I.getArgOperand(0); 5713 const Value *Char = I.getArgOperand(1); 5714 const Value *Length = I.getArgOperand(2); 5715 if (!Src->getType()->isPointerTy() || 5716 !Char->getType()->isIntegerTy() || 5717 !Length->getType()->isIntegerTy() || 5718 !I.getType()->isPointerTy()) 5719 return false; 5720 5721 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5722 std::pair<SDValue, SDValue> Res = 5723 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5724 getValue(Src), getValue(Char), getValue(Length), 5725 MachinePointerInfo(Src)); 5726 if (Res.first.getNode()) { 5727 setValue(&I, Res.first); 5728 PendingLoads.push_back(Res.second); 5729 return true; 5730 } 5731 5732 return false; 5733 } 5734 5735 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5736 /// optimized form. If so, return true and lower it, otherwise return false 5737 /// and it will be lowered like a normal call. 5738 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5739 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5740 if (I.getNumArgOperands() != 2) 5741 return false; 5742 5743 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5744 if (!Arg0->getType()->isPointerTy() || 5745 !Arg1->getType()->isPointerTy() || 5746 !I.getType()->isPointerTy()) 5747 return false; 5748 5749 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5750 std::pair<SDValue, SDValue> Res = 5751 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5752 getValue(Arg0), getValue(Arg1), 5753 MachinePointerInfo(Arg0), 5754 MachinePointerInfo(Arg1), isStpcpy); 5755 if (Res.first.getNode()) { 5756 setValue(&I, Res.first); 5757 DAG.setRoot(Res.second); 5758 return true; 5759 } 5760 5761 return false; 5762 } 5763 5764 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5765 /// If so, return true and lower it, otherwise return false and it will be 5766 /// lowered like a normal call. 5767 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5768 // Verify that the prototype makes sense. int strcmp(void*,void*) 5769 if (I.getNumArgOperands() != 2) 5770 return false; 5771 5772 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5773 if (!Arg0->getType()->isPointerTy() || 5774 !Arg1->getType()->isPointerTy() || 5775 !I.getType()->isIntegerTy()) 5776 return false; 5777 5778 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5779 std::pair<SDValue, SDValue> Res = 5780 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5781 getValue(Arg0), getValue(Arg1), 5782 MachinePointerInfo(Arg0), 5783 MachinePointerInfo(Arg1)); 5784 if (Res.first.getNode()) { 5785 processIntegerCallValue(I, Res.first, true); 5786 PendingLoads.push_back(Res.second); 5787 return true; 5788 } 5789 5790 return false; 5791 } 5792 5793 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5794 /// form. If so, return true and lower it, otherwise return false and it 5795 /// will be lowered like a normal call. 5796 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5797 // Verify that the prototype makes sense. size_t strlen(char *) 5798 if (I.getNumArgOperands() != 1) 5799 return false; 5800 5801 const Value *Arg0 = I.getArgOperand(0); 5802 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5803 return false; 5804 5805 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5806 std::pair<SDValue, SDValue> Res = 5807 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5808 getValue(Arg0), MachinePointerInfo(Arg0)); 5809 if (Res.first.getNode()) { 5810 processIntegerCallValue(I, Res.first, false); 5811 PendingLoads.push_back(Res.second); 5812 return true; 5813 } 5814 5815 return false; 5816 } 5817 5818 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5819 /// form. If so, return true and lower it, otherwise return false and it 5820 /// will be lowered like a normal call. 5821 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5822 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5823 if (I.getNumArgOperands() != 2) 5824 return false; 5825 5826 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5827 if (!Arg0->getType()->isPointerTy() || 5828 !Arg1->getType()->isIntegerTy() || 5829 !I.getType()->isIntegerTy()) 5830 return false; 5831 5832 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5833 std::pair<SDValue, SDValue> Res = 5834 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5835 getValue(Arg0), getValue(Arg1), 5836 MachinePointerInfo(Arg0)); 5837 if (Res.first.getNode()) { 5838 processIntegerCallValue(I, Res.first, false); 5839 PendingLoads.push_back(Res.second); 5840 return true; 5841 } 5842 5843 return false; 5844 } 5845 5846 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5847 /// operation (as expected), translate it to an SDNode with the specified opcode 5848 /// and return true. 5849 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5850 unsigned Opcode) { 5851 // Sanity check that it really is a unary floating-point call. 5852 if (I.getNumArgOperands() != 1 || 5853 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5854 I.getType() != I.getArgOperand(0)->getType() || 5855 !I.onlyReadsMemory()) 5856 return false; 5857 5858 SDValue Tmp = getValue(I.getArgOperand(0)); 5859 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5860 return true; 5861 } 5862 5863 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5864 // Handle inline assembly differently. 5865 if (isa<InlineAsm>(I.getCalledValue())) { 5866 visitInlineAsm(&I); 5867 return; 5868 } 5869 5870 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5871 ComputeUsesVAFloatArgument(I, &MMI); 5872 5873 const char *RenameFn = nullptr; 5874 if (Function *F = I.getCalledFunction()) { 5875 if (F->isDeclaration()) { 5876 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5877 if (unsigned IID = II->getIntrinsicID(F)) { 5878 RenameFn = visitIntrinsicCall(I, IID); 5879 if (!RenameFn) 5880 return; 5881 } 5882 } 5883 if (unsigned IID = F->getIntrinsicID()) { 5884 RenameFn = visitIntrinsicCall(I, IID); 5885 if (!RenameFn) 5886 return; 5887 } 5888 } 5889 5890 // Check for well-known libc/libm calls. If the function is internal, it 5891 // can't be a library call. 5892 LibFunc::Func Func; 5893 if (!F->hasLocalLinkage() && F->hasName() && 5894 LibInfo->getLibFunc(F->getName(), Func) && 5895 LibInfo->hasOptimizedCodeGen(Func)) { 5896 switch (Func) { 5897 default: break; 5898 case LibFunc::copysign: 5899 case LibFunc::copysignf: 5900 case LibFunc::copysignl: 5901 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5902 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5903 I.getType() == I.getArgOperand(0)->getType() && 5904 I.getType() == I.getArgOperand(1)->getType() && 5905 I.onlyReadsMemory()) { 5906 SDValue LHS = getValue(I.getArgOperand(0)); 5907 SDValue RHS = getValue(I.getArgOperand(1)); 5908 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5909 LHS.getValueType(), LHS, RHS)); 5910 return; 5911 } 5912 break; 5913 case LibFunc::fabs: 5914 case LibFunc::fabsf: 5915 case LibFunc::fabsl: 5916 if (visitUnaryFloatCall(I, ISD::FABS)) 5917 return; 5918 break; 5919 case LibFunc::sin: 5920 case LibFunc::sinf: 5921 case LibFunc::sinl: 5922 if (visitUnaryFloatCall(I, ISD::FSIN)) 5923 return; 5924 break; 5925 case LibFunc::cos: 5926 case LibFunc::cosf: 5927 case LibFunc::cosl: 5928 if (visitUnaryFloatCall(I, ISD::FCOS)) 5929 return; 5930 break; 5931 case LibFunc::sqrt: 5932 case LibFunc::sqrtf: 5933 case LibFunc::sqrtl: 5934 case LibFunc::sqrt_finite: 5935 case LibFunc::sqrtf_finite: 5936 case LibFunc::sqrtl_finite: 5937 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5938 return; 5939 break; 5940 case LibFunc::floor: 5941 case LibFunc::floorf: 5942 case LibFunc::floorl: 5943 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5944 return; 5945 break; 5946 case LibFunc::nearbyint: 5947 case LibFunc::nearbyintf: 5948 case LibFunc::nearbyintl: 5949 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5950 return; 5951 break; 5952 case LibFunc::ceil: 5953 case LibFunc::ceilf: 5954 case LibFunc::ceill: 5955 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5956 return; 5957 break; 5958 case LibFunc::rint: 5959 case LibFunc::rintf: 5960 case LibFunc::rintl: 5961 if (visitUnaryFloatCall(I, ISD::FRINT)) 5962 return; 5963 break; 5964 case LibFunc::round: 5965 case LibFunc::roundf: 5966 case LibFunc::roundl: 5967 if (visitUnaryFloatCall(I, ISD::FROUND)) 5968 return; 5969 break; 5970 case LibFunc::trunc: 5971 case LibFunc::truncf: 5972 case LibFunc::truncl: 5973 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5974 return; 5975 break; 5976 case LibFunc::log2: 5977 case LibFunc::log2f: 5978 case LibFunc::log2l: 5979 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5980 return; 5981 break; 5982 case LibFunc::exp2: 5983 case LibFunc::exp2f: 5984 case LibFunc::exp2l: 5985 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5986 return; 5987 break; 5988 case LibFunc::memcmp: 5989 if (visitMemCmpCall(I)) 5990 return; 5991 break; 5992 case LibFunc::memchr: 5993 if (visitMemChrCall(I)) 5994 return; 5995 break; 5996 case LibFunc::strcpy: 5997 if (visitStrCpyCall(I, false)) 5998 return; 5999 break; 6000 case LibFunc::stpcpy: 6001 if (visitStrCpyCall(I, true)) 6002 return; 6003 break; 6004 case LibFunc::strcmp: 6005 if (visitStrCmpCall(I)) 6006 return; 6007 break; 6008 case LibFunc::strlen: 6009 if (visitStrLenCall(I)) 6010 return; 6011 break; 6012 case LibFunc::strnlen: 6013 if (visitStrNLenCall(I)) 6014 return; 6015 break; 6016 } 6017 } 6018 } 6019 6020 SDValue Callee; 6021 if (!RenameFn) 6022 Callee = getValue(I.getCalledValue()); 6023 else 6024 Callee = DAG.getExternalSymbol(RenameFn, 6025 TM.getTargetLowering()->getPointerTy()); 6026 6027 // Check if we can potentially perform a tail call. More detailed checking is 6028 // be done within LowerCallTo, after more information about the call is known. 6029 LowerCallTo(&I, Callee, I.isTailCall()); 6030 } 6031 6032 namespace { 6033 6034 /// AsmOperandInfo - This contains information for each constraint that we are 6035 /// lowering. 6036 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6037 public: 6038 /// CallOperand - If this is the result output operand or a clobber 6039 /// this is null, otherwise it is the incoming operand to the CallInst. 6040 /// This gets modified as the asm is processed. 6041 SDValue CallOperand; 6042 6043 /// AssignedRegs - If this is a register or register class operand, this 6044 /// contains the set of register corresponding to the operand. 6045 RegsForValue AssignedRegs; 6046 6047 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6048 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6049 } 6050 6051 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6052 /// corresponds to. If there is no Value* for this operand, it returns 6053 /// MVT::Other. 6054 EVT getCallOperandValEVT(LLVMContext &Context, 6055 const TargetLowering &TLI, 6056 const DataLayout *DL) const { 6057 if (!CallOperandVal) return MVT::Other; 6058 6059 if (isa<BasicBlock>(CallOperandVal)) 6060 return TLI.getPointerTy(); 6061 6062 llvm::Type *OpTy = CallOperandVal->getType(); 6063 6064 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6065 // If this is an indirect operand, the operand is a pointer to the 6066 // accessed type. 6067 if (isIndirect) { 6068 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6069 if (!PtrTy) 6070 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6071 OpTy = PtrTy->getElementType(); 6072 } 6073 6074 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6075 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6076 if (STy->getNumElements() == 1) 6077 OpTy = STy->getElementType(0); 6078 6079 // If OpTy is not a single value, it may be a struct/union that we 6080 // can tile with integers. 6081 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6082 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6083 switch (BitSize) { 6084 default: break; 6085 case 1: 6086 case 8: 6087 case 16: 6088 case 32: 6089 case 64: 6090 case 128: 6091 OpTy = IntegerType::get(Context, BitSize); 6092 break; 6093 } 6094 } 6095 6096 return TLI.getValueType(OpTy, true); 6097 } 6098 }; 6099 6100 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6101 6102 } // end anonymous namespace 6103 6104 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6105 /// specified operand. We prefer to assign virtual registers, to allow the 6106 /// register allocator to handle the assignment process. However, if the asm 6107 /// uses features that we can't model on machineinstrs, we have SDISel do the 6108 /// allocation. This produces generally horrible, but correct, code. 6109 /// 6110 /// OpInfo describes the operand. 6111 /// 6112 static void GetRegistersForValue(SelectionDAG &DAG, 6113 const TargetLowering &TLI, 6114 SDLoc DL, 6115 SDISelAsmOperandInfo &OpInfo) { 6116 LLVMContext &Context = *DAG.getContext(); 6117 6118 MachineFunction &MF = DAG.getMachineFunction(); 6119 SmallVector<unsigned, 4> Regs; 6120 6121 // If this is a constraint for a single physreg, or a constraint for a 6122 // register class, find it. 6123 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6124 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6125 OpInfo.ConstraintVT); 6126 6127 unsigned NumRegs = 1; 6128 if (OpInfo.ConstraintVT != MVT::Other) { 6129 // If this is a FP input in an integer register (or visa versa) insert a bit 6130 // cast of the input value. More generally, handle any case where the input 6131 // value disagrees with the register class we plan to stick this in. 6132 if (OpInfo.Type == InlineAsm::isInput && 6133 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6134 // Try to convert to the first EVT that the reg class contains. If the 6135 // types are identical size, use a bitcast to convert (e.g. two differing 6136 // vector types). 6137 MVT RegVT = *PhysReg.second->vt_begin(); 6138 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6139 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6140 RegVT, OpInfo.CallOperand); 6141 OpInfo.ConstraintVT = RegVT; 6142 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6143 // If the input is a FP value and we want it in FP registers, do a 6144 // bitcast to the corresponding integer type. This turns an f64 value 6145 // into i64, which can be passed with two i32 values on a 32-bit 6146 // machine. 6147 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6148 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6149 RegVT, OpInfo.CallOperand); 6150 OpInfo.ConstraintVT = RegVT; 6151 } 6152 } 6153 6154 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6155 } 6156 6157 MVT RegVT; 6158 EVT ValueVT = OpInfo.ConstraintVT; 6159 6160 // If this is a constraint for a specific physical register, like {r17}, 6161 // assign it now. 6162 if (unsigned AssignedReg = PhysReg.first) { 6163 const TargetRegisterClass *RC = PhysReg.second; 6164 if (OpInfo.ConstraintVT == MVT::Other) 6165 ValueVT = *RC->vt_begin(); 6166 6167 // Get the actual register value type. This is important, because the user 6168 // may have asked for (e.g.) the AX register in i32 type. We need to 6169 // remember that AX is actually i16 to get the right extension. 6170 RegVT = *RC->vt_begin(); 6171 6172 // This is a explicit reference to a physical register. 6173 Regs.push_back(AssignedReg); 6174 6175 // If this is an expanded reference, add the rest of the regs to Regs. 6176 if (NumRegs != 1) { 6177 TargetRegisterClass::iterator I = RC->begin(); 6178 for (; *I != AssignedReg; ++I) 6179 assert(I != RC->end() && "Didn't find reg!"); 6180 6181 // Already added the first reg. 6182 --NumRegs; ++I; 6183 for (; NumRegs; --NumRegs, ++I) { 6184 assert(I != RC->end() && "Ran out of registers to allocate!"); 6185 Regs.push_back(*I); 6186 } 6187 } 6188 6189 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6190 return; 6191 } 6192 6193 // Otherwise, if this was a reference to an LLVM register class, create vregs 6194 // for this reference. 6195 if (const TargetRegisterClass *RC = PhysReg.second) { 6196 RegVT = *RC->vt_begin(); 6197 if (OpInfo.ConstraintVT == MVT::Other) 6198 ValueVT = RegVT; 6199 6200 // Create the appropriate number of virtual registers. 6201 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6202 for (; NumRegs; --NumRegs) 6203 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6204 6205 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6206 return; 6207 } 6208 6209 // Otherwise, we couldn't allocate enough registers for this. 6210 } 6211 6212 /// visitInlineAsm - Handle a call to an InlineAsm object. 6213 /// 6214 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6215 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6216 6217 /// ConstraintOperands - Information about all of the constraints. 6218 SDISelAsmOperandInfoVector ConstraintOperands; 6219 6220 const TargetLowering *TLI = TM.getTargetLowering(); 6221 TargetLowering::AsmOperandInfoVector 6222 TargetConstraints = TLI->ParseConstraints(CS); 6223 6224 bool hasMemory = false; 6225 6226 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6227 unsigned ResNo = 0; // ResNo - The result number of the next output. 6228 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6229 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6230 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6231 6232 MVT OpVT = MVT::Other; 6233 6234 // Compute the value type for each operand. 6235 switch (OpInfo.Type) { 6236 case InlineAsm::isOutput: 6237 // Indirect outputs just consume an argument. 6238 if (OpInfo.isIndirect) { 6239 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6240 break; 6241 } 6242 6243 // The return value of the call is this value. As such, there is no 6244 // corresponding argument. 6245 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6246 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6247 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6248 } else { 6249 assert(ResNo == 0 && "Asm only has one result!"); 6250 OpVT = TLI->getSimpleValueType(CS.getType()); 6251 } 6252 ++ResNo; 6253 break; 6254 case InlineAsm::isInput: 6255 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6256 break; 6257 case InlineAsm::isClobber: 6258 // Nothing to do. 6259 break; 6260 } 6261 6262 // If this is an input or an indirect output, process the call argument. 6263 // BasicBlocks are labels, currently appearing only in asm's. 6264 if (OpInfo.CallOperandVal) { 6265 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6266 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6267 } else { 6268 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6269 } 6270 6271 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6272 getSimpleVT(); 6273 } 6274 6275 OpInfo.ConstraintVT = OpVT; 6276 6277 // Indirect operand accesses access memory. 6278 if (OpInfo.isIndirect) 6279 hasMemory = true; 6280 else { 6281 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6282 TargetLowering::ConstraintType 6283 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6284 if (CType == TargetLowering::C_Memory) { 6285 hasMemory = true; 6286 break; 6287 } 6288 } 6289 } 6290 } 6291 6292 SDValue Chain, Flag; 6293 6294 // We won't need to flush pending loads if this asm doesn't touch 6295 // memory and is nonvolatile. 6296 if (hasMemory || IA->hasSideEffects()) 6297 Chain = getRoot(); 6298 else 6299 Chain = DAG.getRoot(); 6300 6301 // Second pass over the constraints: compute which constraint option to use 6302 // and assign registers to constraints that want a specific physreg. 6303 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6304 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6305 6306 // If this is an output operand with a matching input operand, look up the 6307 // matching input. If their types mismatch, e.g. one is an integer, the 6308 // other is floating point, or their sizes are different, flag it as an 6309 // error. 6310 if (OpInfo.hasMatchingInput()) { 6311 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6312 6313 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6314 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6315 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6316 OpInfo.ConstraintVT); 6317 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6318 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6319 Input.ConstraintVT); 6320 if ((OpInfo.ConstraintVT.isInteger() != 6321 Input.ConstraintVT.isInteger()) || 6322 (MatchRC.second != InputRC.second)) { 6323 report_fatal_error("Unsupported asm: input constraint" 6324 " with a matching output constraint of" 6325 " incompatible type!"); 6326 } 6327 Input.ConstraintVT = OpInfo.ConstraintVT; 6328 } 6329 } 6330 6331 // Compute the constraint code and ConstraintType to use. 6332 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6333 6334 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6335 OpInfo.Type == InlineAsm::isClobber) 6336 continue; 6337 6338 // If this is a memory input, and if the operand is not indirect, do what we 6339 // need to to provide an address for the memory input. 6340 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6341 !OpInfo.isIndirect) { 6342 assert((OpInfo.isMultipleAlternative || 6343 (OpInfo.Type == InlineAsm::isInput)) && 6344 "Can only indirectify direct input operands!"); 6345 6346 // Memory operands really want the address of the value. If we don't have 6347 // an indirect input, put it in the constpool if we can, otherwise spill 6348 // it to a stack slot. 6349 // TODO: This isn't quite right. We need to handle these according to 6350 // the addressing mode that the constraint wants. Also, this may take 6351 // an additional register for the computation and we don't want that 6352 // either. 6353 6354 // If the operand is a float, integer, or vector constant, spill to a 6355 // constant pool entry to get its address. 6356 const Value *OpVal = OpInfo.CallOperandVal; 6357 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6358 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6359 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6360 TLI->getPointerTy()); 6361 } else { 6362 // Otherwise, create a stack slot and emit a store to it before the 6363 // asm. 6364 Type *Ty = OpVal->getType(); 6365 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6366 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6367 MachineFunction &MF = DAG.getMachineFunction(); 6368 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6369 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6370 Chain = DAG.getStore(Chain, getCurSDLoc(), 6371 OpInfo.CallOperand, StackSlot, 6372 MachinePointerInfo::getFixedStack(SSFI), 6373 false, false, 0); 6374 OpInfo.CallOperand = StackSlot; 6375 } 6376 6377 // There is no longer a Value* corresponding to this operand. 6378 OpInfo.CallOperandVal = nullptr; 6379 6380 // It is now an indirect operand. 6381 OpInfo.isIndirect = true; 6382 } 6383 6384 // If this constraint is for a specific register, allocate it before 6385 // anything else. 6386 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6387 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6388 } 6389 6390 // Second pass - Loop over all of the operands, assigning virtual or physregs 6391 // to register class operands. 6392 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6393 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6394 6395 // C_Register operands have already been allocated, Other/Memory don't need 6396 // to be. 6397 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6398 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6399 } 6400 6401 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6402 std::vector<SDValue> AsmNodeOperands; 6403 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6404 AsmNodeOperands.push_back( 6405 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6406 TLI->getPointerTy())); 6407 6408 // If we have a !srcloc metadata node associated with it, we want to attach 6409 // this to the ultimately generated inline asm machineinstr. To do this, we 6410 // pass in the third operand as this (potentially null) inline asm MDNode. 6411 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6412 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6413 6414 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6415 // bits as operand 3. 6416 unsigned ExtraInfo = 0; 6417 if (IA->hasSideEffects()) 6418 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6419 if (IA->isAlignStack()) 6420 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6421 // Set the asm dialect. 6422 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6423 6424 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6425 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6426 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6427 6428 // Compute the constraint code and ConstraintType to use. 6429 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6430 6431 // Ideally, we would only check against memory constraints. However, the 6432 // meaning of an other constraint can be target-specific and we can't easily 6433 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6434 // for other constriants as well. 6435 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6436 OpInfo.ConstraintType == TargetLowering::C_Other) { 6437 if (OpInfo.Type == InlineAsm::isInput) 6438 ExtraInfo |= InlineAsm::Extra_MayLoad; 6439 else if (OpInfo.Type == InlineAsm::isOutput) 6440 ExtraInfo |= InlineAsm::Extra_MayStore; 6441 else if (OpInfo.Type == InlineAsm::isClobber) 6442 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6443 } 6444 } 6445 6446 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6447 TLI->getPointerTy())); 6448 6449 // Loop over all of the inputs, copying the operand values into the 6450 // appropriate registers and processing the output regs. 6451 RegsForValue RetValRegs; 6452 6453 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6454 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6455 6456 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6457 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6458 6459 switch (OpInfo.Type) { 6460 case InlineAsm::isOutput: { 6461 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6462 OpInfo.ConstraintType != TargetLowering::C_Register) { 6463 // Memory output, or 'other' output (e.g. 'X' constraint). 6464 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6465 6466 // Add information to the INLINEASM node to know about this output. 6467 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6468 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6469 TLI->getPointerTy())); 6470 AsmNodeOperands.push_back(OpInfo.CallOperand); 6471 break; 6472 } 6473 6474 // Otherwise, this is a register or register class output. 6475 6476 // Copy the output from the appropriate register. Find a register that 6477 // we can use. 6478 if (OpInfo.AssignedRegs.Regs.empty()) { 6479 LLVMContext &Ctx = *DAG.getContext(); 6480 Ctx.emitError(CS.getInstruction(), 6481 "couldn't allocate output register for constraint '" + 6482 Twine(OpInfo.ConstraintCode) + "'"); 6483 return; 6484 } 6485 6486 // If this is an indirect operand, store through the pointer after the 6487 // asm. 6488 if (OpInfo.isIndirect) { 6489 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6490 OpInfo.CallOperandVal)); 6491 } else { 6492 // This is the result value of the call. 6493 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6494 // Concatenate this output onto the outputs list. 6495 RetValRegs.append(OpInfo.AssignedRegs); 6496 } 6497 6498 // Add information to the INLINEASM node to know that this register is 6499 // set. 6500 OpInfo.AssignedRegs 6501 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6502 ? InlineAsm::Kind_RegDefEarlyClobber 6503 : InlineAsm::Kind_RegDef, 6504 false, 0, DAG, AsmNodeOperands); 6505 break; 6506 } 6507 case InlineAsm::isInput: { 6508 SDValue InOperandVal = OpInfo.CallOperand; 6509 6510 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6511 // If this is required to match an output register we have already set, 6512 // just use its register. 6513 unsigned OperandNo = OpInfo.getMatchedOperand(); 6514 6515 // Scan until we find the definition we already emitted of this operand. 6516 // When we find it, create a RegsForValue operand. 6517 unsigned CurOp = InlineAsm::Op_FirstOperand; 6518 for (; OperandNo; --OperandNo) { 6519 // Advance to the next operand. 6520 unsigned OpFlag = 6521 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6522 assert((InlineAsm::isRegDefKind(OpFlag) || 6523 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6524 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6525 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6526 } 6527 6528 unsigned OpFlag = 6529 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6530 if (InlineAsm::isRegDefKind(OpFlag) || 6531 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6532 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6533 if (OpInfo.isIndirect) { 6534 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6535 LLVMContext &Ctx = *DAG.getContext(); 6536 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6537 " don't know how to handle tied " 6538 "indirect register inputs"); 6539 return; 6540 } 6541 6542 RegsForValue MatchedRegs; 6543 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6544 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6545 MatchedRegs.RegVTs.push_back(RegVT); 6546 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6547 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6548 i != e; ++i) { 6549 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6550 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6551 else { 6552 LLVMContext &Ctx = *DAG.getContext(); 6553 Ctx.emitError(CS.getInstruction(), 6554 "inline asm error: This value" 6555 " type register class is not natively supported!"); 6556 return; 6557 } 6558 } 6559 // Use the produced MatchedRegs object to 6560 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6561 Chain, &Flag, CS.getInstruction()); 6562 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6563 true, OpInfo.getMatchedOperand(), 6564 DAG, AsmNodeOperands); 6565 break; 6566 } 6567 6568 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6569 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6570 "Unexpected number of operands"); 6571 // Add information to the INLINEASM node to know about this input. 6572 // See InlineAsm.h isUseOperandTiedToDef. 6573 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6574 OpInfo.getMatchedOperand()); 6575 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6576 TLI->getPointerTy())); 6577 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6578 break; 6579 } 6580 6581 // Treat indirect 'X' constraint as memory. 6582 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6583 OpInfo.isIndirect) 6584 OpInfo.ConstraintType = TargetLowering::C_Memory; 6585 6586 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6587 std::vector<SDValue> Ops; 6588 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6589 Ops, DAG); 6590 if (Ops.empty()) { 6591 LLVMContext &Ctx = *DAG.getContext(); 6592 Ctx.emitError(CS.getInstruction(), 6593 "invalid operand for inline asm constraint '" + 6594 Twine(OpInfo.ConstraintCode) + "'"); 6595 return; 6596 } 6597 6598 // Add information to the INLINEASM node to know about this input. 6599 unsigned ResOpType = 6600 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6601 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6602 TLI->getPointerTy())); 6603 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6604 break; 6605 } 6606 6607 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6608 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6609 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6610 "Memory operands expect pointer values"); 6611 6612 // Add information to the INLINEASM node to know about this input. 6613 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6614 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6615 TLI->getPointerTy())); 6616 AsmNodeOperands.push_back(InOperandVal); 6617 break; 6618 } 6619 6620 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6621 OpInfo.ConstraintType == TargetLowering::C_Register) && 6622 "Unknown constraint type!"); 6623 6624 // TODO: Support this. 6625 if (OpInfo.isIndirect) { 6626 LLVMContext &Ctx = *DAG.getContext(); 6627 Ctx.emitError(CS.getInstruction(), 6628 "Don't know how to handle indirect register inputs yet " 6629 "for constraint '" + 6630 Twine(OpInfo.ConstraintCode) + "'"); 6631 return; 6632 } 6633 6634 // Copy the input into the appropriate registers. 6635 if (OpInfo.AssignedRegs.Regs.empty()) { 6636 LLVMContext &Ctx = *DAG.getContext(); 6637 Ctx.emitError(CS.getInstruction(), 6638 "couldn't allocate input reg for constraint '" + 6639 Twine(OpInfo.ConstraintCode) + "'"); 6640 return; 6641 } 6642 6643 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6644 Chain, &Flag, CS.getInstruction()); 6645 6646 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6647 DAG, AsmNodeOperands); 6648 break; 6649 } 6650 case InlineAsm::isClobber: { 6651 // Add the clobbered value to the operand list, so that the register 6652 // allocator is aware that the physreg got clobbered. 6653 if (!OpInfo.AssignedRegs.Regs.empty()) 6654 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6655 false, 0, DAG, 6656 AsmNodeOperands); 6657 break; 6658 } 6659 } 6660 } 6661 6662 // Finish up input operands. Set the input chain and add the flag last. 6663 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6664 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6665 6666 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6667 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6668 Flag = Chain.getValue(1); 6669 6670 // If this asm returns a register value, copy the result from that register 6671 // and set it as the value of the call. 6672 if (!RetValRegs.Regs.empty()) { 6673 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6674 Chain, &Flag, CS.getInstruction()); 6675 6676 // FIXME: Why don't we do this for inline asms with MRVs? 6677 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6678 EVT ResultType = TLI->getValueType(CS.getType()); 6679 6680 // If any of the results of the inline asm is a vector, it may have the 6681 // wrong width/num elts. This can happen for register classes that can 6682 // contain multiple different value types. The preg or vreg allocated may 6683 // not have the same VT as was expected. Convert it to the right type 6684 // with bit_convert. 6685 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6686 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6687 ResultType, Val); 6688 6689 } else if (ResultType != Val.getValueType() && 6690 ResultType.isInteger() && Val.getValueType().isInteger()) { 6691 // If a result value was tied to an input value, the computed result may 6692 // have a wider width than the expected result. Extract the relevant 6693 // portion. 6694 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6695 } 6696 6697 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6698 } 6699 6700 setValue(CS.getInstruction(), Val); 6701 // Don't need to use this as a chain in this case. 6702 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6703 return; 6704 } 6705 6706 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6707 6708 // Process indirect outputs, first output all of the flagged copies out of 6709 // physregs. 6710 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6711 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6712 const Value *Ptr = IndirectStoresToEmit[i].second; 6713 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6714 Chain, &Flag, IA); 6715 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6716 } 6717 6718 // Emit the non-flagged stores from the physregs. 6719 SmallVector<SDValue, 8> OutChains; 6720 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6721 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6722 StoresToEmit[i].first, 6723 getValue(StoresToEmit[i].second), 6724 MachinePointerInfo(StoresToEmit[i].second), 6725 false, false, 0); 6726 OutChains.push_back(Val); 6727 } 6728 6729 if (!OutChains.empty()) 6730 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6731 6732 DAG.setRoot(Chain); 6733 } 6734 6735 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6736 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6737 MVT::Other, getRoot(), 6738 getValue(I.getArgOperand(0)), 6739 DAG.getSrcValue(I.getArgOperand(0)))); 6740 } 6741 6742 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6743 const TargetLowering *TLI = TM.getTargetLowering(); 6744 const DataLayout &DL = *TLI->getDataLayout(); 6745 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6746 getRoot(), getValue(I.getOperand(0)), 6747 DAG.getSrcValue(I.getOperand(0)), 6748 DL.getABITypeAlignment(I.getType())); 6749 setValue(&I, V); 6750 DAG.setRoot(V.getValue(1)); 6751 } 6752 6753 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6754 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6755 MVT::Other, getRoot(), 6756 getValue(I.getArgOperand(0)), 6757 DAG.getSrcValue(I.getArgOperand(0)))); 6758 } 6759 6760 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6761 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6762 MVT::Other, getRoot(), 6763 getValue(I.getArgOperand(0)), 6764 getValue(I.getArgOperand(1)), 6765 DAG.getSrcValue(I.getArgOperand(0)), 6766 DAG.getSrcValue(I.getArgOperand(1)))); 6767 } 6768 6769 /// \brief Lower an argument list according to the target calling convention. 6770 /// 6771 /// \return A tuple of <return-value, token-chain> 6772 /// 6773 /// This is a helper for lowering intrinsics that follow a target calling 6774 /// convention or require stack pointer adjustment. Only a subset of the 6775 /// intrinsic's operands need to participate in the calling convention. 6776 std::pair<SDValue, SDValue> 6777 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6778 unsigned NumArgs, SDValue Callee, 6779 bool useVoidTy) { 6780 TargetLowering::ArgListTy Args; 6781 Args.reserve(NumArgs); 6782 6783 // Populate the argument list. 6784 // Attributes for args start at offset 1, after the return attribute. 6785 ImmutableCallSite CS(&CI); 6786 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6787 ArgI != ArgE; ++ArgI) { 6788 const Value *V = CI.getOperand(ArgI); 6789 6790 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6791 6792 TargetLowering::ArgListEntry Entry; 6793 Entry.Node = getValue(V); 6794 Entry.Ty = V->getType(); 6795 Entry.setAttributes(&CS, AttrI); 6796 Args.push_back(Entry); 6797 } 6798 6799 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6800 TargetLowering::CallLoweringInfo CLI(DAG); 6801 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6802 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6803 .setDiscardResult(!CI.use_empty()); 6804 6805 const TargetLowering *TLI = TM.getTargetLowering(); 6806 return TLI->LowerCallTo(CLI); 6807 } 6808 6809 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6810 /// or patchpoint target node's operand list. 6811 /// 6812 /// Constants are converted to TargetConstants purely as an optimization to 6813 /// avoid constant materialization and register allocation. 6814 /// 6815 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6816 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6817 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6818 /// address materialization and register allocation, but may also be required 6819 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6820 /// alloca in the entry block, then the runtime may assume that the alloca's 6821 /// StackMap location can be read immediately after compilation and that the 6822 /// location is valid at any point during execution (this is similar to the 6823 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6824 /// only available in a register, then the runtime would need to trap when 6825 /// execution reaches the StackMap in order to read the alloca's location. 6826 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6827 SmallVectorImpl<SDValue> &Ops, 6828 SelectionDAGBuilder &Builder) { 6829 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6830 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6831 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6832 Ops.push_back( 6833 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6834 Ops.push_back( 6835 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6836 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6837 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6838 Ops.push_back( 6839 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6840 } else 6841 Ops.push_back(OpVal); 6842 } 6843 } 6844 6845 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6846 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6847 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6848 // [live variables...]) 6849 6850 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6851 6852 SDValue Chain, InFlag, Callee, NullPtr; 6853 SmallVector<SDValue, 32> Ops; 6854 6855 SDLoc DL = getCurSDLoc(); 6856 Callee = getValue(CI.getCalledValue()); 6857 NullPtr = DAG.getIntPtrConstant(0, true); 6858 6859 // The stackmap intrinsic only records the live variables (the arguemnts 6860 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6861 // intrinsic, this won't be lowered to a function call. This means we don't 6862 // have to worry about calling conventions and target specific lowering code. 6863 // Instead we perform the call lowering right here. 6864 // 6865 // chain, flag = CALLSEQ_START(chain, 0) 6866 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6867 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6868 // 6869 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6870 InFlag = Chain.getValue(1); 6871 6872 // Add the <id> and <numBytes> constants. 6873 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6874 Ops.push_back(DAG.getTargetConstant( 6875 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6876 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6877 Ops.push_back(DAG.getTargetConstant( 6878 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6879 6880 // Push live variables for the stack map. 6881 addStackMapLiveVars(CI, 2, Ops, *this); 6882 6883 // We are not pushing any register mask info here on the operands list, 6884 // because the stackmap doesn't clobber anything. 6885 6886 // Push the chain and the glue flag. 6887 Ops.push_back(Chain); 6888 Ops.push_back(InFlag); 6889 6890 // Create the STACKMAP node. 6891 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6892 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6893 Chain = SDValue(SM, 0); 6894 InFlag = Chain.getValue(1); 6895 6896 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6897 6898 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6899 6900 // Set the root to the target-lowered call chain. 6901 DAG.setRoot(Chain); 6902 6903 // Inform the Frame Information that we have a stackmap in this function. 6904 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6905 } 6906 6907 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6908 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6909 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6910 // i32 <numBytes>, 6911 // i8* <target>, 6912 // i32 <numArgs>, 6913 // [Args...], 6914 // [live variables...]) 6915 6916 CallingConv::ID CC = CI.getCallingConv(); 6917 bool isAnyRegCC = CC == CallingConv::AnyReg; 6918 bool hasDef = !CI.getType()->isVoidTy(); 6919 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6920 6921 // Get the real number of arguments participating in the call <numArgs> 6922 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6923 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6924 6925 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6926 // Intrinsics include all meta-operands up to but not including CC. 6927 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6928 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6929 "Not enough arguments provided to the patchpoint intrinsic"); 6930 6931 // For AnyRegCC the arguments are lowered later on manually. 6932 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6933 std::pair<SDValue, SDValue> Result = 6934 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6935 6936 // Set the root to the target-lowered call chain. 6937 SDValue Chain = Result.second; 6938 DAG.setRoot(Chain); 6939 6940 SDNode *CallEnd = Chain.getNode(); 6941 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6942 CallEnd = CallEnd->getOperand(0).getNode(); 6943 6944 /// Get a call instruction from the call sequence chain. 6945 /// Tail calls are not allowed. 6946 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6947 "Expected a callseq node."); 6948 SDNode *Call = CallEnd->getOperand(0).getNode(); 6949 bool hasGlue = Call->getGluedNode(); 6950 6951 // Replace the target specific call node with the patchable intrinsic. 6952 SmallVector<SDValue, 8> Ops; 6953 6954 // Add the <id> and <numBytes> constants. 6955 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6956 Ops.push_back(DAG.getTargetConstant( 6957 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6958 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6959 Ops.push_back(DAG.getTargetConstant( 6960 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6961 6962 // Assume that the Callee is a constant address. 6963 // FIXME: handle function symbols in the future. 6964 Ops.push_back( 6965 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6966 /*isTarget=*/true)); 6967 6968 // Adjust <numArgs> to account for any arguments that have been passed on the 6969 // stack instead. 6970 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6971 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 6972 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 6973 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6974 6975 // Add the calling convention 6976 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6977 6978 // Add the arguments we omitted previously. The register allocator should 6979 // place these in any free register. 6980 if (isAnyRegCC) 6981 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6982 Ops.push_back(getValue(CI.getArgOperand(i))); 6983 6984 // Push the arguments from the call instruction up to the register mask. 6985 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 6986 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 6987 Ops.push_back(*i); 6988 6989 // Push live variables for the stack map. 6990 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 6991 6992 // Push the register mask info. 6993 if (hasGlue) 6994 Ops.push_back(*(Call->op_end()-2)); 6995 else 6996 Ops.push_back(*(Call->op_end()-1)); 6997 6998 // Push the chain (this is originally the first operand of the call, but 6999 // becomes now the last or second to last operand). 7000 Ops.push_back(*(Call->op_begin())); 7001 7002 // Push the glue flag (last operand). 7003 if (hasGlue) 7004 Ops.push_back(*(Call->op_end()-1)); 7005 7006 SDVTList NodeTys; 7007 if (isAnyRegCC && hasDef) { 7008 // Create the return types based on the intrinsic definition 7009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7010 SmallVector<EVT, 3> ValueVTs; 7011 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7012 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7013 7014 // There is always a chain and a glue type at the end 7015 ValueVTs.push_back(MVT::Other); 7016 ValueVTs.push_back(MVT::Glue); 7017 NodeTys = DAG.getVTList(ValueVTs); 7018 } else 7019 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7020 7021 // Replace the target specific call node with a PATCHPOINT node. 7022 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7023 getCurSDLoc(), NodeTys, Ops); 7024 7025 // Update the NodeMap. 7026 if (hasDef) { 7027 if (isAnyRegCC) 7028 setValue(&CI, SDValue(MN, 0)); 7029 else 7030 setValue(&CI, Result.first); 7031 } 7032 7033 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7034 // call sequence. Furthermore the location of the chain and glue can change 7035 // when the AnyReg calling convention is used and the intrinsic returns a 7036 // value. 7037 if (isAnyRegCC && hasDef) { 7038 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7039 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7040 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7041 } else 7042 DAG.ReplaceAllUsesWith(Call, MN); 7043 DAG.DeleteNode(Call); 7044 7045 // Inform the Frame Information that we have a patchpoint in this function. 7046 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7047 } 7048 7049 /// Returns an AttributeSet representing the attributes applied to the return 7050 /// value of the given call. 7051 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7052 SmallVector<Attribute::AttrKind, 2> Attrs; 7053 if (CLI.RetSExt) 7054 Attrs.push_back(Attribute::SExt); 7055 if (CLI.RetZExt) 7056 Attrs.push_back(Attribute::ZExt); 7057 if (CLI.IsInReg) 7058 Attrs.push_back(Attribute::InReg); 7059 7060 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7061 Attrs); 7062 } 7063 7064 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7065 /// implementation, which just calls LowerCall. 7066 /// FIXME: When all targets are 7067 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7068 std::pair<SDValue, SDValue> 7069 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7070 // Handle the incoming return values from the call. 7071 CLI.Ins.clear(); 7072 Type *OrigRetTy = CLI.RetTy; 7073 SmallVector<EVT, 4> RetTys; 7074 SmallVector<uint64_t, 4> Offsets; 7075 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7076 7077 SmallVector<ISD::OutputArg, 4> Outs; 7078 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7079 7080 bool CanLowerReturn = 7081 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7082 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7083 7084 SDValue DemoteStackSlot; 7085 int DemoteStackIdx = -100; 7086 if (!CanLowerReturn) { 7087 // FIXME: equivalent assert? 7088 // assert(!CS.hasInAllocaArgument() && 7089 // "sret demotion is incompatible with inalloca"); 7090 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7091 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7092 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7093 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7094 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7095 7096 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7097 ArgListEntry Entry; 7098 Entry.Node = DemoteStackSlot; 7099 Entry.Ty = StackSlotPtrType; 7100 Entry.isSExt = false; 7101 Entry.isZExt = false; 7102 Entry.isInReg = false; 7103 Entry.isSRet = true; 7104 Entry.isNest = false; 7105 Entry.isByVal = false; 7106 Entry.isReturned = false; 7107 Entry.Alignment = Align; 7108 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7109 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7110 } else { 7111 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7112 EVT VT = RetTys[I]; 7113 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7114 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7115 for (unsigned i = 0; i != NumRegs; ++i) { 7116 ISD::InputArg MyFlags; 7117 MyFlags.VT = RegisterVT; 7118 MyFlags.ArgVT = VT; 7119 MyFlags.Used = CLI.IsReturnValueUsed; 7120 if (CLI.RetSExt) 7121 MyFlags.Flags.setSExt(); 7122 if (CLI.RetZExt) 7123 MyFlags.Flags.setZExt(); 7124 if (CLI.IsInReg) 7125 MyFlags.Flags.setInReg(); 7126 CLI.Ins.push_back(MyFlags); 7127 } 7128 } 7129 } 7130 7131 // Handle all of the outgoing arguments. 7132 CLI.Outs.clear(); 7133 CLI.OutVals.clear(); 7134 ArgListTy &Args = CLI.getArgs(); 7135 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7136 SmallVector<EVT, 4> ValueVTs; 7137 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7138 Type *FinalType = Args[i].Ty; 7139 if (Args[i].isByVal) 7140 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7141 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7142 FinalType, CLI.CallConv, CLI.IsVarArg); 7143 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7144 ++Value) { 7145 EVT VT = ValueVTs[Value]; 7146 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7147 SDValue Op = SDValue(Args[i].Node.getNode(), 7148 Args[i].Node.getResNo() + Value); 7149 ISD::ArgFlagsTy Flags; 7150 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7151 7152 if (Args[i].isZExt) 7153 Flags.setZExt(); 7154 if (Args[i].isSExt) 7155 Flags.setSExt(); 7156 if (Args[i].isInReg) 7157 Flags.setInReg(); 7158 if (Args[i].isSRet) 7159 Flags.setSRet(); 7160 if (Args[i].isByVal) 7161 Flags.setByVal(); 7162 if (Args[i].isInAlloca) { 7163 Flags.setInAlloca(); 7164 // Set the byval flag for CCAssignFn callbacks that don't know about 7165 // inalloca. This way we can know how many bytes we should've allocated 7166 // and how many bytes a callee cleanup function will pop. If we port 7167 // inalloca to more targets, we'll have to add custom inalloca handling 7168 // in the various CC lowering callbacks. 7169 Flags.setByVal(); 7170 } 7171 if (Args[i].isByVal || Args[i].isInAlloca) { 7172 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7173 Type *ElementTy = Ty->getElementType(); 7174 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7175 // For ByVal, alignment should come from FE. BE will guess if this 7176 // info is not there but there are cases it cannot get right. 7177 unsigned FrameAlign; 7178 if (Args[i].Alignment) 7179 FrameAlign = Args[i].Alignment; 7180 else 7181 FrameAlign = getByValTypeAlignment(ElementTy); 7182 Flags.setByValAlign(FrameAlign); 7183 } 7184 if (Args[i].isNest) 7185 Flags.setNest(); 7186 if (NeedsRegBlock) 7187 Flags.setInConsecutiveRegs(); 7188 Flags.setOrigAlign(OriginalAlignment); 7189 7190 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7191 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7192 SmallVector<SDValue, 4> Parts(NumParts); 7193 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7194 7195 if (Args[i].isSExt) 7196 ExtendKind = ISD::SIGN_EXTEND; 7197 else if (Args[i].isZExt) 7198 ExtendKind = ISD::ZERO_EXTEND; 7199 7200 // Conservatively only handle 'returned' on non-vectors for now 7201 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7202 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7203 "unexpected use of 'returned'"); 7204 // Before passing 'returned' to the target lowering code, ensure that 7205 // either the register MVT and the actual EVT are the same size or that 7206 // the return value and argument are extended in the same way; in these 7207 // cases it's safe to pass the argument register value unchanged as the 7208 // return register value (although it's at the target's option whether 7209 // to do so) 7210 // TODO: allow code generation to take advantage of partially preserved 7211 // registers rather than clobbering the entire register when the 7212 // parameter extension method is not compatible with the return 7213 // extension method 7214 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7215 (ExtendKind != ISD::ANY_EXTEND && 7216 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7217 Flags.setReturned(); 7218 } 7219 7220 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7221 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7222 7223 for (unsigned j = 0; j != NumParts; ++j) { 7224 // if it isn't first piece, alignment must be 1 7225 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7226 i < CLI.NumFixedArgs, 7227 i, j*Parts[j].getValueType().getStoreSize()); 7228 if (NumParts > 1 && j == 0) 7229 MyFlags.Flags.setSplit(); 7230 else if (j != 0) 7231 MyFlags.Flags.setOrigAlign(1); 7232 7233 // Only mark the end at the last register of the last value. 7234 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7235 MyFlags.Flags.setInConsecutiveRegsLast(); 7236 7237 CLI.Outs.push_back(MyFlags); 7238 CLI.OutVals.push_back(Parts[j]); 7239 } 7240 } 7241 } 7242 7243 SmallVector<SDValue, 4> InVals; 7244 CLI.Chain = LowerCall(CLI, InVals); 7245 7246 // Verify that the target's LowerCall behaved as expected. 7247 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7248 "LowerCall didn't return a valid chain!"); 7249 assert((!CLI.IsTailCall || InVals.empty()) && 7250 "LowerCall emitted a return value for a tail call!"); 7251 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7252 "LowerCall didn't emit the correct number of values!"); 7253 7254 // For a tail call, the return value is merely live-out and there aren't 7255 // any nodes in the DAG representing it. Return a special value to 7256 // indicate that a tail call has been emitted and no more Instructions 7257 // should be processed in the current block. 7258 if (CLI.IsTailCall) { 7259 CLI.DAG.setRoot(CLI.Chain); 7260 return std::make_pair(SDValue(), SDValue()); 7261 } 7262 7263 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7264 assert(InVals[i].getNode() && 7265 "LowerCall emitted a null value!"); 7266 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7267 "LowerCall emitted a value with the wrong type!"); 7268 }); 7269 7270 SmallVector<SDValue, 4> ReturnValues; 7271 if (!CanLowerReturn) { 7272 // The instruction result is the result of loading from the 7273 // hidden sret parameter. 7274 SmallVector<EVT, 1> PVTs; 7275 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7276 7277 ComputeValueVTs(*this, PtrRetTy, PVTs); 7278 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7279 EVT PtrVT = PVTs[0]; 7280 7281 unsigned NumValues = RetTys.size(); 7282 ReturnValues.resize(NumValues); 7283 SmallVector<SDValue, 4> Chains(NumValues); 7284 7285 for (unsigned i = 0; i < NumValues; ++i) { 7286 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7287 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7288 SDValue L = CLI.DAG.getLoad( 7289 RetTys[i], CLI.DL, CLI.Chain, Add, 7290 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7291 false, false, 1); 7292 ReturnValues[i] = L; 7293 Chains[i] = L.getValue(1); 7294 } 7295 7296 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7297 } else { 7298 // Collect the legal value parts into potentially illegal values 7299 // that correspond to the original function's return values. 7300 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7301 if (CLI.RetSExt) 7302 AssertOp = ISD::AssertSext; 7303 else if (CLI.RetZExt) 7304 AssertOp = ISD::AssertZext; 7305 unsigned CurReg = 0; 7306 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7307 EVT VT = RetTys[I]; 7308 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7309 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7310 7311 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7312 NumRegs, RegisterVT, VT, nullptr, 7313 AssertOp)); 7314 CurReg += NumRegs; 7315 } 7316 7317 // For a function returning void, there is no return value. We can't create 7318 // such a node, so we just return a null return value in that case. In 7319 // that case, nothing will actually look at the value. 7320 if (ReturnValues.empty()) 7321 return std::make_pair(SDValue(), CLI.Chain); 7322 } 7323 7324 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7325 CLI.DAG.getVTList(RetTys), ReturnValues); 7326 return std::make_pair(Res, CLI.Chain); 7327 } 7328 7329 void TargetLowering::LowerOperationWrapper(SDNode *N, 7330 SmallVectorImpl<SDValue> &Results, 7331 SelectionDAG &DAG) const { 7332 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7333 if (Res.getNode()) 7334 Results.push_back(Res); 7335 } 7336 7337 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7338 llvm_unreachable("LowerOperation not implemented for this target!"); 7339 } 7340 7341 void 7342 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7343 SDValue Op = getNonRegisterValue(V); 7344 assert((Op.getOpcode() != ISD::CopyFromReg || 7345 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7346 "Copy from a reg to the same reg!"); 7347 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7348 7349 const TargetLowering *TLI = TM.getTargetLowering(); 7350 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7351 SDValue Chain = DAG.getEntryNode(); 7352 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7353 PendingExports.push_back(Chain); 7354 } 7355 7356 #include "llvm/CodeGen/SelectionDAGISel.h" 7357 7358 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7359 /// entry block, return true. This includes arguments used by switches, since 7360 /// the switch may expand into multiple basic blocks. 7361 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7362 // With FastISel active, we may be splitting blocks, so force creation 7363 // of virtual registers for all non-dead arguments. 7364 if (FastISel) 7365 return A->use_empty(); 7366 7367 const BasicBlock *Entry = A->getParent()->begin(); 7368 for (const User *U : A->users()) 7369 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7370 return false; // Use not in entry block. 7371 7372 return true; 7373 } 7374 7375 void SelectionDAGISel::LowerArguments(const Function &F) { 7376 SelectionDAG &DAG = SDB->DAG; 7377 SDLoc dl = SDB->getCurSDLoc(); 7378 const TargetLowering *TLI = getTargetLowering(); 7379 const DataLayout *DL = TLI->getDataLayout(); 7380 SmallVector<ISD::InputArg, 16> Ins; 7381 7382 if (!FuncInfo->CanLowerReturn) { 7383 // Put in an sret pointer parameter before all the other parameters. 7384 SmallVector<EVT, 1> ValueVTs; 7385 ComputeValueVTs(*getTargetLowering(), 7386 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7387 7388 // NOTE: Assuming that a pointer will never break down to more than one VT 7389 // or one register. 7390 ISD::ArgFlagsTy Flags; 7391 Flags.setSRet(); 7392 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7393 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7394 Ins.push_back(RetArg); 7395 } 7396 7397 // Set up the incoming argument description vector. 7398 unsigned Idx = 1; 7399 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7400 I != E; ++I, ++Idx) { 7401 SmallVector<EVT, 4> ValueVTs; 7402 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7403 bool isArgValueUsed = !I->use_empty(); 7404 unsigned PartBase = 0; 7405 Type *FinalType = I->getType(); 7406 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7407 FinalType = cast<PointerType>(FinalType)->getElementType(); 7408 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7409 FinalType, F.getCallingConv(), F.isVarArg()); 7410 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7411 Value != NumValues; ++Value) { 7412 EVT VT = ValueVTs[Value]; 7413 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7414 ISD::ArgFlagsTy Flags; 7415 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7416 7417 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7418 Flags.setZExt(); 7419 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7420 Flags.setSExt(); 7421 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7422 Flags.setInReg(); 7423 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7424 Flags.setSRet(); 7425 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7426 Flags.setByVal(); 7427 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7428 Flags.setInAlloca(); 7429 // Set the byval flag for CCAssignFn callbacks that don't know about 7430 // inalloca. This way we can know how many bytes we should've allocated 7431 // and how many bytes a callee cleanup function will pop. If we port 7432 // inalloca to more targets, we'll have to add custom inalloca handling 7433 // in the various CC lowering callbacks. 7434 Flags.setByVal(); 7435 } 7436 if (Flags.isByVal() || Flags.isInAlloca()) { 7437 PointerType *Ty = cast<PointerType>(I->getType()); 7438 Type *ElementTy = Ty->getElementType(); 7439 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7440 // For ByVal, alignment should be passed from FE. BE will guess if 7441 // this info is not there but there are cases it cannot get right. 7442 unsigned FrameAlign; 7443 if (F.getParamAlignment(Idx)) 7444 FrameAlign = F.getParamAlignment(Idx); 7445 else 7446 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7447 Flags.setByValAlign(FrameAlign); 7448 } 7449 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7450 Flags.setNest(); 7451 if (NeedsRegBlock) 7452 Flags.setInConsecutiveRegs(); 7453 Flags.setOrigAlign(OriginalAlignment); 7454 7455 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7456 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7457 for (unsigned i = 0; i != NumRegs; ++i) { 7458 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7459 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7460 if (NumRegs > 1 && i == 0) 7461 MyFlags.Flags.setSplit(); 7462 // if it isn't first piece, alignment must be 1 7463 else if (i > 0) 7464 MyFlags.Flags.setOrigAlign(1); 7465 7466 // Only mark the end at the last register of the last value. 7467 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7468 MyFlags.Flags.setInConsecutiveRegsLast(); 7469 7470 Ins.push_back(MyFlags); 7471 } 7472 PartBase += VT.getStoreSize(); 7473 } 7474 } 7475 7476 // Call the target to set up the argument values. 7477 SmallVector<SDValue, 8> InVals; 7478 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7479 F.isVarArg(), Ins, 7480 dl, DAG, InVals); 7481 7482 // Verify that the target's LowerFormalArguments behaved as expected. 7483 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7484 "LowerFormalArguments didn't return a valid chain!"); 7485 assert(InVals.size() == Ins.size() && 7486 "LowerFormalArguments didn't emit the correct number of values!"); 7487 DEBUG({ 7488 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7489 assert(InVals[i].getNode() && 7490 "LowerFormalArguments emitted a null value!"); 7491 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7492 "LowerFormalArguments emitted a value with the wrong type!"); 7493 } 7494 }); 7495 7496 // Update the DAG with the new chain value resulting from argument lowering. 7497 DAG.setRoot(NewRoot); 7498 7499 // Set up the argument values. 7500 unsigned i = 0; 7501 Idx = 1; 7502 if (!FuncInfo->CanLowerReturn) { 7503 // Create a virtual register for the sret pointer, and put in a copy 7504 // from the sret argument into it. 7505 SmallVector<EVT, 1> ValueVTs; 7506 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7507 MVT VT = ValueVTs[0].getSimpleVT(); 7508 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7509 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7510 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7511 RegVT, VT, nullptr, AssertOp); 7512 7513 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7514 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7515 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7516 FuncInfo->DemoteRegister = SRetReg; 7517 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7518 SRetReg, ArgValue); 7519 DAG.setRoot(NewRoot); 7520 7521 // i indexes lowered arguments. Bump it past the hidden sret argument. 7522 // Idx indexes LLVM arguments. Don't touch it. 7523 ++i; 7524 } 7525 7526 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7527 ++I, ++Idx) { 7528 SmallVector<SDValue, 4> ArgValues; 7529 SmallVector<EVT, 4> ValueVTs; 7530 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7531 unsigned NumValues = ValueVTs.size(); 7532 7533 // If this argument is unused then remember its value. It is used to generate 7534 // debugging information. 7535 if (I->use_empty() && NumValues) { 7536 SDB->setUnusedArgValue(I, InVals[i]); 7537 7538 // Also remember any frame index for use in FastISel. 7539 if (FrameIndexSDNode *FI = 7540 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7541 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7542 } 7543 7544 for (unsigned Val = 0; Val != NumValues; ++Val) { 7545 EVT VT = ValueVTs[Val]; 7546 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7547 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7548 7549 if (!I->use_empty()) { 7550 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7551 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7552 AssertOp = ISD::AssertSext; 7553 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7554 AssertOp = ISD::AssertZext; 7555 7556 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7557 NumParts, PartVT, VT, 7558 nullptr, AssertOp)); 7559 } 7560 7561 i += NumParts; 7562 } 7563 7564 // We don't need to do anything else for unused arguments. 7565 if (ArgValues.empty()) 7566 continue; 7567 7568 // Note down frame index. 7569 if (FrameIndexSDNode *FI = 7570 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7571 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7572 7573 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7574 SDB->getCurSDLoc()); 7575 7576 SDB->setValue(I, Res); 7577 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7578 if (LoadSDNode *LNode = 7579 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7580 if (FrameIndexSDNode *FI = 7581 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7582 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7583 } 7584 7585 // If this argument is live outside of the entry block, insert a copy from 7586 // wherever we got it to the vreg that other BB's will reference it as. 7587 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7588 // If we can, though, try to skip creating an unnecessary vreg. 7589 // FIXME: This isn't very clean... it would be nice to make this more 7590 // general. It's also subtly incompatible with the hacks FastISel 7591 // uses with vregs. 7592 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7593 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7594 FuncInfo->ValueMap[I] = Reg; 7595 continue; 7596 } 7597 } 7598 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7599 FuncInfo->InitializeRegForValue(I); 7600 SDB->CopyToExportRegsIfNeeded(I); 7601 } 7602 } 7603 7604 assert(i == InVals.size() && "Argument register count mismatch!"); 7605 7606 // Finally, if the target has anything special to do, allow it to do so. 7607 // FIXME: this should insert code into the DAG! 7608 EmitFunctionEntryCode(); 7609 } 7610 7611 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7612 /// ensure constants are generated when needed. Remember the virtual registers 7613 /// that need to be added to the Machine PHI nodes as input. We cannot just 7614 /// directly add them, because expansion might result in multiple MBB's for one 7615 /// BB. As such, the start of the BB might correspond to a different MBB than 7616 /// the end. 7617 /// 7618 void 7619 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7620 const TerminatorInst *TI = LLVMBB->getTerminator(); 7621 7622 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7623 7624 // Check successor nodes' PHI nodes that expect a constant to be available 7625 // from this block. 7626 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7627 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7628 if (!isa<PHINode>(SuccBB->begin())) continue; 7629 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7630 7631 // If this terminator has multiple identical successors (common for 7632 // switches), only handle each succ once. 7633 if (!SuccsHandled.insert(SuccMBB)) continue; 7634 7635 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7636 7637 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7638 // nodes and Machine PHI nodes, but the incoming operands have not been 7639 // emitted yet. 7640 for (BasicBlock::const_iterator I = SuccBB->begin(); 7641 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7642 // Ignore dead phi's. 7643 if (PN->use_empty()) continue; 7644 7645 // Skip empty types 7646 if (PN->getType()->isEmptyTy()) 7647 continue; 7648 7649 unsigned Reg; 7650 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7651 7652 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7653 unsigned &RegOut = ConstantsOut[C]; 7654 if (RegOut == 0) { 7655 RegOut = FuncInfo.CreateRegs(C->getType()); 7656 CopyValueToVirtualRegister(C, RegOut); 7657 } 7658 Reg = RegOut; 7659 } else { 7660 DenseMap<const Value *, unsigned>::iterator I = 7661 FuncInfo.ValueMap.find(PHIOp); 7662 if (I != FuncInfo.ValueMap.end()) 7663 Reg = I->second; 7664 else { 7665 assert(isa<AllocaInst>(PHIOp) && 7666 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7667 "Didn't codegen value into a register!??"); 7668 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7669 CopyValueToVirtualRegister(PHIOp, Reg); 7670 } 7671 } 7672 7673 // Remember that this register needs to added to the machine PHI node as 7674 // the input for this MBB. 7675 SmallVector<EVT, 4> ValueVTs; 7676 const TargetLowering *TLI = TM.getTargetLowering(); 7677 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7678 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7679 EVT VT = ValueVTs[vti]; 7680 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7681 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7682 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7683 Reg += NumRegisters; 7684 } 7685 } 7686 } 7687 7688 ConstantsOut.clear(); 7689 } 7690 7691 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7692 /// is 0. 7693 MachineBasicBlock * 7694 SelectionDAGBuilder::StackProtectorDescriptor:: 7695 AddSuccessorMBB(const BasicBlock *BB, 7696 MachineBasicBlock *ParentMBB, 7697 MachineBasicBlock *SuccMBB) { 7698 // If SuccBB has not been created yet, create it. 7699 if (!SuccMBB) { 7700 MachineFunction *MF = ParentMBB->getParent(); 7701 MachineFunction::iterator BBI = ParentMBB; 7702 SuccMBB = MF->CreateMachineBasicBlock(BB); 7703 MF->insert(++BBI, SuccMBB); 7704 } 7705 // Add it as a successor of ParentMBB. 7706 ParentMBB->addSuccessor(SuccMBB); 7707 return SuccMBB; 7708 } 7709