xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision fbb37e960616efcf7cd5c1ebbe95f75c65d565dc)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <iterator>
108 #include <limits>
109 #include <optional>
110 #include <tuple>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 using namespace SwitchCG;
115 
116 #define DEBUG_TYPE "isel"
117 
118 /// LimitFloatPrecision - Generate low-precision inline sequences for
119 /// some float libcalls (6, 8 or 12 bits).
120 static unsigned LimitFloatPrecision;
121 
122 static cl::opt<bool>
123     InsertAssertAlign("insert-assert-align", cl::init(true),
124                       cl::desc("Insert the experimental `assertalign` node."),
125                       cl::ReallyHidden);
126 
127 static cl::opt<unsigned, true>
128     LimitFPPrecision("limit-float-precision",
129                      cl::desc("Generate low-precision inline sequences "
130                               "for some float libcalls"),
131                      cl::location(LimitFloatPrecision), cl::Hidden,
132                      cl::init(0));
133 
134 static cl::opt<unsigned> SwitchPeelThreshold(
135     "switch-peel-threshold", cl::Hidden, cl::init(66),
136     cl::desc("Set the case probability threshold for peeling the case from a "
137              "switch statement. A value greater than 100 will void this "
138              "optimization"));
139 
140 // Limit the width of DAG chains. This is important in general to prevent
141 // DAG-based analysis from blowing up. For example, alias analysis and
142 // load clustering may not complete in reasonable time. It is difficult to
143 // recognize and avoid this situation within each individual analysis, and
144 // future analyses are likely to have the same behavior. Limiting DAG width is
145 // the safe approach and will be especially important with global DAGs.
146 //
147 // MaxParallelChains default is arbitrarily high to avoid affecting
148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
149 // sequence over this should have been converted to llvm.memcpy by the
150 // frontend. It is easy to induce this behavior with .ll code such as:
151 // %buffer = alloca [4096 x i8]
152 // %data = load [4096 x i8]* %argPtr
153 // store [4096 x i8] %data, [4096 x i8]* %buffer
154 static const unsigned MaxParallelChains = 64;
155 
156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
157                                       const SDValue *Parts, unsigned NumParts,
158                                       MVT PartVT, EVT ValueVT, const Value *V,
159                                       SDValue InChain,
160                                       std::optional<CallingConv::ID> CC);
161 
162 /// getCopyFromParts - Create a value that contains the specified legal parts
163 /// combined into the value they represent.  If the parts combine to a type
164 /// larger than ValueVT then AssertOp can be used to specify whether the extra
165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
166 /// (ISD::AssertSext).
167 static SDValue
168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
169                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
170                  SDValue InChain,
171                  std::optional<CallingConv::ID> CC = std::nullopt,
172                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
173   // Let the target assemble the parts if it wants to
174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
175   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
176                                                    PartVT, ValueVT, CC))
177     return Val;
178 
179   if (ValueVT.isVector())
180     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
181                                   InChain, CC);
182 
183   assert(NumParts > 0 && "No parts to assemble!");
184   SDValue Val = Parts[0];
185 
186   if (NumParts > 1) {
187     // Assemble the value from multiple parts.
188     if (ValueVT.isInteger()) {
189       unsigned PartBits = PartVT.getSizeInBits();
190       unsigned ValueBits = ValueVT.getSizeInBits();
191 
192       // Assemble the power of 2 part.
193       unsigned RoundParts = llvm::bit_floor(NumParts);
194       unsigned RoundBits = PartBits * RoundParts;
195       EVT RoundVT = RoundBits == ValueBits ?
196         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
197       SDValue Lo, Hi;
198 
199       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
200 
201       if (RoundParts > 2) {
202         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
203                               InChain);
204         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
205                               PartVT, HalfVT, V, InChain);
206       } else {
207         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
208         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
209       }
210 
211       if (DAG.getDataLayout().isBigEndian())
212         std::swap(Lo, Hi);
213 
214       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
215 
216       if (RoundParts < NumParts) {
217         // Assemble the trailing non-power-of-2 part.
218         unsigned OddParts = NumParts - RoundParts;
219         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
220         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
221                               OddVT, V, InChain, CC);
222 
223         // Combine the round and odd parts.
224         Lo = Val;
225         if (DAG.getDataLayout().isBigEndian())
226           std::swap(Lo, Hi);
227         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
228         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
229         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
230                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
231                                          TLI.getShiftAmountTy(
232                                              TotalVT, DAG.getDataLayout())));
233         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
234         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
235       }
236     } else if (PartVT.isFloatingPoint()) {
237       // FP split into multiple FP parts (for ppcf128)
238       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
239              "Unexpected split");
240       SDValue Lo, Hi;
241       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
242       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
243       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
244         std::swap(Lo, Hi);
245       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
246     } else {
247       // FP split into integer parts (soft fp)
248       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
249              !PartVT.isVector() && "Unexpected split");
250       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
251       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
252                              InChain, CC);
253     }
254   }
255 
256   // There is now one part, held in Val.  Correct it to match ValueVT.
257   // PartEVT is the type of the register class that holds the value.
258   // ValueVT is the type of the inline asm operation.
259   EVT PartEVT = Val.getValueType();
260 
261   if (PartEVT == ValueVT)
262     return Val;
263 
264   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
265       ValueVT.bitsLT(PartEVT)) {
266     // For an FP value in an integer part, we need to truncate to the right
267     // width first.
268     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
269     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
270   }
271 
272   // Handle types that have the same size.
273   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
274     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
275 
276   // Handle types with different sizes.
277   if (PartEVT.isInteger() && ValueVT.isInteger()) {
278     if (ValueVT.bitsLT(PartEVT)) {
279       // For a truncate, see if we have any information to
280       // indicate whether the truncated bits will always be
281       // zero or sign-extension.
282       if (AssertOp)
283         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
284                           DAG.getValueType(ValueVT));
285       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
286     }
287     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
288   }
289 
290   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
291     // FP_ROUND's are always exact here.
292     if (ValueVT.bitsLT(Val.getValueType())) {
293 
294       SDValue NoChange =
295           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
296 
297       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
298               llvm::Attribute::StrictFP)) {
299         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
300                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
301                            NoChange);
302       }
303 
304       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
305     }
306 
307     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
308   }
309 
310   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
311   // then truncating.
312   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
313       ValueVT.bitsLT(PartEVT)) {
314     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
315     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
316   }
317 
318   report_fatal_error("Unknown mismatch in getCopyFromParts!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (CI->isInlineAsm())
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       SDValue InChain,
344                                       std::optional<CallingConv::ID> CallConv) {
345   assert(ValueVT.isVector() && "Not a vector value");
346   assert(NumParts > 0 && "No parts to assemble!");
347   const bool IsABIRegCopy = CallConv.has_value();
348 
349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350   SDValue Val = Parts[0];
351 
352   // Handle a multi-element vector.
353   if (NumParts > 1) {
354     EVT IntermediateVT;
355     MVT RegisterVT;
356     unsigned NumIntermediates;
357     unsigned NumRegs;
358 
359     if (IsABIRegCopy) {
360       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
361           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
362           NumIntermediates, RegisterVT);
363     } else {
364       NumRegs =
365           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
366                                      NumIntermediates, RegisterVT);
367     }
368 
369     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
370     NumParts = NumRegs; // Silence a compiler warning.
371     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
372     assert(RegisterVT.getSizeInBits() ==
373            Parts[0].getSimpleValueType().getSizeInBits() &&
374            "Part type sizes don't match!");
375 
376     // Assemble the parts into intermediate operands.
377     SmallVector<SDValue, 8> Ops(NumIntermediates);
378     if (NumIntermediates == NumParts) {
379       // If the register was not expanded, truncate or copy the value,
380       // as appropriate.
381       for (unsigned i = 0; i != NumParts; ++i)
382         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
383                                   V, InChain, CallConv);
384     } else if (NumParts > 0) {
385       // If the intermediate type was expanded, build the intermediate
386       // operands from the parts.
387       assert(NumParts % NumIntermediates == 0 &&
388              "Must expand into a divisible number of parts!");
389       unsigned Factor = NumParts / NumIntermediates;
390       for (unsigned i = 0; i != NumIntermediates; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
392                                   IntermediateVT, V, InChain, CallConv);
393     }
394 
395     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
396     // intermediate operands.
397     EVT BuiltVectorTy =
398         IntermediateVT.isVector()
399             ? EVT::getVectorVT(
400                   *DAG.getContext(), IntermediateVT.getScalarType(),
401                   IntermediateVT.getVectorElementCount() * NumParts)
402             : EVT::getVectorVT(*DAG.getContext(),
403                                IntermediateVT.getScalarType(),
404                                NumIntermediates);
405     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
406                                                 : ISD::BUILD_VECTOR,
407                       DL, BuiltVectorTy, Ops);
408   }
409 
410   // There is now one part, held in Val.  Correct it to match ValueVT.
411   EVT PartEVT = Val.getValueType();
412 
413   if (PartEVT == ValueVT)
414     return Val;
415 
416   if (PartEVT.isVector()) {
417     // Vector/Vector bitcast.
418     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
419       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420 
421     // If the parts vector has more elements than the value vector, then we
422     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
423     // Extract the elements we want.
424     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
426               ValueVT.getVectorElementCount().getKnownMinValue()) &&
427              (PartEVT.getVectorElementCount().isScalable() ==
428               ValueVT.getVectorElementCount().isScalable()) &&
429              "Cannot narrow, it would be a lossy transformation");
430       PartEVT =
431           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
432                            ValueVT.getVectorElementCount());
433       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
434                         DAG.getVectorIdxConstant(0, DL));
435       if (PartEVT == ValueVT)
436         return Val;
437       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
438         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
441       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443     }
444 
445     // Promoted vector extract
446     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
447   }
448 
449   // Trivial bitcast if the types are the same size and the destination
450   // vector type is legal.
451   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
452       TLI.isTypeLegal(ValueVT))
453     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454 
455   if (ValueVT.getVectorNumElements() != 1) {
456      // Certain ABIs require that vectors are passed as integers. For vectors
457      // are the same size, this is an obvious bitcast.
458      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
459        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
460      } else if (ValueVT.bitsLT(PartEVT)) {
461        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
462        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
463        // Drop the extra bits.
464        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
465        return DAG.getBitcast(ValueVT, Val);
466      }
467 
468      diagnosePossiblyInvalidConstraint(
469          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
470      return DAG.getUNDEF(ValueVT);
471   }
472 
473   // Handle cases such as i8 -> <1 x i1>
474   EVT ValueSVT = ValueVT.getVectorElementType();
475   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
476     unsigned ValueSize = ValueSVT.getSizeInBits();
477     if (ValueSize == PartEVT.getSizeInBits()) {
478       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
479     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
480       // It's possible a scalar floating point type gets softened to integer and
481       // then promoted to a larger integer. If PartEVT is the larger integer
482       // we need to truncate it and then bitcast to the FP type.
483       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
484       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
485       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
486       Val = DAG.getBitcast(ValueSVT, Val);
487     } else {
488       Val = ValueVT.isFloatingPoint()
489                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
490                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
491     }
492   }
493 
494   return DAG.getBuildVector(ValueVT, DL, Val);
495 }
496 
497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
498                                  SDValue Val, SDValue *Parts, unsigned NumParts,
499                                  MVT PartVT, const Value *V,
500                                  std::optional<CallingConv::ID> CallConv);
501 
502 /// getCopyToParts - Create a series of nodes that contain the specified value
503 /// split into legal parts.  If the parts contain more bits than Val, then, for
504 /// integers, ExtendKind can be used to specify how to generate the extra bits.
505 static void
506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
507                unsigned NumParts, MVT PartVT, const Value *V,
508                std::optional<CallingConv::ID> CallConv = std::nullopt,
509                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
510   // Let the target split the parts if it wants to
511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
512   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
513                                       CallConv))
514     return;
515   EVT ValueVT = Val.getValueType();
516 
517   // Handle the vector case separately.
518   if (ValueVT.isVector())
519     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
520                                 CallConv);
521 
522   unsigned OrigNumParts = NumParts;
523   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
524          "Copying to an illegal type!");
525 
526   if (NumParts == 0)
527     return;
528 
529   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
530   EVT PartEVT = PartVT;
531   if (PartEVT == ValueVT) {
532     assert(NumParts == 1 && "No-op copy with multiple parts!");
533     Parts[0] = Val;
534     return;
535   }
536 
537   unsigned PartBits = PartVT.getSizeInBits();
538   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
539     // If the parts cover more bits than the value has, promote the value.
540     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
541       assert(NumParts == 1 && "Do not know what to promote to!");
542       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
543     } else {
544       if (ValueVT.isFloatingPoint()) {
545         // FP values need to be bitcast, then extended if they are being put
546         // into a larger container.
547         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
548         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
549       }
550       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551              ValueVT.isInteger() &&
552              "Unknown mismatch!");
553       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
555       if (PartVT == MVT::x86mmx)
556         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557     }
558   } else if (PartBits == ValueVT.getSizeInBits()) {
559     // Different types of the same size.
560     assert(NumParts == 1 && PartEVT != ValueVT);
561     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
562   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
563     // If the parts cover less bits than value has, truncate the value.
564     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
565            ValueVT.isInteger() &&
566            "Unknown mismatch!");
567     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
568     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
569     if (PartVT == MVT::x86mmx)
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571   }
572 
573   // The value may have changed - recompute ValueVT.
574   ValueVT = Val.getValueType();
575   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
576          "Failed to tile the value with PartVT!");
577 
578   if (NumParts == 1) {
579     if (PartEVT != ValueVT) {
580       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
581                                         "scalar-to-vector conversion failed");
582       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
583     }
584 
585     Parts[0] = Val;
586     return;
587   }
588 
589   // Expand the value into multiple parts.
590   if (NumParts & (NumParts - 1)) {
591     // The number of parts is not a power of 2.  Split off and copy the tail.
592     assert(PartVT.isInteger() && ValueVT.isInteger() &&
593            "Do not know what to expand to!");
594     unsigned RoundParts = llvm::bit_floor(NumParts);
595     unsigned RoundBits = RoundParts * PartBits;
596     unsigned OddParts = NumParts - RoundParts;
597     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
598       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
599 
600     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
601                    CallConv);
602 
603     if (DAG.getDataLayout().isBigEndian())
604       // The odd parts were reversed by getCopyToParts - unreverse them.
605       std::reverse(Parts + RoundParts, Parts + NumParts);
606 
607     NumParts = RoundParts;
608     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
609     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
610   }
611 
612   // The number of parts is a power of 2.  Repeatedly bisect the value using
613   // EXTRACT_ELEMENT.
614   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
615                          EVT::getIntegerVT(*DAG.getContext(),
616                                            ValueVT.getSizeInBits()),
617                          Val);
618 
619   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
620     for (unsigned i = 0; i < NumParts; i += StepSize) {
621       unsigned ThisBits = StepSize * PartBits / 2;
622       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
623       SDValue &Part0 = Parts[i];
624       SDValue &Part1 = Parts[i+StepSize/2];
625 
626       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
628       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
629                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
630 
631       if (ThisBits == PartBits && ThisVT != PartVT) {
632         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
633         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
634       }
635     }
636   }
637 
638   if (DAG.getDataLayout().isBigEndian())
639     std::reverse(Parts, Parts + OrigNumParts);
640 }
641 
642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
643                                      const SDLoc &DL, EVT PartVT) {
644   if (!PartVT.isVector())
645     return SDValue();
646 
647   EVT ValueVT = Val.getValueType();
648   EVT PartEVT = PartVT.getVectorElementType();
649   EVT ValueEVT = ValueVT.getVectorElementType();
650   ElementCount PartNumElts = PartVT.getVectorElementCount();
651   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
652 
653   // We only support widening vectors with equivalent element types and
654   // fixed/scalable properties. If a target needs to widen a fixed-length type
655   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
656   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
657       PartNumElts.isScalable() != ValueNumElts.isScalable())
658     return SDValue();
659 
660   // Have a try for bf16 because some targets share its ABI with fp16.
661   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
662     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
663            "Cannot widen to illegal type");
664     Val = DAG.getNode(ISD::BITCAST, DL,
665                       ValueVT.changeVectorElementType(MVT::f16), Val);
666   } else if (PartEVT != ValueEVT) {
667     return SDValue();
668   }
669 
670   // Widening a scalable vector to another scalable vector is done by inserting
671   // the vector into a larger undef one.
672   if (PartNumElts.isScalable())
673     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
674                        Val, DAG.getVectorIdxConstant(0, DL));
675 
676   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
677   // undef elements.
678   SmallVector<SDValue, 16> Ops;
679   DAG.ExtractVectorElements(Val, Ops);
680   SDValue EltUndef = DAG.getUNDEF(PartEVT);
681   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
682 
683   // FIXME: Use CONCAT for 2x -> 4x.
684   return DAG.getBuildVector(PartVT, DL, Ops);
685 }
686 
687 /// getCopyToPartsVector - Create a series of nodes that contain the specified
688 /// value split into legal parts.
689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
690                                  SDValue Val, SDValue *Parts, unsigned NumParts,
691                                  MVT PartVT, const Value *V,
692                                  std::optional<CallingConv::ID> CallConv) {
693   EVT ValueVT = Val.getValueType();
694   assert(ValueVT.isVector() && "Not a vector");
695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
696   const bool IsABIRegCopy = CallConv.has_value();
697 
698   if (NumParts == 1) {
699     EVT PartEVT = PartVT;
700     if (PartEVT == ValueVT) {
701       // Nothing to do.
702     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
703       // Bitconvert vector->vector case.
704       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
705     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
706       Val = Widened;
707     } else if (PartVT.isVector() &&
708                PartEVT.getVectorElementType().bitsGE(
709                    ValueVT.getVectorElementType()) &&
710                PartEVT.getVectorElementCount() ==
711                    ValueVT.getVectorElementCount()) {
712 
713       // Promoted vector extract
714       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
715     } else if (PartEVT.isVector() &&
716                PartEVT.getVectorElementType() !=
717                    ValueVT.getVectorElementType() &&
718                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719                    TargetLowering::TypeWidenVector) {
720       // Combination of widening and promotion.
721       EVT WidenVT =
722           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
723                            PartVT.getVectorElementCount());
724       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
725       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
726     } else {
727       // Don't extract an integer from a float vector. This can happen if the
728       // FP type gets softened to integer and then promoted. The promotion
729       // prevents it from being picked up by the earlier bitcast case.
730       if (ValueVT.getVectorElementCount().isScalar() &&
731           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
732         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
733                           DAG.getVectorIdxConstant(0, DL));
734       } else {
735         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
736         assert(PartVT.getFixedSizeInBits() > ValueSize &&
737                "lossy conversion of vector to scalar type");
738         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
739         Val = DAG.getBitcast(IntermediateType, Val);
740         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
741       }
742     }
743 
744     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
745     Parts[0] = Val;
746     return;
747   }
748 
749   // Handle a multi-element vector.
750   EVT IntermediateVT;
751   MVT RegisterVT;
752   unsigned NumIntermediates;
753   unsigned NumRegs;
754   if (IsABIRegCopy) {
755     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
756         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
757         RegisterVT);
758   } else {
759     NumRegs =
760         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
761                                    NumIntermediates, RegisterVT);
762   }
763 
764   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
765   NumParts = NumRegs; // Silence a compiler warning.
766   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
767 
768   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
769          "Mixing scalable and fixed vectors when copying in parts");
770 
771   std::optional<ElementCount> DestEltCnt;
772 
773   if (IntermediateVT.isVector())
774     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
775   else
776     DestEltCnt = ElementCount::getFixed(NumIntermediates);
777 
778   EVT BuiltVectorTy = EVT::getVectorVT(
779       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
780 
781   if (ValueVT == BuiltVectorTy) {
782     // Nothing to do.
783   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
784     // Bitconvert vector->vector case.
785     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
786   } else {
787     if (BuiltVectorTy.getVectorElementType().bitsGT(
788             ValueVT.getVectorElementType())) {
789       // Integer promotion.
790       ValueVT = EVT::getVectorVT(*DAG.getContext(),
791                                  BuiltVectorTy.getVectorElementType(),
792                                  ValueVT.getVectorElementCount());
793       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
794     }
795 
796     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
797       Val = Widened;
798     }
799   }
800 
801   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
802 
803   // Split the vector into intermediate operands.
804   SmallVector<SDValue, 8> Ops(NumIntermediates);
805   for (unsigned i = 0; i != NumIntermediates; ++i) {
806     if (IntermediateVT.isVector()) {
807       // This does something sensible for scalable vectors - see the
808       // definition of EXTRACT_SUBVECTOR for further details.
809       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
810       Ops[i] =
811           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
812                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
813     } else {
814       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
815                            DAG.getVectorIdxConstant(i, DL));
816     }
817   }
818 
819   // Split the intermediate operands into legal parts.
820   if (NumParts == NumIntermediates) {
821     // If the register was not expanded, promote or copy the value,
822     // as appropriate.
823     for (unsigned i = 0; i != NumParts; ++i)
824       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
825   } else if (NumParts > 0) {
826     // If the intermediate type was expanded, split each the value into
827     // legal parts.
828     assert(NumIntermediates != 0 && "division by zero");
829     assert(NumParts % NumIntermediates == 0 &&
830            "Must expand into a divisible number of parts!");
831     unsigned Factor = NumParts / NumIntermediates;
832     for (unsigned i = 0; i != NumIntermediates; ++i)
833       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
834                      CallConv);
835   }
836 }
837 
838 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
839                            EVT valuevt, std::optional<CallingConv::ID> CC)
840     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
841       RegCount(1, regs.size()), CallConv(CC) {}
842 
843 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
844                            const DataLayout &DL, unsigned Reg, Type *Ty,
845                            std::optional<CallingConv::ID> CC) {
846   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
847 
848   CallConv = CC;
849 
850   for (EVT ValueVT : ValueVTs) {
851     unsigned NumRegs =
852         isABIMangled()
853             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
854             : TLI.getNumRegisters(Context, ValueVT);
855     MVT RegisterVT =
856         isABIMangled()
857             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
858             : TLI.getRegisterType(Context, ValueVT);
859     for (unsigned i = 0; i != NumRegs; ++i)
860       Regs.push_back(Reg + i);
861     RegVTs.push_back(RegisterVT);
862     RegCount.push_back(NumRegs);
863     Reg += NumRegs;
864   }
865 }
866 
867 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
868                                       FunctionLoweringInfo &FuncInfo,
869                                       const SDLoc &dl, SDValue &Chain,
870                                       SDValue *Glue, const Value *V) const {
871   // A Value with type {} or [0 x %t] needs no registers.
872   if (ValueVTs.empty())
873     return SDValue();
874 
875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
876 
877   // Assemble the legal parts into the final values.
878   SmallVector<SDValue, 4> Values(ValueVTs.size());
879   SmallVector<SDValue, 8> Parts;
880   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
881     // Copy the legal parts from the registers.
882     EVT ValueVT = ValueVTs[Value];
883     unsigned NumRegs = RegCount[Value];
884     MVT RegisterVT = isABIMangled()
885                          ? TLI.getRegisterTypeForCallingConv(
886                                *DAG.getContext(), *CallConv, RegVTs[Value])
887                          : RegVTs[Value];
888 
889     Parts.resize(NumRegs);
890     for (unsigned i = 0; i != NumRegs; ++i) {
891       SDValue P;
892       if (!Glue) {
893         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
894       } else {
895         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
896         *Glue = P.getValue(2);
897       }
898 
899       Chain = P.getValue(1);
900       Parts[i] = P;
901 
902       // If the source register was virtual and if we know something about it,
903       // add an assert node.
904       if (!Register::isVirtualRegister(Regs[Part + i]) ||
905           !RegisterVT.isInteger())
906         continue;
907 
908       const FunctionLoweringInfo::LiveOutInfo *LOI =
909         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
910       if (!LOI)
911         continue;
912 
913       unsigned RegSize = RegisterVT.getScalarSizeInBits();
914       unsigned NumSignBits = LOI->NumSignBits;
915       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
916 
917       if (NumZeroBits == RegSize) {
918         // The current value is a zero.
919         // Explicitly express that as it would be easier for
920         // optimizations to kick in.
921         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
922         continue;
923       }
924 
925       // FIXME: We capture more information than the dag can represent.  For
926       // now, just use the tightest assertzext/assertsext possible.
927       bool isSExt;
928       EVT FromVT(MVT::Other);
929       if (NumZeroBits) {
930         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
931         isSExt = false;
932       } else if (NumSignBits > 1) {
933         FromVT =
934             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
935         isSExt = true;
936       } else {
937         continue;
938       }
939       // Add an assertion node.
940       assert(FromVT != MVT::Other);
941       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
942                              RegisterVT, P, DAG.getValueType(FromVT));
943     }
944 
945     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
946                                      RegisterVT, ValueVT, V, Chain, CallConv);
947     Part += NumRegs;
948     Parts.clear();
949   }
950 
951   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
952 }
953 
954 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
955                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
956                                  const Value *V,
957                                  ISD::NodeType PreferredExtendType) const {
958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
959   ISD::NodeType ExtendKind = PreferredExtendType;
960 
961   // Get the list of the values's legal parts.
962   unsigned NumRegs = Regs.size();
963   SmallVector<SDValue, 8> Parts(NumRegs);
964   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
965     unsigned NumParts = RegCount[Value];
966 
967     MVT RegisterVT = isABIMangled()
968                          ? TLI.getRegisterTypeForCallingConv(
969                                *DAG.getContext(), *CallConv, RegVTs[Value])
970                          : RegVTs[Value];
971 
972     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
973       ExtendKind = ISD::ZERO_EXTEND;
974 
975     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
976                    NumParts, RegisterVT, V, CallConv, ExtendKind);
977     Part += NumParts;
978   }
979 
980   // Copy the parts into the registers.
981   SmallVector<SDValue, 8> Chains(NumRegs);
982   for (unsigned i = 0; i != NumRegs; ++i) {
983     SDValue Part;
984     if (!Glue) {
985       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
986     } else {
987       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
988       *Glue = Part.getValue(1);
989     }
990 
991     Chains[i] = Part.getValue(0);
992   }
993 
994   if (NumRegs == 1 || Glue)
995     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
996     // flagged to it. That is the CopyToReg nodes and the user are considered
997     // a single scheduling unit. If we create a TokenFactor and return it as
998     // chain, then the TokenFactor is both a predecessor (operand) of the
999     // user as well as a successor (the TF operands are flagged to the user).
1000     // c1, f1 = CopyToReg
1001     // c2, f2 = CopyToReg
1002     // c3     = TokenFactor c1, c2
1003     // ...
1004     //        = op c3, ..., f2
1005     Chain = Chains[NumRegs-1];
1006   else
1007     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1008 }
1009 
1010 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1011                                         unsigned MatchingIdx, const SDLoc &dl,
1012                                         SelectionDAG &DAG,
1013                                         std::vector<SDValue> &Ops) const {
1014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1015 
1016   InlineAsm::Flag Flag(Code, Regs.size());
1017   if (HasMatching)
1018     Flag.setMatchingOp(MatchingIdx);
1019   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1020     // Put the register class of the virtual registers in the flag word.  That
1021     // way, later passes can recompute register class constraints for inline
1022     // assembly as well as normal instructions.
1023     // Don't do this for tied operands that can use the regclass information
1024     // from the def.
1025     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1026     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1027     Flag.setRegClass(RC->getID());
1028   }
1029 
1030   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1031   Ops.push_back(Res);
1032 
1033   if (Code == InlineAsm::Kind::Clobber) {
1034     // Clobbers should always have a 1:1 mapping with registers, and may
1035     // reference registers that have illegal (e.g. vector) types. Hence, we
1036     // shouldn't try to apply any sort of splitting logic to them.
1037     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1038            "No 1:1 mapping from clobbers to regs?");
1039     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1040     (void)SP;
1041     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1042       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1043       assert(
1044           (Regs[I] != SP ||
1045            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1046           "If we clobbered the stack pointer, MFI should know about it.");
1047     }
1048     return;
1049   }
1050 
1051   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1052     MVT RegisterVT = RegVTs[Value];
1053     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1054                                            RegisterVT);
1055     for (unsigned i = 0; i != NumRegs; ++i) {
1056       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1057       unsigned TheReg = Regs[Reg++];
1058       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1059     }
1060   }
1061 }
1062 
1063 SmallVector<std::pair<unsigned, TypeSize>, 4>
1064 RegsForValue::getRegsAndSizes() const {
1065   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1066   unsigned I = 0;
1067   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1068     unsigned RegCount = std::get<0>(CountAndVT);
1069     MVT RegisterVT = std::get<1>(CountAndVT);
1070     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1071     for (unsigned E = I + RegCount; I != E; ++I)
1072       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1073   }
1074   return OutVec;
1075 }
1076 
1077 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1078                                AssumptionCache *ac,
1079                                const TargetLibraryInfo *li) {
1080   AA = aa;
1081   AC = ac;
1082   GFI = gfi;
1083   LibInfo = li;
1084   Context = DAG.getContext();
1085   LPadToCallSiteMap.clear();
1086   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1087   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1088       *DAG.getMachineFunction().getFunction().getParent());
1089 }
1090 
1091 void SelectionDAGBuilder::clear() {
1092   NodeMap.clear();
1093   UnusedArgNodeMap.clear();
1094   PendingLoads.clear();
1095   PendingExports.clear();
1096   PendingConstrainedFP.clear();
1097   PendingConstrainedFPStrict.clear();
1098   CurInst = nullptr;
1099   HasTailCall = false;
1100   SDNodeOrder = LowestSDNodeOrder;
1101   StatepointLowering.clear();
1102 }
1103 
1104 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1105   DanglingDebugInfoMap.clear();
1106 }
1107 
1108 // Update DAG root to include dependencies on Pending chains.
1109 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1110   SDValue Root = DAG.getRoot();
1111 
1112   if (Pending.empty())
1113     return Root;
1114 
1115   // Add current root to PendingChains, unless we already indirectly
1116   // depend on it.
1117   if (Root.getOpcode() != ISD::EntryToken) {
1118     unsigned i = 0, e = Pending.size();
1119     for (; i != e; ++i) {
1120       assert(Pending[i].getNode()->getNumOperands() > 1);
1121       if (Pending[i].getNode()->getOperand(0) == Root)
1122         break;  // Don't add the root if we already indirectly depend on it.
1123     }
1124 
1125     if (i == e)
1126       Pending.push_back(Root);
1127   }
1128 
1129   if (Pending.size() == 1)
1130     Root = Pending[0];
1131   else
1132     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1133 
1134   DAG.setRoot(Root);
1135   Pending.clear();
1136   return Root;
1137 }
1138 
1139 SDValue SelectionDAGBuilder::getMemoryRoot() {
1140   return updateRoot(PendingLoads);
1141 }
1142 
1143 SDValue SelectionDAGBuilder::getRoot() {
1144   // Chain up all pending constrained intrinsics together with all
1145   // pending loads, by simply appending them to PendingLoads and
1146   // then calling getMemoryRoot().
1147   PendingLoads.reserve(PendingLoads.size() +
1148                        PendingConstrainedFP.size() +
1149                        PendingConstrainedFPStrict.size());
1150   PendingLoads.append(PendingConstrainedFP.begin(),
1151                       PendingConstrainedFP.end());
1152   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1153                       PendingConstrainedFPStrict.end());
1154   PendingConstrainedFP.clear();
1155   PendingConstrainedFPStrict.clear();
1156   return getMemoryRoot();
1157 }
1158 
1159 SDValue SelectionDAGBuilder::getControlRoot() {
1160   // We need to emit pending fpexcept.strict constrained intrinsics,
1161   // so append them to the PendingExports list.
1162   PendingExports.append(PendingConstrainedFPStrict.begin(),
1163                         PendingConstrainedFPStrict.end());
1164   PendingConstrainedFPStrict.clear();
1165   return updateRoot(PendingExports);
1166 }
1167 
1168 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1169                                              DILocalVariable *Variable,
1170                                              DIExpression *Expression,
1171                                              DebugLoc DL) {
1172   assert(Variable && "Missing variable");
1173 
1174   // Check if address has undef value.
1175   if (!Address || isa<UndefValue>(Address) ||
1176       (Address->use_empty() && !isa<Argument>(Address))) {
1177     LLVM_DEBUG(
1178         dbgs()
1179         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1180     return;
1181   }
1182 
1183   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1184 
1185   SDValue &N = NodeMap[Address];
1186   if (!N.getNode() && isa<Argument>(Address))
1187     // Check unused arguments map.
1188     N = UnusedArgNodeMap[Address];
1189   SDDbgValue *SDV;
1190   if (N.getNode()) {
1191     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1192       Address = BCI->getOperand(0);
1193     // Parameters are handled specially.
1194     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1195     if (IsParameter && FINode) {
1196       // Byval parameter. We have a frame index at this point.
1197       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1198                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1199     } else if (isa<Argument>(Address)) {
1200       // Address is an argument, so try to emit its dbg value using
1201       // virtual register info from the FuncInfo.ValueMap.
1202       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1203                                FuncArgumentDbgValueKind::Declare, N);
1204       return;
1205     } else {
1206       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1207                             true, DL, SDNodeOrder);
1208     }
1209     DAG.AddDbgValue(SDV, IsParameter);
1210   } else {
1211     // If Address is an argument then try to emit its dbg value using
1212     // virtual register info from the FuncInfo.ValueMap.
1213     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1214                                   FuncArgumentDbgValueKind::Declare, N)) {
1215       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1216                         << " (could not emit func-arg dbg_value)\n");
1217     }
1218   }
1219   return;
1220 }
1221 
1222 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1223   // Add SDDbgValue nodes for any var locs here. Do so before updating
1224   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1225   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1226     // Add SDDbgValue nodes for any var locs here. Do so before updating
1227     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1228     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1229          It != End; ++It) {
1230       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1231       dropDanglingDebugInfo(Var, It->Expr);
1232       if (It->Values.isKillLocation(It->Expr)) {
1233         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1234         continue;
1235       }
1236       SmallVector<Value *> Values(It->Values.location_ops());
1237       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1238                             It->Values.hasArgList())) {
1239         SmallVector<Value *, 4> Vals;
1240         for (Value *V : It->Values.location_ops())
1241           Vals.push_back(V);
1242         addDanglingDebugInfo(Vals,
1243                              FnVarLocs->getDILocalVariable(It->VariableID),
1244                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1245       }
1246     }
1247   }
1248 
1249   // We must skip DbgVariableRecords if they've already been processed above as
1250   // we have just emitted the debug values resulting from assignment tracking
1251   // analysis, making any existing DbgVariableRecords redundant (and probably
1252   // less correct). We still need to process DbgLabelRecords. This does sink
1253   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1254   // be important as it does so deterministcally and ordering between
1255   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1256   // printing).
1257   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1258   // Is there is any debug-info attached to this instruction, in the form of
1259   // DbgRecord non-instruction debug-info records.
1260   for (DbgRecord &DR : I.getDbgRecordRange()) {
1261     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1262       assert(DLR->getLabel() && "Missing label");
1263       SDDbgLabel *SDV =
1264           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1265       DAG.AddDbgLabel(SDV);
1266       continue;
1267     }
1268 
1269     if (SkipDbgVariableRecords)
1270       continue;
1271     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1272     DILocalVariable *Variable = DVR.getVariable();
1273     DIExpression *Expression = DVR.getExpression();
1274     dropDanglingDebugInfo(Variable, Expression);
1275 
1276     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1277       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1278         continue;
1279       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1280                         << "\n");
1281       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1282                          DVR.getDebugLoc());
1283       continue;
1284     }
1285 
1286     // A DbgVariableRecord with no locations is a kill location.
1287     SmallVector<Value *, 4> Values(DVR.location_ops());
1288     if (Values.empty()) {
1289       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1290                            SDNodeOrder);
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with an undef or absent location is also a kill
1295     // location.
1296     if (llvm::any_of(Values,
1297                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1298       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1299                            SDNodeOrder);
1300       continue;
1301     }
1302 
1303     bool IsVariadic = DVR.hasArgList();
1304     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1305                           SDNodeOrder, IsVariadic)) {
1306       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1307                            DVR.getDebugLoc(), SDNodeOrder);
1308     }
1309   }
1310 }
1311 
1312 void SelectionDAGBuilder::visit(const Instruction &I) {
1313   visitDbgInfo(I);
1314 
1315   // Set up outgoing PHI node register values before emitting the terminator.
1316   if (I.isTerminator()) {
1317     HandlePHINodesInSuccessorBlocks(I.getParent());
1318   }
1319 
1320   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1321   if (!isa<DbgInfoIntrinsic>(I))
1322     ++SDNodeOrder;
1323 
1324   CurInst = &I;
1325 
1326   // Set inserted listener only if required.
1327   bool NodeInserted = false;
1328   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1329   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1330   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1331   if (PCSectionsMD || MMRA) {
1332     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1333         DAG, [&](SDNode *) { NodeInserted = true; });
1334   }
1335 
1336   visit(I.getOpcode(), I);
1337 
1338   if (!I.isTerminator() && !HasTailCall &&
1339       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1340     CopyToExportRegsIfNeeded(&I);
1341 
1342   // Handle metadata.
1343   if (PCSectionsMD || MMRA) {
1344     auto It = NodeMap.find(&I);
1345     if (It != NodeMap.end()) {
1346       if (PCSectionsMD)
1347         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1348       if (MMRA)
1349         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1350     } else if (NodeInserted) {
1351       // This should not happen; if it does, don't let it go unnoticed so we can
1352       // fix it. Relevant visit*() function is probably missing a setValue().
1353       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1354              << I.getModule()->getName() << "]\n";
1355       LLVM_DEBUG(I.dump());
1356       assert(false);
1357     }
1358   }
1359 
1360   CurInst = nullptr;
1361 }
1362 
1363 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1364   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1365 }
1366 
1367 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1368   // Note: this doesn't use InstVisitor, because it has to work with
1369   // ConstantExpr's in addition to instructions.
1370   switch (Opcode) {
1371   default: llvm_unreachable("Unknown instruction type encountered!");
1372     // Build the switch statement using the Instruction.def file.
1373 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1374     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1375 #include "llvm/IR/Instruction.def"
1376   }
1377 }
1378 
1379 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1380                                             DILocalVariable *Variable,
1381                                             DebugLoc DL, unsigned Order,
1382                                             SmallVectorImpl<Value *> &Values,
1383                                             DIExpression *Expression) {
1384   // For variadic dbg_values we will now insert an undef.
1385   // FIXME: We can potentially recover these!
1386   SmallVector<SDDbgOperand, 2> Locs;
1387   for (const Value *V : Values) {
1388     auto *Undef = UndefValue::get(V->getType());
1389     Locs.push_back(SDDbgOperand::fromConst(Undef));
1390   }
1391   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1392                                         /*IsIndirect=*/false, DL, Order,
1393                                         /*IsVariadic=*/true);
1394   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1395   return true;
1396 }
1397 
1398 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1399                                                DILocalVariable *Var,
1400                                                DIExpression *Expr,
1401                                                bool IsVariadic, DebugLoc DL,
1402                                                unsigned Order) {
1403   if (IsVariadic) {
1404     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1405     return;
1406   }
1407   // TODO: Dangling debug info will eventually either be resolved or produce
1408   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1409   // between the original dbg.value location and its resolved DBG_VALUE,
1410   // which we should ideally fill with an extra Undef DBG_VALUE.
1411   assert(Values.size() == 1);
1412   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1413 }
1414 
1415 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1416                                                 const DIExpression *Expr) {
1417   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1418     DIVariable *DanglingVariable = DDI.getVariable();
1419     DIExpression *DanglingExpr = DDI.getExpression();
1420     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1421       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1422                         << printDDI(nullptr, DDI) << "\n");
1423       return true;
1424     }
1425     return false;
1426   };
1427 
1428   for (auto &DDIMI : DanglingDebugInfoMap) {
1429     DanglingDebugInfoVector &DDIV = DDIMI.second;
1430 
1431     // If debug info is to be dropped, run it through final checks to see
1432     // whether it can be salvaged.
1433     for (auto &DDI : DDIV)
1434       if (isMatchingDbgValue(DDI))
1435         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1436 
1437     erase_if(DDIV, isMatchingDbgValue);
1438   }
1439 }
1440 
1441 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1442 // generate the debug data structures now that we've seen its definition.
1443 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1444                                                    SDValue Val) {
1445   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1446   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1447     return;
1448 
1449   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1450   for (auto &DDI : DDIV) {
1451     DebugLoc DL = DDI.getDebugLoc();
1452     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1453     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1454     DILocalVariable *Variable = DDI.getVariable();
1455     DIExpression *Expr = DDI.getExpression();
1456     assert(Variable->isValidLocationForIntrinsic(DL) &&
1457            "Expected inlined-at fields to agree");
1458     SDDbgValue *SDV;
1459     if (Val.getNode()) {
1460       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1461       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1462       // we couldn't resolve it directly when examining the DbgValue intrinsic
1463       // in the first place we should not be more successful here). Unless we
1464       // have some test case that prove this to be correct we should avoid
1465       // calling EmitFuncArgumentDbgValue here.
1466       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1467                                     FuncArgumentDbgValueKind::Value, Val)) {
1468         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1469                           << printDDI(V, DDI) << "\n");
1470         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1471         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1472         // inserted after the definition of Val when emitting the instructions
1473         // after ISel. An alternative could be to teach
1474         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1475         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1476                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1477                    << ValSDNodeOrder << "\n");
1478         SDV = getDbgValue(Val, Variable, Expr, DL,
1479                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1480         DAG.AddDbgValue(SDV, false);
1481       } else
1482         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1483                           << printDDI(V, DDI)
1484                           << " in EmitFuncArgumentDbgValue\n");
1485     } else {
1486       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1487                         << "\n");
1488       auto Undef = UndefValue::get(V->getType());
1489       auto SDV =
1490           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1491       DAG.AddDbgValue(SDV, false);
1492     }
1493   }
1494   DDIV.clear();
1495 }
1496 
1497 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1498                                                     DanglingDebugInfo &DDI) {
1499   // TODO: For the variadic implementation, instead of only checking the fail
1500   // state of `handleDebugValue`, we need know specifically which values were
1501   // invalid, so that we attempt to salvage only those values when processing
1502   // a DIArgList.
1503   const Value *OrigV = V;
1504   DILocalVariable *Var = DDI.getVariable();
1505   DIExpression *Expr = DDI.getExpression();
1506   DebugLoc DL = DDI.getDebugLoc();
1507   unsigned SDOrder = DDI.getSDNodeOrder();
1508 
1509   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1510   // that DW_OP_stack_value is desired.
1511   bool StackValue = true;
1512 
1513   // Can this Value can be encoded without any further work?
1514   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1515     return;
1516 
1517   // Attempt to salvage back through as many instructions as possible. Bail if
1518   // a non-instruction is seen, such as a constant expression or global
1519   // variable. FIXME: Further work could recover those too.
1520   while (isa<Instruction>(V)) {
1521     const Instruction &VAsInst = *cast<const Instruction>(V);
1522     // Temporary "0", awaiting real implementation.
1523     SmallVector<uint64_t, 16> Ops;
1524     SmallVector<Value *, 4> AdditionalValues;
1525     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1526                              Expr->getNumLocationOperands(), Ops,
1527                              AdditionalValues);
1528     // If we cannot salvage any further, and haven't yet found a suitable debug
1529     // expression, bail out.
1530     if (!V)
1531       break;
1532 
1533     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1534     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1535     // here for variadic dbg_values, remove that condition.
1536     if (!AdditionalValues.empty())
1537       break;
1538 
1539     // New value and expr now represent this debuginfo.
1540     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1541 
1542     // Some kind of simplification occurred: check whether the operand of the
1543     // salvaged debug expression can be encoded in this DAG.
1544     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1545       LLVM_DEBUG(
1546           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1547                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1548       return;
1549     }
1550   }
1551 
1552   // This was the final opportunity to salvage this debug information, and it
1553   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1554   // any earlier variable location.
1555   assert(OrigV && "V shouldn't be null");
1556   auto *Undef = UndefValue::get(OrigV->getType());
1557   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1558   DAG.AddDbgValue(SDV, false);
1559   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1560                     << printDDI(OrigV, DDI) << "\n");
1561 }
1562 
1563 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1564                                                DIExpression *Expr,
1565                                                DebugLoc DbgLoc,
1566                                                unsigned Order) {
1567   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1568   DIExpression *NewExpr =
1569       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1570   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1571                    /*IsVariadic*/ false);
1572 }
1573 
1574 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1575                                            DILocalVariable *Var,
1576                                            DIExpression *Expr, DebugLoc DbgLoc,
1577                                            unsigned Order, bool IsVariadic) {
1578   if (Values.empty())
1579     return true;
1580 
1581   // Filter EntryValue locations out early.
1582   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1583     return true;
1584 
1585   SmallVector<SDDbgOperand> LocationOps;
1586   SmallVector<SDNode *> Dependencies;
1587   for (const Value *V : Values) {
1588     // Constant value.
1589     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1590         isa<ConstantPointerNull>(V)) {
1591       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1592       continue;
1593     }
1594 
1595     // Look through IntToPtr constants.
1596     if (auto *CE = dyn_cast<ConstantExpr>(V))
1597       if (CE->getOpcode() == Instruction::IntToPtr) {
1598         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1599         continue;
1600       }
1601 
1602     // If the Value is a frame index, we can create a FrameIndex debug value
1603     // without relying on the DAG at all.
1604     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1605       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1606       if (SI != FuncInfo.StaticAllocaMap.end()) {
1607         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1608         continue;
1609       }
1610     }
1611 
1612     // Do not use getValue() in here; we don't want to generate code at
1613     // this point if it hasn't been done yet.
1614     SDValue N = NodeMap[V];
1615     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1616       N = UnusedArgNodeMap[V];
1617     if (N.getNode()) {
1618       // Only emit func arg dbg value for non-variadic dbg.values for now.
1619       if (!IsVariadic &&
1620           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1621                                    FuncArgumentDbgValueKind::Value, N))
1622         return true;
1623       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1624         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1625         // describe stack slot locations.
1626         //
1627         // Consider "int x = 0; int *px = &x;". There are two kinds of
1628         // interesting debug values here after optimization:
1629         //
1630         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1631         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1632         //
1633         // Both describe the direct values of their associated variables.
1634         Dependencies.push_back(N.getNode());
1635         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1636         continue;
1637       }
1638       LocationOps.emplace_back(
1639           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1640       continue;
1641     }
1642 
1643     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1644     // Special rules apply for the first dbg.values of parameter variables in a
1645     // function. Identify them by the fact they reference Argument Values, that
1646     // they're parameters, and they are parameters of the current function. We
1647     // need to let them dangle until they get an SDNode.
1648     bool IsParamOfFunc =
1649         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1650     if (IsParamOfFunc)
1651       return false;
1652 
1653     // The value is not used in this block yet (or it would have an SDNode).
1654     // We still want the value to appear for the user if possible -- if it has
1655     // an associated VReg, we can refer to that instead.
1656     auto VMI = FuncInfo.ValueMap.find(V);
1657     if (VMI != FuncInfo.ValueMap.end()) {
1658       unsigned Reg = VMI->second;
1659       // If this is a PHI node, it may be split up into several MI PHI nodes
1660       // (in FunctionLoweringInfo::set).
1661       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1662                        V->getType(), std::nullopt);
1663       if (RFV.occupiesMultipleRegs()) {
1664         // FIXME: We could potentially support variadic dbg_values here.
1665         if (IsVariadic)
1666           return false;
1667         unsigned Offset = 0;
1668         unsigned BitsToDescribe = 0;
1669         if (auto VarSize = Var->getSizeInBits())
1670           BitsToDescribe = *VarSize;
1671         if (auto Fragment = Expr->getFragmentInfo())
1672           BitsToDescribe = Fragment->SizeInBits;
1673         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1674           // Bail out if all bits are described already.
1675           if (Offset >= BitsToDescribe)
1676             break;
1677           // TODO: handle scalable vectors.
1678           unsigned RegisterSize = RegAndSize.second;
1679           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1680                                       ? BitsToDescribe - Offset
1681                                       : RegisterSize;
1682           auto FragmentExpr = DIExpression::createFragmentExpression(
1683               Expr, Offset, FragmentSize);
1684           if (!FragmentExpr)
1685             continue;
1686           SDDbgValue *SDV = DAG.getVRegDbgValue(
1687               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1688           DAG.AddDbgValue(SDV, false);
1689           Offset += RegisterSize;
1690         }
1691         return true;
1692       }
1693       // We can use simple vreg locations for variadic dbg_values as well.
1694       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1695       continue;
1696     }
1697     // We failed to create a SDDbgOperand for V.
1698     return false;
1699   }
1700 
1701   // We have created a SDDbgOperand for each Value in Values.
1702   // Should use Order instead of SDNodeOrder?
1703   assert(!LocationOps.empty());
1704   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1705                                         /*IsIndirect=*/false, DbgLoc,
1706                                         SDNodeOrder, IsVariadic);
1707   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1708   return true;
1709 }
1710 
1711 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1712   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1713   for (auto &Pair : DanglingDebugInfoMap)
1714     for (auto &DDI : Pair.second)
1715       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1716   clearDanglingDebugInfo();
1717 }
1718 
1719 /// getCopyFromRegs - If there was virtual register allocated for the value V
1720 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1721 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1722   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1723   SDValue Result;
1724 
1725   if (It != FuncInfo.ValueMap.end()) {
1726     Register InReg = It->second;
1727 
1728     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1729                      DAG.getDataLayout(), InReg, Ty,
1730                      std::nullopt); // This is not an ABI copy.
1731     SDValue Chain = DAG.getEntryNode();
1732     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1733                                  V);
1734     resolveDanglingDebugInfo(V, Result);
1735   }
1736 
1737   return Result;
1738 }
1739 
1740 /// getValue - Return an SDValue for the given Value.
1741 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1742   // If we already have an SDValue for this value, use it. It's important
1743   // to do this first, so that we don't create a CopyFromReg if we already
1744   // have a regular SDValue.
1745   SDValue &N = NodeMap[V];
1746   if (N.getNode()) return N;
1747 
1748   // If there's a virtual register allocated and initialized for this
1749   // value, use it.
1750   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1751     return copyFromReg;
1752 
1753   // Otherwise create a new SDValue and remember it.
1754   SDValue Val = getValueImpl(V);
1755   NodeMap[V] = Val;
1756   resolveDanglingDebugInfo(V, Val);
1757   return Val;
1758 }
1759 
1760 /// getNonRegisterValue - Return an SDValue for the given Value, but
1761 /// don't look in FuncInfo.ValueMap for a virtual register.
1762 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1763   // If we already have an SDValue for this value, use it.
1764   SDValue &N = NodeMap[V];
1765   if (N.getNode()) {
1766     if (isIntOrFPConstant(N)) {
1767       // Remove the debug location from the node as the node is about to be used
1768       // in a location which may differ from the original debug location.  This
1769       // is relevant to Constant and ConstantFP nodes because they can appear
1770       // as constant expressions inside PHI nodes.
1771       N->setDebugLoc(DebugLoc());
1772     }
1773     return N;
1774   }
1775 
1776   // Otherwise create a new SDValue and remember it.
1777   SDValue Val = getValueImpl(V);
1778   NodeMap[V] = Val;
1779   resolveDanglingDebugInfo(V, Val);
1780   return Val;
1781 }
1782 
1783 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1784 /// Create an SDValue for the given value.
1785 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1787 
1788   if (const Constant *C = dyn_cast<Constant>(V)) {
1789     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1790 
1791     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1792       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1793 
1794     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1795       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1796 
1797     if (isa<ConstantPointerNull>(C)) {
1798       unsigned AS = V->getType()->getPointerAddressSpace();
1799       return DAG.getConstant(0, getCurSDLoc(),
1800                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1801     }
1802 
1803     if (match(C, m_VScale()))
1804       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1805 
1806     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1807       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1808 
1809     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1810       return DAG.getUNDEF(VT);
1811 
1812     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1813       visit(CE->getOpcode(), *CE);
1814       SDValue N1 = NodeMap[V];
1815       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1816       return N1;
1817     }
1818 
1819     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1820       SmallVector<SDValue, 4> Constants;
1821       for (const Use &U : C->operands()) {
1822         SDNode *Val = getValue(U).getNode();
1823         // If the operand is an empty aggregate, there are no values.
1824         if (!Val) continue;
1825         // Add each leaf value from the operand to the Constants list
1826         // to form a flattened list of all the values.
1827         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1828           Constants.push_back(SDValue(Val, i));
1829       }
1830 
1831       return DAG.getMergeValues(Constants, getCurSDLoc());
1832     }
1833 
1834     if (const ConstantDataSequential *CDS =
1835           dyn_cast<ConstantDataSequential>(C)) {
1836       SmallVector<SDValue, 4> Ops;
1837       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1838         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1839         // Add each leaf value from the operand to the Constants list
1840         // to form a flattened list of all the values.
1841         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1842           Ops.push_back(SDValue(Val, i));
1843       }
1844 
1845       if (isa<ArrayType>(CDS->getType()))
1846         return DAG.getMergeValues(Ops, getCurSDLoc());
1847       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1848     }
1849 
1850     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1851       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1852              "Unknown struct or array constant!");
1853 
1854       SmallVector<EVT, 4> ValueVTs;
1855       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1856       unsigned NumElts = ValueVTs.size();
1857       if (NumElts == 0)
1858         return SDValue(); // empty struct
1859       SmallVector<SDValue, 4> Constants(NumElts);
1860       for (unsigned i = 0; i != NumElts; ++i) {
1861         EVT EltVT = ValueVTs[i];
1862         if (isa<UndefValue>(C))
1863           Constants[i] = DAG.getUNDEF(EltVT);
1864         else if (EltVT.isFloatingPoint())
1865           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1866         else
1867           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1868       }
1869 
1870       return DAG.getMergeValues(Constants, getCurSDLoc());
1871     }
1872 
1873     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1874       return DAG.getBlockAddress(BA, VT);
1875 
1876     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1877       return getValue(Equiv->getGlobalValue());
1878 
1879     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1880       return getValue(NC->getGlobalValue());
1881 
1882     if (VT == MVT::aarch64svcount) {
1883       assert(C->isNullValue() && "Can only zero this target type!");
1884       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1885                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1886     }
1887 
1888     VectorType *VecTy = cast<VectorType>(V->getType());
1889 
1890     // Now that we know the number and type of the elements, get that number of
1891     // elements into the Ops array based on what kind of constant it is.
1892     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1893       SmallVector<SDValue, 16> Ops;
1894       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1895       for (unsigned i = 0; i != NumElements; ++i)
1896         Ops.push_back(getValue(CV->getOperand(i)));
1897 
1898       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1899     }
1900 
1901     if (isa<ConstantAggregateZero>(C)) {
1902       EVT EltVT =
1903           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1904 
1905       SDValue Op;
1906       if (EltVT.isFloatingPoint())
1907         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1908       else
1909         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1910 
1911       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1912     }
1913 
1914     llvm_unreachable("Unknown vector constant");
1915   }
1916 
1917   // If this is a static alloca, generate it as the frameindex instead of
1918   // computation.
1919   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1920     DenseMap<const AllocaInst*, int>::iterator SI =
1921       FuncInfo.StaticAllocaMap.find(AI);
1922     if (SI != FuncInfo.StaticAllocaMap.end())
1923       return DAG.getFrameIndex(
1924           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1925   }
1926 
1927   // If this is an instruction which fast-isel has deferred, select it now.
1928   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1929     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1930 
1931     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1932                      Inst->getType(), std::nullopt);
1933     SDValue Chain = DAG.getEntryNode();
1934     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1935   }
1936 
1937   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1938     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1939 
1940   if (const auto *BB = dyn_cast<BasicBlock>(V))
1941     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1942 
1943   llvm_unreachable("Can't get register for value!");
1944 }
1945 
1946 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1947   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1948   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1949   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1950   bool IsSEH = isAsynchronousEHPersonality(Pers);
1951   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1952   if (!IsSEH)
1953     CatchPadMBB->setIsEHScopeEntry();
1954   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1955   if (IsMSVCCXX || IsCoreCLR)
1956     CatchPadMBB->setIsEHFuncletEntry();
1957 }
1958 
1959 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1960   // Update machine-CFG edge.
1961   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1962   FuncInfo.MBB->addSuccessor(TargetMBB);
1963   TargetMBB->setIsEHCatchretTarget(true);
1964   DAG.getMachineFunction().setHasEHCatchret(true);
1965 
1966   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1967   bool IsSEH = isAsynchronousEHPersonality(Pers);
1968   if (IsSEH) {
1969     // If this is not a fall-through branch or optimizations are switched off,
1970     // emit the branch.
1971     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1972         TM.getOptLevel() == CodeGenOptLevel::None)
1973       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1974                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1975     return;
1976   }
1977 
1978   // Figure out the funclet membership for the catchret's successor.
1979   // This will be used by the FuncletLayout pass to determine how to order the
1980   // BB's.
1981   // A 'catchret' returns to the outer scope's color.
1982   Value *ParentPad = I.getCatchSwitchParentPad();
1983   const BasicBlock *SuccessorColor;
1984   if (isa<ConstantTokenNone>(ParentPad))
1985     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1986   else
1987     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1988   assert(SuccessorColor && "No parent funclet for catchret!");
1989   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1990   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1991 
1992   // Create the terminator node.
1993   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1994                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1995                             DAG.getBasicBlock(SuccessorColorMBB));
1996   DAG.setRoot(Ret);
1997 }
1998 
1999 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2000   // Don't emit any special code for the cleanuppad instruction. It just marks
2001   // the start of an EH scope/funclet.
2002   FuncInfo.MBB->setIsEHScopeEntry();
2003   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2004   if (Pers != EHPersonality::Wasm_CXX) {
2005     FuncInfo.MBB->setIsEHFuncletEntry();
2006     FuncInfo.MBB->setIsCleanupFuncletEntry();
2007   }
2008 }
2009 
2010 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2011 // not match, it is OK to add only the first unwind destination catchpad to the
2012 // successors, because there will be at least one invoke instruction within the
2013 // catch scope that points to the next unwind destination, if one exists, so
2014 // CFGSort cannot mess up with BB sorting order.
2015 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2016 // call within them, and catchpads only consisting of 'catch (...)' have a
2017 // '__cxa_end_catch' call within them, both of which generate invokes in case
2018 // the next unwind destination exists, i.e., the next unwind destination is not
2019 // the caller.)
2020 //
2021 // Having at most one EH pad successor is also simpler and helps later
2022 // transformations.
2023 //
2024 // For example,
2025 // current:
2026 //   invoke void @foo to ... unwind label %catch.dispatch
2027 // catch.dispatch:
2028 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2029 // catch.start:
2030 //   ...
2031 //   ... in this BB or some other child BB dominated by this BB there will be an
2032 //   invoke that points to 'next' BB as an unwind destination
2033 //
2034 // next: ; We don't need to add this to 'current' BB's successor
2035 //   ...
2036 static void findWasmUnwindDestinations(
2037     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2038     BranchProbability Prob,
2039     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2040         &UnwindDests) {
2041   while (EHPadBB) {
2042     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2043     if (isa<CleanupPadInst>(Pad)) {
2044       // Stop on cleanup pads.
2045       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2046       UnwindDests.back().first->setIsEHScopeEntry();
2047       break;
2048     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2049       // Add the catchpad handlers to the possible destinations. We don't
2050       // continue to the unwind destination of the catchswitch for wasm.
2051       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2052         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2053         UnwindDests.back().first->setIsEHScopeEntry();
2054       }
2055       break;
2056     } else {
2057       continue;
2058     }
2059   }
2060 }
2061 
2062 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2063 /// many places it could ultimately go. In the IR, we have a single unwind
2064 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2065 /// This function skips over imaginary basic blocks that hold catchswitch
2066 /// instructions, and finds all the "real" machine
2067 /// basic block destinations. As those destinations may not be successors of
2068 /// EHPadBB, here we also calculate the edge probability to those destinations.
2069 /// The passed-in Prob is the edge probability to EHPadBB.
2070 static void findUnwindDestinations(
2071     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2072     BranchProbability Prob,
2073     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2074         &UnwindDests) {
2075   EHPersonality Personality =
2076     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2077   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2078   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2079   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2080   bool IsSEH = isAsynchronousEHPersonality(Personality);
2081 
2082   if (IsWasmCXX) {
2083     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2084     assert(UnwindDests.size() <= 1 &&
2085            "There should be at most one unwind destination for wasm");
2086     return;
2087   }
2088 
2089   while (EHPadBB) {
2090     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2091     BasicBlock *NewEHPadBB = nullptr;
2092     if (isa<LandingPadInst>(Pad)) {
2093       // Stop on landingpads. They are not funclets.
2094       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2095       break;
2096     } else if (isa<CleanupPadInst>(Pad)) {
2097       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2098       // personalities.
2099       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2100       UnwindDests.back().first->setIsEHScopeEntry();
2101       UnwindDests.back().first->setIsEHFuncletEntry();
2102       break;
2103     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2104       // Add the catchpad handlers to the possible destinations.
2105       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2106         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2107         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2108         if (IsMSVCCXX || IsCoreCLR)
2109           UnwindDests.back().first->setIsEHFuncletEntry();
2110         if (!IsSEH)
2111           UnwindDests.back().first->setIsEHScopeEntry();
2112       }
2113       NewEHPadBB = CatchSwitch->getUnwindDest();
2114     } else {
2115       continue;
2116     }
2117 
2118     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2119     if (BPI && NewEHPadBB)
2120       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2121     EHPadBB = NewEHPadBB;
2122   }
2123 }
2124 
2125 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2126   // Update successor info.
2127   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2128   auto UnwindDest = I.getUnwindDest();
2129   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2130   BranchProbability UnwindDestProb =
2131       (BPI && UnwindDest)
2132           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2133           : BranchProbability::getZero();
2134   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2135   for (auto &UnwindDest : UnwindDests) {
2136     UnwindDest.first->setIsEHPad();
2137     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2138   }
2139   FuncInfo.MBB->normalizeSuccProbs();
2140 
2141   // Create the terminator node.
2142   SDValue Ret =
2143       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2144   DAG.setRoot(Ret);
2145 }
2146 
2147 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2148   report_fatal_error("visitCatchSwitch not yet implemented!");
2149 }
2150 
2151 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2153   auto &DL = DAG.getDataLayout();
2154   SDValue Chain = getControlRoot();
2155   SmallVector<ISD::OutputArg, 8> Outs;
2156   SmallVector<SDValue, 8> OutVals;
2157 
2158   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2159   // lower
2160   //
2161   //   %val = call <ty> @llvm.experimental.deoptimize()
2162   //   ret <ty> %val
2163   //
2164   // differently.
2165   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2166     LowerDeoptimizingReturn();
2167     return;
2168   }
2169 
2170   if (!FuncInfo.CanLowerReturn) {
2171     unsigned DemoteReg = FuncInfo.DemoteRegister;
2172     const Function *F = I.getParent()->getParent();
2173 
2174     // Emit a store of the return value through the virtual register.
2175     // Leave Outs empty so that LowerReturn won't try to load return
2176     // registers the usual way.
2177     SmallVector<EVT, 1> PtrValueVTs;
2178     ComputeValueVTs(TLI, DL,
2179                     PointerType::get(F->getContext(),
2180                                      DAG.getDataLayout().getAllocaAddrSpace()),
2181                     PtrValueVTs);
2182 
2183     SDValue RetPtr =
2184         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2185     SDValue RetOp = getValue(I.getOperand(0));
2186 
2187     SmallVector<EVT, 4> ValueVTs, MemVTs;
2188     SmallVector<uint64_t, 4> Offsets;
2189     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2190                     &Offsets, 0);
2191     unsigned NumValues = ValueVTs.size();
2192 
2193     SmallVector<SDValue, 4> Chains(NumValues);
2194     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2195     for (unsigned i = 0; i != NumValues; ++i) {
2196       // An aggregate return value cannot wrap around the address space, so
2197       // offsets to its parts don't wrap either.
2198       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2199                                            TypeSize::getFixed(Offsets[i]));
2200 
2201       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2202       if (MemVTs[i] != ValueVTs[i])
2203         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2204       Chains[i] = DAG.getStore(
2205           Chain, getCurSDLoc(), Val,
2206           // FIXME: better loc info would be nice.
2207           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2208           commonAlignment(BaseAlign, Offsets[i]));
2209     }
2210 
2211     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2212                         MVT::Other, Chains);
2213   } else if (I.getNumOperands() != 0) {
2214     SmallVector<EVT, 4> ValueVTs;
2215     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2216     unsigned NumValues = ValueVTs.size();
2217     if (NumValues) {
2218       SDValue RetOp = getValue(I.getOperand(0));
2219 
2220       const Function *F = I.getParent()->getParent();
2221 
2222       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2223           I.getOperand(0)->getType(), F->getCallingConv(),
2224           /*IsVarArg*/ false, DL);
2225 
2226       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2227       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2228         ExtendKind = ISD::SIGN_EXTEND;
2229       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2230         ExtendKind = ISD::ZERO_EXTEND;
2231 
2232       LLVMContext &Context = F->getContext();
2233       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2234 
2235       for (unsigned j = 0; j != NumValues; ++j) {
2236         EVT VT = ValueVTs[j];
2237 
2238         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2239           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2240 
2241         CallingConv::ID CC = F->getCallingConv();
2242 
2243         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2244         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2245         SmallVector<SDValue, 4> Parts(NumParts);
2246         getCopyToParts(DAG, getCurSDLoc(),
2247                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2248                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2249 
2250         // 'inreg' on function refers to return value
2251         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2252         if (RetInReg)
2253           Flags.setInReg();
2254 
2255         if (I.getOperand(0)->getType()->isPointerTy()) {
2256           Flags.setPointer();
2257           Flags.setPointerAddrSpace(
2258               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2259         }
2260 
2261         if (NeedsRegBlock) {
2262           Flags.setInConsecutiveRegs();
2263           if (j == NumValues - 1)
2264             Flags.setInConsecutiveRegsLast();
2265         }
2266 
2267         // Propagate extension type if any
2268         if (ExtendKind == ISD::SIGN_EXTEND)
2269           Flags.setSExt();
2270         else if (ExtendKind == ISD::ZERO_EXTEND)
2271           Flags.setZExt();
2272 
2273         for (unsigned i = 0; i < NumParts; ++i) {
2274           Outs.push_back(ISD::OutputArg(Flags,
2275                                         Parts[i].getValueType().getSimpleVT(),
2276                                         VT, /*isfixed=*/true, 0, 0));
2277           OutVals.push_back(Parts[i]);
2278         }
2279       }
2280     }
2281   }
2282 
2283   // Push in swifterror virtual register as the last element of Outs. This makes
2284   // sure swifterror virtual register will be returned in the swifterror
2285   // physical register.
2286   const Function *F = I.getParent()->getParent();
2287   if (TLI.supportSwiftError() &&
2288       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2289     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2290     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2291     Flags.setSwiftError();
2292     Outs.push_back(ISD::OutputArg(
2293         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2294         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2295     // Create SDNode for the swifterror virtual register.
2296     OutVals.push_back(
2297         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2298                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2299                         EVT(TLI.getPointerTy(DL))));
2300   }
2301 
2302   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2303   CallingConv::ID CallConv =
2304     DAG.getMachineFunction().getFunction().getCallingConv();
2305   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2306       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2307 
2308   // Verify that the target's LowerReturn behaved as expected.
2309   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2310          "LowerReturn didn't return a valid chain!");
2311 
2312   // Update the DAG with the new chain value resulting from return lowering.
2313   DAG.setRoot(Chain);
2314 }
2315 
2316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2317 /// created for it, emit nodes to copy the value into the virtual
2318 /// registers.
2319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2320   // Skip empty types
2321   if (V->getType()->isEmptyTy())
2322     return;
2323 
2324   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2325   if (VMI != FuncInfo.ValueMap.end()) {
2326     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2327            "Unused value assigned virtual registers!");
2328     CopyValueToVirtualRegister(V, VMI->second);
2329   }
2330 }
2331 
2332 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2333 /// the current basic block, add it to ValueMap now so that we'll get a
2334 /// CopyTo/FromReg.
2335 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2336   // No need to export constants.
2337   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2338 
2339   // Already exported?
2340   if (FuncInfo.isExportedInst(V)) return;
2341 
2342   Register Reg = FuncInfo.InitializeRegForValue(V);
2343   CopyValueToVirtualRegister(V, Reg);
2344 }
2345 
2346 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2347                                                      const BasicBlock *FromBB) {
2348   // The operands of the setcc have to be in this block.  We don't know
2349   // how to export them from some other block.
2350   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2351     // Can export from current BB.
2352     if (VI->getParent() == FromBB)
2353       return true;
2354 
2355     // Is already exported, noop.
2356     return FuncInfo.isExportedInst(V);
2357   }
2358 
2359   // If this is an argument, we can export it if the BB is the entry block or
2360   // if it is already exported.
2361   if (isa<Argument>(V)) {
2362     if (FromBB->isEntryBlock())
2363       return true;
2364 
2365     // Otherwise, can only export this if it is already exported.
2366     return FuncInfo.isExportedInst(V);
2367   }
2368 
2369   // Otherwise, constants can always be exported.
2370   return true;
2371 }
2372 
2373 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2374 BranchProbability
2375 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2376                                         const MachineBasicBlock *Dst) const {
2377   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2378   const BasicBlock *SrcBB = Src->getBasicBlock();
2379   const BasicBlock *DstBB = Dst->getBasicBlock();
2380   if (!BPI) {
2381     // If BPI is not available, set the default probability as 1 / N, where N is
2382     // the number of successors.
2383     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2384     return BranchProbability(1, SuccSize);
2385   }
2386   return BPI->getEdgeProbability(SrcBB, DstBB);
2387 }
2388 
2389 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2390                                                MachineBasicBlock *Dst,
2391                                                BranchProbability Prob) {
2392   if (!FuncInfo.BPI)
2393     Src->addSuccessorWithoutProb(Dst);
2394   else {
2395     if (Prob.isUnknown())
2396       Prob = getEdgeProbability(Src, Dst);
2397     Src->addSuccessor(Dst, Prob);
2398   }
2399 }
2400 
2401 static bool InBlock(const Value *V, const BasicBlock *BB) {
2402   if (const Instruction *I = dyn_cast<Instruction>(V))
2403     return I->getParent() == BB;
2404   return true;
2405 }
2406 
2407 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2408 /// This function emits a branch and is used at the leaves of an OR or an
2409 /// AND operator tree.
2410 void
2411 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2412                                                   MachineBasicBlock *TBB,
2413                                                   MachineBasicBlock *FBB,
2414                                                   MachineBasicBlock *CurBB,
2415                                                   MachineBasicBlock *SwitchBB,
2416                                                   BranchProbability TProb,
2417                                                   BranchProbability FProb,
2418                                                   bool InvertCond) {
2419   const BasicBlock *BB = CurBB->getBasicBlock();
2420 
2421   // If the leaf of the tree is a comparison, merge the condition into
2422   // the caseblock.
2423   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2424     // The operands of the cmp have to be in this block.  We don't know
2425     // how to export them from some other block.  If this is the first block
2426     // of the sequence, no exporting is needed.
2427     if (CurBB == SwitchBB ||
2428         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2429          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2430       ISD::CondCode Condition;
2431       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2432         ICmpInst::Predicate Pred =
2433             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2434         Condition = getICmpCondCode(Pred);
2435       } else {
2436         const FCmpInst *FC = cast<FCmpInst>(Cond);
2437         FCmpInst::Predicate Pred =
2438             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2439         Condition = getFCmpCondCode(Pred);
2440         if (TM.Options.NoNaNsFPMath)
2441           Condition = getFCmpCodeWithoutNaN(Condition);
2442       }
2443 
2444       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2445                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2446       SL->SwitchCases.push_back(CB);
2447       return;
2448     }
2449   }
2450 
2451   // Create a CaseBlock record representing this branch.
2452   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2453   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2454                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2455   SL->SwitchCases.push_back(CB);
2456 }
2457 
2458 // Collect dependencies on V recursively. This is used for the cost analysis in
2459 // `shouldKeepJumpConditionsTogether`.
2460 static bool collectInstructionDeps(
2461     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2462     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2463     unsigned Depth = 0) {
2464   // Return false if we have an incomplete count.
2465   if (Depth >= SelectionDAG::MaxRecursionDepth)
2466     return false;
2467 
2468   auto *I = dyn_cast<Instruction>(V);
2469   if (I == nullptr)
2470     return true;
2471 
2472   if (Necessary != nullptr) {
2473     // This instruction is necessary for the other side of the condition so
2474     // don't count it.
2475     if (Necessary->contains(I))
2476       return true;
2477   }
2478 
2479   // Already added this dep.
2480   if (!Deps->try_emplace(I, false).second)
2481     return true;
2482 
2483   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2484     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2485                                 Depth + 1))
2486       return false;
2487   return true;
2488 }
2489 
2490 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2491     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2492     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2493     TargetLoweringBase::CondMergingParams Params) const {
2494   if (I.getNumSuccessors() != 2)
2495     return false;
2496 
2497   if (!I.isConditional())
2498     return false;
2499 
2500   if (Params.BaseCost < 0)
2501     return false;
2502 
2503   // Baseline cost.
2504   InstructionCost CostThresh = Params.BaseCost;
2505 
2506   BranchProbabilityInfo *BPI = nullptr;
2507   if (Params.LikelyBias || Params.UnlikelyBias)
2508     BPI = FuncInfo.BPI;
2509   if (BPI != nullptr) {
2510     // See if we are either likely to get an early out or compute both lhs/rhs
2511     // of the condition.
2512     BasicBlock *IfFalse = I.getSuccessor(0);
2513     BasicBlock *IfTrue = I.getSuccessor(1);
2514 
2515     std::optional<bool> Likely;
2516     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2517       Likely = true;
2518     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2519       Likely = false;
2520 
2521     if (Likely) {
2522       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2523         // Its likely we will have to compute both lhs and rhs of condition
2524         CostThresh += Params.LikelyBias;
2525       else {
2526         if (Params.UnlikelyBias < 0)
2527           return false;
2528         // Its likely we will get an early out.
2529         CostThresh -= Params.UnlikelyBias;
2530       }
2531     }
2532   }
2533 
2534   if (CostThresh <= 0)
2535     return false;
2536 
2537   // Collect "all" instructions that lhs condition is dependent on.
2538   // Use map for stable iteration (to avoid non-determanism of iteration of
2539   // SmallPtrSet). The `bool` value is just a dummy.
2540   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2541   collectInstructionDeps(&LhsDeps, Lhs);
2542   // Collect "all" instructions that rhs condition is dependent on AND are
2543   // dependencies of lhs. This gives us an estimate on which instructions we
2544   // stand to save by splitting the condition.
2545   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2546     return false;
2547   // Add the compare instruction itself unless its a dependency on the LHS.
2548   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2549     if (!LhsDeps.contains(RhsI))
2550       RhsDeps.try_emplace(RhsI, false);
2551 
2552   const auto &TLI = DAG.getTargetLoweringInfo();
2553   const auto &TTI =
2554       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2555 
2556   InstructionCost CostOfIncluding = 0;
2557   // See if this instruction will need to computed independently of whether RHS
2558   // is.
2559   Value *BrCond = I.getCondition();
2560   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2561     for (const auto *U : Ins->users()) {
2562       // If user is independent of RHS calculation we don't need to count it.
2563       if (auto *UIns = dyn_cast<Instruction>(U))
2564         if (UIns != BrCond && !RhsDeps.contains(UIns))
2565           return false;
2566     }
2567     return true;
2568   };
2569 
2570   // Prune instructions from RHS Deps that are dependencies of unrelated
2571   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2572   // arbitrary and just meant to cap the how much time we spend in the pruning
2573   // loop. Its highly unlikely to come into affect.
2574   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2575   // Stop after a certain point. No incorrectness from including too many
2576   // instructions.
2577   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2578     const Instruction *ToDrop = nullptr;
2579     for (const auto &InsPair : RhsDeps) {
2580       if (!ShouldCountInsn(InsPair.first)) {
2581         ToDrop = InsPair.first;
2582         break;
2583       }
2584     }
2585     if (ToDrop == nullptr)
2586       break;
2587     RhsDeps.erase(ToDrop);
2588   }
2589 
2590   for (const auto &InsPair : RhsDeps) {
2591     // Finally accumulate latency that we can only attribute to computing the
2592     // RHS condition. Use latency because we are essentially trying to calculate
2593     // the cost of the dependency chain.
2594     // Possible TODO: We could try to estimate ILP and make this more precise.
2595     CostOfIncluding +=
2596         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2597 
2598     if (CostOfIncluding > CostThresh)
2599       return false;
2600   }
2601   return true;
2602 }
2603 
2604 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2605                                                MachineBasicBlock *TBB,
2606                                                MachineBasicBlock *FBB,
2607                                                MachineBasicBlock *CurBB,
2608                                                MachineBasicBlock *SwitchBB,
2609                                                Instruction::BinaryOps Opc,
2610                                                BranchProbability TProb,
2611                                                BranchProbability FProb,
2612                                                bool InvertCond) {
2613   // Skip over not part of the tree and remember to invert op and operands at
2614   // next level.
2615   Value *NotCond;
2616   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2617       InBlock(NotCond, CurBB->getBasicBlock())) {
2618     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2619                          !InvertCond);
2620     return;
2621   }
2622 
2623   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2624   const Value *BOpOp0, *BOpOp1;
2625   // Compute the effective opcode for Cond, taking into account whether it needs
2626   // to be inverted, e.g.
2627   //   and (not (or A, B)), C
2628   // gets lowered as
2629   //   and (and (not A, not B), C)
2630   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2631   if (BOp) {
2632     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2633                ? Instruction::And
2634                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2635                       ? Instruction::Or
2636                       : (Instruction::BinaryOps)0);
2637     if (InvertCond) {
2638       if (BOpc == Instruction::And)
2639         BOpc = Instruction::Or;
2640       else if (BOpc == Instruction::Or)
2641         BOpc = Instruction::And;
2642     }
2643   }
2644 
2645   // If this node is not part of the or/and tree, emit it as a branch.
2646   // Note that all nodes in the tree should have same opcode.
2647   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2648   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2649       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2650       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2651     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2652                                  TProb, FProb, InvertCond);
2653     return;
2654   }
2655 
2656   //  Create TmpBB after CurBB.
2657   MachineFunction::iterator BBI(CurBB);
2658   MachineFunction &MF = DAG.getMachineFunction();
2659   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2660   CurBB->getParent()->insert(++BBI, TmpBB);
2661 
2662   if (Opc == Instruction::Or) {
2663     // Codegen X | Y as:
2664     // BB1:
2665     //   jmp_if_X TBB
2666     //   jmp TmpBB
2667     // TmpBB:
2668     //   jmp_if_Y TBB
2669     //   jmp FBB
2670     //
2671 
2672     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2673     // The requirement is that
2674     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2675     //     = TrueProb for original BB.
2676     // Assuming the original probabilities are A and B, one choice is to set
2677     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2678     // A/(1+B) and 2B/(1+B). This choice assumes that
2679     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2680     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2681     // TmpBB, but the math is more complicated.
2682 
2683     auto NewTrueProb = TProb / 2;
2684     auto NewFalseProb = TProb / 2 + FProb;
2685     // Emit the LHS condition.
2686     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2687                          NewFalseProb, InvertCond);
2688 
2689     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2690     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2691     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2692     // Emit the RHS condition into TmpBB.
2693     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2694                          Probs[1], InvertCond);
2695   } else {
2696     assert(Opc == Instruction::And && "Unknown merge op!");
2697     // Codegen X & Y as:
2698     // BB1:
2699     //   jmp_if_X TmpBB
2700     //   jmp FBB
2701     // TmpBB:
2702     //   jmp_if_Y TBB
2703     //   jmp FBB
2704     //
2705     //  This requires creation of TmpBB after CurBB.
2706 
2707     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2708     // The requirement is that
2709     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2710     //     = FalseProb for original BB.
2711     // Assuming the original probabilities are A and B, one choice is to set
2712     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2713     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2714     // TrueProb for BB1 * FalseProb for TmpBB.
2715 
2716     auto NewTrueProb = TProb + FProb / 2;
2717     auto NewFalseProb = FProb / 2;
2718     // Emit the LHS condition.
2719     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2720                          NewFalseProb, InvertCond);
2721 
2722     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2723     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2724     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2725     // Emit the RHS condition into TmpBB.
2726     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2727                          Probs[1], InvertCond);
2728   }
2729 }
2730 
2731 /// If the set of cases should be emitted as a series of branches, return true.
2732 /// If we should emit this as a bunch of and/or'd together conditions, return
2733 /// false.
2734 bool
2735 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2736   if (Cases.size() != 2) return true;
2737 
2738   // If this is two comparisons of the same values or'd or and'd together, they
2739   // will get folded into a single comparison, so don't emit two blocks.
2740   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2741        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2742       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2743        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2744     return false;
2745   }
2746 
2747   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2748   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2749   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2750       Cases[0].CC == Cases[1].CC &&
2751       isa<Constant>(Cases[0].CmpRHS) &&
2752       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2753     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2754       return false;
2755     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2756       return false;
2757   }
2758 
2759   return true;
2760 }
2761 
2762 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2763   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2764 
2765   // Update machine-CFG edges.
2766   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2767 
2768   if (I.isUnconditional()) {
2769     // Update machine-CFG edges.
2770     BrMBB->addSuccessor(Succ0MBB);
2771 
2772     // If this is not a fall-through branch or optimizations are switched off,
2773     // emit the branch.
2774     if (Succ0MBB != NextBlock(BrMBB) ||
2775         TM.getOptLevel() == CodeGenOptLevel::None) {
2776       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2777                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2778       setValue(&I, Br);
2779       DAG.setRoot(Br);
2780     }
2781 
2782     return;
2783   }
2784 
2785   // If this condition is one of the special cases we handle, do special stuff
2786   // now.
2787   const Value *CondVal = I.getCondition();
2788   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2789 
2790   // If this is a series of conditions that are or'd or and'd together, emit
2791   // this as a sequence of branches instead of setcc's with and/or operations.
2792   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2793   // unpredictable branches, and vector extracts because those jumps are likely
2794   // expensive for any target), this should improve performance.
2795   // For example, instead of something like:
2796   //     cmp A, B
2797   //     C = seteq
2798   //     cmp D, E
2799   //     F = setle
2800   //     or C, F
2801   //     jnz foo
2802   // Emit:
2803   //     cmp A, B
2804   //     je foo
2805   //     cmp D, E
2806   //     jle foo
2807   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2808   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2809       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2810     Value *Vec;
2811     const Value *BOp0, *BOp1;
2812     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2813     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2814       Opcode = Instruction::And;
2815     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2816       Opcode = Instruction::Or;
2817 
2818     if (Opcode &&
2819         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2820           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2821         !shouldKeepJumpConditionsTogether(
2822             FuncInfo, I, Opcode, BOp0, BOp1,
2823             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2824                 Opcode, BOp0, BOp1))) {
2825       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2826                            getEdgeProbability(BrMBB, Succ0MBB),
2827                            getEdgeProbability(BrMBB, Succ1MBB),
2828                            /*InvertCond=*/false);
2829       // If the compares in later blocks need to use values not currently
2830       // exported from this block, export them now.  This block should always
2831       // be the first entry.
2832       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2833 
2834       // Allow some cases to be rejected.
2835       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2836         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2837           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2838           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2839         }
2840 
2841         // Emit the branch for this block.
2842         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2843         SL->SwitchCases.erase(SL->SwitchCases.begin());
2844         return;
2845       }
2846 
2847       // Okay, we decided not to do this, remove any inserted MBB's and clear
2848       // SwitchCases.
2849       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2850         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2851 
2852       SL->SwitchCases.clear();
2853     }
2854   }
2855 
2856   // Create a CaseBlock record representing this branch.
2857   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2858                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2859 
2860   // Use visitSwitchCase to actually insert the fast branch sequence for this
2861   // cond branch.
2862   visitSwitchCase(CB, BrMBB);
2863 }
2864 
2865 /// visitSwitchCase - Emits the necessary code to represent a single node in
2866 /// the binary search tree resulting from lowering a switch instruction.
2867 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2868                                           MachineBasicBlock *SwitchBB) {
2869   SDValue Cond;
2870   SDValue CondLHS = getValue(CB.CmpLHS);
2871   SDLoc dl = CB.DL;
2872 
2873   if (CB.CC == ISD::SETTRUE) {
2874     // Branch or fall through to TrueBB.
2875     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2876     SwitchBB->normalizeSuccProbs();
2877     if (CB.TrueBB != NextBlock(SwitchBB)) {
2878       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2879                               DAG.getBasicBlock(CB.TrueBB)));
2880     }
2881     return;
2882   }
2883 
2884   auto &TLI = DAG.getTargetLoweringInfo();
2885   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2886 
2887   // Build the setcc now.
2888   if (!CB.CmpMHS) {
2889     // Fold "(X == true)" to X and "(X == false)" to !X to
2890     // handle common cases produced by branch lowering.
2891     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2892         CB.CC == ISD::SETEQ)
2893       Cond = CondLHS;
2894     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2895              CB.CC == ISD::SETEQ) {
2896       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2897       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2898     } else {
2899       SDValue CondRHS = getValue(CB.CmpRHS);
2900 
2901       // If a pointer's DAG type is larger than its memory type then the DAG
2902       // values are zero-extended. This breaks signed comparisons so truncate
2903       // back to the underlying type before doing the compare.
2904       if (CondLHS.getValueType() != MemVT) {
2905         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2906         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2907       }
2908       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2909     }
2910   } else {
2911     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2912 
2913     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2914     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2915 
2916     SDValue CmpOp = getValue(CB.CmpMHS);
2917     EVT VT = CmpOp.getValueType();
2918 
2919     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2920       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2921                           ISD::SETLE);
2922     } else {
2923       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2924                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2925       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2926                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2927     }
2928   }
2929 
2930   // Update successor info
2931   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2932   // TrueBB and FalseBB are always different unless the incoming IR is
2933   // degenerate. This only happens when running llc on weird IR.
2934   if (CB.TrueBB != CB.FalseBB)
2935     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2936   SwitchBB->normalizeSuccProbs();
2937 
2938   // If the lhs block is the next block, invert the condition so that we can
2939   // fall through to the lhs instead of the rhs block.
2940   if (CB.TrueBB == NextBlock(SwitchBB)) {
2941     std::swap(CB.TrueBB, CB.FalseBB);
2942     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2943     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2944   }
2945 
2946   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2947                                MVT::Other, getControlRoot(), Cond,
2948                                DAG.getBasicBlock(CB.TrueBB));
2949 
2950   setValue(CurInst, BrCond);
2951 
2952   // Insert the false branch. Do this even if it's a fall through branch,
2953   // this makes it easier to do DAG optimizations which require inverting
2954   // the branch condition.
2955   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2956                        DAG.getBasicBlock(CB.FalseBB));
2957 
2958   DAG.setRoot(BrCond);
2959 }
2960 
2961 /// visitJumpTable - Emit JumpTable node in the current MBB
2962 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2963   // Emit the code for the jump table
2964   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2965   assert(JT.Reg != -1U && "Should lower JT Header first!");
2966   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2967   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2968   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2969   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2970                                     Index.getValue(1), Table, Index);
2971   DAG.setRoot(BrJumpTable);
2972 }
2973 
2974 /// visitJumpTableHeader - This function emits necessary code to produce index
2975 /// in the JumpTable from switch case.
2976 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2977                                                JumpTableHeader &JTH,
2978                                                MachineBasicBlock *SwitchBB) {
2979   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2980   const SDLoc &dl = *JT.SL;
2981 
2982   // Subtract the lowest switch case value from the value being switched on.
2983   SDValue SwitchOp = getValue(JTH.SValue);
2984   EVT VT = SwitchOp.getValueType();
2985   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2986                             DAG.getConstant(JTH.First, dl, VT));
2987 
2988   // The SDNode we just created, which holds the value being switched on minus
2989   // the smallest case value, needs to be copied to a virtual register so it
2990   // can be used as an index into the jump table in a subsequent basic block.
2991   // This value may be smaller or larger than the target's pointer type, and
2992   // therefore require extension or truncating.
2993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2994   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2995 
2996   unsigned JumpTableReg =
2997       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2998   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2999                                     JumpTableReg, SwitchOp);
3000   JT.Reg = JumpTableReg;
3001 
3002   if (!JTH.FallthroughUnreachable) {
3003     // Emit the range check for the jump table, and branch to the default block
3004     // for the switch statement if the value being switched on exceeds the
3005     // largest case in the switch.
3006     SDValue CMP = DAG.getSetCC(
3007         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3008                                    Sub.getValueType()),
3009         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3010 
3011     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3012                                  MVT::Other, CopyTo, CMP,
3013                                  DAG.getBasicBlock(JT.Default));
3014 
3015     // Avoid emitting unnecessary branches to the next block.
3016     if (JT.MBB != NextBlock(SwitchBB))
3017       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3018                            DAG.getBasicBlock(JT.MBB));
3019 
3020     DAG.setRoot(BrCond);
3021   } else {
3022     // Avoid emitting unnecessary branches to the next block.
3023     if (JT.MBB != NextBlock(SwitchBB))
3024       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3025                               DAG.getBasicBlock(JT.MBB)));
3026     else
3027       DAG.setRoot(CopyTo);
3028   }
3029 }
3030 
3031 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3032 /// variable if there exists one.
3033 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3034                                  SDValue &Chain) {
3035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3037   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3038   MachineFunction &MF = DAG.getMachineFunction();
3039   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3040   MachineSDNode *Node =
3041       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3042   if (Global) {
3043     MachinePointerInfo MPInfo(Global);
3044     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3045                  MachineMemOperand::MODereferenceable;
3046     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3047         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3048         DAG.getEVTAlign(PtrTy));
3049     DAG.setNodeMemRefs(Node, {MemRef});
3050   }
3051   if (PtrTy != PtrMemTy)
3052     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3053   return SDValue(Node, 0);
3054 }
3055 
3056 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3057 /// tail spliced into a stack protector check success bb.
3058 ///
3059 /// For a high level explanation of how this fits into the stack protector
3060 /// generation see the comment on the declaration of class
3061 /// StackProtectorDescriptor.
3062 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3063                                                   MachineBasicBlock *ParentBB) {
3064 
3065   // First create the loads to the guard/stack slot for the comparison.
3066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3067   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3068   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3069 
3070   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3071   int FI = MFI.getStackProtectorIndex();
3072 
3073   SDValue Guard;
3074   SDLoc dl = getCurSDLoc();
3075   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3076   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3077   Align Align =
3078       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3079 
3080   // Generate code to load the content of the guard slot.
3081   SDValue GuardVal = DAG.getLoad(
3082       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3083       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3084       MachineMemOperand::MOVolatile);
3085 
3086   if (TLI.useStackGuardXorFP())
3087     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3088 
3089   // Retrieve guard check function, nullptr if instrumentation is inlined.
3090   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3091     // The target provides a guard check function to validate the guard value.
3092     // Generate a call to that function with the content of the guard slot as
3093     // argument.
3094     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3095     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3096 
3097     TargetLowering::ArgListTy Args;
3098     TargetLowering::ArgListEntry Entry;
3099     Entry.Node = GuardVal;
3100     Entry.Ty = FnTy->getParamType(0);
3101     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3102       Entry.IsInReg = true;
3103     Args.push_back(Entry);
3104 
3105     TargetLowering::CallLoweringInfo CLI(DAG);
3106     CLI.setDebugLoc(getCurSDLoc())
3107         .setChain(DAG.getEntryNode())
3108         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3109                    getValue(GuardCheckFn), std::move(Args));
3110 
3111     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3112     DAG.setRoot(Result.second);
3113     return;
3114   }
3115 
3116   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3117   // Otherwise, emit a volatile load to retrieve the stack guard value.
3118   SDValue Chain = DAG.getEntryNode();
3119   if (TLI.useLoadStackGuardNode()) {
3120     Guard = getLoadStackGuard(DAG, dl, Chain);
3121   } else {
3122     const Value *IRGuard = TLI.getSDagStackGuard(M);
3123     SDValue GuardPtr = getValue(IRGuard);
3124 
3125     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3126                         MachinePointerInfo(IRGuard, 0), Align,
3127                         MachineMemOperand::MOVolatile);
3128   }
3129 
3130   // Perform the comparison via a getsetcc.
3131   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3132                                                         *DAG.getContext(),
3133                                                         Guard.getValueType()),
3134                              Guard, GuardVal, ISD::SETNE);
3135 
3136   // If the guard/stackslot do not equal, branch to failure MBB.
3137   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3138                                MVT::Other, GuardVal.getOperand(0),
3139                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3140   // Otherwise branch to success MBB.
3141   SDValue Br = DAG.getNode(ISD::BR, dl,
3142                            MVT::Other, BrCond,
3143                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3144 
3145   DAG.setRoot(Br);
3146 }
3147 
3148 /// Codegen the failure basic block for a stack protector check.
3149 ///
3150 /// A failure stack protector machine basic block consists simply of a call to
3151 /// __stack_chk_fail().
3152 ///
3153 /// For a high level explanation of how this fits into the stack protector
3154 /// generation see the comment on the declaration of class
3155 /// StackProtectorDescriptor.
3156 void
3157 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3159   TargetLowering::MakeLibCallOptions CallOptions;
3160   CallOptions.setDiscardResult(true);
3161   SDValue Chain =
3162       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3163                       std::nullopt, CallOptions, getCurSDLoc())
3164           .second;
3165   // On PS4/PS5, the "return address" must still be within the calling
3166   // function, even if it's at the very end, so emit an explicit TRAP here.
3167   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3168   if (TM.getTargetTriple().isPS())
3169     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3170   // WebAssembly needs an unreachable instruction after a non-returning call,
3171   // because the function return type can be different from __stack_chk_fail's
3172   // return type (void).
3173   if (TM.getTargetTriple().isWasm())
3174     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3175 
3176   DAG.setRoot(Chain);
3177 }
3178 
3179 /// visitBitTestHeader - This function emits necessary code to produce value
3180 /// suitable for "bit tests"
3181 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3182                                              MachineBasicBlock *SwitchBB) {
3183   SDLoc dl = getCurSDLoc();
3184 
3185   // Subtract the minimum value.
3186   SDValue SwitchOp = getValue(B.SValue);
3187   EVT VT = SwitchOp.getValueType();
3188   SDValue RangeSub =
3189       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3190 
3191   // Determine the type of the test operands.
3192   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3193   bool UsePtrType = false;
3194   if (!TLI.isTypeLegal(VT)) {
3195     UsePtrType = true;
3196   } else {
3197     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3198       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3199         // Switch table case range are encoded into series of masks.
3200         // Just use pointer type, it's guaranteed to fit.
3201         UsePtrType = true;
3202         break;
3203       }
3204   }
3205   SDValue Sub = RangeSub;
3206   if (UsePtrType) {
3207     VT = TLI.getPointerTy(DAG.getDataLayout());
3208     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3209   }
3210 
3211   B.RegVT = VT.getSimpleVT();
3212   B.Reg = FuncInfo.CreateReg(B.RegVT);
3213   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3214 
3215   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3216 
3217   if (!B.FallthroughUnreachable)
3218     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3219   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3220   SwitchBB->normalizeSuccProbs();
3221 
3222   SDValue Root = CopyTo;
3223   if (!B.FallthroughUnreachable) {
3224     // Conditional branch to the default block.
3225     SDValue RangeCmp = DAG.getSetCC(dl,
3226         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3227                                RangeSub.getValueType()),
3228         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3229         ISD::SETUGT);
3230 
3231     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3232                        DAG.getBasicBlock(B.Default));
3233   }
3234 
3235   // Avoid emitting unnecessary branches to the next block.
3236   if (MBB != NextBlock(SwitchBB))
3237     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3238 
3239   DAG.setRoot(Root);
3240 }
3241 
3242 /// visitBitTestCase - this function produces one "bit test"
3243 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3244                                            MachineBasicBlock* NextMBB,
3245                                            BranchProbability BranchProbToNext,
3246                                            unsigned Reg,
3247                                            BitTestCase &B,
3248                                            MachineBasicBlock *SwitchBB) {
3249   SDLoc dl = getCurSDLoc();
3250   MVT VT = BB.RegVT;
3251   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3252   SDValue Cmp;
3253   unsigned PopCount = llvm::popcount(B.Mask);
3254   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3255   if (PopCount == 1) {
3256     // Testing for a single bit; just compare the shift count with what it
3257     // would need to be to shift a 1 bit in that position.
3258     Cmp = DAG.getSetCC(
3259         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3260         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3261         ISD::SETEQ);
3262   } else if (PopCount == BB.Range) {
3263     // There is only one zero bit in the range, test for it directly.
3264     Cmp = DAG.getSetCC(
3265         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3266         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3267   } else {
3268     // Make desired shift
3269     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3270                                     DAG.getConstant(1, dl, VT), ShiftOp);
3271 
3272     // Emit bit tests and jumps
3273     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3274                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3275     Cmp = DAG.getSetCC(
3276         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3277         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3278   }
3279 
3280   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3281   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3282   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3283   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3284   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3285   // one as they are relative probabilities (and thus work more like weights),
3286   // and hence we need to normalize them to let the sum of them become one.
3287   SwitchBB->normalizeSuccProbs();
3288 
3289   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3290                               MVT::Other, getControlRoot(),
3291                               Cmp, DAG.getBasicBlock(B.TargetBB));
3292 
3293   // Avoid emitting unnecessary branches to the next block.
3294   if (NextMBB != NextBlock(SwitchBB))
3295     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3296                         DAG.getBasicBlock(NextMBB));
3297 
3298   DAG.setRoot(BrAnd);
3299 }
3300 
3301 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3302   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3303 
3304   // Retrieve successors. Look through artificial IR level blocks like
3305   // catchswitch for successors.
3306   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3307   const BasicBlock *EHPadBB = I.getSuccessor(1);
3308   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3309 
3310   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3311   // have to do anything here to lower funclet bundles.
3312   assert(!I.hasOperandBundlesOtherThan(
3313              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3314               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3315               LLVMContext::OB_cfguardtarget,
3316               LLVMContext::OB_clang_arc_attachedcall}) &&
3317          "Cannot lower invokes with arbitrary operand bundles yet!");
3318 
3319   const Value *Callee(I.getCalledOperand());
3320   const Function *Fn = dyn_cast<Function>(Callee);
3321   if (isa<InlineAsm>(Callee))
3322     visitInlineAsm(I, EHPadBB);
3323   else if (Fn && Fn->isIntrinsic()) {
3324     switch (Fn->getIntrinsicID()) {
3325     default:
3326       llvm_unreachable("Cannot invoke this intrinsic");
3327     case Intrinsic::donothing:
3328       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3329     case Intrinsic::seh_try_begin:
3330     case Intrinsic::seh_scope_begin:
3331     case Intrinsic::seh_try_end:
3332     case Intrinsic::seh_scope_end:
3333       if (EHPadMBB)
3334           // a block referenced by EH table
3335           // so dtor-funclet not removed by opts
3336           EHPadMBB->setMachineBlockAddressTaken();
3337       break;
3338     case Intrinsic::experimental_patchpoint_void:
3339     case Intrinsic::experimental_patchpoint:
3340       visitPatchpoint(I, EHPadBB);
3341       break;
3342     case Intrinsic::experimental_gc_statepoint:
3343       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3344       break;
3345     case Intrinsic::wasm_rethrow: {
3346       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3347       // special because it can be invoked, so we manually lower it to a DAG
3348       // node here.
3349       SmallVector<SDValue, 8> Ops;
3350       Ops.push_back(getRoot()); // inchain
3351       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3352       Ops.push_back(
3353           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3354                                 TLI.getPointerTy(DAG.getDataLayout())));
3355       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3356       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3357       break;
3358     }
3359     }
3360   } else if (I.hasDeoptState()) {
3361     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3362     // Eventually we will support lowering the @llvm.experimental.deoptimize
3363     // intrinsic, and right now there are no plans to support other intrinsics
3364     // with deopt state.
3365     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3366   } else {
3367     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3368   }
3369 
3370   // If the value of the invoke is used outside of its defining block, make it
3371   // available as a virtual register.
3372   // We already took care of the exported value for the statepoint instruction
3373   // during call to the LowerStatepoint.
3374   if (!isa<GCStatepointInst>(I)) {
3375     CopyToExportRegsIfNeeded(&I);
3376   }
3377 
3378   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3379   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3380   BranchProbability EHPadBBProb =
3381       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3382           : BranchProbability::getZero();
3383   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3384 
3385   // Update successor info.
3386   addSuccessorWithProb(InvokeMBB, Return);
3387   for (auto &UnwindDest : UnwindDests) {
3388     UnwindDest.first->setIsEHPad();
3389     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3390   }
3391   InvokeMBB->normalizeSuccProbs();
3392 
3393   // Drop into normal successor.
3394   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3395                           DAG.getBasicBlock(Return)));
3396 }
3397 
3398 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3399   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3400 
3401   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3402   // have to do anything here to lower funclet bundles.
3403   assert(!I.hasOperandBundlesOtherThan(
3404              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3405          "Cannot lower callbrs with arbitrary operand bundles yet!");
3406 
3407   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3408   visitInlineAsm(I);
3409   CopyToExportRegsIfNeeded(&I);
3410 
3411   // Retrieve successors.
3412   SmallPtrSet<BasicBlock *, 8> Dests;
3413   Dests.insert(I.getDefaultDest());
3414   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3415 
3416   // Update successor info.
3417   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3418   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3419     BasicBlock *Dest = I.getIndirectDest(i);
3420     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3421     Target->setIsInlineAsmBrIndirectTarget();
3422     Target->setMachineBlockAddressTaken();
3423     Target->setLabelMustBeEmitted();
3424     // Don't add duplicate machine successors.
3425     if (Dests.insert(Dest).second)
3426       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3427   }
3428   CallBrMBB->normalizeSuccProbs();
3429 
3430   // Drop into default successor.
3431   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3432                           MVT::Other, getControlRoot(),
3433                           DAG.getBasicBlock(Return)));
3434 }
3435 
3436 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3437   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3438 }
3439 
3440 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3441   assert(FuncInfo.MBB->isEHPad() &&
3442          "Call to landingpad not in landing pad!");
3443 
3444   // If there aren't registers to copy the values into (e.g., during SjLj
3445   // exceptions), then don't bother to create these DAG nodes.
3446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3447   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3448   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3449       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3450     return;
3451 
3452   // If landingpad's return type is token type, we don't create DAG nodes
3453   // for its exception pointer and selector value. The extraction of exception
3454   // pointer or selector value from token type landingpads is not currently
3455   // supported.
3456   if (LP.getType()->isTokenTy())
3457     return;
3458 
3459   SmallVector<EVT, 2> ValueVTs;
3460   SDLoc dl = getCurSDLoc();
3461   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3462   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3463 
3464   // Get the two live-in registers as SDValues. The physregs have already been
3465   // copied into virtual registers.
3466   SDValue Ops[2];
3467   if (FuncInfo.ExceptionPointerVirtReg) {
3468     Ops[0] = DAG.getZExtOrTrunc(
3469         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3470                            FuncInfo.ExceptionPointerVirtReg,
3471                            TLI.getPointerTy(DAG.getDataLayout())),
3472         dl, ValueVTs[0]);
3473   } else {
3474     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3475   }
3476   Ops[1] = DAG.getZExtOrTrunc(
3477       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3478                          FuncInfo.ExceptionSelectorVirtReg,
3479                          TLI.getPointerTy(DAG.getDataLayout())),
3480       dl, ValueVTs[1]);
3481 
3482   // Merge into one.
3483   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3484                             DAG.getVTList(ValueVTs), Ops);
3485   setValue(&LP, Res);
3486 }
3487 
3488 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3489                                            MachineBasicBlock *Last) {
3490   // Update JTCases.
3491   for (JumpTableBlock &JTB : SL->JTCases)
3492     if (JTB.first.HeaderBB == First)
3493       JTB.first.HeaderBB = Last;
3494 
3495   // Update BitTestCases.
3496   for (BitTestBlock &BTB : SL->BitTestCases)
3497     if (BTB.Parent == First)
3498       BTB.Parent = Last;
3499 }
3500 
3501 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3502   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3503 
3504   // Update machine-CFG edges with unique successors.
3505   SmallSet<BasicBlock*, 32> Done;
3506   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3507     BasicBlock *BB = I.getSuccessor(i);
3508     bool Inserted = Done.insert(BB).second;
3509     if (!Inserted)
3510         continue;
3511 
3512     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3513     addSuccessorWithProb(IndirectBrMBB, Succ);
3514   }
3515   IndirectBrMBB->normalizeSuccProbs();
3516 
3517   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3518                           MVT::Other, getControlRoot(),
3519                           getValue(I.getAddress())));
3520 }
3521 
3522 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3523   if (!DAG.getTarget().Options.TrapUnreachable)
3524     return;
3525 
3526   // We may be able to ignore unreachable behind a noreturn call.
3527   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3528     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3529       if (Call->doesNotReturn())
3530         return;
3531     }
3532   }
3533 
3534   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3535 }
3536 
3537 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3538   SDNodeFlags Flags;
3539   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3540     Flags.copyFMF(*FPOp);
3541 
3542   SDValue Op = getValue(I.getOperand(0));
3543   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3544                                     Op, Flags);
3545   setValue(&I, UnNodeValue);
3546 }
3547 
3548 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3549   SDNodeFlags Flags;
3550   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3551     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3552     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3553   }
3554   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3555     Flags.setExact(ExactOp->isExact());
3556   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3557     Flags.setDisjoint(DisjointOp->isDisjoint());
3558   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3559     Flags.copyFMF(*FPOp);
3560 
3561   SDValue Op1 = getValue(I.getOperand(0));
3562   SDValue Op2 = getValue(I.getOperand(1));
3563   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3564                                      Op1, Op2, Flags);
3565   setValue(&I, BinNodeValue);
3566 }
3567 
3568 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3569   SDValue Op1 = getValue(I.getOperand(0));
3570   SDValue Op2 = getValue(I.getOperand(1));
3571 
3572   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3573       Op1.getValueType(), DAG.getDataLayout());
3574 
3575   // Coerce the shift amount to the right type if we can. This exposes the
3576   // truncate or zext to optimization early.
3577   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3578     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3579            "Unexpected shift type");
3580     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3581   }
3582 
3583   bool nuw = false;
3584   bool nsw = false;
3585   bool exact = false;
3586 
3587   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3588 
3589     if (const OverflowingBinaryOperator *OFBinOp =
3590             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3591       nuw = OFBinOp->hasNoUnsignedWrap();
3592       nsw = OFBinOp->hasNoSignedWrap();
3593     }
3594     if (const PossiblyExactOperator *ExactOp =
3595             dyn_cast<const PossiblyExactOperator>(&I))
3596       exact = ExactOp->isExact();
3597   }
3598   SDNodeFlags Flags;
3599   Flags.setExact(exact);
3600   Flags.setNoSignedWrap(nsw);
3601   Flags.setNoUnsignedWrap(nuw);
3602   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3603                             Flags);
3604   setValue(&I, Res);
3605 }
3606 
3607 void SelectionDAGBuilder::visitSDiv(const User &I) {
3608   SDValue Op1 = getValue(I.getOperand(0));
3609   SDValue Op2 = getValue(I.getOperand(1));
3610 
3611   SDNodeFlags Flags;
3612   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3613                  cast<PossiblyExactOperator>(&I)->isExact());
3614   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3615                            Op2, Flags));
3616 }
3617 
3618 void SelectionDAGBuilder::visitICmp(const User &I) {
3619   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3620   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3621     predicate = IC->getPredicate();
3622   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3623     predicate = ICmpInst::Predicate(IC->getPredicate());
3624   SDValue Op1 = getValue(I.getOperand(0));
3625   SDValue Op2 = getValue(I.getOperand(1));
3626   ISD::CondCode Opcode = getICmpCondCode(predicate);
3627 
3628   auto &TLI = DAG.getTargetLoweringInfo();
3629   EVT MemVT =
3630       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3631 
3632   // If a pointer's DAG type is larger than its memory type then the DAG values
3633   // are zero-extended. This breaks signed comparisons so truncate back to the
3634   // underlying type before doing the compare.
3635   if (Op1.getValueType() != MemVT) {
3636     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3637     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3638   }
3639 
3640   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3641                                                         I.getType());
3642   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3643 }
3644 
3645 void SelectionDAGBuilder::visitFCmp(const User &I) {
3646   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3647   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3648     predicate = FC->getPredicate();
3649   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3650     predicate = FCmpInst::Predicate(FC->getPredicate());
3651   SDValue Op1 = getValue(I.getOperand(0));
3652   SDValue Op2 = getValue(I.getOperand(1));
3653 
3654   ISD::CondCode Condition = getFCmpCondCode(predicate);
3655   auto *FPMO = cast<FPMathOperator>(&I);
3656   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3657     Condition = getFCmpCodeWithoutNaN(Condition);
3658 
3659   SDNodeFlags Flags;
3660   Flags.copyFMF(*FPMO);
3661   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3662 
3663   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3664                                                         I.getType());
3665   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3666 }
3667 
3668 // Check if the condition of the select has one use or two users that are both
3669 // selects with the same condition.
3670 static bool hasOnlySelectUsers(const Value *Cond) {
3671   return llvm::all_of(Cond->users(), [](const Value *V) {
3672     return isa<SelectInst>(V);
3673   });
3674 }
3675 
3676 void SelectionDAGBuilder::visitSelect(const User &I) {
3677   SmallVector<EVT, 4> ValueVTs;
3678   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3679                   ValueVTs);
3680   unsigned NumValues = ValueVTs.size();
3681   if (NumValues == 0) return;
3682 
3683   SmallVector<SDValue, 4> Values(NumValues);
3684   SDValue Cond     = getValue(I.getOperand(0));
3685   SDValue LHSVal   = getValue(I.getOperand(1));
3686   SDValue RHSVal   = getValue(I.getOperand(2));
3687   SmallVector<SDValue, 1> BaseOps(1, Cond);
3688   ISD::NodeType OpCode =
3689       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3690 
3691   bool IsUnaryAbs = false;
3692   bool Negate = false;
3693 
3694   SDNodeFlags Flags;
3695   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3696     Flags.copyFMF(*FPOp);
3697 
3698   Flags.setUnpredictable(
3699       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3700 
3701   // Min/max matching is only viable if all output VTs are the same.
3702   if (all_equal(ValueVTs)) {
3703     EVT VT = ValueVTs[0];
3704     LLVMContext &Ctx = *DAG.getContext();
3705     auto &TLI = DAG.getTargetLoweringInfo();
3706 
3707     // We care about the legality of the operation after it has been type
3708     // legalized.
3709     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3710       VT = TLI.getTypeToTransformTo(Ctx, VT);
3711 
3712     // If the vselect is legal, assume we want to leave this as a vector setcc +
3713     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3714     // min/max is legal on the scalar type.
3715     bool UseScalarMinMax = VT.isVector() &&
3716       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3717 
3718     // ValueTracking's select pattern matching does not account for -0.0,
3719     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3720     // -0.0 is less than +0.0.
3721     Value *LHS, *RHS;
3722     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3723     ISD::NodeType Opc = ISD::DELETED_NODE;
3724     switch (SPR.Flavor) {
3725     case SPF_UMAX:    Opc = ISD::UMAX; break;
3726     case SPF_UMIN:    Opc = ISD::UMIN; break;
3727     case SPF_SMAX:    Opc = ISD::SMAX; break;
3728     case SPF_SMIN:    Opc = ISD::SMIN; break;
3729     case SPF_FMINNUM:
3730       switch (SPR.NaNBehavior) {
3731       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3732       case SPNB_RETURNS_NAN: break;
3733       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3734       case SPNB_RETURNS_ANY:
3735         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3736             (UseScalarMinMax &&
3737              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3738           Opc = ISD::FMINNUM;
3739         break;
3740       }
3741       break;
3742     case SPF_FMAXNUM:
3743       switch (SPR.NaNBehavior) {
3744       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3745       case SPNB_RETURNS_NAN: break;
3746       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3747       case SPNB_RETURNS_ANY:
3748         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3749             (UseScalarMinMax &&
3750              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3751           Opc = ISD::FMAXNUM;
3752         break;
3753       }
3754       break;
3755     case SPF_NABS:
3756       Negate = true;
3757       [[fallthrough]];
3758     case SPF_ABS:
3759       IsUnaryAbs = true;
3760       Opc = ISD::ABS;
3761       break;
3762     default: break;
3763     }
3764 
3765     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3766         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3767          (UseScalarMinMax &&
3768           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3769         // If the underlying comparison instruction is used by any other
3770         // instruction, the consumed instructions won't be destroyed, so it is
3771         // not profitable to convert to a min/max.
3772         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3773       OpCode = Opc;
3774       LHSVal = getValue(LHS);
3775       RHSVal = getValue(RHS);
3776       BaseOps.clear();
3777     }
3778 
3779     if (IsUnaryAbs) {
3780       OpCode = Opc;
3781       LHSVal = getValue(LHS);
3782       BaseOps.clear();
3783     }
3784   }
3785 
3786   if (IsUnaryAbs) {
3787     for (unsigned i = 0; i != NumValues; ++i) {
3788       SDLoc dl = getCurSDLoc();
3789       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3790       Values[i] =
3791           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3792       if (Negate)
3793         Values[i] = DAG.getNegative(Values[i], dl, VT);
3794     }
3795   } else {
3796     for (unsigned i = 0; i != NumValues; ++i) {
3797       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3798       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3799       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3800       Values[i] = DAG.getNode(
3801           OpCode, getCurSDLoc(),
3802           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3803     }
3804   }
3805 
3806   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3807                            DAG.getVTList(ValueVTs), Values));
3808 }
3809 
3810 void SelectionDAGBuilder::visitTrunc(const User &I) {
3811   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3812   SDValue N = getValue(I.getOperand(0));
3813   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3814                                                         I.getType());
3815   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3816 }
3817 
3818 void SelectionDAGBuilder::visitZExt(const User &I) {
3819   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3820   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3821   SDValue N = getValue(I.getOperand(0));
3822   auto &TLI = DAG.getTargetLoweringInfo();
3823   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3824 
3825   SDNodeFlags Flags;
3826   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3827     Flags.setNonNeg(PNI->hasNonNeg());
3828 
3829   // Eagerly use nonneg information to canonicalize towards sign_extend if
3830   // that is the target's preference.
3831   // TODO: Let the target do this later.
3832   if (Flags.hasNonNeg() &&
3833       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3834     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3835     return;
3836   }
3837 
3838   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3839 }
3840 
3841 void SelectionDAGBuilder::visitSExt(const User &I) {
3842   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3843   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3844   SDValue N = getValue(I.getOperand(0));
3845   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3846                                                         I.getType());
3847   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3848 }
3849 
3850 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3851   // FPTrunc is never a no-op cast, no need to check
3852   SDValue N = getValue(I.getOperand(0));
3853   SDLoc dl = getCurSDLoc();
3854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3855   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3856   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3857                            DAG.getTargetConstant(
3858                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3859 }
3860 
3861 void SelectionDAGBuilder::visitFPExt(const User &I) {
3862   // FPExt is never a no-op cast, no need to check
3863   SDValue N = getValue(I.getOperand(0));
3864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3865                                                         I.getType());
3866   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3867 }
3868 
3869 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3870   // FPToUI is never a no-op cast, no need to check
3871   SDValue N = getValue(I.getOperand(0));
3872   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3873                                                         I.getType());
3874   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3875 }
3876 
3877 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3878   // FPToSI is never a no-op cast, no need to check
3879   SDValue N = getValue(I.getOperand(0));
3880   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3881                                                         I.getType());
3882   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3883 }
3884 
3885 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3886   // UIToFP is never a no-op cast, no need to check
3887   SDValue N = getValue(I.getOperand(0));
3888   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3889                                                         I.getType());
3890   SDNodeFlags Flags;
3891   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3892     Flags.setNonNeg(PNI->hasNonNeg());
3893 
3894   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3895 }
3896 
3897 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3898   // SIToFP is never a no-op cast, no need to check
3899   SDValue N = getValue(I.getOperand(0));
3900   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3901                                                         I.getType());
3902   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3903 }
3904 
3905 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3906   // What to do depends on the size of the integer and the size of the pointer.
3907   // We can either truncate, zero extend, or no-op, accordingly.
3908   SDValue N = getValue(I.getOperand(0));
3909   auto &TLI = DAG.getTargetLoweringInfo();
3910   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3911                                                         I.getType());
3912   EVT PtrMemVT =
3913       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3914   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3915   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3916   setValue(&I, N);
3917 }
3918 
3919 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3920   // What to do depends on the size of the integer and the size of the pointer.
3921   // We can either truncate, zero extend, or no-op, accordingly.
3922   SDValue N = getValue(I.getOperand(0));
3923   auto &TLI = DAG.getTargetLoweringInfo();
3924   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3925   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3926   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3927   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3928   setValue(&I, N);
3929 }
3930 
3931 void SelectionDAGBuilder::visitBitCast(const User &I) {
3932   SDValue N = getValue(I.getOperand(0));
3933   SDLoc dl = getCurSDLoc();
3934   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3935                                                         I.getType());
3936 
3937   // BitCast assures us that source and destination are the same size so this is
3938   // either a BITCAST or a no-op.
3939   if (DestVT != N.getValueType())
3940     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3941                              DestVT, N)); // convert types.
3942   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3943   // might fold any kind of constant expression to an integer constant and that
3944   // is not what we are looking for. Only recognize a bitcast of a genuine
3945   // constant integer as an opaque constant.
3946   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3947     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3948                                  /*isOpaque*/true));
3949   else
3950     setValue(&I, N);            // noop cast.
3951 }
3952 
3953 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3955   const Value *SV = I.getOperand(0);
3956   SDValue N = getValue(SV);
3957   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3958 
3959   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3960   unsigned DestAS = I.getType()->getPointerAddressSpace();
3961 
3962   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3963     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3964 
3965   setValue(&I, N);
3966 }
3967 
3968 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3970   SDValue InVec = getValue(I.getOperand(0));
3971   SDValue InVal = getValue(I.getOperand(1));
3972   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3973                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3974   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3975                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3976                            InVec, InVal, InIdx));
3977 }
3978 
3979 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3981   SDValue InVec = getValue(I.getOperand(0));
3982   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3983                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3984   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3985                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3986                            InVec, InIdx));
3987 }
3988 
3989 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3990   SDValue Src1 = getValue(I.getOperand(0));
3991   SDValue Src2 = getValue(I.getOperand(1));
3992   ArrayRef<int> Mask;
3993   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3994     Mask = SVI->getShuffleMask();
3995   else
3996     Mask = cast<ConstantExpr>(I).getShuffleMask();
3997   SDLoc DL = getCurSDLoc();
3998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3999   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4000   EVT SrcVT = Src1.getValueType();
4001 
4002   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4003       VT.isScalableVector()) {
4004     // Canonical splat form of first element of first input vector.
4005     SDValue FirstElt =
4006         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4007                     DAG.getVectorIdxConstant(0, DL));
4008     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4009     return;
4010   }
4011 
4012   // For now, we only handle splats for scalable vectors.
4013   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4014   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4015   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4016 
4017   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4018   unsigned MaskNumElts = Mask.size();
4019 
4020   if (SrcNumElts == MaskNumElts) {
4021     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4022     return;
4023   }
4024 
4025   // Normalize the shuffle vector since mask and vector length don't match.
4026   if (SrcNumElts < MaskNumElts) {
4027     // Mask is longer than the source vectors. We can use concatenate vector to
4028     // make the mask and vectors lengths match.
4029 
4030     if (MaskNumElts % SrcNumElts == 0) {
4031       // Mask length is a multiple of the source vector length.
4032       // Check if the shuffle is some kind of concatenation of the input
4033       // vectors.
4034       unsigned NumConcat = MaskNumElts / SrcNumElts;
4035       bool IsConcat = true;
4036       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4037       for (unsigned i = 0; i != MaskNumElts; ++i) {
4038         int Idx = Mask[i];
4039         if (Idx < 0)
4040           continue;
4041         // Ensure the indices in each SrcVT sized piece are sequential and that
4042         // the same source is used for the whole piece.
4043         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4044             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4045              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4046           IsConcat = false;
4047           break;
4048         }
4049         // Remember which source this index came from.
4050         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4051       }
4052 
4053       // The shuffle is concatenating multiple vectors together. Just emit
4054       // a CONCAT_VECTORS operation.
4055       if (IsConcat) {
4056         SmallVector<SDValue, 8> ConcatOps;
4057         for (auto Src : ConcatSrcs) {
4058           if (Src < 0)
4059             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4060           else if (Src == 0)
4061             ConcatOps.push_back(Src1);
4062           else
4063             ConcatOps.push_back(Src2);
4064         }
4065         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4066         return;
4067       }
4068     }
4069 
4070     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4071     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4072     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4073                                     PaddedMaskNumElts);
4074 
4075     // Pad both vectors with undefs to make them the same length as the mask.
4076     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4077 
4078     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4079     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4080     MOps1[0] = Src1;
4081     MOps2[0] = Src2;
4082 
4083     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4084     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4085 
4086     // Readjust mask for new input vector length.
4087     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4088     for (unsigned i = 0; i != MaskNumElts; ++i) {
4089       int Idx = Mask[i];
4090       if (Idx >= (int)SrcNumElts)
4091         Idx -= SrcNumElts - PaddedMaskNumElts;
4092       MappedOps[i] = Idx;
4093     }
4094 
4095     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4096 
4097     // If the concatenated vector was padded, extract a subvector with the
4098     // correct number of elements.
4099     if (MaskNumElts != PaddedMaskNumElts)
4100       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4101                            DAG.getVectorIdxConstant(0, DL));
4102 
4103     setValue(&I, Result);
4104     return;
4105   }
4106 
4107   if (SrcNumElts > MaskNumElts) {
4108     // Analyze the access pattern of the vector to see if we can extract
4109     // two subvectors and do the shuffle.
4110     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4111     bool CanExtract = true;
4112     for (int Idx : Mask) {
4113       unsigned Input = 0;
4114       if (Idx < 0)
4115         continue;
4116 
4117       if (Idx >= (int)SrcNumElts) {
4118         Input = 1;
4119         Idx -= SrcNumElts;
4120       }
4121 
4122       // If all the indices come from the same MaskNumElts sized portion of
4123       // the sources we can use extract. Also make sure the extract wouldn't
4124       // extract past the end of the source.
4125       int NewStartIdx = alignDown(Idx, MaskNumElts);
4126       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4127           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4128         CanExtract = false;
4129       // Make sure we always update StartIdx as we use it to track if all
4130       // elements are undef.
4131       StartIdx[Input] = NewStartIdx;
4132     }
4133 
4134     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4135       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4136       return;
4137     }
4138     if (CanExtract) {
4139       // Extract appropriate subvector and generate a vector shuffle
4140       for (unsigned Input = 0; Input < 2; ++Input) {
4141         SDValue &Src = Input == 0 ? Src1 : Src2;
4142         if (StartIdx[Input] < 0)
4143           Src = DAG.getUNDEF(VT);
4144         else {
4145           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4146                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4147         }
4148       }
4149 
4150       // Calculate new mask.
4151       SmallVector<int, 8> MappedOps(Mask);
4152       for (int &Idx : MappedOps) {
4153         if (Idx >= (int)SrcNumElts)
4154           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4155         else if (Idx >= 0)
4156           Idx -= StartIdx[0];
4157       }
4158 
4159       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4160       return;
4161     }
4162   }
4163 
4164   // We can't use either concat vectors or extract subvectors so fall back to
4165   // replacing the shuffle with extract and build vector.
4166   // to insert and build vector.
4167   EVT EltVT = VT.getVectorElementType();
4168   SmallVector<SDValue,8> Ops;
4169   for (int Idx : Mask) {
4170     SDValue Res;
4171 
4172     if (Idx < 0) {
4173       Res = DAG.getUNDEF(EltVT);
4174     } else {
4175       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4176       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4177 
4178       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4179                         DAG.getVectorIdxConstant(Idx, DL));
4180     }
4181 
4182     Ops.push_back(Res);
4183   }
4184 
4185   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4186 }
4187 
4188 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4189   ArrayRef<unsigned> Indices = I.getIndices();
4190   const Value *Op0 = I.getOperand(0);
4191   const Value *Op1 = I.getOperand(1);
4192   Type *AggTy = I.getType();
4193   Type *ValTy = Op1->getType();
4194   bool IntoUndef = isa<UndefValue>(Op0);
4195   bool FromUndef = isa<UndefValue>(Op1);
4196 
4197   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4198 
4199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4200   SmallVector<EVT, 4> AggValueVTs;
4201   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4202   SmallVector<EVT, 4> ValValueVTs;
4203   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4204 
4205   unsigned NumAggValues = AggValueVTs.size();
4206   unsigned NumValValues = ValValueVTs.size();
4207   SmallVector<SDValue, 4> Values(NumAggValues);
4208 
4209   // Ignore an insertvalue that produces an empty object
4210   if (!NumAggValues) {
4211     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4212     return;
4213   }
4214 
4215   SDValue Agg = getValue(Op0);
4216   unsigned i = 0;
4217   // Copy the beginning value(s) from the original aggregate.
4218   for (; i != LinearIndex; ++i)
4219     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4220                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4221   // Copy values from the inserted value(s).
4222   if (NumValValues) {
4223     SDValue Val = getValue(Op1);
4224     for (; i != LinearIndex + NumValValues; ++i)
4225       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4226                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4227   }
4228   // Copy remaining value(s) from the original aggregate.
4229   for (; i != NumAggValues; ++i)
4230     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4231                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4232 
4233   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4234                            DAG.getVTList(AggValueVTs), Values));
4235 }
4236 
4237 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4238   ArrayRef<unsigned> Indices = I.getIndices();
4239   const Value *Op0 = I.getOperand(0);
4240   Type *AggTy = Op0->getType();
4241   Type *ValTy = I.getType();
4242   bool OutOfUndef = isa<UndefValue>(Op0);
4243 
4244   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4245 
4246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4247   SmallVector<EVT, 4> ValValueVTs;
4248   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4249 
4250   unsigned NumValValues = ValValueVTs.size();
4251 
4252   // Ignore a extractvalue that produces an empty object
4253   if (!NumValValues) {
4254     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4255     return;
4256   }
4257 
4258   SmallVector<SDValue, 4> Values(NumValValues);
4259 
4260   SDValue Agg = getValue(Op0);
4261   // Copy out the selected value(s).
4262   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4263     Values[i - LinearIndex] =
4264       OutOfUndef ?
4265         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4266         SDValue(Agg.getNode(), Agg.getResNo() + i);
4267 
4268   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4269                            DAG.getVTList(ValValueVTs), Values));
4270 }
4271 
4272 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4273   Value *Op0 = I.getOperand(0);
4274   // Note that the pointer operand may be a vector of pointers. Take the scalar
4275   // element which holds a pointer.
4276   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4277   SDValue N = getValue(Op0);
4278   SDLoc dl = getCurSDLoc();
4279   auto &TLI = DAG.getTargetLoweringInfo();
4280 
4281   // Normalize Vector GEP - all scalar operands should be converted to the
4282   // splat vector.
4283   bool IsVectorGEP = I.getType()->isVectorTy();
4284   ElementCount VectorElementCount =
4285       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4286                   : ElementCount::getFixed(0);
4287 
4288   if (IsVectorGEP && !N.getValueType().isVector()) {
4289     LLVMContext &Context = *DAG.getContext();
4290     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4291     N = DAG.getSplat(VT, dl, N);
4292   }
4293 
4294   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4295        GTI != E; ++GTI) {
4296     const Value *Idx = GTI.getOperand();
4297     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4298       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4299       if (Field) {
4300         // N = N + Offset
4301         uint64_t Offset =
4302             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4303 
4304         // In an inbounds GEP with an offset that is nonnegative even when
4305         // interpreted as signed, assume there is no unsigned overflow.
4306         SDNodeFlags Flags;
4307         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4308           Flags.setNoUnsignedWrap(true);
4309 
4310         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4311                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4312       }
4313     } else {
4314       // IdxSize is the width of the arithmetic according to IR semantics.
4315       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4316       // (and fix up the result later).
4317       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4318       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4319       TypeSize ElementSize =
4320           GTI.getSequentialElementStride(DAG.getDataLayout());
4321       // We intentionally mask away the high bits here; ElementSize may not
4322       // fit in IdxTy.
4323       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4324       bool ElementScalable = ElementSize.isScalable();
4325 
4326       // If this is a scalar constant or a splat vector of constants,
4327       // handle it quickly.
4328       const auto *C = dyn_cast<Constant>(Idx);
4329       if (C && isa<VectorType>(C->getType()))
4330         C = C->getSplatValue();
4331 
4332       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4333       if (CI && CI->isZero())
4334         continue;
4335       if (CI && !ElementScalable) {
4336         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4337         LLVMContext &Context = *DAG.getContext();
4338         SDValue OffsVal;
4339         if (IsVectorGEP)
4340           OffsVal = DAG.getConstant(
4341               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4342         else
4343           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4344 
4345         // In an inbounds GEP with an offset that is nonnegative even when
4346         // interpreted as signed, assume there is no unsigned overflow.
4347         SDNodeFlags Flags;
4348         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4349           Flags.setNoUnsignedWrap(true);
4350 
4351         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4352 
4353         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4354         continue;
4355       }
4356 
4357       // N = N + Idx * ElementMul;
4358       SDValue IdxN = getValue(Idx);
4359 
4360       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4361         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4362                                   VectorElementCount);
4363         IdxN = DAG.getSplat(VT, dl, IdxN);
4364       }
4365 
4366       // If the index is smaller or larger than intptr_t, truncate or extend
4367       // it.
4368       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4369 
4370       if (ElementScalable) {
4371         EVT VScaleTy = N.getValueType().getScalarType();
4372         SDValue VScale = DAG.getNode(
4373             ISD::VSCALE, dl, VScaleTy,
4374             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4375         if (IsVectorGEP)
4376           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4377         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4378       } else {
4379         // If this is a multiply by a power of two, turn it into a shl
4380         // immediately.  This is a very common case.
4381         if (ElementMul != 1) {
4382           if (ElementMul.isPowerOf2()) {
4383             unsigned Amt = ElementMul.logBase2();
4384             IdxN = DAG.getNode(ISD::SHL, dl,
4385                                N.getValueType(), IdxN,
4386                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4387           } else {
4388             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4389                                             IdxN.getValueType());
4390             IdxN = DAG.getNode(ISD::MUL, dl,
4391                                N.getValueType(), IdxN, Scale);
4392           }
4393         }
4394       }
4395 
4396       N = DAG.getNode(ISD::ADD, dl,
4397                       N.getValueType(), N, IdxN);
4398     }
4399   }
4400 
4401   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4402   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4403   if (IsVectorGEP) {
4404     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4405     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4406   }
4407 
4408   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4409     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4410 
4411   setValue(&I, N);
4412 }
4413 
4414 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4415   // If this is a fixed sized alloca in the entry block of the function,
4416   // allocate it statically on the stack.
4417   if (FuncInfo.StaticAllocaMap.count(&I))
4418     return;   // getValue will auto-populate this.
4419 
4420   SDLoc dl = getCurSDLoc();
4421   Type *Ty = I.getAllocatedType();
4422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4423   auto &DL = DAG.getDataLayout();
4424   TypeSize TySize = DL.getTypeAllocSize(Ty);
4425   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4426 
4427   SDValue AllocSize = getValue(I.getArraySize());
4428 
4429   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4430   if (AllocSize.getValueType() != IntPtr)
4431     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4432 
4433   if (TySize.isScalable())
4434     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4435                             DAG.getVScale(dl, IntPtr,
4436                                           APInt(IntPtr.getScalarSizeInBits(),
4437                                                 TySize.getKnownMinValue())));
4438   else {
4439     SDValue TySizeValue =
4440         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4441     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4442                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4443   }
4444 
4445   // Handle alignment.  If the requested alignment is less than or equal to
4446   // the stack alignment, ignore it.  If the size is greater than or equal to
4447   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4448   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4449   if (*Alignment <= StackAlign)
4450     Alignment = std::nullopt;
4451 
4452   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4453   // Round the size of the allocation up to the stack alignment size
4454   // by add SA-1 to the size. This doesn't overflow because we're computing
4455   // an address inside an alloca.
4456   SDNodeFlags Flags;
4457   Flags.setNoUnsignedWrap(true);
4458   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4459                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4460 
4461   // Mask out the low bits for alignment purposes.
4462   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4463                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4464 
4465   SDValue Ops[] = {
4466       getRoot(), AllocSize,
4467       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4468   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4469   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4470   setValue(&I, DSA);
4471   DAG.setRoot(DSA.getValue(1));
4472 
4473   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4474 }
4475 
4476 static const MDNode *getRangeMetadata(const Instruction &I) {
4477   // If !noundef is not present, then !range violation results in a poison
4478   // value rather than immediate undefined behavior. In theory, transferring
4479   // these annotations to SDAG is fine, but in practice there are key SDAG
4480   // transforms that are known not to be poison-safe, such as folding logical
4481   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4482   // also present.
4483   if (!I.hasMetadata(LLVMContext::MD_noundef))
4484     return nullptr;
4485   return I.getMetadata(LLVMContext::MD_range);
4486 }
4487 
4488 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4489   if (I.isAtomic())
4490     return visitAtomicLoad(I);
4491 
4492   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4493   const Value *SV = I.getOperand(0);
4494   if (TLI.supportSwiftError()) {
4495     // Swifterror values can come from either a function parameter with
4496     // swifterror attribute or an alloca with swifterror attribute.
4497     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4498       if (Arg->hasSwiftErrorAttr())
4499         return visitLoadFromSwiftError(I);
4500     }
4501 
4502     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4503       if (Alloca->isSwiftError())
4504         return visitLoadFromSwiftError(I);
4505     }
4506   }
4507 
4508   SDValue Ptr = getValue(SV);
4509 
4510   Type *Ty = I.getType();
4511   SmallVector<EVT, 4> ValueVTs, MemVTs;
4512   SmallVector<TypeSize, 4> Offsets;
4513   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4514   unsigned NumValues = ValueVTs.size();
4515   if (NumValues == 0)
4516     return;
4517 
4518   Align Alignment = I.getAlign();
4519   AAMDNodes AAInfo = I.getAAMetadata();
4520   const MDNode *Ranges = getRangeMetadata(I);
4521   bool isVolatile = I.isVolatile();
4522   MachineMemOperand::Flags MMOFlags =
4523       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4524 
4525   SDValue Root;
4526   bool ConstantMemory = false;
4527   if (isVolatile)
4528     // Serialize volatile loads with other side effects.
4529     Root = getRoot();
4530   else if (NumValues > MaxParallelChains)
4531     Root = getMemoryRoot();
4532   else if (AA &&
4533            AA->pointsToConstantMemory(MemoryLocation(
4534                SV,
4535                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4536                AAInfo))) {
4537     // Do not serialize (non-volatile) loads of constant memory with anything.
4538     Root = DAG.getEntryNode();
4539     ConstantMemory = true;
4540     MMOFlags |= MachineMemOperand::MOInvariant;
4541   } else {
4542     // Do not serialize non-volatile loads against each other.
4543     Root = DAG.getRoot();
4544   }
4545 
4546   SDLoc dl = getCurSDLoc();
4547 
4548   if (isVolatile)
4549     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4550 
4551   SmallVector<SDValue, 4> Values(NumValues);
4552   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4553 
4554   unsigned ChainI = 0;
4555   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4556     // Serializing loads here may result in excessive register pressure, and
4557     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4558     // could recover a bit by hoisting nodes upward in the chain by recognizing
4559     // they are side-effect free or do not alias. The optimizer should really
4560     // avoid this case by converting large object/array copies to llvm.memcpy
4561     // (MaxParallelChains should always remain as failsafe).
4562     if (ChainI == MaxParallelChains) {
4563       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4564       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4565                                   ArrayRef(Chains.data(), ChainI));
4566       Root = Chain;
4567       ChainI = 0;
4568     }
4569 
4570     // TODO: MachinePointerInfo only supports a fixed length offset.
4571     MachinePointerInfo PtrInfo =
4572         !Offsets[i].isScalable() || Offsets[i].isZero()
4573             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4574             : MachinePointerInfo();
4575 
4576     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4577     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4578                             MMOFlags, AAInfo, Ranges);
4579     Chains[ChainI] = L.getValue(1);
4580 
4581     if (MemVTs[i] != ValueVTs[i])
4582       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4583 
4584     Values[i] = L;
4585   }
4586 
4587   if (!ConstantMemory) {
4588     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4589                                 ArrayRef(Chains.data(), ChainI));
4590     if (isVolatile)
4591       DAG.setRoot(Chain);
4592     else
4593       PendingLoads.push_back(Chain);
4594   }
4595 
4596   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4597                            DAG.getVTList(ValueVTs), Values));
4598 }
4599 
4600 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4601   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4602          "call visitStoreToSwiftError when backend supports swifterror");
4603 
4604   SmallVector<EVT, 4> ValueVTs;
4605   SmallVector<uint64_t, 4> Offsets;
4606   const Value *SrcV = I.getOperand(0);
4607   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4608                   SrcV->getType(), ValueVTs, &Offsets, 0);
4609   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4610          "expect a single EVT for swifterror");
4611 
4612   SDValue Src = getValue(SrcV);
4613   // Create a virtual register, then update the virtual register.
4614   Register VReg =
4615       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4616   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4617   // Chain can be getRoot or getControlRoot.
4618   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4619                                       SDValue(Src.getNode(), Src.getResNo()));
4620   DAG.setRoot(CopyNode);
4621 }
4622 
4623 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4624   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4625          "call visitLoadFromSwiftError when backend supports swifterror");
4626 
4627   assert(!I.isVolatile() &&
4628          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4629          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4630          "Support volatile, non temporal, invariant for load_from_swift_error");
4631 
4632   const Value *SV = I.getOperand(0);
4633   Type *Ty = I.getType();
4634   assert(
4635       (!AA ||
4636        !AA->pointsToConstantMemory(MemoryLocation(
4637            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4638            I.getAAMetadata()))) &&
4639       "load_from_swift_error should not be constant memory");
4640 
4641   SmallVector<EVT, 4> ValueVTs;
4642   SmallVector<uint64_t, 4> Offsets;
4643   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4644                   ValueVTs, &Offsets, 0);
4645   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4646          "expect a single EVT for swifterror");
4647 
4648   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4649   SDValue L = DAG.getCopyFromReg(
4650       getRoot(), getCurSDLoc(),
4651       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4652 
4653   setValue(&I, L);
4654 }
4655 
4656 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4657   if (I.isAtomic())
4658     return visitAtomicStore(I);
4659 
4660   const Value *SrcV = I.getOperand(0);
4661   const Value *PtrV = I.getOperand(1);
4662 
4663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4664   if (TLI.supportSwiftError()) {
4665     // Swifterror values can come from either a function parameter with
4666     // swifterror attribute or an alloca with swifterror attribute.
4667     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4668       if (Arg->hasSwiftErrorAttr())
4669         return visitStoreToSwiftError(I);
4670     }
4671 
4672     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4673       if (Alloca->isSwiftError())
4674         return visitStoreToSwiftError(I);
4675     }
4676   }
4677 
4678   SmallVector<EVT, 4> ValueVTs, MemVTs;
4679   SmallVector<TypeSize, 4> Offsets;
4680   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4681                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4682   unsigned NumValues = ValueVTs.size();
4683   if (NumValues == 0)
4684     return;
4685 
4686   // Get the lowered operands. Note that we do this after
4687   // checking if NumResults is zero, because with zero results
4688   // the operands won't have values in the map.
4689   SDValue Src = getValue(SrcV);
4690   SDValue Ptr = getValue(PtrV);
4691 
4692   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4693   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4694   SDLoc dl = getCurSDLoc();
4695   Align Alignment = I.getAlign();
4696   AAMDNodes AAInfo = I.getAAMetadata();
4697 
4698   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4699 
4700   unsigned ChainI = 0;
4701   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4702     // See visitLoad comments.
4703     if (ChainI == MaxParallelChains) {
4704       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4705                                   ArrayRef(Chains.data(), ChainI));
4706       Root = Chain;
4707       ChainI = 0;
4708     }
4709 
4710     // TODO: MachinePointerInfo only supports a fixed length offset.
4711     MachinePointerInfo PtrInfo =
4712         !Offsets[i].isScalable() || Offsets[i].isZero()
4713             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4714             : MachinePointerInfo();
4715 
4716     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4717     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4718     if (MemVTs[i] != ValueVTs[i])
4719       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4720     SDValue St =
4721         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4722     Chains[ChainI] = St;
4723   }
4724 
4725   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4726                                   ArrayRef(Chains.data(), ChainI));
4727   setValue(&I, StoreNode);
4728   DAG.setRoot(StoreNode);
4729 }
4730 
4731 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4732                                            bool IsCompressing) {
4733   SDLoc sdl = getCurSDLoc();
4734 
4735   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4736                                Align &Alignment) {
4737     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4738     Src0 = I.getArgOperand(0);
4739     Ptr = I.getArgOperand(1);
4740     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4741     Mask = I.getArgOperand(3);
4742   };
4743   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4744                                     Align &Alignment) {
4745     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4746     Src0 = I.getArgOperand(0);
4747     Ptr = I.getArgOperand(1);
4748     Mask = I.getArgOperand(2);
4749     Alignment = I.getParamAlign(1).valueOrOne();
4750   };
4751 
4752   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4753   Align Alignment;
4754   if (IsCompressing)
4755     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4756   else
4757     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4758 
4759   SDValue Ptr = getValue(PtrOperand);
4760   SDValue Src0 = getValue(Src0Operand);
4761   SDValue Mask = getValue(MaskOperand);
4762   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4763 
4764   EVT VT = Src0.getValueType();
4765 
4766   auto MMOFlags = MachineMemOperand::MOStore;
4767   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4768     MMOFlags |= MachineMemOperand::MONonTemporal;
4769 
4770   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4771       MachinePointerInfo(PtrOperand), MMOFlags,
4772       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4773   SDValue StoreNode =
4774       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4775                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4776   DAG.setRoot(StoreNode);
4777   setValue(&I, StoreNode);
4778 }
4779 
4780 // Get a uniform base for the Gather/Scatter intrinsic.
4781 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4782 // We try to represent it as a base pointer + vector of indices.
4783 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4784 // The first operand of the GEP may be a single pointer or a vector of pointers
4785 // Example:
4786 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4787 //  or
4788 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4789 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4790 //
4791 // When the first GEP operand is a single pointer - it is the uniform base we
4792 // are looking for. If first operand of the GEP is a splat vector - we
4793 // extract the splat value and use it as a uniform base.
4794 // In all other cases the function returns 'false'.
4795 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4796                            ISD::MemIndexType &IndexType, SDValue &Scale,
4797                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4798                            uint64_t ElemSize) {
4799   SelectionDAG& DAG = SDB->DAG;
4800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4801   const DataLayout &DL = DAG.getDataLayout();
4802 
4803   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4804 
4805   // Handle splat constant pointer.
4806   if (auto *C = dyn_cast<Constant>(Ptr)) {
4807     C = C->getSplatValue();
4808     if (!C)
4809       return false;
4810 
4811     Base = SDB->getValue(C);
4812 
4813     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4814     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4815     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4816     IndexType = ISD::SIGNED_SCALED;
4817     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4818     return true;
4819   }
4820 
4821   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4822   if (!GEP || GEP->getParent() != CurBB)
4823     return false;
4824 
4825   if (GEP->getNumOperands() != 2)
4826     return false;
4827 
4828   const Value *BasePtr = GEP->getPointerOperand();
4829   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4830 
4831   // Make sure the base is scalar and the index is a vector.
4832   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4833     return false;
4834 
4835   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4836   if (ScaleVal.isScalable())
4837     return false;
4838 
4839   // Target may not support the required addressing mode.
4840   if (ScaleVal != 1 &&
4841       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4842     return false;
4843 
4844   Base = SDB->getValue(BasePtr);
4845   Index = SDB->getValue(IndexVal);
4846   IndexType = ISD::SIGNED_SCALED;
4847 
4848   Scale =
4849       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4850   return true;
4851 }
4852 
4853 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4854   SDLoc sdl = getCurSDLoc();
4855 
4856   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4857   const Value *Ptr = I.getArgOperand(1);
4858   SDValue Src0 = getValue(I.getArgOperand(0));
4859   SDValue Mask = getValue(I.getArgOperand(3));
4860   EVT VT = Src0.getValueType();
4861   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4862                         ->getMaybeAlignValue()
4863                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4864   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4865 
4866   SDValue Base;
4867   SDValue Index;
4868   ISD::MemIndexType IndexType;
4869   SDValue Scale;
4870   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4871                                     I.getParent(), VT.getScalarStoreSize());
4872 
4873   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4874   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4875       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4876       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4877   if (!UniformBase) {
4878     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4879     Index = getValue(Ptr);
4880     IndexType = ISD::SIGNED_SCALED;
4881     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4882   }
4883 
4884   EVT IdxVT = Index.getValueType();
4885   EVT EltTy = IdxVT.getVectorElementType();
4886   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4887     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4888     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4889   }
4890 
4891   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4892   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4893                                          Ops, MMO, IndexType, false);
4894   DAG.setRoot(Scatter);
4895   setValue(&I, Scatter);
4896 }
4897 
4898 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4899   SDLoc sdl = getCurSDLoc();
4900 
4901   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4902                               Align &Alignment) {
4903     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4904     Ptr = I.getArgOperand(0);
4905     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4906     Mask = I.getArgOperand(2);
4907     Src0 = I.getArgOperand(3);
4908   };
4909   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4910                                  Align &Alignment) {
4911     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4912     Ptr = I.getArgOperand(0);
4913     Alignment = I.getParamAlign(0).valueOrOne();
4914     Mask = I.getArgOperand(1);
4915     Src0 = I.getArgOperand(2);
4916   };
4917 
4918   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4919   Align Alignment;
4920   if (IsExpanding)
4921     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4922   else
4923     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4924 
4925   SDValue Ptr = getValue(PtrOperand);
4926   SDValue Src0 = getValue(Src0Operand);
4927   SDValue Mask = getValue(MaskOperand);
4928   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4929 
4930   EVT VT = Src0.getValueType();
4931   AAMDNodes AAInfo = I.getAAMetadata();
4932   const MDNode *Ranges = getRangeMetadata(I);
4933 
4934   // Do not serialize masked loads of constant memory with anything.
4935   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4936   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4937 
4938   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4939 
4940   auto MMOFlags = MachineMemOperand::MOLoad;
4941   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4942     MMOFlags |= MachineMemOperand::MONonTemporal;
4943 
4944   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4945       MachinePointerInfo(PtrOperand), MMOFlags,
4946       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4947 
4948   SDValue Load =
4949       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4950                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4951   if (AddToChain)
4952     PendingLoads.push_back(Load.getValue(1));
4953   setValue(&I, Load);
4954 }
4955 
4956 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4957   SDLoc sdl = getCurSDLoc();
4958 
4959   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4960   const Value *Ptr = I.getArgOperand(0);
4961   SDValue Src0 = getValue(I.getArgOperand(3));
4962   SDValue Mask = getValue(I.getArgOperand(2));
4963 
4964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4965   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4966   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4967                         ->getMaybeAlignValue()
4968                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4969 
4970   const MDNode *Ranges = getRangeMetadata(I);
4971 
4972   SDValue Root = DAG.getRoot();
4973   SDValue Base;
4974   SDValue Index;
4975   ISD::MemIndexType IndexType;
4976   SDValue Scale;
4977   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4978                                     I.getParent(), VT.getScalarStoreSize());
4979   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4980   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4981       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4982       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
4983       Ranges);
4984 
4985   if (!UniformBase) {
4986     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4987     Index = getValue(Ptr);
4988     IndexType = ISD::SIGNED_SCALED;
4989     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4990   }
4991 
4992   EVT IdxVT = Index.getValueType();
4993   EVT EltTy = IdxVT.getVectorElementType();
4994   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4995     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4996     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4997   }
4998 
4999   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5000   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5001                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5002 
5003   PendingLoads.push_back(Gather.getValue(1));
5004   setValue(&I, Gather);
5005 }
5006 
5007 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5008   SDLoc dl = getCurSDLoc();
5009   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5010   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5011   SyncScope::ID SSID = I.getSyncScopeID();
5012 
5013   SDValue InChain = getRoot();
5014 
5015   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5016   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5017 
5018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5019   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5020 
5021   MachineFunction &MF = DAG.getMachineFunction();
5022   MachineMemOperand *MMO = MF.getMachineMemOperand(
5023       MachinePointerInfo(I.getPointerOperand()), Flags,
5024       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5025       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5026 
5027   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5028                                    dl, MemVT, VTs, InChain,
5029                                    getValue(I.getPointerOperand()),
5030                                    getValue(I.getCompareOperand()),
5031                                    getValue(I.getNewValOperand()), MMO);
5032 
5033   SDValue OutChain = L.getValue(2);
5034 
5035   setValue(&I, L);
5036   DAG.setRoot(OutChain);
5037 }
5038 
5039 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5040   SDLoc dl = getCurSDLoc();
5041   ISD::NodeType NT;
5042   switch (I.getOperation()) {
5043   default: llvm_unreachable("Unknown atomicrmw operation");
5044   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5045   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5046   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5047   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5048   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5049   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5050   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5051   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5052   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5053   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5054   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5055   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5056   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5057   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5058   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5059   case AtomicRMWInst::UIncWrap:
5060     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5061     break;
5062   case AtomicRMWInst::UDecWrap:
5063     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5064     break;
5065   }
5066   AtomicOrdering Ordering = I.getOrdering();
5067   SyncScope::ID SSID = I.getSyncScopeID();
5068 
5069   SDValue InChain = getRoot();
5070 
5071   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5073   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5074 
5075   MachineFunction &MF = DAG.getMachineFunction();
5076   MachineMemOperand *MMO = MF.getMachineMemOperand(
5077       MachinePointerInfo(I.getPointerOperand()), Flags,
5078       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5079       AAMDNodes(), nullptr, SSID, Ordering);
5080 
5081   SDValue L =
5082     DAG.getAtomic(NT, dl, MemVT, InChain,
5083                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5084                   MMO);
5085 
5086   SDValue OutChain = L.getValue(1);
5087 
5088   setValue(&I, L);
5089   DAG.setRoot(OutChain);
5090 }
5091 
5092 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5093   SDLoc dl = getCurSDLoc();
5094   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5095   SDValue Ops[3];
5096   Ops[0] = getRoot();
5097   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5098                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5099   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5100                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5101   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5102   setValue(&I, N);
5103   DAG.setRoot(N);
5104 }
5105 
5106 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5107   SDLoc dl = getCurSDLoc();
5108   AtomicOrdering Order = I.getOrdering();
5109   SyncScope::ID SSID = I.getSyncScopeID();
5110 
5111   SDValue InChain = getRoot();
5112 
5113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5114   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5115   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5116 
5117   if (!TLI.supportsUnalignedAtomics() &&
5118       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5119     report_fatal_error("Cannot generate unaligned atomic load");
5120 
5121   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5122 
5123   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5124       MachinePointerInfo(I.getPointerOperand()), Flags,
5125       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5126       nullptr, SSID, Order);
5127 
5128   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5129 
5130   SDValue Ptr = getValue(I.getPointerOperand());
5131   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5132                             Ptr, MMO);
5133 
5134   SDValue OutChain = L.getValue(1);
5135   if (MemVT != VT)
5136     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5137 
5138   setValue(&I, L);
5139   DAG.setRoot(OutChain);
5140 }
5141 
5142 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5143   SDLoc dl = getCurSDLoc();
5144 
5145   AtomicOrdering Ordering = I.getOrdering();
5146   SyncScope::ID SSID = I.getSyncScopeID();
5147 
5148   SDValue InChain = getRoot();
5149 
5150   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5151   EVT MemVT =
5152       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5153 
5154   if (!TLI.supportsUnalignedAtomics() &&
5155       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5156     report_fatal_error("Cannot generate unaligned atomic store");
5157 
5158   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5159 
5160   MachineFunction &MF = DAG.getMachineFunction();
5161   MachineMemOperand *MMO = MF.getMachineMemOperand(
5162       MachinePointerInfo(I.getPointerOperand()), Flags,
5163       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5164       nullptr, SSID, Ordering);
5165 
5166   SDValue Val = getValue(I.getValueOperand());
5167   if (Val.getValueType() != MemVT)
5168     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5169   SDValue Ptr = getValue(I.getPointerOperand());
5170 
5171   SDValue OutChain =
5172       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5173 
5174   setValue(&I, OutChain);
5175   DAG.setRoot(OutChain);
5176 }
5177 
5178 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5179 /// node.
5180 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5181                                                unsigned Intrinsic) {
5182   // Ignore the callsite's attributes. A specific call site may be marked with
5183   // readnone, but the lowering code will expect the chain based on the
5184   // definition.
5185   const Function *F = I.getCalledFunction();
5186   bool HasChain = !F->doesNotAccessMemory();
5187   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5188 
5189   // Build the operand list.
5190   SmallVector<SDValue, 8> Ops;
5191   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5192     if (OnlyLoad) {
5193       // We don't need to serialize loads against other loads.
5194       Ops.push_back(DAG.getRoot());
5195     } else {
5196       Ops.push_back(getRoot());
5197     }
5198   }
5199 
5200   // Info is set by getTgtMemIntrinsic
5201   TargetLowering::IntrinsicInfo Info;
5202   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5203   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5204                                                DAG.getMachineFunction(),
5205                                                Intrinsic);
5206 
5207   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5208   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5209       Info.opc == ISD::INTRINSIC_W_CHAIN)
5210     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5211                                         TLI.getPointerTy(DAG.getDataLayout())));
5212 
5213   // Add all operands of the call to the operand list.
5214   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5215     const Value *Arg = I.getArgOperand(i);
5216     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5217       Ops.push_back(getValue(Arg));
5218       continue;
5219     }
5220 
5221     // Use TargetConstant instead of a regular constant for immarg.
5222     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5223     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5224       assert(CI->getBitWidth() <= 64 &&
5225              "large intrinsic immediates not handled");
5226       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5227     } else {
5228       Ops.push_back(
5229           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5230     }
5231   }
5232 
5233   SmallVector<EVT, 4> ValueVTs;
5234   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5235 
5236   if (HasChain)
5237     ValueVTs.push_back(MVT::Other);
5238 
5239   SDVTList VTs = DAG.getVTList(ValueVTs);
5240 
5241   // Propagate fast-math-flags from IR to node(s).
5242   SDNodeFlags Flags;
5243   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5244     Flags.copyFMF(*FPMO);
5245   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5246 
5247   // Create the node.
5248   SDValue Result;
5249 
5250   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5251     auto *Token = Bundle->Inputs[0].get();
5252     SDValue ConvControlToken = getValue(Token);
5253     assert(Ops.back().getValueType() != MVT::Glue &&
5254            "Did not expected another glue node here.");
5255     ConvControlToken =
5256         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5257     Ops.push_back(ConvControlToken);
5258   }
5259 
5260   // In some cases, custom collection of operands from CallInst I may be needed.
5261   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5262   if (IsTgtIntrinsic) {
5263     // This is target intrinsic that touches memory
5264     //
5265     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5266     //       didn't yield anything useful.
5267     MachinePointerInfo MPI;
5268     if (Info.ptrVal)
5269       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5270     else if (Info.fallbackAddressSpace)
5271       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5272     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5273                                      Info.memVT, MPI, Info.align, Info.flags,
5274                                      Info.size, I.getAAMetadata());
5275   } else if (!HasChain) {
5276     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5277   } else if (!I.getType()->isVoidTy()) {
5278     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5279   } else {
5280     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5281   }
5282 
5283   if (HasChain) {
5284     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5285     if (OnlyLoad)
5286       PendingLoads.push_back(Chain);
5287     else
5288       DAG.setRoot(Chain);
5289   }
5290 
5291   if (!I.getType()->isVoidTy()) {
5292     if (!isa<VectorType>(I.getType()))
5293       Result = lowerRangeToAssertZExt(DAG, I, Result);
5294 
5295     MaybeAlign Alignment = I.getRetAlign();
5296 
5297     // Insert `assertalign` node if there's an alignment.
5298     if (InsertAssertAlign && Alignment) {
5299       Result =
5300           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5301     }
5302   }
5303 
5304   setValue(&I, Result);
5305 }
5306 
5307 /// GetSignificand - Get the significand and build it into a floating-point
5308 /// number with exponent of 1:
5309 ///
5310 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5311 ///
5312 /// where Op is the hexadecimal representation of floating point value.
5313 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5314   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5315                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5316   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5317                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5318   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5319 }
5320 
5321 /// GetExponent - Get the exponent:
5322 ///
5323 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5324 ///
5325 /// where Op is the hexadecimal representation of floating point value.
5326 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5327                            const TargetLowering &TLI, const SDLoc &dl) {
5328   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5329                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5330   SDValue t1 = DAG.getNode(
5331       ISD::SRL, dl, MVT::i32, t0,
5332       DAG.getConstant(23, dl,
5333                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5334   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5335                            DAG.getConstant(127, dl, MVT::i32));
5336   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5337 }
5338 
5339 /// getF32Constant - Get 32-bit floating point constant.
5340 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5341                               const SDLoc &dl) {
5342   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5343                            MVT::f32);
5344 }
5345 
5346 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5347                                        SelectionDAG &DAG) {
5348   // TODO: What fast-math-flags should be set on the floating-point nodes?
5349 
5350   //   IntegerPartOfX = ((int32_t)(t0);
5351   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5352 
5353   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5354   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5355   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5356 
5357   //   IntegerPartOfX <<= 23;
5358   IntegerPartOfX =
5359       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5360                   DAG.getConstant(23, dl,
5361                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5362                                       MVT::i32, DAG.getDataLayout())));
5363 
5364   SDValue TwoToFractionalPartOfX;
5365   if (LimitFloatPrecision <= 6) {
5366     // For floating-point precision of 6:
5367     //
5368     //   TwoToFractionalPartOfX =
5369     //     0.997535578f +
5370     //       (0.735607626f + 0.252464424f * x) * x;
5371     //
5372     // error 0.0144103317, which is 6 bits
5373     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5374                              getF32Constant(DAG, 0x3e814304, dl));
5375     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5376                              getF32Constant(DAG, 0x3f3c50c8, dl));
5377     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5378     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5379                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5380   } else if (LimitFloatPrecision <= 12) {
5381     // For floating-point precision of 12:
5382     //
5383     //   TwoToFractionalPartOfX =
5384     //     0.999892986f +
5385     //       (0.696457318f +
5386     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5387     //
5388     // error 0.000107046256, which is 13 to 14 bits
5389     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5390                              getF32Constant(DAG, 0x3da235e3, dl));
5391     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5392                              getF32Constant(DAG, 0x3e65b8f3, dl));
5393     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5394     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5395                              getF32Constant(DAG, 0x3f324b07, dl));
5396     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5397     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5398                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5399   } else { // LimitFloatPrecision <= 18
5400     // For floating-point precision of 18:
5401     //
5402     //   TwoToFractionalPartOfX =
5403     //     0.999999982f +
5404     //       (0.693148872f +
5405     //         (0.240227044f +
5406     //           (0.554906021e-1f +
5407     //             (0.961591928e-2f +
5408     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5409     // error 2.47208000*10^(-7), which is better than 18 bits
5410     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5411                              getF32Constant(DAG, 0x3924b03e, dl));
5412     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5413                              getF32Constant(DAG, 0x3ab24b87, dl));
5414     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5415     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5416                              getF32Constant(DAG, 0x3c1d8c17, dl));
5417     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5418     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5419                              getF32Constant(DAG, 0x3d634a1d, dl));
5420     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5421     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5422                              getF32Constant(DAG, 0x3e75fe14, dl));
5423     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5424     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5425                               getF32Constant(DAG, 0x3f317234, dl));
5426     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5427     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5428                                          getF32Constant(DAG, 0x3f800000, dl));
5429   }
5430 
5431   // Add the exponent into the result in integer domain.
5432   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5433   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5434                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5435 }
5436 
5437 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5438 /// limited-precision mode.
5439 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5440                          const TargetLowering &TLI, SDNodeFlags Flags) {
5441   if (Op.getValueType() == MVT::f32 &&
5442       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5443 
5444     // Put the exponent in the right bit position for later addition to the
5445     // final result:
5446     //
5447     // t0 = Op * log2(e)
5448 
5449     // TODO: What fast-math-flags should be set here?
5450     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5451                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5452     return getLimitedPrecisionExp2(t0, dl, DAG);
5453   }
5454 
5455   // No special expansion.
5456   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5457 }
5458 
5459 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5460 /// limited-precision mode.
5461 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5462                          const TargetLowering &TLI, SDNodeFlags Flags) {
5463   // TODO: What fast-math-flags should be set on the floating-point nodes?
5464 
5465   if (Op.getValueType() == MVT::f32 &&
5466       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5467     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5468 
5469     // Scale the exponent by log(2).
5470     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5471     SDValue LogOfExponent =
5472         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5473                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5474 
5475     // Get the significand and build it into a floating-point number with
5476     // exponent of 1.
5477     SDValue X = GetSignificand(DAG, Op1, dl);
5478 
5479     SDValue LogOfMantissa;
5480     if (LimitFloatPrecision <= 6) {
5481       // For floating-point precision of 6:
5482       //
5483       //   LogofMantissa =
5484       //     -1.1609546f +
5485       //       (1.4034025f - 0.23903021f * x) * x;
5486       //
5487       // error 0.0034276066, which is better than 8 bits
5488       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5489                                getF32Constant(DAG, 0xbe74c456, dl));
5490       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5491                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5492       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5493       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5494                                   getF32Constant(DAG, 0x3f949a29, dl));
5495     } else if (LimitFloatPrecision <= 12) {
5496       // For floating-point precision of 12:
5497       //
5498       //   LogOfMantissa =
5499       //     -1.7417939f +
5500       //       (2.8212026f +
5501       //         (-1.4699568f +
5502       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5503       //
5504       // error 0.000061011436, which is 14 bits
5505       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5506                                getF32Constant(DAG, 0xbd67b6d6, dl));
5507       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5508                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5509       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5510       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5511                                getF32Constant(DAG, 0x3fbc278b, dl));
5512       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5513       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5514                                getF32Constant(DAG, 0x40348e95, dl));
5515       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5516       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5517                                   getF32Constant(DAG, 0x3fdef31a, dl));
5518     } else { // LimitFloatPrecision <= 18
5519       // For floating-point precision of 18:
5520       //
5521       //   LogOfMantissa =
5522       //     -2.1072184f +
5523       //       (4.2372794f +
5524       //         (-3.7029485f +
5525       //           (2.2781945f +
5526       //             (-0.87823314f +
5527       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5528       //
5529       // error 0.0000023660568, which is better than 18 bits
5530       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5531                                getF32Constant(DAG, 0xbc91e5ac, dl));
5532       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5533                                getF32Constant(DAG, 0x3e4350aa, dl));
5534       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5535       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5536                                getF32Constant(DAG, 0x3f60d3e3, dl));
5537       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5538       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5539                                getF32Constant(DAG, 0x4011cdf0, dl));
5540       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5541       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5542                                getF32Constant(DAG, 0x406cfd1c, dl));
5543       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5544       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5545                                getF32Constant(DAG, 0x408797cb, dl));
5546       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5547       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5548                                   getF32Constant(DAG, 0x4006dcab, dl));
5549     }
5550 
5551     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5552   }
5553 
5554   // No special expansion.
5555   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5556 }
5557 
5558 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5559 /// limited-precision mode.
5560 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5561                           const TargetLowering &TLI, SDNodeFlags Flags) {
5562   // TODO: What fast-math-flags should be set on the floating-point nodes?
5563 
5564   if (Op.getValueType() == MVT::f32 &&
5565       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5566     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5567 
5568     // Get the exponent.
5569     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5570 
5571     // Get the significand and build it into a floating-point number with
5572     // exponent of 1.
5573     SDValue X = GetSignificand(DAG, Op1, dl);
5574 
5575     // Different possible minimax approximations of significand in
5576     // floating-point for various degrees of accuracy over [1,2].
5577     SDValue Log2ofMantissa;
5578     if (LimitFloatPrecision <= 6) {
5579       // For floating-point precision of 6:
5580       //
5581       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5582       //
5583       // error 0.0049451742, which is more than 7 bits
5584       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5585                                getF32Constant(DAG, 0xbeb08fe0, dl));
5586       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5587                                getF32Constant(DAG, 0x40019463, dl));
5588       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5589       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5590                                    getF32Constant(DAG, 0x3fd6633d, dl));
5591     } else if (LimitFloatPrecision <= 12) {
5592       // For floating-point precision of 12:
5593       //
5594       //   Log2ofMantissa =
5595       //     -2.51285454f +
5596       //       (4.07009056f +
5597       //         (-2.12067489f +
5598       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5599       //
5600       // error 0.0000876136000, which is better than 13 bits
5601       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5602                                getF32Constant(DAG, 0xbda7262e, dl));
5603       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5604                                getF32Constant(DAG, 0x3f25280b, dl));
5605       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5606       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5607                                getF32Constant(DAG, 0x4007b923, dl));
5608       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5609       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5610                                getF32Constant(DAG, 0x40823e2f, dl));
5611       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5612       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5613                                    getF32Constant(DAG, 0x4020d29c, dl));
5614     } else { // LimitFloatPrecision <= 18
5615       // For floating-point precision of 18:
5616       //
5617       //   Log2ofMantissa =
5618       //     -3.0400495f +
5619       //       (6.1129976f +
5620       //         (-5.3420409f +
5621       //           (3.2865683f +
5622       //             (-1.2669343f +
5623       //               (0.27515199f -
5624       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5625       //
5626       // error 0.0000018516, which is better than 18 bits
5627       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5628                                getF32Constant(DAG, 0xbcd2769e, dl));
5629       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5630                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5631       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5632       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5633                                getF32Constant(DAG, 0x3fa22ae7, dl));
5634       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5635       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5636                                getF32Constant(DAG, 0x40525723, dl));
5637       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5638       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5639                                getF32Constant(DAG, 0x40aaf200, dl));
5640       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5641       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5642                                getF32Constant(DAG, 0x40c39dad, dl));
5643       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5644       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5645                                    getF32Constant(DAG, 0x4042902c, dl));
5646     }
5647 
5648     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5649   }
5650 
5651   // No special expansion.
5652   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5653 }
5654 
5655 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5656 /// limited-precision mode.
5657 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5658                            const TargetLowering &TLI, SDNodeFlags Flags) {
5659   // TODO: What fast-math-flags should be set on the floating-point nodes?
5660 
5661   if (Op.getValueType() == MVT::f32 &&
5662       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5663     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5664 
5665     // Scale the exponent by log10(2) [0.30102999f].
5666     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5667     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5668                                         getF32Constant(DAG, 0x3e9a209a, dl));
5669 
5670     // Get the significand and build it into a floating-point number with
5671     // exponent of 1.
5672     SDValue X = GetSignificand(DAG, Op1, dl);
5673 
5674     SDValue Log10ofMantissa;
5675     if (LimitFloatPrecision <= 6) {
5676       // For floating-point precision of 6:
5677       //
5678       //   Log10ofMantissa =
5679       //     -0.50419619f +
5680       //       (0.60948995f - 0.10380950f * x) * x;
5681       //
5682       // error 0.0014886165, which is 6 bits
5683       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5684                                getF32Constant(DAG, 0xbdd49a13, dl));
5685       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5686                                getF32Constant(DAG, 0x3f1c0789, dl));
5687       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5688       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5689                                     getF32Constant(DAG, 0x3f011300, dl));
5690     } else if (LimitFloatPrecision <= 12) {
5691       // For floating-point precision of 12:
5692       //
5693       //   Log10ofMantissa =
5694       //     -0.64831180f +
5695       //       (0.91751397f +
5696       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5697       //
5698       // error 0.00019228036, which is better than 12 bits
5699       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5700                                getF32Constant(DAG, 0x3d431f31, dl));
5701       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5702                                getF32Constant(DAG, 0x3ea21fb2, dl));
5703       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5704       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5705                                getF32Constant(DAG, 0x3f6ae232, dl));
5706       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5707       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5708                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5709     } else { // LimitFloatPrecision <= 18
5710       // For floating-point precision of 18:
5711       //
5712       //   Log10ofMantissa =
5713       //     -0.84299375f +
5714       //       (1.5327582f +
5715       //         (-1.0688956f +
5716       //           (0.49102474f +
5717       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5718       //
5719       // error 0.0000037995730, which is better than 18 bits
5720       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5721                                getF32Constant(DAG, 0x3c5d51ce, dl));
5722       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5723                                getF32Constant(DAG, 0x3e00685a, dl));
5724       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5725       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5726                                getF32Constant(DAG, 0x3efb6798, dl));
5727       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5728       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5729                                getF32Constant(DAG, 0x3f88d192, dl));
5730       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5731       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5732                                getF32Constant(DAG, 0x3fc4316c, dl));
5733       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5734       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5735                                     getF32Constant(DAG, 0x3f57ce70, dl));
5736     }
5737 
5738     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5739   }
5740 
5741   // No special expansion.
5742   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5743 }
5744 
5745 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5746 /// limited-precision mode.
5747 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5748                           const TargetLowering &TLI, SDNodeFlags Flags) {
5749   if (Op.getValueType() == MVT::f32 &&
5750       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5751     return getLimitedPrecisionExp2(Op, dl, DAG);
5752 
5753   // No special expansion.
5754   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5755 }
5756 
5757 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5758 /// limited-precision mode with x == 10.0f.
5759 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5760                          SelectionDAG &DAG, const TargetLowering &TLI,
5761                          SDNodeFlags Flags) {
5762   bool IsExp10 = false;
5763   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5764       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5765     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5766       APFloat Ten(10.0f);
5767       IsExp10 = LHSC->isExactlyValue(Ten);
5768     }
5769   }
5770 
5771   // TODO: What fast-math-flags should be set on the FMUL node?
5772   if (IsExp10) {
5773     // Put the exponent in the right bit position for later addition to the
5774     // final result:
5775     //
5776     //   #define LOG2OF10 3.3219281f
5777     //   t0 = Op * LOG2OF10;
5778     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5779                              getF32Constant(DAG, 0x40549a78, dl));
5780     return getLimitedPrecisionExp2(t0, dl, DAG);
5781   }
5782 
5783   // No special expansion.
5784   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5785 }
5786 
5787 /// ExpandPowI - Expand a llvm.powi intrinsic.
5788 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5789                           SelectionDAG &DAG) {
5790   // If RHS is a constant, we can expand this out to a multiplication tree if
5791   // it's beneficial on the target, otherwise we end up lowering to a call to
5792   // __powidf2 (for example).
5793   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5794     unsigned Val = RHSC->getSExtValue();
5795 
5796     // powi(x, 0) -> 1.0
5797     if (Val == 0)
5798       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5799 
5800     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5801             Val, DAG.shouldOptForSize())) {
5802       // Get the exponent as a positive value.
5803       if ((int)Val < 0)
5804         Val = -Val;
5805       // We use the simple binary decomposition method to generate the multiply
5806       // sequence.  There are more optimal ways to do this (for example,
5807       // powi(x,15) generates one more multiply than it should), but this has
5808       // the benefit of being both really simple and much better than a libcall.
5809       SDValue Res; // Logically starts equal to 1.0
5810       SDValue CurSquare = LHS;
5811       // TODO: Intrinsics should have fast-math-flags that propagate to these
5812       // nodes.
5813       while (Val) {
5814         if (Val & 1) {
5815           if (Res.getNode())
5816             Res =
5817                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5818           else
5819             Res = CurSquare; // 1.0*CurSquare.
5820         }
5821 
5822         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5823                                 CurSquare, CurSquare);
5824         Val >>= 1;
5825       }
5826 
5827       // If the original was negative, invert the result, producing 1/(x*x*x).
5828       if (RHSC->getSExtValue() < 0)
5829         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5830                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5831       return Res;
5832     }
5833   }
5834 
5835   // Otherwise, expand to a libcall.
5836   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5837 }
5838 
5839 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5840                             SDValue LHS, SDValue RHS, SDValue Scale,
5841                             SelectionDAG &DAG, const TargetLowering &TLI) {
5842   EVT VT = LHS.getValueType();
5843   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5844   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5845   LLVMContext &Ctx = *DAG.getContext();
5846 
5847   // If the type is legal but the operation isn't, this node might survive all
5848   // the way to operation legalization. If we end up there and we do not have
5849   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5850   // node.
5851 
5852   // Coax the legalizer into expanding the node during type legalization instead
5853   // by bumping the size by one bit. This will force it to Promote, enabling the
5854   // early expansion and avoiding the need to expand later.
5855 
5856   // We don't have to do this if Scale is 0; that can always be expanded, unless
5857   // it's a saturating signed operation. Those can experience true integer
5858   // division overflow, a case which we must avoid.
5859 
5860   // FIXME: We wouldn't have to do this (or any of the early
5861   // expansion/promotion) if it was possible to expand a libcall of an
5862   // illegal type during operation legalization. But it's not, so things
5863   // get a bit hacky.
5864   unsigned ScaleInt = Scale->getAsZExtVal();
5865   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5866       (TLI.isTypeLegal(VT) ||
5867        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5868     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5869         Opcode, VT, ScaleInt);
5870     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5871       EVT PromVT;
5872       if (VT.isScalarInteger())
5873         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5874       else if (VT.isVector()) {
5875         PromVT = VT.getVectorElementType();
5876         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5877         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5878       } else
5879         llvm_unreachable("Wrong VT for DIVFIX?");
5880       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5881       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5882       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5883       // For saturating operations, we need to shift up the LHS to get the
5884       // proper saturation width, and then shift down again afterwards.
5885       if (Saturating)
5886         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5887                           DAG.getConstant(1, DL, ShiftTy));
5888       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5889       if (Saturating)
5890         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5891                           DAG.getConstant(1, DL, ShiftTy));
5892       return DAG.getZExtOrTrunc(Res, DL, VT);
5893     }
5894   }
5895 
5896   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5897 }
5898 
5899 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5900 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5901 static void
5902 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5903                      const SDValue &N) {
5904   switch (N.getOpcode()) {
5905   case ISD::CopyFromReg: {
5906     SDValue Op = N.getOperand(1);
5907     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5908                       Op.getValueType().getSizeInBits());
5909     return;
5910   }
5911   case ISD::BITCAST:
5912   case ISD::AssertZext:
5913   case ISD::AssertSext:
5914   case ISD::TRUNCATE:
5915     getUnderlyingArgRegs(Regs, N.getOperand(0));
5916     return;
5917   case ISD::BUILD_PAIR:
5918   case ISD::BUILD_VECTOR:
5919   case ISD::CONCAT_VECTORS:
5920     for (SDValue Op : N->op_values())
5921       getUnderlyingArgRegs(Regs, Op);
5922     return;
5923   default:
5924     return;
5925   }
5926 }
5927 
5928 /// If the DbgValueInst is a dbg_value of a function argument, create the
5929 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5930 /// instruction selection, they will be inserted to the entry BB.
5931 /// We don't currently support this for variadic dbg_values, as they shouldn't
5932 /// appear for function arguments or in the prologue.
5933 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5934     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5935     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5936   const Argument *Arg = dyn_cast<Argument>(V);
5937   if (!Arg)
5938     return false;
5939 
5940   MachineFunction &MF = DAG.getMachineFunction();
5941   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5942 
5943   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5944   // we've been asked to pursue.
5945   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5946                               bool Indirect) {
5947     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5948       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5949       // pointing at the VReg, which will be patched up later.
5950       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5951       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5952           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5953           /* isKill */ false, /* isDead */ false,
5954           /* isUndef */ false, /* isEarlyClobber */ false,
5955           /* SubReg */ 0, /* isDebug */ true)});
5956 
5957       auto *NewDIExpr = FragExpr;
5958       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5959       // the DIExpression.
5960       if (Indirect)
5961         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5962       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5963       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5964       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5965     } else {
5966       // Create a completely standard DBG_VALUE.
5967       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5968       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5969     }
5970   };
5971 
5972   if (Kind == FuncArgumentDbgValueKind::Value) {
5973     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5974     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5975     // the entry block.
5976     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5977     if (!IsInEntryBlock)
5978       return false;
5979 
5980     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5981     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5982     // variable that also is a param.
5983     //
5984     // Although, if we are at the top of the entry block already, we can still
5985     // emit using ArgDbgValue. This might catch some situations when the
5986     // dbg.value refers to an argument that isn't used in the entry block, so
5987     // any CopyToReg node would be optimized out and the only way to express
5988     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5989     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5990     // we should only emit as ArgDbgValue if the Variable is an argument to the
5991     // current function, and the dbg.value intrinsic is found in the entry
5992     // block.
5993     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5994         !DL->getInlinedAt();
5995     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5996     if (!IsInPrologue && !VariableIsFunctionInputArg)
5997       return false;
5998 
5999     // Here we assume that a function argument on IR level only can be used to
6000     // describe one input parameter on source level. If we for example have
6001     // source code like this
6002     //
6003     //    struct A { long x, y; };
6004     //    void foo(struct A a, long b) {
6005     //      ...
6006     //      b = a.x;
6007     //      ...
6008     //    }
6009     //
6010     // and IR like this
6011     //
6012     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6013     //  entry:
6014     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6015     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6016     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6017     //    ...
6018     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6019     //    ...
6020     //
6021     // then the last dbg.value is describing a parameter "b" using a value that
6022     // is an argument. But since we already has used %a1 to describe a parameter
6023     // we should not handle that last dbg.value here (that would result in an
6024     // incorrect hoisting of the DBG_VALUE to the function entry).
6025     // Notice that we allow one dbg.value per IR level argument, to accommodate
6026     // for the situation with fragments above.
6027     // If there is no node for the value being handled, we return true to skip
6028     // the normal generation of debug info, as it would kill existing debug
6029     // info for the parameter in case of duplicates.
6030     if (VariableIsFunctionInputArg) {
6031       unsigned ArgNo = Arg->getArgNo();
6032       if (ArgNo >= FuncInfo.DescribedArgs.size())
6033         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6034       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6035         return !NodeMap[V].getNode();
6036       FuncInfo.DescribedArgs.set(ArgNo);
6037     }
6038   }
6039 
6040   bool IsIndirect = false;
6041   std::optional<MachineOperand> Op;
6042   // Some arguments' frame index is recorded during argument lowering.
6043   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6044   if (FI != std::numeric_limits<int>::max())
6045     Op = MachineOperand::CreateFI(FI);
6046 
6047   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6048   if (!Op && N.getNode()) {
6049     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6050     Register Reg;
6051     if (ArgRegsAndSizes.size() == 1)
6052       Reg = ArgRegsAndSizes.front().first;
6053 
6054     if (Reg && Reg.isVirtual()) {
6055       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6056       Register PR = RegInfo.getLiveInPhysReg(Reg);
6057       if (PR)
6058         Reg = PR;
6059     }
6060     if (Reg) {
6061       Op = MachineOperand::CreateReg(Reg, false);
6062       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6063     }
6064   }
6065 
6066   if (!Op && N.getNode()) {
6067     // Check if frame index is available.
6068     SDValue LCandidate = peekThroughBitcasts(N);
6069     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6070       if (FrameIndexSDNode *FINode =
6071           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6072         Op = MachineOperand::CreateFI(FINode->getIndex());
6073   }
6074 
6075   if (!Op) {
6076     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6077     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6078                                          SplitRegs) {
6079       unsigned Offset = 0;
6080       for (const auto &RegAndSize : SplitRegs) {
6081         // If the expression is already a fragment, the current register
6082         // offset+size might extend beyond the fragment. In this case, only
6083         // the register bits that are inside the fragment are relevant.
6084         int RegFragmentSizeInBits = RegAndSize.second;
6085         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6086           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6087           // The register is entirely outside the expression fragment,
6088           // so is irrelevant for debug info.
6089           if (Offset >= ExprFragmentSizeInBits)
6090             break;
6091           // The register is partially outside the expression fragment, only
6092           // the low bits within the fragment are relevant for debug info.
6093           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6094             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6095           }
6096         }
6097 
6098         auto FragmentExpr = DIExpression::createFragmentExpression(
6099             Expr, Offset, RegFragmentSizeInBits);
6100         Offset += RegAndSize.second;
6101         // If a valid fragment expression cannot be created, the variable's
6102         // correct value cannot be determined and so it is set as Undef.
6103         if (!FragmentExpr) {
6104           SDDbgValue *SDV = DAG.getConstantDbgValue(
6105               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6106           DAG.AddDbgValue(SDV, false);
6107           continue;
6108         }
6109         MachineInstr *NewMI =
6110             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6111                              Kind != FuncArgumentDbgValueKind::Value);
6112         FuncInfo.ArgDbgValues.push_back(NewMI);
6113       }
6114     };
6115 
6116     // Check if ValueMap has reg number.
6117     DenseMap<const Value *, Register>::const_iterator
6118       VMI = FuncInfo.ValueMap.find(V);
6119     if (VMI != FuncInfo.ValueMap.end()) {
6120       const auto &TLI = DAG.getTargetLoweringInfo();
6121       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6122                        V->getType(), std::nullopt);
6123       if (RFV.occupiesMultipleRegs()) {
6124         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6125         return true;
6126       }
6127 
6128       Op = MachineOperand::CreateReg(VMI->second, false);
6129       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6130     } else if (ArgRegsAndSizes.size() > 1) {
6131       // This was split due to the calling convention, and no virtual register
6132       // mapping exists for the value.
6133       splitMultiRegDbgValue(ArgRegsAndSizes);
6134       return true;
6135     }
6136   }
6137 
6138   if (!Op)
6139     return false;
6140 
6141   assert(Variable->isValidLocationForIntrinsic(DL) &&
6142          "Expected inlined-at fields to agree");
6143   MachineInstr *NewMI = nullptr;
6144 
6145   if (Op->isReg())
6146     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6147   else
6148     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6149                     Variable, Expr);
6150 
6151   // Otherwise, use ArgDbgValues.
6152   FuncInfo.ArgDbgValues.push_back(NewMI);
6153   return true;
6154 }
6155 
6156 /// Return the appropriate SDDbgValue based on N.
6157 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6158                                              DILocalVariable *Variable,
6159                                              DIExpression *Expr,
6160                                              const DebugLoc &dl,
6161                                              unsigned DbgSDNodeOrder) {
6162   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6163     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6164     // stack slot locations.
6165     //
6166     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6167     // debug values here after optimization:
6168     //
6169     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6170     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6171     //
6172     // Both describe the direct values of their associated variables.
6173     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6174                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6175   }
6176   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6177                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6178 }
6179 
6180 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6181   switch (Intrinsic) {
6182   case Intrinsic::smul_fix:
6183     return ISD::SMULFIX;
6184   case Intrinsic::umul_fix:
6185     return ISD::UMULFIX;
6186   case Intrinsic::smul_fix_sat:
6187     return ISD::SMULFIXSAT;
6188   case Intrinsic::umul_fix_sat:
6189     return ISD::UMULFIXSAT;
6190   case Intrinsic::sdiv_fix:
6191     return ISD::SDIVFIX;
6192   case Intrinsic::udiv_fix:
6193     return ISD::UDIVFIX;
6194   case Intrinsic::sdiv_fix_sat:
6195     return ISD::SDIVFIXSAT;
6196   case Intrinsic::udiv_fix_sat:
6197     return ISD::UDIVFIXSAT;
6198   default:
6199     llvm_unreachable("Unhandled fixed point intrinsic");
6200   }
6201 }
6202 
6203 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6204                                            const char *FunctionName) {
6205   assert(FunctionName && "FunctionName must not be nullptr");
6206   SDValue Callee = DAG.getExternalSymbol(
6207       FunctionName,
6208       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6209   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6210 }
6211 
6212 /// Given a @llvm.call.preallocated.setup, return the corresponding
6213 /// preallocated call.
6214 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6215   assert(cast<CallBase>(PreallocatedSetup)
6216                  ->getCalledFunction()
6217                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6218          "expected call_preallocated_setup Value");
6219   for (const auto *U : PreallocatedSetup->users()) {
6220     auto *UseCall = cast<CallBase>(U);
6221     const Function *Fn = UseCall->getCalledFunction();
6222     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6223       return UseCall;
6224     }
6225   }
6226   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6227 }
6228 
6229 /// If DI is a debug value with an EntryValue expression, lower it using the
6230 /// corresponding physical register of the associated Argument value
6231 /// (guaranteed to exist by the verifier).
6232 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6233     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6234     DIExpression *Expr, DebugLoc DbgLoc) {
6235   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6236     return false;
6237 
6238   // These properties are guaranteed by the verifier.
6239   const Argument *Arg = cast<Argument>(Values[0]);
6240   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6241 
6242   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6243   if (ArgIt == FuncInfo.ValueMap.end()) {
6244     LLVM_DEBUG(
6245         dbgs() << "Dropping dbg.value: expression is entry_value but "
6246                   "couldn't find an associated register for the Argument\n");
6247     return true;
6248   }
6249   Register ArgVReg = ArgIt->getSecond();
6250 
6251   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6252     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6253       SDDbgValue *SDV = DAG.getVRegDbgValue(
6254           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6255       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6256       return true;
6257     }
6258   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6259                        "couldn't find a physical register\n");
6260   return true;
6261 }
6262 
6263 /// Lower the call to the specified intrinsic function.
6264 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6265                                                   unsigned Intrinsic) {
6266   SDLoc sdl = getCurSDLoc();
6267   switch (Intrinsic) {
6268   case Intrinsic::experimental_convergence_anchor:
6269     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6270     break;
6271   case Intrinsic::experimental_convergence_entry:
6272     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6273     break;
6274   case Intrinsic::experimental_convergence_loop: {
6275     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6276     auto *Token = Bundle->Inputs[0].get();
6277     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6278                              getValue(Token)));
6279     break;
6280   }
6281   }
6282 }
6283 
6284 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6285                                                unsigned IntrinsicID) {
6286   // For now, we're only lowering an 'add' histogram.
6287   // We can add others later, e.g. saturating adds, min/max.
6288   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6289          "Tried to lower unsupported histogram type");
6290   SDLoc sdl = getCurSDLoc();
6291   Value *Ptr = I.getOperand(0);
6292   SDValue Inc = getValue(I.getOperand(1));
6293   SDValue Mask = getValue(I.getOperand(2));
6294 
6295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6296   DataLayout TargetDL = DAG.getDataLayout();
6297   EVT VT = Inc.getValueType();
6298   Align Alignment = DAG.getEVTAlign(VT);
6299 
6300   const MDNode *Ranges = getRangeMetadata(I);
6301 
6302   SDValue Root = DAG.getRoot();
6303   SDValue Base;
6304   SDValue Index;
6305   ISD::MemIndexType IndexType;
6306   SDValue Scale;
6307   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6308                                     I.getParent(), VT.getScalarStoreSize());
6309 
6310   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6311 
6312   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6313       MachinePointerInfo(AS),
6314       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6315       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6316 
6317   if (!UniformBase) {
6318     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6319     Index = getValue(Ptr);
6320     IndexType = ISD::SIGNED_SCALED;
6321     Scale =
6322         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6323   }
6324 
6325   EVT IdxVT = Index.getValueType();
6326   EVT EltTy = IdxVT.getVectorElementType();
6327   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6328     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6329     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6330   }
6331 
6332   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6333 
6334   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6335   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6336                                              Ops, MMO, IndexType);
6337 
6338   setValue(&I, Histogram);
6339   DAG.setRoot(Histogram);
6340 }
6341 
6342 /// Lower the call to the specified intrinsic function.
6343 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6344                                              unsigned Intrinsic) {
6345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6346   SDLoc sdl = getCurSDLoc();
6347   DebugLoc dl = getCurDebugLoc();
6348   SDValue Res;
6349 
6350   SDNodeFlags Flags;
6351   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6352     Flags.copyFMF(*FPOp);
6353 
6354   switch (Intrinsic) {
6355   default:
6356     // By default, turn this into a target intrinsic node.
6357     visitTargetIntrinsic(I, Intrinsic);
6358     return;
6359   case Intrinsic::vscale: {
6360     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6361     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6362     return;
6363   }
6364   case Intrinsic::vastart:  visitVAStart(I); return;
6365   case Intrinsic::vaend:    visitVAEnd(I); return;
6366   case Intrinsic::vacopy:   visitVACopy(I); return;
6367   case Intrinsic::returnaddress:
6368     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6369                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6370                              getValue(I.getArgOperand(0))));
6371     return;
6372   case Intrinsic::addressofreturnaddress:
6373     setValue(&I,
6374              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6375                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6376     return;
6377   case Intrinsic::sponentry:
6378     setValue(&I,
6379              DAG.getNode(ISD::SPONENTRY, sdl,
6380                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6381     return;
6382   case Intrinsic::frameaddress:
6383     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6384                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6385                              getValue(I.getArgOperand(0))));
6386     return;
6387   case Intrinsic::read_volatile_register:
6388   case Intrinsic::read_register: {
6389     Value *Reg = I.getArgOperand(0);
6390     SDValue Chain = getRoot();
6391     SDValue RegName =
6392         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6393     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6394     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6395       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6396     setValue(&I, Res);
6397     DAG.setRoot(Res.getValue(1));
6398     return;
6399   }
6400   case Intrinsic::write_register: {
6401     Value *Reg = I.getArgOperand(0);
6402     Value *RegValue = I.getArgOperand(1);
6403     SDValue Chain = getRoot();
6404     SDValue RegName =
6405         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6406     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6407                             RegName, getValue(RegValue)));
6408     return;
6409   }
6410   case Intrinsic::memcpy: {
6411     const auto &MCI = cast<MemCpyInst>(I);
6412     SDValue Op1 = getValue(I.getArgOperand(0));
6413     SDValue Op2 = getValue(I.getArgOperand(1));
6414     SDValue Op3 = getValue(I.getArgOperand(2));
6415     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6416     Align DstAlign = MCI.getDestAlign().valueOrOne();
6417     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6418     Align Alignment = std::min(DstAlign, SrcAlign);
6419     bool isVol = MCI.isVolatile();
6420     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6421     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6422     // node.
6423     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6424     SDValue MC = DAG.getMemcpy(
6425         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6426         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6427         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6428     updateDAGForMaybeTailCall(MC);
6429     return;
6430   }
6431   case Intrinsic::memcpy_inline: {
6432     const auto &MCI = cast<MemCpyInlineInst>(I);
6433     SDValue Dst = getValue(I.getArgOperand(0));
6434     SDValue Src = getValue(I.getArgOperand(1));
6435     SDValue Size = getValue(I.getArgOperand(2));
6436     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6437     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6438     Align DstAlign = MCI.getDestAlign().valueOrOne();
6439     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6440     Align Alignment = std::min(DstAlign, SrcAlign);
6441     bool isVol = MCI.isVolatile();
6442     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6443     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6444     // node.
6445     SDValue MC = DAG.getMemcpy(
6446         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6447         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6448         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6449     updateDAGForMaybeTailCall(MC);
6450     return;
6451   }
6452   case Intrinsic::memset: {
6453     const auto &MSI = cast<MemSetInst>(I);
6454     SDValue Op1 = getValue(I.getArgOperand(0));
6455     SDValue Op2 = getValue(I.getArgOperand(1));
6456     SDValue Op3 = getValue(I.getArgOperand(2));
6457     // @llvm.memset defines 0 and 1 to both mean no alignment.
6458     Align Alignment = MSI.getDestAlign().valueOrOne();
6459     bool isVol = MSI.isVolatile();
6460     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6461     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6462     SDValue MS = DAG.getMemset(
6463         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6464         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6465     updateDAGForMaybeTailCall(MS);
6466     return;
6467   }
6468   case Intrinsic::memset_inline: {
6469     const auto &MSII = cast<MemSetInlineInst>(I);
6470     SDValue Dst = getValue(I.getArgOperand(0));
6471     SDValue Value = getValue(I.getArgOperand(1));
6472     SDValue Size = getValue(I.getArgOperand(2));
6473     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6474     // @llvm.memset defines 0 and 1 to both mean no alignment.
6475     Align DstAlign = MSII.getDestAlign().valueOrOne();
6476     bool isVol = MSII.isVolatile();
6477     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6478     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6479     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6480                                /* AlwaysInline */ true, isTC,
6481                                MachinePointerInfo(I.getArgOperand(0)),
6482                                I.getAAMetadata());
6483     updateDAGForMaybeTailCall(MC);
6484     return;
6485   }
6486   case Intrinsic::memmove: {
6487     const auto &MMI = cast<MemMoveInst>(I);
6488     SDValue Op1 = getValue(I.getArgOperand(0));
6489     SDValue Op2 = getValue(I.getArgOperand(1));
6490     SDValue Op3 = getValue(I.getArgOperand(2));
6491     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6492     Align DstAlign = MMI.getDestAlign().valueOrOne();
6493     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6494     Align Alignment = std::min(DstAlign, SrcAlign);
6495     bool isVol = MMI.isVolatile();
6496     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6497     // FIXME: Support passing different dest/src alignments to the memmove DAG
6498     // node.
6499     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6500     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6501                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6502                                 MachinePointerInfo(I.getArgOperand(1)),
6503                                 I.getAAMetadata(), AA);
6504     updateDAGForMaybeTailCall(MM);
6505     return;
6506   }
6507   case Intrinsic::memcpy_element_unordered_atomic: {
6508     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6509     SDValue Dst = getValue(MI.getRawDest());
6510     SDValue Src = getValue(MI.getRawSource());
6511     SDValue Length = getValue(MI.getLength());
6512 
6513     Type *LengthTy = MI.getLength()->getType();
6514     unsigned ElemSz = MI.getElementSizeInBytes();
6515     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6516     SDValue MC =
6517         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6518                             isTC, MachinePointerInfo(MI.getRawDest()),
6519                             MachinePointerInfo(MI.getRawSource()));
6520     updateDAGForMaybeTailCall(MC);
6521     return;
6522   }
6523   case Intrinsic::memmove_element_unordered_atomic: {
6524     auto &MI = cast<AtomicMemMoveInst>(I);
6525     SDValue Dst = getValue(MI.getRawDest());
6526     SDValue Src = getValue(MI.getRawSource());
6527     SDValue Length = getValue(MI.getLength());
6528 
6529     Type *LengthTy = MI.getLength()->getType();
6530     unsigned ElemSz = MI.getElementSizeInBytes();
6531     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6532     SDValue MC =
6533         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6534                              isTC, MachinePointerInfo(MI.getRawDest()),
6535                              MachinePointerInfo(MI.getRawSource()));
6536     updateDAGForMaybeTailCall(MC);
6537     return;
6538   }
6539   case Intrinsic::memset_element_unordered_atomic: {
6540     auto &MI = cast<AtomicMemSetInst>(I);
6541     SDValue Dst = getValue(MI.getRawDest());
6542     SDValue Val = getValue(MI.getValue());
6543     SDValue Length = getValue(MI.getLength());
6544 
6545     Type *LengthTy = MI.getLength()->getType();
6546     unsigned ElemSz = MI.getElementSizeInBytes();
6547     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6548     SDValue MC =
6549         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6550                             isTC, MachinePointerInfo(MI.getRawDest()));
6551     updateDAGForMaybeTailCall(MC);
6552     return;
6553   }
6554   case Intrinsic::call_preallocated_setup: {
6555     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6556     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6557     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6558                               getRoot(), SrcValue);
6559     setValue(&I, Res);
6560     DAG.setRoot(Res);
6561     return;
6562   }
6563   case Intrinsic::call_preallocated_arg: {
6564     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6565     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6566     SDValue Ops[3];
6567     Ops[0] = getRoot();
6568     Ops[1] = SrcValue;
6569     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6570                                    MVT::i32); // arg index
6571     SDValue Res = DAG.getNode(
6572         ISD::PREALLOCATED_ARG, sdl,
6573         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6574     setValue(&I, Res);
6575     DAG.setRoot(Res.getValue(1));
6576     return;
6577   }
6578   case Intrinsic::dbg_declare: {
6579     const auto &DI = cast<DbgDeclareInst>(I);
6580     // Debug intrinsics are handled separately in assignment tracking mode.
6581     // Some intrinsics are handled right after Argument lowering.
6582     if (AssignmentTrackingEnabled ||
6583         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6584       return;
6585     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6586     DILocalVariable *Variable = DI.getVariable();
6587     DIExpression *Expression = DI.getExpression();
6588     dropDanglingDebugInfo(Variable, Expression);
6589     // Assume dbg.declare can not currently use DIArgList, i.e.
6590     // it is non-variadic.
6591     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6592     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6593                        DI.getDebugLoc());
6594     return;
6595   }
6596   case Intrinsic::dbg_label: {
6597     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6598     DILabel *Label = DI.getLabel();
6599     assert(Label && "Missing label");
6600 
6601     SDDbgLabel *SDV;
6602     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6603     DAG.AddDbgLabel(SDV);
6604     return;
6605   }
6606   case Intrinsic::dbg_assign: {
6607     // Debug intrinsics are handled seperately in assignment tracking mode.
6608     if (AssignmentTrackingEnabled)
6609       return;
6610     // If assignment tracking hasn't been enabled then fall through and treat
6611     // the dbg.assign as a dbg.value.
6612     [[fallthrough]];
6613   }
6614   case Intrinsic::dbg_value: {
6615     // Debug intrinsics are handled seperately in assignment tracking mode.
6616     if (AssignmentTrackingEnabled)
6617       return;
6618     const DbgValueInst &DI = cast<DbgValueInst>(I);
6619     assert(DI.getVariable() && "Missing variable");
6620 
6621     DILocalVariable *Variable = DI.getVariable();
6622     DIExpression *Expression = DI.getExpression();
6623     dropDanglingDebugInfo(Variable, Expression);
6624 
6625     if (DI.isKillLocation()) {
6626       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6627       return;
6628     }
6629 
6630     SmallVector<Value *, 4> Values(DI.getValues());
6631     if (Values.empty())
6632       return;
6633 
6634     bool IsVariadic = DI.hasArgList();
6635     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6636                           SDNodeOrder, IsVariadic))
6637       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6638                            DI.getDebugLoc(), SDNodeOrder);
6639     return;
6640   }
6641 
6642   case Intrinsic::eh_typeid_for: {
6643     // Find the type id for the given typeinfo.
6644     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6645     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6646     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6647     setValue(&I, Res);
6648     return;
6649   }
6650 
6651   case Intrinsic::eh_return_i32:
6652   case Intrinsic::eh_return_i64:
6653     DAG.getMachineFunction().setCallsEHReturn(true);
6654     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6655                             MVT::Other,
6656                             getControlRoot(),
6657                             getValue(I.getArgOperand(0)),
6658                             getValue(I.getArgOperand(1))));
6659     return;
6660   case Intrinsic::eh_unwind_init:
6661     DAG.getMachineFunction().setCallsUnwindInit(true);
6662     return;
6663   case Intrinsic::eh_dwarf_cfa:
6664     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6665                              TLI.getPointerTy(DAG.getDataLayout()),
6666                              getValue(I.getArgOperand(0))));
6667     return;
6668   case Intrinsic::eh_sjlj_callsite: {
6669     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6670     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6671     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6672 
6673     MMI.setCurrentCallSite(CI->getZExtValue());
6674     return;
6675   }
6676   case Intrinsic::eh_sjlj_functioncontext: {
6677     // Get and store the index of the function context.
6678     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6679     AllocaInst *FnCtx =
6680       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6681     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6682     MFI.setFunctionContextIndex(FI);
6683     return;
6684   }
6685   case Intrinsic::eh_sjlj_setjmp: {
6686     SDValue Ops[2];
6687     Ops[0] = getRoot();
6688     Ops[1] = getValue(I.getArgOperand(0));
6689     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6690                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6691     setValue(&I, Op.getValue(0));
6692     DAG.setRoot(Op.getValue(1));
6693     return;
6694   }
6695   case Intrinsic::eh_sjlj_longjmp:
6696     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6697                             getRoot(), getValue(I.getArgOperand(0))));
6698     return;
6699   case Intrinsic::eh_sjlj_setup_dispatch:
6700     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6701                             getRoot()));
6702     return;
6703   case Intrinsic::masked_gather:
6704     visitMaskedGather(I);
6705     return;
6706   case Intrinsic::masked_load:
6707     visitMaskedLoad(I);
6708     return;
6709   case Intrinsic::masked_scatter:
6710     visitMaskedScatter(I);
6711     return;
6712   case Intrinsic::masked_store:
6713     visitMaskedStore(I);
6714     return;
6715   case Intrinsic::masked_expandload:
6716     visitMaskedLoad(I, true /* IsExpanding */);
6717     return;
6718   case Intrinsic::masked_compressstore:
6719     visitMaskedStore(I, true /* IsCompressing */);
6720     return;
6721   case Intrinsic::powi:
6722     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6723                             getValue(I.getArgOperand(1)), DAG));
6724     return;
6725   case Intrinsic::log:
6726     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6727     return;
6728   case Intrinsic::log2:
6729     setValue(&I,
6730              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6731     return;
6732   case Intrinsic::log10:
6733     setValue(&I,
6734              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6735     return;
6736   case Intrinsic::exp:
6737     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6738     return;
6739   case Intrinsic::exp2:
6740     setValue(&I,
6741              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6742     return;
6743   case Intrinsic::pow:
6744     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6745                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6746     return;
6747   case Intrinsic::sqrt:
6748   case Intrinsic::fabs:
6749   case Intrinsic::sin:
6750   case Intrinsic::cos:
6751   case Intrinsic::exp10:
6752   case Intrinsic::floor:
6753   case Intrinsic::ceil:
6754   case Intrinsic::trunc:
6755   case Intrinsic::rint:
6756   case Intrinsic::nearbyint:
6757   case Intrinsic::round:
6758   case Intrinsic::roundeven:
6759   case Intrinsic::canonicalize: {
6760     unsigned Opcode;
6761     // clang-format off
6762     switch (Intrinsic) {
6763     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6764     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6765     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6766     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6767     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6768     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6769     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6770     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6771     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6772     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6773     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6774     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6775     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6776     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6777     }
6778     // clang-format on
6779 
6780     setValue(&I, DAG.getNode(Opcode, sdl,
6781                              getValue(I.getArgOperand(0)).getValueType(),
6782                              getValue(I.getArgOperand(0)), Flags));
6783     return;
6784   }
6785   case Intrinsic::lround:
6786   case Intrinsic::llround:
6787   case Intrinsic::lrint:
6788   case Intrinsic::llrint: {
6789     unsigned Opcode;
6790     // clang-format off
6791     switch (Intrinsic) {
6792     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6793     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6794     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6795     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6796     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6797     }
6798     // clang-format on
6799 
6800     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6801     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6802                              getValue(I.getArgOperand(0))));
6803     return;
6804   }
6805   case Intrinsic::minnum:
6806     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6807                              getValue(I.getArgOperand(0)).getValueType(),
6808                              getValue(I.getArgOperand(0)),
6809                              getValue(I.getArgOperand(1)), Flags));
6810     return;
6811   case Intrinsic::maxnum:
6812     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6813                              getValue(I.getArgOperand(0)).getValueType(),
6814                              getValue(I.getArgOperand(0)),
6815                              getValue(I.getArgOperand(1)), Flags));
6816     return;
6817   case Intrinsic::minimum:
6818     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6819                              getValue(I.getArgOperand(0)).getValueType(),
6820                              getValue(I.getArgOperand(0)),
6821                              getValue(I.getArgOperand(1)), Flags));
6822     return;
6823   case Intrinsic::maximum:
6824     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6825                              getValue(I.getArgOperand(0)).getValueType(),
6826                              getValue(I.getArgOperand(0)),
6827                              getValue(I.getArgOperand(1)), Flags));
6828     return;
6829   case Intrinsic::copysign:
6830     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6831                              getValue(I.getArgOperand(0)).getValueType(),
6832                              getValue(I.getArgOperand(0)),
6833                              getValue(I.getArgOperand(1)), Flags));
6834     return;
6835   case Intrinsic::ldexp:
6836     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6837                              getValue(I.getArgOperand(0)).getValueType(),
6838                              getValue(I.getArgOperand(0)),
6839                              getValue(I.getArgOperand(1)), Flags));
6840     return;
6841   case Intrinsic::frexp: {
6842     SmallVector<EVT, 2> ValueVTs;
6843     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6844     SDVTList VTs = DAG.getVTList(ValueVTs);
6845     setValue(&I,
6846              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6847     return;
6848   }
6849   case Intrinsic::arithmetic_fence: {
6850     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6851                              getValue(I.getArgOperand(0)).getValueType(),
6852                              getValue(I.getArgOperand(0)), Flags));
6853     return;
6854   }
6855   case Intrinsic::fma:
6856     setValue(&I, DAG.getNode(
6857                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6858                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6859                      getValue(I.getArgOperand(2)), Flags));
6860     return;
6861 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6862   case Intrinsic::INTRINSIC:
6863 #include "llvm/IR/ConstrainedOps.def"
6864     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6865     return;
6866 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6867 #include "llvm/IR/VPIntrinsics.def"
6868     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6869     return;
6870   case Intrinsic::fptrunc_round: {
6871     // Get the last argument, the metadata and convert it to an integer in the
6872     // call
6873     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6874     std::optional<RoundingMode> RoundMode =
6875         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6876 
6877     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6878 
6879     // Propagate fast-math-flags from IR to node(s).
6880     SDNodeFlags Flags;
6881     Flags.copyFMF(*cast<FPMathOperator>(&I));
6882     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6883 
6884     SDValue Result;
6885     Result = DAG.getNode(
6886         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6887         DAG.getTargetConstant((int)*RoundMode, sdl,
6888                               TLI.getPointerTy(DAG.getDataLayout())));
6889     setValue(&I, Result);
6890 
6891     return;
6892   }
6893   case Intrinsic::fmuladd: {
6894     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6895     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6896         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6897       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6898                                getValue(I.getArgOperand(0)).getValueType(),
6899                                getValue(I.getArgOperand(0)),
6900                                getValue(I.getArgOperand(1)),
6901                                getValue(I.getArgOperand(2)), Flags));
6902     } else {
6903       // TODO: Intrinsic calls should have fast-math-flags.
6904       SDValue Mul = DAG.getNode(
6905           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6906           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6907       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6908                                 getValue(I.getArgOperand(0)).getValueType(),
6909                                 Mul, getValue(I.getArgOperand(2)), Flags);
6910       setValue(&I, Add);
6911     }
6912     return;
6913   }
6914   case Intrinsic::convert_to_fp16:
6915     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6916                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6917                                          getValue(I.getArgOperand(0)),
6918                                          DAG.getTargetConstant(0, sdl,
6919                                                                MVT::i32))));
6920     return;
6921   case Intrinsic::convert_from_fp16:
6922     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6923                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6924                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6925                                          getValue(I.getArgOperand(0)))));
6926     return;
6927   case Intrinsic::fptosi_sat: {
6928     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6929     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6930                              getValue(I.getArgOperand(0)),
6931                              DAG.getValueType(VT.getScalarType())));
6932     return;
6933   }
6934   case Intrinsic::fptoui_sat: {
6935     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6936     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6937                              getValue(I.getArgOperand(0)),
6938                              DAG.getValueType(VT.getScalarType())));
6939     return;
6940   }
6941   case Intrinsic::set_rounding:
6942     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6943                       {getRoot(), getValue(I.getArgOperand(0))});
6944     setValue(&I, Res);
6945     DAG.setRoot(Res.getValue(0));
6946     return;
6947   case Intrinsic::is_fpclass: {
6948     const DataLayout DLayout = DAG.getDataLayout();
6949     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6950     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6951     FPClassTest Test = static_cast<FPClassTest>(
6952         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6953     MachineFunction &MF = DAG.getMachineFunction();
6954     const Function &F = MF.getFunction();
6955     SDValue Op = getValue(I.getArgOperand(0));
6956     SDNodeFlags Flags;
6957     Flags.setNoFPExcept(
6958         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6959     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6960     // expansion can use illegal types. Making expansion early allows
6961     // legalizing these types prior to selection.
6962     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6963       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6964       setValue(&I, Result);
6965       return;
6966     }
6967 
6968     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6969     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6970     setValue(&I, V);
6971     return;
6972   }
6973   case Intrinsic::get_fpenv: {
6974     const DataLayout DLayout = DAG.getDataLayout();
6975     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6976     Align TempAlign = DAG.getEVTAlign(EnvVT);
6977     SDValue Chain = getRoot();
6978     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6979     // and temporary storage in stack.
6980     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6981       Res = DAG.getNode(
6982           ISD::GET_FPENV, sdl,
6983           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6984                         MVT::Other),
6985           Chain);
6986     } else {
6987       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6988       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6989       auto MPI =
6990           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6991       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6992           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6993           TempAlign);
6994       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6995       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6996     }
6997     setValue(&I, Res);
6998     DAG.setRoot(Res.getValue(1));
6999     return;
7000   }
7001   case Intrinsic::set_fpenv: {
7002     const DataLayout DLayout = DAG.getDataLayout();
7003     SDValue Env = getValue(I.getArgOperand(0));
7004     EVT EnvVT = Env.getValueType();
7005     Align TempAlign = DAG.getEVTAlign(EnvVT);
7006     SDValue Chain = getRoot();
7007     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7008     // environment from memory.
7009     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7010       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7011     } else {
7012       // Allocate space in stack, copy environment bits into it and use this
7013       // memory in SET_FPENV_MEM.
7014       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7015       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7016       auto MPI =
7017           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7018       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7019                            MachineMemOperand::MOStore);
7020       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7021           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7022           TempAlign);
7023       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7024     }
7025     DAG.setRoot(Chain);
7026     return;
7027   }
7028   case Intrinsic::reset_fpenv:
7029     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7030     return;
7031   case Intrinsic::get_fpmode:
7032     Res = DAG.getNode(
7033         ISD::GET_FPMODE, sdl,
7034         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7035                       MVT::Other),
7036         DAG.getRoot());
7037     setValue(&I, Res);
7038     DAG.setRoot(Res.getValue(1));
7039     return;
7040   case Intrinsic::set_fpmode:
7041     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7042                       getValue(I.getArgOperand(0)));
7043     DAG.setRoot(Res);
7044     return;
7045   case Intrinsic::reset_fpmode: {
7046     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7047     DAG.setRoot(Res);
7048     return;
7049   }
7050   case Intrinsic::pcmarker: {
7051     SDValue Tmp = getValue(I.getArgOperand(0));
7052     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7053     return;
7054   }
7055   case Intrinsic::readcyclecounter: {
7056     SDValue Op = getRoot();
7057     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7058                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7059     setValue(&I, Res);
7060     DAG.setRoot(Res.getValue(1));
7061     return;
7062   }
7063   case Intrinsic::readsteadycounter: {
7064     SDValue Op = getRoot();
7065     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7066                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7067     setValue(&I, Res);
7068     DAG.setRoot(Res.getValue(1));
7069     return;
7070   }
7071   case Intrinsic::bitreverse:
7072     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7073                              getValue(I.getArgOperand(0)).getValueType(),
7074                              getValue(I.getArgOperand(0))));
7075     return;
7076   case Intrinsic::bswap:
7077     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7078                              getValue(I.getArgOperand(0)).getValueType(),
7079                              getValue(I.getArgOperand(0))));
7080     return;
7081   case Intrinsic::cttz: {
7082     SDValue Arg = getValue(I.getArgOperand(0));
7083     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7084     EVT Ty = Arg.getValueType();
7085     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7086                              sdl, Ty, Arg));
7087     return;
7088   }
7089   case Intrinsic::ctlz: {
7090     SDValue Arg = getValue(I.getArgOperand(0));
7091     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7092     EVT Ty = Arg.getValueType();
7093     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7094                              sdl, Ty, Arg));
7095     return;
7096   }
7097   case Intrinsic::ctpop: {
7098     SDValue Arg = getValue(I.getArgOperand(0));
7099     EVT Ty = Arg.getValueType();
7100     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7101     return;
7102   }
7103   case Intrinsic::fshl:
7104   case Intrinsic::fshr: {
7105     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7106     SDValue X = getValue(I.getArgOperand(0));
7107     SDValue Y = getValue(I.getArgOperand(1));
7108     SDValue Z = getValue(I.getArgOperand(2));
7109     EVT VT = X.getValueType();
7110 
7111     if (X == Y) {
7112       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7113       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7114     } else {
7115       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7116       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7117     }
7118     return;
7119   }
7120   case Intrinsic::sadd_sat: {
7121     SDValue Op1 = getValue(I.getArgOperand(0));
7122     SDValue Op2 = getValue(I.getArgOperand(1));
7123     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7124     return;
7125   }
7126   case Intrinsic::uadd_sat: {
7127     SDValue Op1 = getValue(I.getArgOperand(0));
7128     SDValue Op2 = getValue(I.getArgOperand(1));
7129     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7130     return;
7131   }
7132   case Intrinsic::ssub_sat: {
7133     SDValue Op1 = getValue(I.getArgOperand(0));
7134     SDValue Op2 = getValue(I.getArgOperand(1));
7135     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7136     return;
7137   }
7138   case Intrinsic::usub_sat: {
7139     SDValue Op1 = getValue(I.getArgOperand(0));
7140     SDValue Op2 = getValue(I.getArgOperand(1));
7141     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7142     return;
7143   }
7144   case Intrinsic::sshl_sat: {
7145     SDValue Op1 = getValue(I.getArgOperand(0));
7146     SDValue Op2 = getValue(I.getArgOperand(1));
7147     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7148     return;
7149   }
7150   case Intrinsic::ushl_sat: {
7151     SDValue Op1 = getValue(I.getArgOperand(0));
7152     SDValue Op2 = getValue(I.getArgOperand(1));
7153     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7154     return;
7155   }
7156   case Intrinsic::smul_fix:
7157   case Intrinsic::umul_fix:
7158   case Intrinsic::smul_fix_sat:
7159   case Intrinsic::umul_fix_sat: {
7160     SDValue Op1 = getValue(I.getArgOperand(0));
7161     SDValue Op2 = getValue(I.getArgOperand(1));
7162     SDValue Op3 = getValue(I.getArgOperand(2));
7163     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7164                              Op1.getValueType(), Op1, Op2, Op3));
7165     return;
7166   }
7167   case Intrinsic::sdiv_fix:
7168   case Intrinsic::udiv_fix:
7169   case Intrinsic::sdiv_fix_sat:
7170   case Intrinsic::udiv_fix_sat: {
7171     SDValue Op1 = getValue(I.getArgOperand(0));
7172     SDValue Op2 = getValue(I.getArgOperand(1));
7173     SDValue Op3 = getValue(I.getArgOperand(2));
7174     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7175                               Op1, Op2, Op3, DAG, TLI));
7176     return;
7177   }
7178   case Intrinsic::smax: {
7179     SDValue Op1 = getValue(I.getArgOperand(0));
7180     SDValue Op2 = getValue(I.getArgOperand(1));
7181     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7182     return;
7183   }
7184   case Intrinsic::smin: {
7185     SDValue Op1 = getValue(I.getArgOperand(0));
7186     SDValue Op2 = getValue(I.getArgOperand(1));
7187     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7188     return;
7189   }
7190   case Intrinsic::umax: {
7191     SDValue Op1 = getValue(I.getArgOperand(0));
7192     SDValue Op2 = getValue(I.getArgOperand(1));
7193     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7194     return;
7195   }
7196   case Intrinsic::umin: {
7197     SDValue Op1 = getValue(I.getArgOperand(0));
7198     SDValue Op2 = getValue(I.getArgOperand(1));
7199     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7200     return;
7201   }
7202   case Intrinsic::abs: {
7203     // TODO: Preserve "int min is poison" arg in SDAG?
7204     SDValue Op1 = getValue(I.getArgOperand(0));
7205     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7206     return;
7207   }
7208   case Intrinsic::stacksave: {
7209     SDValue Op = getRoot();
7210     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7211     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7212     setValue(&I, Res);
7213     DAG.setRoot(Res.getValue(1));
7214     return;
7215   }
7216   case Intrinsic::stackrestore:
7217     Res = getValue(I.getArgOperand(0));
7218     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7219     return;
7220   case Intrinsic::get_dynamic_area_offset: {
7221     SDValue Op = getRoot();
7222     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7223     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7224     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7225     // target.
7226     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7227       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7228                          " intrinsic!");
7229     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7230                       Op);
7231     DAG.setRoot(Op);
7232     setValue(&I, Res);
7233     return;
7234   }
7235   case Intrinsic::stackguard: {
7236     MachineFunction &MF = DAG.getMachineFunction();
7237     const Module &M = *MF.getFunction().getParent();
7238     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7239     SDValue Chain = getRoot();
7240     if (TLI.useLoadStackGuardNode()) {
7241       Res = getLoadStackGuard(DAG, sdl, Chain);
7242       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7243     } else {
7244       const Value *Global = TLI.getSDagStackGuard(M);
7245       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7246       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7247                         MachinePointerInfo(Global, 0), Align,
7248                         MachineMemOperand::MOVolatile);
7249     }
7250     if (TLI.useStackGuardXorFP())
7251       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7252     DAG.setRoot(Chain);
7253     setValue(&I, Res);
7254     return;
7255   }
7256   case Intrinsic::stackprotector: {
7257     // Emit code into the DAG to store the stack guard onto the stack.
7258     MachineFunction &MF = DAG.getMachineFunction();
7259     MachineFrameInfo &MFI = MF.getFrameInfo();
7260     SDValue Src, Chain = getRoot();
7261 
7262     if (TLI.useLoadStackGuardNode())
7263       Src = getLoadStackGuard(DAG, sdl, Chain);
7264     else
7265       Src = getValue(I.getArgOperand(0));   // The guard's value.
7266 
7267     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7268 
7269     int FI = FuncInfo.StaticAllocaMap[Slot];
7270     MFI.setStackProtectorIndex(FI);
7271     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7272 
7273     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7274 
7275     // Store the stack protector onto the stack.
7276     Res = DAG.getStore(
7277         Chain, sdl, Src, FIN,
7278         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7279         MaybeAlign(), MachineMemOperand::MOVolatile);
7280     setValue(&I, Res);
7281     DAG.setRoot(Res);
7282     return;
7283   }
7284   case Intrinsic::objectsize:
7285     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7286 
7287   case Intrinsic::is_constant:
7288     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7289 
7290   case Intrinsic::annotation:
7291   case Intrinsic::ptr_annotation:
7292   case Intrinsic::launder_invariant_group:
7293   case Intrinsic::strip_invariant_group:
7294     // Drop the intrinsic, but forward the value
7295     setValue(&I, getValue(I.getOperand(0)));
7296     return;
7297 
7298   case Intrinsic::assume:
7299   case Intrinsic::experimental_noalias_scope_decl:
7300   case Intrinsic::var_annotation:
7301   case Intrinsic::sideeffect:
7302     // Discard annotate attributes, noalias scope declarations, assumptions, and
7303     // artificial side-effects.
7304     return;
7305 
7306   case Intrinsic::codeview_annotation: {
7307     // Emit a label associated with this metadata.
7308     MachineFunction &MF = DAG.getMachineFunction();
7309     MCSymbol *Label =
7310         MF.getMMI().getContext().createTempSymbol("annotation", true);
7311     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7312     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7313     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7314     DAG.setRoot(Res);
7315     return;
7316   }
7317 
7318   case Intrinsic::init_trampoline: {
7319     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7320 
7321     SDValue Ops[6];
7322     Ops[0] = getRoot();
7323     Ops[1] = getValue(I.getArgOperand(0));
7324     Ops[2] = getValue(I.getArgOperand(1));
7325     Ops[3] = getValue(I.getArgOperand(2));
7326     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7327     Ops[5] = DAG.getSrcValue(F);
7328 
7329     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7330 
7331     DAG.setRoot(Res);
7332     return;
7333   }
7334   case Intrinsic::adjust_trampoline:
7335     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7336                              TLI.getPointerTy(DAG.getDataLayout()),
7337                              getValue(I.getArgOperand(0))));
7338     return;
7339   case Intrinsic::gcroot: {
7340     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7341            "only valid in functions with gc specified, enforced by Verifier");
7342     assert(GFI && "implied by previous");
7343     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7344     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7345 
7346     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7347     GFI->addStackRoot(FI->getIndex(), TypeMap);
7348     return;
7349   }
7350   case Intrinsic::gcread:
7351   case Intrinsic::gcwrite:
7352     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7353   case Intrinsic::get_rounding:
7354     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7355     setValue(&I, Res);
7356     DAG.setRoot(Res.getValue(1));
7357     return;
7358 
7359   case Intrinsic::expect:
7360     // Just replace __builtin_expect(exp, c) with EXP.
7361     setValue(&I, getValue(I.getArgOperand(0)));
7362     return;
7363 
7364   case Intrinsic::ubsantrap:
7365   case Intrinsic::debugtrap:
7366   case Intrinsic::trap: {
7367     StringRef TrapFuncName =
7368         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7369     if (TrapFuncName.empty()) {
7370       switch (Intrinsic) {
7371       case Intrinsic::trap:
7372         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7373         break;
7374       case Intrinsic::debugtrap:
7375         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7376         break;
7377       case Intrinsic::ubsantrap:
7378         DAG.setRoot(DAG.getNode(
7379             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7380             DAG.getTargetConstant(
7381                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7382                 MVT::i32)));
7383         break;
7384       default: llvm_unreachable("unknown trap intrinsic");
7385       }
7386       return;
7387     }
7388     TargetLowering::ArgListTy Args;
7389     if (Intrinsic == Intrinsic::ubsantrap) {
7390       Args.push_back(TargetLoweringBase::ArgListEntry());
7391       Args[0].Val = I.getArgOperand(0);
7392       Args[0].Node = getValue(Args[0].Val);
7393       Args[0].Ty = Args[0].Val->getType();
7394     }
7395 
7396     TargetLowering::CallLoweringInfo CLI(DAG);
7397     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7398         CallingConv::C, I.getType(),
7399         DAG.getExternalSymbol(TrapFuncName.data(),
7400                               TLI.getPointerTy(DAG.getDataLayout())),
7401         std::move(Args));
7402 
7403     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7404     DAG.setRoot(Result.second);
7405     return;
7406   }
7407 
7408   case Intrinsic::allow_runtime_check:
7409   case Intrinsic::allow_ubsan_check:
7410     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7411     return;
7412 
7413   case Intrinsic::uadd_with_overflow:
7414   case Intrinsic::sadd_with_overflow:
7415   case Intrinsic::usub_with_overflow:
7416   case Intrinsic::ssub_with_overflow:
7417   case Intrinsic::umul_with_overflow:
7418   case Intrinsic::smul_with_overflow: {
7419     ISD::NodeType Op;
7420     switch (Intrinsic) {
7421     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7422     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7423     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7424     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7425     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7426     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7427     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7428     }
7429     SDValue Op1 = getValue(I.getArgOperand(0));
7430     SDValue Op2 = getValue(I.getArgOperand(1));
7431 
7432     EVT ResultVT = Op1.getValueType();
7433     EVT OverflowVT = MVT::i1;
7434     if (ResultVT.isVector())
7435       OverflowVT = EVT::getVectorVT(
7436           *Context, OverflowVT, ResultVT.getVectorElementCount());
7437 
7438     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7439     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7440     return;
7441   }
7442   case Intrinsic::prefetch: {
7443     SDValue Ops[5];
7444     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7445     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7446     Ops[0] = DAG.getRoot();
7447     Ops[1] = getValue(I.getArgOperand(0));
7448     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7449                                    MVT::i32);
7450     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7451                                    MVT::i32);
7452     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7453                                    MVT::i32);
7454     SDValue Result = DAG.getMemIntrinsicNode(
7455         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7456         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7457         /* align */ std::nullopt, Flags);
7458 
7459     // Chain the prefetch in parallel with any pending loads, to stay out of
7460     // the way of later optimizations.
7461     PendingLoads.push_back(Result);
7462     Result = getRoot();
7463     DAG.setRoot(Result);
7464     return;
7465   }
7466   case Intrinsic::lifetime_start:
7467   case Intrinsic::lifetime_end: {
7468     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7469     // Stack coloring is not enabled in O0, discard region information.
7470     if (TM.getOptLevel() == CodeGenOptLevel::None)
7471       return;
7472 
7473     const int64_t ObjectSize =
7474         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7475     Value *const ObjectPtr = I.getArgOperand(1);
7476     SmallVector<const Value *, 4> Allocas;
7477     getUnderlyingObjects(ObjectPtr, Allocas);
7478 
7479     for (const Value *Alloca : Allocas) {
7480       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7481 
7482       // Could not find an Alloca.
7483       if (!LifetimeObject)
7484         continue;
7485 
7486       // First check that the Alloca is static, otherwise it won't have a
7487       // valid frame index.
7488       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7489       if (SI == FuncInfo.StaticAllocaMap.end())
7490         return;
7491 
7492       const int FrameIndex = SI->second;
7493       int64_t Offset;
7494       if (GetPointerBaseWithConstantOffset(
7495               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7496         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7497       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7498                                 Offset);
7499       DAG.setRoot(Res);
7500     }
7501     return;
7502   }
7503   case Intrinsic::pseudoprobe: {
7504     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7505     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7506     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7507     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7508     DAG.setRoot(Res);
7509     return;
7510   }
7511   case Intrinsic::invariant_start:
7512     // Discard region information.
7513     setValue(&I,
7514              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7515     return;
7516   case Intrinsic::invariant_end:
7517     // Discard region information.
7518     return;
7519   case Intrinsic::clear_cache:
7520     /// FunctionName may be null.
7521     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7522       lowerCallToExternalSymbol(I, FunctionName);
7523     return;
7524   case Intrinsic::donothing:
7525   case Intrinsic::seh_try_begin:
7526   case Intrinsic::seh_scope_begin:
7527   case Intrinsic::seh_try_end:
7528   case Intrinsic::seh_scope_end:
7529     // ignore
7530     return;
7531   case Intrinsic::experimental_stackmap:
7532     visitStackmap(I);
7533     return;
7534   case Intrinsic::experimental_patchpoint_void:
7535   case Intrinsic::experimental_patchpoint:
7536     visitPatchpoint(I);
7537     return;
7538   case Intrinsic::experimental_gc_statepoint:
7539     LowerStatepoint(cast<GCStatepointInst>(I));
7540     return;
7541   case Intrinsic::experimental_gc_result:
7542     visitGCResult(cast<GCResultInst>(I));
7543     return;
7544   case Intrinsic::experimental_gc_relocate:
7545     visitGCRelocate(cast<GCRelocateInst>(I));
7546     return;
7547   case Intrinsic::instrprof_cover:
7548     llvm_unreachable("instrprof failed to lower a cover");
7549   case Intrinsic::instrprof_increment:
7550     llvm_unreachable("instrprof failed to lower an increment");
7551   case Intrinsic::instrprof_timestamp:
7552     llvm_unreachable("instrprof failed to lower a timestamp");
7553   case Intrinsic::instrprof_value_profile:
7554     llvm_unreachable("instrprof failed to lower a value profiling call");
7555   case Intrinsic::instrprof_mcdc_parameters:
7556     llvm_unreachable("instrprof failed to lower mcdc parameters");
7557   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7558     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7559   case Intrinsic::instrprof_mcdc_condbitmap_update:
7560     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7561   case Intrinsic::localescape: {
7562     MachineFunction &MF = DAG.getMachineFunction();
7563     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7564 
7565     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7566     // is the same on all targets.
7567     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7568       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7569       if (isa<ConstantPointerNull>(Arg))
7570         continue; // Skip null pointers. They represent a hole in index space.
7571       AllocaInst *Slot = cast<AllocaInst>(Arg);
7572       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7573              "can only escape static allocas");
7574       int FI = FuncInfo.StaticAllocaMap[Slot];
7575       MCSymbol *FrameAllocSym =
7576           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7577               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7578       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7579               TII->get(TargetOpcode::LOCAL_ESCAPE))
7580           .addSym(FrameAllocSym)
7581           .addFrameIndex(FI);
7582     }
7583 
7584     return;
7585   }
7586 
7587   case Intrinsic::localrecover: {
7588     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7589     MachineFunction &MF = DAG.getMachineFunction();
7590 
7591     // Get the symbol that defines the frame offset.
7592     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7593     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7594     unsigned IdxVal =
7595         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7596     MCSymbol *FrameAllocSym =
7597         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7598             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7599 
7600     Value *FP = I.getArgOperand(1);
7601     SDValue FPVal = getValue(FP);
7602     EVT PtrVT = FPVal.getValueType();
7603 
7604     // Create a MCSymbol for the label to avoid any target lowering
7605     // that would make this PC relative.
7606     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7607     SDValue OffsetVal =
7608         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7609 
7610     // Add the offset to the FP.
7611     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7612     setValue(&I, Add);
7613 
7614     return;
7615   }
7616 
7617   case Intrinsic::eh_exceptionpointer:
7618   case Intrinsic::eh_exceptioncode: {
7619     // Get the exception pointer vreg, copy from it, and resize it to fit.
7620     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7621     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7622     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7623     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7624     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7625     if (Intrinsic == Intrinsic::eh_exceptioncode)
7626       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7627     setValue(&I, N);
7628     return;
7629   }
7630   case Intrinsic::xray_customevent: {
7631     // Here we want to make sure that the intrinsic behaves as if it has a
7632     // specific calling convention.
7633     const auto &Triple = DAG.getTarget().getTargetTriple();
7634     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7635       return;
7636 
7637     SmallVector<SDValue, 8> Ops;
7638 
7639     // We want to say that we always want the arguments in registers.
7640     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7641     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7642     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7643     SDValue Chain = getRoot();
7644     Ops.push_back(LogEntryVal);
7645     Ops.push_back(StrSizeVal);
7646     Ops.push_back(Chain);
7647 
7648     // We need to enforce the calling convention for the callsite, so that
7649     // argument ordering is enforced correctly, and that register allocation can
7650     // see that some registers may be assumed clobbered and have to preserve
7651     // them across calls to the intrinsic.
7652     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7653                                            sdl, NodeTys, Ops);
7654     SDValue patchableNode = SDValue(MN, 0);
7655     DAG.setRoot(patchableNode);
7656     setValue(&I, patchableNode);
7657     return;
7658   }
7659   case Intrinsic::xray_typedevent: {
7660     // Here we want to make sure that the intrinsic behaves as if it has a
7661     // specific calling convention.
7662     const auto &Triple = DAG.getTarget().getTargetTriple();
7663     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7664       return;
7665 
7666     SmallVector<SDValue, 8> Ops;
7667 
7668     // We want to say that we always want the arguments in registers.
7669     // It's unclear to me how manipulating the selection DAG here forces callers
7670     // to provide arguments in registers instead of on the stack.
7671     SDValue LogTypeId = getValue(I.getArgOperand(0));
7672     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7673     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7674     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7675     SDValue Chain = getRoot();
7676     Ops.push_back(LogTypeId);
7677     Ops.push_back(LogEntryVal);
7678     Ops.push_back(StrSizeVal);
7679     Ops.push_back(Chain);
7680 
7681     // We need to enforce the calling convention for the callsite, so that
7682     // argument ordering is enforced correctly, and that register allocation can
7683     // see that some registers may be assumed clobbered and have to preserve
7684     // them across calls to the intrinsic.
7685     MachineSDNode *MN = DAG.getMachineNode(
7686         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7687     SDValue patchableNode = SDValue(MN, 0);
7688     DAG.setRoot(patchableNode);
7689     setValue(&I, patchableNode);
7690     return;
7691   }
7692   case Intrinsic::experimental_deoptimize:
7693     LowerDeoptimizeCall(&I);
7694     return;
7695   case Intrinsic::experimental_stepvector:
7696     visitStepVector(I);
7697     return;
7698   case Intrinsic::vector_reduce_fadd:
7699   case Intrinsic::vector_reduce_fmul:
7700   case Intrinsic::vector_reduce_add:
7701   case Intrinsic::vector_reduce_mul:
7702   case Intrinsic::vector_reduce_and:
7703   case Intrinsic::vector_reduce_or:
7704   case Intrinsic::vector_reduce_xor:
7705   case Intrinsic::vector_reduce_smax:
7706   case Intrinsic::vector_reduce_smin:
7707   case Intrinsic::vector_reduce_umax:
7708   case Intrinsic::vector_reduce_umin:
7709   case Intrinsic::vector_reduce_fmax:
7710   case Intrinsic::vector_reduce_fmin:
7711   case Intrinsic::vector_reduce_fmaximum:
7712   case Intrinsic::vector_reduce_fminimum:
7713     visitVectorReduce(I, Intrinsic);
7714     return;
7715 
7716   case Intrinsic::icall_branch_funnel: {
7717     SmallVector<SDValue, 16> Ops;
7718     Ops.push_back(getValue(I.getArgOperand(0)));
7719 
7720     int64_t Offset;
7721     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7722         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7723     if (!Base)
7724       report_fatal_error(
7725           "llvm.icall.branch.funnel operand must be a GlobalValue");
7726     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7727 
7728     struct BranchFunnelTarget {
7729       int64_t Offset;
7730       SDValue Target;
7731     };
7732     SmallVector<BranchFunnelTarget, 8> Targets;
7733 
7734     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7735       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7736           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7737       if (ElemBase != Base)
7738         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7739                            "to the same GlobalValue");
7740 
7741       SDValue Val = getValue(I.getArgOperand(Op + 1));
7742       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7743       if (!GA)
7744         report_fatal_error(
7745             "llvm.icall.branch.funnel operand must be a GlobalValue");
7746       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7747                                      GA->getGlobal(), sdl, Val.getValueType(),
7748                                      GA->getOffset())});
7749     }
7750     llvm::sort(Targets,
7751                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7752                  return T1.Offset < T2.Offset;
7753                });
7754 
7755     for (auto &T : Targets) {
7756       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7757       Ops.push_back(T.Target);
7758     }
7759 
7760     Ops.push_back(DAG.getRoot()); // Chain
7761     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7762                                  MVT::Other, Ops),
7763               0);
7764     DAG.setRoot(N);
7765     setValue(&I, N);
7766     HasTailCall = true;
7767     return;
7768   }
7769 
7770   case Intrinsic::wasm_landingpad_index:
7771     // Information this intrinsic contained has been transferred to
7772     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7773     // delete it now.
7774     return;
7775 
7776   case Intrinsic::aarch64_settag:
7777   case Intrinsic::aarch64_settag_zero: {
7778     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7779     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7780     SDValue Val = TSI.EmitTargetCodeForSetTag(
7781         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7782         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7783         ZeroMemory);
7784     DAG.setRoot(Val);
7785     setValue(&I, Val);
7786     return;
7787   }
7788   case Intrinsic::amdgcn_cs_chain: {
7789     assert(I.arg_size() == 5 && "Additional args not supported yet");
7790     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7791            "Non-zero flags not supported yet");
7792 
7793     // At this point we don't care if it's amdgpu_cs_chain or
7794     // amdgpu_cs_chain_preserve.
7795     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7796 
7797     Type *RetTy = I.getType();
7798     assert(RetTy->isVoidTy() && "Should not return");
7799 
7800     SDValue Callee = getValue(I.getOperand(0));
7801 
7802     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7803     // We'll also tack the value of the EXEC mask at the end.
7804     TargetLowering::ArgListTy Args;
7805     Args.reserve(3);
7806 
7807     for (unsigned Idx : {2, 3, 1}) {
7808       TargetLowering::ArgListEntry Arg;
7809       Arg.Node = getValue(I.getOperand(Idx));
7810       Arg.Ty = I.getOperand(Idx)->getType();
7811       Arg.setAttributes(&I, Idx);
7812       Args.push_back(Arg);
7813     }
7814 
7815     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7816     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7817     Args[2].IsInReg = true; // EXEC should be inreg
7818 
7819     TargetLowering::CallLoweringInfo CLI(DAG);
7820     CLI.setDebugLoc(getCurSDLoc())
7821         .setChain(getRoot())
7822         .setCallee(CC, RetTy, Callee, std::move(Args))
7823         .setNoReturn(true)
7824         .setTailCall(true)
7825         .setConvergent(I.isConvergent());
7826     CLI.CB = &I;
7827     std::pair<SDValue, SDValue> Result =
7828         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7829     (void)Result;
7830     assert(!Result.first.getNode() && !Result.second.getNode() &&
7831            "Should've lowered as tail call");
7832 
7833     HasTailCall = true;
7834     return;
7835   }
7836   case Intrinsic::ptrmask: {
7837     SDValue Ptr = getValue(I.getOperand(0));
7838     SDValue Mask = getValue(I.getOperand(1));
7839 
7840     EVT PtrVT = Ptr.getValueType();
7841     assert(PtrVT == Mask.getValueType() &&
7842            "Pointers with different index type are not supported by SDAG");
7843     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7844     return;
7845   }
7846   case Intrinsic::threadlocal_address: {
7847     setValue(&I, getValue(I.getOperand(0)));
7848     return;
7849   }
7850   case Intrinsic::get_active_lane_mask: {
7851     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7852     SDValue Index = getValue(I.getOperand(0));
7853     EVT ElementVT = Index.getValueType();
7854 
7855     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7856       visitTargetIntrinsic(I, Intrinsic);
7857       return;
7858     }
7859 
7860     SDValue TripCount = getValue(I.getOperand(1));
7861     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7862                                  CCVT.getVectorElementCount());
7863 
7864     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7865     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7866     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7867     SDValue VectorInduction = DAG.getNode(
7868         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7869     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7870                                  VectorTripCount, ISD::CondCode::SETULT);
7871     setValue(&I, SetCC);
7872     return;
7873   }
7874   case Intrinsic::experimental_get_vector_length: {
7875     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7876            "Expected positive VF");
7877     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7878     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7879 
7880     SDValue Count = getValue(I.getOperand(0));
7881     EVT CountVT = Count.getValueType();
7882 
7883     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7884       visitTargetIntrinsic(I, Intrinsic);
7885       return;
7886     }
7887 
7888     // Expand to a umin between the trip count and the maximum elements the type
7889     // can hold.
7890     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7891 
7892     // Extend the trip count to at least the result VT.
7893     if (CountVT.bitsLT(VT)) {
7894       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7895       CountVT = VT;
7896     }
7897 
7898     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7899                                          ElementCount::get(VF, IsScalable));
7900 
7901     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7902     // Clip to the result type if needed.
7903     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7904 
7905     setValue(&I, Trunc);
7906     return;
7907   }
7908   case Intrinsic::experimental_cttz_elts: {
7909     auto DL = getCurSDLoc();
7910     SDValue Op = getValue(I.getOperand(0));
7911     EVT OpVT = Op.getValueType();
7912 
7913     if (!TLI.shouldExpandCttzElements(OpVT)) {
7914       visitTargetIntrinsic(I, Intrinsic);
7915       return;
7916     }
7917 
7918     if (OpVT.getScalarType() != MVT::i1) {
7919       // Compare the input vector elements to zero & use to count trailing zeros
7920       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7921       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7922                               OpVT.getVectorElementCount());
7923       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7924     }
7925 
7926     // If the zero-is-poison flag is set, we can assume the upper limit
7927     // of the result is VF-1.
7928     bool ZeroIsPoison =
7929         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
7930     ConstantRange VScaleRange(1, true); // Dummy value.
7931     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
7932       VScaleRange = getVScaleRange(I.getCaller(), 64);
7933     unsigned EltWidth = TLI.getBitWidthForCttzElements(
7934         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
7935 
7936     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7937 
7938     // Create the new vector type & get the vector length
7939     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7940                                  OpVT.getVectorElementCount());
7941 
7942     SDValue VL =
7943         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7944 
7945     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7946     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7947     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7948     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7949     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7950     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7951     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7952 
7953     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7954     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7955 
7956     setValue(&I, Ret);
7957     return;
7958   }
7959   case Intrinsic::vector_insert: {
7960     SDValue Vec = getValue(I.getOperand(0));
7961     SDValue SubVec = getValue(I.getOperand(1));
7962     SDValue Index = getValue(I.getOperand(2));
7963 
7964     // The intrinsic's index type is i64, but the SDNode requires an index type
7965     // suitable for the target. Convert the index as required.
7966     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7967     if (Index.getValueType() != VectorIdxTy)
7968       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7969 
7970     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7971     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7972                              Index));
7973     return;
7974   }
7975   case Intrinsic::vector_extract: {
7976     SDValue Vec = getValue(I.getOperand(0));
7977     SDValue Index = getValue(I.getOperand(1));
7978     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7979 
7980     // The intrinsic's index type is i64, but the SDNode requires an index type
7981     // suitable for the target. Convert the index as required.
7982     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7983     if (Index.getValueType() != VectorIdxTy)
7984       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7985 
7986     setValue(&I,
7987              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7988     return;
7989   }
7990   case Intrinsic::vector_reverse:
7991     visitVectorReverse(I);
7992     return;
7993   case Intrinsic::vector_splice:
7994     visitVectorSplice(I);
7995     return;
7996   case Intrinsic::callbr_landingpad:
7997     visitCallBrLandingPad(I);
7998     return;
7999   case Intrinsic::vector_interleave2:
8000     visitVectorInterleave(I);
8001     return;
8002   case Intrinsic::vector_deinterleave2:
8003     visitVectorDeinterleave(I);
8004     return;
8005   case Intrinsic::experimental_convergence_anchor:
8006   case Intrinsic::experimental_convergence_entry:
8007   case Intrinsic::experimental_convergence_loop:
8008     visitConvergenceControl(I, Intrinsic);
8009     return;
8010   case Intrinsic::experimental_vector_histogram_add: {
8011     visitVectorHistogram(I, Intrinsic);
8012     return;
8013   }
8014   }
8015 }
8016 
8017 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8018     const ConstrainedFPIntrinsic &FPI) {
8019   SDLoc sdl = getCurSDLoc();
8020 
8021   // We do not need to serialize constrained FP intrinsics against
8022   // each other or against (nonvolatile) loads, so they can be
8023   // chained like loads.
8024   SDValue Chain = DAG.getRoot();
8025   SmallVector<SDValue, 4> Opers;
8026   Opers.push_back(Chain);
8027   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8028     Opers.push_back(getValue(FPI.getArgOperand(I)));
8029 
8030   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8031     assert(Result.getNode()->getNumValues() == 2);
8032 
8033     // Push node to the appropriate list so that future instructions can be
8034     // chained up correctly.
8035     SDValue OutChain = Result.getValue(1);
8036     switch (EB) {
8037     case fp::ExceptionBehavior::ebIgnore:
8038       // The only reason why ebIgnore nodes still need to be chained is that
8039       // they might depend on the current rounding mode, and therefore must
8040       // not be moved across instruction that may change that mode.
8041       [[fallthrough]];
8042     case fp::ExceptionBehavior::ebMayTrap:
8043       // These must not be moved across calls or instructions that may change
8044       // floating-point exception masks.
8045       PendingConstrainedFP.push_back(OutChain);
8046       break;
8047     case fp::ExceptionBehavior::ebStrict:
8048       // These must not be moved across calls or instructions that may change
8049       // floating-point exception masks or read floating-point exception flags.
8050       // In addition, they cannot be optimized out even if unused.
8051       PendingConstrainedFPStrict.push_back(OutChain);
8052       break;
8053     }
8054   };
8055 
8056   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8057   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8058   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8059   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8060 
8061   SDNodeFlags Flags;
8062   if (EB == fp::ExceptionBehavior::ebIgnore)
8063     Flags.setNoFPExcept(true);
8064 
8065   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8066     Flags.copyFMF(*FPOp);
8067 
8068   unsigned Opcode;
8069   switch (FPI.getIntrinsicID()) {
8070   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8071 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8072   case Intrinsic::INTRINSIC:                                                   \
8073     Opcode = ISD::STRICT_##DAGN;                                               \
8074     break;
8075 #include "llvm/IR/ConstrainedOps.def"
8076   case Intrinsic::experimental_constrained_fmuladd: {
8077     Opcode = ISD::STRICT_FMA;
8078     // Break fmuladd into fmul and fadd.
8079     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8080         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8081       Opers.pop_back();
8082       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8083       pushOutChain(Mul, EB);
8084       Opcode = ISD::STRICT_FADD;
8085       Opers.clear();
8086       Opers.push_back(Mul.getValue(1));
8087       Opers.push_back(Mul.getValue(0));
8088       Opers.push_back(getValue(FPI.getArgOperand(2)));
8089     }
8090     break;
8091   }
8092   }
8093 
8094   // A few strict DAG nodes carry additional operands that are not
8095   // set up by the default code above.
8096   switch (Opcode) {
8097   default: break;
8098   case ISD::STRICT_FP_ROUND:
8099     Opers.push_back(
8100         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8101     break;
8102   case ISD::STRICT_FSETCC:
8103   case ISD::STRICT_FSETCCS: {
8104     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8105     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8106     if (TM.Options.NoNaNsFPMath)
8107       Condition = getFCmpCodeWithoutNaN(Condition);
8108     Opers.push_back(DAG.getCondCode(Condition));
8109     break;
8110   }
8111   }
8112 
8113   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8114   pushOutChain(Result, EB);
8115 
8116   SDValue FPResult = Result.getValue(0);
8117   setValue(&FPI, FPResult);
8118 }
8119 
8120 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8121   std::optional<unsigned> ResOPC;
8122   switch (VPIntrin.getIntrinsicID()) {
8123   case Intrinsic::vp_ctlz: {
8124     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8125     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8126     break;
8127   }
8128   case Intrinsic::vp_cttz: {
8129     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8130     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8131     break;
8132   }
8133   case Intrinsic::vp_cttz_elts: {
8134     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8135     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8136     break;
8137   }
8138 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8139   case Intrinsic::VPID:                                                        \
8140     ResOPC = ISD::VPSD;                                                        \
8141     break;
8142 #include "llvm/IR/VPIntrinsics.def"
8143   }
8144 
8145   if (!ResOPC)
8146     llvm_unreachable(
8147         "Inconsistency: no SDNode available for this VPIntrinsic!");
8148 
8149   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8150       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8151     if (VPIntrin.getFastMathFlags().allowReassoc())
8152       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8153                                                 : ISD::VP_REDUCE_FMUL;
8154   }
8155 
8156   return *ResOPC;
8157 }
8158 
8159 void SelectionDAGBuilder::visitVPLoad(
8160     const VPIntrinsic &VPIntrin, EVT VT,
8161     const SmallVectorImpl<SDValue> &OpValues) {
8162   SDLoc DL = getCurSDLoc();
8163   Value *PtrOperand = VPIntrin.getArgOperand(0);
8164   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8165   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8166   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8167   SDValue LD;
8168   // Do not serialize variable-length loads of constant memory with
8169   // anything.
8170   if (!Alignment)
8171     Alignment = DAG.getEVTAlign(VT);
8172   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8173   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8174   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8175   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8176       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8177       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8178   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8179                      MMO, false /*IsExpanding */);
8180   if (AddToChain)
8181     PendingLoads.push_back(LD.getValue(1));
8182   setValue(&VPIntrin, LD);
8183 }
8184 
8185 void SelectionDAGBuilder::visitVPGather(
8186     const VPIntrinsic &VPIntrin, EVT VT,
8187     const SmallVectorImpl<SDValue> &OpValues) {
8188   SDLoc DL = getCurSDLoc();
8189   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8190   Value *PtrOperand = VPIntrin.getArgOperand(0);
8191   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8192   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8193   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8194   SDValue LD;
8195   if (!Alignment)
8196     Alignment = DAG.getEVTAlign(VT.getScalarType());
8197   unsigned AS =
8198     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8199   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8200       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8201       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8202   SDValue Base, Index, Scale;
8203   ISD::MemIndexType IndexType;
8204   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8205                                     this, VPIntrin.getParent(),
8206                                     VT.getScalarStoreSize());
8207   if (!UniformBase) {
8208     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8209     Index = getValue(PtrOperand);
8210     IndexType = ISD::SIGNED_SCALED;
8211     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8212   }
8213   EVT IdxVT = Index.getValueType();
8214   EVT EltTy = IdxVT.getVectorElementType();
8215   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8216     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8217     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8218   }
8219   LD = DAG.getGatherVP(
8220       DAG.getVTList(VT, MVT::Other), VT, DL,
8221       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8222       IndexType);
8223   PendingLoads.push_back(LD.getValue(1));
8224   setValue(&VPIntrin, LD);
8225 }
8226 
8227 void SelectionDAGBuilder::visitVPStore(
8228     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8229   SDLoc DL = getCurSDLoc();
8230   Value *PtrOperand = VPIntrin.getArgOperand(1);
8231   EVT VT = OpValues[0].getValueType();
8232   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8233   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8234   SDValue ST;
8235   if (!Alignment)
8236     Alignment = DAG.getEVTAlign(VT);
8237   SDValue Ptr = OpValues[1];
8238   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8239   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8240       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8241       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8242   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8243                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8244                       /* IsTruncating */ false, /*IsCompressing*/ false);
8245   DAG.setRoot(ST);
8246   setValue(&VPIntrin, ST);
8247 }
8248 
8249 void SelectionDAGBuilder::visitVPScatter(
8250     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8251   SDLoc DL = getCurSDLoc();
8252   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8253   Value *PtrOperand = VPIntrin.getArgOperand(1);
8254   EVT VT = OpValues[0].getValueType();
8255   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8256   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8257   SDValue ST;
8258   if (!Alignment)
8259     Alignment = DAG.getEVTAlign(VT.getScalarType());
8260   unsigned AS =
8261       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8262   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8263       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8264       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8265   SDValue Base, Index, Scale;
8266   ISD::MemIndexType IndexType;
8267   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8268                                     this, VPIntrin.getParent(),
8269                                     VT.getScalarStoreSize());
8270   if (!UniformBase) {
8271     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8272     Index = getValue(PtrOperand);
8273     IndexType = ISD::SIGNED_SCALED;
8274     Scale =
8275       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8276   }
8277   EVT IdxVT = Index.getValueType();
8278   EVT EltTy = IdxVT.getVectorElementType();
8279   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8280     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8281     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8282   }
8283   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8284                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8285                          OpValues[2], OpValues[3]},
8286                         MMO, IndexType);
8287   DAG.setRoot(ST);
8288   setValue(&VPIntrin, ST);
8289 }
8290 
8291 void SelectionDAGBuilder::visitVPStridedLoad(
8292     const VPIntrinsic &VPIntrin, EVT VT,
8293     const SmallVectorImpl<SDValue> &OpValues) {
8294   SDLoc DL = getCurSDLoc();
8295   Value *PtrOperand = VPIntrin.getArgOperand(0);
8296   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8297   if (!Alignment)
8298     Alignment = DAG.getEVTAlign(VT.getScalarType());
8299   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8300   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8301   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8302   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8303   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8304   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8305   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8306       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8307       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8308 
8309   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8310                                     OpValues[2], OpValues[3], MMO,
8311                                     false /*IsExpanding*/);
8312 
8313   if (AddToChain)
8314     PendingLoads.push_back(LD.getValue(1));
8315   setValue(&VPIntrin, LD);
8316 }
8317 
8318 void SelectionDAGBuilder::visitVPStridedStore(
8319     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8320   SDLoc DL = getCurSDLoc();
8321   Value *PtrOperand = VPIntrin.getArgOperand(1);
8322   EVT VT = OpValues[0].getValueType();
8323   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8324   if (!Alignment)
8325     Alignment = DAG.getEVTAlign(VT.getScalarType());
8326   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8327   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8328   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8329       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8330       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8331 
8332   SDValue ST = DAG.getStridedStoreVP(
8333       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8334       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8335       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8336       /*IsCompressing*/ false);
8337 
8338   DAG.setRoot(ST);
8339   setValue(&VPIntrin, ST);
8340 }
8341 
8342 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8344   SDLoc DL = getCurSDLoc();
8345 
8346   ISD::CondCode Condition;
8347   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8348   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8349   if (IsFP) {
8350     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8351     // flags, but calls that don't return floating-point types can't be
8352     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8353     Condition = getFCmpCondCode(CondCode);
8354     if (TM.Options.NoNaNsFPMath)
8355       Condition = getFCmpCodeWithoutNaN(Condition);
8356   } else {
8357     Condition = getICmpCondCode(CondCode);
8358   }
8359 
8360   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8361   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8362   // #2 is the condition code
8363   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8364   SDValue EVL = getValue(VPIntrin.getOperand(4));
8365   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8366   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8367          "Unexpected target EVL type");
8368   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8369 
8370   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8371                                                         VPIntrin.getType());
8372   setValue(&VPIntrin,
8373            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8374 }
8375 
8376 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8377     const VPIntrinsic &VPIntrin) {
8378   SDLoc DL = getCurSDLoc();
8379   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8380 
8381   auto IID = VPIntrin.getIntrinsicID();
8382 
8383   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8384     return visitVPCmp(*CmpI);
8385 
8386   SmallVector<EVT, 4> ValueVTs;
8387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8388   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8389   SDVTList VTs = DAG.getVTList(ValueVTs);
8390 
8391   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8392 
8393   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8394   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8395          "Unexpected target EVL type");
8396 
8397   // Request operands.
8398   SmallVector<SDValue, 7> OpValues;
8399   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8400     auto Op = getValue(VPIntrin.getArgOperand(I));
8401     if (I == EVLParamPos)
8402       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8403     OpValues.push_back(Op);
8404   }
8405 
8406   switch (Opcode) {
8407   default: {
8408     SDNodeFlags SDFlags;
8409     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8410       SDFlags.copyFMF(*FPMO);
8411     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8412     setValue(&VPIntrin, Result);
8413     break;
8414   }
8415   case ISD::VP_LOAD:
8416     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8417     break;
8418   case ISD::VP_GATHER:
8419     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8420     break;
8421   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8422     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8423     break;
8424   case ISD::VP_STORE:
8425     visitVPStore(VPIntrin, OpValues);
8426     break;
8427   case ISD::VP_SCATTER:
8428     visitVPScatter(VPIntrin, OpValues);
8429     break;
8430   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8431     visitVPStridedStore(VPIntrin, OpValues);
8432     break;
8433   case ISD::VP_FMULADD: {
8434     assert(OpValues.size() == 5 && "Unexpected number of operands");
8435     SDNodeFlags SDFlags;
8436     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8437       SDFlags.copyFMF(*FPMO);
8438     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8439         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8440       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8441     } else {
8442       SDValue Mul = DAG.getNode(
8443           ISD::VP_FMUL, DL, VTs,
8444           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8445       SDValue Add =
8446           DAG.getNode(ISD::VP_FADD, DL, VTs,
8447                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8448       setValue(&VPIntrin, Add);
8449     }
8450     break;
8451   }
8452   case ISD::VP_IS_FPCLASS: {
8453     const DataLayout DLayout = DAG.getDataLayout();
8454     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8455     auto Constant = OpValues[1]->getAsZExtVal();
8456     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8457     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8458                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8459     setValue(&VPIntrin, V);
8460     return;
8461   }
8462   case ISD::VP_INTTOPTR: {
8463     SDValue N = OpValues[0];
8464     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8465     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8466     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8467                                OpValues[2]);
8468     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8469                              OpValues[2]);
8470     setValue(&VPIntrin, N);
8471     break;
8472   }
8473   case ISD::VP_PTRTOINT: {
8474     SDValue N = OpValues[0];
8475     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8476                                                           VPIntrin.getType());
8477     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8478                                        VPIntrin.getOperand(0)->getType());
8479     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8480                                OpValues[2]);
8481     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8482                              OpValues[2]);
8483     setValue(&VPIntrin, N);
8484     break;
8485   }
8486   case ISD::VP_ABS:
8487   case ISD::VP_CTLZ:
8488   case ISD::VP_CTLZ_ZERO_UNDEF:
8489   case ISD::VP_CTTZ:
8490   case ISD::VP_CTTZ_ZERO_UNDEF:
8491   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8492   case ISD::VP_CTTZ_ELTS: {
8493     SDValue Result =
8494         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8495     setValue(&VPIntrin, Result);
8496     break;
8497   }
8498   }
8499 }
8500 
8501 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8502                                           const BasicBlock *EHPadBB,
8503                                           MCSymbol *&BeginLabel) {
8504   MachineFunction &MF = DAG.getMachineFunction();
8505   MachineModuleInfo &MMI = MF.getMMI();
8506 
8507   // Insert a label before the invoke call to mark the try range.  This can be
8508   // used to detect deletion of the invoke via the MachineModuleInfo.
8509   BeginLabel = MMI.getContext().createTempSymbol();
8510 
8511   // For SjLj, keep track of which landing pads go with which invokes
8512   // so as to maintain the ordering of pads in the LSDA.
8513   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8514   if (CallSiteIndex) {
8515     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8516     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8517 
8518     // Now that the call site is handled, stop tracking it.
8519     MMI.setCurrentCallSite(0);
8520   }
8521 
8522   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8523 }
8524 
8525 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8526                                         const BasicBlock *EHPadBB,
8527                                         MCSymbol *BeginLabel) {
8528   assert(BeginLabel && "BeginLabel should've been set");
8529 
8530   MachineFunction &MF = DAG.getMachineFunction();
8531   MachineModuleInfo &MMI = MF.getMMI();
8532 
8533   // Insert a label at the end of the invoke call to mark the try range.  This
8534   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8535   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8536   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8537 
8538   // Inform MachineModuleInfo of range.
8539   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8540   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8541   // actually use outlined funclets and their LSDA info style.
8542   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8543     assert(II && "II should've been set");
8544     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8545     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8546   } else if (!isScopedEHPersonality(Pers)) {
8547     assert(EHPadBB);
8548     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8549   }
8550 
8551   return Chain;
8552 }
8553 
8554 std::pair<SDValue, SDValue>
8555 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8556                                     const BasicBlock *EHPadBB) {
8557   MCSymbol *BeginLabel = nullptr;
8558 
8559   if (EHPadBB) {
8560     // Both PendingLoads and PendingExports must be flushed here;
8561     // this call might not return.
8562     (void)getRoot();
8563     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8564     CLI.setChain(getRoot());
8565   }
8566 
8567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8568   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8569 
8570   assert((CLI.IsTailCall || Result.second.getNode()) &&
8571          "Non-null chain expected with non-tail call!");
8572   assert((Result.second.getNode() || !Result.first.getNode()) &&
8573          "Null value expected with tail call!");
8574 
8575   if (!Result.second.getNode()) {
8576     // As a special case, a null chain means that a tail call has been emitted
8577     // and the DAG root is already updated.
8578     HasTailCall = true;
8579 
8580     // Since there's no actual continuation from this block, nothing can be
8581     // relying on us setting vregs for them.
8582     PendingExports.clear();
8583   } else {
8584     DAG.setRoot(Result.second);
8585   }
8586 
8587   if (EHPadBB) {
8588     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8589                            BeginLabel));
8590   }
8591 
8592   return Result;
8593 }
8594 
8595 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8596                                       bool isTailCall,
8597                                       bool isMustTailCall,
8598                                       const BasicBlock *EHPadBB) {
8599   auto &DL = DAG.getDataLayout();
8600   FunctionType *FTy = CB.getFunctionType();
8601   Type *RetTy = CB.getType();
8602 
8603   TargetLowering::ArgListTy Args;
8604   Args.reserve(CB.arg_size());
8605 
8606   const Value *SwiftErrorVal = nullptr;
8607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8608 
8609   if (isTailCall) {
8610     // Avoid emitting tail calls in functions with the disable-tail-calls
8611     // attribute.
8612     auto *Caller = CB.getParent()->getParent();
8613     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8614         "true" && !isMustTailCall)
8615       isTailCall = false;
8616 
8617     // We can't tail call inside a function with a swifterror argument. Lowering
8618     // does not support this yet. It would have to move into the swifterror
8619     // register before the call.
8620     if (TLI.supportSwiftError() &&
8621         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8622       isTailCall = false;
8623   }
8624 
8625   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8626     TargetLowering::ArgListEntry Entry;
8627     const Value *V = *I;
8628 
8629     // Skip empty types
8630     if (V->getType()->isEmptyTy())
8631       continue;
8632 
8633     SDValue ArgNode = getValue(V);
8634     Entry.Node = ArgNode; Entry.Ty = V->getType();
8635 
8636     Entry.setAttributes(&CB, I - CB.arg_begin());
8637 
8638     // Use swifterror virtual register as input to the call.
8639     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8640       SwiftErrorVal = V;
8641       // We find the virtual register for the actual swifterror argument.
8642       // Instead of using the Value, we use the virtual register instead.
8643       Entry.Node =
8644           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8645                           EVT(TLI.getPointerTy(DL)));
8646     }
8647 
8648     Args.push_back(Entry);
8649 
8650     // If we have an explicit sret argument that is an Instruction, (i.e., it
8651     // might point to function-local memory), we can't meaningfully tail-call.
8652     if (Entry.IsSRet && isa<Instruction>(V))
8653       isTailCall = false;
8654   }
8655 
8656   // If call site has a cfguardtarget operand bundle, create and add an
8657   // additional ArgListEntry.
8658   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8659     TargetLowering::ArgListEntry Entry;
8660     Value *V = Bundle->Inputs[0];
8661     SDValue ArgNode = getValue(V);
8662     Entry.Node = ArgNode;
8663     Entry.Ty = V->getType();
8664     Entry.IsCFGuardTarget = true;
8665     Args.push_back(Entry);
8666   }
8667 
8668   // Check if target-independent constraints permit a tail call here.
8669   // Target-dependent constraints are checked within TLI->LowerCallTo.
8670   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8671     isTailCall = false;
8672 
8673   // Disable tail calls if there is an swifterror argument. Targets have not
8674   // been updated to support tail calls.
8675   if (TLI.supportSwiftError() && SwiftErrorVal)
8676     isTailCall = false;
8677 
8678   ConstantInt *CFIType = nullptr;
8679   if (CB.isIndirectCall()) {
8680     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8681       if (!TLI.supportKCFIBundles())
8682         report_fatal_error(
8683             "Target doesn't support calls with kcfi operand bundles.");
8684       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8685       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8686     }
8687   }
8688 
8689   SDValue ConvControlToken;
8690   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8691     auto *Token = Bundle->Inputs[0].get();
8692     ConvControlToken = getValue(Token);
8693   }
8694 
8695   TargetLowering::CallLoweringInfo CLI(DAG);
8696   CLI.setDebugLoc(getCurSDLoc())
8697       .setChain(getRoot())
8698       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8699       .setTailCall(isTailCall)
8700       .setConvergent(CB.isConvergent())
8701       .setIsPreallocated(
8702           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8703       .setCFIType(CFIType)
8704       .setConvergenceControlToken(ConvControlToken);
8705   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8706 
8707   if (Result.first.getNode()) {
8708     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8709     setValue(&CB, Result.first);
8710   }
8711 
8712   // The last element of CLI.InVals has the SDValue for swifterror return.
8713   // Here we copy it to a virtual register and update SwiftErrorMap for
8714   // book-keeping.
8715   if (SwiftErrorVal && TLI.supportSwiftError()) {
8716     // Get the last element of InVals.
8717     SDValue Src = CLI.InVals.back();
8718     Register VReg =
8719         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8720     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8721     DAG.setRoot(CopyNode);
8722   }
8723 }
8724 
8725 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8726                              SelectionDAGBuilder &Builder) {
8727   // Check to see if this load can be trivially constant folded, e.g. if the
8728   // input is from a string literal.
8729   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8730     // Cast pointer to the type we really want to load.
8731     Type *LoadTy =
8732         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8733     if (LoadVT.isVector())
8734       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8735 
8736     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8737                                          PointerType::getUnqual(LoadTy));
8738 
8739     if (const Constant *LoadCst =
8740             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8741                                          LoadTy, Builder.DAG.getDataLayout()))
8742       return Builder.getValue(LoadCst);
8743   }
8744 
8745   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8746   // still constant memory, the input chain can be the entry node.
8747   SDValue Root;
8748   bool ConstantMemory = false;
8749 
8750   // Do not serialize (non-volatile) loads of constant memory with anything.
8751   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8752     Root = Builder.DAG.getEntryNode();
8753     ConstantMemory = true;
8754   } else {
8755     // Do not serialize non-volatile loads against each other.
8756     Root = Builder.DAG.getRoot();
8757   }
8758 
8759   SDValue Ptr = Builder.getValue(PtrVal);
8760   SDValue LoadVal =
8761       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8762                           MachinePointerInfo(PtrVal), Align(1));
8763 
8764   if (!ConstantMemory)
8765     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8766   return LoadVal;
8767 }
8768 
8769 /// Record the value for an instruction that produces an integer result,
8770 /// converting the type where necessary.
8771 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8772                                                   SDValue Value,
8773                                                   bool IsSigned) {
8774   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8775                                                     I.getType(), true);
8776   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8777   setValue(&I, Value);
8778 }
8779 
8780 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8781 /// true and lower it. Otherwise return false, and it will be lowered like a
8782 /// normal call.
8783 /// The caller already checked that \p I calls the appropriate LibFunc with a
8784 /// correct prototype.
8785 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8786   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8787   const Value *Size = I.getArgOperand(2);
8788   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8789   if (CSize && CSize->getZExtValue() == 0) {
8790     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8791                                                           I.getType(), true);
8792     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8793     return true;
8794   }
8795 
8796   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8797   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8798       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8799       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8800   if (Res.first.getNode()) {
8801     processIntegerCallValue(I, Res.first, true);
8802     PendingLoads.push_back(Res.second);
8803     return true;
8804   }
8805 
8806   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8807   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8808   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8809     return false;
8810 
8811   // If the target has a fast compare for the given size, it will return a
8812   // preferred load type for that size. Require that the load VT is legal and
8813   // that the target supports unaligned loads of that type. Otherwise, return
8814   // INVALID.
8815   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8816     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8817     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8818     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8819       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8820       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8821       // TODO: Check alignment of src and dest ptrs.
8822       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8823       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8824       if (!TLI.isTypeLegal(LVT) ||
8825           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8826           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8827         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8828     }
8829 
8830     return LVT;
8831   };
8832 
8833   // This turns into unaligned loads. We only do this if the target natively
8834   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8835   // we'll only produce a small number of byte loads.
8836   MVT LoadVT;
8837   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8838   switch (NumBitsToCompare) {
8839   default:
8840     return false;
8841   case 16:
8842     LoadVT = MVT::i16;
8843     break;
8844   case 32:
8845     LoadVT = MVT::i32;
8846     break;
8847   case 64:
8848   case 128:
8849   case 256:
8850     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8851     break;
8852   }
8853 
8854   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8855     return false;
8856 
8857   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8858   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8859 
8860   // Bitcast to a wide integer type if the loads are vectors.
8861   if (LoadVT.isVector()) {
8862     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8863     LoadL = DAG.getBitcast(CmpVT, LoadL);
8864     LoadR = DAG.getBitcast(CmpVT, LoadR);
8865   }
8866 
8867   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8868   processIntegerCallValue(I, Cmp, false);
8869   return true;
8870 }
8871 
8872 /// See if we can lower a memchr call into an optimized form. If so, return
8873 /// true and lower it. Otherwise return false, and it will be lowered like a
8874 /// normal call.
8875 /// The caller already checked that \p I calls the appropriate LibFunc with a
8876 /// correct prototype.
8877 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8878   const Value *Src = I.getArgOperand(0);
8879   const Value *Char = I.getArgOperand(1);
8880   const Value *Length = I.getArgOperand(2);
8881 
8882   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8883   std::pair<SDValue, SDValue> Res =
8884     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8885                                 getValue(Src), getValue(Char), getValue(Length),
8886                                 MachinePointerInfo(Src));
8887   if (Res.first.getNode()) {
8888     setValue(&I, Res.first);
8889     PendingLoads.push_back(Res.second);
8890     return true;
8891   }
8892 
8893   return false;
8894 }
8895 
8896 /// See if we can lower a mempcpy call into an optimized form. If so, return
8897 /// true and lower it. Otherwise return false, and it will be lowered like a
8898 /// normal call.
8899 /// The caller already checked that \p I calls the appropriate LibFunc with a
8900 /// correct prototype.
8901 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8902   SDValue Dst = getValue(I.getArgOperand(0));
8903   SDValue Src = getValue(I.getArgOperand(1));
8904   SDValue Size = getValue(I.getArgOperand(2));
8905 
8906   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8907   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8908   // DAG::getMemcpy needs Alignment to be defined.
8909   Align Alignment = std::min(DstAlign, SrcAlign);
8910 
8911   SDLoc sdl = getCurSDLoc();
8912 
8913   // In the mempcpy context we need to pass in a false value for isTailCall
8914   // because the return pointer needs to be adjusted by the size of
8915   // the copied memory.
8916   SDValue Root = getMemoryRoot();
8917   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8918                              /*isTailCall=*/false,
8919                              MachinePointerInfo(I.getArgOperand(0)),
8920                              MachinePointerInfo(I.getArgOperand(1)),
8921                              I.getAAMetadata());
8922   assert(MC.getNode() != nullptr &&
8923          "** memcpy should not be lowered as TailCall in mempcpy context **");
8924   DAG.setRoot(MC);
8925 
8926   // Check if Size needs to be truncated or extended.
8927   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8928 
8929   // Adjust return pointer to point just past the last dst byte.
8930   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8931                                     Dst, Size);
8932   setValue(&I, DstPlusSize);
8933   return true;
8934 }
8935 
8936 /// See if we can lower a strcpy call into an optimized form.  If so, return
8937 /// true and lower it, otherwise return false and it will be lowered like a
8938 /// normal call.
8939 /// The caller already checked that \p I calls the appropriate LibFunc with a
8940 /// correct prototype.
8941 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8942   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8943 
8944   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8945   std::pair<SDValue, SDValue> Res =
8946     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8947                                 getValue(Arg0), getValue(Arg1),
8948                                 MachinePointerInfo(Arg0),
8949                                 MachinePointerInfo(Arg1), isStpcpy);
8950   if (Res.first.getNode()) {
8951     setValue(&I, Res.first);
8952     DAG.setRoot(Res.second);
8953     return true;
8954   }
8955 
8956   return false;
8957 }
8958 
8959 /// See if we can lower a strcmp call into an optimized form.  If so, return
8960 /// true and lower it, otherwise return false and it will be lowered like a
8961 /// normal call.
8962 /// The caller already checked that \p I calls the appropriate LibFunc with a
8963 /// correct prototype.
8964 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8965   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8966 
8967   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8968   std::pair<SDValue, SDValue> Res =
8969     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8970                                 getValue(Arg0), getValue(Arg1),
8971                                 MachinePointerInfo(Arg0),
8972                                 MachinePointerInfo(Arg1));
8973   if (Res.first.getNode()) {
8974     processIntegerCallValue(I, Res.first, true);
8975     PendingLoads.push_back(Res.second);
8976     return true;
8977   }
8978 
8979   return false;
8980 }
8981 
8982 /// See if we can lower a strlen call into an optimized form.  If so, return
8983 /// true and lower it, otherwise return false and it will be lowered like a
8984 /// normal call.
8985 /// The caller already checked that \p I calls the appropriate LibFunc with a
8986 /// correct prototype.
8987 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8988   const Value *Arg0 = I.getArgOperand(0);
8989 
8990   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8991   std::pair<SDValue, SDValue> Res =
8992     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8993                                 getValue(Arg0), MachinePointerInfo(Arg0));
8994   if (Res.first.getNode()) {
8995     processIntegerCallValue(I, Res.first, false);
8996     PendingLoads.push_back(Res.second);
8997     return true;
8998   }
8999 
9000   return false;
9001 }
9002 
9003 /// See if we can lower a strnlen call into an optimized form.  If so, return
9004 /// true and lower it, otherwise return false and it will be lowered like a
9005 /// normal call.
9006 /// The caller already checked that \p I calls the appropriate LibFunc with a
9007 /// correct prototype.
9008 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9009   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9010 
9011   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9012   std::pair<SDValue, SDValue> Res =
9013     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9014                                  getValue(Arg0), getValue(Arg1),
9015                                  MachinePointerInfo(Arg0));
9016   if (Res.first.getNode()) {
9017     processIntegerCallValue(I, Res.first, false);
9018     PendingLoads.push_back(Res.second);
9019     return true;
9020   }
9021 
9022   return false;
9023 }
9024 
9025 /// See if we can lower a unary floating-point operation into an SDNode with
9026 /// the specified Opcode.  If so, return true and lower it, otherwise return
9027 /// false and it will be lowered like a normal call.
9028 /// The caller already checked that \p I calls the appropriate LibFunc with a
9029 /// correct prototype.
9030 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9031                                               unsigned Opcode) {
9032   // We already checked this call's prototype; verify it doesn't modify errno.
9033   if (!I.onlyReadsMemory())
9034     return false;
9035 
9036   SDNodeFlags Flags;
9037   Flags.copyFMF(cast<FPMathOperator>(I));
9038 
9039   SDValue Tmp = getValue(I.getArgOperand(0));
9040   setValue(&I,
9041            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9042   return true;
9043 }
9044 
9045 /// See if we can lower a binary floating-point operation into an SDNode with
9046 /// the specified Opcode. If so, return true and lower it. Otherwise return
9047 /// false, and it will be lowered like a normal call.
9048 /// The caller already checked that \p I calls the appropriate LibFunc with a
9049 /// correct prototype.
9050 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9051                                                unsigned Opcode) {
9052   // We already checked this call's prototype; verify it doesn't modify errno.
9053   if (!I.onlyReadsMemory())
9054     return false;
9055 
9056   SDNodeFlags Flags;
9057   Flags.copyFMF(cast<FPMathOperator>(I));
9058 
9059   SDValue Tmp0 = getValue(I.getArgOperand(0));
9060   SDValue Tmp1 = getValue(I.getArgOperand(1));
9061   EVT VT = Tmp0.getValueType();
9062   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9063   return true;
9064 }
9065 
9066 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9067   // Handle inline assembly differently.
9068   if (I.isInlineAsm()) {
9069     visitInlineAsm(I);
9070     return;
9071   }
9072 
9073   diagnoseDontCall(I);
9074 
9075   if (Function *F = I.getCalledFunction()) {
9076     if (F->isDeclaration()) {
9077       // Is this an LLVM intrinsic or a target-specific intrinsic?
9078       unsigned IID = F->getIntrinsicID();
9079       if (!IID)
9080         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9081           IID = II->getIntrinsicID(F);
9082 
9083       if (IID) {
9084         visitIntrinsicCall(I, IID);
9085         return;
9086       }
9087     }
9088 
9089     // Check for well-known libc/libm calls.  If the function is internal, it
9090     // can't be a library call.  Don't do the check if marked as nobuiltin for
9091     // some reason or the call site requires strict floating point semantics.
9092     LibFunc Func;
9093     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9094         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9095         LibInfo->hasOptimizedCodeGen(Func)) {
9096       switch (Func) {
9097       default: break;
9098       case LibFunc_bcmp:
9099         if (visitMemCmpBCmpCall(I))
9100           return;
9101         break;
9102       case LibFunc_copysign:
9103       case LibFunc_copysignf:
9104       case LibFunc_copysignl:
9105         // We already checked this call's prototype; verify it doesn't modify
9106         // errno.
9107         if (I.onlyReadsMemory()) {
9108           SDValue LHS = getValue(I.getArgOperand(0));
9109           SDValue RHS = getValue(I.getArgOperand(1));
9110           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9111                                    LHS.getValueType(), LHS, RHS));
9112           return;
9113         }
9114         break;
9115       case LibFunc_fabs:
9116       case LibFunc_fabsf:
9117       case LibFunc_fabsl:
9118         if (visitUnaryFloatCall(I, ISD::FABS))
9119           return;
9120         break;
9121       case LibFunc_fmin:
9122       case LibFunc_fminf:
9123       case LibFunc_fminl:
9124         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9125           return;
9126         break;
9127       case LibFunc_fmax:
9128       case LibFunc_fmaxf:
9129       case LibFunc_fmaxl:
9130         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9131           return;
9132         break;
9133       case LibFunc_sin:
9134       case LibFunc_sinf:
9135       case LibFunc_sinl:
9136         if (visitUnaryFloatCall(I, ISD::FSIN))
9137           return;
9138         break;
9139       case LibFunc_cos:
9140       case LibFunc_cosf:
9141       case LibFunc_cosl:
9142         if (visitUnaryFloatCall(I, ISD::FCOS))
9143           return;
9144         break;
9145       case LibFunc_sqrt:
9146       case LibFunc_sqrtf:
9147       case LibFunc_sqrtl:
9148       case LibFunc_sqrt_finite:
9149       case LibFunc_sqrtf_finite:
9150       case LibFunc_sqrtl_finite:
9151         if (visitUnaryFloatCall(I, ISD::FSQRT))
9152           return;
9153         break;
9154       case LibFunc_floor:
9155       case LibFunc_floorf:
9156       case LibFunc_floorl:
9157         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9158           return;
9159         break;
9160       case LibFunc_nearbyint:
9161       case LibFunc_nearbyintf:
9162       case LibFunc_nearbyintl:
9163         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9164           return;
9165         break;
9166       case LibFunc_ceil:
9167       case LibFunc_ceilf:
9168       case LibFunc_ceill:
9169         if (visitUnaryFloatCall(I, ISD::FCEIL))
9170           return;
9171         break;
9172       case LibFunc_rint:
9173       case LibFunc_rintf:
9174       case LibFunc_rintl:
9175         if (visitUnaryFloatCall(I, ISD::FRINT))
9176           return;
9177         break;
9178       case LibFunc_round:
9179       case LibFunc_roundf:
9180       case LibFunc_roundl:
9181         if (visitUnaryFloatCall(I, ISD::FROUND))
9182           return;
9183         break;
9184       case LibFunc_trunc:
9185       case LibFunc_truncf:
9186       case LibFunc_truncl:
9187         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9188           return;
9189         break;
9190       case LibFunc_log2:
9191       case LibFunc_log2f:
9192       case LibFunc_log2l:
9193         if (visitUnaryFloatCall(I, ISD::FLOG2))
9194           return;
9195         break;
9196       case LibFunc_exp2:
9197       case LibFunc_exp2f:
9198       case LibFunc_exp2l:
9199         if (visitUnaryFloatCall(I, ISD::FEXP2))
9200           return;
9201         break;
9202       case LibFunc_exp10:
9203       case LibFunc_exp10f:
9204       case LibFunc_exp10l:
9205         if (visitUnaryFloatCall(I, ISD::FEXP10))
9206           return;
9207         break;
9208       case LibFunc_ldexp:
9209       case LibFunc_ldexpf:
9210       case LibFunc_ldexpl:
9211         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9212           return;
9213         break;
9214       case LibFunc_memcmp:
9215         if (visitMemCmpBCmpCall(I))
9216           return;
9217         break;
9218       case LibFunc_mempcpy:
9219         if (visitMemPCpyCall(I))
9220           return;
9221         break;
9222       case LibFunc_memchr:
9223         if (visitMemChrCall(I))
9224           return;
9225         break;
9226       case LibFunc_strcpy:
9227         if (visitStrCpyCall(I, false))
9228           return;
9229         break;
9230       case LibFunc_stpcpy:
9231         if (visitStrCpyCall(I, true))
9232           return;
9233         break;
9234       case LibFunc_strcmp:
9235         if (visitStrCmpCall(I))
9236           return;
9237         break;
9238       case LibFunc_strlen:
9239         if (visitStrLenCall(I))
9240           return;
9241         break;
9242       case LibFunc_strnlen:
9243         if (visitStrNLenCall(I))
9244           return;
9245         break;
9246       }
9247     }
9248   }
9249 
9250   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9251   // have to do anything here to lower funclet bundles.
9252   // CFGuardTarget bundles are lowered in LowerCallTo.
9253   assert(!I.hasOperandBundlesOtherThan(
9254              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9255               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9256               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9257               LLVMContext::OB_convergencectrl}) &&
9258          "Cannot lower calls with arbitrary operand bundles!");
9259 
9260   SDValue Callee = getValue(I.getCalledOperand());
9261 
9262   if (I.hasDeoptState())
9263     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9264   else
9265     // Check if we can potentially perform a tail call. More detailed checking
9266     // is be done within LowerCallTo, after more information about the call is
9267     // known.
9268     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9269 }
9270 
9271 namespace {
9272 
9273 /// AsmOperandInfo - This contains information for each constraint that we are
9274 /// lowering.
9275 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9276 public:
9277   /// CallOperand - If this is the result output operand or a clobber
9278   /// this is null, otherwise it is the incoming operand to the CallInst.
9279   /// This gets modified as the asm is processed.
9280   SDValue CallOperand;
9281 
9282   /// AssignedRegs - If this is a register or register class operand, this
9283   /// contains the set of register corresponding to the operand.
9284   RegsForValue AssignedRegs;
9285 
9286   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9287     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9288   }
9289 
9290   /// Whether or not this operand accesses memory
9291   bool hasMemory(const TargetLowering &TLI) const {
9292     // Indirect operand accesses access memory.
9293     if (isIndirect)
9294       return true;
9295 
9296     for (const auto &Code : Codes)
9297       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9298         return true;
9299 
9300     return false;
9301   }
9302 };
9303 
9304 
9305 } // end anonymous namespace
9306 
9307 /// Make sure that the output operand \p OpInfo and its corresponding input
9308 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9309 /// out).
9310 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9311                                SDISelAsmOperandInfo &MatchingOpInfo,
9312                                SelectionDAG &DAG) {
9313   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9314     return;
9315 
9316   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9317   const auto &TLI = DAG.getTargetLoweringInfo();
9318 
9319   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9320       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9321                                        OpInfo.ConstraintVT);
9322   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9323       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9324                                        MatchingOpInfo.ConstraintVT);
9325   if ((OpInfo.ConstraintVT.isInteger() !=
9326        MatchingOpInfo.ConstraintVT.isInteger()) ||
9327       (MatchRC.second != InputRC.second)) {
9328     // FIXME: error out in a more elegant fashion
9329     report_fatal_error("Unsupported asm: input constraint"
9330                        " with a matching output constraint of"
9331                        " incompatible type!");
9332   }
9333   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9334 }
9335 
9336 /// Get a direct memory input to behave well as an indirect operand.
9337 /// This may introduce stores, hence the need for a \p Chain.
9338 /// \return The (possibly updated) chain.
9339 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9340                                         SDISelAsmOperandInfo &OpInfo,
9341                                         SelectionDAG &DAG) {
9342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9343 
9344   // If we don't have an indirect input, put it in the constpool if we can,
9345   // otherwise spill it to a stack slot.
9346   // TODO: This isn't quite right. We need to handle these according to
9347   // the addressing mode that the constraint wants. Also, this may take
9348   // an additional register for the computation and we don't want that
9349   // either.
9350 
9351   // If the operand is a float, integer, or vector constant, spill to a
9352   // constant pool entry to get its address.
9353   const Value *OpVal = OpInfo.CallOperandVal;
9354   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9355       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9356     OpInfo.CallOperand = DAG.getConstantPool(
9357         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9358     return Chain;
9359   }
9360 
9361   // Otherwise, create a stack slot and emit a store to it before the asm.
9362   Type *Ty = OpVal->getType();
9363   auto &DL = DAG.getDataLayout();
9364   uint64_t TySize = DL.getTypeAllocSize(Ty);
9365   MachineFunction &MF = DAG.getMachineFunction();
9366   int SSFI = MF.getFrameInfo().CreateStackObject(
9367       TySize, DL.getPrefTypeAlign(Ty), false);
9368   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9369   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9370                             MachinePointerInfo::getFixedStack(MF, SSFI),
9371                             TLI.getMemValueType(DL, Ty));
9372   OpInfo.CallOperand = StackSlot;
9373 
9374   return Chain;
9375 }
9376 
9377 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9378 /// specified operand.  We prefer to assign virtual registers, to allow the
9379 /// register allocator to handle the assignment process.  However, if the asm
9380 /// uses features that we can't model on machineinstrs, we have SDISel do the
9381 /// allocation.  This produces generally horrible, but correct, code.
9382 ///
9383 ///   OpInfo describes the operand
9384 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9385 static std::optional<unsigned>
9386 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9387                      SDISelAsmOperandInfo &OpInfo,
9388                      SDISelAsmOperandInfo &RefOpInfo) {
9389   LLVMContext &Context = *DAG.getContext();
9390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9391 
9392   MachineFunction &MF = DAG.getMachineFunction();
9393   SmallVector<unsigned, 4> Regs;
9394   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9395 
9396   // No work to do for memory/address operands.
9397   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9398       OpInfo.ConstraintType == TargetLowering::C_Address)
9399     return std::nullopt;
9400 
9401   // If this is a constraint for a single physreg, or a constraint for a
9402   // register class, find it.
9403   unsigned AssignedReg;
9404   const TargetRegisterClass *RC;
9405   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9406       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9407   // RC is unset only on failure. Return immediately.
9408   if (!RC)
9409     return std::nullopt;
9410 
9411   // Get the actual register value type.  This is important, because the user
9412   // may have asked for (e.g.) the AX register in i32 type.  We need to
9413   // remember that AX is actually i16 to get the right extension.
9414   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9415 
9416   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9417     // If this is an FP operand in an integer register (or visa versa), or more
9418     // generally if the operand value disagrees with the register class we plan
9419     // to stick it in, fix the operand type.
9420     //
9421     // If this is an input value, the bitcast to the new type is done now.
9422     // Bitcast for output value is done at the end of visitInlineAsm().
9423     if ((OpInfo.Type == InlineAsm::isOutput ||
9424          OpInfo.Type == InlineAsm::isInput) &&
9425         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9426       // Try to convert to the first EVT that the reg class contains.  If the
9427       // types are identical size, use a bitcast to convert (e.g. two differing
9428       // vector types).  Note: output bitcast is done at the end of
9429       // visitInlineAsm().
9430       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9431         // Exclude indirect inputs while they are unsupported because the code
9432         // to perform the load is missing and thus OpInfo.CallOperand still
9433         // refers to the input address rather than the pointed-to value.
9434         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9435           OpInfo.CallOperand =
9436               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9437         OpInfo.ConstraintVT = RegVT;
9438         // If the operand is an FP value and we want it in integer registers,
9439         // use the corresponding integer type. This turns an f64 value into
9440         // i64, which can be passed with two i32 values on a 32-bit machine.
9441       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9442         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9443         if (OpInfo.Type == InlineAsm::isInput)
9444           OpInfo.CallOperand =
9445               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9446         OpInfo.ConstraintVT = VT;
9447       }
9448     }
9449   }
9450 
9451   // No need to allocate a matching input constraint since the constraint it's
9452   // matching to has already been allocated.
9453   if (OpInfo.isMatchingInputConstraint())
9454     return std::nullopt;
9455 
9456   EVT ValueVT = OpInfo.ConstraintVT;
9457   if (OpInfo.ConstraintVT == MVT::Other)
9458     ValueVT = RegVT;
9459 
9460   // Initialize NumRegs.
9461   unsigned NumRegs = 1;
9462   if (OpInfo.ConstraintVT != MVT::Other)
9463     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9464 
9465   // If this is a constraint for a specific physical register, like {r17},
9466   // assign it now.
9467 
9468   // If this associated to a specific register, initialize iterator to correct
9469   // place. If virtual, make sure we have enough registers
9470 
9471   // Initialize iterator if necessary
9472   TargetRegisterClass::iterator I = RC->begin();
9473   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9474 
9475   // Do not check for single registers.
9476   if (AssignedReg) {
9477     I = std::find(I, RC->end(), AssignedReg);
9478     if (I == RC->end()) {
9479       // RC does not contain the selected register, which indicates a
9480       // mismatch between the register and the required type/bitwidth.
9481       return {AssignedReg};
9482     }
9483   }
9484 
9485   for (; NumRegs; --NumRegs, ++I) {
9486     assert(I != RC->end() && "Ran out of registers to allocate!");
9487     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9488     Regs.push_back(R);
9489   }
9490 
9491   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9492   return std::nullopt;
9493 }
9494 
9495 static unsigned
9496 findMatchingInlineAsmOperand(unsigned OperandNo,
9497                              const std::vector<SDValue> &AsmNodeOperands) {
9498   // Scan until we find the definition we already emitted of this operand.
9499   unsigned CurOp = InlineAsm::Op_FirstOperand;
9500   for (; OperandNo; --OperandNo) {
9501     // Advance to the next operand.
9502     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9503     const InlineAsm::Flag F(OpFlag);
9504     assert(
9505         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9506         "Skipped past definitions?");
9507     CurOp += F.getNumOperandRegisters() + 1;
9508   }
9509   return CurOp;
9510 }
9511 
9512 namespace {
9513 
9514 class ExtraFlags {
9515   unsigned Flags = 0;
9516 
9517 public:
9518   explicit ExtraFlags(const CallBase &Call) {
9519     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9520     if (IA->hasSideEffects())
9521       Flags |= InlineAsm::Extra_HasSideEffects;
9522     if (IA->isAlignStack())
9523       Flags |= InlineAsm::Extra_IsAlignStack;
9524     if (Call.isConvergent())
9525       Flags |= InlineAsm::Extra_IsConvergent;
9526     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9527   }
9528 
9529   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9530     // Ideally, we would only check against memory constraints.  However, the
9531     // meaning of an Other constraint can be target-specific and we can't easily
9532     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9533     // for Other constraints as well.
9534     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9535         OpInfo.ConstraintType == TargetLowering::C_Other) {
9536       if (OpInfo.Type == InlineAsm::isInput)
9537         Flags |= InlineAsm::Extra_MayLoad;
9538       else if (OpInfo.Type == InlineAsm::isOutput)
9539         Flags |= InlineAsm::Extra_MayStore;
9540       else if (OpInfo.Type == InlineAsm::isClobber)
9541         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9542     }
9543   }
9544 
9545   unsigned get() const { return Flags; }
9546 };
9547 
9548 } // end anonymous namespace
9549 
9550 static bool isFunction(SDValue Op) {
9551   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9552     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9553       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9554 
9555       // In normal "call dllimport func" instruction (non-inlineasm) it force
9556       // indirect access by specifing call opcode. And usually specially print
9557       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9558       // not do in this way now. (In fact, this is similar with "Data Access"
9559       // action). So here we ignore dllimport function.
9560       if (Fn && !Fn->hasDLLImportStorageClass())
9561         return true;
9562     }
9563   }
9564   return false;
9565 }
9566 
9567 /// visitInlineAsm - Handle a call to an InlineAsm object.
9568 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9569                                          const BasicBlock *EHPadBB) {
9570   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9571 
9572   /// ConstraintOperands - Information about all of the constraints.
9573   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9574 
9575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9576   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9577       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9578 
9579   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9580   // AsmDialect, MayLoad, MayStore).
9581   bool HasSideEffect = IA->hasSideEffects();
9582   ExtraFlags ExtraInfo(Call);
9583 
9584   for (auto &T : TargetConstraints) {
9585     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9586     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9587 
9588     if (OpInfo.CallOperandVal)
9589       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9590 
9591     if (!HasSideEffect)
9592       HasSideEffect = OpInfo.hasMemory(TLI);
9593 
9594     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9595     // FIXME: Could we compute this on OpInfo rather than T?
9596 
9597     // Compute the constraint code and ConstraintType to use.
9598     TLI.ComputeConstraintToUse(T, SDValue());
9599 
9600     if (T.ConstraintType == TargetLowering::C_Immediate &&
9601         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9602       // We've delayed emitting a diagnostic like the "n" constraint because
9603       // inlining could cause an integer showing up.
9604       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9605                                           "' expects an integer constant "
9606                                           "expression");
9607 
9608     ExtraInfo.update(T);
9609   }
9610 
9611   // We won't need to flush pending loads if this asm doesn't touch
9612   // memory and is nonvolatile.
9613   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9614 
9615   bool EmitEHLabels = isa<InvokeInst>(Call);
9616   if (EmitEHLabels) {
9617     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9618   }
9619   bool IsCallBr = isa<CallBrInst>(Call);
9620 
9621   if (IsCallBr || EmitEHLabels) {
9622     // If this is a callbr or invoke we need to flush pending exports since
9623     // inlineasm_br and invoke are terminators.
9624     // We need to do this before nodes are glued to the inlineasm_br node.
9625     Chain = getControlRoot();
9626   }
9627 
9628   MCSymbol *BeginLabel = nullptr;
9629   if (EmitEHLabels) {
9630     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9631   }
9632 
9633   int OpNo = -1;
9634   SmallVector<StringRef> AsmStrs;
9635   IA->collectAsmStrs(AsmStrs);
9636 
9637   // Second pass over the constraints: compute which constraint option to use.
9638   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9639     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9640       OpNo++;
9641 
9642     // If this is an output operand with a matching input operand, look up the
9643     // matching input. If their types mismatch, e.g. one is an integer, the
9644     // other is floating point, or their sizes are different, flag it as an
9645     // error.
9646     if (OpInfo.hasMatchingInput()) {
9647       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9648       patchMatchingInput(OpInfo, Input, DAG);
9649     }
9650 
9651     // Compute the constraint code and ConstraintType to use.
9652     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9653 
9654     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9655          OpInfo.Type == InlineAsm::isClobber) ||
9656         OpInfo.ConstraintType == TargetLowering::C_Address)
9657       continue;
9658 
9659     // In Linux PIC model, there are 4 cases about value/label addressing:
9660     //
9661     // 1: Function call or Label jmp inside the module.
9662     // 2: Data access (such as global variable, static variable) inside module.
9663     // 3: Function call or Label jmp outside the module.
9664     // 4: Data access (such as global variable) outside the module.
9665     //
9666     // Due to current llvm inline asm architecture designed to not "recognize"
9667     // the asm code, there are quite troubles for us to treat mem addressing
9668     // differently for same value/adress used in different instuctions.
9669     // For example, in pic model, call a func may in plt way or direclty
9670     // pc-related, but lea/mov a function adress may use got.
9671     //
9672     // Here we try to "recognize" function call for the case 1 and case 3 in
9673     // inline asm. And try to adjust the constraint for them.
9674     //
9675     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9676     // label, so here we don't handle jmp function label now, but we need to
9677     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9678     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9679         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9680         TM.getCodeModel() != CodeModel::Large) {
9681       OpInfo.isIndirect = false;
9682       OpInfo.ConstraintType = TargetLowering::C_Address;
9683     }
9684 
9685     // If this is a memory input, and if the operand is not indirect, do what we
9686     // need to provide an address for the memory input.
9687     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9688         !OpInfo.isIndirect) {
9689       assert((OpInfo.isMultipleAlternative ||
9690               (OpInfo.Type == InlineAsm::isInput)) &&
9691              "Can only indirectify direct input operands!");
9692 
9693       // Memory operands really want the address of the value.
9694       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9695 
9696       // There is no longer a Value* corresponding to this operand.
9697       OpInfo.CallOperandVal = nullptr;
9698 
9699       // It is now an indirect operand.
9700       OpInfo.isIndirect = true;
9701     }
9702 
9703   }
9704 
9705   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9706   std::vector<SDValue> AsmNodeOperands;
9707   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9708   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9709       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9710 
9711   // If we have a !srcloc metadata node associated with it, we want to attach
9712   // this to the ultimately generated inline asm machineinstr.  To do this, we
9713   // pass in the third operand as this (potentially null) inline asm MDNode.
9714   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9715   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9716 
9717   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9718   // bits as operand 3.
9719   AsmNodeOperands.push_back(DAG.getTargetConstant(
9720       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9721 
9722   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9723   // this, assign virtual and physical registers for inputs and otput.
9724   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9725     // Assign Registers.
9726     SDISelAsmOperandInfo &RefOpInfo =
9727         OpInfo.isMatchingInputConstraint()
9728             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9729             : OpInfo;
9730     const auto RegError =
9731         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9732     if (RegError) {
9733       const MachineFunction &MF = DAG.getMachineFunction();
9734       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9735       const char *RegName = TRI.getName(*RegError);
9736       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9737                                    "' allocated for constraint '" +
9738                                    Twine(OpInfo.ConstraintCode) +
9739                                    "' does not match required type");
9740       return;
9741     }
9742 
9743     auto DetectWriteToReservedRegister = [&]() {
9744       const MachineFunction &MF = DAG.getMachineFunction();
9745       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9746       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9747         if (Register::isPhysicalRegister(Reg) &&
9748             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9749           const char *RegName = TRI.getName(Reg);
9750           emitInlineAsmError(Call, "write to reserved register '" +
9751                                        Twine(RegName) + "'");
9752           return true;
9753         }
9754       }
9755       return false;
9756     };
9757     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9758             (OpInfo.Type == InlineAsm::isInput &&
9759              !OpInfo.isMatchingInputConstraint())) &&
9760            "Only address as input operand is allowed.");
9761 
9762     switch (OpInfo.Type) {
9763     case InlineAsm::isOutput:
9764       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9765         const InlineAsm::ConstraintCode ConstraintID =
9766             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9767         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9768                "Failed to convert memory constraint code to constraint id.");
9769 
9770         // Add information to the INLINEASM node to know about this output.
9771         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9772         OpFlags.setMemConstraint(ConstraintID);
9773         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9774                                                         MVT::i32));
9775         AsmNodeOperands.push_back(OpInfo.CallOperand);
9776       } else {
9777         // Otherwise, this outputs to a register (directly for C_Register /
9778         // C_RegisterClass, and a target-defined fashion for
9779         // C_Immediate/C_Other). Find a register that we can use.
9780         if (OpInfo.AssignedRegs.Regs.empty()) {
9781           emitInlineAsmError(
9782               Call, "couldn't allocate output register for constraint '" +
9783                         Twine(OpInfo.ConstraintCode) + "'");
9784           return;
9785         }
9786 
9787         if (DetectWriteToReservedRegister())
9788           return;
9789 
9790         // Add information to the INLINEASM node to know that this register is
9791         // set.
9792         OpInfo.AssignedRegs.AddInlineAsmOperands(
9793             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9794                                   : InlineAsm::Kind::RegDef,
9795             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9796       }
9797       break;
9798 
9799     case InlineAsm::isInput:
9800     case InlineAsm::isLabel: {
9801       SDValue InOperandVal = OpInfo.CallOperand;
9802 
9803       if (OpInfo.isMatchingInputConstraint()) {
9804         // If this is required to match an output register we have already set,
9805         // just use its register.
9806         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9807                                                   AsmNodeOperands);
9808         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9809         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9810           if (OpInfo.isIndirect) {
9811             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9812             emitInlineAsmError(Call, "inline asm not supported yet: "
9813                                      "don't know how to handle tied "
9814                                      "indirect register inputs");
9815             return;
9816           }
9817 
9818           SmallVector<unsigned, 4> Regs;
9819           MachineFunction &MF = DAG.getMachineFunction();
9820           MachineRegisterInfo &MRI = MF.getRegInfo();
9821           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9822           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9823           Register TiedReg = R->getReg();
9824           MVT RegVT = R->getSimpleValueType(0);
9825           const TargetRegisterClass *RC =
9826               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9827               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9828                                       : TRI.getMinimalPhysRegClass(TiedReg);
9829           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9830             Regs.push_back(MRI.createVirtualRegister(RC));
9831 
9832           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9833 
9834           SDLoc dl = getCurSDLoc();
9835           // Use the produced MatchedRegs object to
9836           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9837           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9838                                            OpInfo.getMatchedOperand(), dl, DAG,
9839                                            AsmNodeOperands);
9840           break;
9841         }
9842 
9843         assert(Flag.isMemKind() && "Unknown matching constraint!");
9844         assert(Flag.getNumOperandRegisters() == 1 &&
9845                "Unexpected number of operands");
9846         // Add information to the INLINEASM node to know about this input.
9847         // See InlineAsm.h isUseOperandTiedToDef.
9848         Flag.clearMemConstraint();
9849         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9850         AsmNodeOperands.push_back(DAG.getTargetConstant(
9851             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9852         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9853         break;
9854       }
9855 
9856       // Treat indirect 'X' constraint as memory.
9857       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9858           OpInfo.isIndirect)
9859         OpInfo.ConstraintType = TargetLowering::C_Memory;
9860 
9861       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9862           OpInfo.ConstraintType == TargetLowering::C_Other) {
9863         std::vector<SDValue> Ops;
9864         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9865                                           Ops, DAG);
9866         if (Ops.empty()) {
9867           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9868             if (isa<ConstantSDNode>(InOperandVal)) {
9869               emitInlineAsmError(Call, "value out of range for constraint '" +
9870                                            Twine(OpInfo.ConstraintCode) + "'");
9871               return;
9872             }
9873 
9874           emitInlineAsmError(Call,
9875                              "invalid operand for inline asm constraint '" +
9876                                  Twine(OpInfo.ConstraintCode) + "'");
9877           return;
9878         }
9879 
9880         // Add information to the INLINEASM node to know about this input.
9881         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9882         AsmNodeOperands.push_back(DAG.getTargetConstant(
9883             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9884         llvm::append_range(AsmNodeOperands, Ops);
9885         break;
9886       }
9887 
9888       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9889         assert((OpInfo.isIndirect ||
9890                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9891                "Operand must be indirect to be a mem!");
9892         assert(InOperandVal.getValueType() ==
9893                    TLI.getPointerTy(DAG.getDataLayout()) &&
9894                "Memory operands expect pointer values");
9895 
9896         const InlineAsm::ConstraintCode ConstraintID =
9897             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9898         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9899                "Failed to convert memory constraint code to constraint id.");
9900 
9901         // Add information to the INLINEASM node to know about this input.
9902         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9903         ResOpType.setMemConstraint(ConstraintID);
9904         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9905                                                         getCurSDLoc(),
9906                                                         MVT::i32));
9907         AsmNodeOperands.push_back(InOperandVal);
9908         break;
9909       }
9910 
9911       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9912         const InlineAsm::ConstraintCode ConstraintID =
9913             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9914         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9915                "Failed to convert memory constraint code to constraint id.");
9916 
9917         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9918 
9919         SDValue AsmOp = InOperandVal;
9920         if (isFunction(InOperandVal)) {
9921           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9922           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9923           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9924                                              InOperandVal.getValueType(),
9925                                              GA->getOffset());
9926         }
9927 
9928         // Add information to the INLINEASM node to know about this input.
9929         ResOpType.setMemConstraint(ConstraintID);
9930 
9931         AsmNodeOperands.push_back(
9932             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9933 
9934         AsmNodeOperands.push_back(AsmOp);
9935         break;
9936       }
9937 
9938       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9939               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9940              "Unknown constraint type!");
9941 
9942       // TODO: Support this.
9943       if (OpInfo.isIndirect) {
9944         emitInlineAsmError(
9945             Call, "Don't know how to handle indirect register inputs yet "
9946                   "for constraint '" +
9947                       Twine(OpInfo.ConstraintCode) + "'");
9948         return;
9949       }
9950 
9951       // Copy the input into the appropriate registers.
9952       if (OpInfo.AssignedRegs.Regs.empty()) {
9953         emitInlineAsmError(Call,
9954                            "couldn't allocate input reg for constraint '" +
9955                                Twine(OpInfo.ConstraintCode) + "'");
9956         return;
9957       }
9958 
9959       if (DetectWriteToReservedRegister())
9960         return;
9961 
9962       SDLoc dl = getCurSDLoc();
9963 
9964       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9965                                         &Call);
9966 
9967       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9968                                                0, dl, DAG, AsmNodeOperands);
9969       break;
9970     }
9971     case InlineAsm::isClobber:
9972       // Add the clobbered value to the operand list, so that the register
9973       // allocator is aware that the physreg got clobbered.
9974       if (!OpInfo.AssignedRegs.Regs.empty())
9975         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9976                                                  false, 0, getCurSDLoc(), DAG,
9977                                                  AsmNodeOperands);
9978       break;
9979     }
9980   }
9981 
9982   // Finish up input operands.  Set the input chain and add the flag last.
9983   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9984   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9985 
9986   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9987   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9988                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9989   Glue = Chain.getValue(1);
9990 
9991   // Do additional work to generate outputs.
9992 
9993   SmallVector<EVT, 1> ResultVTs;
9994   SmallVector<SDValue, 1> ResultValues;
9995   SmallVector<SDValue, 8> OutChains;
9996 
9997   llvm::Type *CallResultType = Call.getType();
9998   ArrayRef<Type *> ResultTypes;
9999   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10000     ResultTypes = StructResult->elements();
10001   else if (!CallResultType->isVoidTy())
10002     ResultTypes = ArrayRef(CallResultType);
10003 
10004   auto CurResultType = ResultTypes.begin();
10005   auto handleRegAssign = [&](SDValue V) {
10006     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10007     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10008     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10009     ++CurResultType;
10010     // If the type of the inline asm call site return value is different but has
10011     // same size as the type of the asm output bitcast it.  One example of this
10012     // is for vectors with different width / number of elements.  This can
10013     // happen for register classes that can contain multiple different value
10014     // types.  The preg or vreg allocated may not have the same VT as was
10015     // expected.
10016     //
10017     // This can also happen for a return value that disagrees with the register
10018     // class it is put in, eg. a double in a general-purpose register on a
10019     // 32-bit machine.
10020     if (ResultVT != V.getValueType() &&
10021         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10022       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10023     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10024              V.getValueType().isInteger()) {
10025       // If a result value was tied to an input value, the computed result
10026       // may have a wider width than the expected result.  Extract the
10027       // relevant portion.
10028       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10029     }
10030     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10031     ResultVTs.push_back(ResultVT);
10032     ResultValues.push_back(V);
10033   };
10034 
10035   // Deal with output operands.
10036   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10037     if (OpInfo.Type == InlineAsm::isOutput) {
10038       SDValue Val;
10039       // Skip trivial output operands.
10040       if (OpInfo.AssignedRegs.Regs.empty())
10041         continue;
10042 
10043       switch (OpInfo.ConstraintType) {
10044       case TargetLowering::C_Register:
10045       case TargetLowering::C_RegisterClass:
10046         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10047                                                   Chain, &Glue, &Call);
10048         break;
10049       case TargetLowering::C_Immediate:
10050       case TargetLowering::C_Other:
10051         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10052                                               OpInfo, DAG);
10053         break;
10054       case TargetLowering::C_Memory:
10055         break; // Already handled.
10056       case TargetLowering::C_Address:
10057         break; // Silence warning.
10058       case TargetLowering::C_Unknown:
10059         assert(false && "Unexpected unknown constraint");
10060       }
10061 
10062       // Indirect output manifest as stores. Record output chains.
10063       if (OpInfo.isIndirect) {
10064         const Value *Ptr = OpInfo.CallOperandVal;
10065         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10066         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10067                                      MachinePointerInfo(Ptr));
10068         OutChains.push_back(Store);
10069       } else {
10070         // generate CopyFromRegs to associated registers.
10071         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10072         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10073           for (const SDValue &V : Val->op_values())
10074             handleRegAssign(V);
10075         } else
10076           handleRegAssign(Val);
10077       }
10078     }
10079   }
10080 
10081   // Set results.
10082   if (!ResultValues.empty()) {
10083     assert(CurResultType == ResultTypes.end() &&
10084            "Mismatch in number of ResultTypes");
10085     assert(ResultValues.size() == ResultTypes.size() &&
10086            "Mismatch in number of output operands in asm result");
10087 
10088     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10089                             DAG.getVTList(ResultVTs), ResultValues);
10090     setValue(&Call, V);
10091   }
10092 
10093   // Collect store chains.
10094   if (!OutChains.empty())
10095     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10096 
10097   if (EmitEHLabels) {
10098     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10099   }
10100 
10101   // Only Update Root if inline assembly has a memory effect.
10102   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10103       EmitEHLabels)
10104     DAG.setRoot(Chain);
10105 }
10106 
10107 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10108                                              const Twine &Message) {
10109   LLVMContext &Ctx = *DAG.getContext();
10110   Ctx.emitError(&Call, Message);
10111 
10112   // Make sure we leave the DAG in a valid state
10113   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10114   SmallVector<EVT, 1> ValueVTs;
10115   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10116 
10117   if (ValueVTs.empty())
10118     return;
10119 
10120   SmallVector<SDValue, 1> Ops;
10121   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10122     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10123 
10124   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10125 }
10126 
10127 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10128   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10129                           MVT::Other, getRoot(),
10130                           getValue(I.getArgOperand(0)),
10131                           DAG.getSrcValue(I.getArgOperand(0))));
10132 }
10133 
10134 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10135   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10136   const DataLayout &DL = DAG.getDataLayout();
10137   SDValue V = DAG.getVAArg(
10138       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10139       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10140       DL.getABITypeAlign(I.getType()).value());
10141   DAG.setRoot(V.getValue(1));
10142 
10143   if (I.getType()->isPointerTy())
10144     V = DAG.getPtrExtOrTrunc(
10145         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10146   setValue(&I, V);
10147 }
10148 
10149 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10150   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10151                           MVT::Other, getRoot(),
10152                           getValue(I.getArgOperand(0)),
10153                           DAG.getSrcValue(I.getArgOperand(0))));
10154 }
10155 
10156 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10157   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10158                           MVT::Other, getRoot(),
10159                           getValue(I.getArgOperand(0)),
10160                           getValue(I.getArgOperand(1)),
10161                           DAG.getSrcValue(I.getArgOperand(0)),
10162                           DAG.getSrcValue(I.getArgOperand(1))));
10163 }
10164 
10165 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10166                                                     const Instruction &I,
10167                                                     SDValue Op) {
10168   const MDNode *Range = getRangeMetadata(I);
10169   if (!Range)
10170     return Op;
10171 
10172   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10173   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10174     return Op;
10175 
10176   APInt Lo = CR.getUnsignedMin();
10177   if (!Lo.isMinValue())
10178     return Op;
10179 
10180   APInt Hi = CR.getUnsignedMax();
10181   unsigned Bits = std::max(Hi.getActiveBits(),
10182                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10183 
10184   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10185 
10186   SDLoc SL = getCurSDLoc();
10187 
10188   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10189                              DAG.getValueType(SmallVT));
10190   unsigned NumVals = Op.getNode()->getNumValues();
10191   if (NumVals == 1)
10192     return ZExt;
10193 
10194   SmallVector<SDValue, 4> Ops;
10195 
10196   Ops.push_back(ZExt);
10197   for (unsigned I = 1; I != NumVals; ++I)
10198     Ops.push_back(Op.getValue(I));
10199 
10200   return DAG.getMergeValues(Ops, SL);
10201 }
10202 
10203 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10204 /// the call being lowered.
10205 ///
10206 /// This is a helper for lowering intrinsics that follow a target calling
10207 /// convention or require stack pointer adjustment. Only a subset of the
10208 /// intrinsic's operands need to participate in the calling convention.
10209 void SelectionDAGBuilder::populateCallLoweringInfo(
10210     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10211     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10212     AttributeSet RetAttrs, bool IsPatchPoint) {
10213   TargetLowering::ArgListTy Args;
10214   Args.reserve(NumArgs);
10215 
10216   // Populate the argument list.
10217   // Attributes for args start at offset 1, after the return attribute.
10218   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10219        ArgI != ArgE; ++ArgI) {
10220     const Value *V = Call->getOperand(ArgI);
10221 
10222     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10223 
10224     TargetLowering::ArgListEntry Entry;
10225     Entry.Node = getValue(V);
10226     Entry.Ty = V->getType();
10227     Entry.setAttributes(Call, ArgI);
10228     Args.push_back(Entry);
10229   }
10230 
10231   CLI.setDebugLoc(getCurSDLoc())
10232       .setChain(getRoot())
10233       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10234                  RetAttrs)
10235       .setDiscardResult(Call->use_empty())
10236       .setIsPatchPoint(IsPatchPoint)
10237       .setIsPreallocated(
10238           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10239 }
10240 
10241 /// Add a stack map intrinsic call's live variable operands to a stackmap
10242 /// or patchpoint target node's operand list.
10243 ///
10244 /// Constants are converted to TargetConstants purely as an optimization to
10245 /// avoid constant materialization and register allocation.
10246 ///
10247 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10248 /// generate addess computation nodes, and so FinalizeISel can convert the
10249 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10250 /// address materialization and register allocation, but may also be required
10251 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10252 /// alloca in the entry block, then the runtime may assume that the alloca's
10253 /// StackMap location can be read immediately after compilation and that the
10254 /// location is valid at any point during execution (this is similar to the
10255 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10256 /// only available in a register, then the runtime would need to trap when
10257 /// execution reaches the StackMap in order to read the alloca's location.
10258 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10259                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10260                                 SelectionDAGBuilder &Builder) {
10261   SelectionDAG &DAG = Builder.DAG;
10262   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10263     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10264 
10265     // Things on the stack are pointer-typed, meaning that they are already
10266     // legal and can be emitted directly to target nodes.
10267     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10268       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10269     } else {
10270       // Otherwise emit a target independent node to be legalised.
10271       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10272     }
10273   }
10274 }
10275 
10276 /// Lower llvm.experimental.stackmap.
10277 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10278   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10279   //                                  [live variables...])
10280 
10281   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10282 
10283   SDValue Chain, InGlue, Callee;
10284   SmallVector<SDValue, 32> Ops;
10285 
10286   SDLoc DL = getCurSDLoc();
10287   Callee = getValue(CI.getCalledOperand());
10288 
10289   // The stackmap intrinsic only records the live variables (the arguments
10290   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10291   // intrinsic, this won't be lowered to a function call. This means we don't
10292   // have to worry about calling conventions and target specific lowering code.
10293   // Instead we perform the call lowering right here.
10294   //
10295   // chain, flag = CALLSEQ_START(chain, 0, 0)
10296   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10297   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10298   //
10299   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10300   InGlue = Chain.getValue(1);
10301 
10302   // Add the STACKMAP operands, starting with DAG house-keeping.
10303   Ops.push_back(Chain);
10304   Ops.push_back(InGlue);
10305 
10306   // Add the <id>, <numShadowBytes> operands.
10307   //
10308   // These do not require legalisation, and can be emitted directly to target
10309   // constant nodes.
10310   SDValue ID = getValue(CI.getArgOperand(0));
10311   assert(ID.getValueType() == MVT::i64);
10312   SDValue IDConst =
10313       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10314   Ops.push_back(IDConst);
10315 
10316   SDValue Shad = getValue(CI.getArgOperand(1));
10317   assert(Shad.getValueType() == MVT::i32);
10318   SDValue ShadConst =
10319       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10320   Ops.push_back(ShadConst);
10321 
10322   // Add the live variables.
10323   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10324 
10325   // Create the STACKMAP node.
10326   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10327   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10328   InGlue = Chain.getValue(1);
10329 
10330   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10331 
10332   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10333 
10334   // Set the root to the target-lowered call chain.
10335   DAG.setRoot(Chain);
10336 
10337   // Inform the Frame Information that we have a stackmap in this function.
10338   FuncInfo.MF->getFrameInfo().setHasStackMap();
10339 }
10340 
10341 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10342 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10343                                           const BasicBlock *EHPadBB) {
10344   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10345   //                                         i32 <numBytes>,
10346   //                                         i8* <target>,
10347   //                                         i32 <numArgs>,
10348   //                                         [Args...],
10349   //                                         [live variables...])
10350 
10351   CallingConv::ID CC = CB.getCallingConv();
10352   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10353   bool HasDef = !CB.getType()->isVoidTy();
10354   SDLoc dl = getCurSDLoc();
10355   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10356 
10357   // Handle immediate and symbolic callees.
10358   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10359     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10360                                    /*isTarget=*/true);
10361   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10362     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10363                                          SDLoc(SymbolicCallee),
10364                                          SymbolicCallee->getValueType(0));
10365 
10366   // Get the real number of arguments participating in the call <numArgs>
10367   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10368   unsigned NumArgs = NArgVal->getAsZExtVal();
10369 
10370   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10371   // Intrinsics include all meta-operands up to but not including CC.
10372   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10373   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10374          "Not enough arguments provided to the patchpoint intrinsic");
10375 
10376   // For AnyRegCC the arguments are lowered later on manually.
10377   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10378   Type *ReturnTy =
10379       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10380 
10381   TargetLowering::CallLoweringInfo CLI(DAG);
10382   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10383                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10384   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10385 
10386   SDNode *CallEnd = Result.second.getNode();
10387   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10388     CallEnd = CallEnd->getOperand(0).getNode();
10389 
10390   /// Get a call instruction from the call sequence chain.
10391   /// Tail calls are not allowed.
10392   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10393          "Expected a callseq node.");
10394   SDNode *Call = CallEnd->getOperand(0).getNode();
10395   bool HasGlue = Call->getGluedNode();
10396 
10397   // Replace the target specific call node with the patchable intrinsic.
10398   SmallVector<SDValue, 8> Ops;
10399 
10400   // Push the chain.
10401   Ops.push_back(*(Call->op_begin()));
10402 
10403   // Optionally, push the glue (if any).
10404   if (HasGlue)
10405     Ops.push_back(*(Call->op_end() - 1));
10406 
10407   // Push the register mask info.
10408   if (HasGlue)
10409     Ops.push_back(*(Call->op_end() - 2));
10410   else
10411     Ops.push_back(*(Call->op_end() - 1));
10412 
10413   // Add the <id> and <numBytes> constants.
10414   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10415   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10416   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10417   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10418 
10419   // Add the callee.
10420   Ops.push_back(Callee);
10421 
10422   // Adjust <numArgs> to account for any arguments that have been passed on the
10423   // stack instead.
10424   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10425   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10426   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10427   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10428 
10429   // Add the calling convention
10430   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10431 
10432   // Add the arguments we omitted previously. The register allocator should
10433   // place these in any free register.
10434   if (IsAnyRegCC)
10435     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10436       Ops.push_back(getValue(CB.getArgOperand(i)));
10437 
10438   // Push the arguments from the call instruction.
10439   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10440   Ops.append(Call->op_begin() + 2, e);
10441 
10442   // Push live variables for the stack map.
10443   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10444 
10445   SDVTList NodeTys;
10446   if (IsAnyRegCC && HasDef) {
10447     // Create the return types based on the intrinsic definition
10448     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10449     SmallVector<EVT, 3> ValueVTs;
10450     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10451     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10452 
10453     // There is always a chain and a glue type at the end
10454     ValueVTs.push_back(MVT::Other);
10455     ValueVTs.push_back(MVT::Glue);
10456     NodeTys = DAG.getVTList(ValueVTs);
10457   } else
10458     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10459 
10460   // Replace the target specific call node with a PATCHPOINT node.
10461   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10462 
10463   // Update the NodeMap.
10464   if (HasDef) {
10465     if (IsAnyRegCC)
10466       setValue(&CB, SDValue(PPV.getNode(), 0));
10467     else
10468       setValue(&CB, Result.first);
10469   }
10470 
10471   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10472   // call sequence. Furthermore the location of the chain and glue can change
10473   // when the AnyReg calling convention is used and the intrinsic returns a
10474   // value.
10475   if (IsAnyRegCC && HasDef) {
10476     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10477     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10478     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10479   } else
10480     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10481   DAG.DeleteNode(Call);
10482 
10483   // Inform the Frame Information that we have a patchpoint in this function.
10484   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10485 }
10486 
10487 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10488                                             unsigned Intrinsic) {
10489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10490   SDValue Op1 = getValue(I.getArgOperand(0));
10491   SDValue Op2;
10492   if (I.arg_size() > 1)
10493     Op2 = getValue(I.getArgOperand(1));
10494   SDLoc dl = getCurSDLoc();
10495   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10496   SDValue Res;
10497   SDNodeFlags SDFlags;
10498   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10499     SDFlags.copyFMF(*FPMO);
10500 
10501   switch (Intrinsic) {
10502   case Intrinsic::vector_reduce_fadd:
10503     if (SDFlags.hasAllowReassociation())
10504       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10505                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10506                         SDFlags);
10507     else
10508       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10509     break;
10510   case Intrinsic::vector_reduce_fmul:
10511     if (SDFlags.hasAllowReassociation())
10512       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10513                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10514                         SDFlags);
10515     else
10516       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10517     break;
10518   case Intrinsic::vector_reduce_add:
10519     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10520     break;
10521   case Intrinsic::vector_reduce_mul:
10522     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10523     break;
10524   case Intrinsic::vector_reduce_and:
10525     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10526     break;
10527   case Intrinsic::vector_reduce_or:
10528     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10529     break;
10530   case Intrinsic::vector_reduce_xor:
10531     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10532     break;
10533   case Intrinsic::vector_reduce_smax:
10534     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10535     break;
10536   case Intrinsic::vector_reduce_smin:
10537     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10538     break;
10539   case Intrinsic::vector_reduce_umax:
10540     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10541     break;
10542   case Intrinsic::vector_reduce_umin:
10543     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10544     break;
10545   case Intrinsic::vector_reduce_fmax:
10546     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10547     break;
10548   case Intrinsic::vector_reduce_fmin:
10549     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10550     break;
10551   case Intrinsic::vector_reduce_fmaximum:
10552     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10553     break;
10554   case Intrinsic::vector_reduce_fminimum:
10555     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10556     break;
10557   default:
10558     llvm_unreachable("Unhandled vector reduce intrinsic");
10559   }
10560   setValue(&I, Res);
10561 }
10562 
10563 /// Returns an AttributeList representing the attributes applied to the return
10564 /// value of the given call.
10565 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10566   SmallVector<Attribute::AttrKind, 2> Attrs;
10567   if (CLI.RetSExt)
10568     Attrs.push_back(Attribute::SExt);
10569   if (CLI.RetZExt)
10570     Attrs.push_back(Attribute::ZExt);
10571   if (CLI.IsInReg)
10572     Attrs.push_back(Attribute::InReg);
10573 
10574   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10575                             Attrs);
10576 }
10577 
10578 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10579 /// implementation, which just calls LowerCall.
10580 /// FIXME: When all targets are
10581 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10582 std::pair<SDValue, SDValue>
10583 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10584   // Handle the incoming return values from the call.
10585   CLI.Ins.clear();
10586   Type *OrigRetTy = CLI.RetTy;
10587   SmallVector<EVT, 4> RetTys;
10588   SmallVector<TypeSize, 4> Offsets;
10589   auto &DL = CLI.DAG.getDataLayout();
10590   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10591 
10592   if (CLI.IsPostTypeLegalization) {
10593     // If we are lowering a libcall after legalization, split the return type.
10594     SmallVector<EVT, 4> OldRetTys;
10595     SmallVector<TypeSize, 4> OldOffsets;
10596     RetTys.swap(OldRetTys);
10597     Offsets.swap(OldOffsets);
10598 
10599     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10600       EVT RetVT = OldRetTys[i];
10601       uint64_t Offset = OldOffsets[i];
10602       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10603       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10604       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10605       RetTys.append(NumRegs, RegisterVT);
10606       for (unsigned j = 0; j != NumRegs; ++j)
10607         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10608     }
10609   }
10610 
10611   SmallVector<ISD::OutputArg, 4> Outs;
10612   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10613 
10614   bool CanLowerReturn =
10615       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10616                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10617 
10618   SDValue DemoteStackSlot;
10619   int DemoteStackIdx = -100;
10620   if (!CanLowerReturn) {
10621     // FIXME: equivalent assert?
10622     // assert(!CS.hasInAllocaArgument() &&
10623     //        "sret demotion is incompatible with inalloca");
10624     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10625     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10626     MachineFunction &MF = CLI.DAG.getMachineFunction();
10627     DemoteStackIdx =
10628         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10629     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10630                                               DL.getAllocaAddrSpace());
10631 
10632     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10633     ArgListEntry Entry;
10634     Entry.Node = DemoteStackSlot;
10635     Entry.Ty = StackSlotPtrType;
10636     Entry.IsSExt = false;
10637     Entry.IsZExt = false;
10638     Entry.IsInReg = false;
10639     Entry.IsSRet = true;
10640     Entry.IsNest = false;
10641     Entry.IsByVal = false;
10642     Entry.IsByRef = false;
10643     Entry.IsReturned = false;
10644     Entry.IsSwiftSelf = false;
10645     Entry.IsSwiftAsync = false;
10646     Entry.IsSwiftError = false;
10647     Entry.IsCFGuardTarget = false;
10648     Entry.Alignment = Alignment;
10649     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10650     CLI.NumFixedArgs += 1;
10651     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10652     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10653 
10654     // sret demotion isn't compatible with tail-calls, since the sret argument
10655     // points into the callers stack frame.
10656     CLI.IsTailCall = false;
10657   } else {
10658     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10659         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10660     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10661       ISD::ArgFlagsTy Flags;
10662       if (NeedsRegBlock) {
10663         Flags.setInConsecutiveRegs();
10664         if (I == RetTys.size() - 1)
10665           Flags.setInConsecutiveRegsLast();
10666       }
10667       EVT VT = RetTys[I];
10668       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10669                                                      CLI.CallConv, VT);
10670       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10671                                                        CLI.CallConv, VT);
10672       for (unsigned i = 0; i != NumRegs; ++i) {
10673         ISD::InputArg MyFlags;
10674         MyFlags.Flags = Flags;
10675         MyFlags.VT = RegisterVT;
10676         MyFlags.ArgVT = VT;
10677         MyFlags.Used = CLI.IsReturnValueUsed;
10678         if (CLI.RetTy->isPointerTy()) {
10679           MyFlags.Flags.setPointer();
10680           MyFlags.Flags.setPointerAddrSpace(
10681               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10682         }
10683         if (CLI.RetSExt)
10684           MyFlags.Flags.setSExt();
10685         if (CLI.RetZExt)
10686           MyFlags.Flags.setZExt();
10687         if (CLI.IsInReg)
10688           MyFlags.Flags.setInReg();
10689         CLI.Ins.push_back(MyFlags);
10690       }
10691     }
10692   }
10693 
10694   // We push in swifterror return as the last element of CLI.Ins.
10695   ArgListTy &Args = CLI.getArgs();
10696   if (supportSwiftError()) {
10697     for (const ArgListEntry &Arg : Args) {
10698       if (Arg.IsSwiftError) {
10699         ISD::InputArg MyFlags;
10700         MyFlags.VT = getPointerTy(DL);
10701         MyFlags.ArgVT = EVT(getPointerTy(DL));
10702         MyFlags.Flags.setSwiftError();
10703         CLI.Ins.push_back(MyFlags);
10704       }
10705     }
10706   }
10707 
10708   // Handle all of the outgoing arguments.
10709   CLI.Outs.clear();
10710   CLI.OutVals.clear();
10711   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10712     SmallVector<EVT, 4> ValueVTs;
10713     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10714     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10715     Type *FinalType = Args[i].Ty;
10716     if (Args[i].IsByVal)
10717       FinalType = Args[i].IndirectType;
10718     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10719         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10720     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10721          ++Value) {
10722       EVT VT = ValueVTs[Value];
10723       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10724       SDValue Op = SDValue(Args[i].Node.getNode(),
10725                            Args[i].Node.getResNo() + Value);
10726       ISD::ArgFlagsTy Flags;
10727 
10728       // Certain targets (such as MIPS), may have a different ABI alignment
10729       // for a type depending on the context. Give the target a chance to
10730       // specify the alignment it wants.
10731       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10732       Flags.setOrigAlign(OriginalAlignment);
10733 
10734       if (Args[i].Ty->isPointerTy()) {
10735         Flags.setPointer();
10736         Flags.setPointerAddrSpace(
10737             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10738       }
10739       if (Args[i].IsZExt)
10740         Flags.setZExt();
10741       if (Args[i].IsSExt)
10742         Flags.setSExt();
10743       if (Args[i].IsInReg) {
10744         // If we are using vectorcall calling convention, a structure that is
10745         // passed InReg - is surely an HVA
10746         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10747             isa<StructType>(FinalType)) {
10748           // The first value of a structure is marked
10749           if (0 == Value)
10750             Flags.setHvaStart();
10751           Flags.setHva();
10752         }
10753         // Set InReg Flag
10754         Flags.setInReg();
10755       }
10756       if (Args[i].IsSRet)
10757         Flags.setSRet();
10758       if (Args[i].IsSwiftSelf)
10759         Flags.setSwiftSelf();
10760       if (Args[i].IsSwiftAsync)
10761         Flags.setSwiftAsync();
10762       if (Args[i].IsSwiftError)
10763         Flags.setSwiftError();
10764       if (Args[i].IsCFGuardTarget)
10765         Flags.setCFGuardTarget();
10766       if (Args[i].IsByVal)
10767         Flags.setByVal();
10768       if (Args[i].IsByRef)
10769         Flags.setByRef();
10770       if (Args[i].IsPreallocated) {
10771         Flags.setPreallocated();
10772         // Set the byval flag for CCAssignFn callbacks that don't know about
10773         // preallocated.  This way we can know how many bytes we should've
10774         // allocated and how many bytes a callee cleanup function will pop.  If
10775         // we port preallocated to more targets, we'll have to add custom
10776         // preallocated handling in the various CC lowering callbacks.
10777         Flags.setByVal();
10778       }
10779       if (Args[i].IsInAlloca) {
10780         Flags.setInAlloca();
10781         // Set the byval flag for CCAssignFn callbacks that don't know about
10782         // inalloca.  This way we can know how many bytes we should've allocated
10783         // and how many bytes a callee cleanup function will pop.  If we port
10784         // inalloca to more targets, we'll have to add custom inalloca handling
10785         // in the various CC lowering callbacks.
10786         Flags.setByVal();
10787       }
10788       Align MemAlign;
10789       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10790         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10791         Flags.setByValSize(FrameSize);
10792 
10793         // info is not there but there are cases it cannot get right.
10794         if (auto MA = Args[i].Alignment)
10795           MemAlign = *MA;
10796         else
10797           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10798       } else if (auto MA = Args[i].Alignment) {
10799         MemAlign = *MA;
10800       } else {
10801         MemAlign = OriginalAlignment;
10802       }
10803       Flags.setMemAlign(MemAlign);
10804       if (Args[i].IsNest)
10805         Flags.setNest();
10806       if (NeedsRegBlock)
10807         Flags.setInConsecutiveRegs();
10808 
10809       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10810                                                  CLI.CallConv, VT);
10811       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10812                                                         CLI.CallConv, VT);
10813       SmallVector<SDValue, 4> Parts(NumParts);
10814       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10815 
10816       if (Args[i].IsSExt)
10817         ExtendKind = ISD::SIGN_EXTEND;
10818       else if (Args[i].IsZExt)
10819         ExtendKind = ISD::ZERO_EXTEND;
10820 
10821       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10822       // for now.
10823       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10824           CanLowerReturn) {
10825         assert((CLI.RetTy == Args[i].Ty ||
10826                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10827                  CLI.RetTy->getPointerAddressSpace() ==
10828                      Args[i].Ty->getPointerAddressSpace())) &&
10829                RetTys.size() == NumValues && "unexpected use of 'returned'");
10830         // Before passing 'returned' to the target lowering code, ensure that
10831         // either the register MVT and the actual EVT are the same size or that
10832         // the return value and argument are extended in the same way; in these
10833         // cases it's safe to pass the argument register value unchanged as the
10834         // return register value (although it's at the target's option whether
10835         // to do so)
10836         // TODO: allow code generation to take advantage of partially preserved
10837         // registers rather than clobbering the entire register when the
10838         // parameter extension method is not compatible with the return
10839         // extension method
10840         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10841             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10842              CLI.RetZExt == Args[i].IsZExt))
10843           Flags.setReturned();
10844       }
10845 
10846       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10847                      CLI.CallConv, ExtendKind);
10848 
10849       for (unsigned j = 0; j != NumParts; ++j) {
10850         // if it isn't first piece, alignment must be 1
10851         // For scalable vectors the scalable part is currently handled
10852         // by individual targets, so we just use the known minimum size here.
10853         ISD::OutputArg MyFlags(
10854             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10855             i < CLI.NumFixedArgs, i,
10856             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10857         if (NumParts > 1 && j == 0)
10858           MyFlags.Flags.setSplit();
10859         else if (j != 0) {
10860           MyFlags.Flags.setOrigAlign(Align(1));
10861           if (j == NumParts - 1)
10862             MyFlags.Flags.setSplitEnd();
10863         }
10864 
10865         CLI.Outs.push_back(MyFlags);
10866         CLI.OutVals.push_back(Parts[j]);
10867       }
10868 
10869       if (NeedsRegBlock && Value == NumValues - 1)
10870         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10871     }
10872   }
10873 
10874   SmallVector<SDValue, 4> InVals;
10875   CLI.Chain = LowerCall(CLI, InVals);
10876 
10877   // Update CLI.InVals to use outside of this function.
10878   CLI.InVals = InVals;
10879 
10880   // Verify that the target's LowerCall behaved as expected.
10881   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10882          "LowerCall didn't return a valid chain!");
10883   assert((!CLI.IsTailCall || InVals.empty()) &&
10884          "LowerCall emitted a return value for a tail call!");
10885   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10886          "LowerCall didn't emit the correct number of values!");
10887 
10888   // For a tail call, the return value is merely live-out and there aren't
10889   // any nodes in the DAG representing it. Return a special value to
10890   // indicate that a tail call has been emitted and no more Instructions
10891   // should be processed in the current block.
10892   if (CLI.IsTailCall) {
10893     CLI.DAG.setRoot(CLI.Chain);
10894     return std::make_pair(SDValue(), SDValue());
10895   }
10896 
10897 #ifndef NDEBUG
10898   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10899     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10900     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10901            "LowerCall emitted a value with the wrong type!");
10902   }
10903 #endif
10904 
10905   SmallVector<SDValue, 4> ReturnValues;
10906   if (!CanLowerReturn) {
10907     // The instruction result is the result of loading from the
10908     // hidden sret parameter.
10909     SmallVector<EVT, 1> PVTs;
10910     Type *PtrRetTy =
10911         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10912 
10913     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10914     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10915     EVT PtrVT = PVTs[0];
10916 
10917     unsigned NumValues = RetTys.size();
10918     ReturnValues.resize(NumValues);
10919     SmallVector<SDValue, 4> Chains(NumValues);
10920 
10921     // An aggregate return value cannot wrap around the address space, so
10922     // offsets to its parts don't wrap either.
10923     SDNodeFlags Flags;
10924     Flags.setNoUnsignedWrap(true);
10925 
10926     MachineFunction &MF = CLI.DAG.getMachineFunction();
10927     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10928     for (unsigned i = 0; i < NumValues; ++i) {
10929       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10930                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10931                                                         PtrVT), Flags);
10932       SDValue L = CLI.DAG.getLoad(
10933           RetTys[i], CLI.DL, CLI.Chain, Add,
10934           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10935                                             DemoteStackIdx, Offsets[i]),
10936           HiddenSRetAlign);
10937       ReturnValues[i] = L;
10938       Chains[i] = L.getValue(1);
10939     }
10940 
10941     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10942   } else {
10943     // Collect the legal value parts into potentially illegal values
10944     // that correspond to the original function's return values.
10945     std::optional<ISD::NodeType> AssertOp;
10946     if (CLI.RetSExt)
10947       AssertOp = ISD::AssertSext;
10948     else if (CLI.RetZExt)
10949       AssertOp = ISD::AssertZext;
10950     unsigned CurReg = 0;
10951     for (EVT VT : RetTys) {
10952       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10953                                                      CLI.CallConv, VT);
10954       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10955                                                        CLI.CallConv, VT);
10956 
10957       ReturnValues.push_back(getCopyFromParts(
10958           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10959           CLI.Chain, CLI.CallConv, AssertOp));
10960       CurReg += NumRegs;
10961     }
10962 
10963     // For a function returning void, there is no return value. We can't create
10964     // such a node, so we just return a null return value in that case. In
10965     // that case, nothing will actually look at the value.
10966     if (ReturnValues.empty())
10967       return std::make_pair(SDValue(), CLI.Chain);
10968   }
10969 
10970   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10971                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10972   return std::make_pair(Res, CLI.Chain);
10973 }
10974 
10975 /// Places new result values for the node in Results (their number
10976 /// and types must exactly match those of the original return values of
10977 /// the node), or leaves Results empty, which indicates that the node is not
10978 /// to be custom lowered after all.
10979 void TargetLowering::LowerOperationWrapper(SDNode *N,
10980                                            SmallVectorImpl<SDValue> &Results,
10981                                            SelectionDAG &DAG) const {
10982   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10983 
10984   if (!Res.getNode())
10985     return;
10986 
10987   // If the original node has one result, take the return value from
10988   // LowerOperation as is. It might not be result number 0.
10989   if (N->getNumValues() == 1) {
10990     Results.push_back(Res);
10991     return;
10992   }
10993 
10994   // If the original node has multiple results, then the return node should
10995   // have the same number of results.
10996   assert((N->getNumValues() == Res->getNumValues()) &&
10997       "Lowering returned the wrong number of results!");
10998 
10999   // Places new result values base on N result number.
11000   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11001     Results.push_back(Res.getValue(I));
11002 }
11003 
11004 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11005   llvm_unreachable("LowerOperation not implemented for this target!");
11006 }
11007 
11008 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11009                                                      unsigned Reg,
11010                                                      ISD::NodeType ExtendType) {
11011   SDValue Op = getNonRegisterValue(V);
11012   assert((Op.getOpcode() != ISD::CopyFromReg ||
11013           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11014          "Copy from a reg to the same reg!");
11015   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11016 
11017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11018   // If this is an InlineAsm we have to match the registers required, not the
11019   // notional registers required by the type.
11020 
11021   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11022                    std::nullopt); // This is not an ABI copy.
11023   SDValue Chain = DAG.getEntryNode();
11024 
11025   if (ExtendType == ISD::ANY_EXTEND) {
11026     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11027     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11028       ExtendType = PreferredExtendIt->second;
11029   }
11030   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11031   PendingExports.push_back(Chain);
11032 }
11033 
11034 #include "llvm/CodeGen/SelectionDAGISel.h"
11035 
11036 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11037 /// entry block, return true.  This includes arguments used by switches, since
11038 /// the switch may expand into multiple basic blocks.
11039 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11040   // With FastISel active, we may be splitting blocks, so force creation
11041   // of virtual registers for all non-dead arguments.
11042   if (FastISel)
11043     return A->use_empty();
11044 
11045   const BasicBlock &Entry = A->getParent()->front();
11046   for (const User *U : A->users())
11047     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11048       return false;  // Use not in entry block.
11049 
11050   return true;
11051 }
11052 
11053 using ArgCopyElisionMapTy =
11054     DenseMap<const Argument *,
11055              std::pair<const AllocaInst *, const StoreInst *>>;
11056 
11057 /// Scan the entry block of the function in FuncInfo for arguments that look
11058 /// like copies into a local alloca. Record any copied arguments in
11059 /// ArgCopyElisionCandidates.
11060 static void
11061 findArgumentCopyElisionCandidates(const DataLayout &DL,
11062                                   FunctionLoweringInfo *FuncInfo,
11063                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11064   // Record the state of every static alloca used in the entry block. Argument
11065   // allocas are all used in the entry block, so we need approximately as many
11066   // entries as we have arguments.
11067   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11068   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11069   unsigned NumArgs = FuncInfo->Fn->arg_size();
11070   StaticAllocas.reserve(NumArgs * 2);
11071 
11072   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11073     if (!V)
11074       return nullptr;
11075     V = V->stripPointerCasts();
11076     const auto *AI = dyn_cast<AllocaInst>(V);
11077     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11078       return nullptr;
11079     auto Iter = StaticAllocas.insert({AI, Unknown});
11080     return &Iter.first->second;
11081   };
11082 
11083   // Look for stores of arguments to static allocas. Look through bitcasts and
11084   // GEPs to handle type coercions, as long as the alloca is fully initialized
11085   // by the store. Any non-store use of an alloca escapes it and any subsequent
11086   // unanalyzed store might write it.
11087   // FIXME: Handle structs initialized with multiple stores.
11088   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11089     // Look for stores, and handle non-store uses conservatively.
11090     const auto *SI = dyn_cast<StoreInst>(&I);
11091     if (!SI) {
11092       // We will look through cast uses, so ignore them completely.
11093       if (I.isCast())
11094         continue;
11095       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11096       // to allocas.
11097       if (I.isDebugOrPseudoInst())
11098         continue;
11099       // This is an unknown instruction. Assume it escapes or writes to all
11100       // static alloca operands.
11101       for (const Use &U : I.operands()) {
11102         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11103           *Info = StaticAllocaInfo::Clobbered;
11104       }
11105       continue;
11106     }
11107 
11108     // If the stored value is a static alloca, mark it as escaped.
11109     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11110       *Info = StaticAllocaInfo::Clobbered;
11111 
11112     // Check if the destination is a static alloca.
11113     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11114     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11115     if (!Info)
11116       continue;
11117     const AllocaInst *AI = cast<AllocaInst>(Dst);
11118 
11119     // Skip allocas that have been initialized or clobbered.
11120     if (*Info != StaticAllocaInfo::Unknown)
11121       continue;
11122 
11123     // Check if the stored value is an argument, and that this store fully
11124     // initializes the alloca.
11125     // If the argument type has padding bits we can't directly forward a pointer
11126     // as the upper bits may contain garbage.
11127     // Don't elide copies from the same argument twice.
11128     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11129     const auto *Arg = dyn_cast<Argument>(Val);
11130     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11131         Arg->getType()->isEmptyTy() ||
11132         DL.getTypeStoreSize(Arg->getType()) !=
11133             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11134         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11135         ArgCopyElisionCandidates.count(Arg)) {
11136       *Info = StaticAllocaInfo::Clobbered;
11137       continue;
11138     }
11139 
11140     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11141                       << '\n');
11142 
11143     // Mark this alloca and store for argument copy elision.
11144     *Info = StaticAllocaInfo::Elidable;
11145     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11146 
11147     // Stop scanning if we've seen all arguments. This will happen early in -O0
11148     // builds, which is useful, because -O0 builds have large entry blocks and
11149     // many allocas.
11150     if (ArgCopyElisionCandidates.size() == NumArgs)
11151       break;
11152   }
11153 }
11154 
11155 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11156 /// ArgVal is a load from a suitable fixed stack object.
11157 static void tryToElideArgumentCopy(
11158     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11159     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11160     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11161     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11162     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11163   // Check if this is a load from a fixed stack object.
11164   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11165   if (!LNode)
11166     return;
11167   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11168   if (!FINode)
11169     return;
11170 
11171   // Check that the fixed stack object is the right size and alignment.
11172   // Look at the alignment that the user wrote on the alloca instead of looking
11173   // at the stack object.
11174   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11175   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11176   const AllocaInst *AI = ArgCopyIter->second.first;
11177   int FixedIndex = FINode->getIndex();
11178   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11179   int OldIndex = AllocaIndex;
11180   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11181   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11182     LLVM_DEBUG(
11183         dbgs() << "  argument copy elision failed due to bad fixed stack "
11184                   "object size\n");
11185     return;
11186   }
11187   Align RequiredAlignment = AI->getAlign();
11188   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11189     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11190                          "greater than stack argument alignment ("
11191                       << DebugStr(RequiredAlignment) << " vs "
11192                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11193     return;
11194   }
11195 
11196   // Perform the elision. Delete the old stack object and replace its only use
11197   // in the variable info map. Mark the stack object as mutable and aliased.
11198   LLVM_DEBUG({
11199     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11200            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11201            << '\n';
11202   });
11203   MFI.RemoveStackObject(OldIndex);
11204   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11205   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11206   AllocaIndex = FixedIndex;
11207   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11208   for (SDValue ArgVal : ArgVals)
11209     Chains.push_back(ArgVal.getValue(1));
11210 
11211   // Avoid emitting code for the store implementing the copy.
11212   const StoreInst *SI = ArgCopyIter->second.second;
11213   ElidedArgCopyInstrs.insert(SI);
11214 
11215   // Check for uses of the argument again so that we can avoid exporting ArgVal
11216   // if it is't used by anything other than the store.
11217   for (const Value *U : Arg.users()) {
11218     if (U != SI) {
11219       ArgHasUses = true;
11220       break;
11221     }
11222   }
11223 }
11224 
11225 void SelectionDAGISel::LowerArguments(const Function &F) {
11226   SelectionDAG &DAG = SDB->DAG;
11227   SDLoc dl = SDB->getCurSDLoc();
11228   const DataLayout &DL = DAG.getDataLayout();
11229   SmallVector<ISD::InputArg, 16> Ins;
11230 
11231   // In Naked functions we aren't going to save any registers.
11232   if (F.hasFnAttribute(Attribute::Naked))
11233     return;
11234 
11235   if (!FuncInfo->CanLowerReturn) {
11236     // Put in an sret pointer parameter before all the other parameters.
11237     SmallVector<EVT, 1> ValueVTs;
11238     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11239                     PointerType::get(F.getContext(),
11240                                      DAG.getDataLayout().getAllocaAddrSpace()),
11241                     ValueVTs);
11242 
11243     // NOTE: Assuming that a pointer will never break down to more than one VT
11244     // or one register.
11245     ISD::ArgFlagsTy Flags;
11246     Flags.setSRet();
11247     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11248     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11249                          ISD::InputArg::NoArgIndex, 0);
11250     Ins.push_back(RetArg);
11251   }
11252 
11253   // Look for stores of arguments to static allocas. Mark such arguments with a
11254   // flag to ask the target to give us the memory location of that argument if
11255   // available.
11256   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11257   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11258                                     ArgCopyElisionCandidates);
11259 
11260   // Set up the incoming argument description vector.
11261   for (const Argument &Arg : F.args()) {
11262     unsigned ArgNo = Arg.getArgNo();
11263     SmallVector<EVT, 4> ValueVTs;
11264     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11265     bool isArgValueUsed = !Arg.use_empty();
11266     unsigned PartBase = 0;
11267     Type *FinalType = Arg.getType();
11268     if (Arg.hasAttribute(Attribute::ByVal))
11269       FinalType = Arg.getParamByValType();
11270     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11271         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11272     for (unsigned Value = 0, NumValues = ValueVTs.size();
11273          Value != NumValues; ++Value) {
11274       EVT VT = ValueVTs[Value];
11275       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11276       ISD::ArgFlagsTy Flags;
11277 
11278 
11279       if (Arg.getType()->isPointerTy()) {
11280         Flags.setPointer();
11281         Flags.setPointerAddrSpace(
11282             cast<PointerType>(Arg.getType())->getAddressSpace());
11283       }
11284       if (Arg.hasAttribute(Attribute::ZExt))
11285         Flags.setZExt();
11286       if (Arg.hasAttribute(Attribute::SExt))
11287         Flags.setSExt();
11288       if (Arg.hasAttribute(Attribute::InReg)) {
11289         // If we are using vectorcall calling convention, a structure that is
11290         // passed InReg - is surely an HVA
11291         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11292             isa<StructType>(Arg.getType())) {
11293           // The first value of a structure is marked
11294           if (0 == Value)
11295             Flags.setHvaStart();
11296           Flags.setHva();
11297         }
11298         // Set InReg Flag
11299         Flags.setInReg();
11300       }
11301       if (Arg.hasAttribute(Attribute::StructRet))
11302         Flags.setSRet();
11303       if (Arg.hasAttribute(Attribute::SwiftSelf))
11304         Flags.setSwiftSelf();
11305       if (Arg.hasAttribute(Attribute::SwiftAsync))
11306         Flags.setSwiftAsync();
11307       if (Arg.hasAttribute(Attribute::SwiftError))
11308         Flags.setSwiftError();
11309       if (Arg.hasAttribute(Attribute::ByVal))
11310         Flags.setByVal();
11311       if (Arg.hasAttribute(Attribute::ByRef))
11312         Flags.setByRef();
11313       if (Arg.hasAttribute(Attribute::InAlloca)) {
11314         Flags.setInAlloca();
11315         // Set the byval flag for CCAssignFn callbacks that don't know about
11316         // inalloca.  This way we can know how many bytes we should've allocated
11317         // and how many bytes a callee cleanup function will pop.  If we port
11318         // inalloca to more targets, we'll have to add custom inalloca handling
11319         // in the various CC lowering callbacks.
11320         Flags.setByVal();
11321       }
11322       if (Arg.hasAttribute(Attribute::Preallocated)) {
11323         Flags.setPreallocated();
11324         // Set the byval flag for CCAssignFn callbacks that don't know about
11325         // preallocated.  This way we can know how many bytes we should've
11326         // allocated and how many bytes a callee cleanup function will pop.  If
11327         // we port preallocated to more targets, we'll have to add custom
11328         // preallocated handling in the various CC lowering callbacks.
11329         Flags.setByVal();
11330       }
11331 
11332       // Certain targets (such as MIPS), may have a different ABI alignment
11333       // for a type depending on the context. Give the target a chance to
11334       // specify the alignment it wants.
11335       const Align OriginalAlignment(
11336           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11337       Flags.setOrigAlign(OriginalAlignment);
11338 
11339       Align MemAlign;
11340       Type *ArgMemTy = nullptr;
11341       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11342           Flags.isByRef()) {
11343         if (!ArgMemTy)
11344           ArgMemTy = Arg.getPointeeInMemoryValueType();
11345 
11346         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11347 
11348         // For in-memory arguments, size and alignment should be passed from FE.
11349         // BE will guess if this info is not there but there are cases it cannot
11350         // get right.
11351         if (auto ParamAlign = Arg.getParamStackAlign())
11352           MemAlign = *ParamAlign;
11353         else if ((ParamAlign = Arg.getParamAlign()))
11354           MemAlign = *ParamAlign;
11355         else
11356           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11357         if (Flags.isByRef())
11358           Flags.setByRefSize(MemSize);
11359         else
11360           Flags.setByValSize(MemSize);
11361       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11362         MemAlign = *ParamAlign;
11363       } else {
11364         MemAlign = OriginalAlignment;
11365       }
11366       Flags.setMemAlign(MemAlign);
11367 
11368       if (Arg.hasAttribute(Attribute::Nest))
11369         Flags.setNest();
11370       if (NeedsRegBlock)
11371         Flags.setInConsecutiveRegs();
11372       if (ArgCopyElisionCandidates.count(&Arg))
11373         Flags.setCopyElisionCandidate();
11374       if (Arg.hasAttribute(Attribute::Returned))
11375         Flags.setReturned();
11376 
11377       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11378           *CurDAG->getContext(), F.getCallingConv(), VT);
11379       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11380           *CurDAG->getContext(), F.getCallingConv(), VT);
11381       for (unsigned i = 0; i != NumRegs; ++i) {
11382         // For scalable vectors, use the minimum size; individual targets
11383         // are responsible for handling scalable vector arguments and
11384         // return values.
11385         ISD::InputArg MyFlags(
11386             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11387             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11388         if (NumRegs > 1 && i == 0)
11389           MyFlags.Flags.setSplit();
11390         // if it isn't first piece, alignment must be 1
11391         else if (i > 0) {
11392           MyFlags.Flags.setOrigAlign(Align(1));
11393           if (i == NumRegs - 1)
11394             MyFlags.Flags.setSplitEnd();
11395         }
11396         Ins.push_back(MyFlags);
11397       }
11398       if (NeedsRegBlock && Value == NumValues - 1)
11399         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11400       PartBase += VT.getStoreSize().getKnownMinValue();
11401     }
11402   }
11403 
11404   // Call the target to set up the argument values.
11405   SmallVector<SDValue, 8> InVals;
11406   SDValue NewRoot = TLI->LowerFormalArguments(
11407       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11408 
11409   // Verify that the target's LowerFormalArguments behaved as expected.
11410   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11411          "LowerFormalArguments didn't return a valid chain!");
11412   assert(InVals.size() == Ins.size() &&
11413          "LowerFormalArguments didn't emit the correct number of values!");
11414   LLVM_DEBUG({
11415     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11416       assert(InVals[i].getNode() &&
11417              "LowerFormalArguments emitted a null value!");
11418       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11419              "LowerFormalArguments emitted a value with the wrong type!");
11420     }
11421   });
11422 
11423   // Update the DAG with the new chain value resulting from argument lowering.
11424   DAG.setRoot(NewRoot);
11425 
11426   // Set up the argument values.
11427   unsigned i = 0;
11428   if (!FuncInfo->CanLowerReturn) {
11429     // Create a virtual register for the sret pointer, and put in a copy
11430     // from the sret argument into it.
11431     SmallVector<EVT, 1> ValueVTs;
11432     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11433                     PointerType::get(F.getContext(),
11434                                      DAG.getDataLayout().getAllocaAddrSpace()),
11435                     ValueVTs);
11436     MVT VT = ValueVTs[0].getSimpleVT();
11437     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11438     std::optional<ISD::NodeType> AssertOp;
11439     SDValue ArgValue =
11440         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11441                          F.getCallingConv(), AssertOp);
11442 
11443     MachineFunction& MF = SDB->DAG.getMachineFunction();
11444     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11445     Register SRetReg =
11446         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11447     FuncInfo->DemoteRegister = SRetReg;
11448     NewRoot =
11449         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11450     DAG.setRoot(NewRoot);
11451 
11452     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11453     ++i;
11454   }
11455 
11456   SmallVector<SDValue, 4> Chains;
11457   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11458   for (const Argument &Arg : F.args()) {
11459     SmallVector<SDValue, 4> ArgValues;
11460     SmallVector<EVT, 4> ValueVTs;
11461     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11462     unsigned NumValues = ValueVTs.size();
11463     if (NumValues == 0)
11464       continue;
11465 
11466     bool ArgHasUses = !Arg.use_empty();
11467 
11468     // Elide the copying store if the target loaded this argument from a
11469     // suitable fixed stack object.
11470     if (Ins[i].Flags.isCopyElisionCandidate()) {
11471       unsigned NumParts = 0;
11472       for (EVT VT : ValueVTs)
11473         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11474                                                        F.getCallingConv(), VT);
11475 
11476       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11477                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11478                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11479     }
11480 
11481     // If this argument is unused then remember its value. It is used to generate
11482     // debugging information.
11483     bool isSwiftErrorArg =
11484         TLI->supportSwiftError() &&
11485         Arg.hasAttribute(Attribute::SwiftError);
11486     if (!ArgHasUses && !isSwiftErrorArg) {
11487       SDB->setUnusedArgValue(&Arg, InVals[i]);
11488 
11489       // Also remember any frame index for use in FastISel.
11490       if (FrameIndexSDNode *FI =
11491           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11492         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11493     }
11494 
11495     for (unsigned Val = 0; Val != NumValues; ++Val) {
11496       EVT VT = ValueVTs[Val];
11497       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11498                                                       F.getCallingConv(), VT);
11499       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11500           *CurDAG->getContext(), F.getCallingConv(), VT);
11501 
11502       // Even an apparent 'unused' swifterror argument needs to be returned. So
11503       // we do generate a copy for it that can be used on return from the
11504       // function.
11505       if (ArgHasUses || isSwiftErrorArg) {
11506         std::optional<ISD::NodeType> AssertOp;
11507         if (Arg.hasAttribute(Attribute::SExt))
11508           AssertOp = ISD::AssertSext;
11509         else if (Arg.hasAttribute(Attribute::ZExt))
11510           AssertOp = ISD::AssertZext;
11511 
11512         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11513                                              PartVT, VT, nullptr, NewRoot,
11514                                              F.getCallingConv(), AssertOp));
11515       }
11516 
11517       i += NumParts;
11518     }
11519 
11520     // We don't need to do anything else for unused arguments.
11521     if (ArgValues.empty())
11522       continue;
11523 
11524     // Note down frame index.
11525     if (FrameIndexSDNode *FI =
11526         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11527       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11528 
11529     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11530                                      SDB->getCurSDLoc());
11531 
11532     SDB->setValue(&Arg, Res);
11533     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11534       // We want to associate the argument with the frame index, among
11535       // involved operands, that correspond to the lowest address. The
11536       // getCopyFromParts function, called earlier, is swapping the order of
11537       // the operands to BUILD_PAIR depending on endianness. The result of
11538       // that swapping is that the least significant bits of the argument will
11539       // be in the first operand of the BUILD_PAIR node, and the most
11540       // significant bits will be in the second operand.
11541       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11542       if (LoadSDNode *LNode =
11543           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11544         if (FrameIndexSDNode *FI =
11545             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11546           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11547     }
11548 
11549     // Analyses past this point are naive and don't expect an assertion.
11550     if (Res.getOpcode() == ISD::AssertZext)
11551       Res = Res.getOperand(0);
11552 
11553     // Update the SwiftErrorVRegDefMap.
11554     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11555       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11556       if (Register::isVirtualRegister(Reg))
11557         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11558                                    Reg);
11559     }
11560 
11561     // If this argument is live outside of the entry block, insert a copy from
11562     // wherever we got it to the vreg that other BB's will reference it as.
11563     if (Res.getOpcode() == ISD::CopyFromReg) {
11564       // If we can, though, try to skip creating an unnecessary vreg.
11565       // FIXME: This isn't very clean... it would be nice to make this more
11566       // general.
11567       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11568       if (Register::isVirtualRegister(Reg)) {
11569         FuncInfo->ValueMap[&Arg] = Reg;
11570         continue;
11571       }
11572     }
11573     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11574       FuncInfo->InitializeRegForValue(&Arg);
11575       SDB->CopyToExportRegsIfNeeded(&Arg);
11576     }
11577   }
11578 
11579   if (!Chains.empty()) {
11580     Chains.push_back(NewRoot);
11581     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11582   }
11583 
11584   DAG.setRoot(NewRoot);
11585 
11586   assert(i == InVals.size() && "Argument register count mismatch!");
11587 
11588   // If any argument copy elisions occurred and we have debug info, update the
11589   // stale frame indices used in the dbg.declare variable info table.
11590   if (!ArgCopyElisionFrameIndexMap.empty()) {
11591     for (MachineFunction::VariableDbgInfo &VI :
11592          MF->getInStackSlotVariableDbgInfo()) {
11593       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11594       if (I != ArgCopyElisionFrameIndexMap.end())
11595         VI.updateStackSlot(I->second);
11596     }
11597   }
11598 
11599   // Finally, if the target has anything special to do, allow it to do so.
11600   emitFunctionEntryCode();
11601 }
11602 
11603 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11604 /// ensure constants are generated when needed.  Remember the virtual registers
11605 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11606 /// directly add them, because expansion might result in multiple MBB's for one
11607 /// BB.  As such, the start of the BB might correspond to a different MBB than
11608 /// the end.
11609 void
11610 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11611   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11612 
11613   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11614 
11615   // Check PHI nodes in successors that expect a value to be available from this
11616   // block.
11617   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11618     if (!isa<PHINode>(SuccBB->begin())) continue;
11619     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11620 
11621     // If this terminator has multiple identical successors (common for
11622     // switches), only handle each succ once.
11623     if (!SuccsHandled.insert(SuccMBB).second)
11624       continue;
11625 
11626     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11627 
11628     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11629     // nodes and Machine PHI nodes, but the incoming operands have not been
11630     // emitted yet.
11631     for (const PHINode &PN : SuccBB->phis()) {
11632       // Ignore dead phi's.
11633       if (PN.use_empty())
11634         continue;
11635 
11636       // Skip empty types
11637       if (PN.getType()->isEmptyTy())
11638         continue;
11639 
11640       unsigned Reg;
11641       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11642 
11643       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11644         unsigned &RegOut = ConstantsOut[C];
11645         if (RegOut == 0) {
11646           RegOut = FuncInfo.CreateRegs(C);
11647           // We need to zero/sign extend ConstantInt phi operands to match
11648           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11649           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11650           if (auto *CI = dyn_cast<ConstantInt>(C))
11651             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11652                                                     : ISD::ZERO_EXTEND;
11653           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11654         }
11655         Reg = RegOut;
11656       } else {
11657         DenseMap<const Value *, Register>::iterator I =
11658           FuncInfo.ValueMap.find(PHIOp);
11659         if (I != FuncInfo.ValueMap.end())
11660           Reg = I->second;
11661         else {
11662           assert(isa<AllocaInst>(PHIOp) &&
11663                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11664                  "Didn't codegen value into a register!??");
11665           Reg = FuncInfo.CreateRegs(PHIOp);
11666           CopyValueToVirtualRegister(PHIOp, Reg);
11667         }
11668       }
11669 
11670       // Remember that this register needs to added to the machine PHI node as
11671       // the input for this MBB.
11672       SmallVector<EVT, 4> ValueVTs;
11673       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11674       for (EVT VT : ValueVTs) {
11675         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11676         for (unsigned i = 0; i != NumRegisters; ++i)
11677           FuncInfo.PHINodesToUpdate.push_back(
11678               std::make_pair(&*MBBI++, Reg + i));
11679         Reg += NumRegisters;
11680       }
11681     }
11682   }
11683 
11684   ConstantsOut.clear();
11685 }
11686 
11687 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11688   MachineFunction::iterator I(MBB);
11689   if (++I == FuncInfo.MF->end())
11690     return nullptr;
11691   return &*I;
11692 }
11693 
11694 /// During lowering new call nodes can be created (such as memset, etc.).
11695 /// Those will become new roots of the current DAG, but complications arise
11696 /// when they are tail calls. In such cases, the call lowering will update
11697 /// the root, but the builder still needs to know that a tail call has been
11698 /// lowered in order to avoid generating an additional return.
11699 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11700   // If the node is null, we do have a tail call.
11701   if (MaybeTC.getNode() != nullptr)
11702     DAG.setRoot(MaybeTC);
11703   else
11704     HasTailCall = true;
11705 }
11706 
11707 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11708                                         MachineBasicBlock *SwitchMBB,
11709                                         MachineBasicBlock *DefaultMBB) {
11710   MachineFunction *CurMF = FuncInfo.MF;
11711   MachineBasicBlock *NextMBB = nullptr;
11712   MachineFunction::iterator BBI(W.MBB);
11713   if (++BBI != FuncInfo.MF->end())
11714     NextMBB = &*BBI;
11715 
11716   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11717 
11718   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11719 
11720   if (Size == 2 && W.MBB == SwitchMBB) {
11721     // If any two of the cases has the same destination, and if one value
11722     // is the same as the other, but has one bit unset that the other has set,
11723     // use bit manipulation to do two compares at once.  For example:
11724     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11725     // TODO: This could be extended to merge any 2 cases in switches with 3
11726     // cases.
11727     // TODO: Handle cases where W.CaseBB != SwitchBB.
11728     CaseCluster &Small = *W.FirstCluster;
11729     CaseCluster &Big = *W.LastCluster;
11730 
11731     if (Small.Low == Small.High && Big.Low == Big.High &&
11732         Small.MBB == Big.MBB) {
11733       const APInt &SmallValue = Small.Low->getValue();
11734       const APInt &BigValue = Big.Low->getValue();
11735 
11736       // Check that there is only one bit different.
11737       APInt CommonBit = BigValue ^ SmallValue;
11738       if (CommonBit.isPowerOf2()) {
11739         SDValue CondLHS = getValue(Cond);
11740         EVT VT = CondLHS.getValueType();
11741         SDLoc DL = getCurSDLoc();
11742 
11743         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11744                                  DAG.getConstant(CommonBit, DL, VT));
11745         SDValue Cond = DAG.getSetCC(
11746             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11747             ISD::SETEQ);
11748 
11749         // Update successor info.
11750         // Both Small and Big will jump to Small.BB, so we sum up the
11751         // probabilities.
11752         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11753         if (BPI)
11754           addSuccessorWithProb(
11755               SwitchMBB, DefaultMBB,
11756               // The default destination is the first successor in IR.
11757               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11758         else
11759           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11760 
11761         // Insert the true branch.
11762         SDValue BrCond =
11763             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11764                         DAG.getBasicBlock(Small.MBB));
11765         // Insert the false branch.
11766         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11767                              DAG.getBasicBlock(DefaultMBB));
11768 
11769         DAG.setRoot(BrCond);
11770         return;
11771       }
11772     }
11773   }
11774 
11775   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11776     // Here, we order cases by probability so the most likely case will be
11777     // checked first. However, two clusters can have the same probability in
11778     // which case their relative ordering is non-deterministic. So we use Low
11779     // as a tie-breaker as clusters are guaranteed to never overlap.
11780     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11781                [](const CaseCluster &a, const CaseCluster &b) {
11782       return a.Prob != b.Prob ?
11783              a.Prob > b.Prob :
11784              a.Low->getValue().slt(b.Low->getValue());
11785     });
11786 
11787     // Rearrange the case blocks so that the last one falls through if possible
11788     // without changing the order of probabilities.
11789     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11790       --I;
11791       if (I->Prob > W.LastCluster->Prob)
11792         break;
11793       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11794         std::swap(*I, *W.LastCluster);
11795         break;
11796       }
11797     }
11798   }
11799 
11800   // Compute total probability.
11801   BranchProbability DefaultProb = W.DefaultProb;
11802   BranchProbability UnhandledProbs = DefaultProb;
11803   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11804     UnhandledProbs += I->Prob;
11805 
11806   MachineBasicBlock *CurMBB = W.MBB;
11807   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11808     bool FallthroughUnreachable = false;
11809     MachineBasicBlock *Fallthrough;
11810     if (I == W.LastCluster) {
11811       // For the last cluster, fall through to the default destination.
11812       Fallthrough = DefaultMBB;
11813       FallthroughUnreachable = isa<UnreachableInst>(
11814           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11815     } else {
11816       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11817       CurMF->insert(BBI, Fallthrough);
11818       // Put Cond in a virtual register to make it available from the new blocks.
11819       ExportFromCurrentBlock(Cond);
11820     }
11821     UnhandledProbs -= I->Prob;
11822 
11823     switch (I->Kind) {
11824       case CC_JumpTable: {
11825         // FIXME: Optimize away range check based on pivot comparisons.
11826         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11827         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11828 
11829         // The jump block hasn't been inserted yet; insert it here.
11830         MachineBasicBlock *JumpMBB = JT->MBB;
11831         CurMF->insert(BBI, JumpMBB);
11832 
11833         auto JumpProb = I->Prob;
11834         auto FallthroughProb = UnhandledProbs;
11835 
11836         // If the default statement is a target of the jump table, we evenly
11837         // distribute the default probability to successors of CurMBB. Also
11838         // update the probability on the edge from JumpMBB to Fallthrough.
11839         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11840                                               SE = JumpMBB->succ_end();
11841              SI != SE; ++SI) {
11842           if (*SI == DefaultMBB) {
11843             JumpProb += DefaultProb / 2;
11844             FallthroughProb -= DefaultProb / 2;
11845             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11846             JumpMBB->normalizeSuccProbs();
11847             break;
11848           }
11849         }
11850 
11851         // If the default clause is unreachable, propagate that knowledge into
11852         // JTH->FallthroughUnreachable which will use it to suppress the range
11853         // check.
11854         //
11855         // However, don't do this if we're doing branch target enforcement,
11856         // because a table branch _without_ a range check can be a tempting JOP
11857         // gadget - out-of-bounds inputs that are impossible in correct
11858         // execution become possible again if an attacker can influence the
11859         // control flow. So if an attacker doesn't already have a BTI bypass
11860         // available, we don't want them to be able to get one out of this
11861         // table branch.
11862         if (FallthroughUnreachable) {
11863           Function &CurFunc = CurMF->getFunction();
11864           bool HasBranchTargetEnforcement = false;
11865           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11866             HasBranchTargetEnforcement =
11867                 CurFunc.getFnAttribute("branch-target-enforcement")
11868                     .getValueAsBool();
11869           } else {
11870             HasBranchTargetEnforcement =
11871                 CurMF->getMMI().getModule()->getModuleFlag(
11872                     "branch-target-enforcement");
11873           }
11874           if (!HasBranchTargetEnforcement)
11875             JTH->FallthroughUnreachable = true;
11876         }
11877 
11878         if (!JTH->FallthroughUnreachable)
11879           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11880         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11881         CurMBB->normalizeSuccProbs();
11882 
11883         // The jump table header will be inserted in our current block, do the
11884         // range check, and fall through to our fallthrough block.
11885         JTH->HeaderBB = CurMBB;
11886         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11887 
11888         // If we're in the right place, emit the jump table header right now.
11889         if (CurMBB == SwitchMBB) {
11890           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11891           JTH->Emitted = true;
11892         }
11893         break;
11894       }
11895       case CC_BitTests: {
11896         // FIXME: Optimize away range check based on pivot comparisons.
11897         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11898 
11899         // The bit test blocks haven't been inserted yet; insert them here.
11900         for (BitTestCase &BTC : BTB->Cases)
11901           CurMF->insert(BBI, BTC.ThisBB);
11902 
11903         // Fill in fields of the BitTestBlock.
11904         BTB->Parent = CurMBB;
11905         BTB->Default = Fallthrough;
11906 
11907         BTB->DefaultProb = UnhandledProbs;
11908         // If the cases in bit test don't form a contiguous range, we evenly
11909         // distribute the probability on the edge to Fallthrough to two
11910         // successors of CurMBB.
11911         if (!BTB->ContiguousRange) {
11912           BTB->Prob += DefaultProb / 2;
11913           BTB->DefaultProb -= DefaultProb / 2;
11914         }
11915 
11916         if (FallthroughUnreachable)
11917           BTB->FallthroughUnreachable = true;
11918 
11919         // If we're in the right place, emit the bit test header right now.
11920         if (CurMBB == SwitchMBB) {
11921           visitBitTestHeader(*BTB, SwitchMBB);
11922           BTB->Emitted = true;
11923         }
11924         break;
11925       }
11926       case CC_Range: {
11927         const Value *RHS, *LHS, *MHS;
11928         ISD::CondCode CC;
11929         if (I->Low == I->High) {
11930           // Check Cond == I->Low.
11931           CC = ISD::SETEQ;
11932           LHS = Cond;
11933           RHS=I->Low;
11934           MHS = nullptr;
11935         } else {
11936           // Check I->Low <= Cond <= I->High.
11937           CC = ISD::SETLE;
11938           LHS = I->Low;
11939           MHS = Cond;
11940           RHS = I->High;
11941         }
11942 
11943         // If Fallthrough is unreachable, fold away the comparison.
11944         if (FallthroughUnreachable)
11945           CC = ISD::SETTRUE;
11946 
11947         // The false probability is the sum of all unhandled cases.
11948         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11949                      getCurSDLoc(), I->Prob, UnhandledProbs);
11950 
11951         if (CurMBB == SwitchMBB)
11952           visitSwitchCase(CB, SwitchMBB);
11953         else
11954           SL->SwitchCases.push_back(CB);
11955 
11956         break;
11957       }
11958     }
11959     CurMBB = Fallthrough;
11960   }
11961 }
11962 
11963 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11964                                         const SwitchWorkListItem &W,
11965                                         Value *Cond,
11966                                         MachineBasicBlock *SwitchMBB) {
11967   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11968          "Clusters not sorted?");
11969   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11970 
11971   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11972       SL->computeSplitWorkItemInfo(W);
11973 
11974   // Use the first element on the right as pivot since we will make less-than
11975   // comparisons against it.
11976   CaseClusterIt PivotCluster = FirstRight;
11977   assert(PivotCluster > W.FirstCluster);
11978   assert(PivotCluster <= W.LastCluster);
11979 
11980   CaseClusterIt FirstLeft = W.FirstCluster;
11981   CaseClusterIt LastRight = W.LastCluster;
11982 
11983   const ConstantInt *Pivot = PivotCluster->Low;
11984 
11985   // New blocks will be inserted immediately after the current one.
11986   MachineFunction::iterator BBI(W.MBB);
11987   ++BBI;
11988 
11989   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11990   // we can branch to its destination directly if it's squeezed exactly in
11991   // between the known lower bound and Pivot - 1.
11992   MachineBasicBlock *LeftMBB;
11993   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11994       FirstLeft->Low == W.GE &&
11995       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11996     LeftMBB = FirstLeft->MBB;
11997   } else {
11998     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11999     FuncInfo.MF->insert(BBI, LeftMBB);
12000     WorkList.push_back(
12001         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12002     // Put Cond in a virtual register to make it available from the new blocks.
12003     ExportFromCurrentBlock(Cond);
12004   }
12005 
12006   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12007   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12008   // directly if RHS.High equals the current upper bound.
12009   MachineBasicBlock *RightMBB;
12010   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12011       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12012     RightMBB = FirstRight->MBB;
12013   } else {
12014     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12015     FuncInfo.MF->insert(BBI, RightMBB);
12016     WorkList.push_back(
12017         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12018     // Put Cond in a virtual register to make it available from the new blocks.
12019     ExportFromCurrentBlock(Cond);
12020   }
12021 
12022   // Create the CaseBlock record that will be used to lower the branch.
12023   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12024                getCurSDLoc(), LeftProb, RightProb);
12025 
12026   if (W.MBB == SwitchMBB)
12027     visitSwitchCase(CB, SwitchMBB);
12028   else
12029     SL->SwitchCases.push_back(CB);
12030 }
12031 
12032 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12033 // from the swith statement.
12034 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12035                                             BranchProbability PeeledCaseProb) {
12036   if (PeeledCaseProb == BranchProbability::getOne())
12037     return BranchProbability::getZero();
12038   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12039 
12040   uint32_t Numerator = CaseProb.getNumerator();
12041   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12042   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12043 }
12044 
12045 // Try to peel the top probability case if it exceeds the threshold.
12046 // Return current MachineBasicBlock for the switch statement if the peeling
12047 // does not occur.
12048 // If the peeling is performed, return the newly created MachineBasicBlock
12049 // for the peeled switch statement. Also update Clusters to remove the peeled
12050 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12051 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12052     const SwitchInst &SI, CaseClusterVector &Clusters,
12053     BranchProbability &PeeledCaseProb) {
12054   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12055   // Don't perform if there is only one cluster or optimizing for size.
12056   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12057       TM.getOptLevel() == CodeGenOptLevel::None ||
12058       SwitchMBB->getParent()->getFunction().hasMinSize())
12059     return SwitchMBB;
12060 
12061   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12062   unsigned PeeledCaseIndex = 0;
12063   bool SwitchPeeled = false;
12064   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12065     CaseCluster &CC = Clusters[Index];
12066     if (CC.Prob < TopCaseProb)
12067       continue;
12068     TopCaseProb = CC.Prob;
12069     PeeledCaseIndex = Index;
12070     SwitchPeeled = true;
12071   }
12072   if (!SwitchPeeled)
12073     return SwitchMBB;
12074 
12075   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12076                     << TopCaseProb << "\n");
12077 
12078   // Record the MBB for the peeled switch statement.
12079   MachineFunction::iterator BBI(SwitchMBB);
12080   ++BBI;
12081   MachineBasicBlock *PeeledSwitchMBB =
12082       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12083   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12084 
12085   ExportFromCurrentBlock(SI.getCondition());
12086   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12087   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12088                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12089   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12090 
12091   Clusters.erase(PeeledCaseIt);
12092   for (CaseCluster &CC : Clusters) {
12093     LLVM_DEBUG(
12094         dbgs() << "Scale the probablity for one cluster, before scaling: "
12095                << CC.Prob << "\n");
12096     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12097     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12098   }
12099   PeeledCaseProb = TopCaseProb;
12100   return PeeledSwitchMBB;
12101 }
12102 
12103 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12104   // Extract cases from the switch.
12105   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12106   CaseClusterVector Clusters;
12107   Clusters.reserve(SI.getNumCases());
12108   for (auto I : SI.cases()) {
12109     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12110     const ConstantInt *CaseVal = I.getCaseValue();
12111     BranchProbability Prob =
12112         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12113             : BranchProbability(1, SI.getNumCases() + 1);
12114     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12115   }
12116 
12117   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12118 
12119   // Cluster adjacent cases with the same destination. We do this at all
12120   // optimization levels because it's cheap to do and will make codegen faster
12121   // if there are many clusters.
12122   sortAndRangeify(Clusters);
12123 
12124   // The branch probablity of the peeled case.
12125   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12126   MachineBasicBlock *PeeledSwitchMBB =
12127       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12128 
12129   // If there is only the default destination, jump there directly.
12130   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12131   if (Clusters.empty()) {
12132     assert(PeeledSwitchMBB == SwitchMBB);
12133     SwitchMBB->addSuccessor(DefaultMBB);
12134     if (DefaultMBB != NextBlock(SwitchMBB)) {
12135       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12136                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12137     }
12138     return;
12139   }
12140 
12141   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12142                      DAG.getBFI());
12143   SL->findBitTestClusters(Clusters, &SI);
12144 
12145   LLVM_DEBUG({
12146     dbgs() << "Case clusters: ";
12147     for (const CaseCluster &C : Clusters) {
12148       if (C.Kind == CC_JumpTable)
12149         dbgs() << "JT:";
12150       if (C.Kind == CC_BitTests)
12151         dbgs() << "BT:";
12152 
12153       C.Low->getValue().print(dbgs(), true);
12154       if (C.Low != C.High) {
12155         dbgs() << '-';
12156         C.High->getValue().print(dbgs(), true);
12157       }
12158       dbgs() << ' ';
12159     }
12160     dbgs() << '\n';
12161   });
12162 
12163   assert(!Clusters.empty());
12164   SwitchWorkList WorkList;
12165   CaseClusterIt First = Clusters.begin();
12166   CaseClusterIt Last = Clusters.end() - 1;
12167   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12168   // Scale the branchprobability for DefaultMBB if the peel occurs and
12169   // DefaultMBB is not replaced.
12170   if (PeeledCaseProb != BranchProbability::getZero() &&
12171       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12172     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12173   WorkList.push_back(
12174       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12175 
12176   while (!WorkList.empty()) {
12177     SwitchWorkListItem W = WorkList.pop_back_val();
12178     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12179 
12180     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12181         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12182       // For optimized builds, lower large range as a balanced binary tree.
12183       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12184       continue;
12185     }
12186 
12187     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12188   }
12189 }
12190 
12191 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12192   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12193   auto DL = getCurSDLoc();
12194   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12195   setValue(&I, DAG.getStepVector(DL, ResultVT));
12196 }
12197 
12198 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12199   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12200   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12201 
12202   SDLoc DL = getCurSDLoc();
12203   SDValue V = getValue(I.getOperand(0));
12204   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12205 
12206   if (VT.isScalableVector()) {
12207     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12208     return;
12209   }
12210 
12211   // Use VECTOR_SHUFFLE for the fixed-length vector
12212   // to maintain existing behavior.
12213   SmallVector<int, 8> Mask;
12214   unsigned NumElts = VT.getVectorMinNumElements();
12215   for (unsigned i = 0; i != NumElts; ++i)
12216     Mask.push_back(NumElts - 1 - i);
12217 
12218   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12219 }
12220 
12221 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12222   auto DL = getCurSDLoc();
12223   SDValue InVec = getValue(I.getOperand(0));
12224   EVT OutVT =
12225       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12226 
12227   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12228 
12229   // ISD Node needs the input vectors split into two equal parts
12230   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12231                            DAG.getVectorIdxConstant(0, DL));
12232   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12233                            DAG.getVectorIdxConstant(OutNumElts, DL));
12234 
12235   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12236   // legalisation and combines.
12237   if (OutVT.isFixedLengthVector()) {
12238     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12239                                         createStrideMask(0, 2, OutNumElts));
12240     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12241                                        createStrideMask(1, 2, OutNumElts));
12242     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12243     setValue(&I, Res);
12244     return;
12245   }
12246 
12247   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12248                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12249   setValue(&I, Res);
12250 }
12251 
12252 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12253   auto DL = getCurSDLoc();
12254   EVT InVT = getValue(I.getOperand(0)).getValueType();
12255   SDValue InVec0 = getValue(I.getOperand(0));
12256   SDValue InVec1 = getValue(I.getOperand(1));
12257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12258   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12259 
12260   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12261   // legalisation and combines.
12262   if (OutVT.isFixedLengthVector()) {
12263     unsigned NumElts = InVT.getVectorMinNumElements();
12264     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12265     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12266                                       createInterleaveMask(NumElts, 2)));
12267     return;
12268   }
12269 
12270   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12271                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12272   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12273                     Res.getValue(1));
12274   setValue(&I, Res);
12275 }
12276 
12277 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12278   SmallVector<EVT, 4> ValueVTs;
12279   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12280                   ValueVTs);
12281   unsigned NumValues = ValueVTs.size();
12282   if (NumValues == 0) return;
12283 
12284   SmallVector<SDValue, 4> Values(NumValues);
12285   SDValue Op = getValue(I.getOperand(0));
12286 
12287   for (unsigned i = 0; i != NumValues; ++i)
12288     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12289                             SDValue(Op.getNode(), Op.getResNo() + i));
12290 
12291   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12292                            DAG.getVTList(ValueVTs), Values));
12293 }
12294 
12295 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12297   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12298 
12299   SDLoc DL = getCurSDLoc();
12300   SDValue V1 = getValue(I.getOperand(0));
12301   SDValue V2 = getValue(I.getOperand(1));
12302   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12303 
12304   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12305   if (VT.isScalableVector()) {
12306     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12307                              DAG.getVectorIdxConstant(Imm, DL)));
12308     return;
12309   }
12310 
12311   unsigned NumElts = VT.getVectorNumElements();
12312 
12313   uint64_t Idx = (NumElts + Imm) % NumElts;
12314 
12315   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12316   SmallVector<int, 8> Mask;
12317   for (unsigned i = 0; i < NumElts; ++i)
12318     Mask.push_back(Idx + i);
12319   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12320 }
12321 
12322 // Consider the following MIR after SelectionDAG, which produces output in
12323 // phyregs in the first case or virtregs in the second case.
12324 //
12325 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12326 // %5:gr32 = COPY $ebx
12327 // %6:gr32 = COPY $edx
12328 // %1:gr32 = COPY %6:gr32
12329 // %0:gr32 = COPY %5:gr32
12330 //
12331 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12332 // %1:gr32 = COPY %6:gr32
12333 // %0:gr32 = COPY %5:gr32
12334 //
12335 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12336 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12337 //
12338 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12339 // to a single virtreg (such as %0). The remaining outputs monotonically
12340 // increase in virtreg number from there. If a callbr has no outputs, then it
12341 // should not have a corresponding callbr landingpad; in fact, the callbr
12342 // landingpad would not even be able to refer to such a callbr.
12343 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12344   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12345   // There is definitely at least one copy.
12346   assert(MI->getOpcode() == TargetOpcode::COPY &&
12347          "start of copy chain MUST be COPY");
12348   Reg = MI->getOperand(1).getReg();
12349   MI = MRI.def_begin(Reg)->getParent();
12350   // There may be an optional second copy.
12351   if (MI->getOpcode() == TargetOpcode::COPY) {
12352     assert(Reg.isVirtual() && "expected COPY of virtual register");
12353     Reg = MI->getOperand(1).getReg();
12354     assert(Reg.isPhysical() && "expected COPY of physical register");
12355     MI = MRI.def_begin(Reg)->getParent();
12356   }
12357   // The start of the chain must be an INLINEASM_BR.
12358   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12359          "end of copy chain MUST be INLINEASM_BR");
12360   return Reg;
12361 }
12362 
12363 // We must do this walk rather than the simpler
12364 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12365 // otherwise we will end up with copies of virtregs only valid along direct
12366 // edges.
12367 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12368   SmallVector<EVT, 8> ResultVTs;
12369   SmallVector<SDValue, 8> ResultValues;
12370   const auto *CBR =
12371       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12372 
12373   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12374   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12375   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12376 
12377   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12378   SDValue Chain = DAG.getRoot();
12379 
12380   // Re-parse the asm constraints string.
12381   TargetLowering::AsmOperandInfoVector TargetConstraints =
12382       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12383   for (auto &T : TargetConstraints) {
12384     SDISelAsmOperandInfo OpInfo(T);
12385     if (OpInfo.Type != InlineAsm::isOutput)
12386       continue;
12387 
12388     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12389     // individual constraint.
12390     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12391 
12392     switch (OpInfo.ConstraintType) {
12393     case TargetLowering::C_Register:
12394     case TargetLowering::C_RegisterClass: {
12395       // Fill in OpInfo.AssignedRegs.Regs.
12396       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12397 
12398       // getRegistersForValue may produce 1 to many registers based on whether
12399       // the OpInfo.ConstraintVT is legal on the target or not.
12400       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12401         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12402         if (Register::isPhysicalRegister(OriginalDef))
12403           FuncInfo.MBB->addLiveIn(OriginalDef);
12404         // Update the assigned registers to use the original defs.
12405         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12406       }
12407 
12408       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12409           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12410       ResultValues.push_back(V);
12411       ResultVTs.push_back(OpInfo.ConstraintVT);
12412       break;
12413     }
12414     case TargetLowering::C_Other: {
12415       SDValue Flag;
12416       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12417                                                   OpInfo, DAG);
12418       ++InitialDef;
12419       ResultValues.push_back(V);
12420       ResultVTs.push_back(OpInfo.ConstraintVT);
12421       break;
12422     }
12423     default:
12424       break;
12425     }
12426   }
12427   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12428                           DAG.getVTList(ResultVTs), ResultValues);
12429   setValue(&I, V);
12430 }
12431