1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include "llvm/Target/TargetSelectionDAGInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 /// LimitFloatPrecision - Generate low-precision inline sequences for 66 /// some float libcalls (6, 8 or 12 bits). 67 static unsigned LimitFloatPrecision; 68 69 static cl::opt<unsigned, true> 70 LimitFPPrecision("limit-float-precision", 71 cl::desc("Generate low-precision inline sequences " 72 "for some float libcalls"), 73 cl::location(LimitFloatPrecision), 74 cl::init(0)); 75 76 // Limit the width of DAG chains. This is important in general to prevent 77 // prevent DAG-based analysis from blowing up. For example, alias analysis and 78 // load clustering may not complete in reasonable time. It is difficult to 79 // recognize and avoid this situation within each individual analysis, and 80 // future analyses are likely to have the same behavior. Limiting DAG width is 81 // the safe approach, and will be especially important with global DAGs. 82 // 83 // MaxParallelChains default is arbitrarily high to avoid affecting 84 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 85 // sequence over this should have been converted to llvm.memcpy by the 86 // frontend. It easy to induce this behavior with .ll code such as: 87 // %buffer = alloca [4096 x i8] 88 // %data = load [4096 x i8]* %argPtr 89 // store [4096 x i8] %data, [4096 x i8]* %buffer 90 static const unsigned MaxParallelChains = 64; 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 MVT PartVT, EVT ValueVT, const Value *V); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, MVT PartVT, EVT ValueVT, 104 const Value *V, 105 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 106 if (ValueVT.isVector()) 107 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 108 PartVT, ValueVT, V); 109 110 assert(NumParts > 0 && "No parts to assemble!"); 111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 112 SDValue Val = Parts[0]; 113 114 if (NumParts > 1) { 115 // Assemble the value from multiple parts. 116 if (ValueVT.isInteger()) { 117 unsigned PartBits = PartVT.getSizeInBits(); 118 unsigned ValueBits = ValueVT.getSizeInBits(); 119 120 // Assemble the power of 2 part. 121 unsigned RoundParts = NumParts & (NumParts - 1) ? 122 1 << Log2_32(NumParts) : NumParts; 123 unsigned RoundBits = PartBits * RoundParts; 124 EVT RoundVT = RoundBits == ValueBits ? 125 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 126 SDValue Lo, Hi; 127 128 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 129 130 if (RoundParts > 2) { 131 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 132 PartVT, HalfVT, V); 133 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 134 RoundParts / 2, PartVT, HalfVT, V); 135 } else { 136 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 137 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 138 } 139 140 if (TLI.isBigEndian()) 141 std::swap(Lo, Hi); 142 143 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 144 145 if (RoundParts < NumParts) { 146 // Assemble the trailing non-power-of-2 part. 147 unsigned OddParts = NumParts - RoundParts; 148 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 149 Hi = getCopyFromParts(DAG, DL, 150 Parts + RoundParts, OddParts, PartVT, OddVT, V); 151 152 // Combine the round and odd parts. 153 Lo = Val; 154 if (TLI.isBigEndian()) 155 std::swap(Lo, Hi); 156 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 157 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 158 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 159 DAG.getConstant(Lo.getValueType().getSizeInBits(), 160 TLI.getPointerTy())); 161 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 162 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 163 } 164 } else if (PartVT.isFloatingPoint()) { 165 // FP split into multiple FP parts (for ppcf128) 166 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 167 "Unexpected split"); 168 SDValue Lo, Hi; 169 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 170 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 171 if (TLI.isBigEndian()) 172 std::swap(Lo, Hi); 173 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 174 } else { 175 // FP split into integer parts (soft fp) 176 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 177 !PartVT.isVector() && "Unexpected split"); 178 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 179 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 180 } 181 } 182 183 // There is now one part, held in Val. Correct it to match ValueVT. 184 EVT PartEVT = Val.getValueType(); 185 186 if (PartEVT == ValueVT) 187 return Val; 188 189 if (PartEVT.isInteger() && ValueVT.isInteger()) { 190 if (ValueVT.bitsLT(PartEVT)) { 191 // For a truncate, see if we have any information to 192 // indicate whether the truncated bits will always be 193 // zero or sign-extension. 194 if (AssertOp != ISD::DELETED_NODE) 195 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 196 DAG.getValueType(ValueVT)); 197 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 198 } 199 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 200 } 201 202 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 203 // FP_ROUND's are always exact here. 204 if (ValueVT.bitsLT(Val.getValueType())) 205 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 206 DAG.getTargetConstant(1, TLI.getPointerTy())); 207 208 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 212 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 213 214 llvm_unreachable("Unknown mismatch!"); 215 } 216 217 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 218 const Twine &ErrMsg) { 219 const Instruction *I = dyn_cast_or_null<Instruction>(V); 220 if (!V) 221 return Ctx.emitError(ErrMsg); 222 223 const char *AsmError = ", possible invalid constraint for vector type"; 224 if (const CallInst *CI = dyn_cast<CallInst>(I)) 225 if (isa<InlineAsm>(CI->getCalledValue())) 226 return Ctx.emitError(I, ErrMsg + AsmError); 227 228 return Ctx.emitError(I, ErrMsg); 229 } 230 231 /// getCopyFromPartsVector - Create a value that contains the specified legal 232 /// parts combined into the value they represent. If the parts combine to a 233 /// type larger then ValueVT then AssertOp can be used to specify whether the 234 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 235 /// ValueVT (ISD::AssertSext). 236 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 237 const SDValue *Parts, unsigned NumParts, 238 MVT PartVT, EVT ValueVT, const Value *V) { 239 assert(ValueVT.isVector() && "Not a vector value"); 240 assert(NumParts > 0 && "No parts to assemble!"); 241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 242 SDValue Val = Parts[0]; 243 244 // Handle a multi-element vector. 245 if (NumParts > 1) { 246 EVT IntermediateVT; 247 MVT RegisterVT; 248 unsigned NumIntermediates; 249 unsigned NumRegs = 250 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 251 NumIntermediates, RegisterVT); 252 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 253 NumParts = NumRegs; // Silence a compiler warning. 254 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 255 assert(RegisterVT == Parts[0].getSimpleValueType() && 256 "Part type doesn't match part!"); 257 258 // Assemble the parts into intermediate operands. 259 SmallVector<SDValue, 8> Ops(NumIntermediates); 260 if (NumIntermediates == NumParts) { 261 // If the register was not expanded, truncate or copy the value, 262 // as appropriate. 263 for (unsigned i = 0; i != NumParts; ++i) 264 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 265 PartVT, IntermediateVT, V); 266 } else if (NumParts > 0) { 267 // If the intermediate type was expanded, build the intermediate 268 // operands from the parts. 269 assert(NumParts % NumIntermediates == 0 && 270 "Must expand into a divisible number of parts!"); 271 unsigned Factor = NumParts / NumIntermediates; 272 for (unsigned i = 0; i != NumIntermediates; ++i) 273 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 274 PartVT, IntermediateVT, V); 275 } 276 277 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 278 // intermediate operands. 279 Val = DAG.getNode(IntermediateVT.isVector() ? 280 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 281 ValueVT, &Ops[0], NumIntermediates); 282 } 283 284 // There is now one part, held in Val. Correct it to match ValueVT. 285 EVT PartEVT = Val.getValueType(); 286 287 if (PartEVT == ValueVT) 288 return Val; 289 290 if (PartEVT.isVector()) { 291 // If the element type of the source/dest vectors are the same, but the 292 // parts vector has more elements than the value vector, then we have a 293 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 294 // elements we want. 295 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 296 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 297 "Cannot narrow, it would be a lossy transformation"); 298 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 299 DAG.getConstant(0, TLI.getVectorIdxTy())); 300 } 301 302 // Vector/Vector bitcast. 303 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 307 "Cannot handle this kind of promotion"); 308 // Promoted vector extract 309 bool Smaller = ValueVT.bitsLE(PartEVT); 310 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 311 DL, ValueVT, Val); 312 313 } 314 315 // Trivial bitcast if the types are the same size and the destination 316 // vector type is legal. 317 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 318 TLI.isTypeLegal(ValueVT)) 319 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 320 321 // Handle cases such as i8 -> <1 x i1> 322 if (ValueVT.getVectorNumElements() != 1) { 323 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 324 "non-trivial scalar-to-vector conversion"); 325 return DAG.getUNDEF(ValueVT); 326 } 327 328 if (ValueVT.getVectorNumElements() == 1 && 329 ValueVT.getVectorElementType() != PartEVT) { 330 bool Smaller = ValueVT.bitsLE(PartEVT); 331 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 332 DL, ValueVT.getScalarType(), Val); 333 } 334 335 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 336 } 337 338 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 339 SDValue Val, SDValue *Parts, unsigned NumParts, 340 MVT PartVT, const Value *V); 341 342 /// getCopyToParts - Create a series of nodes that contain the specified value 343 /// split into legal parts. If the parts contain more bits than Val, then, for 344 /// integers, ExtendKind can be used to specify how to generate the extra bits. 345 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 346 SDValue Val, SDValue *Parts, unsigned NumParts, 347 MVT PartVT, const Value *V, 348 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 349 EVT ValueVT = Val.getValueType(); 350 351 // Handle the vector case separately. 352 if (ValueVT.isVector()) 353 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 unsigned PartBits = PartVT.getSizeInBits(); 357 unsigned OrigNumParts = NumParts; 358 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 359 360 if (NumParts == 0) 361 return; 362 363 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 364 EVT PartEVT = PartVT; 365 if (PartEVT == ValueVT) { 366 assert(NumParts == 1 && "No-op copy with multiple parts!"); 367 Parts[0] = Val; 368 return; 369 } 370 371 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 372 // If the parts cover more bits than the value has, promote the value. 373 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 374 assert(NumParts == 1 && "Do not know what to promote to!"); 375 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 376 } else { 377 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 378 ValueVT.isInteger() && 379 "Unknown mismatch!"); 380 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 381 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 382 if (PartVT == MVT::x86mmx) 383 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 384 } 385 } else if (PartBits == ValueVT.getSizeInBits()) { 386 // Different types of the same size. 387 assert(NumParts == 1 && PartEVT != ValueVT); 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 390 // If the parts cover less bits than value has, truncate the value. 391 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 392 ValueVT.isInteger() && 393 "Unknown mismatch!"); 394 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 395 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 396 if (PartVT == MVT::x86mmx) 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } 399 400 // The value may have changed - recompute ValueVT. 401 ValueVT = Val.getValueType(); 402 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 403 "Failed to tile the value with PartVT!"); 404 405 if (NumParts == 1) { 406 if (PartEVT != ValueVT) 407 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 408 "scalar-to-vector conversion failed"); 409 410 Parts[0] = Val; 411 return; 412 } 413 414 // Expand the value into multiple parts. 415 if (NumParts & (NumParts - 1)) { 416 // The number of parts is not a power of 2. Split off and copy the tail. 417 assert(PartVT.isInteger() && ValueVT.isInteger() && 418 "Do not know what to expand to!"); 419 unsigned RoundParts = 1 << Log2_32(NumParts); 420 unsigned RoundBits = RoundParts * PartBits; 421 unsigned OddParts = NumParts - RoundParts; 422 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 423 DAG.getIntPtrConstant(RoundBits)); 424 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 425 426 if (TLI.isBigEndian()) 427 // The odd parts were reversed by getCopyToParts - unreverse them. 428 std::reverse(Parts + RoundParts, Parts + NumParts); 429 430 NumParts = RoundParts; 431 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 432 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 433 } 434 435 // The number of parts is a power of 2. Repeatedly bisect the value using 436 // EXTRACT_ELEMENT. 437 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 438 EVT::getIntegerVT(*DAG.getContext(), 439 ValueVT.getSizeInBits()), 440 Val); 441 442 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 443 for (unsigned i = 0; i < NumParts; i += StepSize) { 444 unsigned ThisBits = StepSize * PartBits / 2; 445 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 446 SDValue &Part0 = Parts[i]; 447 SDValue &Part1 = Parts[i+StepSize/2]; 448 449 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 450 ThisVT, Part0, DAG.getIntPtrConstant(1)); 451 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(0)); 453 454 if (ThisBits == PartBits && ThisVT != PartVT) { 455 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 456 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 457 } 458 } 459 } 460 461 if (TLI.isBigEndian()) 462 std::reverse(Parts, Parts + OrigNumParts); 463 } 464 465 466 /// getCopyToPartsVector - Create a series of nodes that contain the specified 467 /// value split into legal parts. 468 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V) { 471 EVT ValueVT = Val.getValueType(); 472 assert(ValueVT.isVector() && "Not a vector"); 473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 474 475 if (NumParts == 1) { 476 EVT PartEVT = PartVT; 477 if (PartEVT == ValueVT) { 478 // Nothing to do. 479 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 480 // Bitconvert vector->vector case. 481 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 482 } else if (PartVT.isVector() && 483 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 484 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 485 EVT ElementVT = PartVT.getVectorElementType(); 486 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 487 // undef elements. 488 SmallVector<SDValue, 16> Ops; 489 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 490 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 491 ElementVT, Val, DAG.getConstant(i, 492 TLI.getVectorIdxTy()))); 493 494 for (unsigned i = ValueVT.getVectorNumElements(), 495 e = PartVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getUNDEF(ElementVT)); 497 498 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 499 500 // FIXME: Use CONCAT for 2x -> 4x. 501 502 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 503 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 504 } else if (PartVT.isVector() && 505 PartEVT.getVectorElementType().bitsGE( 506 ValueVT.getVectorElementType()) && 507 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 508 509 // Promoted vector extract 510 bool Smaller = PartEVT.bitsLE(ValueVT); 511 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 512 DL, PartVT, Val); 513 } else{ 514 // Vector -> scalar conversion. 515 assert(ValueVT.getVectorNumElements() == 1 && 516 "Only trivial vector-to-scalar conversions should get here!"); 517 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 519 520 bool Smaller = ValueVT.bitsLE(PartVT); 521 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 522 DL, PartVT, Val); 523 } 524 525 Parts[0] = Val; 526 return; 527 } 528 529 // Handle a multi-element vector. 530 EVT IntermediateVT; 531 MVT RegisterVT; 532 unsigned NumIntermediates; 533 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 534 IntermediateVT, 535 NumIntermediates, RegisterVT); 536 unsigned NumElements = ValueVT.getVectorNumElements(); 537 538 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 539 NumParts = NumRegs; // Silence a compiler warning. 540 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 541 542 // Split the vector into intermediate operands. 543 SmallVector<SDValue, 8> Ops(NumIntermediates); 544 for (unsigned i = 0; i != NumIntermediates; ++i) { 545 if (IntermediateVT.isVector()) 546 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 547 IntermediateVT, Val, 548 DAG.getConstant(i * (NumElements / NumIntermediates), 549 TLI.getVectorIdxTy())); 550 else 551 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i, TLI.getVectorIdxTy())); 554 } 555 556 // Split the intermediate operands into legal parts. 557 if (NumParts == NumIntermediates) { 558 // If the register was not expanded, promote or copy the value, 559 // as appropriate. 560 for (unsigned i = 0; i != NumParts; ++i) 561 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 562 } else if (NumParts > 0) { 563 // If the intermediate type was expanded, split each the value into 564 // legal parts. 565 assert(NumParts % NumIntermediates == 0 && 566 "Must expand into a divisible number of parts!"); 567 unsigned Factor = NumParts / NumIntermediates; 568 for (unsigned i = 0; i != NumIntermediates; ++i) 569 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 570 } 571 } 572 573 namespace { 574 /// RegsForValue - This struct represents the registers (physical or virtual) 575 /// that a particular set of values is assigned, and the type information 576 /// about the value. The most common situation is to represent one value at a 577 /// time, but struct or array values are handled element-wise as multiple 578 /// values. The splitting of aggregates is performed recursively, so that we 579 /// never have aggregate-typed registers. The values at this point do not 580 /// necessarily have legal types, so each value may require one or more 581 /// registers of some legal type. 582 /// 583 struct RegsForValue { 584 /// ValueVTs - The value types of the values, which may not be legal, and 585 /// may need be promoted or synthesized from one or more registers. 586 /// 587 SmallVector<EVT, 4> ValueVTs; 588 589 /// RegVTs - The value types of the registers. This is the same size as 590 /// ValueVTs and it records, for each value, what the type of the assigned 591 /// register or registers are. (Individual values are never synthesized 592 /// from more than one type of register.) 593 /// 594 /// With virtual registers, the contents of RegVTs is redundant with TLI's 595 /// getRegisterType member function, however when with physical registers 596 /// it is necessary to have a separate record of the types. 597 /// 598 SmallVector<MVT, 4> RegVTs; 599 600 /// Regs - This list holds the registers assigned to the values. 601 /// Each legal or promoted value requires one register, and each 602 /// expanded value requires multiple registers. 603 /// 604 SmallVector<unsigned, 4> Regs; 605 606 RegsForValue() {} 607 608 RegsForValue(const SmallVector<unsigned, 4> ®s, 609 MVT regvt, EVT valuevt) 610 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 611 612 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 613 unsigned Reg, Type *Ty) { 614 ComputeValueVTs(tli, Ty, ValueVTs); 615 616 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 617 EVT ValueVT = ValueVTs[Value]; 618 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 619 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 620 for (unsigned i = 0; i != NumRegs; ++i) 621 Regs.push_back(Reg + i); 622 RegVTs.push_back(RegisterVT); 623 Reg += NumRegs; 624 } 625 } 626 627 /// append - Add the specified values to this one. 628 void append(const RegsForValue &RHS) { 629 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 630 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 631 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVTs value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 639 SDLoc dl, 640 SDValue &Chain, SDValue *Flag, 641 const Value *V = 0) const; 642 643 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 644 /// specified value into the registers specified by this object. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 648 SDValue &Chain, SDValue *Flag, const Value *V) const; 649 650 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 651 /// operand list. This adds the code marker, matching input operand index 652 /// (if applicable), and includes the number of values added into it. 653 void AddInlineAsmOperands(unsigned Kind, 654 bool HasMatching, unsigned MatchingIdx, 655 SelectionDAG &DAG, 656 std::vector<SDValue> &Ops) const; 657 }; 658 } 659 660 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 661 /// this value and returns the result as a ValueVT value. This uses 662 /// Chain/Flag as the input and updates them for the output Chain/Flag. 663 /// If the Flag pointer is NULL, no flag is used. 664 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 665 FunctionLoweringInfo &FuncInfo, 666 SDLoc dl, 667 SDValue &Chain, SDValue *Flag, 668 const Value *V) const { 669 // A Value with type {} or [0 x %t] needs no registers. 670 if (ValueVTs.empty()) 671 return SDValue(); 672 673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 674 675 // Assemble the legal parts into the final values. 676 SmallVector<SDValue, 4> Values(ValueVTs.size()); 677 SmallVector<SDValue, 8> Parts; 678 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 679 // Copy the legal parts from the registers. 680 EVT ValueVT = ValueVTs[Value]; 681 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 682 MVT RegisterVT = RegVTs[Value]; 683 684 Parts.resize(NumRegs); 685 for (unsigned i = 0; i != NumRegs; ++i) { 686 SDValue P; 687 if (Flag == 0) { 688 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 689 } else { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 691 *Flag = P.getValue(2); 692 } 693 694 Chain = P.getValue(1); 695 Parts[i] = P; 696 697 // If the source register was virtual and if we know something about it, 698 // add an assert node. 699 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 700 !RegisterVT.isInteger() || RegisterVT.isVector()) 701 continue; 702 703 const FunctionLoweringInfo::LiveOutInfo *LOI = 704 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 705 if (!LOI) 706 continue; 707 708 unsigned RegSize = RegisterVT.getSizeInBits(); 709 unsigned NumSignBits = LOI->NumSignBits; 710 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 711 712 if (NumZeroBits == RegSize) { 713 // The current value is a zero. 714 // Explicitly express that as it would be easier for 715 // optimizations to kick in. 716 Parts[i] = DAG.getConstant(0, RegisterVT); 717 continue; 718 } 719 720 // FIXME: We capture more information than the dag can represent. For 721 // now, just use the tightest assertzext/assertsext possible. 722 bool isSExt = true; 723 EVT FromVT(MVT::Other); 724 if (NumSignBits == RegSize) 725 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 726 else if (NumZeroBits >= RegSize-1) 727 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 728 else if (NumSignBits > RegSize-8) 729 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 730 else if (NumZeroBits >= RegSize-8) 731 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 732 else if (NumSignBits > RegSize-16) 733 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 734 else if (NumZeroBits >= RegSize-16) 735 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 736 else if (NumSignBits > RegSize-32) 737 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 738 else if (NumZeroBits >= RegSize-32) 739 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 740 else 741 continue; 742 743 // Add an assertion node. 744 assert(FromVT != MVT::Other); 745 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 746 RegisterVT, P, DAG.getValueType(FromVT)); 747 } 748 749 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 750 NumRegs, RegisterVT, ValueVT, V); 751 Part += NumRegs; 752 Parts.clear(); 753 } 754 755 return DAG.getNode(ISD::MERGE_VALUES, dl, 756 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 757 &Values[0], ValueVTs.size()); 758 } 759 760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 761 /// specified value into the registers specified by this object. This uses 762 /// Chain/Flag as the input and updates them for the output Chain/Flag. 763 /// If the Flag pointer is NULL, no flag is used. 764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 765 SDValue &Chain, SDValue *Flag, 766 const Value *V) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 // Get the list of the values's legal parts. 770 unsigned NumRegs = Regs.size(); 771 SmallVector<SDValue, 8> Parts(NumRegs); 772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 773 EVT ValueVT = ValueVTs[Value]; 774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 775 MVT RegisterVT = RegVTs[Value]; 776 ISD::NodeType ExtendKind = 777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 778 779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 781 Part += NumParts; 782 } 783 784 // Copy the parts into the registers. 785 SmallVector<SDValue, 8> Chains(NumRegs); 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 SDValue Part; 788 if (Flag == 0) { 789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 790 } else { 791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 792 *Flag = Part.getValue(1); 793 } 794 795 Chains[i] = Part.getValue(0); 796 } 797 798 if (NumRegs == 1 || Flag) 799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 800 // flagged to it. That is the CopyToReg nodes and the user are considered 801 // a single scheduling unit. If we create a TokenFactor and return it as 802 // chain, then the TokenFactor is both a predecessor (operand) of the 803 // user as well as a successor (the TF operands are flagged to the user). 804 // c1, f1 = CopyToReg 805 // c2, f2 = CopyToReg 806 // c3 = TokenFactor c1, c2 807 // ... 808 // = op c3, ..., f2 809 Chain = Chains[NumRegs-1]; 810 else 811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 812 } 813 814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 815 /// operand list. This adds the code marker and includes the number of 816 /// values added into it. 817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 818 unsigned MatchingIdx, 819 SelectionDAG &DAG, 820 std::vector<SDValue> &Ops) const { 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 824 if (HasMatching) 825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 826 else if (!Regs.empty() && 827 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 828 // Put the register class of the virtual registers in the flag word. That 829 // way, later passes can recompute register class constraints for inline 830 // assembly as well as normal instructions. 831 // Don't do this for tied operands that can use the regclass information 832 // from the def. 833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 836 } 837 838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 839 Ops.push_back(Res); 840 841 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 842 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 843 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 844 MVT RegisterVT = RegVTs[Value]; 845 for (unsigned i = 0; i != NumRegs; ++i) { 846 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 847 unsigned TheReg = Regs[Reg++]; 848 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 849 850 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 851 // If we clobbered the stack pointer, MFI should know about it. 852 assert(DAG.getMachineFunction().getFrameInfo()-> 853 hasInlineAsmWithSPAdjust()); 854 } 855 } 856 } 857 } 858 859 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 860 const TargetLibraryInfo *li) { 861 AA = &aa; 862 GFI = gfi; 863 LibInfo = li; 864 DL = DAG.getTarget().getDataLayout(); 865 Context = DAG.getContext(); 866 LPadToCallSiteMap.clear(); 867 } 868 869 /// clear - Clear out the current SelectionDAG and the associated 870 /// state and prepare this SelectionDAGBuilder object to be used 871 /// for a new block. This doesn't clear out information about 872 /// additional blocks that are needed to complete switch lowering 873 /// or PHI node updating; that information is cleared out as it is 874 /// consumed. 875 void SelectionDAGBuilder::clear() { 876 NodeMap.clear(); 877 UnusedArgNodeMap.clear(); 878 PendingLoads.clear(); 879 PendingExports.clear(); 880 CurInst = NULL; 881 HasTailCall = false; 882 SDNodeOrder = LowestSDNodeOrder; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 &PendingLoads[0], PendingLoads.size()); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 &PendingExports[0], 944 PendingExports.size()); 945 PendingExports.clear(); 946 DAG.setRoot(Root); 947 return Root; 948 } 949 950 void SelectionDAGBuilder::visit(const Instruction &I) { 951 // Set up outgoing PHI node register values before emitting the terminator. 952 if (isa<TerminatorInst>(&I)) 953 HandlePHINodesInSuccessorBlocks(I.getParent()); 954 955 ++SDNodeOrder; 956 957 CurInst = &I; 958 959 visit(I.getOpcode(), I); 960 961 if (!isa<TerminatorInst>(&I) && !HasTailCall) 962 CopyToExportRegsIfNeeded(&I); 963 964 CurInst = NULL; 965 } 966 967 void SelectionDAGBuilder::visitPHI(const PHINode &) { 968 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 969 } 970 971 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 972 // Note: this doesn't use InstVisitor, because it has to work with 973 // ConstantExpr's in addition to instructions. 974 switch (Opcode) { 975 default: llvm_unreachable("Unknown instruction type encountered!"); 976 // Build the switch statement using the Instruction.def file. 977 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 978 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 979 #include "llvm/IR/Instruction.def" 980 } 981 } 982 983 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 984 // generate the debug data structures now that we've seen its definition. 985 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 986 SDValue Val) { 987 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 988 if (DDI.getDI()) { 989 const DbgValueInst *DI = DDI.getDI(); 990 DebugLoc dl = DDI.getdl(); 991 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 992 MDNode *Variable = DI->getVariable(); 993 uint64_t Offset = DI->getOffset(); 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 999 DAG.AddDbgValue(SDV, Val.getNode(), false); 1000 } 1001 } else 1002 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1003 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1004 } 1005 } 1006 1007 /// getValue - Return an SDValue for the given Value. 1008 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1009 // If we already have an SDValue for this value, use it. It's important 1010 // to do this first, so that we don't create a CopyFromReg if we already 1011 // have a regular SDValue. 1012 SDValue &N = NodeMap[V]; 1013 if (N.getNode()) return N; 1014 1015 // If there's a virtual register allocated and initialized for this 1016 // value, use it. 1017 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1018 if (It != FuncInfo.ValueMap.end()) { 1019 unsigned InReg = It->second; 1020 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1021 InReg, V->getType()); 1022 SDValue Chain = DAG.getEntryNode(); 1023 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1024 resolveDanglingDebugInfo(V, N); 1025 return N; 1026 } 1027 1028 // Otherwise create a new SDValue and remember it. 1029 SDValue Val = getValueImpl(V); 1030 NodeMap[V] = Val; 1031 resolveDanglingDebugInfo(V, Val); 1032 return Val; 1033 } 1034 1035 /// getNonRegisterValue - Return an SDValue for the given Value, but 1036 /// don't look in FuncInfo.ValueMap for a virtual register. 1037 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1038 // If we already have an SDValue for this value, use it. 1039 SDValue &N = NodeMap[V]; 1040 if (N.getNode()) return N; 1041 1042 // Otherwise create a new SDValue and remember it. 1043 SDValue Val = getValueImpl(V); 1044 NodeMap[V] = Val; 1045 resolveDanglingDebugInfo(V, Val); 1046 return Val; 1047 } 1048 1049 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1050 /// Create an SDValue for the given value. 1051 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1052 const TargetLowering *TLI = TM.getTargetLowering(); 1053 1054 if (const Constant *C = dyn_cast<Constant>(V)) { 1055 EVT VT = TLI->getValueType(V->getType(), true); 1056 1057 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1058 return DAG.getConstant(*CI, VT); 1059 1060 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1061 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1062 1063 if (isa<ConstantPointerNull>(C)) { 1064 unsigned AS = V->getType()->getPointerAddressSpace(); 1065 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1066 } 1067 1068 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1069 return DAG.getConstantFP(*CFP, VT); 1070 1071 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1072 return DAG.getUNDEF(VT); 1073 1074 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1075 visit(CE->getOpcode(), *CE); 1076 SDValue N1 = NodeMap[V]; 1077 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1078 return N1; 1079 } 1080 1081 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1082 SmallVector<SDValue, 4> Constants; 1083 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1084 OI != OE; ++OI) { 1085 SDNode *Val = getValue(*OI).getNode(); 1086 // If the operand is an empty aggregate, there are no values. 1087 if (!Val) continue; 1088 // Add each leaf value from the operand to the Constants list 1089 // to form a flattened list of all the values. 1090 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1091 Constants.push_back(SDValue(Val, i)); 1092 } 1093 1094 return DAG.getMergeValues(&Constants[0], Constants.size(), 1095 getCurSDLoc()); 1096 } 1097 1098 if (const ConstantDataSequential *CDS = 1099 dyn_cast<ConstantDataSequential>(C)) { 1100 SmallVector<SDValue, 4> Ops; 1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Ops.push_back(SDValue(Val, i)); 1107 } 1108 1109 if (isa<ArrayType>(CDS->getType())) 1110 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1112 VT, &Ops[0], Ops.size()); 1113 } 1114 1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1117 "Unknown struct or array constant!"); 1118 1119 SmallVector<EVT, 4> ValueVTs; 1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1121 unsigned NumElts = ValueVTs.size(); 1122 if (NumElts == 0) 1123 return SDValue(); // empty struct 1124 SmallVector<SDValue, 4> Constants(NumElts); 1125 for (unsigned i = 0; i != NumElts; ++i) { 1126 EVT EltVT = ValueVTs[i]; 1127 if (isa<UndefValue>(C)) 1128 Constants[i] = DAG.getUNDEF(EltVT); 1129 else if (EltVT.isFloatingPoint()) 1130 Constants[i] = DAG.getConstantFP(0, EltVT); 1131 else 1132 Constants[i] = DAG.getConstant(0, EltVT); 1133 } 1134 1135 return DAG.getMergeValues(&Constants[0], NumElts, 1136 getCurSDLoc()); 1137 } 1138 1139 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1140 return DAG.getBlockAddress(BA, VT); 1141 1142 VectorType *VecTy = cast<VectorType>(V->getType()); 1143 unsigned NumElements = VecTy->getNumElements(); 1144 1145 // Now that we know the number and type of the elements, get that number of 1146 // elements into the Ops array based on what kind of constant it is. 1147 SmallVector<SDValue, 16> Ops; 1148 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1149 for (unsigned i = 0; i != NumElements; ++i) 1150 Ops.push_back(getValue(CV->getOperand(i))); 1151 } else { 1152 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1153 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1154 1155 SDValue Op; 1156 if (EltVT.isFloatingPoint()) 1157 Op = DAG.getConstantFP(0, EltVT); 1158 else 1159 Op = DAG.getConstant(0, EltVT); 1160 Ops.assign(NumElements, Op); 1161 } 1162 1163 // Create a BUILD_VECTOR node. 1164 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1165 VT, &Ops[0], Ops.size()); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, &Chains[0], NumValues); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1281 Outs, OutVals, getCurSDLoc(), 1282 DAG); 1283 1284 // Verify that the target's LowerReturn behaved as expected. 1285 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1286 "LowerReturn didn't return a valid chain!"); 1287 1288 // Update the DAG with the new chain value resulting from return lowering. 1289 DAG.setRoot(Chain); 1290 } 1291 1292 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1293 /// created for it, emit nodes to copy the value into the virtual 1294 /// registers. 1295 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1296 // Skip empty types 1297 if (V->getType()->isEmptyTy()) 1298 return; 1299 1300 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1301 if (VMI != FuncInfo.ValueMap.end()) { 1302 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1303 CopyValueToVirtualRegister(V, VMI->second); 1304 } 1305 } 1306 1307 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1308 /// the current basic block, add it to ValueMap now so that we'll get a 1309 /// CopyTo/FromReg. 1310 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1311 // No need to export constants. 1312 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1313 1314 // Already exported? 1315 if (FuncInfo.isExportedInst(V)) return; 1316 1317 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1318 CopyValueToVirtualRegister(V, Reg); 1319 } 1320 1321 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1322 const BasicBlock *FromBB) { 1323 // The operands of the setcc have to be in this block. We don't know 1324 // how to export them from some other block. 1325 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1326 // Can export from current BB. 1327 if (VI->getParent() == FromBB) 1328 return true; 1329 1330 // Is already exported, noop. 1331 return FuncInfo.isExportedInst(V); 1332 } 1333 1334 // If this is an argument, we can export it if the BB is the entry block or 1335 // if it is already exported. 1336 if (isa<Argument>(V)) { 1337 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1338 return true; 1339 1340 // Otherwise, can only export this if it is already exported. 1341 return FuncInfo.isExportedInst(V); 1342 } 1343 1344 // Otherwise, constants can always be exported. 1345 return true; 1346 } 1347 1348 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1349 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1350 const MachineBasicBlock *Dst) const { 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 if (!BPI) 1353 return 0; 1354 const BasicBlock *SrcBB = Src->getBasicBlock(); 1355 const BasicBlock *DstBB = Dst->getBasicBlock(); 1356 return BPI->getEdgeWeight(SrcBB, DstBB); 1357 } 1358 1359 void SelectionDAGBuilder:: 1360 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1361 uint32_t Weight /* = 0 */) { 1362 if (!Weight) 1363 Weight = getEdgeWeight(Src, Dst); 1364 Src->addSuccessor(Dst, Weight); 1365 } 1366 1367 1368 static bool InBlock(const Value *V, const BasicBlock *BB) { 1369 if (const Instruction *I = dyn_cast<Instruction>(V)) 1370 return I->getParent() == BB; 1371 return true; 1372 } 1373 1374 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1375 /// This function emits a branch and is used at the leaves of an OR or an 1376 /// AND operator tree. 1377 /// 1378 void 1379 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1380 MachineBasicBlock *TBB, 1381 MachineBasicBlock *FBB, 1382 MachineBasicBlock *CurBB, 1383 MachineBasicBlock *SwitchBB, 1384 uint32_t TWeight, 1385 uint32_t FWeight) { 1386 const BasicBlock *BB = CurBB->getBasicBlock(); 1387 1388 // If the leaf of the tree is a comparison, merge the condition into 1389 // the caseblock. 1390 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1391 // The operands of the cmp have to be in this block. We don't know 1392 // how to export them from some other block. If this is the first block 1393 // of the sequence, no exporting is needed. 1394 if (CurBB == SwitchBB || 1395 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1396 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1397 ISD::CondCode Condition; 1398 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1399 Condition = getICmpCondCode(IC->getPredicate()); 1400 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1401 Condition = getFCmpCondCode(FC->getPredicate()); 1402 if (TM.Options.NoNaNsFPMath) 1403 Condition = getFCmpCodeWithoutNaN(Condition); 1404 } else { 1405 Condition = ISD::SETEQ; // silence warning. 1406 llvm_unreachable("Unknown compare instruction"); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), 1410 BOp->getOperand(1), NULL, TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 NULL, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 unsigned Opc, uint32_t TWeight, 1437 uint32_t FWeight) { 1438 // If this node is not part of the or/and tree, emit it as a branch. 1439 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1440 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1441 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1442 BOp->getParent() != CurBB->getBasicBlock() || 1443 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1444 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1445 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1446 TWeight, FWeight); 1447 return; 1448 } 1449 1450 // Create TmpBB after CurBB. 1451 MachineFunction::iterator BBI = CurBB; 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1454 CurBB->getParent()->insert(++BBI, TmpBB); 1455 1456 if (Opc == Instruction::Or) { 1457 // Codegen X | Y as: 1458 // BB1: 1459 // jmp_if_X TBB 1460 // jmp TmpBB 1461 // TmpBB: 1462 // jmp_if_Y TBB 1463 // jmp FBB 1464 // 1465 1466 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1467 // The requirement is that 1468 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1469 // = TrueProb for orignal BB. 1470 // Assuming the orignal weights are A and B, one choice is to set BB1's 1471 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1472 // assumes that 1473 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1474 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1475 // TmpBB, but the math is more complicated. 1476 1477 uint64_t NewTrueWeight = TWeight; 1478 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1479 ScaleWeights(NewTrueWeight, NewFalseWeight); 1480 // Emit the LHS condition. 1481 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1482 NewTrueWeight, NewFalseWeight); 1483 1484 NewTrueWeight = TWeight; 1485 NewFalseWeight = 2 * (uint64_t)FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the RHS condition into TmpBB. 1488 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 } else { 1491 assert(Opc == Instruction::And && "Unknown merge op!"); 1492 // Codegen X & Y as: 1493 // BB1: 1494 // jmp_if_X TmpBB 1495 // jmp FBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 // This requires creation of TmpBB after CurBB. 1501 1502 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1503 // The requirement is that 1504 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1505 // = FalseProb for orignal BB. 1506 // Assuming the orignal weights are A and B, one choice is to set BB1's 1507 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1508 // assumes that 1509 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1510 1511 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1512 uint64_t NewFalseWeight = FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the LHS condition. 1515 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 1518 NewTrueWeight = 2 * (uint64_t)TWeight; 1519 NewFalseWeight = FWeight; 1520 ScaleWeights(NewTrueWeight, NewFalseWeight); 1521 // Emit the RHS condition into TmpBB. 1522 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1523 NewTrueWeight, NewFalseWeight); 1524 } 1525 } 1526 1527 /// If the set of cases should be emitted as a series of branches, return true. 1528 /// If we should emit this as a bunch of and/or'd together conditions, return 1529 /// false. 1530 bool 1531 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1532 if (Cases.size() != 2) return true; 1533 1534 // If this is two comparisons of the same values or'd or and'd together, they 1535 // will get folded into a single comparison, so don't emit two blocks. 1536 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1537 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1538 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1539 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1540 return false; 1541 } 1542 1543 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1544 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1545 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1546 Cases[0].CC == Cases[1].CC && 1547 isa<Constant>(Cases[0].CmpRHS) && 1548 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1549 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1550 return false; 1551 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1559 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1560 1561 // Update machine-CFG edges. 1562 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1563 1564 // Figure out which block is immediately after the current one. 1565 MachineBasicBlock *NextBlock = 0; 1566 MachineFunction::iterator BBI = BrMBB; 1567 if (++BBI != FuncInfo.MF->end()) 1568 NextBlock = BBI; 1569 1570 if (I.isUnconditional()) { 1571 // Update machine-CFG edges. 1572 BrMBB->addSuccessor(Succ0MBB); 1573 1574 // If this is not a fall-through branch, emit the branch. 1575 if (Succ0MBB != NextBlock) 1576 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1577 MVT::Other, getControlRoot(), 1578 DAG.getBasicBlock(Succ0MBB))); 1579 1580 return; 1581 } 1582 1583 // If this condition is one of the special cases we handle, do special stuff 1584 // now. 1585 const Value *CondVal = I.getCondition(); 1586 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1587 1588 // If this is a series of conditions that are or'd or and'd together, emit 1589 // this as a sequence of branches instead of setcc's with and/or operations. 1590 // As long as jumps are not expensive, this should improve performance. 1591 // For example, instead of something like: 1592 // cmp A, B 1593 // C = seteq 1594 // cmp D, E 1595 // F = setle 1596 // or C, F 1597 // jnz foo 1598 // Emit: 1599 // cmp A, B 1600 // je foo 1601 // cmp D, E 1602 // jle foo 1603 // 1604 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1605 if (!TM.getTargetLowering()->isJumpExpensive() && 1606 BOp->hasOneUse() && 1607 (BOp->getOpcode() == Instruction::And || 1608 BOp->getOpcode() == Instruction::Or)) { 1609 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1610 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1611 getEdgeWeight(BrMBB, Succ1MBB)); 1612 // If the compares in later blocks need to use values not currently 1613 // exported from this block, export them now. This block should always 1614 // be the first entry. 1615 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1616 1617 // Allow some cases to be rejected. 1618 if (ShouldEmitAsBranches(SwitchCases)) { 1619 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1620 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1621 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1622 } 1623 1624 // Emit the branch for this block. 1625 visitSwitchCase(SwitchCases[0], BrMBB); 1626 SwitchCases.erase(SwitchCases.begin()); 1627 return; 1628 } 1629 1630 // Okay, we decided not to do this, remove any inserted MBB's and clear 1631 // SwitchCases. 1632 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1633 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1634 1635 SwitchCases.clear(); 1636 } 1637 } 1638 1639 // Create a CaseBlock record representing this branch. 1640 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1641 NULL, Succ0MBB, Succ1MBB, BrMBB); 1642 1643 // Use visitSwitchCase to actually insert the fast branch sequence for this 1644 // cond branch. 1645 visitSwitchCase(CB, BrMBB); 1646 } 1647 1648 /// visitSwitchCase - Emits the necessary code to represent a single node in 1649 /// the binary search tree resulting from lowering a switch instruction. 1650 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1651 MachineBasicBlock *SwitchBB) { 1652 SDValue Cond; 1653 SDValue CondLHS = getValue(CB.CmpLHS); 1654 SDLoc dl = getCurSDLoc(); 1655 1656 // Build the setcc now. 1657 if (CB.CmpMHS == NULL) { 1658 // Fold "(X == true)" to X and "(X == false)" to !X to 1659 // handle common cases produced by branch lowering. 1660 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1661 CB.CC == ISD::SETEQ) 1662 Cond = CondLHS; 1663 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) { 1665 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1666 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1667 } else 1668 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1669 } else { 1670 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1671 1672 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1673 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1674 1675 SDValue CmpOp = getValue(CB.CmpMHS); 1676 EVT VT = CmpOp.getValueType(); 1677 1678 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1679 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1680 ISD::SETLE); 1681 } else { 1682 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1683 VT, CmpOp, DAG.getConstant(Low, VT)); 1684 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1685 DAG.getConstant(High-Low, VT), ISD::SETULE); 1686 } 1687 } 1688 1689 // Update successor info 1690 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1691 // TrueBB and FalseBB are always different unless the incoming IR is 1692 // degenerate. This only happens when running llc on weird IR. 1693 if (CB.TrueBB != CB.FalseBB) 1694 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1695 1696 // Set NextBlock to be the MBB immediately after the current one, if any. 1697 // This is used to avoid emitting unnecessary branches to the next block. 1698 MachineBasicBlock *NextBlock = 0; 1699 MachineFunction::iterator BBI = SwitchBB; 1700 if (++BBI != FuncInfo.MF->end()) 1701 NextBlock = BBI; 1702 1703 // If the lhs block is the next block, invert the condition so that we can 1704 // fall through to the lhs instead of the rhs block. 1705 if (CB.TrueBB == NextBlock) { 1706 std::swap(CB.TrueBB, CB.FalseBB); 1707 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1708 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1709 } 1710 1711 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1712 MVT::Other, getControlRoot(), Cond, 1713 DAG.getBasicBlock(CB.TrueBB)); 1714 1715 // Insert the false branch. Do this even if it's a fall through branch, 1716 // this makes it easier to do DAG optimizations which require inverting 1717 // the branch condition. 1718 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1719 DAG.getBasicBlock(CB.FalseBB)); 1720 1721 DAG.setRoot(BrCond); 1722 } 1723 1724 /// visitJumpTable - Emit JumpTable node in the current MBB 1725 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1726 // Emit the code for the jump table 1727 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1728 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1729 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1730 JT.Reg, PTy); 1731 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1732 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1733 MVT::Other, Index.getValue(1), 1734 Table, Index); 1735 DAG.setRoot(BrJumpTable); 1736 } 1737 1738 /// visitJumpTableHeader - This function emits necessary code to produce index 1739 /// in the JumpTable from switch case. 1740 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1741 JumpTableHeader &JTH, 1742 MachineBasicBlock *SwitchBB) { 1743 // Subtract the lowest switch case value from the value being switched on and 1744 // conditional branch to default mbb if the result is greater than the 1745 // difference between smallest and largest cases. 1746 SDValue SwitchOp = getValue(JTH.SValue); 1747 EVT VT = SwitchOp.getValueType(); 1748 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1749 DAG.getConstant(JTH.First, VT)); 1750 1751 // The SDNode we just created, which holds the value being switched on minus 1752 // the smallest case value, needs to be copied to a virtual register so it 1753 // can be used as an index into the jump table in a subsequent basic block. 1754 // This value may be smaller or larger than the target's pointer type, and 1755 // therefore require extension or truncating. 1756 const TargetLowering *TLI = TM.getTargetLowering(); 1757 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1758 1759 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1760 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1761 JumpTableReg, SwitchOp); 1762 JT.Reg = JumpTableReg; 1763 1764 // Emit the range check for the jump table, and branch to the default block 1765 // for the switch statement if the value being switched on exceeds the largest 1766 // case in the switch. 1767 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1768 TLI->getSetCCResultType(*DAG.getContext(), 1769 Sub.getValueType()), 1770 Sub, 1771 DAG.getConstant(JTH.Last - JTH.First,VT), 1772 ISD::SETUGT); 1773 1774 // Set NextBlock to be the MBB immediately after the current one, if any. 1775 // This is used to avoid emitting unnecessary branches to the next block. 1776 MachineBasicBlock *NextBlock = 0; 1777 MachineFunction::iterator BBI = SwitchBB; 1778 1779 if (++BBI != FuncInfo.MF->end()) 1780 NextBlock = BBI; 1781 1782 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1783 MVT::Other, CopyTo, CMP, 1784 DAG.getBasicBlock(JT.Default)); 1785 1786 if (JT.MBB != NextBlock) 1787 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1788 DAG.getBasicBlock(JT.MBB)); 1789 1790 DAG.setRoot(BrCond); 1791 } 1792 1793 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1794 /// tail spliced into a stack protector check success bb. 1795 /// 1796 /// For a high level explanation of how this fits into the stack protector 1797 /// generation see the comment on the declaration of class 1798 /// StackProtectorDescriptor. 1799 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1800 MachineBasicBlock *ParentBB) { 1801 1802 // First create the loads to the guard/stack slot for the comparison. 1803 const TargetLowering *TLI = TM.getTargetLowering(); 1804 EVT PtrTy = TLI->getPointerTy(); 1805 1806 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1807 int FI = MFI->getStackProtectorIndex(); 1808 1809 const Value *IRGuard = SPD.getGuard(); 1810 SDValue GuardPtr = getValue(IRGuard); 1811 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1812 1813 unsigned Align = 1814 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1815 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1816 GuardPtr, MachinePointerInfo(IRGuard, 0), 1817 true, false, false, Align); 1818 1819 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1820 StackSlotPtr, 1821 MachinePointerInfo::getFixedStack(FI), 1822 true, false, false, Align); 1823 1824 // Perform the comparison via a subtract/getsetcc. 1825 EVT VT = Guard.getValueType(); 1826 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1827 1828 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1829 TLI->getSetCCResultType(*DAG.getContext(), 1830 Sub.getValueType()), 1831 Sub, DAG.getConstant(0, VT), 1832 ISD::SETNE); 1833 1834 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1835 // branch to failure MBB. 1836 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1837 MVT::Other, StackSlot.getOperand(0), 1838 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1839 // Otherwise branch to success MBB. 1840 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1841 MVT::Other, BrCond, 1842 DAG.getBasicBlock(SPD.getSuccessMBB())); 1843 1844 DAG.setRoot(Br); 1845 } 1846 1847 /// Codegen the failure basic block for a stack protector check. 1848 /// 1849 /// A failure stack protector machine basic block consists simply of a call to 1850 /// __stack_chk_fail(). 1851 /// 1852 /// For a high level explanation of how this fits into the stack protector 1853 /// generation see the comment on the declaration of class 1854 /// StackProtectorDescriptor. 1855 void 1856 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1857 const TargetLowering *TLI = TM.getTargetLowering(); 1858 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1859 MVT::isVoid, 0, 0, false, getCurSDLoc(), 1860 false, false).second; 1861 DAG.setRoot(Chain); 1862 } 1863 1864 /// visitBitTestHeader - This function emits necessary code to produce value 1865 /// suitable for "bit tests" 1866 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1867 MachineBasicBlock *SwitchBB) { 1868 // Subtract the minimum value 1869 SDValue SwitchOp = getValue(B.SValue); 1870 EVT VT = SwitchOp.getValueType(); 1871 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1872 DAG.getConstant(B.First, VT)); 1873 1874 // Check range 1875 const TargetLowering *TLI = TM.getTargetLowering(); 1876 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1877 TLI->getSetCCResultType(*DAG.getContext(), 1878 Sub.getValueType()), 1879 Sub, DAG.getConstant(B.Range, VT), 1880 ISD::SETUGT); 1881 1882 // Determine the type of the test operands. 1883 bool UsePtrType = false; 1884 if (!TLI->isTypeLegal(VT)) 1885 UsePtrType = true; 1886 else { 1887 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1888 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1889 // Switch table case range are encoded into series of masks. 1890 // Just use pointer type, it's guaranteed to fit. 1891 UsePtrType = true; 1892 break; 1893 } 1894 } 1895 if (UsePtrType) { 1896 VT = TLI->getPointerTy(); 1897 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1898 } 1899 1900 B.RegVT = VT.getSimpleVT(); 1901 B.Reg = FuncInfo.CreateReg(B.RegVT); 1902 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1903 B.Reg, Sub); 1904 1905 // Set NextBlock to be the MBB immediately after the current one, if any. 1906 // This is used to avoid emitting unnecessary branches to the next block. 1907 MachineBasicBlock *NextBlock = 0; 1908 MachineFunction::iterator BBI = SwitchBB; 1909 if (++BBI != FuncInfo.MF->end()) 1910 NextBlock = BBI; 1911 1912 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1913 1914 addSuccessorWithWeight(SwitchBB, B.Default); 1915 addSuccessorWithWeight(SwitchBB, MBB); 1916 1917 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1918 MVT::Other, CopyTo, RangeCmp, 1919 DAG.getBasicBlock(B.Default)); 1920 1921 if (MBB != NextBlock) 1922 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1923 DAG.getBasicBlock(MBB)); 1924 1925 DAG.setRoot(BrRange); 1926 } 1927 1928 /// visitBitTestCase - this function produces one "bit test" 1929 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1930 MachineBasicBlock* NextMBB, 1931 uint32_t BranchWeightToNext, 1932 unsigned Reg, 1933 BitTestCase &B, 1934 MachineBasicBlock *SwitchBB) { 1935 MVT VT = BB.RegVT; 1936 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1937 Reg, VT); 1938 SDValue Cmp; 1939 unsigned PopCount = CountPopulation_64(B.Mask); 1940 const TargetLowering *TLI = TM.getTargetLowering(); 1941 if (PopCount == 1) { 1942 // Testing for a single bit; just compare the shift count with what it 1943 // would need to be to shift a 1 bit in that position. 1944 Cmp = DAG.getSetCC(getCurSDLoc(), 1945 TLI->getSetCCResultType(*DAG.getContext(), VT), 1946 ShiftOp, 1947 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1948 ISD::SETEQ); 1949 } else if (PopCount == BB.Range) { 1950 // There is only one zero bit in the range, test for it directly. 1951 Cmp = DAG.getSetCC(getCurSDLoc(), 1952 TLI->getSetCCResultType(*DAG.getContext(), VT), 1953 ShiftOp, 1954 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1955 ISD::SETNE); 1956 } else { 1957 // Make desired shift 1958 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1959 DAG.getConstant(1, VT), ShiftOp); 1960 1961 // Emit bit tests and jumps 1962 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1963 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1964 Cmp = DAG.getSetCC(getCurSDLoc(), 1965 TLI->getSetCCResultType(*DAG.getContext(), VT), 1966 AndOp, DAG.getConstant(0, VT), 1967 ISD::SETNE); 1968 } 1969 1970 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1971 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1972 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1973 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1974 1975 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1976 MVT::Other, getControlRoot(), 1977 Cmp, DAG.getBasicBlock(B.TargetBB)); 1978 1979 // Set NextBlock to be the MBB immediately after the current one, if any. 1980 // This is used to avoid emitting unnecessary branches to the next block. 1981 MachineBasicBlock *NextBlock = 0; 1982 MachineFunction::iterator BBI = SwitchBB; 1983 if (++BBI != FuncInfo.MF->end()) 1984 NextBlock = BBI; 1985 1986 if (NextMBB != NextBlock) 1987 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1988 DAG.getBasicBlock(NextMBB)); 1989 1990 DAG.setRoot(BrAnd); 1991 } 1992 1993 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1994 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1995 1996 // Retrieve successors. 1997 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1998 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1999 2000 const Value *Callee(I.getCalledValue()); 2001 const Function *Fn = dyn_cast<Function>(Callee); 2002 if (isa<InlineAsm>(Callee)) 2003 visitInlineAsm(&I); 2004 else if (Fn && Fn->isIntrinsic()) { 2005 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2006 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2007 } else 2008 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2009 2010 // If the value of the invoke is used outside of its defining block, make it 2011 // available as a virtual register. 2012 CopyToExportRegsIfNeeded(&I); 2013 2014 // Update successor info 2015 addSuccessorWithWeight(InvokeMBB, Return); 2016 addSuccessorWithWeight(InvokeMBB, LandingPad); 2017 2018 // Drop into normal successor. 2019 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2020 MVT::Other, getControlRoot(), 2021 DAG.getBasicBlock(Return))); 2022 } 2023 2024 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2025 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2026 } 2027 2028 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2029 assert(FuncInfo.MBB->isLandingPad() && 2030 "Call to landingpad not in landing pad!"); 2031 2032 MachineBasicBlock *MBB = FuncInfo.MBB; 2033 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2034 AddLandingPadInfo(LP, MMI, MBB); 2035 2036 // If there aren't registers to copy the values into (e.g., during SjLj 2037 // exceptions), then don't bother to create these DAG nodes. 2038 const TargetLowering *TLI = TM.getTargetLowering(); 2039 if (TLI->getExceptionPointerRegister() == 0 && 2040 TLI->getExceptionSelectorRegister() == 0) 2041 return; 2042 2043 SmallVector<EVT, 2> ValueVTs; 2044 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2045 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2046 2047 // Get the two live-in registers as SDValues. The physregs have already been 2048 // copied into virtual registers. 2049 SDValue Ops[2]; 2050 Ops[0] = DAG.getZExtOrTrunc( 2051 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2052 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2053 getCurSDLoc(), ValueVTs[0]); 2054 Ops[1] = DAG.getZExtOrTrunc( 2055 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2056 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2057 getCurSDLoc(), ValueVTs[1]); 2058 2059 // Merge into one. 2060 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2061 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 2062 &Ops[0], 2); 2063 setValue(&LP, Res); 2064 } 2065 2066 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2067 /// small case ranges). 2068 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2069 CaseRecVector& WorkList, 2070 const Value* SV, 2071 MachineBasicBlock *Default, 2072 MachineBasicBlock *SwitchBB) { 2073 // Size is the number of Cases represented by this range. 2074 size_t Size = CR.Range.second - CR.Range.first; 2075 if (Size > 3) 2076 return false; 2077 2078 // Get the MachineFunction which holds the current MBB. This is used when 2079 // inserting any additional MBBs necessary to represent the switch. 2080 MachineFunction *CurMF = FuncInfo.MF; 2081 2082 // Figure out which block is immediately after the current one. 2083 MachineBasicBlock *NextBlock = 0; 2084 MachineFunction::iterator BBI = CR.CaseBB; 2085 2086 if (++BBI != FuncInfo.MF->end()) 2087 NextBlock = BBI; 2088 2089 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2090 // If any two of the cases has the same destination, and if one value 2091 // is the same as the other, but has one bit unset that the other has set, 2092 // use bit manipulation to do two compares at once. For example: 2093 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2094 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2095 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2096 if (Size == 2 && CR.CaseBB == SwitchBB) { 2097 Case &Small = *CR.Range.first; 2098 Case &Big = *(CR.Range.second-1); 2099 2100 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2101 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2102 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2103 2104 // Check that there is only one bit different. 2105 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2106 (SmallValue | BigValue) == BigValue) { 2107 // Isolate the common bit. 2108 APInt CommonBit = BigValue & ~SmallValue; 2109 assert((SmallValue | CommonBit) == BigValue && 2110 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2111 2112 SDValue CondLHS = getValue(SV); 2113 EVT VT = CondLHS.getValueType(); 2114 SDLoc DL = getCurSDLoc(); 2115 2116 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2117 DAG.getConstant(CommonBit, VT)); 2118 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2119 Or, DAG.getConstant(BigValue, VT), 2120 ISD::SETEQ); 2121 2122 // Update successor info. 2123 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2124 addSuccessorWithWeight(SwitchBB, Small.BB, 2125 Small.ExtraWeight + Big.ExtraWeight); 2126 addSuccessorWithWeight(SwitchBB, Default, 2127 // The default destination is the first successor in IR. 2128 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2129 2130 // Insert the true branch. 2131 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2132 getControlRoot(), Cond, 2133 DAG.getBasicBlock(Small.BB)); 2134 2135 // Insert the false branch. 2136 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2137 DAG.getBasicBlock(Default)); 2138 2139 DAG.setRoot(BrCond); 2140 return true; 2141 } 2142 } 2143 } 2144 2145 // Order cases by weight so the most likely case will be checked first. 2146 uint32_t UnhandledWeights = 0; 2147 if (BPI) { 2148 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2149 uint32_t IWeight = I->ExtraWeight; 2150 UnhandledWeights += IWeight; 2151 for (CaseItr J = CR.Range.first; J < I; ++J) { 2152 uint32_t JWeight = J->ExtraWeight; 2153 if (IWeight > JWeight) 2154 std::swap(*I, *J); 2155 } 2156 } 2157 } 2158 // Rearrange the case blocks so that the last one falls through if possible. 2159 Case &BackCase = *(CR.Range.second-1); 2160 if (Size > 1 && 2161 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2162 // The last case block won't fall through into 'NextBlock' if we emit the 2163 // branches in this order. See if rearranging a case value would help. 2164 // We start at the bottom as it's the case with the least weight. 2165 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2166 if (I->BB == NextBlock) { 2167 std::swap(*I, BackCase); 2168 break; 2169 } 2170 } 2171 2172 // Create a CaseBlock record representing a conditional branch to 2173 // the Case's target mbb if the value being switched on SV is equal 2174 // to C. 2175 MachineBasicBlock *CurBlock = CR.CaseBB; 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2177 MachineBasicBlock *FallThrough; 2178 if (I != E-1) { 2179 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2180 CurMF->insert(BBI, FallThrough); 2181 2182 // Put SV in a virtual register to make it available from the new blocks. 2183 ExportFromCurrentBlock(SV); 2184 } else { 2185 // If the last case doesn't match, go to the default block. 2186 FallThrough = Default; 2187 } 2188 2189 const Value *RHS, *LHS, *MHS; 2190 ISD::CondCode CC; 2191 if (I->High == I->Low) { 2192 // This is just small small case range :) containing exactly 1 case 2193 CC = ISD::SETEQ; 2194 LHS = SV; RHS = I->High; MHS = NULL; 2195 } else { 2196 CC = ISD::SETLE; 2197 LHS = I->Low; MHS = SV; RHS = I->High; 2198 } 2199 2200 // The false weight should be sum of all un-handled cases. 2201 UnhandledWeights -= I->ExtraWeight; 2202 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2203 /* me */ CurBlock, 2204 /* trueweight */ I->ExtraWeight, 2205 /* falseweight */ UnhandledWeights); 2206 2207 // If emitting the first comparison, just call visitSwitchCase to emit the 2208 // code into the current block. Otherwise, push the CaseBlock onto the 2209 // vector to be later processed by SDISel, and insert the node's MBB 2210 // before the next MBB. 2211 if (CurBlock == SwitchBB) 2212 visitSwitchCase(CB, SwitchBB); 2213 else 2214 SwitchCases.push_back(CB); 2215 2216 CurBlock = FallThrough; 2217 } 2218 2219 return true; 2220 } 2221 2222 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2223 return TLI.supportJumpTables() && 2224 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2225 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2226 } 2227 2228 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2229 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2230 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2231 return (LastExt - FirstExt + 1ULL); 2232 } 2233 2234 /// handleJTSwitchCase - Emit jumptable for current switch case range 2235 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2236 CaseRecVector &WorkList, 2237 const Value *SV, 2238 MachineBasicBlock *Default, 2239 MachineBasicBlock *SwitchBB) { 2240 Case& FrontCase = *CR.Range.first; 2241 Case& BackCase = *(CR.Range.second-1); 2242 2243 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2244 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2245 2246 APInt TSize(First.getBitWidth(), 0); 2247 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2248 TSize += I->size(); 2249 2250 const TargetLowering *TLI = TM.getTargetLowering(); 2251 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2252 return false; 2253 2254 APInt Range = ComputeRange(First, Last); 2255 // The density is TSize / Range. Require at least 40%. 2256 // It should not be possible for IntTSize to saturate for sane code, but make 2257 // sure we handle Range saturation correctly. 2258 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2259 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2260 if (IntTSize * 10 < IntRange * 4) 2261 return false; 2262 2263 DEBUG(dbgs() << "Lowering jump table\n" 2264 << "First entry: " << First << ". Last entry: " << Last << '\n' 2265 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2266 2267 // Get the MachineFunction which holds the current MBB. This is used when 2268 // inserting any additional MBBs necessary to represent the switch. 2269 MachineFunction *CurMF = FuncInfo.MF; 2270 2271 // Figure out which block is immediately after the current one. 2272 MachineFunction::iterator BBI = CR.CaseBB; 2273 ++BBI; 2274 2275 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2276 2277 // Create a new basic block to hold the code for loading the address 2278 // of the jump table, and jumping to it. Update successor information; 2279 // we will either branch to the default case for the switch, or the jump 2280 // table. 2281 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2282 CurMF->insert(BBI, JumpTableBB); 2283 2284 addSuccessorWithWeight(CR.CaseBB, Default); 2285 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2286 2287 // Build a vector of destination BBs, corresponding to each target 2288 // of the jump table. If the value of the jump table slot corresponds to 2289 // a case statement, push the case's BB onto the vector, otherwise, push 2290 // the default BB. 2291 std::vector<MachineBasicBlock*> DestBBs; 2292 APInt TEI = First; 2293 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2294 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2295 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2296 2297 if (Low.sle(TEI) && TEI.sle(High)) { 2298 DestBBs.push_back(I->BB); 2299 if (TEI==High) 2300 ++I; 2301 } else { 2302 DestBBs.push_back(Default); 2303 } 2304 } 2305 2306 // Calculate weight for each unique destination in CR. 2307 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2308 if (FuncInfo.BPI) 2309 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2310 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2311 DestWeights.find(I->BB); 2312 if (Itr != DestWeights.end()) 2313 Itr->second += I->ExtraWeight; 2314 else 2315 DestWeights[I->BB] = I->ExtraWeight; 2316 } 2317 2318 // Update successor info. Add one edge to each unique successor. 2319 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2320 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2321 E = DestBBs.end(); I != E; ++I) { 2322 if (!SuccsHandled[(*I)->getNumber()]) { 2323 SuccsHandled[(*I)->getNumber()] = true; 2324 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2325 DestWeights.find(*I); 2326 addSuccessorWithWeight(JumpTableBB, *I, 2327 Itr != DestWeights.end() ? Itr->second : 0); 2328 } 2329 } 2330 2331 // Create a jump table index for this jump table. 2332 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2333 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2334 ->createJumpTableIndex(DestBBs); 2335 2336 // Set the jump table information so that we can codegen it as a second 2337 // MachineBasicBlock 2338 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2339 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2340 if (CR.CaseBB == SwitchBB) 2341 visitJumpTableHeader(JT, JTH, SwitchBB); 2342 2343 JTCases.push_back(JumpTableBlock(JTH, JT)); 2344 return true; 2345 } 2346 2347 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2348 /// 2 subtrees. 2349 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2350 CaseRecVector& WorkList, 2351 const Value* SV, 2352 MachineBasicBlock* Default, 2353 MachineBasicBlock* SwitchBB) { 2354 // Get the MachineFunction which holds the current MBB. This is used when 2355 // inserting any additional MBBs necessary to represent the switch. 2356 MachineFunction *CurMF = FuncInfo.MF; 2357 2358 // Figure out which block is immediately after the current one. 2359 MachineFunction::iterator BBI = CR.CaseBB; 2360 ++BBI; 2361 2362 Case& FrontCase = *CR.Range.first; 2363 Case& BackCase = *(CR.Range.second-1); 2364 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2365 2366 // Size is the number of Cases represented by this range. 2367 unsigned Size = CR.Range.second - CR.Range.first; 2368 2369 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2370 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2371 double FMetric = 0; 2372 CaseItr Pivot = CR.Range.first + Size/2; 2373 2374 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2375 // (heuristically) allow us to emit JumpTable's later. 2376 APInt TSize(First.getBitWidth(), 0); 2377 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2378 I!=E; ++I) 2379 TSize += I->size(); 2380 2381 APInt LSize = FrontCase.size(); 2382 APInt RSize = TSize-LSize; 2383 DEBUG(dbgs() << "Selecting best pivot: \n" 2384 << "First: " << First << ", Last: " << Last <<'\n' 2385 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2386 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2387 J!=E; ++I, ++J) { 2388 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2389 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2390 APInt Range = ComputeRange(LEnd, RBegin); 2391 assert((Range - 2ULL).isNonNegative() && 2392 "Invalid case distance"); 2393 // Use volatile double here to avoid excess precision issues on some hosts, 2394 // e.g. that use 80-bit X87 registers. 2395 volatile double LDensity = 2396 (double)LSize.roundToDouble() / 2397 (LEnd - First + 1ULL).roundToDouble(); 2398 volatile double RDensity = 2399 (double)RSize.roundToDouble() / 2400 (Last - RBegin + 1ULL).roundToDouble(); 2401 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2402 // Should always split in some non-trivial place 2403 DEBUG(dbgs() <<"=>Step\n" 2404 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2405 << "LDensity: " << LDensity 2406 << ", RDensity: " << RDensity << '\n' 2407 << "Metric: " << Metric << '\n'); 2408 if (FMetric < Metric) { 2409 Pivot = J; 2410 FMetric = Metric; 2411 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2412 } 2413 2414 LSize += J->size(); 2415 RSize -= J->size(); 2416 } 2417 2418 const TargetLowering *TLI = TM.getTargetLowering(); 2419 if (areJTsAllowed(*TLI)) { 2420 // If our case is dense we *really* should handle it earlier! 2421 assert((FMetric > 0) && "Should handle dense range earlier!"); 2422 } else { 2423 Pivot = CR.Range.first + Size/2; 2424 } 2425 2426 CaseRange LHSR(CR.Range.first, Pivot); 2427 CaseRange RHSR(Pivot, CR.Range.second); 2428 const Constant *C = Pivot->Low; 2429 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2430 2431 // We know that we branch to the LHS if the Value being switched on is 2432 // less than the Pivot value, C. We use this to optimize our binary 2433 // tree a bit, by recognizing that if SV is greater than or equal to the 2434 // LHS's Case Value, and that Case Value is exactly one less than the 2435 // Pivot's Value, then we can branch directly to the LHS's Target, 2436 // rather than creating a leaf node for it. 2437 if ((LHSR.second - LHSR.first) == 1 && 2438 LHSR.first->High == CR.GE && 2439 cast<ConstantInt>(C)->getValue() == 2440 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2441 TrueBB = LHSR.first->BB; 2442 } else { 2443 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2444 CurMF->insert(BBI, TrueBB); 2445 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2446 2447 // Put SV in a virtual register to make it available from the new blocks. 2448 ExportFromCurrentBlock(SV); 2449 } 2450 2451 // Similar to the optimization above, if the Value being switched on is 2452 // known to be less than the Constant CR.LT, and the current Case Value 2453 // is CR.LT - 1, then we can branch directly to the target block for 2454 // the current Case Value, rather than emitting a RHS leaf node for it. 2455 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2456 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2457 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2458 FalseBB = RHSR.first->BB; 2459 } else { 2460 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2461 CurMF->insert(BBI, FalseBB); 2462 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2463 2464 // Put SV in a virtual register to make it available from the new blocks. 2465 ExportFromCurrentBlock(SV); 2466 } 2467 2468 // Create a CaseBlock record representing a conditional branch to 2469 // the LHS node if the value being switched on SV is less than C. 2470 // Otherwise, branch to LHS. 2471 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2472 2473 if (CR.CaseBB == SwitchBB) 2474 visitSwitchCase(CB, SwitchBB); 2475 else 2476 SwitchCases.push_back(CB); 2477 2478 return true; 2479 } 2480 2481 /// handleBitTestsSwitchCase - if current case range has few destination and 2482 /// range span less, than machine word bitwidth, encode case range into series 2483 /// of masks and emit bit tests with these masks. 2484 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2485 CaseRecVector& WorkList, 2486 const Value* SV, 2487 MachineBasicBlock* Default, 2488 MachineBasicBlock* SwitchBB) { 2489 const TargetLowering *TLI = TM.getTargetLowering(); 2490 EVT PTy = TLI->getPointerTy(); 2491 unsigned IntPtrBits = PTy.getSizeInBits(); 2492 2493 Case& FrontCase = *CR.Range.first; 2494 Case& BackCase = *(CR.Range.second-1); 2495 2496 // Get the MachineFunction which holds the current MBB. This is used when 2497 // inserting any additional MBBs necessary to represent the switch. 2498 MachineFunction *CurMF = FuncInfo.MF; 2499 2500 // If target does not have legal shift left, do not emit bit tests at all. 2501 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2502 return false; 2503 2504 size_t numCmps = 0; 2505 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2506 I!=E; ++I) { 2507 // Single case counts one, case range - two. 2508 numCmps += (I->Low == I->High ? 1 : 2); 2509 } 2510 2511 // Count unique destinations 2512 SmallSet<MachineBasicBlock*, 4> Dests; 2513 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2514 Dests.insert(I->BB); 2515 if (Dests.size() > 3) 2516 // Don't bother the code below, if there are too much unique destinations 2517 return false; 2518 } 2519 DEBUG(dbgs() << "Total number of unique destinations: " 2520 << Dests.size() << '\n' 2521 << "Total number of comparisons: " << numCmps << '\n'); 2522 2523 // Compute span of values. 2524 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2525 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2526 APInt cmpRange = maxValue - minValue; 2527 2528 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2529 << "Low bound: " << minValue << '\n' 2530 << "High bound: " << maxValue << '\n'); 2531 2532 if (cmpRange.uge(IntPtrBits) || 2533 (!(Dests.size() == 1 && numCmps >= 3) && 2534 !(Dests.size() == 2 && numCmps >= 5) && 2535 !(Dests.size() >= 3 && numCmps >= 6))) 2536 return false; 2537 2538 DEBUG(dbgs() << "Emitting bit tests\n"); 2539 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2540 2541 // Optimize the case where all the case values fit in a 2542 // word without having to subtract minValue. In this case, 2543 // we can optimize away the subtraction. 2544 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2545 cmpRange = maxValue; 2546 } else { 2547 lowBound = minValue; 2548 } 2549 2550 CaseBitsVector CasesBits; 2551 unsigned i, count = 0; 2552 2553 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2554 MachineBasicBlock* Dest = I->BB; 2555 for (i = 0; i < count; ++i) 2556 if (Dest == CasesBits[i].BB) 2557 break; 2558 2559 if (i == count) { 2560 assert((count < 3) && "Too much destinations to test!"); 2561 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2562 count++; 2563 } 2564 2565 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2566 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2567 2568 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2569 uint64_t hi = (highValue - lowBound).getZExtValue(); 2570 CasesBits[i].ExtraWeight += I->ExtraWeight; 2571 2572 for (uint64_t j = lo; j <= hi; j++) { 2573 CasesBits[i].Mask |= 1ULL << j; 2574 CasesBits[i].Bits++; 2575 } 2576 2577 } 2578 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2579 2580 BitTestInfo BTC; 2581 2582 // Figure out which block is immediately after the current one. 2583 MachineFunction::iterator BBI = CR.CaseBB; 2584 ++BBI; 2585 2586 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2587 2588 DEBUG(dbgs() << "Cases:\n"); 2589 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2590 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2591 << ", Bits: " << CasesBits[i].Bits 2592 << ", BB: " << CasesBits[i].BB << '\n'); 2593 2594 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2595 CurMF->insert(BBI, CaseBB); 2596 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2597 CaseBB, 2598 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2599 2600 // Put SV in a virtual register to make it available from the new blocks. 2601 ExportFromCurrentBlock(SV); 2602 } 2603 2604 BitTestBlock BTB(lowBound, cmpRange, SV, 2605 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2606 CR.CaseBB, Default, BTC); 2607 2608 if (CR.CaseBB == SwitchBB) 2609 visitBitTestHeader(BTB, SwitchBB); 2610 2611 BitTestCases.push_back(BTB); 2612 2613 return true; 2614 } 2615 2616 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2617 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2618 const SwitchInst& SI) { 2619 size_t numCmps = 0; 2620 2621 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2622 // Start with "simple" cases 2623 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2624 i != e; ++i) { 2625 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2626 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2627 2628 uint32_t ExtraWeight = 2629 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2630 2631 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2632 SMBB, ExtraWeight)); 2633 } 2634 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2635 2636 // Merge case into clusters 2637 if (Cases.size() >= 2) 2638 // Must recompute end() each iteration because it may be 2639 // invalidated by erase if we hold on to it 2640 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2641 J != Cases.end(); ) { 2642 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2643 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2644 MachineBasicBlock* nextBB = J->BB; 2645 MachineBasicBlock* currentBB = I->BB; 2646 2647 // If the two neighboring cases go to the same destination, merge them 2648 // into a single case. 2649 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2650 I->High = J->High; 2651 I->ExtraWeight += J->ExtraWeight; 2652 J = Cases.erase(J); 2653 } else { 2654 I = J++; 2655 } 2656 } 2657 2658 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2659 if (I->Low != I->High) 2660 // A range counts double, since it requires two compares. 2661 ++numCmps; 2662 } 2663 2664 return numCmps; 2665 } 2666 2667 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2668 MachineBasicBlock *Last) { 2669 // Update JTCases. 2670 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2671 if (JTCases[i].first.HeaderBB == First) 2672 JTCases[i].first.HeaderBB = Last; 2673 2674 // Update BitTestCases. 2675 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2676 if (BitTestCases[i].Parent == First) 2677 BitTestCases[i].Parent = Last; 2678 } 2679 2680 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2681 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2682 2683 // Figure out which block is immediately after the current one. 2684 MachineBasicBlock *NextBlock = 0; 2685 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2686 2687 // If there is only the default destination, branch to it if it is not the 2688 // next basic block. Otherwise, just fall through. 2689 if (!SI.getNumCases()) { 2690 // Update machine-CFG edges. 2691 2692 // If this is not a fall-through branch, emit the branch. 2693 SwitchMBB->addSuccessor(Default); 2694 if (Default != NextBlock) 2695 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2696 MVT::Other, getControlRoot(), 2697 DAG.getBasicBlock(Default))); 2698 2699 return; 2700 } 2701 2702 // If there are any non-default case statements, create a vector of Cases 2703 // representing each one, and sort the vector so that we can efficiently 2704 // create a binary search tree from them. 2705 CaseVector Cases; 2706 size_t numCmps = Clusterify(Cases, SI); 2707 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2708 << ". Total compares: " << numCmps << '\n'); 2709 (void)numCmps; 2710 2711 // Get the Value to be switched on and default basic blocks, which will be 2712 // inserted into CaseBlock records, representing basic blocks in the binary 2713 // search tree. 2714 const Value *SV = SI.getCondition(); 2715 2716 // Push the initial CaseRec onto the worklist 2717 CaseRecVector WorkList; 2718 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2719 CaseRange(Cases.begin(),Cases.end()))); 2720 2721 while (!WorkList.empty()) { 2722 // Grab a record representing a case range to process off the worklist 2723 CaseRec CR = WorkList.back(); 2724 WorkList.pop_back(); 2725 2726 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2727 continue; 2728 2729 // If the range has few cases (two or less) emit a series of specific 2730 // tests. 2731 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2732 continue; 2733 2734 // If the switch has more than N blocks, and is at least 40% dense, and the 2735 // target supports indirect branches, then emit a jump table rather than 2736 // lowering the switch to a binary tree of conditional branches. 2737 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2738 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2739 continue; 2740 2741 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2742 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2743 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2744 } 2745 } 2746 2747 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2748 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2749 2750 // Update machine-CFG edges with unique successors. 2751 SmallSet<BasicBlock*, 32> Done; 2752 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2753 BasicBlock *BB = I.getSuccessor(i); 2754 bool Inserted = Done.insert(BB); 2755 if (!Inserted) 2756 continue; 2757 2758 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2759 addSuccessorWithWeight(IndirectBrMBB, Succ); 2760 } 2761 2762 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2763 MVT::Other, getControlRoot(), 2764 getValue(I.getAddress()))); 2765 } 2766 2767 void SelectionDAGBuilder::visitFSub(const User &I) { 2768 // -0.0 - X --> fneg 2769 Type *Ty = I.getType(); 2770 if (isa<Constant>(I.getOperand(0)) && 2771 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2772 SDValue Op2 = getValue(I.getOperand(1)); 2773 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2774 Op2.getValueType(), Op2)); 2775 return; 2776 } 2777 2778 visitBinary(I, ISD::FSUB); 2779 } 2780 2781 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2782 SDValue Op1 = getValue(I.getOperand(0)); 2783 SDValue Op2 = getValue(I.getOperand(1)); 2784 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2785 Op1.getValueType(), Op1, Op2)); 2786 } 2787 2788 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2789 SDValue Op1 = getValue(I.getOperand(0)); 2790 SDValue Op2 = getValue(I.getOperand(1)); 2791 2792 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2793 2794 // Coerce the shift amount to the right type if we can. 2795 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2796 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2797 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2798 SDLoc DL = getCurSDLoc(); 2799 2800 // If the operand is smaller than the shift count type, promote it. 2801 if (ShiftSize > Op2Size) 2802 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2803 2804 // If the operand is larger than the shift count type but the shift 2805 // count type has enough bits to represent any shift value, truncate 2806 // it now. This is a common case and it exposes the truncate to 2807 // optimization early. 2808 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2809 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2810 // Otherwise we'll need to temporarily settle for some other convenient 2811 // type. Type legalization will make adjustments once the shiftee is split. 2812 else 2813 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2814 } 2815 2816 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2817 Op1.getValueType(), Op1, Op2)); 2818 } 2819 2820 void SelectionDAGBuilder::visitSDiv(const User &I) { 2821 SDValue Op1 = getValue(I.getOperand(0)); 2822 SDValue Op2 = getValue(I.getOperand(1)); 2823 2824 // Turn exact SDivs into multiplications. 2825 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2826 // exact bit. 2827 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2828 !isa<ConstantSDNode>(Op1) && 2829 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2830 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2831 getCurSDLoc(), DAG)); 2832 else 2833 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2834 Op1, Op2)); 2835 } 2836 2837 void SelectionDAGBuilder::visitICmp(const User &I) { 2838 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2839 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2840 predicate = IC->getPredicate(); 2841 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2842 predicate = ICmpInst::Predicate(IC->getPredicate()); 2843 SDValue Op1 = getValue(I.getOperand(0)); 2844 SDValue Op2 = getValue(I.getOperand(1)); 2845 ISD::CondCode Opcode = getICmpCondCode(predicate); 2846 2847 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2848 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2849 } 2850 2851 void SelectionDAGBuilder::visitFCmp(const User &I) { 2852 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2853 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2854 predicate = FC->getPredicate(); 2855 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2856 predicate = FCmpInst::Predicate(FC->getPredicate()); 2857 SDValue Op1 = getValue(I.getOperand(0)); 2858 SDValue Op2 = getValue(I.getOperand(1)); 2859 ISD::CondCode Condition = getFCmpCondCode(predicate); 2860 if (TM.Options.NoNaNsFPMath) 2861 Condition = getFCmpCodeWithoutNaN(Condition); 2862 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2863 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2864 } 2865 2866 void SelectionDAGBuilder::visitSelect(const User &I) { 2867 SmallVector<EVT, 4> ValueVTs; 2868 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2869 unsigned NumValues = ValueVTs.size(); 2870 if (NumValues == 0) return; 2871 2872 SmallVector<SDValue, 4> Values(NumValues); 2873 SDValue Cond = getValue(I.getOperand(0)); 2874 SDValue TrueVal = getValue(I.getOperand(1)); 2875 SDValue FalseVal = getValue(I.getOperand(2)); 2876 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2877 ISD::VSELECT : ISD::SELECT; 2878 2879 for (unsigned i = 0; i != NumValues; ++i) 2880 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2881 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2882 Cond, 2883 SDValue(TrueVal.getNode(), 2884 TrueVal.getResNo() + i), 2885 SDValue(FalseVal.getNode(), 2886 FalseVal.getResNo() + i)); 2887 2888 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2889 DAG.getVTList(&ValueVTs[0], NumValues), 2890 &Values[0], NumValues)); 2891 } 2892 2893 void SelectionDAGBuilder::visitTrunc(const User &I) { 2894 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2895 SDValue N = getValue(I.getOperand(0)); 2896 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2897 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2898 } 2899 2900 void SelectionDAGBuilder::visitZExt(const User &I) { 2901 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2902 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2903 SDValue N = getValue(I.getOperand(0)); 2904 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2905 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2906 } 2907 2908 void SelectionDAGBuilder::visitSExt(const User &I) { 2909 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2910 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2911 SDValue N = getValue(I.getOperand(0)); 2912 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2913 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2914 } 2915 2916 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2917 // FPTrunc is never a no-op cast, no need to check 2918 SDValue N = getValue(I.getOperand(0)); 2919 const TargetLowering *TLI = TM.getTargetLowering(); 2920 EVT DestVT = TLI->getValueType(I.getType()); 2921 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2922 DestVT, N, 2923 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2924 } 2925 2926 void SelectionDAGBuilder::visitFPExt(const User &I) { 2927 // FPExt is never a no-op cast, no need to check 2928 SDValue N = getValue(I.getOperand(0)); 2929 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2930 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2931 } 2932 2933 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2934 // FPToUI is never a no-op cast, no need to check 2935 SDValue N = getValue(I.getOperand(0)); 2936 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2937 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2938 } 2939 2940 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2941 // FPToSI is never a no-op cast, no need to check 2942 SDValue N = getValue(I.getOperand(0)); 2943 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2944 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2945 } 2946 2947 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2948 // UIToFP is never a no-op cast, no need to check 2949 SDValue N = getValue(I.getOperand(0)); 2950 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2951 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2952 } 2953 2954 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2955 // SIToFP is never a no-op cast, no need to check 2956 SDValue N = getValue(I.getOperand(0)); 2957 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2958 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2959 } 2960 2961 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2962 // What to do depends on the size of the integer and the size of the pointer. 2963 // We can either truncate, zero extend, or no-op, accordingly. 2964 SDValue N = getValue(I.getOperand(0)); 2965 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2966 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2967 } 2968 2969 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2970 // What to do depends on the size of the integer and the size of the pointer. 2971 // We can either truncate, zero extend, or no-op, accordingly. 2972 SDValue N = getValue(I.getOperand(0)); 2973 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2974 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2975 } 2976 2977 void SelectionDAGBuilder::visitBitCast(const User &I) { 2978 SDValue N = getValue(I.getOperand(0)); 2979 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2980 2981 // BitCast assures us that source and destination are the same size so this is 2982 // either a BITCAST or a no-op. 2983 if (DestVT != N.getValueType()) 2984 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2985 DestVT, N)); // convert types. 2986 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2987 // might fold any kind of constant expression to an integer constant and that 2988 // is not what we are looking for. Only regcognize a bitcast of a genuine 2989 // constant integer as an opaque constant. 2990 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2991 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2992 /*isOpaque*/true)); 2993 else 2994 setValue(&I, N); // noop cast. 2995 } 2996 2997 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2998 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2999 const Value *SV = I.getOperand(0); 3000 SDValue N = getValue(SV); 3001 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3002 3003 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3004 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3005 3006 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3007 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3008 3009 setValue(&I, N); 3010 } 3011 3012 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3013 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3014 SDValue InVec = getValue(I.getOperand(0)); 3015 SDValue InVal = getValue(I.getOperand(1)); 3016 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3017 getCurSDLoc(), TLI.getVectorIdxTy()); 3018 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3019 TM.getTargetLowering()->getValueType(I.getType()), 3020 InVec, InVal, InIdx)); 3021 } 3022 3023 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3025 SDValue InVec = getValue(I.getOperand(0)); 3026 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3027 getCurSDLoc(), TLI.getVectorIdxTy()); 3028 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3029 TM.getTargetLowering()->getValueType(I.getType()), 3030 InVec, InIdx)); 3031 } 3032 3033 // Utility for visitShuffleVector - Return true if every element in Mask, 3034 // beginning from position Pos and ending in Pos+Size, falls within the 3035 // specified sequential range [L, L+Pos). or is undef. 3036 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3037 unsigned Pos, unsigned Size, int Low) { 3038 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3039 if (Mask[i] >= 0 && Mask[i] != Low) 3040 return false; 3041 return true; 3042 } 3043 3044 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3045 SDValue Src1 = getValue(I.getOperand(0)); 3046 SDValue Src2 = getValue(I.getOperand(1)); 3047 3048 SmallVector<int, 8> Mask; 3049 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3050 unsigned MaskNumElts = Mask.size(); 3051 3052 const TargetLowering *TLI = TM.getTargetLowering(); 3053 EVT VT = TLI->getValueType(I.getType()); 3054 EVT SrcVT = Src1.getValueType(); 3055 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3056 3057 if (SrcNumElts == MaskNumElts) { 3058 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3059 &Mask[0])); 3060 return; 3061 } 3062 3063 // Normalize the shuffle vector since mask and vector length don't match. 3064 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3065 // Mask is longer than the source vectors and is a multiple of the source 3066 // vectors. We can use concatenate vector to make the mask and vectors 3067 // lengths match. 3068 if (SrcNumElts*2 == MaskNumElts) { 3069 // First check for Src1 in low and Src2 in high 3070 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3071 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3072 // The shuffle is concatenating two vectors together. 3073 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3074 VT, Src1, Src2)); 3075 return; 3076 } 3077 // Then check for Src2 in low and Src1 in high 3078 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3079 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3080 // The shuffle is concatenating two vectors together. 3081 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3082 VT, Src2, Src1)); 3083 return; 3084 } 3085 } 3086 3087 // Pad both vectors with undefs to make them the same length as the mask. 3088 unsigned NumConcat = MaskNumElts / SrcNumElts; 3089 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3090 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3091 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3092 3093 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3094 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3095 MOps1[0] = Src1; 3096 MOps2[0] = Src2; 3097 3098 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3099 getCurSDLoc(), VT, 3100 &MOps1[0], NumConcat); 3101 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3102 getCurSDLoc(), VT, 3103 &MOps2[0], NumConcat); 3104 3105 // Readjust mask for new input vector length. 3106 SmallVector<int, 8> MappedOps; 3107 for (unsigned i = 0; i != MaskNumElts; ++i) { 3108 int Idx = Mask[i]; 3109 if (Idx >= (int)SrcNumElts) 3110 Idx -= SrcNumElts - MaskNumElts; 3111 MappedOps.push_back(Idx); 3112 } 3113 3114 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3115 &MappedOps[0])); 3116 return; 3117 } 3118 3119 if (SrcNumElts > MaskNumElts) { 3120 // Analyze the access pattern of the vector to see if we can extract 3121 // two subvectors and do the shuffle. The analysis is done by calculating 3122 // the range of elements the mask access on both vectors. 3123 int MinRange[2] = { static_cast<int>(SrcNumElts), 3124 static_cast<int>(SrcNumElts)}; 3125 int MaxRange[2] = {-1, -1}; 3126 3127 for (unsigned i = 0; i != MaskNumElts; ++i) { 3128 int Idx = Mask[i]; 3129 unsigned Input = 0; 3130 if (Idx < 0) 3131 continue; 3132 3133 if (Idx >= (int)SrcNumElts) { 3134 Input = 1; 3135 Idx -= SrcNumElts; 3136 } 3137 if (Idx > MaxRange[Input]) 3138 MaxRange[Input] = Idx; 3139 if (Idx < MinRange[Input]) 3140 MinRange[Input] = Idx; 3141 } 3142 3143 // Check if the access is smaller than the vector size and can we find 3144 // a reasonable extract index. 3145 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3146 // Extract. 3147 int StartIdx[2]; // StartIdx to extract from 3148 for (unsigned Input = 0; Input < 2; ++Input) { 3149 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3150 RangeUse[Input] = 0; // Unused 3151 StartIdx[Input] = 0; 3152 continue; 3153 } 3154 3155 // Find a good start index that is a multiple of the mask length. Then 3156 // see if the rest of the elements are in range. 3157 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3158 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3159 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3160 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3161 } 3162 3163 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3164 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3165 return; 3166 } 3167 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3168 // Extract appropriate subvector and generate a vector shuffle 3169 for (unsigned Input = 0; Input < 2; ++Input) { 3170 SDValue &Src = Input == 0 ? Src1 : Src2; 3171 if (RangeUse[Input] == 0) 3172 Src = DAG.getUNDEF(VT); 3173 else 3174 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3175 Src, DAG.getConstant(StartIdx[Input], 3176 TLI->getVectorIdxTy())); 3177 } 3178 3179 // Calculate new mask. 3180 SmallVector<int, 8> MappedOps; 3181 for (unsigned i = 0; i != MaskNumElts; ++i) { 3182 int Idx = Mask[i]; 3183 if (Idx >= 0) { 3184 if (Idx < (int)SrcNumElts) 3185 Idx -= StartIdx[0]; 3186 else 3187 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3188 } 3189 MappedOps.push_back(Idx); 3190 } 3191 3192 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3193 &MappedOps[0])); 3194 return; 3195 } 3196 } 3197 3198 // We can't use either concat vectors or extract subvectors so fall back to 3199 // replacing the shuffle with extract and build vector. 3200 // to insert and build vector. 3201 EVT EltVT = VT.getVectorElementType(); 3202 EVT IdxVT = TLI->getVectorIdxTy(); 3203 SmallVector<SDValue,8> Ops; 3204 for (unsigned i = 0; i != MaskNumElts; ++i) { 3205 int Idx = Mask[i]; 3206 SDValue Res; 3207 3208 if (Idx < 0) { 3209 Res = DAG.getUNDEF(EltVT); 3210 } else { 3211 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3212 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3213 3214 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3215 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3216 } 3217 3218 Ops.push_back(Res); 3219 } 3220 3221 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3222 VT, &Ops[0], Ops.size())); 3223 } 3224 3225 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3226 const Value *Op0 = I.getOperand(0); 3227 const Value *Op1 = I.getOperand(1); 3228 Type *AggTy = I.getType(); 3229 Type *ValTy = Op1->getType(); 3230 bool IntoUndef = isa<UndefValue>(Op0); 3231 bool FromUndef = isa<UndefValue>(Op1); 3232 3233 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3234 3235 const TargetLowering *TLI = TM.getTargetLowering(); 3236 SmallVector<EVT, 4> AggValueVTs; 3237 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3238 SmallVector<EVT, 4> ValValueVTs; 3239 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3240 3241 unsigned NumAggValues = AggValueVTs.size(); 3242 unsigned NumValValues = ValValueVTs.size(); 3243 SmallVector<SDValue, 4> Values(NumAggValues); 3244 3245 SDValue Agg = getValue(Op0); 3246 unsigned i = 0; 3247 // Copy the beginning value(s) from the original aggregate. 3248 for (; i != LinearIndex; ++i) 3249 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3250 SDValue(Agg.getNode(), Agg.getResNo() + i); 3251 // Copy values from the inserted value(s). 3252 if (NumValValues) { 3253 SDValue Val = getValue(Op1); 3254 for (; i != LinearIndex + NumValValues; ++i) 3255 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3256 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3257 } 3258 // Copy remaining value(s) from the original aggregate. 3259 for (; i != NumAggValues; ++i) 3260 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3261 SDValue(Agg.getNode(), Agg.getResNo() + i); 3262 3263 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3264 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3265 &Values[0], NumAggValues)); 3266 } 3267 3268 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3269 const Value *Op0 = I.getOperand(0); 3270 Type *AggTy = Op0->getType(); 3271 Type *ValTy = I.getType(); 3272 bool OutOfUndef = isa<UndefValue>(Op0); 3273 3274 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3275 3276 const TargetLowering *TLI = TM.getTargetLowering(); 3277 SmallVector<EVT, 4> ValValueVTs; 3278 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3279 3280 unsigned NumValValues = ValValueVTs.size(); 3281 3282 // Ignore a extractvalue that produces an empty object 3283 if (!NumValValues) { 3284 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3285 return; 3286 } 3287 3288 SmallVector<SDValue, 4> Values(NumValValues); 3289 3290 SDValue Agg = getValue(Op0); 3291 // Copy out the selected value(s). 3292 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3293 Values[i - LinearIndex] = 3294 OutOfUndef ? 3295 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3296 SDValue(Agg.getNode(), Agg.getResNo() + i); 3297 3298 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3299 DAG.getVTList(&ValValueVTs[0], NumValValues), 3300 &Values[0], NumValValues)); 3301 } 3302 3303 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3304 Value *Op0 = I.getOperand(0); 3305 // Note that the pointer operand may be a vector of pointers. Take the scalar 3306 // element which holds a pointer. 3307 Type *Ty = Op0->getType()->getScalarType(); 3308 unsigned AS = Ty->getPointerAddressSpace(); 3309 SDValue N = getValue(Op0); 3310 3311 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3312 OI != E; ++OI) { 3313 const Value *Idx = *OI; 3314 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3315 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3316 if (Field) { 3317 // N = N + Offset 3318 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3319 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3320 DAG.getConstant(Offset, N.getValueType())); 3321 } 3322 3323 Ty = StTy->getElementType(Field); 3324 } else { 3325 Ty = cast<SequentialType>(Ty)->getElementType(); 3326 3327 // If this is a constant subscript, handle it quickly. 3328 const TargetLowering *TLI = TM.getTargetLowering(); 3329 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3330 if (CI->isZero()) continue; 3331 uint64_t Offs = 3332 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3333 SDValue OffsVal; 3334 EVT PTy = TLI->getPointerTy(AS); 3335 unsigned PtrBits = PTy.getSizeInBits(); 3336 if (PtrBits < 64) 3337 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3338 DAG.getConstant(Offs, MVT::i64)); 3339 else 3340 OffsVal = DAG.getConstant(Offs, PTy); 3341 3342 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3343 OffsVal); 3344 continue; 3345 } 3346 3347 // N = N + Idx * ElementSize; 3348 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3349 DL->getTypeAllocSize(Ty)); 3350 SDValue IdxN = getValue(Idx); 3351 3352 // If the index is smaller or larger than intptr_t, truncate or extend 3353 // it. 3354 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3355 3356 // If this is a multiply by a power of two, turn it into a shl 3357 // immediately. This is a very common case. 3358 if (ElementSize != 1) { 3359 if (ElementSize.isPowerOf2()) { 3360 unsigned Amt = ElementSize.logBase2(); 3361 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3362 N.getValueType(), IdxN, 3363 DAG.getConstant(Amt, IdxN.getValueType())); 3364 } else { 3365 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3366 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3367 N.getValueType(), IdxN, Scale); 3368 } 3369 } 3370 3371 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3372 N.getValueType(), N, IdxN); 3373 } 3374 } 3375 3376 setValue(&I, N); 3377 } 3378 3379 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3380 // If this is a fixed sized alloca in the entry block of the function, 3381 // allocate it statically on the stack. 3382 if (FuncInfo.StaticAllocaMap.count(&I)) 3383 return; // getValue will auto-populate this. 3384 3385 Type *Ty = I.getAllocatedType(); 3386 const TargetLowering *TLI = TM.getTargetLowering(); 3387 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3388 unsigned Align = 3389 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3390 I.getAlignment()); 3391 3392 SDValue AllocSize = getValue(I.getArraySize()); 3393 3394 EVT IntPtr = TLI->getPointerTy(); 3395 if (AllocSize.getValueType() != IntPtr) 3396 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3397 3398 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3399 AllocSize, 3400 DAG.getConstant(TySize, IntPtr)); 3401 3402 // Handle alignment. If the requested alignment is less than or equal to 3403 // the stack alignment, ignore it. If the size is greater than or equal to 3404 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3405 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3406 if (Align <= StackAlign) 3407 Align = 0; 3408 3409 // Round the size of the allocation up to the stack alignment size 3410 // by add SA-1 to the size. 3411 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3412 AllocSize.getValueType(), AllocSize, 3413 DAG.getIntPtrConstant(StackAlign-1)); 3414 3415 // Mask out the low bits for alignment purposes. 3416 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3417 AllocSize.getValueType(), AllocSize, 3418 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3419 3420 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3421 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3422 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3423 VTs, Ops, 3); 3424 setValue(&I, DSA); 3425 DAG.setRoot(DSA.getValue(1)); 3426 3427 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3428 } 3429 3430 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3431 if (I.isAtomic()) 3432 return visitAtomicLoad(I); 3433 3434 const Value *SV = I.getOperand(0); 3435 SDValue Ptr = getValue(SV); 3436 3437 Type *Ty = I.getType(); 3438 3439 bool isVolatile = I.isVolatile(); 3440 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3441 bool isInvariant = I.getMetadata("invariant.load") != 0; 3442 unsigned Alignment = I.getAlignment(); 3443 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3444 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3445 3446 SmallVector<EVT, 4> ValueVTs; 3447 SmallVector<uint64_t, 4> Offsets; 3448 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3449 unsigned NumValues = ValueVTs.size(); 3450 if (NumValues == 0) 3451 return; 3452 3453 SDValue Root; 3454 bool ConstantMemory = false; 3455 if (isVolatile || NumValues > MaxParallelChains) 3456 // Serialize volatile loads with other side effects. 3457 Root = getRoot(); 3458 else if (AA->pointsToConstantMemory( 3459 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3460 // Do not serialize (non-volatile) loads of constant memory with anything. 3461 Root = DAG.getEntryNode(); 3462 ConstantMemory = true; 3463 } else { 3464 // Do not serialize non-volatile loads against each other. 3465 Root = DAG.getRoot(); 3466 } 3467 3468 const TargetLowering *TLI = TM.getTargetLowering(); 3469 if (isVolatile) 3470 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3471 3472 SmallVector<SDValue, 4> Values(NumValues); 3473 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3474 NumValues)); 3475 EVT PtrVT = Ptr.getValueType(); 3476 unsigned ChainI = 0; 3477 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3478 // Serializing loads here may result in excessive register pressure, and 3479 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3480 // could recover a bit by hoisting nodes upward in the chain by recognizing 3481 // they are side-effect free or do not alias. The optimizer should really 3482 // avoid this case by converting large object/array copies to llvm.memcpy 3483 // (MaxParallelChains should always remain as failsafe). 3484 if (ChainI == MaxParallelChains) { 3485 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3486 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3487 MVT::Other, &Chains[0], ChainI); 3488 Root = Chain; 3489 ChainI = 0; 3490 } 3491 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3492 PtrVT, Ptr, 3493 DAG.getConstant(Offsets[i], PtrVT)); 3494 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3495 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3496 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3497 Ranges); 3498 3499 Values[i] = L; 3500 Chains[ChainI] = L.getValue(1); 3501 } 3502 3503 if (!ConstantMemory) { 3504 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3505 MVT::Other, &Chains[0], ChainI); 3506 if (isVolatile) 3507 DAG.setRoot(Chain); 3508 else 3509 PendingLoads.push_back(Chain); 3510 } 3511 3512 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3513 DAG.getVTList(&ValueVTs[0], NumValues), 3514 &Values[0], NumValues)); 3515 } 3516 3517 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3518 if (I.isAtomic()) 3519 return visitAtomicStore(I); 3520 3521 const Value *SrcV = I.getOperand(0); 3522 const Value *PtrV = I.getOperand(1); 3523 3524 SmallVector<EVT, 4> ValueVTs; 3525 SmallVector<uint64_t, 4> Offsets; 3526 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3527 unsigned NumValues = ValueVTs.size(); 3528 if (NumValues == 0) 3529 return; 3530 3531 // Get the lowered operands. Note that we do this after 3532 // checking if NumResults is zero, because with zero results 3533 // the operands won't have values in the map. 3534 SDValue Src = getValue(SrcV); 3535 SDValue Ptr = getValue(PtrV); 3536 3537 SDValue Root = getRoot(); 3538 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3539 NumValues)); 3540 EVT PtrVT = Ptr.getValueType(); 3541 bool isVolatile = I.isVolatile(); 3542 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3543 unsigned Alignment = I.getAlignment(); 3544 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3545 3546 unsigned ChainI = 0; 3547 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3548 // See visitLoad comments. 3549 if (ChainI == MaxParallelChains) { 3550 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3551 MVT::Other, &Chains[0], ChainI); 3552 Root = Chain; 3553 ChainI = 0; 3554 } 3555 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3556 DAG.getConstant(Offsets[i], PtrVT)); 3557 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3558 SDValue(Src.getNode(), Src.getResNo() + i), 3559 Add, MachinePointerInfo(PtrV, Offsets[i]), 3560 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3561 Chains[ChainI] = St; 3562 } 3563 3564 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3565 MVT::Other, &Chains[0], ChainI); 3566 DAG.setRoot(StoreNode); 3567 } 3568 3569 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3570 SynchronizationScope Scope, 3571 bool Before, SDLoc dl, 3572 SelectionDAG &DAG, 3573 const TargetLowering &TLI) { 3574 // Fence, if necessary 3575 if (Before) { 3576 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3577 Order = Release; 3578 else if (Order == Acquire || Order == Monotonic) 3579 return Chain; 3580 } else { 3581 if (Order == AcquireRelease) 3582 Order = Acquire; 3583 else if (Order == Release || Order == Monotonic) 3584 return Chain; 3585 } 3586 SDValue Ops[3]; 3587 Ops[0] = Chain; 3588 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3589 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3590 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3591 } 3592 3593 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3594 SDLoc dl = getCurSDLoc(); 3595 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3596 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3597 SynchronizationScope Scope = I.getSynchScope(); 3598 3599 SDValue InChain = getRoot(); 3600 3601 const TargetLowering *TLI = TM.getTargetLowering(); 3602 if (TLI->getInsertFencesForAtomic()) 3603 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3604 DAG, *TLI); 3605 3606 SDValue L = 3607 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3608 getValue(I.getCompareOperand()).getSimpleValueType(), 3609 InChain, 3610 getValue(I.getPointerOperand()), 3611 getValue(I.getCompareOperand()), 3612 getValue(I.getNewValOperand()), 3613 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3614 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3615 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3616 Scope); 3617 3618 SDValue OutChain = L.getValue(1); 3619 3620 if (TLI->getInsertFencesForAtomic()) 3621 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3622 DAG, *TLI); 3623 3624 setValue(&I, L); 3625 DAG.setRoot(OutChain); 3626 } 3627 3628 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3629 SDLoc dl = getCurSDLoc(); 3630 ISD::NodeType NT; 3631 switch (I.getOperation()) { 3632 default: llvm_unreachable("Unknown atomicrmw operation"); 3633 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3634 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3635 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3636 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3637 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3638 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3639 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3640 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3641 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3642 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3643 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3644 } 3645 AtomicOrdering Order = I.getOrdering(); 3646 SynchronizationScope Scope = I.getSynchScope(); 3647 3648 SDValue InChain = getRoot(); 3649 3650 const TargetLowering *TLI = TM.getTargetLowering(); 3651 if (TLI->getInsertFencesForAtomic()) 3652 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3653 DAG, *TLI); 3654 3655 SDValue L = 3656 DAG.getAtomic(NT, dl, 3657 getValue(I.getValOperand()).getSimpleValueType(), 3658 InChain, 3659 getValue(I.getPointerOperand()), 3660 getValue(I.getValOperand()), 3661 I.getPointerOperand(), 0 /* Alignment */, 3662 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3663 Scope); 3664 3665 SDValue OutChain = L.getValue(1); 3666 3667 if (TLI->getInsertFencesForAtomic()) 3668 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3669 DAG, *TLI); 3670 3671 setValue(&I, L); 3672 DAG.setRoot(OutChain); 3673 } 3674 3675 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3676 SDLoc dl = getCurSDLoc(); 3677 const TargetLowering *TLI = TM.getTargetLowering(); 3678 SDValue Ops[3]; 3679 Ops[0] = getRoot(); 3680 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3681 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3682 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3683 } 3684 3685 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3686 SDLoc dl = getCurSDLoc(); 3687 AtomicOrdering Order = I.getOrdering(); 3688 SynchronizationScope Scope = I.getSynchScope(); 3689 3690 SDValue InChain = getRoot(); 3691 3692 const TargetLowering *TLI = TM.getTargetLowering(); 3693 EVT VT = TLI->getValueType(I.getType()); 3694 3695 if (I.getAlignment() < VT.getSizeInBits() / 8) 3696 report_fatal_error("Cannot generate unaligned atomic load"); 3697 3698 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3699 SDValue L = 3700 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3701 getValue(I.getPointerOperand()), 3702 I.getPointerOperand(), I.getAlignment(), 3703 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3704 Scope); 3705 3706 SDValue OutChain = L.getValue(1); 3707 3708 if (TLI->getInsertFencesForAtomic()) 3709 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3710 DAG, *TLI); 3711 3712 setValue(&I, L); 3713 DAG.setRoot(OutChain); 3714 } 3715 3716 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3717 SDLoc dl = getCurSDLoc(); 3718 3719 AtomicOrdering Order = I.getOrdering(); 3720 SynchronizationScope Scope = I.getSynchScope(); 3721 3722 SDValue InChain = getRoot(); 3723 3724 const TargetLowering *TLI = TM.getTargetLowering(); 3725 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3726 3727 if (I.getAlignment() < VT.getSizeInBits() / 8) 3728 report_fatal_error("Cannot generate unaligned atomic store"); 3729 3730 if (TLI->getInsertFencesForAtomic()) 3731 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3732 DAG, *TLI); 3733 3734 SDValue OutChain = 3735 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3736 InChain, 3737 getValue(I.getPointerOperand()), 3738 getValue(I.getValueOperand()), 3739 I.getPointerOperand(), I.getAlignment(), 3740 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3741 Scope); 3742 3743 if (TLI->getInsertFencesForAtomic()) 3744 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3745 DAG, *TLI); 3746 3747 DAG.setRoot(OutChain); 3748 } 3749 3750 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3751 /// node. 3752 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3753 unsigned Intrinsic) { 3754 bool HasChain = !I.doesNotAccessMemory(); 3755 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3756 3757 // Build the operand list. 3758 SmallVector<SDValue, 8> Ops; 3759 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3760 if (OnlyLoad) { 3761 // We don't need to serialize loads against other loads. 3762 Ops.push_back(DAG.getRoot()); 3763 } else { 3764 Ops.push_back(getRoot()); 3765 } 3766 } 3767 3768 // Info is set by getTgtMemInstrinsic 3769 TargetLowering::IntrinsicInfo Info; 3770 const TargetLowering *TLI = TM.getTargetLowering(); 3771 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3772 3773 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3774 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3775 Info.opc == ISD::INTRINSIC_W_CHAIN) 3776 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3777 3778 // Add all operands of the call to the operand list. 3779 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3780 SDValue Op = getValue(I.getArgOperand(i)); 3781 Ops.push_back(Op); 3782 } 3783 3784 SmallVector<EVT, 4> ValueVTs; 3785 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3786 3787 if (HasChain) 3788 ValueVTs.push_back(MVT::Other); 3789 3790 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3791 3792 // Create the node. 3793 SDValue Result; 3794 if (IsTgtIntrinsic) { 3795 // This is target intrinsic that touches memory 3796 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3797 VTs, &Ops[0], Ops.size(), 3798 Info.memVT, 3799 MachinePointerInfo(Info.ptrVal, Info.offset), 3800 Info.align, Info.vol, 3801 Info.readMem, Info.writeMem); 3802 } else if (!HasChain) { 3803 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3804 VTs, &Ops[0], Ops.size()); 3805 } else if (!I.getType()->isVoidTy()) { 3806 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3807 VTs, &Ops[0], Ops.size()); 3808 } else { 3809 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3810 VTs, &Ops[0], Ops.size()); 3811 } 3812 3813 if (HasChain) { 3814 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3815 if (OnlyLoad) 3816 PendingLoads.push_back(Chain); 3817 else 3818 DAG.setRoot(Chain); 3819 } 3820 3821 if (!I.getType()->isVoidTy()) { 3822 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3823 EVT VT = TLI->getValueType(PTy); 3824 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3825 } 3826 3827 setValue(&I, Result); 3828 } 3829 } 3830 3831 /// GetSignificand - Get the significand and build it into a floating-point 3832 /// number with exponent of 1: 3833 /// 3834 /// Op = (Op & 0x007fffff) | 0x3f800000; 3835 /// 3836 /// where Op is the hexadecimal representation of floating point value. 3837 static SDValue 3838 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3839 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3840 DAG.getConstant(0x007fffff, MVT::i32)); 3841 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3842 DAG.getConstant(0x3f800000, MVT::i32)); 3843 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3844 } 3845 3846 /// GetExponent - Get the exponent: 3847 /// 3848 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3849 /// 3850 /// where Op is the hexadecimal representation of floating point value. 3851 static SDValue 3852 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3853 SDLoc dl) { 3854 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3855 DAG.getConstant(0x7f800000, MVT::i32)); 3856 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3857 DAG.getConstant(23, TLI.getPointerTy())); 3858 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3859 DAG.getConstant(127, MVT::i32)); 3860 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3861 } 3862 3863 /// getF32Constant - Get 32-bit floating point constant. 3864 static SDValue 3865 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3866 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3867 MVT::f32); 3868 } 3869 3870 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3871 /// limited-precision mode. 3872 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3873 const TargetLowering &TLI) { 3874 if (Op.getValueType() == MVT::f32 && 3875 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3876 3877 // Put the exponent in the right bit position for later addition to the 3878 // final result: 3879 // 3880 // #define LOG2OFe 1.4426950f 3881 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3882 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3883 getF32Constant(DAG, 0x3fb8aa3b)); 3884 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3885 3886 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3887 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3888 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3889 3890 // IntegerPartOfX <<= 23; 3891 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3892 DAG.getConstant(23, TLI.getPointerTy())); 3893 3894 SDValue TwoToFracPartOfX; 3895 if (LimitFloatPrecision <= 6) { 3896 // For floating-point precision of 6: 3897 // 3898 // TwoToFractionalPartOfX = 3899 // 0.997535578f + 3900 // (0.735607626f + 0.252464424f * x) * x; 3901 // 3902 // error 0.0144103317, which is 6 bits 3903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3904 getF32Constant(DAG, 0x3e814304)); 3905 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3906 getF32Constant(DAG, 0x3f3c50c8)); 3907 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3908 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3909 getF32Constant(DAG, 0x3f7f5e7e)); 3910 } else if (LimitFloatPrecision <= 12) { 3911 // For floating-point precision of 12: 3912 // 3913 // TwoToFractionalPartOfX = 3914 // 0.999892986f + 3915 // (0.696457318f + 3916 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3917 // 3918 // 0.000107046256 error, which is 13 to 14 bits 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3920 getF32Constant(DAG, 0x3da235e3)); 3921 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3922 getF32Constant(DAG, 0x3e65b8f3)); 3923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3925 getF32Constant(DAG, 0x3f324b07)); 3926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3927 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3928 getF32Constant(DAG, 0x3f7ff8fd)); 3929 } else { // LimitFloatPrecision <= 18 3930 // For floating-point precision of 18: 3931 // 3932 // TwoToFractionalPartOfX = 3933 // 0.999999982f + 3934 // (0.693148872f + 3935 // (0.240227044f + 3936 // (0.554906021e-1f + 3937 // (0.961591928e-2f + 3938 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3939 // 3940 // error 2.47208000*10^(-7), which is better than 18 bits 3941 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3942 getF32Constant(DAG, 0x3924b03e)); 3943 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3944 getF32Constant(DAG, 0x3ab24b87)); 3945 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3946 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3947 getF32Constant(DAG, 0x3c1d8c17)); 3948 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3949 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3950 getF32Constant(DAG, 0x3d634a1d)); 3951 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3952 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3953 getF32Constant(DAG, 0x3e75fe14)); 3954 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3955 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3956 getF32Constant(DAG, 0x3f317234)); 3957 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3958 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3959 getF32Constant(DAG, 0x3f800000)); 3960 } 3961 3962 // Add the exponent into the result in integer domain. 3963 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3964 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3965 DAG.getNode(ISD::ADD, dl, MVT::i32, 3966 t13, IntegerPartOfX)); 3967 } 3968 3969 // No special expansion. 3970 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3971 } 3972 3973 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3974 /// limited-precision mode. 3975 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3976 const TargetLowering &TLI) { 3977 if (Op.getValueType() == MVT::f32 && 3978 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3979 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3980 3981 // Scale the exponent by log(2) [0.69314718f]. 3982 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3983 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3984 getF32Constant(DAG, 0x3f317218)); 3985 3986 // Get the significand and build it into a floating-point number with 3987 // exponent of 1. 3988 SDValue X = GetSignificand(DAG, Op1, dl); 3989 3990 SDValue LogOfMantissa; 3991 if (LimitFloatPrecision <= 6) { 3992 // For floating-point precision of 6: 3993 // 3994 // LogofMantissa = 3995 // -1.1609546f + 3996 // (1.4034025f - 0.23903021f * x) * x; 3997 // 3998 // error 0.0034276066, which is better than 8 bits 3999 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4000 getF32Constant(DAG, 0xbe74c456)); 4001 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4002 getF32Constant(DAG, 0x3fb3a2b1)); 4003 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4004 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4005 getF32Constant(DAG, 0x3f949a29)); 4006 } else if (LimitFloatPrecision <= 12) { 4007 // For floating-point precision of 12: 4008 // 4009 // LogOfMantissa = 4010 // -1.7417939f + 4011 // (2.8212026f + 4012 // (-1.4699568f + 4013 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4014 // 4015 // error 0.000061011436, which is 14 bits 4016 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4017 getF32Constant(DAG, 0xbd67b6d6)); 4018 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4019 getF32Constant(DAG, 0x3ee4f4b8)); 4020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4021 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4022 getF32Constant(DAG, 0x3fbc278b)); 4023 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4024 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4025 getF32Constant(DAG, 0x40348e95)); 4026 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4027 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4028 getF32Constant(DAG, 0x3fdef31a)); 4029 } else { // LimitFloatPrecision <= 18 4030 // For floating-point precision of 18: 4031 // 4032 // LogOfMantissa = 4033 // -2.1072184f + 4034 // (4.2372794f + 4035 // (-3.7029485f + 4036 // (2.2781945f + 4037 // (-0.87823314f + 4038 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4039 // 4040 // error 0.0000023660568, which is better than 18 bits 4041 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4042 getF32Constant(DAG, 0xbc91e5ac)); 4043 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4044 getF32Constant(DAG, 0x3e4350aa)); 4045 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4046 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4047 getF32Constant(DAG, 0x3f60d3e3)); 4048 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4049 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4050 getF32Constant(DAG, 0x4011cdf0)); 4051 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4052 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4053 getF32Constant(DAG, 0x406cfd1c)); 4054 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4055 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4056 getF32Constant(DAG, 0x408797cb)); 4057 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4058 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4059 getF32Constant(DAG, 0x4006dcab)); 4060 } 4061 4062 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4063 } 4064 4065 // No special expansion. 4066 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4067 } 4068 4069 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4070 /// limited-precision mode. 4071 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4072 const TargetLowering &TLI) { 4073 if (Op.getValueType() == MVT::f32 && 4074 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4075 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4076 4077 // Get the exponent. 4078 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4079 4080 // Get the significand and build it into a floating-point number with 4081 // exponent of 1. 4082 SDValue X = GetSignificand(DAG, Op1, dl); 4083 4084 // Different possible minimax approximations of significand in 4085 // floating-point for various degrees of accuracy over [1,2]. 4086 SDValue Log2ofMantissa; 4087 if (LimitFloatPrecision <= 6) { 4088 // For floating-point precision of 6: 4089 // 4090 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4091 // 4092 // error 0.0049451742, which is more than 7 bits 4093 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4094 getF32Constant(DAG, 0xbeb08fe0)); 4095 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4096 getF32Constant(DAG, 0x40019463)); 4097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4098 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4099 getF32Constant(DAG, 0x3fd6633d)); 4100 } else if (LimitFloatPrecision <= 12) { 4101 // For floating-point precision of 12: 4102 // 4103 // Log2ofMantissa = 4104 // -2.51285454f + 4105 // (4.07009056f + 4106 // (-2.12067489f + 4107 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4108 // 4109 // error 0.0000876136000, which is better than 13 bits 4110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4111 getF32Constant(DAG, 0xbda7262e)); 4112 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4113 getF32Constant(DAG, 0x3f25280b)); 4114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4115 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4116 getF32Constant(DAG, 0x4007b923)); 4117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4118 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4119 getF32Constant(DAG, 0x40823e2f)); 4120 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4121 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4122 getF32Constant(DAG, 0x4020d29c)); 4123 } else { // LimitFloatPrecision <= 18 4124 // For floating-point precision of 18: 4125 // 4126 // Log2ofMantissa = 4127 // -3.0400495f + 4128 // (6.1129976f + 4129 // (-5.3420409f + 4130 // (3.2865683f + 4131 // (-1.2669343f + 4132 // (0.27515199f - 4133 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4134 // 4135 // error 0.0000018516, which is better than 18 bits 4136 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4137 getF32Constant(DAG, 0xbcd2769e)); 4138 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4139 getF32Constant(DAG, 0x3e8ce0b9)); 4140 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4141 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4142 getF32Constant(DAG, 0x3fa22ae7)); 4143 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4144 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4145 getF32Constant(DAG, 0x40525723)); 4146 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4147 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4148 getF32Constant(DAG, 0x40aaf200)); 4149 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4150 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4151 getF32Constant(DAG, 0x40c39dad)); 4152 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4153 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4154 getF32Constant(DAG, 0x4042902c)); 4155 } 4156 4157 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4158 } 4159 4160 // No special expansion. 4161 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4162 } 4163 4164 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4165 /// limited-precision mode. 4166 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4167 const TargetLowering &TLI) { 4168 if (Op.getValueType() == MVT::f32 && 4169 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4170 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4171 4172 // Scale the exponent by log10(2) [0.30102999f]. 4173 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4174 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4175 getF32Constant(DAG, 0x3e9a209a)); 4176 4177 // Get the significand and build it into a floating-point number with 4178 // exponent of 1. 4179 SDValue X = GetSignificand(DAG, Op1, dl); 4180 4181 SDValue Log10ofMantissa; 4182 if (LimitFloatPrecision <= 6) { 4183 // For floating-point precision of 6: 4184 // 4185 // Log10ofMantissa = 4186 // -0.50419619f + 4187 // (0.60948995f - 0.10380950f * x) * x; 4188 // 4189 // error 0.0014886165, which is 6 bits 4190 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4191 getF32Constant(DAG, 0xbdd49a13)); 4192 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4193 getF32Constant(DAG, 0x3f1c0789)); 4194 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4195 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4196 getF32Constant(DAG, 0x3f011300)); 4197 } else if (LimitFloatPrecision <= 12) { 4198 // For floating-point precision of 12: 4199 // 4200 // Log10ofMantissa = 4201 // -0.64831180f + 4202 // (0.91751397f + 4203 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4204 // 4205 // error 0.00019228036, which is better than 12 bits 4206 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4207 getF32Constant(DAG, 0x3d431f31)); 4208 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4209 getF32Constant(DAG, 0x3ea21fb2)); 4210 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4211 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4212 getF32Constant(DAG, 0x3f6ae232)); 4213 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4214 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4215 getF32Constant(DAG, 0x3f25f7c3)); 4216 } else { // LimitFloatPrecision <= 18 4217 // For floating-point precision of 18: 4218 // 4219 // Log10ofMantissa = 4220 // -0.84299375f + 4221 // (1.5327582f + 4222 // (-1.0688956f + 4223 // (0.49102474f + 4224 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4225 // 4226 // error 0.0000037995730, which is better than 18 bits 4227 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4228 getF32Constant(DAG, 0x3c5d51ce)); 4229 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4230 getF32Constant(DAG, 0x3e00685a)); 4231 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4232 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4233 getF32Constant(DAG, 0x3efb6798)); 4234 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4235 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4236 getF32Constant(DAG, 0x3f88d192)); 4237 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4238 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4239 getF32Constant(DAG, 0x3fc4316c)); 4240 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4241 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4242 getF32Constant(DAG, 0x3f57ce70)); 4243 } 4244 4245 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4246 } 4247 4248 // No special expansion. 4249 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4250 } 4251 4252 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4253 /// limited-precision mode. 4254 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4255 const TargetLowering &TLI) { 4256 if (Op.getValueType() == MVT::f32 && 4257 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4258 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4259 4260 // FractionalPartOfX = x - (float)IntegerPartOfX; 4261 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4262 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4263 4264 // IntegerPartOfX <<= 23; 4265 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4266 DAG.getConstant(23, TLI.getPointerTy())); 4267 4268 SDValue TwoToFractionalPartOfX; 4269 if (LimitFloatPrecision <= 6) { 4270 // For floating-point precision of 6: 4271 // 4272 // TwoToFractionalPartOfX = 4273 // 0.997535578f + 4274 // (0.735607626f + 0.252464424f * x) * x; 4275 // 4276 // error 0.0144103317, which is 6 bits 4277 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4278 getF32Constant(DAG, 0x3e814304)); 4279 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4280 getF32Constant(DAG, 0x3f3c50c8)); 4281 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4282 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4283 getF32Constant(DAG, 0x3f7f5e7e)); 4284 } else if (LimitFloatPrecision <= 12) { 4285 // For floating-point precision of 12: 4286 // 4287 // TwoToFractionalPartOfX = 4288 // 0.999892986f + 4289 // (0.696457318f + 4290 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4291 // 4292 // error 0.000107046256, which is 13 to 14 bits 4293 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4294 getF32Constant(DAG, 0x3da235e3)); 4295 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4296 getF32Constant(DAG, 0x3e65b8f3)); 4297 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4298 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4299 getF32Constant(DAG, 0x3f324b07)); 4300 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4301 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4302 getF32Constant(DAG, 0x3f7ff8fd)); 4303 } else { // LimitFloatPrecision <= 18 4304 // For floating-point precision of 18: 4305 // 4306 // TwoToFractionalPartOfX = 4307 // 0.999999982f + 4308 // (0.693148872f + 4309 // (0.240227044f + 4310 // (0.554906021e-1f + 4311 // (0.961591928e-2f + 4312 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4313 // error 2.47208000*10^(-7), which is better than 18 bits 4314 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4315 getF32Constant(DAG, 0x3924b03e)); 4316 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4317 getF32Constant(DAG, 0x3ab24b87)); 4318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4319 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4320 getF32Constant(DAG, 0x3c1d8c17)); 4321 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4322 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4323 getF32Constant(DAG, 0x3d634a1d)); 4324 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4325 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4326 getF32Constant(DAG, 0x3e75fe14)); 4327 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4328 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4329 getF32Constant(DAG, 0x3f317234)); 4330 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4331 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4332 getF32Constant(DAG, 0x3f800000)); 4333 } 4334 4335 // Add the exponent into the result in integer domain. 4336 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4337 TwoToFractionalPartOfX); 4338 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4339 DAG.getNode(ISD::ADD, dl, MVT::i32, 4340 t13, IntegerPartOfX)); 4341 } 4342 4343 // No special expansion. 4344 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4345 } 4346 4347 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4348 /// limited-precision mode with x == 10.0f. 4349 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4350 SelectionDAG &DAG, const TargetLowering &TLI) { 4351 bool IsExp10 = false; 4352 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4353 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4354 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4355 APFloat Ten(10.0f); 4356 IsExp10 = LHSC->isExactlyValue(Ten); 4357 } 4358 } 4359 4360 if (IsExp10) { 4361 // Put the exponent in the right bit position for later addition to the 4362 // final result: 4363 // 4364 // #define LOG2OF10 3.3219281f 4365 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4366 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4367 getF32Constant(DAG, 0x40549a78)); 4368 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4369 4370 // FractionalPartOfX = x - (float)IntegerPartOfX; 4371 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4372 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4373 4374 // IntegerPartOfX <<= 23; 4375 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4376 DAG.getConstant(23, TLI.getPointerTy())); 4377 4378 SDValue TwoToFractionalPartOfX; 4379 if (LimitFloatPrecision <= 6) { 4380 // For floating-point precision of 6: 4381 // 4382 // twoToFractionalPartOfX = 4383 // 0.997535578f + 4384 // (0.735607626f + 0.252464424f * x) * x; 4385 // 4386 // error 0.0144103317, which is 6 bits 4387 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4388 getF32Constant(DAG, 0x3e814304)); 4389 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4390 getF32Constant(DAG, 0x3f3c50c8)); 4391 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4392 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4393 getF32Constant(DAG, 0x3f7f5e7e)); 4394 } else if (LimitFloatPrecision <= 12) { 4395 // For floating-point precision of 12: 4396 // 4397 // TwoToFractionalPartOfX = 4398 // 0.999892986f + 4399 // (0.696457318f + 4400 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4401 // 4402 // error 0.000107046256, which is 13 to 14 bits 4403 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4404 getF32Constant(DAG, 0x3da235e3)); 4405 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4406 getF32Constant(DAG, 0x3e65b8f3)); 4407 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4408 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4409 getF32Constant(DAG, 0x3f324b07)); 4410 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4411 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4412 getF32Constant(DAG, 0x3f7ff8fd)); 4413 } else { // LimitFloatPrecision <= 18 4414 // For floating-point precision of 18: 4415 // 4416 // TwoToFractionalPartOfX = 4417 // 0.999999982f + 4418 // (0.693148872f + 4419 // (0.240227044f + 4420 // (0.554906021e-1f + 4421 // (0.961591928e-2f + 4422 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4423 // error 2.47208000*10^(-7), which is better than 18 bits 4424 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4425 getF32Constant(DAG, 0x3924b03e)); 4426 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4427 getF32Constant(DAG, 0x3ab24b87)); 4428 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4429 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4430 getF32Constant(DAG, 0x3c1d8c17)); 4431 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4432 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4433 getF32Constant(DAG, 0x3d634a1d)); 4434 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4435 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4436 getF32Constant(DAG, 0x3e75fe14)); 4437 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4438 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4439 getF32Constant(DAG, 0x3f317234)); 4440 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4441 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4442 getF32Constant(DAG, 0x3f800000)); 4443 } 4444 4445 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4446 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4447 DAG.getNode(ISD::ADD, dl, MVT::i32, 4448 t13, IntegerPartOfX)); 4449 } 4450 4451 // No special expansion. 4452 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4453 } 4454 4455 4456 /// ExpandPowI - Expand a llvm.powi intrinsic. 4457 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4458 SelectionDAG &DAG) { 4459 // If RHS is a constant, we can expand this out to a multiplication tree, 4460 // otherwise we end up lowering to a call to __powidf2 (for example). When 4461 // optimizing for size, we only want to do this if the expansion would produce 4462 // a small number of multiplies, otherwise we do the full expansion. 4463 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4464 // Get the exponent as a positive value. 4465 unsigned Val = RHSC->getSExtValue(); 4466 if ((int)Val < 0) Val = -Val; 4467 4468 // powi(x, 0) -> 1.0 4469 if (Val == 0) 4470 return DAG.getConstantFP(1.0, LHS.getValueType()); 4471 4472 const Function *F = DAG.getMachineFunction().getFunction(); 4473 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4474 Attribute::OptimizeForSize) || 4475 // If optimizing for size, don't insert too many multiplies. This 4476 // inserts up to 5 multiplies. 4477 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4478 // We use the simple binary decomposition method to generate the multiply 4479 // sequence. There are more optimal ways to do this (for example, 4480 // powi(x,15) generates one more multiply than it should), but this has 4481 // the benefit of being both really simple and much better than a libcall. 4482 SDValue Res; // Logically starts equal to 1.0 4483 SDValue CurSquare = LHS; 4484 while (Val) { 4485 if (Val & 1) { 4486 if (Res.getNode()) 4487 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4488 else 4489 Res = CurSquare; // 1.0*CurSquare. 4490 } 4491 4492 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4493 CurSquare, CurSquare); 4494 Val >>= 1; 4495 } 4496 4497 // If the original was negative, invert the result, producing 1/(x*x*x). 4498 if (RHSC->getSExtValue() < 0) 4499 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4500 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4501 return Res; 4502 } 4503 } 4504 4505 // Otherwise, expand to a libcall. 4506 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4507 } 4508 4509 // getTruncatedArgReg - Find underlying register used for an truncated 4510 // argument. 4511 static unsigned getTruncatedArgReg(const SDValue &N) { 4512 if (N.getOpcode() != ISD::TRUNCATE) 4513 return 0; 4514 4515 const SDValue &Ext = N.getOperand(0); 4516 if (Ext.getOpcode() == ISD::AssertZext || 4517 Ext.getOpcode() == ISD::AssertSext) { 4518 const SDValue &CFR = Ext.getOperand(0); 4519 if (CFR.getOpcode() == ISD::CopyFromReg) 4520 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4521 if (CFR.getOpcode() == ISD::TRUNCATE) 4522 return getTruncatedArgReg(CFR); 4523 } 4524 return 0; 4525 } 4526 4527 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4528 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4529 /// At the end of instruction selection, they will be inserted to the entry BB. 4530 bool 4531 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4532 int64_t Offset, 4533 const SDValue &N) { 4534 const Argument *Arg = dyn_cast<Argument>(V); 4535 if (!Arg) 4536 return false; 4537 4538 MachineFunction &MF = DAG.getMachineFunction(); 4539 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4540 4541 // Ignore inlined function arguments here. 4542 DIVariable DV(Variable); 4543 if (DV.isInlinedFnArgument(MF.getFunction())) 4544 return false; 4545 4546 Optional<MachineOperand> Op; 4547 // Some arguments' frame index is recorded during argument lowering. 4548 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4549 Op = MachineOperand::CreateFI(FI); 4550 4551 if (!Op && N.getNode()) { 4552 unsigned Reg; 4553 if (N.getOpcode() == ISD::CopyFromReg) 4554 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4555 else 4556 Reg = getTruncatedArgReg(N); 4557 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4558 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4559 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4560 if (PR) 4561 Reg = PR; 4562 } 4563 if (Reg) 4564 Op = MachineOperand::CreateReg(Reg, false); 4565 } 4566 4567 if (!Op) { 4568 // Check if ValueMap has reg number. 4569 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4570 if (VMI != FuncInfo.ValueMap.end()) 4571 Op = MachineOperand::CreateReg(VMI->second, false); 4572 } 4573 4574 if (!Op && N.getNode()) 4575 // Check if frame index is available. 4576 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4577 if (FrameIndexSDNode *FINode = 4578 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4579 Op = MachineOperand::CreateFI(FINode->getIndex()); 4580 4581 if (!Op) 4582 return false; 4583 4584 // FIXME: This does not handle register-indirect values at offset 0. 4585 bool IsIndirect = Offset != 0; 4586 if (Op->isReg()) 4587 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4588 TII->get(TargetOpcode::DBG_VALUE), 4589 IsIndirect, 4590 Op->getReg(), Offset, Variable)); 4591 else 4592 FuncInfo.ArgDbgValues.push_back( 4593 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4594 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4595 4596 return true; 4597 } 4598 4599 // VisualStudio defines setjmp as _setjmp 4600 #if defined(_MSC_VER) && defined(setjmp) && \ 4601 !defined(setjmp_undefined_for_msvc) 4602 # pragma push_macro("setjmp") 4603 # undef setjmp 4604 # define setjmp_undefined_for_msvc 4605 #endif 4606 4607 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4608 /// we want to emit this as a call to a named external function, return the name 4609 /// otherwise lower it and return null. 4610 const char * 4611 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4612 const TargetLowering *TLI = TM.getTargetLowering(); 4613 SDLoc sdl = getCurSDLoc(); 4614 DebugLoc dl = getCurDebugLoc(); 4615 SDValue Res; 4616 4617 switch (Intrinsic) { 4618 default: 4619 // By default, turn this into a target intrinsic node. 4620 visitTargetIntrinsic(I, Intrinsic); 4621 return 0; 4622 case Intrinsic::vastart: visitVAStart(I); return 0; 4623 case Intrinsic::vaend: visitVAEnd(I); return 0; 4624 case Intrinsic::vacopy: visitVACopy(I); return 0; 4625 case Intrinsic::returnaddress: 4626 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4627 getValue(I.getArgOperand(0)))); 4628 return 0; 4629 case Intrinsic::frameaddress: 4630 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4631 getValue(I.getArgOperand(0)))); 4632 return 0; 4633 case Intrinsic::setjmp: 4634 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4635 case Intrinsic::longjmp: 4636 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4637 case Intrinsic::memcpy: { 4638 // Assert for address < 256 since we support only user defined address 4639 // spaces. 4640 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4641 < 256 && 4642 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4643 < 256 && 4644 "Unknown address space"); 4645 SDValue Op1 = getValue(I.getArgOperand(0)); 4646 SDValue Op2 = getValue(I.getArgOperand(1)); 4647 SDValue Op3 = getValue(I.getArgOperand(2)); 4648 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4649 if (!Align) 4650 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4651 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4652 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4653 MachinePointerInfo(I.getArgOperand(0)), 4654 MachinePointerInfo(I.getArgOperand(1)))); 4655 return 0; 4656 } 4657 case Intrinsic::memset: { 4658 // Assert for address < 256 since we support only user defined address 4659 // spaces. 4660 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4661 < 256 && 4662 "Unknown address space"); 4663 SDValue Op1 = getValue(I.getArgOperand(0)); 4664 SDValue Op2 = getValue(I.getArgOperand(1)); 4665 SDValue Op3 = getValue(I.getArgOperand(2)); 4666 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4667 if (!Align) 4668 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4669 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4670 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4671 MachinePointerInfo(I.getArgOperand(0)))); 4672 return 0; 4673 } 4674 case Intrinsic::memmove: { 4675 // Assert for address < 256 since we support only user defined address 4676 // spaces. 4677 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4678 < 256 && 4679 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4680 < 256 && 4681 "Unknown address space"); 4682 SDValue Op1 = getValue(I.getArgOperand(0)); 4683 SDValue Op2 = getValue(I.getArgOperand(1)); 4684 SDValue Op3 = getValue(I.getArgOperand(2)); 4685 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4686 if (!Align) 4687 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4688 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4689 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4690 MachinePointerInfo(I.getArgOperand(0)), 4691 MachinePointerInfo(I.getArgOperand(1)))); 4692 return 0; 4693 } 4694 case Intrinsic::dbg_declare: { 4695 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4696 MDNode *Variable = DI.getVariable(); 4697 const Value *Address = DI.getAddress(); 4698 DIVariable DIVar(Variable); 4699 assert((!DIVar || DIVar.isVariable()) && 4700 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4701 if (!Address || !DIVar) { 4702 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4703 return 0; 4704 } 4705 4706 // Check if address has undef value. 4707 if (isa<UndefValue>(Address) || 4708 (Address->use_empty() && !isa<Argument>(Address))) { 4709 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4710 return 0; 4711 } 4712 4713 SDValue &N = NodeMap[Address]; 4714 if (!N.getNode() && isa<Argument>(Address)) 4715 // Check unused arguments map. 4716 N = UnusedArgNodeMap[Address]; 4717 SDDbgValue *SDV; 4718 if (N.getNode()) { 4719 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4720 Address = BCI->getOperand(0); 4721 // Parameters are handled specially. 4722 bool isParameter = 4723 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4724 isa<Argument>(Address)); 4725 4726 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4727 4728 if (isParameter && !AI) { 4729 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4730 if (FINode) 4731 // Byval parameter. We have a frame index at this point. 4732 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4733 0, dl, SDNodeOrder); 4734 else { 4735 // Address is an argument, so try to emit its dbg value using 4736 // virtual register info from the FuncInfo.ValueMap. 4737 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4738 return 0; 4739 } 4740 } else if (AI) 4741 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4742 0, dl, SDNodeOrder); 4743 else { 4744 // Can't do anything with other non-AI cases yet. 4745 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4746 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4747 DEBUG(Address->dump()); 4748 return 0; 4749 } 4750 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4751 } else { 4752 // If Address is an argument then try to emit its dbg value using 4753 // virtual register info from the FuncInfo.ValueMap. 4754 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4755 // If variable is pinned by a alloca in dominating bb then 4756 // use StaticAllocaMap. 4757 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4758 if (AI->getParent() != DI.getParent()) { 4759 DenseMap<const AllocaInst*, int>::iterator SI = 4760 FuncInfo.StaticAllocaMap.find(AI); 4761 if (SI != FuncInfo.StaticAllocaMap.end()) { 4762 SDV = DAG.getDbgValue(Variable, SI->second, 4763 0, dl, SDNodeOrder); 4764 DAG.AddDbgValue(SDV, 0, false); 4765 return 0; 4766 } 4767 } 4768 } 4769 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4770 } 4771 } 4772 return 0; 4773 } 4774 case Intrinsic::dbg_value: { 4775 const DbgValueInst &DI = cast<DbgValueInst>(I); 4776 DIVariable DIVar(DI.getVariable()); 4777 assert((!DIVar || DIVar.isVariable()) && 4778 "Variable in DbgValueInst should be either null or a DIVariable."); 4779 if (!DIVar) 4780 return 0; 4781 4782 MDNode *Variable = DI.getVariable(); 4783 uint64_t Offset = DI.getOffset(); 4784 const Value *V = DI.getValue(); 4785 if (!V) 4786 return 0; 4787 4788 SDDbgValue *SDV; 4789 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4790 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4791 DAG.AddDbgValue(SDV, 0, false); 4792 } else { 4793 // Do not use getValue() in here; we don't want to generate code at 4794 // this point if it hasn't been done yet. 4795 SDValue N = NodeMap[V]; 4796 if (!N.getNode() && isa<Argument>(V)) 4797 // Check unused arguments map. 4798 N = UnusedArgNodeMap[V]; 4799 if (N.getNode()) { 4800 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4801 SDV = DAG.getDbgValue(Variable, N.getNode(), 4802 N.getResNo(), Offset, dl, SDNodeOrder); 4803 DAG.AddDbgValue(SDV, N.getNode(), false); 4804 } 4805 } else if (!V->use_empty() ) { 4806 // Do not call getValue(V) yet, as we don't want to generate code. 4807 // Remember it for later. 4808 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4809 DanglingDebugInfoMap[V] = DDI; 4810 } else { 4811 // We may expand this to cover more cases. One case where we have no 4812 // data available is an unreferenced parameter. 4813 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4814 } 4815 } 4816 4817 // Build a debug info table entry. 4818 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4819 V = BCI->getOperand(0); 4820 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4821 // Don't handle byval struct arguments or VLAs, for example. 4822 if (!AI) { 4823 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4824 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4825 return 0; 4826 } 4827 DenseMap<const AllocaInst*, int>::iterator SI = 4828 FuncInfo.StaticAllocaMap.find(AI); 4829 if (SI == FuncInfo.StaticAllocaMap.end()) 4830 return 0; // VLAs. 4831 int FI = SI->second; 4832 4833 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4834 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4835 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4836 return 0; 4837 } 4838 4839 case Intrinsic::eh_typeid_for: { 4840 // Find the type id for the given typeinfo. 4841 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4842 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4843 Res = DAG.getConstant(TypeID, MVT::i32); 4844 setValue(&I, Res); 4845 return 0; 4846 } 4847 4848 case Intrinsic::eh_return_i32: 4849 case Intrinsic::eh_return_i64: 4850 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4851 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4852 MVT::Other, 4853 getControlRoot(), 4854 getValue(I.getArgOperand(0)), 4855 getValue(I.getArgOperand(1)))); 4856 return 0; 4857 case Intrinsic::eh_unwind_init: 4858 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4859 return 0; 4860 case Intrinsic::eh_dwarf_cfa: { 4861 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4862 TLI->getPointerTy()); 4863 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4864 CfaArg.getValueType(), 4865 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4866 CfaArg.getValueType()), 4867 CfaArg); 4868 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4869 TLI->getPointerTy(), 4870 DAG.getConstant(0, TLI->getPointerTy())); 4871 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4872 FA, Offset)); 4873 return 0; 4874 } 4875 case Intrinsic::eh_sjlj_callsite: { 4876 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4877 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4878 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4879 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4880 4881 MMI.setCurrentCallSite(CI->getZExtValue()); 4882 return 0; 4883 } 4884 case Intrinsic::eh_sjlj_functioncontext: { 4885 // Get and store the index of the function context. 4886 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4887 AllocaInst *FnCtx = 4888 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4889 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4890 MFI->setFunctionContextIndex(FI); 4891 return 0; 4892 } 4893 case Intrinsic::eh_sjlj_setjmp: { 4894 SDValue Ops[2]; 4895 Ops[0] = getRoot(); 4896 Ops[1] = getValue(I.getArgOperand(0)); 4897 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4898 DAG.getVTList(MVT::i32, MVT::Other), 4899 Ops, 2); 4900 setValue(&I, Op.getValue(0)); 4901 DAG.setRoot(Op.getValue(1)); 4902 return 0; 4903 } 4904 case Intrinsic::eh_sjlj_longjmp: { 4905 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4906 getRoot(), getValue(I.getArgOperand(0)))); 4907 return 0; 4908 } 4909 4910 case Intrinsic::x86_mmx_pslli_w: 4911 case Intrinsic::x86_mmx_pslli_d: 4912 case Intrinsic::x86_mmx_pslli_q: 4913 case Intrinsic::x86_mmx_psrli_w: 4914 case Intrinsic::x86_mmx_psrli_d: 4915 case Intrinsic::x86_mmx_psrli_q: 4916 case Intrinsic::x86_mmx_psrai_w: 4917 case Intrinsic::x86_mmx_psrai_d: { 4918 SDValue ShAmt = getValue(I.getArgOperand(1)); 4919 if (isa<ConstantSDNode>(ShAmt)) { 4920 visitTargetIntrinsic(I, Intrinsic); 4921 return 0; 4922 } 4923 unsigned NewIntrinsic = 0; 4924 EVT ShAmtVT = MVT::v2i32; 4925 switch (Intrinsic) { 4926 case Intrinsic::x86_mmx_pslli_w: 4927 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4928 break; 4929 case Intrinsic::x86_mmx_pslli_d: 4930 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4931 break; 4932 case Intrinsic::x86_mmx_pslli_q: 4933 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4934 break; 4935 case Intrinsic::x86_mmx_psrli_w: 4936 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4937 break; 4938 case Intrinsic::x86_mmx_psrli_d: 4939 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4940 break; 4941 case Intrinsic::x86_mmx_psrli_q: 4942 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4943 break; 4944 case Intrinsic::x86_mmx_psrai_w: 4945 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4946 break; 4947 case Intrinsic::x86_mmx_psrai_d: 4948 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4949 break; 4950 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4951 } 4952 4953 // The vector shift intrinsics with scalars uses 32b shift amounts but 4954 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4955 // to be zero. 4956 // We must do this early because v2i32 is not a legal type. 4957 SDValue ShOps[2]; 4958 ShOps[0] = ShAmt; 4959 ShOps[1] = DAG.getConstant(0, MVT::i32); 4960 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4961 EVT DestVT = TLI->getValueType(I.getType()); 4962 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4963 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4964 DAG.getConstant(NewIntrinsic, MVT::i32), 4965 getValue(I.getArgOperand(0)), ShAmt); 4966 setValue(&I, Res); 4967 return 0; 4968 } 4969 case Intrinsic::x86_avx_vinsertf128_pd_256: 4970 case Intrinsic::x86_avx_vinsertf128_ps_256: 4971 case Intrinsic::x86_avx_vinsertf128_si_256: 4972 case Intrinsic::x86_avx2_vinserti128: { 4973 EVT DestVT = TLI->getValueType(I.getType()); 4974 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4975 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4976 ElVT.getVectorNumElements(); 4977 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4978 getValue(I.getArgOperand(0)), 4979 getValue(I.getArgOperand(1)), 4980 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4981 setValue(&I, Res); 4982 return 0; 4983 } 4984 case Intrinsic::x86_avx_vextractf128_pd_256: 4985 case Intrinsic::x86_avx_vextractf128_ps_256: 4986 case Intrinsic::x86_avx_vextractf128_si_256: 4987 case Intrinsic::x86_avx2_vextracti128: { 4988 EVT DestVT = TLI->getValueType(I.getType()); 4989 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4990 DestVT.getVectorNumElements(); 4991 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4992 getValue(I.getArgOperand(0)), 4993 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4994 setValue(&I, Res); 4995 return 0; 4996 } 4997 case Intrinsic::convertff: 4998 case Intrinsic::convertfsi: 4999 case Intrinsic::convertfui: 5000 case Intrinsic::convertsif: 5001 case Intrinsic::convertuif: 5002 case Intrinsic::convertss: 5003 case Intrinsic::convertsu: 5004 case Intrinsic::convertus: 5005 case Intrinsic::convertuu: { 5006 ISD::CvtCode Code = ISD::CVT_INVALID; 5007 switch (Intrinsic) { 5008 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5009 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5010 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5011 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5012 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5013 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5014 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5015 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5016 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5017 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5018 } 5019 EVT DestVT = TLI->getValueType(I.getType()); 5020 const Value *Op1 = I.getArgOperand(0); 5021 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5022 DAG.getValueType(DestVT), 5023 DAG.getValueType(getValue(Op1).getValueType()), 5024 getValue(I.getArgOperand(1)), 5025 getValue(I.getArgOperand(2)), 5026 Code); 5027 setValue(&I, Res); 5028 return 0; 5029 } 5030 case Intrinsic::powi: 5031 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5032 getValue(I.getArgOperand(1)), DAG)); 5033 return 0; 5034 case Intrinsic::log: 5035 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5036 return 0; 5037 case Intrinsic::log2: 5038 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5039 return 0; 5040 case Intrinsic::log10: 5041 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5042 return 0; 5043 case Intrinsic::exp: 5044 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5045 return 0; 5046 case Intrinsic::exp2: 5047 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5048 return 0; 5049 case Intrinsic::pow: 5050 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5051 getValue(I.getArgOperand(1)), DAG, *TLI)); 5052 return 0; 5053 case Intrinsic::sqrt: 5054 case Intrinsic::fabs: 5055 case Intrinsic::sin: 5056 case Intrinsic::cos: 5057 case Intrinsic::floor: 5058 case Intrinsic::ceil: 5059 case Intrinsic::trunc: 5060 case Intrinsic::rint: 5061 case Intrinsic::nearbyint: 5062 case Intrinsic::round: { 5063 unsigned Opcode; 5064 switch (Intrinsic) { 5065 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5066 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5067 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5068 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5069 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5070 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5071 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5072 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5073 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5074 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5075 case Intrinsic::round: Opcode = ISD::FROUND; break; 5076 } 5077 5078 setValue(&I, DAG.getNode(Opcode, sdl, 5079 getValue(I.getArgOperand(0)).getValueType(), 5080 getValue(I.getArgOperand(0)))); 5081 return 0; 5082 } 5083 case Intrinsic::copysign: 5084 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5085 getValue(I.getArgOperand(0)).getValueType(), 5086 getValue(I.getArgOperand(0)), 5087 getValue(I.getArgOperand(1)))); 5088 return 0; 5089 case Intrinsic::fma: 5090 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5091 getValue(I.getArgOperand(0)).getValueType(), 5092 getValue(I.getArgOperand(0)), 5093 getValue(I.getArgOperand(1)), 5094 getValue(I.getArgOperand(2)))); 5095 return 0; 5096 case Intrinsic::fmuladd: { 5097 EVT VT = TLI->getValueType(I.getType()); 5098 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5099 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5100 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5101 getValue(I.getArgOperand(0)).getValueType(), 5102 getValue(I.getArgOperand(0)), 5103 getValue(I.getArgOperand(1)), 5104 getValue(I.getArgOperand(2)))); 5105 } else { 5106 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5107 getValue(I.getArgOperand(0)).getValueType(), 5108 getValue(I.getArgOperand(0)), 5109 getValue(I.getArgOperand(1))); 5110 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5111 getValue(I.getArgOperand(0)).getValueType(), 5112 Mul, 5113 getValue(I.getArgOperand(2))); 5114 setValue(&I, Add); 5115 } 5116 return 0; 5117 } 5118 case Intrinsic::convert_to_fp16: 5119 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5120 MVT::i16, getValue(I.getArgOperand(0)))); 5121 return 0; 5122 case Intrinsic::convert_from_fp16: 5123 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5124 MVT::f32, getValue(I.getArgOperand(0)))); 5125 return 0; 5126 case Intrinsic::pcmarker: { 5127 SDValue Tmp = getValue(I.getArgOperand(0)); 5128 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5129 return 0; 5130 } 5131 case Intrinsic::readcyclecounter: { 5132 SDValue Op = getRoot(); 5133 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5134 DAG.getVTList(MVT::i64, MVT::Other), 5135 &Op, 1); 5136 setValue(&I, Res); 5137 DAG.setRoot(Res.getValue(1)); 5138 return 0; 5139 } 5140 case Intrinsic::bswap: 5141 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5142 getValue(I.getArgOperand(0)).getValueType(), 5143 getValue(I.getArgOperand(0)))); 5144 return 0; 5145 case Intrinsic::cttz: { 5146 SDValue Arg = getValue(I.getArgOperand(0)); 5147 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5148 EVT Ty = Arg.getValueType(); 5149 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5150 sdl, Ty, Arg)); 5151 return 0; 5152 } 5153 case Intrinsic::ctlz: { 5154 SDValue Arg = getValue(I.getArgOperand(0)); 5155 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5156 EVT Ty = Arg.getValueType(); 5157 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5158 sdl, Ty, Arg)); 5159 return 0; 5160 } 5161 case Intrinsic::ctpop: { 5162 SDValue Arg = getValue(I.getArgOperand(0)); 5163 EVT Ty = Arg.getValueType(); 5164 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5165 return 0; 5166 } 5167 case Intrinsic::stacksave: { 5168 SDValue Op = getRoot(); 5169 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5170 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5171 setValue(&I, Res); 5172 DAG.setRoot(Res.getValue(1)); 5173 return 0; 5174 } 5175 case Intrinsic::stackrestore: { 5176 Res = getValue(I.getArgOperand(0)); 5177 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5178 return 0; 5179 } 5180 case Intrinsic::stackprotector: { 5181 // Emit code into the DAG to store the stack guard onto the stack. 5182 MachineFunction &MF = DAG.getMachineFunction(); 5183 MachineFrameInfo *MFI = MF.getFrameInfo(); 5184 EVT PtrTy = TLI->getPointerTy(); 5185 5186 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5187 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5188 5189 int FI = FuncInfo.StaticAllocaMap[Slot]; 5190 MFI->setStackProtectorIndex(FI); 5191 5192 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5193 5194 // Store the stack protector onto the stack. 5195 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5196 MachinePointerInfo::getFixedStack(FI), 5197 true, false, 0); 5198 setValue(&I, Res); 5199 DAG.setRoot(Res); 5200 return 0; 5201 } 5202 case Intrinsic::objectsize: { 5203 // If we don't know by now, we're never going to know. 5204 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5205 5206 assert(CI && "Non-constant type in __builtin_object_size?"); 5207 5208 SDValue Arg = getValue(I.getCalledValue()); 5209 EVT Ty = Arg.getValueType(); 5210 5211 if (CI->isZero()) 5212 Res = DAG.getConstant(-1ULL, Ty); 5213 else 5214 Res = DAG.getConstant(0, Ty); 5215 5216 setValue(&I, Res); 5217 return 0; 5218 } 5219 case Intrinsic::annotation: 5220 case Intrinsic::ptr_annotation: 5221 // Drop the intrinsic, but forward the value 5222 setValue(&I, getValue(I.getOperand(0))); 5223 return 0; 5224 case Intrinsic::var_annotation: 5225 // Discard annotate attributes 5226 return 0; 5227 5228 case Intrinsic::init_trampoline: { 5229 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5230 5231 SDValue Ops[6]; 5232 Ops[0] = getRoot(); 5233 Ops[1] = getValue(I.getArgOperand(0)); 5234 Ops[2] = getValue(I.getArgOperand(1)); 5235 Ops[3] = getValue(I.getArgOperand(2)); 5236 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5237 Ops[5] = DAG.getSrcValue(F); 5238 5239 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5240 5241 DAG.setRoot(Res); 5242 return 0; 5243 } 5244 case Intrinsic::adjust_trampoline: { 5245 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5246 TLI->getPointerTy(), 5247 getValue(I.getArgOperand(0)))); 5248 return 0; 5249 } 5250 case Intrinsic::gcroot: 5251 if (GFI) { 5252 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5253 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5254 5255 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5256 GFI->addStackRoot(FI->getIndex(), TypeMap); 5257 } 5258 return 0; 5259 case Intrinsic::gcread: 5260 case Intrinsic::gcwrite: 5261 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5262 case Intrinsic::flt_rounds: 5263 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5264 return 0; 5265 5266 case Intrinsic::expect: { 5267 // Just replace __builtin_expect(exp, c) with EXP. 5268 setValue(&I, getValue(I.getArgOperand(0))); 5269 return 0; 5270 } 5271 5272 case Intrinsic::debugtrap: 5273 case Intrinsic::trap: { 5274 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5275 if (TrapFuncName.empty()) { 5276 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5277 ISD::TRAP : ISD::DEBUGTRAP; 5278 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5279 return 0; 5280 } 5281 TargetLowering::ArgListTy Args; 5282 TargetLowering:: 5283 CallLoweringInfo CLI(getRoot(), I.getType(), 5284 false, false, false, false, 0, CallingConv::C, 5285 /*isTailCall=*/false, 5286 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5287 DAG.getExternalSymbol(TrapFuncName.data(), 5288 TLI->getPointerTy()), 5289 Args, DAG, sdl); 5290 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5291 DAG.setRoot(Result.second); 5292 return 0; 5293 } 5294 5295 case Intrinsic::uadd_with_overflow: 5296 case Intrinsic::sadd_with_overflow: 5297 case Intrinsic::usub_with_overflow: 5298 case Intrinsic::ssub_with_overflow: 5299 case Intrinsic::umul_with_overflow: 5300 case Intrinsic::smul_with_overflow: { 5301 ISD::NodeType Op; 5302 switch (Intrinsic) { 5303 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5304 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5305 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5306 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5307 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5308 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5309 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5310 } 5311 SDValue Op1 = getValue(I.getArgOperand(0)); 5312 SDValue Op2 = getValue(I.getArgOperand(1)); 5313 5314 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5315 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5316 return 0; 5317 } 5318 case Intrinsic::prefetch: { 5319 SDValue Ops[5]; 5320 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5321 Ops[0] = getRoot(); 5322 Ops[1] = getValue(I.getArgOperand(0)); 5323 Ops[2] = getValue(I.getArgOperand(1)); 5324 Ops[3] = getValue(I.getArgOperand(2)); 5325 Ops[4] = getValue(I.getArgOperand(3)); 5326 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5327 DAG.getVTList(MVT::Other), 5328 &Ops[0], 5, 5329 EVT::getIntegerVT(*Context, 8), 5330 MachinePointerInfo(I.getArgOperand(0)), 5331 0, /* align */ 5332 false, /* volatile */ 5333 rw==0, /* read */ 5334 rw==1)); /* write */ 5335 return 0; 5336 } 5337 case Intrinsic::lifetime_start: 5338 case Intrinsic::lifetime_end: { 5339 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5340 // Stack coloring is not enabled in O0, discard region information. 5341 if (TM.getOptLevel() == CodeGenOpt::None) 5342 return 0; 5343 5344 SmallVector<Value *, 4> Allocas; 5345 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5346 5347 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5348 E = Allocas.end(); Object != E; ++Object) { 5349 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5350 5351 // Could not find an Alloca. 5352 if (!LifetimeObject) 5353 continue; 5354 5355 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5356 5357 SDValue Ops[2]; 5358 Ops[0] = getRoot(); 5359 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5360 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5361 5362 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5363 DAG.setRoot(Res); 5364 } 5365 return 0; 5366 } 5367 case Intrinsic::invariant_start: 5368 // Discard region information. 5369 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5370 return 0; 5371 case Intrinsic::invariant_end: 5372 // Discard region information. 5373 return 0; 5374 case Intrinsic::stackprotectorcheck: { 5375 // Do not actually emit anything for this basic block. Instead we initialize 5376 // the stack protector descriptor and export the guard variable so we can 5377 // access it in FinishBasicBlock. 5378 const BasicBlock *BB = I.getParent(); 5379 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5380 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5381 5382 // Flush our exports since we are going to process a terminator. 5383 (void)getControlRoot(); 5384 return 0; 5385 } 5386 case Intrinsic::clear_cache: 5387 return TLI->getClearCacheBuiltinName(); 5388 case Intrinsic::donothing: 5389 // ignore 5390 return 0; 5391 case Intrinsic::experimental_stackmap: { 5392 visitStackmap(I); 5393 return 0; 5394 } 5395 case Intrinsic::experimental_patchpoint_void: 5396 case Intrinsic::experimental_patchpoint_i64: { 5397 visitPatchpoint(I); 5398 return 0; 5399 } 5400 } 5401 } 5402 5403 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5404 bool isTailCall, 5405 MachineBasicBlock *LandingPad) { 5406 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5407 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5408 Type *RetTy = FTy->getReturnType(); 5409 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5410 MCSymbol *BeginLabel = 0; 5411 5412 TargetLowering::ArgListTy Args; 5413 TargetLowering::ArgListEntry Entry; 5414 Args.reserve(CS.arg_size()); 5415 5416 // Check whether the function can return without sret-demotion. 5417 SmallVector<ISD::OutputArg, 4> Outs; 5418 const TargetLowering *TLI = TM.getTargetLowering(); 5419 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5420 5421 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5422 DAG.getMachineFunction(), 5423 FTy->isVarArg(), Outs, 5424 FTy->getContext()); 5425 5426 SDValue DemoteStackSlot; 5427 int DemoteStackIdx = -100; 5428 5429 if (!CanLowerReturn) { 5430 assert(!CS.hasInAllocaArgument() && 5431 "sret demotion is incompatible with inalloca"); 5432 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5433 FTy->getReturnType()); 5434 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5435 FTy->getReturnType()); 5436 MachineFunction &MF = DAG.getMachineFunction(); 5437 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5438 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5439 5440 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5441 Entry.Node = DemoteStackSlot; 5442 Entry.Ty = StackSlotPtrType; 5443 Entry.isSExt = false; 5444 Entry.isZExt = false; 5445 Entry.isInReg = false; 5446 Entry.isSRet = true; 5447 Entry.isNest = false; 5448 Entry.isByVal = false; 5449 Entry.isReturned = false; 5450 Entry.Alignment = Align; 5451 Args.push_back(Entry); 5452 RetTy = Type::getVoidTy(FTy->getContext()); 5453 } 5454 5455 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5456 i != e; ++i) { 5457 const Value *V = *i; 5458 5459 // Skip empty types 5460 if (V->getType()->isEmptyTy()) 5461 continue; 5462 5463 SDValue ArgNode = getValue(V); 5464 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5465 5466 // Skip the first return-type Attribute to get to params. 5467 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5468 Args.push_back(Entry); 5469 } 5470 5471 if (LandingPad) { 5472 // Insert a label before the invoke call to mark the try range. This can be 5473 // used to detect deletion of the invoke via the MachineModuleInfo. 5474 BeginLabel = MMI.getContext().CreateTempSymbol(); 5475 5476 // For SjLj, keep track of which landing pads go with which invokes 5477 // so as to maintain the ordering of pads in the LSDA. 5478 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5479 if (CallSiteIndex) { 5480 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5481 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5482 5483 // Now that the call site is handled, stop tracking it. 5484 MMI.setCurrentCallSite(0); 5485 } 5486 5487 // Both PendingLoads and PendingExports must be flushed here; 5488 // this call might not return. 5489 (void)getRoot(); 5490 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5491 } 5492 5493 // Check if target-independent constraints permit a tail call here. 5494 // Target-dependent constraints are checked within TLI->LowerCallTo. 5495 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5496 isTailCall = false; 5497 5498 TargetLowering:: 5499 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5500 getCurSDLoc(), CS); 5501 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5502 assert((isTailCall || Result.second.getNode()) && 5503 "Non-null chain expected with non-tail call!"); 5504 assert((Result.second.getNode() || !Result.first.getNode()) && 5505 "Null value expected with tail call!"); 5506 if (Result.first.getNode()) { 5507 setValue(CS.getInstruction(), Result.first); 5508 } else if (!CanLowerReturn && Result.second.getNode()) { 5509 // The instruction result is the result of loading from the 5510 // hidden sret parameter. 5511 SmallVector<EVT, 1> PVTs; 5512 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5513 5514 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5515 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5516 EVT PtrVT = PVTs[0]; 5517 5518 SmallVector<EVT, 4> RetTys; 5519 SmallVector<uint64_t, 4> Offsets; 5520 RetTy = FTy->getReturnType(); 5521 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5522 5523 unsigned NumValues = RetTys.size(); 5524 SmallVector<SDValue, 4> Values(NumValues); 5525 SmallVector<SDValue, 4> Chains(NumValues); 5526 5527 for (unsigned i = 0; i < NumValues; ++i) { 5528 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5529 DemoteStackSlot, 5530 DAG.getConstant(Offsets[i], PtrVT)); 5531 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5532 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5533 false, false, false, 1); 5534 Values[i] = L; 5535 Chains[i] = L.getValue(1); 5536 } 5537 5538 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5539 MVT::Other, &Chains[0], NumValues); 5540 PendingLoads.push_back(Chain); 5541 5542 setValue(CS.getInstruction(), 5543 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5544 DAG.getVTList(&RetTys[0], RetTys.size()), 5545 &Values[0], Values.size())); 5546 } 5547 5548 if (!Result.second.getNode()) { 5549 // As a special case, a null chain means that a tail call has been emitted 5550 // and the DAG root is already updated. 5551 HasTailCall = true; 5552 5553 // Since there's no actual continuation from this block, nothing can be 5554 // relying on us setting vregs for them. 5555 PendingExports.clear(); 5556 } else { 5557 DAG.setRoot(Result.second); 5558 } 5559 5560 if (LandingPad) { 5561 // Insert a label at the end of the invoke call to mark the try range. This 5562 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5563 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5564 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5565 5566 // Inform MachineModuleInfo of range. 5567 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5568 } 5569 } 5570 5571 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5572 /// value is equal or not-equal to zero. 5573 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5574 for (const User *U : V->users()) { 5575 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5576 if (IC->isEquality()) 5577 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5578 if (C->isNullValue()) 5579 continue; 5580 // Unknown instruction. 5581 return false; 5582 } 5583 return true; 5584 } 5585 5586 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5587 Type *LoadTy, 5588 SelectionDAGBuilder &Builder) { 5589 5590 // Check to see if this load can be trivially constant folded, e.g. if the 5591 // input is from a string literal. 5592 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5593 // Cast pointer to the type we really want to load. 5594 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5595 PointerType::getUnqual(LoadTy)); 5596 5597 if (const Constant *LoadCst = 5598 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5599 Builder.DL)) 5600 return Builder.getValue(LoadCst); 5601 } 5602 5603 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5604 // still constant memory, the input chain can be the entry node. 5605 SDValue Root; 5606 bool ConstantMemory = false; 5607 5608 // Do not serialize (non-volatile) loads of constant memory with anything. 5609 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5610 Root = Builder.DAG.getEntryNode(); 5611 ConstantMemory = true; 5612 } else { 5613 // Do not serialize non-volatile loads against each other. 5614 Root = Builder.DAG.getRoot(); 5615 } 5616 5617 SDValue Ptr = Builder.getValue(PtrVal); 5618 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5619 Ptr, MachinePointerInfo(PtrVal), 5620 false /*volatile*/, 5621 false /*nontemporal*/, 5622 false /*isinvariant*/, 1 /* align=1 */); 5623 5624 if (!ConstantMemory) 5625 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5626 return LoadVal; 5627 } 5628 5629 /// processIntegerCallValue - Record the value for an instruction that 5630 /// produces an integer result, converting the type where necessary. 5631 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5632 SDValue Value, 5633 bool IsSigned) { 5634 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5635 if (IsSigned) 5636 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5637 else 5638 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5639 setValue(&I, Value); 5640 } 5641 5642 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5643 /// If so, return true and lower it, otherwise return false and it will be 5644 /// lowered like a normal call. 5645 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5646 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5647 if (I.getNumArgOperands() != 3) 5648 return false; 5649 5650 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5651 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5652 !I.getArgOperand(2)->getType()->isIntegerTy() || 5653 !I.getType()->isIntegerTy()) 5654 return false; 5655 5656 const Value *Size = I.getArgOperand(2); 5657 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5658 if (CSize && CSize->getZExtValue() == 0) { 5659 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5660 setValue(&I, DAG.getConstant(0, CallVT)); 5661 return true; 5662 } 5663 5664 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5665 std::pair<SDValue, SDValue> Res = 5666 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5667 getValue(LHS), getValue(RHS), getValue(Size), 5668 MachinePointerInfo(LHS), 5669 MachinePointerInfo(RHS)); 5670 if (Res.first.getNode()) { 5671 processIntegerCallValue(I, Res.first, true); 5672 PendingLoads.push_back(Res.second); 5673 return true; 5674 } 5675 5676 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5677 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5678 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5679 bool ActuallyDoIt = true; 5680 MVT LoadVT; 5681 Type *LoadTy; 5682 switch (CSize->getZExtValue()) { 5683 default: 5684 LoadVT = MVT::Other; 5685 LoadTy = 0; 5686 ActuallyDoIt = false; 5687 break; 5688 case 2: 5689 LoadVT = MVT::i16; 5690 LoadTy = Type::getInt16Ty(CSize->getContext()); 5691 break; 5692 case 4: 5693 LoadVT = MVT::i32; 5694 LoadTy = Type::getInt32Ty(CSize->getContext()); 5695 break; 5696 case 8: 5697 LoadVT = MVT::i64; 5698 LoadTy = Type::getInt64Ty(CSize->getContext()); 5699 break; 5700 /* 5701 case 16: 5702 LoadVT = MVT::v4i32; 5703 LoadTy = Type::getInt32Ty(CSize->getContext()); 5704 LoadTy = VectorType::get(LoadTy, 4); 5705 break; 5706 */ 5707 } 5708 5709 // This turns into unaligned loads. We only do this if the target natively 5710 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5711 // we'll only produce a small number of byte loads. 5712 5713 // Require that we can find a legal MVT, and only do this if the target 5714 // supports unaligned loads of that type. Expanding into byte loads would 5715 // bloat the code. 5716 const TargetLowering *TLI = TM.getTargetLowering(); 5717 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5718 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5719 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5720 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5721 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5722 if (!TLI->isTypeLegal(LoadVT) || 5723 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5724 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5725 ActuallyDoIt = false; 5726 } 5727 5728 if (ActuallyDoIt) { 5729 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5730 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5731 5732 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5733 ISD::SETNE); 5734 processIntegerCallValue(I, Res, false); 5735 return true; 5736 } 5737 } 5738 5739 5740 return false; 5741 } 5742 5743 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5744 /// form. If so, return true and lower it, otherwise return false and it 5745 /// will be lowered like a normal call. 5746 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5747 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5748 if (I.getNumArgOperands() != 3) 5749 return false; 5750 5751 const Value *Src = I.getArgOperand(0); 5752 const Value *Char = I.getArgOperand(1); 5753 const Value *Length = I.getArgOperand(2); 5754 if (!Src->getType()->isPointerTy() || 5755 !Char->getType()->isIntegerTy() || 5756 !Length->getType()->isIntegerTy() || 5757 !I.getType()->isPointerTy()) 5758 return false; 5759 5760 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5761 std::pair<SDValue, SDValue> Res = 5762 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5763 getValue(Src), getValue(Char), getValue(Length), 5764 MachinePointerInfo(Src)); 5765 if (Res.first.getNode()) { 5766 setValue(&I, Res.first); 5767 PendingLoads.push_back(Res.second); 5768 return true; 5769 } 5770 5771 return false; 5772 } 5773 5774 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5775 /// optimized form. If so, return true and lower it, otherwise return false 5776 /// and it will be lowered like a normal call. 5777 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5778 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5779 if (I.getNumArgOperands() != 2) 5780 return false; 5781 5782 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5783 if (!Arg0->getType()->isPointerTy() || 5784 !Arg1->getType()->isPointerTy() || 5785 !I.getType()->isPointerTy()) 5786 return false; 5787 5788 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5789 std::pair<SDValue, SDValue> Res = 5790 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5791 getValue(Arg0), getValue(Arg1), 5792 MachinePointerInfo(Arg0), 5793 MachinePointerInfo(Arg1), isStpcpy); 5794 if (Res.first.getNode()) { 5795 setValue(&I, Res.first); 5796 DAG.setRoot(Res.second); 5797 return true; 5798 } 5799 5800 return false; 5801 } 5802 5803 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5804 /// If so, return true and lower it, otherwise return false and it will be 5805 /// lowered like a normal call. 5806 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5807 // Verify that the prototype makes sense. int strcmp(void*,void*) 5808 if (I.getNumArgOperands() != 2) 5809 return false; 5810 5811 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5812 if (!Arg0->getType()->isPointerTy() || 5813 !Arg1->getType()->isPointerTy() || 5814 !I.getType()->isIntegerTy()) 5815 return false; 5816 5817 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5818 std::pair<SDValue, SDValue> Res = 5819 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5820 getValue(Arg0), getValue(Arg1), 5821 MachinePointerInfo(Arg0), 5822 MachinePointerInfo(Arg1)); 5823 if (Res.first.getNode()) { 5824 processIntegerCallValue(I, Res.first, true); 5825 PendingLoads.push_back(Res.second); 5826 return true; 5827 } 5828 5829 return false; 5830 } 5831 5832 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5833 /// form. If so, return true and lower it, otherwise return false and it 5834 /// will be lowered like a normal call. 5835 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5836 // Verify that the prototype makes sense. size_t strlen(char *) 5837 if (I.getNumArgOperands() != 1) 5838 return false; 5839 5840 const Value *Arg0 = I.getArgOperand(0); 5841 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5842 return false; 5843 5844 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5845 std::pair<SDValue, SDValue> Res = 5846 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5847 getValue(Arg0), MachinePointerInfo(Arg0)); 5848 if (Res.first.getNode()) { 5849 processIntegerCallValue(I, Res.first, false); 5850 PendingLoads.push_back(Res.second); 5851 return true; 5852 } 5853 5854 return false; 5855 } 5856 5857 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5858 /// form. If so, return true and lower it, otherwise return false and it 5859 /// will be lowered like a normal call. 5860 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5861 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5862 if (I.getNumArgOperands() != 2) 5863 return false; 5864 5865 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5866 if (!Arg0->getType()->isPointerTy() || 5867 !Arg1->getType()->isIntegerTy() || 5868 !I.getType()->isIntegerTy()) 5869 return false; 5870 5871 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5872 std::pair<SDValue, SDValue> Res = 5873 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5874 getValue(Arg0), getValue(Arg1), 5875 MachinePointerInfo(Arg0)); 5876 if (Res.first.getNode()) { 5877 processIntegerCallValue(I, Res.first, false); 5878 PendingLoads.push_back(Res.second); 5879 return true; 5880 } 5881 5882 return false; 5883 } 5884 5885 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5886 /// operation (as expected), translate it to an SDNode with the specified opcode 5887 /// and return true. 5888 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5889 unsigned Opcode) { 5890 // Sanity check that it really is a unary floating-point call. 5891 if (I.getNumArgOperands() != 1 || 5892 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5893 I.getType() != I.getArgOperand(0)->getType() || 5894 !I.onlyReadsMemory()) 5895 return false; 5896 5897 SDValue Tmp = getValue(I.getArgOperand(0)); 5898 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5899 return true; 5900 } 5901 5902 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5903 // Handle inline assembly differently. 5904 if (isa<InlineAsm>(I.getCalledValue())) { 5905 visitInlineAsm(&I); 5906 return; 5907 } 5908 5909 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5910 ComputeUsesVAFloatArgument(I, &MMI); 5911 5912 const char *RenameFn = 0; 5913 if (Function *F = I.getCalledFunction()) { 5914 if (F->isDeclaration()) { 5915 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5916 if (unsigned IID = II->getIntrinsicID(F)) { 5917 RenameFn = visitIntrinsicCall(I, IID); 5918 if (!RenameFn) 5919 return; 5920 } 5921 } 5922 if (unsigned IID = F->getIntrinsicID()) { 5923 RenameFn = visitIntrinsicCall(I, IID); 5924 if (!RenameFn) 5925 return; 5926 } 5927 } 5928 5929 // Check for well-known libc/libm calls. If the function is internal, it 5930 // can't be a library call. 5931 LibFunc::Func Func; 5932 if (!F->hasLocalLinkage() && F->hasName() && 5933 LibInfo->getLibFunc(F->getName(), Func) && 5934 LibInfo->hasOptimizedCodeGen(Func)) { 5935 switch (Func) { 5936 default: break; 5937 case LibFunc::copysign: 5938 case LibFunc::copysignf: 5939 case LibFunc::copysignl: 5940 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5941 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5942 I.getType() == I.getArgOperand(0)->getType() && 5943 I.getType() == I.getArgOperand(1)->getType() && 5944 I.onlyReadsMemory()) { 5945 SDValue LHS = getValue(I.getArgOperand(0)); 5946 SDValue RHS = getValue(I.getArgOperand(1)); 5947 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5948 LHS.getValueType(), LHS, RHS)); 5949 return; 5950 } 5951 break; 5952 case LibFunc::fabs: 5953 case LibFunc::fabsf: 5954 case LibFunc::fabsl: 5955 if (visitUnaryFloatCall(I, ISD::FABS)) 5956 return; 5957 break; 5958 case LibFunc::sin: 5959 case LibFunc::sinf: 5960 case LibFunc::sinl: 5961 if (visitUnaryFloatCall(I, ISD::FSIN)) 5962 return; 5963 break; 5964 case LibFunc::cos: 5965 case LibFunc::cosf: 5966 case LibFunc::cosl: 5967 if (visitUnaryFloatCall(I, ISD::FCOS)) 5968 return; 5969 break; 5970 case LibFunc::sqrt: 5971 case LibFunc::sqrtf: 5972 case LibFunc::sqrtl: 5973 case LibFunc::sqrt_finite: 5974 case LibFunc::sqrtf_finite: 5975 case LibFunc::sqrtl_finite: 5976 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5977 return; 5978 break; 5979 case LibFunc::floor: 5980 case LibFunc::floorf: 5981 case LibFunc::floorl: 5982 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5983 return; 5984 break; 5985 case LibFunc::nearbyint: 5986 case LibFunc::nearbyintf: 5987 case LibFunc::nearbyintl: 5988 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5989 return; 5990 break; 5991 case LibFunc::ceil: 5992 case LibFunc::ceilf: 5993 case LibFunc::ceill: 5994 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5995 return; 5996 break; 5997 case LibFunc::rint: 5998 case LibFunc::rintf: 5999 case LibFunc::rintl: 6000 if (visitUnaryFloatCall(I, ISD::FRINT)) 6001 return; 6002 break; 6003 case LibFunc::round: 6004 case LibFunc::roundf: 6005 case LibFunc::roundl: 6006 if (visitUnaryFloatCall(I, ISD::FROUND)) 6007 return; 6008 break; 6009 case LibFunc::trunc: 6010 case LibFunc::truncf: 6011 case LibFunc::truncl: 6012 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6013 return; 6014 break; 6015 case LibFunc::log2: 6016 case LibFunc::log2f: 6017 case LibFunc::log2l: 6018 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6019 return; 6020 break; 6021 case LibFunc::exp2: 6022 case LibFunc::exp2f: 6023 case LibFunc::exp2l: 6024 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6025 return; 6026 break; 6027 case LibFunc::memcmp: 6028 if (visitMemCmpCall(I)) 6029 return; 6030 break; 6031 case LibFunc::memchr: 6032 if (visitMemChrCall(I)) 6033 return; 6034 break; 6035 case LibFunc::strcpy: 6036 if (visitStrCpyCall(I, false)) 6037 return; 6038 break; 6039 case LibFunc::stpcpy: 6040 if (visitStrCpyCall(I, true)) 6041 return; 6042 break; 6043 case LibFunc::strcmp: 6044 if (visitStrCmpCall(I)) 6045 return; 6046 break; 6047 case LibFunc::strlen: 6048 if (visitStrLenCall(I)) 6049 return; 6050 break; 6051 case LibFunc::strnlen: 6052 if (visitStrNLenCall(I)) 6053 return; 6054 break; 6055 } 6056 } 6057 } 6058 6059 SDValue Callee; 6060 if (!RenameFn) 6061 Callee = getValue(I.getCalledValue()); 6062 else 6063 Callee = DAG.getExternalSymbol(RenameFn, 6064 TM.getTargetLowering()->getPointerTy()); 6065 6066 // Check if we can potentially perform a tail call. More detailed checking is 6067 // be done within LowerCallTo, after more information about the call is known. 6068 LowerCallTo(&I, Callee, I.isTailCall()); 6069 } 6070 6071 namespace { 6072 6073 /// AsmOperandInfo - This contains information for each constraint that we are 6074 /// lowering. 6075 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6076 public: 6077 /// CallOperand - If this is the result output operand or a clobber 6078 /// this is null, otherwise it is the incoming operand to the CallInst. 6079 /// This gets modified as the asm is processed. 6080 SDValue CallOperand; 6081 6082 /// AssignedRegs - If this is a register or register class operand, this 6083 /// contains the set of register corresponding to the operand. 6084 RegsForValue AssignedRegs; 6085 6086 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6087 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 6088 } 6089 6090 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6091 /// corresponds to. If there is no Value* for this operand, it returns 6092 /// MVT::Other. 6093 EVT getCallOperandValEVT(LLVMContext &Context, 6094 const TargetLowering &TLI, 6095 const DataLayout *DL) const { 6096 if (CallOperandVal == 0) return MVT::Other; 6097 6098 if (isa<BasicBlock>(CallOperandVal)) 6099 return TLI.getPointerTy(); 6100 6101 llvm::Type *OpTy = CallOperandVal->getType(); 6102 6103 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6104 // If this is an indirect operand, the operand is a pointer to the 6105 // accessed type. 6106 if (isIndirect) { 6107 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6108 if (!PtrTy) 6109 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6110 OpTy = PtrTy->getElementType(); 6111 } 6112 6113 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6114 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6115 if (STy->getNumElements() == 1) 6116 OpTy = STy->getElementType(0); 6117 6118 // If OpTy is not a single value, it may be a struct/union that we 6119 // can tile with integers. 6120 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6121 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6122 switch (BitSize) { 6123 default: break; 6124 case 1: 6125 case 8: 6126 case 16: 6127 case 32: 6128 case 64: 6129 case 128: 6130 OpTy = IntegerType::get(Context, BitSize); 6131 break; 6132 } 6133 } 6134 6135 return TLI.getValueType(OpTy, true); 6136 } 6137 }; 6138 6139 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6140 6141 } // end anonymous namespace 6142 6143 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6144 /// specified operand. We prefer to assign virtual registers, to allow the 6145 /// register allocator to handle the assignment process. However, if the asm 6146 /// uses features that we can't model on machineinstrs, we have SDISel do the 6147 /// allocation. This produces generally horrible, but correct, code. 6148 /// 6149 /// OpInfo describes the operand. 6150 /// 6151 static void GetRegistersForValue(SelectionDAG &DAG, 6152 const TargetLowering &TLI, 6153 SDLoc DL, 6154 SDISelAsmOperandInfo &OpInfo) { 6155 LLVMContext &Context = *DAG.getContext(); 6156 6157 MachineFunction &MF = DAG.getMachineFunction(); 6158 SmallVector<unsigned, 4> Regs; 6159 6160 // If this is a constraint for a single physreg, or a constraint for a 6161 // register class, find it. 6162 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6163 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6164 OpInfo.ConstraintVT); 6165 6166 unsigned NumRegs = 1; 6167 if (OpInfo.ConstraintVT != MVT::Other) { 6168 // If this is a FP input in an integer register (or visa versa) insert a bit 6169 // cast of the input value. More generally, handle any case where the input 6170 // value disagrees with the register class we plan to stick this in. 6171 if (OpInfo.Type == InlineAsm::isInput && 6172 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6173 // Try to convert to the first EVT that the reg class contains. If the 6174 // types are identical size, use a bitcast to convert (e.g. two differing 6175 // vector types). 6176 MVT RegVT = *PhysReg.second->vt_begin(); 6177 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6178 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6179 RegVT, OpInfo.CallOperand); 6180 OpInfo.ConstraintVT = RegVT; 6181 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6182 // If the input is a FP value and we want it in FP registers, do a 6183 // bitcast to the corresponding integer type. This turns an f64 value 6184 // into i64, which can be passed with two i32 values on a 32-bit 6185 // machine. 6186 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6187 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6188 RegVT, OpInfo.CallOperand); 6189 OpInfo.ConstraintVT = RegVT; 6190 } 6191 } 6192 6193 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6194 } 6195 6196 MVT RegVT; 6197 EVT ValueVT = OpInfo.ConstraintVT; 6198 6199 // If this is a constraint for a specific physical register, like {r17}, 6200 // assign it now. 6201 if (unsigned AssignedReg = PhysReg.first) { 6202 const TargetRegisterClass *RC = PhysReg.second; 6203 if (OpInfo.ConstraintVT == MVT::Other) 6204 ValueVT = *RC->vt_begin(); 6205 6206 // Get the actual register value type. This is important, because the user 6207 // may have asked for (e.g.) the AX register in i32 type. We need to 6208 // remember that AX is actually i16 to get the right extension. 6209 RegVT = *RC->vt_begin(); 6210 6211 // This is a explicit reference to a physical register. 6212 Regs.push_back(AssignedReg); 6213 6214 // If this is an expanded reference, add the rest of the regs to Regs. 6215 if (NumRegs != 1) { 6216 TargetRegisterClass::iterator I = RC->begin(); 6217 for (; *I != AssignedReg; ++I) 6218 assert(I != RC->end() && "Didn't find reg!"); 6219 6220 // Already added the first reg. 6221 --NumRegs; ++I; 6222 for (; NumRegs; --NumRegs, ++I) { 6223 assert(I != RC->end() && "Ran out of registers to allocate!"); 6224 Regs.push_back(*I); 6225 } 6226 } 6227 6228 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6229 return; 6230 } 6231 6232 // Otherwise, if this was a reference to an LLVM register class, create vregs 6233 // for this reference. 6234 if (const TargetRegisterClass *RC = PhysReg.second) { 6235 RegVT = *RC->vt_begin(); 6236 if (OpInfo.ConstraintVT == MVT::Other) 6237 ValueVT = RegVT; 6238 6239 // Create the appropriate number of virtual registers. 6240 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6241 for (; NumRegs; --NumRegs) 6242 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6243 6244 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6245 return; 6246 } 6247 6248 // Otherwise, we couldn't allocate enough registers for this. 6249 } 6250 6251 /// visitInlineAsm - Handle a call to an InlineAsm object. 6252 /// 6253 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6254 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6255 6256 /// ConstraintOperands - Information about all of the constraints. 6257 SDISelAsmOperandInfoVector ConstraintOperands; 6258 6259 const TargetLowering *TLI = TM.getTargetLowering(); 6260 TargetLowering::AsmOperandInfoVector 6261 TargetConstraints = TLI->ParseConstraints(CS); 6262 6263 bool hasMemory = false; 6264 6265 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6266 unsigned ResNo = 0; // ResNo - The result number of the next output. 6267 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6268 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6269 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6270 6271 MVT OpVT = MVT::Other; 6272 6273 // Compute the value type for each operand. 6274 switch (OpInfo.Type) { 6275 case InlineAsm::isOutput: 6276 // Indirect outputs just consume an argument. 6277 if (OpInfo.isIndirect) { 6278 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6279 break; 6280 } 6281 6282 // The return value of the call is this value. As such, there is no 6283 // corresponding argument. 6284 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6285 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6286 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6287 } else { 6288 assert(ResNo == 0 && "Asm only has one result!"); 6289 OpVT = TLI->getSimpleValueType(CS.getType()); 6290 } 6291 ++ResNo; 6292 break; 6293 case InlineAsm::isInput: 6294 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6295 break; 6296 case InlineAsm::isClobber: 6297 // Nothing to do. 6298 break; 6299 } 6300 6301 // If this is an input or an indirect output, process the call argument. 6302 // BasicBlocks are labels, currently appearing only in asm's. 6303 if (OpInfo.CallOperandVal) { 6304 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6305 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6306 } else { 6307 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6308 } 6309 6310 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6311 getSimpleVT(); 6312 } 6313 6314 OpInfo.ConstraintVT = OpVT; 6315 6316 // Indirect operand accesses access memory. 6317 if (OpInfo.isIndirect) 6318 hasMemory = true; 6319 else { 6320 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6321 TargetLowering::ConstraintType 6322 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6323 if (CType == TargetLowering::C_Memory) { 6324 hasMemory = true; 6325 break; 6326 } 6327 } 6328 } 6329 } 6330 6331 SDValue Chain, Flag; 6332 6333 // We won't need to flush pending loads if this asm doesn't touch 6334 // memory and is nonvolatile. 6335 if (hasMemory || IA->hasSideEffects()) 6336 Chain = getRoot(); 6337 else 6338 Chain = DAG.getRoot(); 6339 6340 // Second pass over the constraints: compute which constraint option to use 6341 // and assign registers to constraints that want a specific physreg. 6342 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6343 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6344 6345 // If this is an output operand with a matching input operand, look up the 6346 // matching input. If their types mismatch, e.g. one is an integer, the 6347 // other is floating point, or their sizes are different, flag it as an 6348 // error. 6349 if (OpInfo.hasMatchingInput()) { 6350 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6351 6352 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6353 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6354 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6355 OpInfo.ConstraintVT); 6356 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6357 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6358 Input.ConstraintVT); 6359 if ((OpInfo.ConstraintVT.isInteger() != 6360 Input.ConstraintVT.isInteger()) || 6361 (MatchRC.second != InputRC.second)) { 6362 report_fatal_error("Unsupported asm: input constraint" 6363 " with a matching output constraint of" 6364 " incompatible type!"); 6365 } 6366 Input.ConstraintVT = OpInfo.ConstraintVT; 6367 } 6368 } 6369 6370 // Compute the constraint code and ConstraintType to use. 6371 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6372 6373 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6374 OpInfo.Type == InlineAsm::isClobber) 6375 continue; 6376 6377 // If this is a memory input, and if the operand is not indirect, do what we 6378 // need to to provide an address for the memory input. 6379 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6380 !OpInfo.isIndirect) { 6381 assert((OpInfo.isMultipleAlternative || 6382 (OpInfo.Type == InlineAsm::isInput)) && 6383 "Can only indirectify direct input operands!"); 6384 6385 // Memory operands really want the address of the value. If we don't have 6386 // an indirect input, put it in the constpool if we can, otherwise spill 6387 // it to a stack slot. 6388 // TODO: This isn't quite right. We need to handle these according to 6389 // the addressing mode that the constraint wants. Also, this may take 6390 // an additional register for the computation and we don't want that 6391 // either. 6392 6393 // If the operand is a float, integer, or vector constant, spill to a 6394 // constant pool entry to get its address. 6395 const Value *OpVal = OpInfo.CallOperandVal; 6396 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6397 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6398 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6399 TLI->getPointerTy()); 6400 } else { 6401 // Otherwise, create a stack slot and emit a store to it before the 6402 // asm. 6403 Type *Ty = OpVal->getType(); 6404 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6405 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6406 MachineFunction &MF = DAG.getMachineFunction(); 6407 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6408 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6409 Chain = DAG.getStore(Chain, getCurSDLoc(), 6410 OpInfo.CallOperand, StackSlot, 6411 MachinePointerInfo::getFixedStack(SSFI), 6412 false, false, 0); 6413 OpInfo.CallOperand = StackSlot; 6414 } 6415 6416 // There is no longer a Value* corresponding to this operand. 6417 OpInfo.CallOperandVal = 0; 6418 6419 // It is now an indirect operand. 6420 OpInfo.isIndirect = true; 6421 } 6422 6423 // If this constraint is for a specific register, allocate it before 6424 // anything else. 6425 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6426 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6427 } 6428 6429 // Second pass - Loop over all of the operands, assigning virtual or physregs 6430 // to register class operands. 6431 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6432 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6433 6434 // C_Register operands have already been allocated, Other/Memory don't need 6435 // to be. 6436 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6437 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6438 } 6439 6440 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6441 std::vector<SDValue> AsmNodeOperands; 6442 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6443 AsmNodeOperands.push_back( 6444 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6445 TLI->getPointerTy())); 6446 6447 // If we have a !srcloc metadata node associated with it, we want to attach 6448 // this to the ultimately generated inline asm machineinstr. To do this, we 6449 // pass in the third operand as this (potentially null) inline asm MDNode. 6450 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6451 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6452 6453 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6454 // bits as operand 3. 6455 unsigned ExtraInfo = 0; 6456 if (IA->hasSideEffects()) 6457 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6458 if (IA->isAlignStack()) 6459 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6460 // Set the asm dialect. 6461 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6462 6463 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6464 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6465 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6466 6467 // Compute the constraint code and ConstraintType to use. 6468 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6469 6470 // Ideally, we would only check against memory constraints. However, the 6471 // meaning of an other constraint can be target-specific and we can't easily 6472 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6473 // for other constriants as well. 6474 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6475 OpInfo.ConstraintType == TargetLowering::C_Other) { 6476 if (OpInfo.Type == InlineAsm::isInput) 6477 ExtraInfo |= InlineAsm::Extra_MayLoad; 6478 else if (OpInfo.Type == InlineAsm::isOutput) 6479 ExtraInfo |= InlineAsm::Extra_MayStore; 6480 else if (OpInfo.Type == InlineAsm::isClobber) 6481 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6482 } 6483 } 6484 6485 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6486 TLI->getPointerTy())); 6487 6488 // Loop over all of the inputs, copying the operand values into the 6489 // appropriate registers and processing the output regs. 6490 RegsForValue RetValRegs; 6491 6492 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6493 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6494 6495 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6496 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6497 6498 switch (OpInfo.Type) { 6499 case InlineAsm::isOutput: { 6500 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6501 OpInfo.ConstraintType != TargetLowering::C_Register) { 6502 // Memory output, or 'other' output (e.g. 'X' constraint). 6503 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6504 6505 // Add information to the INLINEASM node to know about this output. 6506 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6507 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6508 TLI->getPointerTy())); 6509 AsmNodeOperands.push_back(OpInfo.CallOperand); 6510 break; 6511 } 6512 6513 // Otherwise, this is a register or register class output. 6514 6515 // Copy the output from the appropriate register. Find a register that 6516 // we can use. 6517 if (OpInfo.AssignedRegs.Regs.empty()) { 6518 LLVMContext &Ctx = *DAG.getContext(); 6519 Ctx.emitError(CS.getInstruction(), 6520 "couldn't allocate output register for constraint '" + 6521 Twine(OpInfo.ConstraintCode) + "'"); 6522 return; 6523 } 6524 6525 // If this is an indirect operand, store through the pointer after the 6526 // asm. 6527 if (OpInfo.isIndirect) { 6528 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6529 OpInfo.CallOperandVal)); 6530 } else { 6531 // This is the result value of the call. 6532 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6533 // Concatenate this output onto the outputs list. 6534 RetValRegs.append(OpInfo.AssignedRegs); 6535 } 6536 6537 // Add information to the INLINEASM node to know that this register is 6538 // set. 6539 OpInfo.AssignedRegs 6540 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6541 ? InlineAsm::Kind_RegDefEarlyClobber 6542 : InlineAsm::Kind_RegDef, 6543 false, 0, DAG, AsmNodeOperands); 6544 break; 6545 } 6546 case InlineAsm::isInput: { 6547 SDValue InOperandVal = OpInfo.CallOperand; 6548 6549 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6550 // If this is required to match an output register we have already set, 6551 // just use its register. 6552 unsigned OperandNo = OpInfo.getMatchedOperand(); 6553 6554 // Scan until we find the definition we already emitted of this operand. 6555 // When we find it, create a RegsForValue operand. 6556 unsigned CurOp = InlineAsm::Op_FirstOperand; 6557 for (; OperandNo; --OperandNo) { 6558 // Advance to the next operand. 6559 unsigned OpFlag = 6560 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6561 assert((InlineAsm::isRegDefKind(OpFlag) || 6562 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6563 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6564 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6565 } 6566 6567 unsigned OpFlag = 6568 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6569 if (InlineAsm::isRegDefKind(OpFlag) || 6570 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6571 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6572 if (OpInfo.isIndirect) { 6573 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6574 LLVMContext &Ctx = *DAG.getContext(); 6575 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6576 " don't know how to handle tied " 6577 "indirect register inputs"); 6578 return; 6579 } 6580 6581 RegsForValue MatchedRegs; 6582 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6583 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6584 MatchedRegs.RegVTs.push_back(RegVT); 6585 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6586 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6587 i != e; ++i) { 6588 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6589 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6590 else { 6591 LLVMContext &Ctx = *DAG.getContext(); 6592 Ctx.emitError(CS.getInstruction(), 6593 "inline asm error: This value" 6594 " type register class is not natively supported!"); 6595 return; 6596 } 6597 } 6598 // Use the produced MatchedRegs object to 6599 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6600 Chain, &Flag, CS.getInstruction()); 6601 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6602 true, OpInfo.getMatchedOperand(), 6603 DAG, AsmNodeOperands); 6604 break; 6605 } 6606 6607 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6608 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6609 "Unexpected number of operands"); 6610 // Add information to the INLINEASM node to know about this input. 6611 // See InlineAsm.h isUseOperandTiedToDef. 6612 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6613 OpInfo.getMatchedOperand()); 6614 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6615 TLI->getPointerTy())); 6616 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6617 break; 6618 } 6619 6620 // Treat indirect 'X' constraint as memory. 6621 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6622 OpInfo.isIndirect) 6623 OpInfo.ConstraintType = TargetLowering::C_Memory; 6624 6625 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6626 std::vector<SDValue> Ops; 6627 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6628 Ops, DAG); 6629 if (Ops.empty()) { 6630 LLVMContext &Ctx = *DAG.getContext(); 6631 Ctx.emitError(CS.getInstruction(), 6632 "invalid operand for inline asm constraint '" + 6633 Twine(OpInfo.ConstraintCode) + "'"); 6634 return; 6635 } 6636 6637 // Add information to the INLINEASM node to know about this input. 6638 unsigned ResOpType = 6639 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6640 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6641 TLI->getPointerTy())); 6642 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6643 break; 6644 } 6645 6646 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6647 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6648 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6649 "Memory operands expect pointer values"); 6650 6651 // Add information to the INLINEASM node to know about this input. 6652 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6653 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6654 TLI->getPointerTy())); 6655 AsmNodeOperands.push_back(InOperandVal); 6656 break; 6657 } 6658 6659 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6660 OpInfo.ConstraintType == TargetLowering::C_Register) && 6661 "Unknown constraint type!"); 6662 6663 // TODO: Support this. 6664 if (OpInfo.isIndirect) { 6665 LLVMContext &Ctx = *DAG.getContext(); 6666 Ctx.emitError(CS.getInstruction(), 6667 "Don't know how to handle indirect register inputs yet " 6668 "for constraint '" + 6669 Twine(OpInfo.ConstraintCode) + "'"); 6670 return; 6671 } 6672 6673 // Copy the input into the appropriate registers. 6674 if (OpInfo.AssignedRegs.Regs.empty()) { 6675 LLVMContext &Ctx = *DAG.getContext(); 6676 Ctx.emitError(CS.getInstruction(), 6677 "couldn't allocate input reg for constraint '" + 6678 Twine(OpInfo.ConstraintCode) + "'"); 6679 return; 6680 } 6681 6682 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6683 Chain, &Flag, CS.getInstruction()); 6684 6685 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6686 DAG, AsmNodeOperands); 6687 break; 6688 } 6689 case InlineAsm::isClobber: { 6690 // Add the clobbered value to the operand list, so that the register 6691 // allocator is aware that the physreg got clobbered. 6692 if (!OpInfo.AssignedRegs.Regs.empty()) 6693 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6694 false, 0, DAG, 6695 AsmNodeOperands); 6696 break; 6697 } 6698 } 6699 } 6700 6701 // Finish up input operands. Set the input chain and add the flag last. 6702 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6703 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6704 6705 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6706 DAG.getVTList(MVT::Other, MVT::Glue), 6707 &AsmNodeOperands[0], AsmNodeOperands.size()); 6708 Flag = Chain.getValue(1); 6709 6710 // If this asm returns a register value, copy the result from that register 6711 // and set it as the value of the call. 6712 if (!RetValRegs.Regs.empty()) { 6713 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6714 Chain, &Flag, CS.getInstruction()); 6715 6716 // FIXME: Why don't we do this for inline asms with MRVs? 6717 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6718 EVT ResultType = TLI->getValueType(CS.getType()); 6719 6720 // If any of the results of the inline asm is a vector, it may have the 6721 // wrong width/num elts. This can happen for register classes that can 6722 // contain multiple different value types. The preg or vreg allocated may 6723 // not have the same VT as was expected. Convert it to the right type 6724 // with bit_convert. 6725 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6726 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6727 ResultType, Val); 6728 6729 } else if (ResultType != Val.getValueType() && 6730 ResultType.isInteger() && Val.getValueType().isInteger()) { 6731 // If a result value was tied to an input value, the computed result may 6732 // have a wider width than the expected result. Extract the relevant 6733 // portion. 6734 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6735 } 6736 6737 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6738 } 6739 6740 setValue(CS.getInstruction(), Val); 6741 // Don't need to use this as a chain in this case. 6742 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6743 return; 6744 } 6745 6746 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6747 6748 // Process indirect outputs, first output all of the flagged copies out of 6749 // physregs. 6750 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6751 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6752 const Value *Ptr = IndirectStoresToEmit[i].second; 6753 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6754 Chain, &Flag, IA); 6755 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6756 } 6757 6758 // Emit the non-flagged stores from the physregs. 6759 SmallVector<SDValue, 8> OutChains; 6760 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6761 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6762 StoresToEmit[i].first, 6763 getValue(StoresToEmit[i].second), 6764 MachinePointerInfo(StoresToEmit[i].second), 6765 false, false, 0); 6766 OutChains.push_back(Val); 6767 } 6768 6769 if (!OutChains.empty()) 6770 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6771 &OutChains[0], OutChains.size()); 6772 6773 DAG.setRoot(Chain); 6774 } 6775 6776 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6777 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6778 MVT::Other, getRoot(), 6779 getValue(I.getArgOperand(0)), 6780 DAG.getSrcValue(I.getArgOperand(0)))); 6781 } 6782 6783 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6784 const TargetLowering *TLI = TM.getTargetLowering(); 6785 const DataLayout &DL = *TLI->getDataLayout(); 6786 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6787 getRoot(), getValue(I.getOperand(0)), 6788 DAG.getSrcValue(I.getOperand(0)), 6789 DL.getABITypeAlignment(I.getType())); 6790 setValue(&I, V); 6791 DAG.setRoot(V.getValue(1)); 6792 } 6793 6794 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6795 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6796 MVT::Other, getRoot(), 6797 getValue(I.getArgOperand(0)), 6798 DAG.getSrcValue(I.getArgOperand(0)))); 6799 } 6800 6801 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6802 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6803 MVT::Other, getRoot(), 6804 getValue(I.getArgOperand(0)), 6805 getValue(I.getArgOperand(1)), 6806 DAG.getSrcValue(I.getArgOperand(0)), 6807 DAG.getSrcValue(I.getArgOperand(1)))); 6808 } 6809 6810 /// \brief Lower an argument list according to the target calling convention. 6811 /// 6812 /// \return A tuple of <return-value, token-chain> 6813 /// 6814 /// This is a helper for lowering intrinsics that follow a target calling 6815 /// convention or require stack pointer adjustment. Only a subset of the 6816 /// intrinsic's operands need to participate in the calling convention. 6817 std::pair<SDValue, SDValue> 6818 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6819 unsigned NumArgs, SDValue Callee, 6820 bool useVoidTy) { 6821 TargetLowering::ArgListTy Args; 6822 Args.reserve(NumArgs); 6823 6824 // Populate the argument list. 6825 // Attributes for args start at offset 1, after the return attribute. 6826 ImmutableCallSite CS(&CI); 6827 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6828 ArgI != ArgE; ++ArgI) { 6829 const Value *V = CI.getOperand(ArgI); 6830 6831 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6832 6833 TargetLowering::ArgListEntry Entry; 6834 Entry.Node = getValue(V); 6835 Entry.Ty = V->getType(); 6836 Entry.setAttributes(&CS, AttrI); 6837 Args.push_back(Entry); 6838 } 6839 6840 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6841 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6842 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6843 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6844 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6845 6846 const TargetLowering *TLI = TM.getTargetLowering(); 6847 return TLI->LowerCallTo(CLI); 6848 } 6849 6850 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6851 /// or patchpoint target node's operand list. 6852 /// 6853 /// Constants are converted to TargetConstants purely as an optimization to 6854 /// avoid constant materialization and register allocation. 6855 /// 6856 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6857 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6858 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6859 /// address materialization and register allocation, but may also be required 6860 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6861 /// alloca in the entry block, then the runtime may assume that the alloca's 6862 /// StackMap location can be read immediately after compilation and that the 6863 /// location is valid at any point during execution (this is similar to the 6864 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6865 /// only available in a register, then the runtime would need to trap when 6866 /// execution reaches the StackMap in order to read the alloca's location. 6867 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6868 SmallVectorImpl<SDValue> &Ops, 6869 SelectionDAGBuilder &Builder) { 6870 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6871 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6872 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6873 Ops.push_back( 6874 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6875 Ops.push_back( 6876 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6877 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6878 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6879 Ops.push_back( 6880 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6881 } else 6882 Ops.push_back(OpVal); 6883 } 6884 } 6885 6886 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6887 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6888 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6889 // [live variables...]) 6890 6891 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6892 6893 SDValue Chain, InFlag, Callee, NullPtr; 6894 SmallVector<SDValue, 32> Ops; 6895 6896 SDLoc DL = getCurSDLoc(); 6897 Callee = getValue(CI.getCalledValue()); 6898 NullPtr = DAG.getIntPtrConstant(0, true); 6899 6900 // The stackmap intrinsic only records the live variables (the arguemnts 6901 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6902 // intrinsic, this won't be lowered to a function call. This means we don't 6903 // have to worry about calling conventions and target specific lowering code. 6904 // Instead we perform the call lowering right here. 6905 // 6906 // chain, flag = CALLSEQ_START(chain, 0) 6907 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6908 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6909 // 6910 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6911 InFlag = Chain.getValue(1); 6912 6913 // Add the <id> and <numBytes> constants. 6914 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6915 Ops.push_back(DAG.getTargetConstant( 6916 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6917 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6918 Ops.push_back(DAG.getTargetConstant( 6919 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6920 6921 // Push live variables for the stack map. 6922 addStackMapLiveVars(CI, 2, Ops, *this); 6923 6924 // We are not pushing any register mask info here on the operands list, 6925 // because the stackmap doesn't clobber anything. 6926 6927 // Push the chain and the glue flag. 6928 Ops.push_back(Chain); 6929 Ops.push_back(InFlag); 6930 6931 // Create the STACKMAP node. 6932 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6933 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6934 Chain = SDValue(SM, 0); 6935 InFlag = Chain.getValue(1); 6936 6937 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6938 6939 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6940 6941 // Set the root to the target-lowered call chain. 6942 DAG.setRoot(Chain); 6943 6944 // Inform the Frame Information that we have a stackmap in this function. 6945 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6946 } 6947 6948 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6949 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6950 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6951 // i32 <numBytes>, 6952 // i8* <target>, 6953 // i32 <numArgs>, 6954 // [Args...], 6955 // [live variables...]) 6956 6957 CallingConv::ID CC = CI.getCallingConv(); 6958 bool isAnyRegCC = CC == CallingConv::AnyReg; 6959 bool hasDef = !CI.getType()->isVoidTy(); 6960 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6961 6962 // Get the real number of arguments participating in the call <numArgs> 6963 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6964 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6965 6966 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6967 // Intrinsics include all meta-operands up to but not including CC. 6968 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6969 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6970 "Not enough arguments provided to the patchpoint intrinsic"); 6971 6972 // For AnyRegCC the arguments are lowered later on manually. 6973 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6974 std::pair<SDValue, SDValue> Result = 6975 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6976 6977 // Set the root to the target-lowered call chain. 6978 SDValue Chain = Result.second; 6979 DAG.setRoot(Chain); 6980 6981 SDNode *CallEnd = Chain.getNode(); 6982 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6983 CallEnd = CallEnd->getOperand(0).getNode(); 6984 6985 /// Get a call instruction from the call sequence chain. 6986 /// Tail calls are not allowed. 6987 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6988 "Expected a callseq node."); 6989 SDNode *Call = CallEnd->getOperand(0).getNode(); 6990 bool hasGlue = Call->getGluedNode(); 6991 6992 // Replace the target specific call node with the patchable intrinsic. 6993 SmallVector<SDValue, 8> Ops; 6994 6995 // Add the <id> and <numBytes> constants. 6996 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6997 Ops.push_back(DAG.getTargetConstant( 6998 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6999 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7000 Ops.push_back(DAG.getTargetConstant( 7001 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7002 7003 // Assume that the Callee is a constant address. 7004 // FIXME: handle function symbols in the future. 7005 Ops.push_back( 7006 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7007 /*isTarget=*/true)); 7008 7009 // Adjust <numArgs> to account for any arguments that have been passed on the 7010 // stack instead. 7011 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7012 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7013 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7014 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7015 7016 // Add the calling convention 7017 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7018 7019 // Add the arguments we omitted previously. The register allocator should 7020 // place these in any free register. 7021 if (isAnyRegCC) 7022 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7023 Ops.push_back(getValue(CI.getArgOperand(i))); 7024 7025 // Push the arguments from the call instruction up to the register mask. 7026 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7027 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7028 Ops.push_back(*i); 7029 7030 // Push live variables for the stack map. 7031 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7032 7033 // Push the register mask info. 7034 if (hasGlue) 7035 Ops.push_back(*(Call->op_end()-2)); 7036 else 7037 Ops.push_back(*(Call->op_end()-1)); 7038 7039 // Push the chain (this is originally the first operand of the call, but 7040 // becomes now the last or second to last operand). 7041 Ops.push_back(*(Call->op_begin())); 7042 7043 // Push the glue flag (last operand). 7044 if (hasGlue) 7045 Ops.push_back(*(Call->op_end()-1)); 7046 7047 SDVTList NodeTys; 7048 if (isAnyRegCC && hasDef) { 7049 // Create the return types based on the intrinsic definition 7050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7051 SmallVector<EVT, 3> ValueVTs; 7052 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7053 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7054 7055 // There is always a chain and a glue type at the end 7056 ValueVTs.push_back(MVT::Other); 7057 ValueVTs.push_back(MVT::Glue); 7058 NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 7059 } else 7060 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7061 7062 // Replace the target specific call node with a PATCHPOINT node. 7063 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7064 getCurSDLoc(), NodeTys, Ops); 7065 7066 // Update the NodeMap. 7067 if (hasDef) { 7068 if (isAnyRegCC) 7069 setValue(&CI, SDValue(MN, 0)); 7070 else 7071 setValue(&CI, Result.first); 7072 } 7073 7074 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7075 // call sequence. Furthermore the location of the chain and glue can change 7076 // when the AnyReg calling convention is used and the intrinsic returns a 7077 // value. 7078 if (isAnyRegCC && hasDef) { 7079 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7080 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7081 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7082 } else 7083 DAG.ReplaceAllUsesWith(Call, MN); 7084 DAG.DeleteNode(Call); 7085 7086 // Inform the Frame Information that we have a patchpoint in this function. 7087 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7088 } 7089 7090 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7091 /// implementation, which just calls LowerCall. 7092 /// FIXME: When all targets are 7093 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7094 std::pair<SDValue, SDValue> 7095 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7096 // Handle the incoming return values from the call. 7097 CLI.Ins.clear(); 7098 SmallVector<EVT, 4> RetTys; 7099 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7100 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7101 EVT VT = RetTys[I]; 7102 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7103 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7104 for (unsigned i = 0; i != NumRegs; ++i) { 7105 ISD::InputArg MyFlags; 7106 MyFlags.VT = RegisterVT; 7107 MyFlags.ArgVT = VT; 7108 MyFlags.Used = CLI.IsReturnValueUsed; 7109 if (CLI.RetSExt) 7110 MyFlags.Flags.setSExt(); 7111 if (CLI.RetZExt) 7112 MyFlags.Flags.setZExt(); 7113 if (CLI.IsInReg) 7114 MyFlags.Flags.setInReg(); 7115 CLI.Ins.push_back(MyFlags); 7116 } 7117 } 7118 7119 // Handle all of the outgoing arguments. 7120 CLI.Outs.clear(); 7121 CLI.OutVals.clear(); 7122 ArgListTy &Args = CLI.Args; 7123 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7124 SmallVector<EVT, 4> ValueVTs; 7125 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7126 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7127 Value != NumValues; ++Value) { 7128 EVT VT = ValueVTs[Value]; 7129 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7130 SDValue Op = SDValue(Args[i].Node.getNode(), 7131 Args[i].Node.getResNo() + Value); 7132 ISD::ArgFlagsTy Flags; 7133 unsigned OriginalAlignment = 7134 getDataLayout()->getABITypeAlignment(ArgTy); 7135 7136 if (Args[i].isZExt) 7137 Flags.setZExt(); 7138 if (Args[i].isSExt) 7139 Flags.setSExt(); 7140 if (Args[i].isInReg) 7141 Flags.setInReg(); 7142 if (Args[i].isSRet) 7143 Flags.setSRet(); 7144 if (Args[i].isByVal) 7145 Flags.setByVal(); 7146 if (Args[i].isInAlloca) { 7147 Flags.setInAlloca(); 7148 // Set the byval flag for CCAssignFn callbacks that don't know about 7149 // inalloca. This way we can know how many bytes we should've allocated 7150 // and how many bytes a callee cleanup function will pop. If we port 7151 // inalloca to more targets, we'll have to add custom inalloca handling 7152 // in the various CC lowering callbacks. 7153 Flags.setByVal(); 7154 } 7155 if (Args[i].isByVal || Args[i].isInAlloca) { 7156 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7157 Type *ElementTy = Ty->getElementType(); 7158 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7159 // For ByVal, alignment should come from FE. BE will guess if this 7160 // info is not there but there are cases it cannot get right. 7161 unsigned FrameAlign; 7162 if (Args[i].Alignment) 7163 FrameAlign = Args[i].Alignment; 7164 else 7165 FrameAlign = getByValTypeAlignment(ElementTy); 7166 Flags.setByValAlign(FrameAlign); 7167 } 7168 if (Args[i].isNest) 7169 Flags.setNest(); 7170 Flags.setOrigAlign(OriginalAlignment); 7171 7172 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7173 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7174 SmallVector<SDValue, 4> Parts(NumParts); 7175 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7176 7177 if (Args[i].isSExt) 7178 ExtendKind = ISD::SIGN_EXTEND; 7179 else if (Args[i].isZExt) 7180 ExtendKind = ISD::ZERO_EXTEND; 7181 7182 // Conservatively only handle 'returned' on non-vectors for now 7183 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7184 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7185 "unexpected use of 'returned'"); 7186 // Before passing 'returned' to the target lowering code, ensure that 7187 // either the register MVT and the actual EVT are the same size or that 7188 // the return value and argument are extended in the same way; in these 7189 // cases it's safe to pass the argument register value unchanged as the 7190 // return register value (although it's at the target's option whether 7191 // to do so) 7192 // TODO: allow code generation to take advantage of partially preserved 7193 // registers rather than clobbering the entire register when the 7194 // parameter extension method is not compatible with the return 7195 // extension method 7196 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7197 (ExtendKind != ISD::ANY_EXTEND && 7198 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7199 Flags.setReturned(); 7200 } 7201 7202 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 7203 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 7204 7205 for (unsigned j = 0; j != NumParts; ++j) { 7206 // if it isn't first piece, alignment must be 1 7207 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7208 i < CLI.NumFixedArgs, 7209 i, j*Parts[j].getValueType().getStoreSize()); 7210 if (NumParts > 1 && j == 0) 7211 MyFlags.Flags.setSplit(); 7212 else if (j != 0) 7213 MyFlags.Flags.setOrigAlign(1); 7214 7215 CLI.Outs.push_back(MyFlags); 7216 CLI.OutVals.push_back(Parts[j]); 7217 } 7218 } 7219 } 7220 7221 SmallVector<SDValue, 4> InVals; 7222 CLI.Chain = LowerCall(CLI, InVals); 7223 7224 // Verify that the target's LowerCall behaved as expected. 7225 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7226 "LowerCall didn't return a valid chain!"); 7227 assert((!CLI.IsTailCall || InVals.empty()) && 7228 "LowerCall emitted a return value for a tail call!"); 7229 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7230 "LowerCall didn't emit the correct number of values!"); 7231 7232 // For a tail call, the return value is merely live-out and there aren't 7233 // any nodes in the DAG representing it. Return a special value to 7234 // indicate that a tail call has been emitted and no more Instructions 7235 // should be processed in the current block. 7236 if (CLI.IsTailCall) { 7237 CLI.DAG.setRoot(CLI.Chain); 7238 return std::make_pair(SDValue(), SDValue()); 7239 } 7240 7241 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7242 assert(InVals[i].getNode() && 7243 "LowerCall emitted a null value!"); 7244 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7245 "LowerCall emitted a value with the wrong type!"); 7246 }); 7247 7248 // Collect the legal value parts into potentially illegal values 7249 // that correspond to the original function's return values. 7250 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7251 if (CLI.RetSExt) 7252 AssertOp = ISD::AssertSext; 7253 else if (CLI.RetZExt) 7254 AssertOp = ISD::AssertZext; 7255 SmallVector<SDValue, 4> ReturnValues; 7256 unsigned CurReg = 0; 7257 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7258 EVT VT = RetTys[I]; 7259 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7260 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7261 7262 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7263 NumRegs, RegisterVT, VT, NULL, 7264 AssertOp)); 7265 CurReg += NumRegs; 7266 } 7267 7268 // For a function returning void, there is no return value. We can't create 7269 // such a node, so we just return a null return value in that case. In 7270 // that case, nothing will actually look at the value. 7271 if (ReturnValues.empty()) 7272 return std::make_pair(SDValue(), CLI.Chain); 7273 7274 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7275 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 7276 &ReturnValues[0], ReturnValues.size()); 7277 return std::make_pair(Res, CLI.Chain); 7278 } 7279 7280 void TargetLowering::LowerOperationWrapper(SDNode *N, 7281 SmallVectorImpl<SDValue> &Results, 7282 SelectionDAG &DAG) const { 7283 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7284 if (Res.getNode()) 7285 Results.push_back(Res); 7286 } 7287 7288 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7289 llvm_unreachable("LowerOperation not implemented for this target!"); 7290 } 7291 7292 void 7293 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7294 SDValue Op = getNonRegisterValue(V); 7295 assert((Op.getOpcode() != ISD::CopyFromReg || 7296 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7297 "Copy from a reg to the same reg!"); 7298 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7299 7300 const TargetLowering *TLI = TM.getTargetLowering(); 7301 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7302 SDValue Chain = DAG.getEntryNode(); 7303 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 7304 PendingExports.push_back(Chain); 7305 } 7306 7307 #include "llvm/CodeGen/SelectionDAGISel.h" 7308 7309 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7310 /// entry block, return true. This includes arguments used by switches, since 7311 /// the switch may expand into multiple basic blocks. 7312 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7313 // With FastISel active, we may be splitting blocks, so force creation 7314 // of virtual registers for all non-dead arguments. 7315 if (FastISel) 7316 return A->use_empty(); 7317 7318 const BasicBlock *Entry = A->getParent()->begin(); 7319 for (const User *U : A->users()) 7320 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7321 return false; // Use not in entry block. 7322 7323 return true; 7324 } 7325 7326 void SelectionDAGISel::LowerArguments(const Function &F) { 7327 SelectionDAG &DAG = SDB->DAG; 7328 SDLoc dl = SDB->getCurSDLoc(); 7329 const TargetLowering *TLI = getTargetLowering(); 7330 const DataLayout *DL = TLI->getDataLayout(); 7331 SmallVector<ISD::InputArg, 16> Ins; 7332 7333 if (!FuncInfo->CanLowerReturn) { 7334 // Put in an sret pointer parameter before all the other parameters. 7335 SmallVector<EVT, 1> ValueVTs; 7336 ComputeValueVTs(*getTargetLowering(), 7337 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7338 7339 // NOTE: Assuming that a pointer will never break down to more than one VT 7340 // or one register. 7341 ISD::ArgFlagsTy Flags; 7342 Flags.setSRet(); 7343 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7344 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7345 Ins.push_back(RetArg); 7346 } 7347 7348 // Set up the incoming argument description vector. 7349 unsigned Idx = 1; 7350 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7351 I != E; ++I, ++Idx) { 7352 SmallVector<EVT, 4> ValueVTs; 7353 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7354 bool isArgValueUsed = !I->use_empty(); 7355 unsigned PartBase = 0; 7356 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7357 Value != NumValues; ++Value) { 7358 EVT VT = ValueVTs[Value]; 7359 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7360 ISD::ArgFlagsTy Flags; 7361 unsigned OriginalAlignment = 7362 DL->getABITypeAlignment(ArgTy); 7363 7364 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7365 Flags.setZExt(); 7366 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7367 Flags.setSExt(); 7368 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7369 Flags.setInReg(); 7370 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7371 Flags.setSRet(); 7372 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7373 Flags.setByVal(); 7374 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7375 Flags.setInAlloca(); 7376 // Set the byval flag for CCAssignFn callbacks that don't know about 7377 // inalloca. This way we can know how many bytes we should've allocated 7378 // and how many bytes a callee cleanup function will pop. If we port 7379 // inalloca to more targets, we'll have to add custom inalloca handling 7380 // in the various CC lowering callbacks. 7381 Flags.setByVal(); 7382 } 7383 if (Flags.isByVal() || Flags.isInAlloca()) { 7384 PointerType *Ty = cast<PointerType>(I->getType()); 7385 Type *ElementTy = Ty->getElementType(); 7386 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7387 // For ByVal, alignment should be passed from FE. BE will guess if 7388 // this info is not there but there are cases it cannot get right. 7389 unsigned FrameAlign; 7390 if (F.getParamAlignment(Idx)) 7391 FrameAlign = F.getParamAlignment(Idx); 7392 else 7393 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7394 Flags.setByValAlign(FrameAlign); 7395 } 7396 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7397 Flags.setNest(); 7398 Flags.setOrigAlign(OriginalAlignment); 7399 7400 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7401 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7402 for (unsigned i = 0; i != NumRegs; ++i) { 7403 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7404 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7405 if (NumRegs > 1 && i == 0) 7406 MyFlags.Flags.setSplit(); 7407 // if it isn't first piece, alignment must be 1 7408 else if (i > 0) 7409 MyFlags.Flags.setOrigAlign(1); 7410 Ins.push_back(MyFlags); 7411 } 7412 PartBase += VT.getStoreSize(); 7413 } 7414 } 7415 7416 // Call the target to set up the argument values. 7417 SmallVector<SDValue, 8> InVals; 7418 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7419 F.isVarArg(), Ins, 7420 dl, DAG, InVals); 7421 7422 // Verify that the target's LowerFormalArguments behaved as expected. 7423 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7424 "LowerFormalArguments didn't return a valid chain!"); 7425 assert(InVals.size() == Ins.size() && 7426 "LowerFormalArguments didn't emit the correct number of values!"); 7427 DEBUG({ 7428 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7429 assert(InVals[i].getNode() && 7430 "LowerFormalArguments emitted a null value!"); 7431 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7432 "LowerFormalArguments emitted a value with the wrong type!"); 7433 } 7434 }); 7435 7436 // Update the DAG with the new chain value resulting from argument lowering. 7437 DAG.setRoot(NewRoot); 7438 7439 // Set up the argument values. 7440 unsigned i = 0; 7441 Idx = 1; 7442 if (!FuncInfo->CanLowerReturn) { 7443 // Create a virtual register for the sret pointer, and put in a copy 7444 // from the sret argument into it. 7445 SmallVector<EVT, 1> ValueVTs; 7446 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7447 MVT VT = ValueVTs[0].getSimpleVT(); 7448 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7449 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7450 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7451 RegVT, VT, NULL, AssertOp); 7452 7453 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7454 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7455 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7456 FuncInfo->DemoteRegister = SRetReg; 7457 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7458 SRetReg, ArgValue); 7459 DAG.setRoot(NewRoot); 7460 7461 // i indexes lowered arguments. Bump it past the hidden sret argument. 7462 // Idx indexes LLVM arguments. Don't touch it. 7463 ++i; 7464 } 7465 7466 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7467 ++I, ++Idx) { 7468 SmallVector<SDValue, 4> ArgValues; 7469 SmallVector<EVT, 4> ValueVTs; 7470 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7471 unsigned NumValues = ValueVTs.size(); 7472 7473 // If this argument is unused then remember its value. It is used to generate 7474 // debugging information. 7475 if (I->use_empty() && NumValues) { 7476 SDB->setUnusedArgValue(I, InVals[i]); 7477 7478 // Also remember any frame index for use in FastISel. 7479 if (FrameIndexSDNode *FI = 7480 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7481 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7482 } 7483 7484 for (unsigned Val = 0; Val != NumValues; ++Val) { 7485 EVT VT = ValueVTs[Val]; 7486 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7487 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7488 7489 if (!I->use_empty()) { 7490 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7491 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7492 AssertOp = ISD::AssertSext; 7493 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7494 AssertOp = ISD::AssertZext; 7495 7496 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7497 NumParts, PartVT, VT, 7498 NULL, AssertOp)); 7499 } 7500 7501 i += NumParts; 7502 } 7503 7504 // We don't need to do anything else for unused arguments. 7505 if (ArgValues.empty()) 7506 continue; 7507 7508 // Note down frame index. 7509 if (FrameIndexSDNode *FI = 7510 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7511 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7512 7513 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7514 SDB->getCurSDLoc()); 7515 7516 SDB->setValue(I, Res); 7517 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7518 if (LoadSDNode *LNode = 7519 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7520 if (FrameIndexSDNode *FI = 7521 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7522 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7523 } 7524 7525 // If this argument is live outside of the entry block, insert a copy from 7526 // wherever we got it to the vreg that other BB's will reference it as. 7527 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7528 // If we can, though, try to skip creating an unnecessary vreg. 7529 // FIXME: This isn't very clean... it would be nice to make this more 7530 // general. It's also subtly incompatible with the hacks FastISel 7531 // uses with vregs. 7532 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7533 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7534 FuncInfo->ValueMap[I] = Reg; 7535 continue; 7536 } 7537 } 7538 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7539 FuncInfo->InitializeRegForValue(I); 7540 SDB->CopyToExportRegsIfNeeded(I); 7541 } 7542 } 7543 7544 assert(i == InVals.size() && "Argument register count mismatch!"); 7545 7546 // Finally, if the target has anything special to do, allow it to do so. 7547 // FIXME: this should insert code into the DAG! 7548 EmitFunctionEntryCode(); 7549 } 7550 7551 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7552 /// ensure constants are generated when needed. Remember the virtual registers 7553 /// that need to be added to the Machine PHI nodes as input. We cannot just 7554 /// directly add them, because expansion might result in multiple MBB's for one 7555 /// BB. As such, the start of the BB might correspond to a different MBB than 7556 /// the end. 7557 /// 7558 void 7559 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7560 const TerminatorInst *TI = LLVMBB->getTerminator(); 7561 7562 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7563 7564 // Check successor nodes' PHI nodes that expect a constant to be available 7565 // from this block. 7566 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7567 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7568 if (!isa<PHINode>(SuccBB->begin())) continue; 7569 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7570 7571 // If this terminator has multiple identical successors (common for 7572 // switches), only handle each succ once. 7573 if (!SuccsHandled.insert(SuccMBB)) continue; 7574 7575 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7576 7577 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7578 // nodes and Machine PHI nodes, but the incoming operands have not been 7579 // emitted yet. 7580 for (BasicBlock::const_iterator I = SuccBB->begin(); 7581 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7582 // Ignore dead phi's. 7583 if (PN->use_empty()) continue; 7584 7585 // Skip empty types 7586 if (PN->getType()->isEmptyTy()) 7587 continue; 7588 7589 unsigned Reg; 7590 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7591 7592 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7593 unsigned &RegOut = ConstantsOut[C]; 7594 if (RegOut == 0) { 7595 RegOut = FuncInfo.CreateRegs(C->getType()); 7596 CopyValueToVirtualRegister(C, RegOut); 7597 } 7598 Reg = RegOut; 7599 } else { 7600 DenseMap<const Value *, unsigned>::iterator I = 7601 FuncInfo.ValueMap.find(PHIOp); 7602 if (I != FuncInfo.ValueMap.end()) 7603 Reg = I->second; 7604 else { 7605 assert(isa<AllocaInst>(PHIOp) && 7606 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7607 "Didn't codegen value into a register!??"); 7608 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7609 CopyValueToVirtualRegister(PHIOp, Reg); 7610 } 7611 } 7612 7613 // Remember that this register needs to added to the machine PHI node as 7614 // the input for this MBB. 7615 SmallVector<EVT, 4> ValueVTs; 7616 const TargetLowering *TLI = TM.getTargetLowering(); 7617 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7618 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7619 EVT VT = ValueVTs[vti]; 7620 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7621 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7622 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7623 Reg += NumRegisters; 7624 } 7625 } 7626 } 7627 7628 ConstantsOut.clear(); 7629 } 7630 7631 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7632 /// is 0. 7633 MachineBasicBlock * 7634 SelectionDAGBuilder::StackProtectorDescriptor:: 7635 AddSuccessorMBB(const BasicBlock *BB, 7636 MachineBasicBlock *ParentMBB, 7637 MachineBasicBlock *SuccMBB) { 7638 // If SuccBB has not been created yet, create it. 7639 if (!SuccMBB) { 7640 MachineFunction *MF = ParentMBB->getParent(); 7641 MachineFunction::iterator BBI = ParentMBB; 7642 SuccMBB = MF->CreateMachineBasicBlock(BB); 7643 MF->insert(++BBI, SuccMBB); 7644 } 7645 // Add it as a successor of ParentMBB. 7646 ParentMBB->addSuccessor(SuccMBB); 7647 return SuccMBB; 7648 } 7649