1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Statepoint.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetFrameLowering.h" 57 #include "llvm/Target/TargetInstrInfo.h" 58 #include "llvm/Target/TargetIntrinsicInfo.h" 59 #include "llvm/Target/TargetLibraryInfo.h" 60 #include "llvm/Target/TargetLowering.h" 61 #include "llvm/Target/TargetOptions.h" 62 #include "llvm/Target/TargetSelectionDAGInfo.h" 63 #include "llvm/Target/TargetSubtargetInfo.h" 64 #include <algorithm> 65 using namespace llvm; 66 67 #define DEBUG_TYPE "isel" 68 69 /// LimitFloatPrecision - Generate low-precision inline sequences for 70 /// some float libcalls (6, 8 or 12 bits). 71 static unsigned LimitFloatPrecision; 72 73 static cl::opt<unsigned, true> 74 LimitFPPrecision("limit-float-precision", 75 cl::desc("Generate low-precision inline sequences " 76 "for some float libcalls"), 77 cl::location(LimitFloatPrecision), 78 cl::init(0)); 79 80 // Limit the width of DAG chains. This is important in general to prevent 81 // prevent DAG-based analysis from blowing up. For example, alias analysis and 82 // load clustering may not complete in reasonable time. It is difficult to 83 // recognize and avoid this situation within each individual analysis, and 84 // future analyses are likely to have the same behavior. Limiting DAG width is 85 // the safe approach, and will be especially important with global DAGs. 86 // 87 // MaxParallelChains default is arbitrarily high to avoid affecting 88 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 89 // sequence over this should have been converted to llvm.memcpy by the 90 // frontend. It easy to induce this behavior with .ll code such as: 91 // %buffer = alloca [4096 x i8] 92 // %data = load [4096 x i8]* %argPtr 93 // store [4096 x i8] %data, [4096 x i8]* %buffer 94 static const unsigned MaxParallelChains = 64; 95 96 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 97 const SDValue *Parts, unsigned NumParts, 98 MVT PartVT, EVT ValueVT, const Value *V); 99 100 /// getCopyFromParts - Create a value that contains the specified legal parts 101 /// combined into the value they represent. If the parts combine to a type 102 /// larger then ValueVT then AssertOp can be used to specify whether the extra 103 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 104 /// (ISD::AssertSext). 105 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 106 const SDValue *Parts, 107 unsigned NumParts, MVT PartVT, EVT ValueVT, 108 const Value *V, 109 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 110 if (ValueVT.isVector()) 111 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 112 PartVT, ValueVT, V); 113 114 assert(NumParts > 0 && "No parts to assemble!"); 115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 116 SDValue Val = Parts[0]; 117 118 if (NumParts > 1) { 119 // Assemble the value from multiple parts. 120 if (ValueVT.isInteger()) { 121 unsigned PartBits = PartVT.getSizeInBits(); 122 unsigned ValueBits = ValueVT.getSizeInBits(); 123 124 // Assemble the power of 2 part. 125 unsigned RoundParts = NumParts & (NumParts - 1) ? 126 1 << Log2_32(NumParts) : NumParts; 127 unsigned RoundBits = PartBits * RoundParts; 128 EVT RoundVT = RoundBits == ValueBits ? 129 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 130 SDValue Lo, Hi; 131 132 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 133 134 if (RoundParts > 2) { 135 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 136 PartVT, HalfVT, V); 137 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 138 RoundParts / 2, PartVT, HalfVT, V); 139 } else { 140 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 141 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 142 } 143 144 if (TLI.isBigEndian()) 145 std::swap(Lo, Hi); 146 147 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 148 149 if (RoundParts < NumParts) { 150 // Assemble the trailing non-power-of-2 part. 151 unsigned OddParts = NumParts - RoundParts; 152 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 153 Hi = getCopyFromParts(DAG, DL, 154 Parts + RoundParts, OddParts, PartVT, OddVT, V); 155 156 // Combine the round and odd parts. 157 Lo = Val; 158 if (TLI.isBigEndian()) 159 std::swap(Lo, Hi); 160 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 161 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 162 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 163 DAG.getConstant(Lo.getValueType().getSizeInBits(), 164 TLI.getPointerTy())); 165 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 166 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 167 } 168 } else if (PartVT.isFloatingPoint()) { 169 // FP split into multiple FP parts (for ppcf128) 170 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 171 "Unexpected split"); 172 SDValue Lo, Hi; 173 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 174 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 175 if (TLI.hasBigEndianPartOrdering(ValueVT)) 176 std::swap(Lo, Hi); 177 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 178 } else { 179 // FP split into integer parts (soft fp) 180 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 181 !PartVT.isVector() && "Unexpected split"); 182 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 183 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 184 } 185 } 186 187 // There is now one part, held in Val. Correct it to match ValueVT. 188 EVT PartEVT = Val.getValueType(); 189 190 if (PartEVT == ValueVT) 191 return Val; 192 193 if (PartEVT.isInteger() && ValueVT.isInteger()) { 194 if (ValueVT.bitsLT(PartEVT)) { 195 // For a truncate, see if we have any information to 196 // indicate whether the truncated bits will always be 197 // zero or sign-extension. 198 if (AssertOp != ISD::DELETED_NODE) 199 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 200 DAG.getValueType(ValueVT)); 201 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 202 } 203 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 207 // FP_ROUND's are always exact here. 208 if (ValueVT.bitsLT(Val.getValueType())) 209 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 210 DAG.getTargetConstant(1, TLI.getPointerTy())); 211 212 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 213 } 214 215 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 216 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 217 218 llvm_unreachable("Unknown mismatch!"); 219 } 220 221 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 222 const Twine &ErrMsg) { 223 const Instruction *I = dyn_cast_or_null<Instruction>(V); 224 if (!V) 225 return Ctx.emitError(ErrMsg); 226 227 const char *AsmError = ", possible invalid constraint for vector type"; 228 if (const CallInst *CI = dyn_cast<CallInst>(I)) 229 if (isa<InlineAsm>(CI->getCalledValue())) 230 return Ctx.emitError(I, ErrMsg + AsmError); 231 232 return Ctx.emitError(I, ErrMsg); 233 } 234 235 /// getCopyFromPartsVector - Create a value that contains the specified legal 236 /// parts combined into the value they represent. If the parts combine to a 237 /// type larger then ValueVT then AssertOp can be used to specify whether the 238 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 239 /// ValueVT (ISD::AssertSext). 240 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 241 const SDValue *Parts, unsigned NumParts, 242 MVT PartVT, EVT ValueVT, const Value *V) { 243 assert(ValueVT.isVector() && "Not a vector value"); 244 assert(NumParts > 0 && "No parts to assemble!"); 245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 246 SDValue Val = Parts[0]; 247 248 // Handle a multi-element vector. 249 if (NumParts > 1) { 250 EVT IntermediateVT; 251 MVT RegisterVT; 252 unsigned NumIntermediates; 253 unsigned NumRegs = 254 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 255 NumIntermediates, RegisterVT); 256 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 257 NumParts = NumRegs; // Silence a compiler warning. 258 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 259 assert(RegisterVT == Parts[0].getSimpleValueType() && 260 "Part type doesn't match part!"); 261 262 // Assemble the parts into intermediate operands. 263 SmallVector<SDValue, 8> Ops(NumIntermediates); 264 if (NumIntermediates == NumParts) { 265 // If the register was not expanded, truncate or copy the value, 266 // as appropriate. 267 for (unsigned i = 0; i != NumParts; ++i) 268 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 269 PartVT, IntermediateVT, V); 270 } else if (NumParts > 0) { 271 // If the intermediate type was expanded, build the intermediate 272 // operands from the parts. 273 assert(NumParts % NumIntermediates == 0 && 274 "Must expand into a divisible number of parts!"); 275 unsigned Factor = NumParts / NumIntermediates; 276 for (unsigned i = 0; i != NumIntermediates; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 278 PartVT, IntermediateVT, V); 279 } 280 281 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 282 // intermediate operands. 283 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 284 : ISD::BUILD_VECTOR, 285 DL, ValueVT, Ops); 286 } 287 288 // There is now one part, held in Val. Correct it to match ValueVT. 289 EVT PartEVT = Val.getValueType(); 290 291 if (PartEVT == ValueVT) 292 return Val; 293 294 if (PartEVT.isVector()) { 295 // If the element type of the source/dest vectors are the same, but the 296 // parts vector has more elements than the value vector, then we have a 297 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 298 // elements we want. 299 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 300 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 301 "Cannot narrow, it would be a lossy transformation"); 302 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 303 DAG.getConstant(0, TLI.getVectorIdxTy())); 304 } 305 306 // Vector/Vector bitcast. 307 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 308 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 309 310 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 311 "Cannot handle this kind of promotion"); 312 // Promoted vector extract 313 bool Smaller = ValueVT.bitsLE(PartEVT); 314 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 315 DL, ValueVT, Val); 316 317 } 318 319 // Trivial bitcast if the types are the same size and the destination 320 // vector type is legal. 321 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 322 TLI.isTypeLegal(ValueVT)) 323 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 324 325 // Handle cases such as i8 -> <1 x i1> 326 if (ValueVT.getVectorNumElements() != 1) { 327 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 328 "non-trivial scalar-to-vector conversion"); 329 return DAG.getUNDEF(ValueVT); 330 } 331 332 if (ValueVT.getVectorNumElements() == 1 && 333 ValueVT.getVectorElementType() != PartEVT) { 334 bool Smaller = ValueVT.bitsLE(PartEVT); 335 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 336 DL, ValueVT.getScalarType(), Val); 337 } 338 339 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 340 } 341 342 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 343 SDValue Val, SDValue *Parts, unsigned NumParts, 344 MVT PartVT, const Value *V); 345 346 /// getCopyToParts - Create a series of nodes that contain the specified value 347 /// split into legal parts. If the parts contain more bits than Val, then, for 348 /// integers, ExtendKind can be used to specify how to generate the extra bits. 349 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 350 SDValue Val, SDValue *Parts, unsigned NumParts, 351 MVT PartVT, const Value *V, 352 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 353 EVT ValueVT = Val.getValueType(); 354 355 // Handle the vector case separately. 356 if (ValueVT.isVector()) 357 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 358 359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 360 unsigned PartBits = PartVT.getSizeInBits(); 361 unsigned OrigNumParts = NumParts; 362 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 363 364 if (NumParts == 0) 365 return; 366 367 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 368 EVT PartEVT = PartVT; 369 if (PartEVT == ValueVT) { 370 assert(NumParts == 1 && "No-op copy with multiple parts!"); 371 Parts[0] = Val; 372 return; 373 } 374 375 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 376 // If the parts cover more bits than the value has, promote the value. 377 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 378 assert(NumParts == 1 && "Do not know what to promote to!"); 379 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 380 } else { 381 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 382 ValueVT.isInteger() && 383 "Unknown mismatch!"); 384 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 385 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 386 if (PartVT == MVT::x86mmx) 387 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 388 } 389 } else if (PartBits == ValueVT.getSizeInBits()) { 390 // Different types of the same size. 391 assert(NumParts == 1 && PartEVT != ValueVT); 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 394 // If the parts cover less bits than value has, truncate the value. 395 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 396 ValueVT.isInteger() && 397 "Unknown mismatch!"); 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 399 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 400 if (PartVT == MVT::x86mmx) 401 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 402 } 403 404 // The value may have changed - recompute ValueVT. 405 ValueVT = Val.getValueType(); 406 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 407 "Failed to tile the value with PartVT!"); 408 409 if (NumParts == 1) { 410 if (PartEVT != ValueVT) 411 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 412 "scalar-to-vector conversion failed"); 413 414 Parts[0] = Val; 415 return; 416 } 417 418 // Expand the value into multiple parts. 419 if (NumParts & (NumParts - 1)) { 420 // The number of parts is not a power of 2. Split off and copy the tail. 421 assert(PartVT.isInteger() && ValueVT.isInteger() && 422 "Do not know what to expand to!"); 423 unsigned RoundParts = 1 << Log2_32(NumParts); 424 unsigned RoundBits = RoundParts * PartBits; 425 unsigned OddParts = NumParts - RoundParts; 426 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 427 DAG.getIntPtrConstant(RoundBits)); 428 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 429 430 if (TLI.isBigEndian()) 431 // The odd parts were reversed by getCopyToParts - unreverse them. 432 std::reverse(Parts + RoundParts, Parts + NumParts); 433 434 NumParts = RoundParts; 435 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 436 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 437 } 438 439 // The number of parts is a power of 2. Repeatedly bisect the value using 440 // EXTRACT_ELEMENT. 441 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 442 EVT::getIntegerVT(*DAG.getContext(), 443 ValueVT.getSizeInBits()), 444 Val); 445 446 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 447 for (unsigned i = 0; i < NumParts; i += StepSize) { 448 unsigned ThisBits = StepSize * PartBits / 2; 449 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 450 SDValue &Part0 = Parts[i]; 451 SDValue &Part1 = Parts[i+StepSize/2]; 452 453 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(1)); 455 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(0)); 457 458 if (ThisBits == PartBits && ThisVT != PartVT) { 459 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 460 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 461 } 462 } 463 } 464 465 if (TLI.isBigEndian()) 466 std::reverse(Parts, Parts + OrigNumParts); 467 } 468 469 470 /// getCopyToPartsVector - Create a series of nodes that contain the specified 471 /// value split into legal parts. 472 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 473 SDValue Val, SDValue *Parts, unsigned NumParts, 474 MVT PartVT, const Value *V) { 475 EVT ValueVT = Val.getValueType(); 476 assert(ValueVT.isVector() && "Not a vector"); 477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 478 479 if (NumParts == 1) { 480 EVT PartEVT = PartVT; 481 if (PartEVT == ValueVT) { 482 // Nothing to do. 483 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 484 // Bitconvert vector->vector case. 485 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 486 } else if (PartVT.isVector() && 487 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 488 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 489 EVT ElementVT = PartVT.getVectorElementType(); 490 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 491 // undef elements. 492 SmallVector<SDValue, 16> Ops; 493 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 494 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 495 ElementVT, Val, DAG.getConstant(i, 496 TLI.getVectorIdxTy()))); 497 498 for (unsigned i = ValueVT.getVectorNumElements(), 499 e = PartVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getUNDEF(ElementVT)); 501 502 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 503 504 // FIXME: Use CONCAT for 2x -> 4x. 505 506 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 507 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 508 } else if (PartVT.isVector() && 509 PartEVT.getVectorElementType().bitsGE( 510 ValueVT.getVectorElementType()) && 511 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 512 513 // Promoted vector extract 514 bool Smaller = PartEVT.bitsLE(ValueVT); 515 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 516 DL, PartVT, Val); 517 } else{ 518 // Vector -> scalar conversion. 519 assert(ValueVT.getVectorNumElements() == 1 && 520 "Only trivial vector-to-scalar conversions should get here!"); 521 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 522 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 523 524 bool Smaller = ValueVT.bitsLE(PartVT); 525 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 526 DL, PartVT, Val); 527 } 528 529 Parts[0] = Val; 530 return; 531 } 532 533 // Handle a multi-element vector. 534 EVT IntermediateVT; 535 MVT RegisterVT; 536 unsigned NumIntermediates; 537 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 538 IntermediateVT, 539 NumIntermediates, RegisterVT); 540 unsigned NumElements = ValueVT.getVectorNumElements(); 541 542 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 543 NumParts = NumRegs; // Silence a compiler warning. 544 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 545 546 // Split the vector into intermediate operands. 547 SmallVector<SDValue, 8> Ops(NumIntermediates); 548 for (unsigned i = 0; i != NumIntermediates; ++i) { 549 if (IntermediateVT.isVector()) 550 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 551 IntermediateVT, Val, 552 DAG.getConstant(i * (NumElements / NumIntermediates), 553 TLI.getVectorIdxTy())); 554 else 555 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 556 IntermediateVT, Val, 557 DAG.getConstant(i, TLI.getVectorIdxTy())); 558 } 559 560 // Split the intermediate operands into legal parts. 561 if (NumParts == NumIntermediates) { 562 // If the register was not expanded, promote or copy the value, 563 // as appropriate. 564 for (unsigned i = 0; i != NumParts; ++i) 565 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 566 } else if (NumParts > 0) { 567 // If the intermediate type was expanded, split each the value into 568 // legal parts. 569 assert(NumIntermediates != 0 && "division by zero"); 570 assert(NumParts % NumIntermediates == 0 && 571 "Must expand into a divisible number of parts!"); 572 unsigned Factor = NumParts / NumIntermediates; 573 for (unsigned i = 0; i != NumIntermediates; ++i) 574 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 575 } 576 } 577 578 namespace { 579 /// RegsForValue - This struct represents the registers (physical or virtual) 580 /// that a particular set of values is assigned, and the type information 581 /// about the value. The most common situation is to represent one value at a 582 /// time, but struct or array values are handled element-wise as multiple 583 /// values. The splitting of aggregates is performed recursively, so that we 584 /// never have aggregate-typed registers. The values at this point do not 585 /// necessarily have legal types, so each value may require one or more 586 /// registers of some legal type. 587 /// 588 struct RegsForValue { 589 /// ValueVTs - The value types of the values, which may not be legal, and 590 /// may need be promoted or synthesized from one or more registers. 591 /// 592 SmallVector<EVT, 4> ValueVTs; 593 594 /// RegVTs - The value types of the registers. This is the same size as 595 /// ValueVTs and it records, for each value, what the type of the assigned 596 /// register or registers are. (Individual values are never synthesized 597 /// from more than one type of register.) 598 /// 599 /// With virtual registers, the contents of RegVTs is redundant with TLI's 600 /// getRegisterType member function, however when with physical registers 601 /// it is necessary to have a separate record of the types. 602 /// 603 SmallVector<MVT, 4> RegVTs; 604 605 /// Regs - This list holds the registers assigned to the values. 606 /// Each legal or promoted value requires one register, and each 607 /// expanded value requires multiple registers. 608 /// 609 SmallVector<unsigned, 4> Regs; 610 611 RegsForValue() {} 612 613 RegsForValue(const SmallVector<unsigned, 4> ®s, 614 MVT regvt, EVT valuevt) 615 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 616 617 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 618 unsigned Reg, Type *Ty) { 619 ComputeValueVTs(tli, Ty, ValueVTs); 620 621 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 622 EVT ValueVT = ValueVTs[Value]; 623 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 624 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 625 for (unsigned i = 0; i != NumRegs; ++i) 626 Regs.push_back(Reg + i); 627 RegVTs.push_back(RegisterVT); 628 Reg += NumRegs; 629 } 630 } 631 632 /// append - Add the specified values to this one. 633 void append(const RegsForValue &RHS) { 634 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 635 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 636 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 637 } 638 639 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 640 /// this value and returns the result as a ValueVTs value. This uses 641 /// Chain/Flag as the input and updates them for the output Chain/Flag. 642 /// If the Flag pointer is NULL, no flag is used. 643 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 644 SDLoc dl, 645 SDValue &Chain, SDValue *Flag, 646 const Value *V = nullptr) const; 647 648 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 649 /// specified value into the registers specified by this object. This uses 650 /// Chain/Flag as the input and updates them for the output Chain/Flag. 651 /// If the Flag pointer is NULL, no flag is used. 652 void 653 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 654 SDValue *Flag, const Value *V, 655 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 656 657 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 658 /// operand list. This adds the code marker, matching input operand index 659 /// (if applicable), and includes the number of values added into it. 660 void AddInlineAsmOperands(unsigned Kind, 661 bool HasMatching, unsigned MatchingIdx, 662 SelectionDAG &DAG, 663 std::vector<SDValue> &Ops) const; 664 }; 665 } 666 667 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 668 /// this value and returns the result as a ValueVT value. This uses 669 /// Chain/Flag as the input and updates them for the output Chain/Flag. 670 /// If the Flag pointer is NULL, no flag is used. 671 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 672 FunctionLoweringInfo &FuncInfo, 673 SDLoc dl, 674 SDValue &Chain, SDValue *Flag, 675 const Value *V) const { 676 // A Value with type {} or [0 x %t] needs no registers. 677 if (ValueVTs.empty()) 678 return SDValue(); 679 680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 681 682 // Assemble the legal parts into the final values. 683 SmallVector<SDValue, 4> Values(ValueVTs.size()); 684 SmallVector<SDValue, 8> Parts; 685 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 686 // Copy the legal parts from the registers. 687 EVT ValueVT = ValueVTs[Value]; 688 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 689 MVT RegisterVT = RegVTs[Value]; 690 691 Parts.resize(NumRegs); 692 for (unsigned i = 0; i != NumRegs; ++i) { 693 SDValue P; 694 if (!Flag) { 695 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 696 } else { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 698 *Flag = P.getValue(2); 699 } 700 701 Chain = P.getValue(1); 702 Parts[i] = P; 703 704 // If the source register was virtual and if we know something about it, 705 // add an assert node. 706 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 707 !RegisterVT.isInteger() || RegisterVT.isVector()) 708 continue; 709 710 const FunctionLoweringInfo::LiveOutInfo *LOI = 711 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 712 if (!LOI) 713 continue; 714 715 unsigned RegSize = RegisterVT.getSizeInBits(); 716 unsigned NumSignBits = LOI->NumSignBits; 717 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 718 719 if (NumZeroBits == RegSize) { 720 // The current value is a zero. 721 // Explicitly express that as it would be easier for 722 // optimizations to kick in. 723 Parts[i] = DAG.getConstant(0, RegisterVT); 724 continue; 725 } 726 727 // FIXME: We capture more information than the dag can represent. For 728 // now, just use the tightest assertzext/assertsext possible. 729 bool isSExt = true; 730 EVT FromVT(MVT::Other); 731 if (NumSignBits == RegSize) 732 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 733 else if (NumZeroBits >= RegSize-1) 734 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 735 else if (NumSignBits > RegSize-8) 736 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 737 else if (NumZeroBits >= RegSize-8) 738 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 739 else if (NumSignBits > RegSize-16) 740 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 741 else if (NumZeroBits >= RegSize-16) 742 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 743 else if (NumSignBits > RegSize-32) 744 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 745 else if (NumZeroBits >= RegSize-32) 746 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 747 else 748 continue; 749 750 // Add an assertion node. 751 assert(FromVT != MVT::Other); 752 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 753 RegisterVT, P, DAG.getValueType(FromVT)); 754 } 755 756 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 757 NumRegs, RegisterVT, ValueVT, V); 758 Part += NumRegs; 759 Parts.clear(); 760 } 761 762 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 763 } 764 765 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 766 /// specified value into the registers specified by this object. This uses 767 /// Chain/Flag as the input and updates them for the output Chain/Flag. 768 /// If the Flag pointer is NULL, no flag is used. 769 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 770 SDValue &Chain, SDValue *Flag, const Value *V, 771 ISD::NodeType PreferredExtendType) const { 772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 773 ISD::NodeType ExtendKind = PreferredExtendType; 774 775 // Get the list of the values's legal parts. 776 unsigned NumRegs = Regs.size(); 777 SmallVector<SDValue, 8> Parts(NumRegs); 778 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 779 EVT ValueVT = ValueVTs[Value]; 780 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 781 MVT RegisterVT = RegVTs[Value]; 782 783 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 784 ExtendKind = ISD::ZERO_EXTEND; 785 786 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 787 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 788 Part += NumParts; 789 } 790 791 // Copy the parts into the registers. 792 SmallVector<SDValue, 8> Chains(NumRegs); 793 for (unsigned i = 0; i != NumRegs; ++i) { 794 SDValue Part; 795 if (!Flag) { 796 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 797 } else { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 799 *Flag = Part.getValue(1); 800 } 801 802 Chains[i] = Part.getValue(0); 803 } 804 805 if (NumRegs == 1 || Flag) 806 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 807 // flagged to it. That is the CopyToReg nodes and the user are considered 808 // a single scheduling unit. If we create a TokenFactor and return it as 809 // chain, then the TokenFactor is both a predecessor (operand) of the 810 // user as well as a successor (the TF operands are flagged to the user). 811 // c1, f1 = CopyToReg 812 // c2, f2 = CopyToReg 813 // c3 = TokenFactor c1, c2 814 // ... 815 // = op c3, ..., f2 816 Chain = Chains[NumRegs-1]; 817 else 818 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 819 } 820 821 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 822 /// operand list. This adds the code marker and includes the number of 823 /// values added into it. 824 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 825 unsigned MatchingIdx, 826 SelectionDAG &DAG, 827 std::vector<SDValue> &Ops) const { 828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 829 830 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 831 if (HasMatching) 832 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 833 else if (!Regs.empty() && 834 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 835 // Put the register class of the virtual registers in the flag word. That 836 // way, later passes can recompute register class constraints for inline 837 // assembly as well as normal instructions. 838 // Don't do this for tied operands that can use the regclass information 839 // from the def. 840 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 841 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 842 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 843 } 844 845 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 846 Ops.push_back(Res); 847 848 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 849 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 850 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 851 MVT RegisterVT = RegVTs[Value]; 852 for (unsigned i = 0; i != NumRegs; ++i) { 853 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 854 unsigned TheReg = Regs[Reg++]; 855 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 856 857 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 858 // If we clobbered the stack pointer, MFI should know about it. 859 assert(DAG.getMachineFunction().getFrameInfo()-> 860 hasInlineAsmWithSPAdjust()); 861 } 862 } 863 } 864 } 865 866 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 867 const TargetLibraryInfo *li) { 868 AA = &aa; 869 GFI = gfi; 870 LibInfo = li; 871 DL = DAG.getSubtarget().getDataLayout(); 872 Context = DAG.getContext(); 873 LPadToCallSiteMap.clear(); 874 } 875 876 /// clear - Clear out the current SelectionDAG and the associated 877 /// state and prepare this SelectionDAGBuilder object to be used 878 /// for a new block. This doesn't clear out information about 879 /// additional blocks that are needed to complete switch lowering 880 /// or PHI node updating; that information is cleared out as it is 881 /// consumed. 882 void SelectionDAGBuilder::clear() { 883 NodeMap.clear(); 884 UnusedArgNodeMap.clear(); 885 PendingLoads.clear(); 886 PendingExports.clear(); 887 CurInst = nullptr; 888 HasTailCall = false; 889 SDNodeOrder = LowestSDNodeOrder; 890 StatepointLowering.clear(); 891 } 892 893 /// clearDanglingDebugInfo - Clear the dangling debug information 894 /// map. This function is separated from the clear so that debug 895 /// information that is dangling in a basic block can be properly 896 /// resolved in a different basic block. This allows the 897 /// SelectionDAG to resolve dangling debug information attached 898 /// to PHI nodes. 899 void SelectionDAGBuilder::clearDanglingDebugInfo() { 900 DanglingDebugInfoMap.clear(); 901 } 902 903 /// getRoot - Return the current virtual root of the Selection DAG, 904 /// flushing any PendingLoad items. This must be done before emitting 905 /// a store or any other node that may need to be ordered after any 906 /// prior load instructions. 907 /// 908 SDValue SelectionDAGBuilder::getRoot() { 909 if (PendingLoads.empty()) 910 return DAG.getRoot(); 911 912 if (PendingLoads.size() == 1) { 913 SDValue Root = PendingLoads[0]; 914 DAG.setRoot(Root); 915 PendingLoads.clear(); 916 return Root; 917 } 918 919 // Otherwise, we have to make a token factor node. 920 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 921 PendingLoads); 922 PendingLoads.clear(); 923 DAG.setRoot(Root); 924 return Root; 925 } 926 927 /// getControlRoot - Similar to getRoot, but instead of flushing all the 928 /// PendingLoad items, flush all the PendingExports items. It is necessary 929 /// to do this before emitting a terminator instruction. 930 /// 931 SDValue SelectionDAGBuilder::getControlRoot() { 932 SDValue Root = DAG.getRoot(); 933 934 if (PendingExports.empty()) 935 return Root; 936 937 // Turn all of the CopyToReg chains into one factored node. 938 if (Root.getOpcode() != ISD::EntryToken) { 939 unsigned i = 0, e = PendingExports.size(); 940 for (; i != e; ++i) { 941 assert(PendingExports[i].getNode()->getNumOperands() > 1); 942 if (PendingExports[i].getNode()->getOperand(0) == Root) 943 break; // Don't add the root if we already indirectly depend on it. 944 } 945 946 if (i == e) 947 PendingExports.push_back(Root); 948 } 949 950 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 951 PendingExports); 952 PendingExports.clear(); 953 DAG.setRoot(Root); 954 return Root; 955 } 956 957 void SelectionDAGBuilder::visit(const Instruction &I) { 958 // Set up outgoing PHI node register values before emitting the terminator. 959 if (isa<TerminatorInst>(&I)) 960 HandlePHINodesInSuccessorBlocks(I.getParent()); 961 962 ++SDNodeOrder; 963 964 CurInst = &I; 965 966 visit(I.getOpcode(), I); 967 968 if (!isa<TerminatorInst>(&I) && !HasTailCall) 969 CopyToExportRegsIfNeeded(&I); 970 971 CurInst = nullptr; 972 } 973 974 void SelectionDAGBuilder::visitPHI(const PHINode &) { 975 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 976 } 977 978 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 979 // Note: this doesn't use InstVisitor, because it has to work with 980 // ConstantExpr's in addition to instructions. 981 switch (Opcode) { 982 default: llvm_unreachable("Unknown instruction type encountered!"); 983 // Build the switch statement using the Instruction.def file. 984 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 985 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 986 #include "llvm/IR/Instruction.def" 987 } 988 } 989 990 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 991 // generate the debug data structures now that we've seen its definition. 992 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 993 SDValue Val) { 994 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 995 if (DDI.getDI()) { 996 const DbgValueInst *DI = DDI.getDI(); 997 DebugLoc dl = DDI.getdl(); 998 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 999 MDNode *Variable = DI->getVariable(); 1000 MDNode *Expr = DI->getExpression(); 1001 uint64_t Offset = DI->getOffset(); 1002 // A dbg.value for an alloca is always indirect. 1003 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1004 SDDbgValue *SDV; 1005 if (Val.getNode()) { 1006 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1007 Val)) { 1008 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1009 IsIndirect, Offset, dl, DbgSDNodeOrder); 1010 DAG.AddDbgValue(SDV, Val.getNode(), false); 1011 } 1012 } else 1013 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1014 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1015 } 1016 } 1017 1018 /// getValue - Return an SDValue for the given Value. 1019 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1020 // If we already have an SDValue for this value, use it. It's important 1021 // to do this first, so that we don't create a CopyFromReg if we already 1022 // have a regular SDValue. 1023 SDValue &N = NodeMap[V]; 1024 if (N.getNode()) return N; 1025 1026 // If there's a virtual register allocated and initialized for this 1027 // value, use it. 1028 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1029 if (It != FuncInfo.ValueMap.end()) { 1030 unsigned InReg = It->second; 1031 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1032 V->getType()); 1033 SDValue Chain = DAG.getEntryNode(); 1034 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1035 resolveDanglingDebugInfo(V, N); 1036 return N; 1037 } 1038 1039 // Otherwise create a new SDValue and remember it. 1040 SDValue Val = getValueImpl(V); 1041 NodeMap[V] = Val; 1042 resolveDanglingDebugInfo(V, Val); 1043 return Val; 1044 } 1045 1046 /// getNonRegisterValue - Return an SDValue for the given Value, but 1047 /// don't look in FuncInfo.ValueMap for a virtual register. 1048 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1049 // If we already have an SDValue for this value, use it. 1050 SDValue &N = NodeMap[V]; 1051 if (N.getNode()) return N; 1052 1053 // Otherwise create a new SDValue and remember it. 1054 SDValue Val = getValueImpl(V); 1055 NodeMap[V] = Val; 1056 resolveDanglingDebugInfo(V, Val); 1057 return Val; 1058 } 1059 1060 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1061 /// Create an SDValue for the given value. 1062 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1064 1065 if (const Constant *C = dyn_cast<Constant>(V)) { 1066 EVT VT = TLI.getValueType(V->getType(), true); 1067 1068 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1069 return DAG.getConstant(*CI, VT); 1070 1071 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1072 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1073 1074 if (isa<ConstantPointerNull>(C)) { 1075 unsigned AS = V->getType()->getPointerAddressSpace(); 1076 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1077 } 1078 1079 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1080 return DAG.getConstantFP(*CFP, VT); 1081 1082 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1083 return DAG.getUNDEF(VT); 1084 1085 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1086 visit(CE->getOpcode(), *CE); 1087 SDValue N1 = NodeMap[V]; 1088 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1089 return N1; 1090 } 1091 1092 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1093 SmallVector<SDValue, 4> Constants; 1094 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1095 OI != OE; ++OI) { 1096 SDNode *Val = getValue(*OI).getNode(); 1097 // If the operand is an empty aggregate, there are no values. 1098 if (!Val) continue; 1099 // Add each leaf value from the operand to the Constants list 1100 // to form a flattened list of all the values. 1101 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1102 Constants.push_back(SDValue(Val, i)); 1103 } 1104 1105 return DAG.getMergeValues(Constants, getCurSDLoc()); 1106 } 1107 1108 if (const ConstantDataSequential *CDS = 1109 dyn_cast<ConstantDataSequential>(C)) { 1110 SmallVector<SDValue, 4> Ops; 1111 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1112 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1113 // Add each leaf value from the operand to the Constants list 1114 // to form a flattened list of all the values. 1115 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1116 Ops.push_back(SDValue(Val, i)); 1117 } 1118 1119 if (isa<ArrayType>(CDS->getType())) 1120 return DAG.getMergeValues(Ops, getCurSDLoc()); 1121 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1122 VT, Ops); 1123 } 1124 1125 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1126 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1127 "Unknown struct or array constant!"); 1128 1129 SmallVector<EVT, 4> ValueVTs; 1130 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1131 unsigned NumElts = ValueVTs.size(); 1132 if (NumElts == 0) 1133 return SDValue(); // empty struct 1134 SmallVector<SDValue, 4> Constants(NumElts); 1135 for (unsigned i = 0; i != NumElts; ++i) { 1136 EVT EltVT = ValueVTs[i]; 1137 if (isa<UndefValue>(C)) 1138 Constants[i] = DAG.getUNDEF(EltVT); 1139 else if (EltVT.isFloatingPoint()) 1140 Constants[i] = DAG.getConstantFP(0, EltVT); 1141 else 1142 Constants[i] = DAG.getConstant(0, EltVT); 1143 } 1144 1145 return DAG.getMergeValues(Constants, getCurSDLoc()); 1146 } 1147 1148 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1149 return DAG.getBlockAddress(BA, VT); 1150 1151 VectorType *VecTy = cast<VectorType>(V->getType()); 1152 unsigned NumElements = VecTy->getNumElements(); 1153 1154 // Now that we know the number and type of the elements, get that number of 1155 // elements into the Ops array based on what kind of constant it is. 1156 SmallVector<SDValue, 16> Ops; 1157 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1158 for (unsigned i = 0; i != NumElements; ++i) 1159 Ops.push_back(getValue(CV->getOperand(i))); 1160 } else { 1161 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1162 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1163 1164 SDValue Op; 1165 if (EltVT.isFloatingPoint()) 1166 Op = DAG.getConstantFP(0, EltVT); 1167 else 1168 Op = DAG.getConstant(0, EltVT); 1169 Ops.assign(NumElements, Op); 1170 } 1171 1172 // Create a BUILD_VECTOR node. 1173 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1174 } 1175 1176 // If this is a static alloca, generate it as the frameindex instead of 1177 // computation. 1178 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1179 DenseMap<const AllocaInst*, int>::iterator SI = 1180 FuncInfo.StaticAllocaMap.find(AI); 1181 if (SI != FuncInfo.StaticAllocaMap.end()) 1182 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1183 } 1184 1185 // If this is an instruction which fast-isel has deferred, select it now. 1186 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1187 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1188 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1189 SDValue Chain = DAG.getEntryNode(); 1190 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1191 } 1192 1193 llvm_unreachable("Can't get register for value!"); 1194 } 1195 1196 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1198 SDValue Chain = getControlRoot(); 1199 SmallVector<ISD::OutputArg, 8> Outs; 1200 SmallVector<SDValue, 8> OutVals; 1201 1202 if (!FuncInfo.CanLowerReturn) { 1203 unsigned DemoteReg = FuncInfo.DemoteRegister; 1204 const Function *F = I.getParent()->getParent(); 1205 1206 // Emit a store of the return value through the virtual register. 1207 // Leave Outs empty so that LowerReturn won't try to load return 1208 // registers the usual way. 1209 SmallVector<EVT, 1> PtrValueVTs; 1210 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1211 PtrValueVTs); 1212 1213 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1214 SDValue RetOp = getValue(I.getOperand(0)); 1215 1216 SmallVector<EVT, 4> ValueVTs; 1217 SmallVector<uint64_t, 4> Offsets; 1218 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1219 unsigned NumValues = ValueVTs.size(); 1220 1221 SmallVector<SDValue, 4> Chains(NumValues); 1222 for (unsigned i = 0; i != NumValues; ++i) { 1223 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1224 RetPtr.getValueType(), RetPtr, 1225 DAG.getIntPtrConstant(Offsets[i])); 1226 Chains[i] = 1227 DAG.getStore(Chain, getCurSDLoc(), 1228 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1229 // FIXME: better loc info would be nice. 1230 Add, MachinePointerInfo(), false, false, 0); 1231 } 1232 1233 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1234 MVT::Other, Chains); 1235 } else if (I.getNumOperands() != 0) { 1236 SmallVector<EVT, 4> ValueVTs; 1237 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1238 unsigned NumValues = ValueVTs.size(); 1239 if (NumValues) { 1240 SDValue RetOp = getValue(I.getOperand(0)); 1241 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1242 EVT VT = ValueVTs[j]; 1243 1244 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1245 1246 const Function *F = I.getParent()->getParent(); 1247 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1248 Attribute::SExt)) 1249 ExtendKind = ISD::SIGN_EXTEND; 1250 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1251 Attribute::ZExt)) 1252 ExtendKind = ISD::ZERO_EXTEND; 1253 1254 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1255 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1256 1257 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1258 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1259 SmallVector<SDValue, 4> Parts(NumParts); 1260 getCopyToParts(DAG, getCurSDLoc(), 1261 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1262 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1263 1264 // 'inreg' on function refers to return value 1265 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1266 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::InReg)) 1268 Flags.setInReg(); 1269 1270 // Propagate extension type if any 1271 if (ExtendKind == ISD::SIGN_EXTEND) 1272 Flags.setSExt(); 1273 else if (ExtendKind == ISD::ZERO_EXTEND) 1274 Flags.setZExt(); 1275 1276 for (unsigned i = 0; i < NumParts; ++i) { 1277 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1278 VT, /*isfixed=*/true, 0, 0)); 1279 OutVals.push_back(Parts[i]); 1280 } 1281 } 1282 } 1283 } 1284 1285 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1286 CallingConv::ID CallConv = 1287 DAG.getMachineFunction().getFunction()->getCallingConv(); 1288 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1289 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1290 1291 // Verify that the target's LowerReturn behaved as expected. 1292 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1293 "LowerReturn didn't return a valid chain!"); 1294 1295 // Update the DAG with the new chain value resulting from return lowering. 1296 DAG.setRoot(Chain); 1297 } 1298 1299 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1300 /// created for it, emit nodes to copy the value into the virtual 1301 /// registers. 1302 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1303 // Skip empty types 1304 if (V->getType()->isEmptyTy()) 1305 return; 1306 1307 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1308 if (VMI != FuncInfo.ValueMap.end()) { 1309 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1310 CopyValueToVirtualRegister(V, VMI->second); 1311 } 1312 } 1313 1314 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1315 /// the current basic block, add it to ValueMap now so that we'll get a 1316 /// CopyTo/FromReg. 1317 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1318 // No need to export constants. 1319 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1320 1321 // Already exported? 1322 if (FuncInfo.isExportedInst(V)) return; 1323 1324 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1325 CopyValueToVirtualRegister(V, Reg); 1326 } 1327 1328 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1329 const BasicBlock *FromBB) { 1330 // The operands of the setcc have to be in this block. We don't know 1331 // how to export them from some other block. 1332 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1333 // Can export from current BB. 1334 if (VI->getParent() == FromBB) 1335 return true; 1336 1337 // Is already exported, noop. 1338 return FuncInfo.isExportedInst(V); 1339 } 1340 1341 // If this is an argument, we can export it if the BB is the entry block or 1342 // if it is already exported. 1343 if (isa<Argument>(V)) { 1344 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1345 return true; 1346 1347 // Otherwise, can only export this if it is already exported. 1348 return FuncInfo.isExportedInst(V); 1349 } 1350 1351 // Otherwise, constants can always be exported. 1352 return true; 1353 } 1354 1355 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1356 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1357 const MachineBasicBlock *Dst) const { 1358 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1359 if (!BPI) 1360 return 0; 1361 const BasicBlock *SrcBB = Src->getBasicBlock(); 1362 const BasicBlock *DstBB = Dst->getBasicBlock(); 1363 return BPI->getEdgeWeight(SrcBB, DstBB); 1364 } 1365 1366 void SelectionDAGBuilder:: 1367 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1368 uint32_t Weight /* = 0 */) { 1369 if (!Weight) 1370 Weight = getEdgeWeight(Src, Dst); 1371 Src->addSuccessor(Dst, Weight); 1372 } 1373 1374 1375 static bool InBlock(const Value *V, const BasicBlock *BB) { 1376 if (const Instruction *I = dyn_cast<Instruction>(V)) 1377 return I->getParent() == BB; 1378 return true; 1379 } 1380 1381 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1382 /// This function emits a branch and is used at the leaves of an OR or an 1383 /// AND operator tree. 1384 /// 1385 void 1386 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1387 MachineBasicBlock *TBB, 1388 MachineBasicBlock *FBB, 1389 MachineBasicBlock *CurBB, 1390 MachineBasicBlock *SwitchBB, 1391 uint32_t TWeight, 1392 uint32_t FWeight) { 1393 const BasicBlock *BB = CurBB->getBasicBlock(); 1394 1395 // If the leaf of the tree is a comparison, merge the condition into 1396 // the caseblock. 1397 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1398 // The operands of the cmp have to be in this block. We don't know 1399 // how to export them from some other block. If this is the first block 1400 // of the sequence, no exporting is needed. 1401 if (CurBB == SwitchBB || 1402 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1403 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1404 ISD::CondCode Condition; 1405 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1406 Condition = getICmpCondCode(IC->getPredicate()); 1407 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1408 Condition = getFCmpCondCode(FC->getPredicate()); 1409 if (TM.Options.NoNaNsFPMath) 1410 Condition = getFCmpCodeWithoutNaN(Condition); 1411 } else { 1412 (void)Condition; // silence warning. 1413 llvm_unreachable("Unknown compare instruction"); 1414 } 1415 1416 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1417 TBB, FBB, CurBB, TWeight, FWeight); 1418 SwitchCases.push_back(CB); 1419 return; 1420 } 1421 } 1422 1423 // Create a CaseBlock record representing this branch. 1424 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1425 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1426 SwitchCases.push_back(CB); 1427 } 1428 1429 /// Scale down both weights to fit into uint32_t. 1430 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1431 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1432 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1433 NewTrue = NewTrue / Scale; 1434 NewFalse = NewFalse / Scale; 1435 } 1436 1437 /// FindMergedConditions - If Cond is an expression like 1438 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1439 MachineBasicBlock *TBB, 1440 MachineBasicBlock *FBB, 1441 MachineBasicBlock *CurBB, 1442 MachineBasicBlock *SwitchBB, 1443 unsigned Opc, uint32_t TWeight, 1444 uint32_t FWeight) { 1445 // If this node is not part of the or/and tree, emit it as a branch. 1446 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1447 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1448 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1449 BOp->getParent() != CurBB->getBasicBlock() || 1450 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1451 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1452 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1453 TWeight, FWeight); 1454 return; 1455 } 1456 1457 // Create TmpBB after CurBB. 1458 MachineFunction::iterator BBI = CurBB; 1459 MachineFunction &MF = DAG.getMachineFunction(); 1460 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1461 CurBB->getParent()->insert(++BBI, TmpBB); 1462 1463 if (Opc == Instruction::Or) { 1464 // Codegen X | Y as: 1465 // BB1: 1466 // jmp_if_X TBB 1467 // jmp TmpBB 1468 // TmpBB: 1469 // jmp_if_Y TBB 1470 // jmp FBB 1471 // 1472 1473 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1474 // The requirement is that 1475 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1476 // = TrueProb for orignal BB. 1477 // Assuming the orignal weights are A and B, one choice is to set BB1's 1478 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1479 // assumes that 1480 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1481 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1482 // TmpBB, but the math is more complicated. 1483 1484 uint64_t NewTrueWeight = TWeight; 1485 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1486 ScaleWeights(NewTrueWeight, NewFalseWeight); 1487 // Emit the LHS condition. 1488 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1489 NewTrueWeight, NewFalseWeight); 1490 1491 NewTrueWeight = TWeight; 1492 NewFalseWeight = 2 * (uint64_t)FWeight; 1493 ScaleWeights(NewTrueWeight, NewFalseWeight); 1494 // Emit the RHS condition into TmpBB. 1495 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1496 NewTrueWeight, NewFalseWeight); 1497 } else { 1498 assert(Opc == Instruction::And && "Unknown merge op!"); 1499 // Codegen X & Y as: 1500 // BB1: 1501 // jmp_if_X TmpBB 1502 // jmp FBB 1503 // TmpBB: 1504 // jmp_if_Y TBB 1505 // jmp FBB 1506 // 1507 // This requires creation of TmpBB after CurBB. 1508 1509 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1510 // The requirement is that 1511 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1512 // = FalseProb for orignal BB. 1513 // Assuming the orignal weights are A and B, one choice is to set BB1's 1514 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1515 // assumes that 1516 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1517 1518 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1519 uint64_t NewFalseWeight = FWeight; 1520 ScaleWeights(NewTrueWeight, NewFalseWeight); 1521 // Emit the LHS condition. 1522 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1523 NewTrueWeight, NewFalseWeight); 1524 1525 NewTrueWeight = 2 * (uint64_t)TWeight; 1526 NewFalseWeight = FWeight; 1527 ScaleWeights(NewTrueWeight, NewFalseWeight); 1528 // Emit the RHS condition into TmpBB. 1529 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1530 NewTrueWeight, NewFalseWeight); 1531 } 1532 } 1533 1534 /// If the set of cases should be emitted as a series of branches, return true. 1535 /// If we should emit this as a bunch of and/or'd together conditions, return 1536 /// false. 1537 bool 1538 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1539 if (Cases.size() != 2) return true; 1540 1541 // If this is two comparisons of the same values or'd or and'd together, they 1542 // will get folded into a single comparison, so don't emit two blocks. 1543 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1544 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1545 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1546 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1547 return false; 1548 } 1549 1550 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1551 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1552 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1553 Cases[0].CC == Cases[1].CC && 1554 isa<Constant>(Cases[0].CmpRHS) && 1555 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1556 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1557 return false; 1558 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1559 return false; 1560 } 1561 1562 return true; 1563 } 1564 1565 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1566 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1567 1568 // Update machine-CFG edges. 1569 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1570 1571 // Figure out which block is immediately after the current one. 1572 MachineBasicBlock *NextBlock = nullptr; 1573 MachineFunction::iterator BBI = BrMBB; 1574 if (++BBI != FuncInfo.MF->end()) 1575 NextBlock = BBI; 1576 1577 if (I.isUnconditional()) { 1578 // Update machine-CFG edges. 1579 BrMBB->addSuccessor(Succ0MBB); 1580 1581 // If this is not a fall-through branch or optimizations are switched off, 1582 // emit the branch. 1583 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1584 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1585 MVT::Other, getControlRoot(), 1586 DAG.getBasicBlock(Succ0MBB))); 1587 1588 return; 1589 } 1590 1591 // If this condition is one of the special cases we handle, do special stuff 1592 // now. 1593 const Value *CondVal = I.getCondition(); 1594 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1595 1596 // If this is a series of conditions that are or'd or and'd together, emit 1597 // this as a sequence of branches instead of setcc's with and/or operations. 1598 // As long as jumps are not expensive, this should improve performance. 1599 // For example, instead of something like: 1600 // cmp A, B 1601 // C = seteq 1602 // cmp D, E 1603 // F = setle 1604 // or C, F 1605 // jnz foo 1606 // Emit: 1607 // cmp A, B 1608 // je foo 1609 // cmp D, E 1610 // jle foo 1611 // 1612 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1613 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1614 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1615 BOp->getOpcode() == Instruction::Or)) { 1616 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1617 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1618 getEdgeWeight(BrMBB, Succ1MBB)); 1619 // If the compares in later blocks need to use values not currently 1620 // exported from this block, export them now. This block should always 1621 // be the first entry. 1622 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1623 1624 // Allow some cases to be rejected. 1625 if (ShouldEmitAsBranches(SwitchCases)) { 1626 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1627 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1628 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1629 } 1630 1631 // Emit the branch for this block. 1632 visitSwitchCase(SwitchCases[0], BrMBB); 1633 SwitchCases.erase(SwitchCases.begin()); 1634 return; 1635 } 1636 1637 // Okay, we decided not to do this, remove any inserted MBB's and clear 1638 // SwitchCases. 1639 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1640 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1641 1642 SwitchCases.clear(); 1643 } 1644 } 1645 1646 // Create a CaseBlock record representing this branch. 1647 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1648 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1649 1650 // Use visitSwitchCase to actually insert the fast branch sequence for this 1651 // cond branch. 1652 visitSwitchCase(CB, BrMBB); 1653 } 1654 1655 /// visitSwitchCase - Emits the necessary code to represent a single node in 1656 /// the binary search tree resulting from lowering a switch instruction. 1657 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1658 MachineBasicBlock *SwitchBB) { 1659 SDValue Cond; 1660 SDValue CondLHS = getValue(CB.CmpLHS); 1661 SDLoc dl = getCurSDLoc(); 1662 1663 // Build the setcc now. 1664 if (!CB.CmpMHS) { 1665 // Fold "(X == true)" to X and "(X == false)" to !X to 1666 // handle common cases produced by branch lowering. 1667 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1668 CB.CC == ISD::SETEQ) 1669 Cond = CondLHS; 1670 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1671 CB.CC == ISD::SETEQ) { 1672 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1673 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1674 } else 1675 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1676 } else { 1677 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1678 1679 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1680 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1681 1682 SDValue CmpOp = getValue(CB.CmpMHS); 1683 EVT VT = CmpOp.getValueType(); 1684 1685 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1686 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1687 ISD::SETLE); 1688 } else { 1689 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1690 VT, CmpOp, DAG.getConstant(Low, VT)); 1691 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1692 DAG.getConstant(High-Low, VT), ISD::SETULE); 1693 } 1694 } 1695 1696 // Update successor info 1697 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1698 // TrueBB and FalseBB are always different unless the incoming IR is 1699 // degenerate. This only happens when running llc on weird IR. 1700 if (CB.TrueBB != CB.FalseBB) 1701 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1702 1703 // Set NextBlock to be the MBB immediately after the current one, if any. 1704 // This is used to avoid emitting unnecessary branches to the next block. 1705 MachineBasicBlock *NextBlock = nullptr; 1706 MachineFunction::iterator BBI = SwitchBB; 1707 if (++BBI != FuncInfo.MF->end()) 1708 NextBlock = BBI; 1709 1710 // If the lhs block is the next block, invert the condition so that we can 1711 // fall through to the lhs instead of the rhs block. 1712 if (CB.TrueBB == NextBlock) { 1713 std::swap(CB.TrueBB, CB.FalseBB); 1714 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1715 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1716 } 1717 1718 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1719 MVT::Other, getControlRoot(), Cond, 1720 DAG.getBasicBlock(CB.TrueBB)); 1721 1722 // Insert the false branch. Do this even if it's a fall through branch, 1723 // this makes it easier to do DAG optimizations which require inverting 1724 // the branch condition. 1725 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1726 DAG.getBasicBlock(CB.FalseBB)); 1727 1728 DAG.setRoot(BrCond); 1729 } 1730 1731 /// visitJumpTable - Emit JumpTable node in the current MBB 1732 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1733 // Emit the code for the jump table 1734 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1735 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1736 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1737 JT.Reg, PTy); 1738 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1739 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1740 MVT::Other, Index.getValue(1), 1741 Table, Index); 1742 DAG.setRoot(BrJumpTable); 1743 } 1744 1745 /// visitJumpTableHeader - This function emits necessary code to produce index 1746 /// in the JumpTable from switch case. 1747 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1748 JumpTableHeader &JTH, 1749 MachineBasicBlock *SwitchBB) { 1750 // Subtract the lowest switch case value from the value being switched on and 1751 // conditional branch to default mbb if the result is greater than the 1752 // difference between smallest and largest cases. 1753 SDValue SwitchOp = getValue(JTH.SValue); 1754 EVT VT = SwitchOp.getValueType(); 1755 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1756 DAG.getConstant(JTH.First, VT)); 1757 1758 // The SDNode we just created, which holds the value being switched on minus 1759 // the smallest case value, needs to be copied to a virtual register so it 1760 // can be used as an index into the jump table in a subsequent basic block. 1761 // This value may be smaller or larger than the target's pointer type, and 1762 // therefore require extension or truncating. 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1765 1766 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1767 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1768 JumpTableReg, SwitchOp); 1769 JT.Reg = JumpTableReg; 1770 1771 // Emit the range check for the jump table, and branch to the default block 1772 // for the switch statement if the value being switched on exceeds the largest 1773 // case in the switch. 1774 SDValue CMP = 1775 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1776 Sub.getValueType()), 1777 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1778 1779 // Set NextBlock to be the MBB immediately after the current one, if any. 1780 // This is used to avoid emitting unnecessary branches to the next block. 1781 MachineBasicBlock *NextBlock = nullptr; 1782 MachineFunction::iterator BBI = SwitchBB; 1783 1784 if (++BBI != FuncInfo.MF->end()) 1785 NextBlock = BBI; 1786 1787 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1788 MVT::Other, CopyTo, CMP, 1789 DAG.getBasicBlock(JT.Default)); 1790 1791 if (JT.MBB != NextBlock) 1792 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1793 DAG.getBasicBlock(JT.MBB)); 1794 1795 DAG.setRoot(BrCond); 1796 } 1797 1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1799 /// tail spliced into a stack protector check success bb. 1800 /// 1801 /// For a high level explanation of how this fits into the stack protector 1802 /// generation see the comment on the declaration of class 1803 /// StackProtectorDescriptor. 1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1805 MachineBasicBlock *ParentBB) { 1806 1807 // First create the loads to the guard/stack slot for the comparison. 1808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1809 EVT PtrTy = TLI.getPointerTy(); 1810 1811 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1812 int FI = MFI->getStackProtectorIndex(); 1813 1814 const Value *IRGuard = SPD.getGuard(); 1815 SDValue GuardPtr = getValue(IRGuard); 1816 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1817 1818 unsigned Align = 1819 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1820 1821 SDValue Guard; 1822 1823 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1824 // guard value from the virtual register holding the value. Otherwise, emit a 1825 // volatile load to retrieve the stack guard value. 1826 unsigned GuardReg = SPD.getGuardReg(); 1827 1828 if (GuardReg && TLI.useLoadStackGuardNode()) 1829 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1830 PtrTy); 1831 else 1832 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 GuardPtr, MachinePointerInfo(IRGuard, 0), 1834 true, false, false, Align); 1835 1836 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1837 StackSlotPtr, 1838 MachinePointerInfo::getFixedStack(FI), 1839 true, false, false, Align); 1840 1841 // Perform the comparison via a subtract/getsetcc. 1842 EVT VT = Guard.getValueType(); 1843 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1844 1845 SDValue Cmp = 1846 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1847 Sub.getValueType()), 1848 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1849 1850 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1851 // branch to failure MBB. 1852 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1853 MVT::Other, StackSlot.getOperand(0), 1854 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1855 // Otherwise branch to success MBB. 1856 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1857 MVT::Other, BrCond, 1858 DAG.getBasicBlock(SPD.getSuccessMBB())); 1859 1860 DAG.setRoot(Br); 1861 } 1862 1863 /// Codegen the failure basic block for a stack protector check. 1864 /// 1865 /// A failure stack protector machine basic block consists simply of a call to 1866 /// __stack_chk_fail(). 1867 /// 1868 /// For a high level explanation of how this fits into the stack protector 1869 /// generation see the comment on the declaration of class 1870 /// StackProtectorDescriptor. 1871 void 1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1874 SDValue Chain = 1875 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1876 nullptr, 0, false, getCurSDLoc(), false, false).second; 1877 DAG.setRoot(Chain); 1878 } 1879 1880 /// visitBitTestHeader - This function emits necessary code to produce value 1881 /// suitable for "bit tests" 1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1883 MachineBasicBlock *SwitchBB) { 1884 // Subtract the minimum value 1885 SDValue SwitchOp = getValue(B.SValue); 1886 EVT VT = SwitchOp.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1888 DAG.getConstant(B.First, VT)); 1889 1890 // Check range 1891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1892 SDValue RangeCmp = 1893 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1896 1897 // Determine the type of the test operands. 1898 bool UsePtrType = false; 1899 if (!TLI.isTypeLegal(VT)) 1900 UsePtrType = true; 1901 else { 1902 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1903 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1904 // Switch table case range are encoded into series of masks. 1905 // Just use pointer type, it's guaranteed to fit. 1906 UsePtrType = true; 1907 break; 1908 } 1909 } 1910 if (UsePtrType) { 1911 VT = TLI.getPointerTy(); 1912 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1913 } 1914 1915 B.RegVT = VT.getSimpleVT(); 1916 B.Reg = FuncInfo.CreateReg(B.RegVT); 1917 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1918 B.Reg, Sub); 1919 1920 // Set NextBlock to be the MBB immediately after the current one, if any. 1921 // This is used to avoid emitting unnecessary branches to the next block. 1922 MachineBasicBlock *NextBlock = nullptr; 1923 MachineFunction::iterator BBI = SwitchBB; 1924 if (++BBI != FuncInfo.MF->end()) 1925 NextBlock = BBI; 1926 1927 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1928 1929 addSuccessorWithWeight(SwitchBB, B.Default); 1930 addSuccessorWithWeight(SwitchBB, MBB); 1931 1932 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1933 MVT::Other, CopyTo, RangeCmp, 1934 DAG.getBasicBlock(B.Default)); 1935 1936 if (MBB != NextBlock) 1937 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1938 DAG.getBasicBlock(MBB)); 1939 1940 DAG.setRoot(BrRange); 1941 } 1942 1943 /// visitBitTestCase - this function produces one "bit test" 1944 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1945 MachineBasicBlock* NextMBB, 1946 uint32_t BranchWeightToNext, 1947 unsigned Reg, 1948 BitTestCase &B, 1949 MachineBasicBlock *SwitchBB) { 1950 MVT VT = BB.RegVT; 1951 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1952 Reg, VT); 1953 SDValue Cmp; 1954 unsigned PopCount = CountPopulation_64(B.Mask); 1955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1956 if (PopCount == 1) { 1957 // Testing for a single bit; just compare the shift count with what it 1958 // would need to be to shift a 1 bit in that position. 1959 Cmp = DAG.getSetCC( 1960 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1961 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1962 } else if (PopCount == BB.Range) { 1963 // There is only one zero bit in the range, test for it directly. 1964 Cmp = DAG.getSetCC( 1965 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1966 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1967 } else { 1968 // Make desired shift 1969 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1970 DAG.getConstant(1, VT), ShiftOp); 1971 1972 // Emit bit tests and jumps 1973 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1974 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1975 Cmp = DAG.getSetCC(getCurSDLoc(), 1976 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1977 DAG.getConstant(0, VT), ISD::SETNE); 1978 } 1979 1980 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1981 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1982 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1983 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1984 1985 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1986 MVT::Other, getControlRoot(), 1987 Cmp, DAG.getBasicBlock(B.TargetBB)); 1988 1989 // Set NextBlock to be the MBB immediately after the current one, if any. 1990 // This is used to avoid emitting unnecessary branches to the next block. 1991 MachineBasicBlock *NextBlock = nullptr; 1992 MachineFunction::iterator BBI = SwitchBB; 1993 if (++BBI != FuncInfo.MF->end()) 1994 NextBlock = BBI; 1995 1996 if (NextMBB != NextBlock) 1997 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1998 DAG.getBasicBlock(NextMBB)); 1999 2000 DAG.setRoot(BrAnd); 2001 } 2002 2003 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2004 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2005 2006 // Retrieve successors. 2007 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2008 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2009 2010 const Value *Callee(I.getCalledValue()); 2011 const Function *Fn = dyn_cast<Function>(Callee); 2012 if (isa<InlineAsm>(Callee)) 2013 visitInlineAsm(&I); 2014 else if (Fn && Fn->isIntrinsic()) { 2015 switch (Fn->getIntrinsicID()) { 2016 default: 2017 llvm_unreachable("Cannot invoke this intrinsic"); 2018 case Intrinsic::donothing: 2019 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2020 break; 2021 case Intrinsic::experimental_patchpoint_void: 2022 case Intrinsic::experimental_patchpoint_i64: 2023 visitPatchpoint(&I, LandingPad); 2024 break; 2025 } 2026 } else 2027 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2028 2029 // If the value of the invoke is used outside of its defining block, make it 2030 // available as a virtual register. 2031 CopyToExportRegsIfNeeded(&I); 2032 2033 // Update successor info 2034 addSuccessorWithWeight(InvokeMBB, Return); 2035 addSuccessorWithWeight(InvokeMBB, LandingPad); 2036 2037 // Drop into normal successor. 2038 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2039 MVT::Other, getControlRoot(), 2040 DAG.getBasicBlock(Return))); 2041 } 2042 2043 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2044 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2045 } 2046 2047 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2048 assert(FuncInfo.MBB->isLandingPad() && 2049 "Call to landingpad not in landing pad!"); 2050 2051 MachineBasicBlock *MBB = FuncInfo.MBB; 2052 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2053 AddLandingPadInfo(LP, MMI, MBB); 2054 2055 // If there aren't registers to copy the values into (e.g., during SjLj 2056 // exceptions), then don't bother to create these DAG nodes. 2057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2058 if (TLI.getExceptionPointerRegister() == 0 && 2059 TLI.getExceptionSelectorRegister() == 0) 2060 return; 2061 2062 SmallVector<EVT, 2> ValueVTs; 2063 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2064 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2065 2066 // Get the two live-in registers as SDValues. The physregs have already been 2067 // copied into virtual registers. 2068 SDValue Ops[2]; 2069 Ops[0] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[0]); 2073 Ops[1] = DAG.getZExtOrTrunc( 2074 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2075 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2076 getCurSDLoc(), ValueVTs[1]); 2077 2078 // Merge into one. 2079 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2080 DAG.getVTList(ValueVTs), Ops); 2081 setValue(&LP, Res); 2082 } 2083 2084 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2085 /// small case ranges). 2086 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2087 CaseRecVector& WorkList, 2088 const Value* SV, 2089 MachineBasicBlock *Default, 2090 MachineBasicBlock *SwitchBB) { 2091 // Size is the number of Cases represented by this range. 2092 size_t Size = CR.Range.second - CR.Range.first; 2093 if (Size > 3) 2094 return false; 2095 2096 // Get the MachineFunction which holds the current MBB. This is used when 2097 // inserting any additional MBBs necessary to represent the switch. 2098 MachineFunction *CurMF = FuncInfo.MF; 2099 2100 // Figure out which block is immediately after the current one. 2101 MachineBasicBlock *NextBlock = nullptr; 2102 MachineFunction::iterator BBI = CR.CaseBB; 2103 2104 if (++BBI != FuncInfo.MF->end()) 2105 NextBlock = BBI; 2106 2107 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2108 // If any two of the cases has the same destination, and if one value 2109 // is the same as the other, but has one bit unset that the other has set, 2110 // use bit manipulation to do two compares at once. For example: 2111 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2112 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2113 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2114 if (Size == 2 && CR.CaseBB == SwitchBB) { 2115 Case &Small = *CR.Range.first; 2116 Case &Big = *(CR.Range.second-1); 2117 2118 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2119 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2120 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2121 2122 // Check that there is only one bit different. 2123 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2124 (SmallValue | BigValue) == BigValue) { 2125 // Isolate the common bit. 2126 APInt CommonBit = BigValue & ~SmallValue; 2127 assert((SmallValue | CommonBit) == BigValue && 2128 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2129 2130 SDValue CondLHS = getValue(SV); 2131 EVT VT = CondLHS.getValueType(); 2132 SDLoc DL = getCurSDLoc(); 2133 2134 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2135 DAG.getConstant(CommonBit, VT)); 2136 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2137 Or, DAG.getConstant(BigValue, VT), 2138 ISD::SETEQ); 2139 2140 // Update successor info. 2141 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2142 addSuccessorWithWeight(SwitchBB, Small.BB, 2143 Small.ExtraWeight + Big.ExtraWeight); 2144 addSuccessorWithWeight(SwitchBB, Default, 2145 // The default destination is the first successor in IR. 2146 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2147 2148 // Insert the true branch. 2149 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2150 getControlRoot(), Cond, 2151 DAG.getBasicBlock(Small.BB)); 2152 2153 // Insert the false branch. 2154 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2155 DAG.getBasicBlock(Default)); 2156 2157 DAG.setRoot(BrCond); 2158 return true; 2159 } 2160 } 2161 } 2162 2163 // Order cases by weight so the most likely case will be checked first. 2164 uint32_t UnhandledWeights = 0; 2165 if (BPI) { 2166 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2167 uint32_t IWeight = I->ExtraWeight; 2168 UnhandledWeights += IWeight; 2169 for (CaseItr J = CR.Range.first; J < I; ++J) { 2170 uint32_t JWeight = J->ExtraWeight; 2171 if (IWeight > JWeight) 2172 std::swap(*I, *J); 2173 } 2174 } 2175 } 2176 // Rearrange the case blocks so that the last one falls through if possible. 2177 Case &BackCase = *(CR.Range.second-1); 2178 if (Size > 1 && 2179 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2180 // The last case block won't fall through into 'NextBlock' if we emit the 2181 // branches in this order. See if rearranging a case value would help. 2182 // We start at the bottom as it's the case with the least weight. 2183 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2184 if (I->BB == NextBlock) { 2185 std::swap(*I, BackCase); 2186 break; 2187 } 2188 } 2189 2190 // Create a CaseBlock record representing a conditional branch to 2191 // the Case's target mbb if the value being switched on SV is equal 2192 // to C. 2193 MachineBasicBlock *CurBlock = CR.CaseBB; 2194 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2195 MachineBasicBlock *FallThrough; 2196 if (I != E-1) { 2197 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2198 CurMF->insert(BBI, FallThrough); 2199 2200 // Put SV in a virtual register to make it available from the new blocks. 2201 ExportFromCurrentBlock(SV); 2202 } else { 2203 // If the last case doesn't match, go to the default block. 2204 FallThrough = Default; 2205 } 2206 2207 const Value *RHS, *LHS, *MHS; 2208 ISD::CondCode CC; 2209 if (I->High == I->Low) { 2210 // This is just small small case range :) containing exactly 1 case 2211 CC = ISD::SETEQ; 2212 LHS = SV; RHS = I->High; MHS = nullptr; 2213 } else { 2214 CC = ISD::SETLE; 2215 LHS = I->Low; MHS = SV; RHS = I->High; 2216 } 2217 2218 // The false weight should be sum of all un-handled cases. 2219 UnhandledWeights -= I->ExtraWeight; 2220 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2221 /* me */ CurBlock, 2222 /* trueweight */ I->ExtraWeight, 2223 /* falseweight */ UnhandledWeights); 2224 2225 // If emitting the first comparison, just call visitSwitchCase to emit the 2226 // code into the current block. Otherwise, push the CaseBlock onto the 2227 // vector to be later processed by SDISel, and insert the node's MBB 2228 // before the next MBB. 2229 if (CurBlock == SwitchBB) 2230 visitSwitchCase(CB, SwitchBB); 2231 else 2232 SwitchCases.push_back(CB); 2233 2234 CurBlock = FallThrough; 2235 } 2236 2237 return true; 2238 } 2239 2240 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2241 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2242 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2243 } 2244 2245 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2246 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2247 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2248 return (LastExt - FirstExt + 1ULL); 2249 } 2250 2251 /// handleJTSwitchCase - Emit jumptable for current switch case range 2252 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2253 CaseRecVector &WorkList, 2254 const Value *SV, 2255 MachineBasicBlock *Default, 2256 MachineBasicBlock *SwitchBB) { 2257 Case& FrontCase = *CR.Range.first; 2258 Case& BackCase = *(CR.Range.second-1); 2259 2260 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2261 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2262 2263 APInt TSize(First.getBitWidth(), 0); 2264 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2265 TSize += I->size(); 2266 2267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2268 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2269 return false; 2270 2271 APInt Range = ComputeRange(First, Last); 2272 // The density is TSize / Range. Require at least 40%. 2273 // It should not be possible for IntTSize to saturate for sane code, but make 2274 // sure we handle Range saturation correctly. 2275 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2276 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2277 if (IntTSize * 10 < IntRange * 4) 2278 return false; 2279 2280 DEBUG(dbgs() << "Lowering jump table\n" 2281 << "First entry: " << First << ". Last entry: " << Last << '\n' 2282 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2283 2284 // Get the MachineFunction which holds the current MBB. This is used when 2285 // inserting any additional MBBs necessary to represent the switch. 2286 MachineFunction *CurMF = FuncInfo.MF; 2287 2288 // Figure out which block is immediately after the current one. 2289 MachineFunction::iterator BBI = CR.CaseBB; 2290 ++BBI; 2291 2292 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2293 2294 // Create a new basic block to hold the code for loading the address 2295 // of the jump table, and jumping to it. Update successor information; 2296 // we will either branch to the default case for the switch, or the jump 2297 // table. 2298 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2299 CurMF->insert(BBI, JumpTableBB); 2300 2301 addSuccessorWithWeight(CR.CaseBB, Default); 2302 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2303 2304 // Build a vector of destination BBs, corresponding to each target 2305 // of the jump table. If the value of the jump table slot corresponds to 2306 // a case statement, push the case's BB onto the vector, otherwise, push 2307 // the default BB. 2308 std::vector<MachineBasicBlock*> DestBBs; 2309 APInt TEI = First; 2310 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2311 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2312 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2313 2314 if (Low.sle(TEI) && TEI.sle(High)) { 2315 DestBBs.push_back(I->BB); 2316 if (TEI==High) 2317 ++I; 2318 } else { 2319 DestBBs.push_back(Default); 2320 } 2321 } 2322 2323 // Calculate weight for each unique destination in CR. 2324 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2325 if (FuncInfo.BPI) 2326 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2327 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2328 DestWeights.find(I->BB); 2329 if (Itr != DestWeights.end()) 2330 Itr->second += I->ExtraWeight; 2331 else 2332 DestWeights[I->BB] = I->ExtraWeight; 2333 } 2334 2335 // Update successor info. Add one edge to each unique successor. 2336 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2337 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2338 E = DestBBs.end(); I != E; ++I) { 2339 if (!SuccsHandled[(*I)->getNumber()]) { 2340 SuccsHandled[(*I)->getNumber()] = true; 2341 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2342 DestWeights.find(*I); 2343 addSuccessorWithWeight(JumpTableBB, *I, 2344 Itr != DestWeights.end() ? Itr->second : 0); 2345 } 2346 } 2347 2348 // Create a jump table index for this jump table. 2349 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2350 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2351 ->createJumpTableIndex(DestBBs); 2352 2353 // Set the jump table information so that we can codegen it as a second 2354 // MachineBasicBlock 2355 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2356 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2357 if (CR.CaseBB == SwitchBB) 2358 visitJumpTableHeader(JT, JTH, SwitchBB); 2359 2360 JTCases.push_back(JumpTableBlock(JTH, JT)); 2361 return true; 2362 } 2363 2364 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2365 /// 2 subtrees. 2366 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2367 CaseRecVector& WorkList, 2368 const Value* SV, 2369 MachineBasicBlock* SwitchBB) { 2370 // Get the MachineFunction which holds the current MBB. This is used when 2371 // inserting any additional MBBs necessary to represent the switch. 2372 MachineFunction *CurMF = FuncInfo.MF; 2373 2374 // Figure out which block is immediately after the current one. 2375 MachineFunction::iterator BBI = CR.CaseBB; 2376 ++BBI; 2377 2378 Case& FrontCase = *CR.Range.first; 2379 Case& BackCase = *(CR.Range.second-1); 2380 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2381 2382 // Size is the number of Cases represented by this range. 2383 unsigned Size = CR.Range.second - CR.Range.first; 2384 2385 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2386 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2387 double FMetric = 0; 2388 CaseItr Pivot = CR.Range.first + Size/2; 2389 2390 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2391 // (heuristically) allow us to emit JumpTable's later. 2392 APInt TSize(First.getBitWidth(), 0); 2393 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2394 I!=E; ++I) 2395 TSize += I->size(); 2396 2397 APInt LSize = FrontCase.size(); 2398 APInt RSize = TSize-LSize; 2399 DEBUG(dbgs() << "Selecting best pivot: \n" 2400 << "First: " << First << ", Last: " << Last <<'\n' 2401 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2402 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2403 J!=E; ++I, ++J) { 2404 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2405 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2406 APInt Range = ComputeRange(LEnd, RBegin); 2407 assert((Range - 2ULL).isNonNegative() && 2408 "Invalid case distance"); 2409 // Use volatile double here to avoid excess precision issues on some hosts, 2410 // e.g. that use 80-bit X87 registers. 2411 volatile double LDensity = 2412 (double)LSize.roundToDouble() / 2413 (LEnd - First + 1ULL).roundToDouble(); 2414 volatile double RDensity = 2415 (double)RSize.roundToDouble() / 2416 (Last - RBegin + 1ULL).roundToDouble(); 2417 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2418 // Should always split in some non-trivial place 2419 DEBUG(dbgs() <<"=>Step\n" 2420 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2421 << "LDensity: " << LDensity 2422 << ", RDensity: " << RDensity << '\n' 2423 << "Metric: " << Metric << '\n'); 2424 if (FMetric < Metric) { 2425 Pivot = J; 2426 FMetric = Metric; 2427 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2428 } 2429 2430 LSize += J->size(); 2431 RSize -= J->size(); 2432 } 2433 2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2435 if (areJTsAllowed(TLI)) { 2436 // If our case is dense we *really* should handle it earlier! 2437 assert((FMetric > 0) && "Should handle dense range earlier!"); 2438 } else { 2439 Pivot = CR.Range.first + Size/2; 2440 } 2441 2442 CaseRange LHSR(CR.Range.first, Pivot); 2443 CaseRange RHSR(Pivot, CR.Range.second); 2444 const Constant *C = Pivot->Low; 2445 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2446 2447 // We know that we branch to the LHS if the Value being switched on is 2448 // less than the Pivot value, C. We use this to optimize our binary 2449 // tree a bit, by recognizing that if SV is greater than or equal to the 2450 // LHS's Case Value, and that Case Value is exactly one less than the 2451 // Pivot's Value, then we can branch directly to the LHS's Target, 2452 // rather than creating a leaf node for it. 2453 if ((LHSR.second - LHSR.first) == 1 && 2454 LHSR.first->High == CR.GE && 2455 cast<ConstantInt>(C)->getValue() == 2456 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2457 TrueBB = LHSR.first->BB; 2458 } else { 2459 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2460 CurMF->insert(BBI, TrueBB); 2461 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2462 2463 // Put SV in a virtual register to make it available from the new blocks. 2464 ExportFromCurrentBlock(SV); 2465 } 2466 2467 // Similar to the optimization above, if the Value being switched on is 2468 // known to be less than the Constant CR.LT, and the current Case Value 2469 // is CR.LT - 1, then we can branch directly to the target block for 2470 // the current Case Value, rather than emitting a RHS leaf node for it. 2471 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2472 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2473 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2474 FalseBB = RHSR.first->BB; 2475 } else { 2476 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2477 CurMF->insert(BBI, FalseBB); 2478 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2479 2480 // Put SV in a virtual register to make it available from the new blocks. 2481 ExportFromCurrentBlock(SV); 2482 } 2483 2484 // Create a CaseBlock record representing a conditional branch to 2485 // the LHS node if the value being switched on SV is less than C. 2486 // Otherwise, branch to LHS. 2487 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2488 2489 if (CR.CaseBB == SwitchBB) 2490 visitSwitchCase(CB, SwitchBB); 2491 else 2492 SwitchCases.push_back(CB); 2493 2494 return true; 2495 } 2496 2497 /// handleBitTestsSwitchCase - if current case range has few destination and 2498 /// range span less, than machine word bitwidth, encode case range into series 2499 /// of masks and emit bit tests with these masks. 2500 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2501 CaseRecVector& WorkList, 2502 const Value* SV, 2503 MachineBasicBlock* Default, 2504 MachineBasicBlock* SwitchBB) { 2505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2506 EVT PTy = TLI.getPointerTy(); 2507 unsigned IntPtrBits = PTy.getSizeInBits(); 2508 2509 Case& FrontCase = *CR.Range.first; 2510 Case& BackCase = *(CR.Range.second-1); 2511 2512 // Get the MachineFunction which holds the current MBB. This is used when 2513 // inserting any additional MBBs necessary to represent the switch. 2514 MachineFunction *CurMF = FuncInfo.MF; 2515 2516 // If target does not have legal shift left, do not emit bit tests at all. 2517 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2518 return false; 2519 2520 size_t numCmps = 0; 2521 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2522 // Single case counts one, case range - two. 2523 numCmps += (I->Low == I->High ? 1 : 2); 2524 } 2525 2526 // Count unique destinations 2527 SmallSet<MachineBasicBlock*, 4> Dests; 2528 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2529 Dests.insert(I->BB); 2530 if (Dests.size() > 3) 2531 // Don't bother the code below, if there are too much unique destinations 2532 return false; 2533 } 2534 DEBUG(dbgs() << "Total number of unique destinations: " 2535 << Dests.size() << '\n' 2536 << "Total number of comparisons: " << numCmps << '\n'); 2537 2538 // Compute span of values. 2539 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2540 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2541 APInt cmpRange = maxValue - minValue; 2542 2543 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2544 << "Low bound: " << minValue << '\n' 2545 << "High bound: " << maxValue << '\n'); 2546 2547 if (cmpRange.uge(IntPtrBits) || 2548 (!(Dests.size() == 1 && numCmps >= 3) && 2549 !(Dests.size() == 2 && numCmps >= 5) && 2550 !(Dests.size() >= 3 && numCmps >= 6))) 2551 return false; 2552 2553 DEBUG(dbgs() << "Emitting bit tests\n"); 2554 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2555 2556 // Optimize the case where all the case values fit in a 2557 // word without having to subtract minValue. In this case, 2558 // we can optimize away the subtraction. 2559 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2560 cmpRange = maxValue; 2561 } else { 2562 lowBound = minValue; 2563 } 2564 2565 CaseBitsVector CasesBits; 2566 unsigned i, count = 0; 2567 2568 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2569 MachineBasicBlock* Dest = I->BB; 2570 for (i = 0; i < count; ++i) 2571 if (Dest == CasesBits[i].BB) 2572 break; 2573 2574 if (i == count) { 2575 assert((count < 3) && "Too much destinations to test!"); 2576 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2577 count++; 2578 } 2579 2580 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2581 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2582 2583 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2584 uint64_t hi = (highValue - lowBound).getZExtValue(); 2585 CasesBits[i].ExtraWeight += I->ExtraWeight; 2586 2587 for (uint64_t j = lo; j <= hi; j++) { 2588 CasesBits[i].Mask |= 1ULL << j; 2589 CasesBits[i].Bits++; 2590 } 2591 2592 } 2593 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2594 2595 BitTestInfo BTC; 2596 2597 // Figure out which block is immediately after the current one. 2598 MachineFunction::iterator BBI = CR.CaseBB; 2599 ++BBI; 2600 2601 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2602 2603 DEBUG(dbgs() << "Cases:\n"); 2604 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2605 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2606 << ", Bits: " << CasesBits[i].Bits 2607 << ", BB: " << CasesBits[i].BB << '\n'); 2608 2609 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2610 CurMF->insert(BBI, CaseBB); 2611 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2612 CaseBB, 2613 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2614 2615 // Put SV in a virtual register to make it available from the new blocks. 2616 ExportFromCurrentBlock(SV); 2617 } 2618 2619 BitTestBlock BTB(lowBound, cmpRange, SV, 2620 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2621 CR.CaseBB, Default, std::move(BTC)); 2622 2623 if (CR.CaseBB == SwitchBB) 2624 visitBitTestHeader(BTB, SwitchBB); 2625 2626 BitTestCases.push_back(std::move(BTB)); 2627 2628 return true; 2629 } 2630 2631 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2632 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2633 const SwitchInst& SI) { 2634 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2635 // Start with "simple" cases. 2636 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2637 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2638 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2639 2640 uint32_t ExtraWeight = 2641 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2642 2643 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2644 SMBB, ExtraWeight)); 2645 } 2646 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2647 2648 // Merge case into clusters 2649 if (Cases.size() >= 2) 2650 // Must recompute end() each iteration because it may be 2651 // invalidated by erase if we hold on to it 2652 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2653 J != Cases.end(); ) { 2654 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2655 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2656 MachineBasicBlock* nextBB = J->BB; 2657 MachineBasicBlock* currentBB = I->BB; 2658 2659 // If the two neighboring cases go to the same destination, merge them 2660 // into a single case. 2661 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2662 I->High = J->High; 2663 I->ExtraWeight += J->ExtraWeight; 2664 J = Cases.erase(J); 2665 } else { 2666 I = J++; 2667 } 2668 } 2669 2670 DEBUG({ 2671 size_t numCmps = 0; 2672 for (auto &I : Cases) 2673 // A range counts double, since it requires two compares. 2674 numCmps += I.Low != I.High ? 2 : 1; 2675 2676 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2677 << ". Total compares: " << numCmps << '\n'; 2678 }); 2679 } 2680 2681 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2682 MachineBasicBlock *Last) { 2683 // Update JTCases. 2684 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2685 if (JTCases[i].first.HeaderBB == First) 2686 JTCases[i].first.HeaderBB = Last; 2687 2688 // Update BitTestCases. 2689 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2690 if (BitTestCases[i].Parent == First) 2691 BitTestCases[i].Parent = Last; 2692 } 2693 2694 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2695 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2696 2697 // Figure out which block is immediately after the current one. 2698 MachineBasicBlock *NextBlock = nullptr; 2699 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2700 NextBlock = SwitchMBB + 1; 2701 2702 2703 // Create a vector of Cases, sorted so that we can efficiently create a binary 2704 // search tree from them. 2705 CaseVector Cases; 2706 Clusterify(Cases, SI); 2707 2708 // Get the default destination MBB. 2709 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2710 2711 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2712 !Cases.empty()) { 2713 // Replace an unreachable default destination with the most popular case 2714 // destination. 2715 DenseMap<const BasicBlock *, unsigned> Popularity; 2716 unsigned MaxPop = 0; 2717 const BasicBlock *MaxBB = nullptr; 2718 for (auto I : SI.cases()) { 2719 const BasicBlock *BB = I.getCaseSuccessor(); 2720 if (++Popularity[BB] > MaxPop) { 2721 MaxPop = Popularity[BB]; 2722 MaxBB = BB; 2723 } 2724 } 2725 2726 // Set new default. 2727 assert(MaxPop > 0); 2728 assert(MaxBB); 2729 Default = FuncInfo.MBBMap[MaxBB]; 2730 2731 // Remove cases that were pointing to the destination that is now the default. 2732 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2733 [&](const Case &C) { return C.BB == Default; }), 2734 Cases.end()); 2735 } 2736 2737 // If there is only the default destination, go there directly. 2738 if (Cases.empty()) { 2739 // Update machine-CFG edges. 2740 SwitchMBB->addSuccessor(Default); 2741 2742 // If this is not a fall-through branch, emit the branch. 2743 if (Default != NextBlock) { 2744 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2745 getControlRoot(), DAG.getBasicBlock(Default))); 2746 } 2747 return; 2748 } 2749 2750 // Get the Value to be switched on. 2751 const Value *SV = SI.getCondition(); 2752 2753 // Push the initial CaseRec onto the worklist 2754 CaseRecVector WorkList; 2755 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2756 CaseRange(Cases.begin(),Cases.end()))); 2757 2758 while (!WorkList.empty()) { 2759 // Grab a record representing a case range to process off the worklist 2760 CaseRec CR = WorkList.back(); 2761 WorkList.pop_back(); 2762 2763 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2764 continue; 2765 2766 // If the range has few cases (two or less) emit a series of specific 2767 // tests. 2768 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2769 continue; 2770 2771 // If the switch has more than N blocks, and is at least 40% dense, and the 2772 // target supports indirect branches, then emit a jump table rather than 2773 // lowering the switch to a binary tree of conditional branches. 2774 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2775 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2776 continue; 2777 2778 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2779 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2780 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2781 } 2782 } 2783 2784 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2785 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2786 2787 // Update machine-CFG edges with unique successors. 2788 SmallSet<BasicBlock*, 32> Done; 2789 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2790 BasicBlock *BB = I.getSuccessor(i); 2791 bool Inserted = Done.insert(BB).second; 2792 if (!Inserted) 2793 continue; 2794 2795 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2796 addSuccessorWithWeight(IndirectBrMBB, Succ); 2797 } 2798 2799 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2800 MVT::Other, getControlRoot(), 2801 getValue(I.getAddress()))); 2802 } 2803 2804 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2805 if (DAG.getTarget().Options.TrapUnreachable) 2806 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2807 } 2808 2809 void SelectionDAGBuilder::visitFSub(const User &I) { 2810 // -0.0 - X --> fneg 2811 Type *Ty = I.getType(); 2812 if (isa<Constant>(I.getOperand(0)) && 2813 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2814 SDValue Op2 = getValue(I.getOperand(1)); 2815 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2816 Op2.getValueType(), Op2)); 2817 return; 2818 } 2819 2820 visitBinary(I, ISD::FSUB); 2821 } 2822 2823 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2824 SDValue Op1 = getValue(I.getOperand(0)); 2825 SDValue Op2 = getValue(I.getOperand(1)); 2826 2827 bool nuw = false; 2828 bool nsw = false; 2829 bool exact = false; 2830 if (const OverflowingBinaryOperator *OFBinOp = 2831 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2832 nuw = OFBinOp->hasNoUnsignedWrap(); 2833 nsw = OFBinOp->hasNoSignedWrap(); 2834 } 2835 if (const PossiblyExactOperator *ExactOp = 2836 dyn_cast<const PossiblyExactOperator>(&I)) 2837 exact = ExactOp->isExact(); 2838 2839 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2840 Op1, Op2, nuw, nsw, exact); 2841 setValue(&I, BinNodeValue); 2842 } 2843 2844 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2845 SDValue Op1 = getValue(I.getOperand(0)); 2846 SDValue Op2 = getValue(I.getOperand(1)); 2847 2848 EVT ShiftTy = 2849 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2850 2851 // Coerce the shift amount to the right type if we can. 2852 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2853 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2854 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2855 SDLoc DL = getCurSDLoc(); 2856 2857 // If the operand is smaller than the shift count type, promote it. 2858 if (ShiftSize > Op2Size) 2859 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2860 2861 // If the operand is larger than the shift count type but the shift 2862 // count type has enough bits to represent any shift value, truncate 2863 // it now. This is a common case and it exposes the truncate to 2864 // optimization early. 2865 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2866 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2867 // Otherwise we'll need to temporarily settle for some other convenient 2868 // type. Type legalization will make adjustments once the shiftee is split. 2869 else 2870 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2871 } 2872 2873 bool nuw = false; 2874 bool nsw = false; 2875 bool exact = false; 2876 2877 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2878 2879 if (const OverflowingBinaryOperator *OFBinOp = 2880 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2881 nuw = OFBinOp->hasNoUnsignedWrap(); 2882 nsw = OFBinOp->hasNoSignedWrap(); 2883 } 2884 if (const PossiblyExactOperator *ExactOp = 2885 dyn_cast<const PossiblyExactOperator>(&I)) 2886 exact = ExactOp->isExact(); 2887 } 2888 2889 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2890 nuw, nsw, exact); 2891 setValue(&I, Res); 2892 } 2893 2894 void SelectionDAGBuilder::visitSDiv(const User &I) { 2895 SDValue Op1 = getValue(I.getOperand(0)); 2896 SDValue Op2 = getValue(I.getOperand(1)); 2897 2898 // Turn exact SDivs into multiplications. 2899 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2900 // exact bit. 2901 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2902 !isa<ConstantSDNode>(Op1) && 2903 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2904 setValue(&I, DAG.getTargetLoweringInfo() 2905 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2906 else 2907 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2908 Op1, Op2)); 2909 } 2910 2911 void SelectionDAGBuilder::visitICmp(const User &I) { 2912 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2913 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2914 predicate = IC->getPredicate(); 2915 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2916 predicate = ICmpInst::Predicate(IC->getPredicate()); 2917 SDValue Op1 = getValue(I.getOperand(0)); 2918 SDValue Op2 = getValue(I.getOperand(1)); 2919 ISD::CondCode Opcode = getICmpCondCode(predicate); 2920 2921 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2922 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2923 } 2924 2925 void SelectionDAGBuilder::visitFCmp(const User &I) { 2926 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2927 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2928 predicate = FC->getPredicate(); 2929 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2930 predicate = FCmpInst::Predicate(FC->getPredicate()); 2931 SDValue Op1 = getValue(I.getOperand(0)); 2932 SDValue Op2 = getValue(I.getOperand(1)); 2933 ISD::CondCode Condition = getFCmpCondCode(predicate); 2934 if (TM.Options.NoNaNsFPMath) 2935 Condition = getFCmpCodeWithoutNaN(Condition); 2936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2937 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2938 } 2939 2940 void SelectionDAGBuilder::visitSelect(const User &I) { 2941 SmallVector<EVT, 4> ValueVTs; 2942 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2943 unsigned NumValues = ValueVTs.size(); 2944 if (NumValues == 0) return; 2945 2946 SmallVector<SDValue, 4> Values(NumValues); 2947 SDValue Cond = getValue(I.getOperand(0)); 2948 SDValue TrueVal = getValue(I.getOperand(1)); 2949 SDValue FalseVal = getValue(I.getOperand(2)); 2950 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2951 ISD::VSELECT : ISD::SELECT; 2952 2953 for (unsigned i = 0; i != NumValues; ++i) 2954 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2955 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2956 Cond, 2957 SDValue(TrueVal.getNode(), 2958 TrueVal.getResNo() + i), 2959 SDValue(FalseVal.getNode(), 2960 FalseVal.getResNo() + i)); 2961 2962 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2963 DAG.getVTList(ValueVTs), Values)); 2964 } 2965 2966 void SelectionDAGBuilder::visitTrunc(const User &I) { 2967 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2970 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2971 } 2972 2973 void SelectionDAGBuilder::visitZExt(const User &I) { 2974 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2975 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2976 SDValue N = getValue(I.getOperand(0)); 2977 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2978 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2979 } 2980 2981 void SelectionDAGBuilder::visitSExt(const User &I) { 2982 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2983 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2984 SDValue N = getValue(I.getOperand(0)); 2985 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2986 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2987 } 2988 2989 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2990 // FPTrunc is never a no-op cast, no need to check 2991 SDValue N = getValue(I.getOperand(0)); 2992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2993 EVT DestVT = TLI.getValueType(I.getType()); 2994 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2995 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2996 } 2997 2998 void SelectionDAGBuilder::visitFPExt(const User &I) { 2999 // FPExt is never a no-op cast, no need to check 3000 SDValue N = getValue(I.getOperand(0)); 3001 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3002 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3003 } 3004 3005 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3006 // FPToUI is never a no-op cast, no need to check 3007 SDValue N = getValue(I.getOperand(0)); 3008 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3009 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3010 } 3011 3012 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3013 // FPToSI is never a no-op cast, no need to check 3014 SDValue N = getValue(I.getOperand(0)); 3015 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3016 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3017 } 3018 3019 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3020 // UIToFP is never a no-op cast, no need to check 3021 SDValue N = getValue(I.getOperand(0)); 3022 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3023 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3024 } 3025 3026 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3027 // SIToFP is never a no-op cast, no need to check 3028 SDValue N = getValue(I.getOperand(0)); 3029 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3030 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3031 } 3032 3033 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3034 // What to do depends on the size of the integer and the size of the pointer. 3035 // We can either truncate, zero extend, or no-op, accordingly. 3036 SDValue N = getValue(I.getOperand(0)); 3037 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3038 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3039 } 3040 3041 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3042 // What to do depends on the size of the integer and the size of the pointer. 3043 // We can either truncate, zero extend, or no-op, accordingly. 3044 SDValue N = getValue(I.getOperand(0)); 3045 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3046 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3047 } 3048 3049 void SelectionDAGBuilder::visitBitCast(const User &I) { 3050 SDValue N = getValue(I.getOperand(0)); 3051 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3052 3053 // BitCast assures us that source and destination are the same size so this is 3054 // either a BITCAST or a no-op. 3055 if (DestVT != N.getValueType()) 3056 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3057 DestVT, N)); // convert types. 3058 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3059 // might fold any kind of constant expression to an integer constant and that 3060 // is not what we are looking for. Only regcognize a bitcast of a genuine 3061 // constant integer as an opaque constant. 3062 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3063 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3064 /*isOpaque*/true)); 3065 else 3066 setValue(&I, N); // noop cast. 3067 } 3068 3069 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3071 const Value *SV = I.getOperand(0); 3072 SDValue N = getValue(SV); 3073 EVT DestVT = TLI.getValueType(I.getType()); 3074 3075 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3076 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3077 3078 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3079 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3080 3081 setValue(&I, N); 3082 } 3083 3084 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 SDValue InVec = getValue(I.getOperand(0)); 3087 SDValue InVal = getValue(I.getOperand(1)); 3088 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3089 getCurSDLoc(), TLI.getVectorIdxTy()); 3090 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3091 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3092 } 3093 3094 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3096 SDValue InVec = getValue(I.getOperand(0)); 3097 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3098 getCurSDLoc(), TLI.getVectorIdxTy()); 3099 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3100 TLI.getValueType(I.getType()), InVec, InIdx)); 3101 } 3102 3103 // Utility for visitShuffleVector - Return true if every element in Mask, 3104 // beginning from position Pos and ending in Pos+Size, falls within the 3105 // specified sequential range [L, L+Pos). or is undef. 3106 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3107 unsigned Pos, unsigned Size, int Low) { 3108 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3109 if (Mask[i] >= 0 && Mask[i] != Low) 3110 return false; 3111 return true; 3112 } 3113 3114 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3115 SDValue Src1 = getValue(I.getOperand(0)); 3116 SDValue Src2 = getValue(I.getOperand(1)); 3117 3118 SmallVector<int, 8> Mask; 3119 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3120 unsigned MaskNumElts = Mask.size(); 3121 3122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3123 EVT VT = TLI.getValueType(I.getType()); 3124 EVT SrcVT = Src1.getValueType(); 3125 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3126 3127 if (SrcNumElts == MaskNumElts) { 3128 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3129 &Mask[0])); 3130 return; 3131 } 3132 3133 // Normalize the shuffle vector since mask and vector length don't match. 3134 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3135 // Mask is longer than the source vectors and is a multiple of the source 3136 // vectors. We can use concatenate vector to make the mask and vectors 3137 // lengths match. 3138 if (SrcNumElts*2 == MaskNumElts) { 3139 // First check for Src1 in low and Src2 in high 3140 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3141 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3142 // The shuffle is concatenating two vectors together. 3143 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3144 VT, Src1, Src2)); 3145 return; 3146 } 3147 // Then check for Src2 in low and Src1 in high 3148 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3149 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3150 // The shuffle is concatenating two vectors together. 3151 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3152 VT, Src2, Src1)); 3153 return; 3154 } 3155 } 3156 3157 // Pad both vectors with undefs to make them the same length as the mask. 3158 unsigned NumConcat = MaskNumElts / SrcNumElts; 3159 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3160 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3161 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3162 3163 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3164 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3165 MOps1[0] = Src1; 3166 MOps2[0] = Src2; 3167 3168 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3169 getCurSDLoc(), VT, MOps1); 3170 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3171 getCurSDLoc(), VT, MOps2); 3172 3173 // Readjust mask for new input vector length. 3174 SmallVector<int, 8> MappedOps; 3175 for (unsigned i = 0; i != MaskNumElts; ++i) { 3176 int Idx = Mask[i]; 3177 if (Idx >= (int)SrcNumElts) 3178 Idx -= SrcNumElts - MaskNumElts; 3179 MappedOps.push_back(Idx); 3180 } 3181 3182 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3183 &MappedOps[0])); 3184 return; 3185 } 3186 3187 if (SrcNumElts > MaskNumElts) { 3188 // Analyze the access pattern of the vector to see if we can extract 3189 // two subvectors and do the shuffle. The analysis is done by calculating 3190 // the range of elements the mask access on both vectors. 3191 int MinRange[2] = { static_cast<int>(SrcNumElts), 3192 static_cast<int>(SrcNumElts)}; 3193 int MaxRange[2] = {-1, -1}; 3194 3195 for (unsigned i = 0; i != MaskNumElts; ++i) { 3196 int Idx = Mask[i]; 3197 unsigned Input = 0; 3198 if (Idx < 0) 3199 continue; 3200 3201 if (Idx >= (int)SrcNumElts) { 3202 Input = 1; 3203 Idx -= SrcNumElts; 3204 } 3205 if (Idx > MaxRange[Input]) 3206 MaxRange[Input] = Idx; 3207 if (Idx < MinRange[Input]) 3208 MinRange[Input] = Idx; 3209 } 3210 3211 // Check if the access is smaller than the vector size and can we find 3212 // a reasonable extract index. 3213 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3214 // Extract. 3215 int StartIdx[2]; // StartIdx to extract from 3216 for (unsigned Input = 0; Input < 2; ++Input) { 3217 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3218 RangeUse[Input] = 0; // Unused 3219 StartIdx[Input] = 0; 3220 continue; 3221 } 3222 3223 // Find a good start index that is a multiple of the mask length. Then 3224 // see if the rest of the elements are in range. 3225 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3226 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3227 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3228 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3229 } 3230 3231 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3232 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3233 return; 3234 } 3235 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3236 // Extract appropriate subvector and generate a vector shuffle 3237 for (unsigned Input = 0; Input < 2; ++Input) { 3238 SDValue &Src = Input == 0 ? Src1 : Src2; 3239 if (RangeUse[Input] == 0) 3240 Src = DAG.getUNDEF(VT); 3241 else 3242 Src = DAG.getNode( 3243 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3244 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3245 } 3246 3247 // Calculate new mask. 3248 SmallVector<int, 8> MappedOps; 3249 for (unsigned i = 0; i != MaskNumElts; ++i) { 3250 int Idx = Mask[i]; 3251 if (Idx >= 0) { 3252 if (Idx < (int)SrcNumElts) 3253 Idx -= StartIdx[0]; 3254 else 3255 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3256 } 3257 MappedOps.push_back(Idx); 3258 } 3259 3260 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3261 &MappedOps[0])); 3262 return; 3263 } 3264 } 3265 3266 // We can't use either concat vectors or extract subvectors so fall back to 3267 // replacing the shuffle with extract and build vector. 3268 // to insert and build vector. 3269 EVT EltVT = VT.getVectorElementType(); 3270 EVT IdxVT = TLI.getVectorIdxTy(); 3271 SmallVector<SDValue,8> Ops; 3272 for (unsigned i = 0; i != MaskNumElts; ++i) { 3273 int Idx = Mask[i]; 3274 SDValue Res; 3275 3276 if (Idx < 0) { 3277 Res = DAG.getUNDEF(EltVT); 3278 } else { 3279 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3280 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3281 3282 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3283 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3284 } 3285 3286 Ops.push_back(Res); 3287 } 3288 3289 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3290 } 3291 3292 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3293 const Value *Op0 = I.getOperand(0); 3294 const Value *Op1 = I.getOperand(1); 3295 Type *AggTy = I.getType(); 3296 Type *ValTy = Op1->getType(); 3297 bool IntoUndef = isa<UndefValue>(Op0); 3298 bool FromUndef = isa<UndefValue>(Op1); 3299 3300 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3301 3302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3303 SmallVector<EVT, 4> AggValueVTs; 3304 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3305 SmallVector<EVT, 4> ValValueVTs; 3306 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3307 3308 unsigned NumAggValues = AggValueVTs.size(); 3309 unsigned NumValValues = ValValueVTs.size(); 3310 SmallVector<SDValue, 4> Values(NumAggValues); 3311 3312 // Ignore an insertvalue that produces an empty object 3313 if (!NumAggValues) { 3314 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3315 return; 3316 } 3317 3318 SDValue Agg = getValue(Op0); 3319 unsigned i = 0; 3320 // Copy the beginning value(s) from the original aggregate. 3321 for (; i != LinearIndex; ++i) 3322 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3323 SDValue(Agg.getNode(), Agg.getResNo() + i); 3324 // Copy values from the inserted value(s). 3325 if (NumValValues) { 3326 SDValue Val = getValue(Op1); 3327 for (; i != LinearIndex + NumValValues; ++i) 3328 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3329 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3330 } 3331 // Copy remaining value(s) from the original aggregate. 3332 for (; i != NumAggValues; ++i) 3333 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3334 SDValue(Agg.getNode(), Agg.getResNo() + i); 3335 3336 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3337 DAG.getVTList(AggValueVTs), Values)); 3338 } 3339 3340 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3341 const Value *Op0 = I.getOperand(0); 3342 Type *AggTy = Op0->getType(); 3343 Type *ValTy = I.getType(); 3344 bool OutOfUndef = isa<UndefValue>(Op0); 3345 3346 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3347 3348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3349 SmallVector<EVT, 4> ValValueVTs; 3350 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3351 3352 unsigned NumValValues = ValValueVTs.size(); 3353 3354 // Ignore a extractvalue that produces an empty object 3355 if (!NumValValues) { 3356 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3357 return; 3358 } 3359 3360 SmallVector<SDValue, 4> Values(NumValValues); 3361 3362 SDValue Agg = getValue(Op0); 3363 // Copy out the selected value(s). 3364 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3365 Values[i - LinearIndex] = 3366 OutOfUndef ? 3367 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3368 SDValue(Agg.getNode(), Agg.getResNo() + i); 3369 3370 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3371 DAG.getVTList(ValValueVTs), Values)); 3372 } 3373 3374 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3375 Value *Op0 = I.getOperand(0); 3376 // Note that the pointer operand may be a vector of pointers. Take the scalar 3377 // element which holds a pointer. 3378 Type *Ty = Op0->getType()->getScalarType(); 3379 unsigned AS = Ty->getPointerAddressSpace(); 3380 SDValue N = getValue(Op0); 3381 3382 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3383 OI != E; ++OI) { 3384 const Value *Idx = *OI; 3385 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3386 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3387 if (Field) { 3388 // N = N + Offset 3389 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3390 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3391 DAG.getConstant(Offset, N.getValueType())); 3392 } 3393 3394 Ty = StTy->getElementType(Field); 3395 } else { 3396 Ty = cast<SequentialType>(Ty)->getElementType(); 3397 3398 // If this is a constant subscript, handle it quickly. 3399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3400 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3401 if (CI->isZero()) continue; 3402 uint64_t Offs = 3403 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3404 SDValue OffsVal; 3405 EVT PTy = TLI.getPointerTy(AS); 3406 unsigned PtrBits = PTy.getSizeInBits(); 3407 if (PtrBits < 64) 3408 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3409 DAG.getConstant(Offs, MVT::i64)); 3410 else 3411 OffsVal = DAG.getConstant(Offs, PTy); 3412 3413 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3414 OffsVal); 3415 continue; 3416 } 3417 3418 // N = N + Idx * ElementSize; 3419 APInt ElementSize = 3420 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3421 SDValue IdxN = getValue(Idx); 3422 3423 // If the index is smaller or larger than intptr_t, truncate or extend 3424 // it. 3425 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3426 3427 // If this is a multiply by a power of two, turn it into a shl 3428 // immediately. This is a very common case. 3429 if (ElementSize != 1) { 3430 if (ElementSize.isPowerOf2()) { 3431 unsigned Amt = ElementSize.logBase2(); 3432 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3433 N.getValueType(), IdxN, 3434 DAG.getConstant(Amt, IdxN.getValueType())); 3435 } else { 3436 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3437 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3438 N.getValueType(), IdxN, Scale); 3439 } 3440 } 3441 3442 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3443 N.getValueType(), N, IdxN); 3444 } 3445 } 3446 3447 setValue(&I, N); 3448 } 3449 3450 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3451 // If this is a fixed sized alloca in the entry block of the function, 3452 // allocate it statically on the stack. 3453 if (FuncInfo.StaticAllocaMap.count(&I)) 3454 return; // getValue will auto-populate this. 3455 3456 Type *Ty = I.getAllocatedType(); 3457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3458 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3459 unsigned Align = 3460 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3461 I.getAlignment()); 3462 3463 SDValue AllocSize = getValue(I.getArraySize()); 3464 3465 EVT IntPtr = TLI.getPointerTy(); 3466 if (AllocSize.getValueType() != IntPtr) 3467 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3468 3469 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3470 AllocSize, 3471 DAG.getConstant(TySize, IntPtr)); 3472 3473 // Handle alignment. If the requested alignment is less than or equal to 3474 // the stack alignment, ignore it. If the size is greater than or equal to 3475 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3476 unsigned StackAlign = 3477 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3478 if (Align <= StackAlign) 3479 Align = 0; 3480 3481 // Round the size of the allocation up to the stack alignment size 3482 // by add SA-1 to the size. 3483 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3484 AllocSize.getValueType(), AllocSize, 3485 DAG.getIntPtrConstant(StackAlign-1)); 3486 3487 // Mask out the low bits for alignment purposes. 3488 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3489 AllocSize.getValueType(), AllocSize, 3490 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3491 3492 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3493 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3494 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3495 setValue(&I, DSA); 3496 DAG.setRoot(DSA.getValue(1)); 3497 3498 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3499 } 3500 3501 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3502 if (I.isAtomic()) 3503 return visitAtomicLoad(I); 3504 3505 const Value *SV = I.getOperand(0); 3506 SDValue Ptr = getValue(SV); 3507 3508 Type *Ty = I.getType(); 3509 3510 bool isVolatile = I.isVolatile(); 3511 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3512 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3513 unsigned Alignment = I.getAlignment(); 3514 3515 AAMDNodes AAInfo; 3516 I.getAAMetadata(AAInfo); 3517 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3518 3519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3520 SmallVector<EVT, 4> ValueVTs; 3521 SmallVector<uint64_t, 4> Offsets; 3522 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3523 unsigned NumValues = ValueVTs.size(); 3524 if (NumValues == 0) 3525 return; 3526 3527 SDValue Root; 3528 bool ConstantMemory = false; 3529 if (isVolatile || NumValues > MaxParallelChains) 3530 // Serialize volatile loads with other side effects. 3531 Root = getRoot(); 3532 else if (AA->pointsToConstantMemory( 3533 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3534 // Do not serialize (non-volatile) loads of constant memory with anything. 3535 Root = DAG.getEntryNode(); 3536 ConstantMemory = true; 3537 } else { 3538 // Do not serialize non-volatile loads against each other. 3539 Root = DAG.getRoot(); 3540 } 3541 3542 if (isVolatile) 3543 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3544 3545 SmallVector<SDValue, 4> Values(NumValues); 3546 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3547 NumValues)); 3548 EVT PtrVT = Ptr.getValueType(); 3549 unsigned ChainI = 0; 3550 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3551 // Serializing loads here may result in excessive register pressure, and 3552 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3553 // could recover a bit by hoisting nodes upward in the chain by recognizing 3554 // they are side-effect free or do not alias. The optimizer should really 3555 // avoid this case by converting large object/array copies to llvm.memcpy 3556 // (MaxParallelChains should always remain as failsafe). 3557 if (ChainI == MaxParallelChains) { 3558 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3559 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3560 makeArrayRef(Chains.data(), ChainI)); 3561 Root = Chain; 3562 ChainI = 0; 3563 } 3564 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3565 PtrVT, Ptr, 3566 DAG.getConstant(Offsets[i], PtrVT)); 3567 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3568 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3569 isNonTemporal, isInvariant, Alignment, AAInfo, 3570 Ranges); 3571 3572 Values[i] = L; 3573 Chains[ChainI] = L.getValue(1); 3574 } 3575 3576 if (!ConstantMemory) { 3577 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3578 makeArrayRef(Chains.data(), ChainI)); 3579 if (isVolatile) 3580 DAG.setRoot(Chain); 3581 else 3582 PendingLoads.push_back(Chain); 3583 } 3584 3585 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3586 DAG.getVTList(ValueVTs), Values)); 3587 } 3588 3589 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3590 if (I.isAtomic()) 3591 return visitAtomicStore(I); 3592 3593 const Value *SrcV = I.getOperand(0); 3594 const Value *PtrV = I.getOperand(1); 3595 3596 SmallVector<EVT, 4> ValueVTs; 3597 SmallVector<uint64_t, 4> Offsets; 3598 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3599 ValueVTs, &Offsets); 3600 unsigned NumValues = ValueVTs.size(); 3601 if (NumValues == 0) 3602 return; 3603 3604 // Get the lowered operands. Note that we do this after 3605 // checking if NumResults is zero, because with zero results 3606 // the operands won't have values in the map. 3607 SDValue Src = getValue(SrcV); 3608 SDValue Ptr = getValue(PtrV); 3609 3610 SDValue Root = getRoot(); 3611 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3612 NumValues)); 3613 EVT PtrVT = Ptr.getValueType(); 3614 bool isVolatile = I.isVolatile(); 3615 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3616 unsigned Alignment = I.getAlignment(); 3617 3618 AAMDNodes AAInfo; 3619 I.getAAMetadata(AAInfo); 3620 3621 unsigned ChainI = 0; 3622 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3623 // See visitLoad comments. 3624 if (ChainI == MaxParallelChains) { 3625 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3626 makeArrayRef(Chains.data(), ChainI)); 3627 Root = Chain; 3628 ChainI = 0; 3629 } 3630 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3631 DAG.getConstant(Offsets[i], PtrVT)); 3632 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3633 SDValue(Src.getNode(), Src.getResNo() + i), 3634 Add, MachinePointerInfo(PtrV, Offsets[i]), 3635 isVolatile, isNonTemporal, Alignment, AAInfo); 3636 Chains[ChainI] = St; 3637 } 3638 3639 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3640 makeArrayRef(Chains.data(), ChainI)); 3641 DAG.setRoot(StoreNode); 3642 } 3643 3644 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3645 SDLoc sdl = getCurSDLoc(); 3646 3647 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3648 Value *PtrOperand = I.getArgOperand(1); 3649 SDValue Ptr = getValue(PtrOperand); 3650 SDValue Src0 = getValue(I.getArgOperand(0)); 3651 SDValue Mask = getValue(I.getArgOperand(3)); 3652 EVT VT = Src0.getValueType(); 3653 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3654 if (!Alignment) 3655 Alignment = DAG.getEVTAlignment(VT); 3656 3657 AAMDNodes AAInfo; 3658 I.getAAMetadata(AAInfo); 3659 3660 MachineMemOperand *MMO = 3661 DAG.getMachineFunction(). 3662 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3663 MachineMemOperand::MOStore, VT.getStoreSize(), 3664 Alignment, AAInfo); 3665 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO); 3666 DAG.setRoot(StoreNode); 3667 setValue(&I, StoreNode); 3668 } 3669 3670 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3671 SDLoc sdl = getCurSDLoc(); 3672 3673 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3674 Value *PtrOperand = I.getArgOperand(0); 3675 SDValue Ptr = getValue(PtrOperand); 3676 SDValue Src0 = getValue(I.getArgOperand(3)); 3677 SDValue Mask = getValue(I.getArgOperand(2)); 3678 3679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3680 EVT VT = TLI.getValueType(I.getType()); 3681 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3682 if (!Alignment) 3683 Alignment = DAG.getEVTAlignment(VT); 3684 3685 AAMDNodes AAInfo; 3686 I.getAAMetadata(AAInfo); 3687 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3688 3689 SDValue InChain = DAG.getRoot(); 3690 if (AA->pointsToConstantMemory( 3691 AliasAnalysis::Location(PtrOperand, 3692 AA->getTypeStoreSize(I.getType()), 3693 AAInfo))) { 3694 // Do not serialize (non-volatile) loads of constant memory with anything. 3695 InChain = DAG.getEntryNode(); 3696 } 3697 3698 MachineMemOperand *MMO = 3699 DAG.getMachineFunction(). 3700 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3701 MachineMemOperand::MOLoad, VT.getStoreSize(), 3702 Alignment, AAInfo, Ranges); 3703 3704 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO); 3705 SDValue OutChain = Load.getValue(1); 3706 DAG.setRoot(OutChain); 3707 setValue(&I, Load); 3708 } 3709 3710 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3711 SDLoc dl = getCurSDLoc(); 3712 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3713 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3714 SynchronizationScope Scope = I.getSynchScope(); 3715 3716 SDValue InChain = getRoot(); 3717 3718 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3719 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3720 SDValue L = DAG.getAtomicCmpSwap( 3721 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3722 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3723 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3724 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3725 3726 SDValue OutChain = L.getValue(2); 3727 3728 setValue(&I, L); 3729 DAG.setRoot(OutChain); 3730 } 3731 3732 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3733 SDLoc dl = getCurSDLoc(); 3734 ISD::NodeType NT; 3735 switch (I.getOperation()) { 3736 default: llvm_unreachable("Unknown atomicrmw operation"); 3737 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3738 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3739 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3740 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3741 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3742 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3743 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3744 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3745 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3746 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3747 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3748 } 3749 AtomicOrdering Order = I.getOrdering(); 3750 SynchronizationScope Scope = I.getSynchScope(); 3751 3752 SDValue InChain = getRoot(); 3753 3754 SDValue L = 3755 DAG.getAtomic(NT, dl, 3756 getValue(I.getValOperand()).getSimpleValueType(), 3757 InChain, 3758 getValue(I.getPointerOperand()), 3759 getValue(I.getValOperand()), 3760 I.getPointerOperand(), 3761 /* Alignment=*/ 0, Order, Scope); 3762 3763 SDValue OutChain = L.getValue(1); 3764 3765 setValue(&I, L); 3766 DAG.setRoot(OutChain); 3767 } 3768 3769 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3770 SDLoc dl = getCurSDLoc(); 3771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3772 SDValue Ops[3]; 3773 Ops[0] = getRoot(); 3774 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3775 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3776 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3777 } 3778 3779 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3780 SDLoc dl = getCurSDLoc(); 3781 AtomicOrdering Order = I.getOrdering(); 3782 SynchronizationScope Scope = I.getSynchScope(); 3783 3784 SDValue InChain = getRoot(); 3785 3786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3787 EVT VT = TLI.getValueType(I.getType()); 3788 3789 if (I.getAlignment() < VT.getSizeInBits() / 8) 3790 report_fatal_error("Cannot generate unaligned atomic load"); 3791 3792 MachineMemOperand *MMO = 3793 DAG.getMachineFunction(). 3794 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3795 MachineMemOperand::MOVolatile | 3796 MachineMemOperand::MOLoad, 3797 VT.getStoreSize(), 3798 I.getAlignment() ? I.getAlignment() : 3799 DAG.getEVTAlignment(VT)); 3800 3801 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3802 SDValue L = 3803 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3804 getValue(I.getPointerOperand()), MMO, 3805 Order, Scope); 3806 3807 SDValue OutChain = L.getValue(1); 3808 3809 setValue(&I, L); 3810 DAG.setRoot(OutChain); 3811 } 3812 3813 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3814 SDLoc dl = getCurSDLoc(); 3815 3816 AtomicOrdering Order = I.getOrdering(); 3817 SynchronizationScope Scope = I.getSynchScope(); 3818 3819 SDValue InChain = getRoot(); 3820 3821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3822 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3823 3824 if (I.getAlignment() < VT.getSizeInBits() / 8) 3825 report_fatal_error("Cannot generate unaligned atomic store"); 3826 3827 SDValue OutChain = 3828 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3829 InChain, 3830 getValue(I.getPointerOperand()), 3831 getValue(I.getValueOperand()), 3832 I.getPointerOperand(), I.getAlignment(), 3833 Order, Scope); 3834 3835 DAG.setRoot(OutChain); 3836 } 3837 3838 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3839 /// node. 3840 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3841 unsigned Intrinsic) { 3842 bool HasChain = !I.doesNotAccessMemory(); 3843 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3844 3845 // Build the operand list. 3846 SmallVector<SDValue, 8> Ops; 3847 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3848 if (OnlyLoad) { 3849 // We don't need to serialize loads against other loads. 3850 Ops.push_back(DAG.getRoot()); 3851 } else { 3852 Ops.push_back(getRoot()); 3853 } 3854 } 3855 3856 // Info is set by getTgtMemInstrinsic 3857 TargetLowering::IntrinsicInfo Info; 3858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3859 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3860 3861 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3862 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3863 Info.opc == ISD::INTRINSIC_W_CHAIN) 3864 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3865 3866 // Add all operands of the call to the operand list. 3867 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3868 SDValue Op = getValue(I.getArgOperand(i)); 3869 Ops.push_back(Op); 3870 } 3871 3872 SmallVector<EVT, 4> ValueVTs; 3873 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3874 3875 if (HasChain) 3876 ValueVTs.push_back(MVT::Other); 3877 3878 SDVTList VTs = DAG.getVTList(ValueVTs); 3879 3880 // Create the node. 3881 SDValue Result; 3882 if (IsTgtIntrinsic) { 3883 // This is target intrinsic that touches memory 3884 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3885 VTs, Ops, Info.memVT, 3886 MachinePointerInfo(Info.ptrVal, Info.offset), 3887 Info.align, Info.vol, 3888 Info.readMem, Info.writeMem, Info.size); 3889 } else if (!HasChain) { 3890 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3891 } else if (!I.getType()->isVoidTy()) { 3892 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3893 } else { 3894 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3895 } 3896 3897 if (HasChain) { 3898 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3899 if (OnlyLoad) 3900 PendingLoads.push_back(Chain); 3901 else 3902 DAG.setRoot(Chain); 3903 } 3904 3905 if (!I.getType()->isVoidTy()) { 3906 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3907 EVT VT = TLI.getValueType(PTy); 3908 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3909 } 3910 3911 setValue(&I, Result); 3912 } 3913 } 3914 3915 /// GetSignificand - Get the significand and build it into a floating-point 3916 /// number with exponent of 1: 3917 /// 3918 /// Op = (Op & 0x007fffff) | 0x3f800000; 3919 /// 3920 /// where Op is the hexadecimal representation of floating point value. 3921 static SDValue 3922 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3923 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3924 DAG.getConstant(0x007fffff, MVT::i32)); 3925 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3926 DAG.getConstant(0x3f800000, MVT::i32)); 3927 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3928 } 3929 3930 /// GetExponent - Get the exponent: 3931 /// 3932 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3933 /// 3934 /// where Op is the hexadecimal representation of floating point value. 3935 static SDValue 3936 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3937 SDLoc dl) { 3938 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3939 DAG.getConstant(0x7f800000, MVT::i32)); 3940 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3941 DAG.getConstant(23, TLI.getPointerTy())); 3942 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3943 DAG.getConstant(127, MVT::i32)); 3944 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3945 } 3946 3947 /// getF32Constant - Get 32-bit floating point constant. 3948 static SDValue 3949 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3950 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3951 MVT::f32); 3952 } 3953 3954 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3955 /// limited-precision mode. 3956 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3957 const TargetLowering &TLI) { 3958 if (Op.getValueType() == MVT::f32 && 3959 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3960 3961 // Put the exponent in the right bit position for later addition to the 3962 // final result: 3963 // 3964 // #define LOG2OFe 1.4426950f 3965 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3967 getF32Constant(DAG, 0x3fb8aa3b)); 3968 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3969 3970 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3971 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3972 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3973 3974 // IntegerPartOfX <<= 23; 3975 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3976 DAG.getConstant(23, TLI.getPointerTy())); 3977 3978 SDValue TwoToFracPartOfX; 3979 if (LimitFloatPrecision <= 6) { 3980 // For floating-point precision of 6: 3981 // 3982 // TwoToFractionalPartOfX = 3983 // 0.997535578f + 3984 // (0.735607626f + 0.252464424f * x) * x; 3985 // 3986 // error 0.0144103317, which is 6 bits 3987 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3988 getF32Constant(DAG, 0x3e814304)); 3989 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3990 getF32Constant(DAG, 0x3f3c50c8)); 3991 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3992 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3993 getF32Constant(DAG, 0x3f7f5e7e)); 3994 } else if (LimitFloatPrecision <= 12) { 3995 // For floating-point precision of 12: 3996 // 3997 // TwoToFractionalPartOfX = 3998 // 0.999892986f + 3999 // (0.696457318f + 4000 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4001 // 4002 // 0.000107046256 error, which is 13 to 14 bits 4003 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4004 getF32Constant(DAG, 0x3da235e3)); 4005 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4006 getF32Constant(DAG, 0x3e65b8f3)); 4007 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4008 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4009 getF32Constant(DAG, 0x3f324b07)); 4010 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4011 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4012 getF32Constant(DAG, 0x3f7ff8fd)); 4013 } else { // LimitFloatPrecision <= 18 4014 // For floating-point precision of 18: 4015 // 4016 // TwoToFractionalPartOfX = 4017 // 0.999999982f + 4018 // (0.693148872f + 4019 // (0.240227044f + 4020 // (0.554906021e-1f + 4021 // (0.961591928e-2f + 4022 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4023 // 4024 // error 2.47208000*10^(-7), which is better than 18 bits 4025 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4026 getF32Constant(DAG, 0x3924b03e)); 4027 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4028 getF32Constant(DAG, 0x3ab24b87)); 4029 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4030 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4031 getF32Constant(DAG, 0x3c1d8c17)); 4032 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4033 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4034 getF32Constant(DAG, 0x3d634a1d)); 4035 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4036 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4037 getF32Constant(DAG, 0x3e75fe14)); 4038 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4039 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4040 getF32Constant(DAG, 0x3f317234)); 4041 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4042 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4043 getF32Constant(DAG, 0x3f800000)); 4044 } 4045 4046 // Add the exponent into the result in integer domain. 4047 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4048 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4049 DAG.getNode(ISD::ADD, dl, MVT::i32, 4050 t13, IntegerPartOfX)); 4051 } 4052 4053 // No special expansion. 4054 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4055 } 4056 4057 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4058 /// limited-precision mode. 4059 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4060 const TargetLowering &TLI) { 4061 if (Op.getValueType() == MVT::f32 && 4062 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4063 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4064 4065 // Scale the exponent by log(2) [0.69314718f]. 4066 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4067 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4068 getF32Constant(DAG, 0x3f317218)); 4069 4070 // Get the significand and build it into a floating-point number with 4071 // exponent of 1. 4072 SDValue X = GetSignificand(DAG, Op1, dl); 4073 4074 SDValue LogOfMantissa; 4075 if (LimitFloatPrecision <= 6) { 4076 // For floating-point precision of 6: 4077 // 4078 // LogofMantissa = 4079 // -1.1609546f + 4080 // (1.4034025f - 0.23903021f * x) * x; 4081 // 4082 // error 0.0034276066, which is better than 8 bits 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0xbe74c456)); 4085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4086 getF32Constant(DAG, 0x3fb3a2b1)); 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4088 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3f949a29)); 4090 } else if (LimitFloatPrecision <= 12) { 4091 // For floating-point precision of 12: 4092 // 4093 // LogOfMantissa = 4094 // -1.7417939f + 4095 // (2.8212026f + 4096 // (-1.4699568f + 4097 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4098 // 4099 // error 0.000061011436, which is 14 bits 4100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4101 getF32Constant(DAG, 0xbd67b6d6)); 4102 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4103 getF32Constant(DAG, 0x3ee4f4b8)); 4104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4105 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4106 getF32Constant(DAG, 0x3fbc278b)); 4107 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4108 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4109 getF32Constant(DAG, 0x40348e95)); 4110 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4111 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4112 getF32Constant(DAG, 0x3fdef31a)); 4113 } else { // LimitFloatPrecision <= 18 4114 // For floating-point precision of 18: 4115 // 4116 // LogOfMantissa = 4117 // -2.1072184f + 4118 // (4.2372794f + 4119 // (-3.7029485f + 4120 // (2.2781945f + 4121 // (-0.87823314f + 4122 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4123 // 4124 // error 0.0000023660568, which is better than 18 bits 4125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4126 getF32Constant(DAG, 0xbc91e5ac)); 4127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4128 getF32Constant(DAG, 0x3e4350aa)); 4129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4130 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4131 getF32Constant(DAG, 0x3f60d3e3)); 4132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4133 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4134 getF32Constant(DAG, 0x4011cdf0)); 4135 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4136 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4137 getF32Constant(DAG, 0x406cfd1c)); 4138 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4139 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4140 getF32Constant(DAG, 0x408797cb)); 4141 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4142 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4143 getF32Constant(DAG, 0x4006dcab)); 4144 } 4145 4146 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4147 } 4148 4149 // No special expansion. 4150 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4151 } 4152 4153 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4154 /// limited-precision mode. 4155 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4156 const TargetLowering &TLI) { 4157 if (Op.getValueType() == MVT::f32 && 4158 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4159 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4160 4161 // Get the exponent. 4162 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4163 4164 // Get the significand and build it into a floating-point number with 4165 // exponent of 1. 4166 SDValue X = GetSignificand(DAG, Op1, dl); 4167 4168 // Different possible minimax approximations of significand in 4169 // floating-point for various degrees of accuracy over [1,2]. 4170 SDValue Log2ofMantissa; 4171 if (LimitFloatPrecision <= 6) { 4172 // For floating-point precision of 6: 4173 // 4174 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4175 // 4176 // error 0.0049451742, which is more than 7 bits 4177 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4178 getF32Constant(DAG, 0xbeb08fe0)); 4179 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4180 getF32Constant(DAG, 0x40019463)); 4181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4182 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4183 getF32Constant(DAG, 0x3fd6633d)); 4184 } else if (LimitFloatPrecision <= 12) { 4185 // For floating-point precision of 12: 4186 // 4187 // Log2ofMantissa = 4188 // -2.51285454f + 4189 // (4.07009056f + 4190 // (-2.12067489f + 4191 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4192 // 4193 // error 0.0000876136000, which is better than 13 bits 4194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4195 getF32Constant(DAG, 0xbda7262e)); 4196 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4197 getF32Constant(DAG, 0x3f25280b)); 4198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4199 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4200 getF32Constant(DAG, 0x4007b923)); 4201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4202 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4203 getF32Constant(DAG, 0x40823e2f)); 4204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4205 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4206 getF32Constant(DAG, 0x4020d29c)); 4207 } else { // LimitFloatPrecision <= 18 4208 // For floating-point precision of 18: 4209 // 4210 // Log2ofMantissa = 4211 // -3.0400495f + 4212 // (6.1129976f + 4213 // (-5.3420409f + 4214 // (3.2865683f + 4215 // (-1.2669343f + 4216 // (0.27515199f - 4217 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4218 // 4219 // error 0.0000018516, which is better than 18 bits 4220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4221 getF32Constant(DAG, 0xbcd2769e)); 4222 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4223 getF32Constant(DAG, 0x3e8ce0b9)); 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4225 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4226 getF32Constant(DAG, 0x3fa22ae7)); 4227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4228 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4229 getF32Constant(DAG, 0x40525723)); 4230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4231 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4232 getF32Constant(DAG, 0x40aaf200)); 4233 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4234 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4235 getF32Constant(DAG, 0x40c39dad)); 4236 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4237 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4238 getF32Constant(DAG, 0x4042902c)); 4239 } 4240 4241 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4242 } 4243 4244 // No special expansion. 4245 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4246 } 4247 4248 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4249 /// limited-precision mode. 4250 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4251 const TargetLowering &TLI) { 4252 if (Op.getValueType() == MVT::f32 && 4253 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4254 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4255 4256 // Scale the exponent by log10(2) [0.30102999f]. 4257 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4258 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4259 getF32Constant(DAG, 0x3e9a209a)); 4260 4261 // Get the significand and build it into a floating-point number with 4262 // exponent of 1. 4263 SDValue X = GetSignificand(DAG, Op1, dl); 4264 4265 SDValue Log10ofMantissa; 4266 if (LimitFloatPrecision <= 6) { 4267 // For floating-point precision of 6: 4268 // 4269 // Log10ofMantissa = 4270 // -0.50419619f + 4271 // (0.60948995f - 0.10380950f * x) * x; 4272 // 4273 // error 0.0014886165, which is 6 bits 4274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4275 getF32Constant(DAG, 0xbdd49a13)); 4276 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4277 getF32Constant(DAG, 0x3f1c0789)); 4278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4279 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4280 getF32Constant(DAG, 0x3f011300)); 4281 } else if (LimitFloatPrecision <= 12) { 4282 // For floating-point precision of 12: 4283 // 4284 // Log10ofMantissa = 4285 // -0.64831180f + 4286 // (0.91751397f + 4287 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4288 // 4289 // error 0.00019228036, which is better than 12 bits 4290 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4291 getF32Constant(DAG, 0x3d431f31)); 4292 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4293 getF32Constant(DAG, 0x3ea21fb2)); 4294 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4295 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4296 getF32Constant(DAG, 0x3f6ae232)); 4297 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4298 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4299 getF32Constant(DAG, 0x3f25f7c3)); 4300 } else { // LimitFloatPrecision <= 18 4301 // For floating-point precision of 18: 4302 // 4303 // Log10ofMantissa = 4304 // -0.84299375f + 4305 // (1.5327582f + 4306 // (-1.0688956f + 4307 // (0.49102474f + 4308 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4309 // 4310 // error 0.0000037995730, which is better than 18 bits 4311 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4312 getF32Constant(DAG, 0x3c5d51ce)); 4313 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4314 getF32Constant(DAG, 0x3e00685a)); 4315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4316 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4317 getF32Constant(DAG, 0x3efb6798)); 4318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4319 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4320 getF32Constant(DAG, 0x3f88d192)); 4321 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4322 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4323 getF32Constant(DAG, 0x3fc4316c)); 4324 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4325 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4326 getF32Constant(DAG, 0x3f57ce70)); 4327 } 4328 4329 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4330 } 4331 4332 // No special expansion. 4333 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4334 } 4335 4336 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4337 /// limited-precision mode. 4338 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4339 const TargetLowering &TLI) { 4340 if (Op.getValueType() == MVT::f32 && 4341 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4342 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4343 4344 // FractionalPartOfX = x - (float)IntegerPartOfX; 4345 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4346 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4347 4348 // IntegerPartOfX <<= 23; 4349 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4350 DAG.getConstant(23, TLI.getPointerTy())); 4351 4352 SDValue TwoToFractionalPartOfX; 4353 if (LimitFloatPrecision <= 6) { 4354 // For floating-point precision of 6: 4355 // 4356 // TwoToFractionalPartOfX = 4357 // 0.997535578f + 4358 // (0.735607626f + 0.252464424f * x) * x; 4359 // 4360 // error 0.0144103317, which is 6 bits 4361 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4362 getF32Constant(DAG, 0x3e814304)); 4363 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4364 getF32Constant(DAG, 0x3f3c50c8)); 4365 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4366 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4367 getF32Constant(DAG, 0x3f7f5e7e)); 4368 } else if (LimitFloatPrecision <= 12) { 4369 // For floating-point precision of 12: 4370 // 4371 // TwoToFractionalPartOfX = 4372 // 0.999892986f + 4373 // (0.696457318f + 4374 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4375 // 4376 // error 0.000107046256, which is 13 to 14 bits 4377 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4378 getF32Constant(DAG, 0x3da235e3)); 4379 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4380 getF32Constant(DAG, 0x3e65b8f3)); 4381 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4382 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4383 getF32Constant(DAG, 0x3f324b07)); 4384 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4385 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4386 getF32Constant(DAG, 0x3f7ff8fd)); 4387 } else { // LimitFloatPrecision <= 18 4388 // For floating-point precision of 18: 4389 // 4390 // TwoToFractionalPartOfX = 4391 // 0.999999982f + 4392 // (0.693148872f + 4393 // (0.240227044f + 4394 // (0.554906021e-1f + 4395 // (0.961591928e-2f + 4396 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4397 // error 2.47208000*10^(-7), which is better than 18 bits 4398 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4399 getF32Constant(DAG, 0x3924b03e)); 4400 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4401 getF32Constant(DAG, 0x3ab24b87)); 4402 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4403 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4404 getF32Constant(DAG, 0x3c1d8c17)); 4405 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4406 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4407 getF32Constant(DAG, 0x3d634a1d)); 4408 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4409 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4410 getF32Constant(DAG, 0x3e75fe14)); 4411 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4412 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4413 getF32Constant(DAG, 0x3f317234)); 4414 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4415 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4416 getF32Constant(DAG, 0x3f800000)); 4417 } 4418 4419 // Add the exponent into the result in integer domain. 4420 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4421 TwoToFractionalPartOfX); 4422 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4423 DAG.getNode(ISD::ADD, dl, MVT::i32, 4424 t13, IntegerPartOfX)); 4425 } 4426 4427 // No special expansion. 4428 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4429 } 4430 4431 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4432 /// limited-precision mode with x == 10.0f. 4433 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4434 SelectionDAG &DAG, const TargetLowering &TLI) { 4435 bool IsExp10 = false; 4436 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4437 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4438 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4439 APFloat Ten(10.0f); 4440 IsExp10 = LHSC->isExactlyValue(Ten); 4441 } 4442 } 4443 4444 if (IsExp10) { 4445 // Put the exponent in the right bit position for later addition to the 4446 // final result: 4447 // 4448 // #define LOG2OF10 3.3219281f 4449 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4450 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4451 getF32Constant(DAG, 0x40549a78)); 4452 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4453 4454 // FractionalPartOfX = x - (float)IntegerPartOfX; 4455 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4456 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4457 4458 // IntegerPartOfX <<= 23; 4459 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4460 DAG.getConstant(23, TLI.getPointerTy())); 4461 4462 SDValue TwoToFractionalPartOfX; 4463 if (LimitFloatPrecision <= 6) { 4464 // For floating-point precision of 6: 4465 // 4466 // twoToFractionalPartOfX = 4467 // 0.997535578f + 4468 // (0.735607626f + 0.252464424f * x) * x; 4469 // 4470 // error 0.0144103317, which is 6 bits 4471 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4472 getF32Constant(DAG, 0x3e814304)); 4473 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4474 getF32Constant(DAG, 0x3f3c50c8)); 4475 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4476 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4477 getF32Constant(DAG, 0x3f7f5e7e)); 4478 } else if (LimitFloatPrecision <= 12) { 4479 // For floating-point precision of 12: 4480 // 4481 // TwoToFractionalPartOfX = 4482 // 0.999892986f + 4483 // (0.696457318f + 4484 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4485 // 4486 // error 0.000107046256, which is 13 to 14 bits 4487 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4488 getF32Constant(DAG, 0x3da235e3)); 4489 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4490 getF32Constant(DAG, 0x3e65b8f3)); 4491 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4492 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4493 getF32Constant(DAG, 0x3f324b07)); 4494 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4495 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4496 getF32Constant(DAG, 0x3f7ff8fd)); 4497 } else { // LimitFloatPrecision <= 18 4498 // For floating-point precision of 18: 4499 // 4500 // TwoToFractionalPartOfX = 4501 // 0.999999982f + 4502 // (0.693148872f + 4503 // (0.240227044f + 4504 // (0.554906021e-1f + 4505 // (0.961591928e-2f + 4506 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4507 // error 2.47208000*10^(-7), which is better than 18 bits 4508 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4509 getF32Constant(DAG, 0x3924b03e)); 4510 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4511 getF32Constant(DAG, 0x3ab24b87)); 4512 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4513 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4514 getF32Constant(DAG, 0x3c1d8c17)); 4515 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4516 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4517 getF32Constant(DAG, 0x3d634a1d)); 4518 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4519 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4520 getF32Constant(DAG, 0x3e75fe14)); 4521 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4522 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4523 getF32Constant(DAG, 0x3f317234)); 4524 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4525 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4526 getF32Constant(DAG, 0x3f800000)); 4527 } 4528 4529 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4530 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4531 DAG.getNode(ISD::ADD, dl, MVT::i32, 4532 t13, IntegerPartOfX)); 4533 } 4534 4535 // No special expansion. 4536 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4537 } 4538 4539 4540 /// ExpandPowI - Expand a llvm.powi intrinsic. 4541 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4542 SelectionDAG &DAG) { 4543 // If RHS is a constant, we can expand this out to a multiplication tree, 4544 // otherwise we end up lowering to a call to __powidf2 (for example). When 4545 // optimizing for size, we only want to do this if the expansion would produce 4546 // a small number of multiplies, otherwise we do the full expansion. 4547 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4548 // Get the exponent as a positive value. 4549 unsigned Val = RHSC->getSExtValue(); 4550 if ((int)Val < 0) Val = -Val; 4551 4552 // powi(x, 0) -> 1.0 4553 if (Val == 0) 4554 return DAG.getConstantFP(1.0, LHS.getValueType()); 4555 4556 const Function *F = DAG.getMachineFunction().getFunction(); 4557 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4558 Attribute::OptimizeForSize) || 4559 // If optimizing for size, don't insert too many multiplies. This 4560 // inserts up to 5 multiplies. 4561 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4562 // We use the simple binary decomposition method to generate the multiply 4563 // sequence. There are more optimal ways to do this (for example, 4564 // powi(x,15) generates one more multiply than it should), but this has 4565 // the benefit of being both really simple and much better than a libcall. 4566 SDValue Res; // Logically starts equal to 1.0 4567 SDValue CurSquare = LHS; 4568 while (Val) { 4569 if (Val & 1) { 4570 if (Res.getNode()) 4571 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4572 else 4573 Res = CurSquare; // 1.0*CurSquare. 4574 } 4575 4576 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4577 CurSquare, CurSquare); 4578 Val >>= 1; 4579 } 4580 4581 // If the original was negative, invert the result, producing 1/(x*x*x). 4582 if (RHSC->getSExtValue() < 0) 4583 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4584 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4585 return Res; 4586 } 4587 } 4588 4589 // Otherwise, expand to a libcall. 4590 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4591 } 4592 4593 // getTruncatedArgReg - Find underlying register used for an truncated 4594 // argument. 4595 static unsigned getTruncatedArgReg(const SDValue &N) { 4596 if (N.getOpcode() != ISD::TRUNCATE) 4597 return 0; 4598 4599 const SDValue &Ext = N.getOperand(0); 4600 if (Ext.getOpcode() == ISD::AssertZext || 4601 Ext.getOpcode() == ISD::AssertSext) { 4602 const SDValue &CFR = Ext.getOperand(0); 4603 if (CFR.getOpcode() == ISD::CopyFromReg) 4604 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4605 if (CFR.getOpcode() == ISD::TRUNCATE) 4606 return getTruncatedArgReg(CFR); 4607 } 4608 return 0; 4609 } 4610 4611 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4612 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4613 /// At the end of instruction selection, they will be inserted to the entry BB. 4614 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4615 MDNode *Variable, 4616 MDNode *Expr, int64_t Offset, 4617 bool IsIndirect, 4618 const SDValue &N) { 4619 const Argument *Arg = dyn_cast<Argument>(V); 4620 if (!Arg) 4621 return false; 4622 4623 MachineFunction &MF = DAG.getMachineFunction(); 4624 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4625 4626 // Ignore inlined function arguments here. 4627 DIVariable DV(Variable); 4628 if (DV.isInlinedFnArgument(MF.getFunction())) 4629 return false; 4630 4631 Optional<MachineOperand> Op; 4632 // Some arguments' frame index is recorded during argument lowering. 4633 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4634 Op = MachineOperand::CreateFI(FI); 4635 4636 if (!Op && N.getNode()) { 4637 unsigned Reg; 4638 if (N.getOpcode() == ISD::CopyFromReg) 4639 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4640 else 4641 Reg = getTruncatedArgReg(N); 4642 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4643 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4644 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4645 if (PR) 4646 Reg = PR; 4647 } 4648 if (Reg) 4649 Op = MachineOperand::CreateReg(Reg, false); 4650 } 4651 4652 if (!Op) { 4653 // Check if ValueMap has reg number. 4654 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4655 if (VMI != FuncInfo.ValueMap.end()) 4656 Op = MachineOperand::CreateReg(VMI->second, false); 4657 } 4658 4659 if (!Op && N.getNode()) 4660 // Check if frame index is available. 4661 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4662 if (FrameIndexSDNode *FINode = 4663 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4664 Op = MachineOperand::CreateFI(FINode->getIndex()); 4665 4666 if (!Op) 4667 return false; 4668 4669 if (Op->isReg()) 4670 FuncInfo.ArgDbgValues.push_back( 4671 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4672 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4673 else 4674 FuncInfo.ArgDbgValues.push_back( 4675 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4676 .addOperand(*Op) 4677 .addImm(Offset) 4678 .addMetadata(Variable) 4679 .addMetadata(Expr)); 4680 4681 return true; 4682 } 4683 4684 // VisualStudio defines setjmp as _setjmp 4685 #if defined(_MSC_VER) && defined(setjmp) && \ 4686 !defined(setjmp_undefined_for_msvc) 4687 # pragma push_macro("setjmp") 4688 # undef setjmp 4689 # define setjmp_undefined_for_msvc 4690 #endif 4691 4692 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4693 /// we want to emit this as a call to a named external function, return the name 4694 /// otherwise lower it and return null. 4695 const char * 4696 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4698 SDLoc sdl = getCurSDLoc(); 4699 DebugLoc dl = getCurDebugLoc(); 4700 SDValue Res; 4701 4702 switch (Intrinsic) { 4703 default: 4704 // By default, turn this into a target intrinsic node. 4705 visitTargetIntrinsic(I, Intrinsic); 4706 return nullptr; 4707 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4708 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4709 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4710 case Intrinsic::returnaddress: 4711 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4712 getValue(I.getArgOperand(0)))); 4713 return nullptr; 4714 case Intrinsic::frameaddress: 4715 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4716 getValue(I.getArgOperand(0)))); 4717 return nullptr; 4718 case Intrinsic::read_register: { 4719 Value *Reg = I.getArgOperand(0); 4720 SDValue RegName = 4721 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4722 EVT VT = TLI.getValueType(I.getType()); 4723 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4724 return nullptr; 4725 } 4726 case Intrinsic::write_register: { 4727 Value *Reg = I.getArgOperand(0); 4728 Value *RegValue = I.getArgOperand(1); 4729 SDValue Chain = getValue(RegValue).getOperand(0); 4730 SDValue RegName = 4731 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4732 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4733 RegName, getValue(RegValue))); 4734 return nullptr; 4735 } 4736 case Intrinsic::setjmp: 4737 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4738 case Intrinsic::longjmp: 4739 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4740 case Intrinsic::memcpy: { 4741 // Assert for address < 256 since we support only user defined address 4742 // spaces. 4743 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4744 < 256 && 4745 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4746 < 256 && 4747 "Unknown address space"); 4748 SDValue Op1 = getValue(I.getArgOperand(0)); 4749 SDValue Op2 = getValue(I.getArgOperand(1)); 4750 SDValue Op3 = getValue(I.getArgOperand(2)); 4751 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4752 if (!Align) 4753 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4754 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4755 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4756 MachinePointerInfo(I.getArgOperand(0)), 4757 MachinePointerInfo(I.getArgOperand(1)))); 4758 return nullptr; 4759 } 4760 case Intrinsic::memset: { 4761 // Assert for address < 256 since we support only user defined address 4762 // spaces. 4763 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4764 < 256 && 4765 "Unknown address space"); 4766 SDValue Op1 = getValue(I.getArgOperand(0)); 4767 SDValue Op2 = getValue(I.getArgOperand(1)); 4768 SDValue Op3 = getValue(I.getArgOperand(2)); 4769 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4770 if (!Align) 4771 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4772 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4773 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4774 MachinePointerInfo(I.getArgOperand(0)))); 4775 return nullptr; 4776 } 4777 case Intrinsic::memmove: { 4778 // Assert for address < 256 since we support only user defined address 4779 // spaces. 4780 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4781 < 256 && 4782 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4783 < 256 && 4784 "Unknown address space"); 4785 SDValue Op1 = getValue(I.getArgOperand(0)); 4786 SDValue Op2 = getValue(I.getArgOperand(1)); 4787 SDValue Op3 = getValue(I.getArgOperand(2)); 4788 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4789 if (!Align) 4790 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4791 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4792 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4793 MachinePointerInfo(I.getArgOperand(0)), 4794 MachinePointerInfo(I.getArgOperand(1)))); 4795 return nullptr; 4796 } 4797 case Intrinsic::dbg_declare: { 4798 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4799 MDNode *Variable = DI.getVariable(); 4800 MDNode *Expression = DI.getExpression(); 4801 const Value *Address = DI.getAddress(); 4802 DIVariable DIVar(Variable); 4803 assert((!DIVar || DIVar.isVariable()) && 4804 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4805 if (!Address || !DIVar) { 4806 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4807 return nullptr; 4808 } 4809 4810 // Check if address has undef value. 4811 if (isa<UndefValue>(Address) || 4812 (Address->use_empty() && !isa<Argument>(Address))) { 4813 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4814 return nullptr; 4815 } 4816 4817 SDValue &N = NodeMap[Address]; 4818 if (!N.getNode() && isa<Argument>(Address)) 4819 // Check unused arguments map. 4820 N = UnusedArgNodeMap[Address]; 4821 SDDbgValue *SDV; 4822 if (N.getNode()) { 4823 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4824 Address = BCI->getOperand(0); 4825 // Parameters are handled specially. 4826 bool isParameter = 4827 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4828 isa<Argument>(Address)); 4829 4830 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4831 4832 if (isParameter && !AI) { 4833 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4834 if (FINode) 4835 // Byval parameter. We have a frame index at this point. 4836 SDV = DAG.getFrameIndexDbgValue( 4837 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4838 else { 4839 // Address is an argument, so try to emit its dbg value using 4840 // virtual register info from the FuncInfo.ValueMap. 4841 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4842 return nullptr; 4843 } 4844 } else if (AI) 4845 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4846 true, 0, dl, SDNodeOrder); 4847 else { 4848 // Can't do anything with other non-AI cases yet. 4849 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4850 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4851 DEBUG(Address->dump()); 4852 return nullptr; 4853 } 4854 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4855 } else { 4856 // If Address is an argument then try to emit its dbg value using 4857 // virtual register info from the FuncInfo.ValueMap. 4858 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4859 N)) { 4860 // If variable is pinned by a alloca in dominating bb then 4861 // use StaticAllocaMap. 4862 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4863 if (AI->getParent() != DI.getParent()) { 4864 DenseMap<const AllocaInst*, int>::iterator SI = 4865 FuncInfo.StaticAllocaMap.find(AI); 4866 if (SI != FuncInfo.StaticAllocaMap.end()) { 4867 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4868 0, dl, SDNodeOrder); 4869 DAG.AddDbgValue(SDV, nullptr, false); 4870 return nullptr; 4871 } 4872 } 4873 } 4874 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4875 } 4876 } 4877 return nullptr; 4878 } 4879 case Intrinsic::dbg_value: { 4880 const DbgValueInst &DI = cast<DbgValueInst>(I); 4881 DIVariable DIVar(DI.getVariable()); 4882 assert((!DIVar || DIVar.isVariable()) && 4883 "Variable in DbgValueInst should be either null or a DIVariable."); 4884 if (!DIVar) 4885 return nullptr; 4886 4887 MDNode *Variable = DI.getVariable(); 4888 MDNode *Expression = DI.getExpression(); 4889 uint64_t Offset = DI.getOffset(); 4890 const Value *V = DI.getValue(); 4891 if (!V) 4892 return nullptr; 4893 4894 SDDbgValue *SDV; 4895 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4896 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4897 SDNodeOrder); 4898 DAG.AddDbgValue(SDV, nullptr, false); 4899 } else { 4900 // Do not use getValue() in here; we don't want to generate code at 4901 // this point if it hasn't been done yet. 4902 SDValue N = NodeMap[V]; 4903 if (!N.getNode() && isa<Argument>(V)) 4904 // Check unused arguments map. 4905 N = UnusedArgNodeMap[V]; 4906 if (N.getNode()) { 4907 // A dbg.value for an alloca is always indirect. 4908 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4909 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4910 IsIndirect, N)) { 4911 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4912 IsIndirect, Offset, dl, SDNodeOrder); 4913 DAG.AddDbgValue(SDV, N.getNode(), false); 4914 } 4915 } else if (!V->use_empty() ) { 4916 // Do not call getValue(V) yet, as we don't want to generate code. 4917 // Remember it for later. 4918 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4919 DanglingDebugInfoMap[V] = DDI; 4920 } else { 4921 // We may expand this to cover more cases. One case where we have no 4922 // data available is an unreferenced parameter. 4923 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4924 } 4925 } 4926 4927 // Build a debug info table entry. 4928 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4929 V = BCI->getOperand(0); 4930 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4931 // Don't handle byval struct arguments or VLAs, for example. 4932 if (!AI) { 4933 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4934 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4935 return nullptr; 4936 } 4937 DenseMap<const AllocaInst*, int>::iterator SI = 4938 FuncInfo.StaticAllocaMap.find(AI); 4939 if (SI == FuncInfo.StaticAllocaMap.end()) 4940 return nullptr; // VLAs. 4941 return nullptr; 4942 } 4943 4944 case Intrinsic::eh_typeid_for: { 4945 // Find the type id for the given typeinfo. 4946 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4947 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4948 Res = DAG.getConstant(TypeID, MVT::i32); 4949 setValue(&I, Res); 4950 return nullptr; 4951 } 4952 4953 case Intrinsic::eh_return_i32: 4954 case Intrinsic::eh_return_i64: 4955 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4956 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4957 MVT::Other, 4958 getControlRoot(), 4959 getValue(I.getArgOperand(0)), 4960 getValue(I.getArgOperand(1)))); 4961 return nullptr; 4962 case Intrinsic::eh_unwind_init: 4963 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4964 return nullptr; 4965 case Intrinsic::eh_dwarf_cfa: { 4966 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4967 TLI.getPointerTy()); 4968 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4969 CfaArg.getValueType(), 4970 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4971 CfaArg.getValueType()), 4972 CfaArg); 4973 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4974 DAG.getConstant(0, TLI.getPointerTy())); 4975 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4976 FA, Offset)); 4977 return nullptr; 4978 } 4979 case Intrinsic::eh_sjlj_callsite: { 4980 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4981 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4982 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4983 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4984 4985 MMI.setCurrentCallSite(CI->getZExtValue()); 4986 return nullptr; 4987 } 4988 case Intrinsic::eh_sjlj_functioncontext: { 4989 // Get and store the index of the function context. 4990 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4991 AllocaInst *FnCtx = 4992 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4993 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4994 MFI->setFunctionContextIndex(FI); 4995 return nullptr; 4996 } 4997 case Intrinsic::eh_sjlj_setjmp: { 4998 SDValue Ops[2]; 4999 Ops[0] = getRoot(); 5000 Ops[1] = getValue(I.getArgOperand(0)); 5001 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5002 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5003 setValue(&I, Op.getValue(0)); 5004 DAG.setRoot(Op.getValue(1)); 5005 return nullptr; 5006 } 5007 case Intrinsic::eh_sjlj_longjmp: { 5008 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5009 getRoot(), getValue(I.getArgOperand(0)))); 5010 return nullptr; 5011 } 5012 5013 case Intrinsic::masked_load: 5014 visitMaskedLoad(I); 5015 return nullptr; 5016 case Intrinsic::masked_store: 5017 visitMaskedStore(I); 5018 return nullptr; 5019 case Intrinsic::x86_mmx_pslli_w: 5020 case Intrinsic::x86_mmx_pslli_d: 5021 case Intrinsic::x86_mmx_pslli_q: 5022 case Intrinsic::x86_mmx_psrli_w: 5023 case Intrinsic::x86_mmx_psrli_d: 5024 case Intrinsic::x86_mmx_psrli_q: 5025 case Intrinsic::x86_mmx_psrai_w: 5026 case Intrinsic::x86_mmx_psrai_d: { 5027 SDValue ShAmt = getValue(I.getArgOperand(1)); 5028 if (isa<ConstantSDNode>(ShAmt)) { 5029 visitTargetIntrinsic(I, Intrinsic); 5030 return nullptr; 5031 } 5032 unsigned NewIntrinsic = 0; 5033 EVT ShAmtVT = MVT::v2i32; 5034 switch (Intrinsic) { 5035 case Intrinsic::x86_mmx_pslli_w: 5036 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5037 break; 5038 case Intrinsic::x86_mmx_pslli_d: 5039 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5040 break; 5041 case Intrinsic::x86_mmx_pslli_q: 5042 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5043 break; 5044 case Intrinsic::x86_mmx_psrli_w: 5045 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5046 break; 5047 case Intrinsic::x86_mmx_psrli_d: 5048 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5049 break; 5050 case Intrinsic::x86_mmx_psrli_q: 5051 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5052 break; 5053 case Intrinsic::x86_mmx_psrai_w: 5054 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5055 break; 5056 case Intrinsic::x86_mmx_psrai_d: 5057 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5058 break; 5059 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5060 } 5061 5062 // The vector shift intrinsics with scalars uses 32b shift amounts but 5063 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5064 // to be zero. 5065 // We must do this early because v2i32 is not a legal type. 5066 SDValue ShOps[2]; 5067 ShOps[0] = ShAmt; 5068 ShOps[1] = DAG.getConstant(0, MVT::i32); 5069 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5070 EVT DestVT = TLI.getValueType(I.getType()); 5071 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5072 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5073 DAG.getConstant(NewIntrinsic, MVT::i32), 5074 getValue(I.getArgOperand(0)), ShAmt); 5075 setValue(&I, Res); 5076 return nullptr; 5077 } 5078 case Intrinsic::x86_avx_vinsertf128_pd_256: 5079 case Intrinsic::x86_avx_vinsertf128_ps_256: 5080 case Intrinsic::x86_avx_vinsertf128_si_256: 5081 case Intrinsic::x86_avx2_vinserti128: { 5082 EVT DestVT = TLI.getValueType(I.getType()); 5083 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5084 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5085 ElVT.getVectorNumElements(); 5086 Res = 5087 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5088 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5089 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5090 setValue(&I, Res); 5091 return nullptr; 5092 } 5093 case Intrinsic::x86_avx_vextractf128_pd_256: 5094 case Intrinsic::x86_avx_vextractf128_ps_256: 5095 case Intrinsic::x86_avx_vextractf128_si_256: 5096 case Intrinsic::x86_avx2_vextracti128: { 5097 EVT DestVT = TLI.getValueType(I.getType()); 5098 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5099 DestVT.getVectorNumElements(); 5100 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5101 getValue(I.getArgOperand(0)), 5102 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5103 setValue(&I, Res); 5104 return nullptr; 5105 } 5106 case Intrinsic::convertff: 5107 case Intrinsic::convertfsi: 5108 case Intrinsic::convertfui: 5109 case Intrinsic::convertsif: 5110 case Intrinsic::convertuif: 5111 case Intrinsic::convertss: 5112 case Intrinsic::convertsu: 5113 case Intrinsic::convertus: 5114 case Intrinsic::convertuu: { 5115 ISD::CvtCode Code = ISD::CVT_INVALID; 5116 switch (Intrinsic) { 5117 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5118 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5119 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5120 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5121 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5122 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5123 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5124 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5125 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5126 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5127 } 5128 EVT DestVT = TLI.getValueType(I.getType()); 5129 const Value *Op1 = I.getArgOperand(0); 5130 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5131 DAG.getValueType(DestVT), 5132 DAG.getValueType(getValue(Op1).getValueType()), 5133 getValue(I.getArgOperand(1)), 5134 getValue(I.getArgOperand(2)), 5135 Code); 5136 setValue(&I, Res); 5137 return nullptr; 5138 } 5139 case Intrinsic::powi: 5140 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5141 getValue(I.getArgOperand(1)), DAG)); 5142 return nullptr; 5143 case Intrinsic::log: 5144 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5145 return nullptr; 5146 case Intrinsic::log2: 5147 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5148 return nullptr; 5149 case Intrinsic::log10: 5150 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5151 return nullptr; 5152 case Intrinsic::exp: 5153 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5154 return nullptr; 5155 case Intrinsic::exp2: 5156 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5157 return nullptr; 5158 case Intrinsic::pow: 5159 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5160 getValue(I.getArgOperand(1)), DAG, TLI)); 5161 return nullptr; 5162 case Intrinsic::sqrt: 5163 case Intrinsic::fabs: 5164 case Intrinsic::sin: 5165 case Intrinsic::cos: 5166 case Intrinsic::floor: 5167 case Intrinsic::ceil: 5168 case Intrinsic::trunc: 5169 case Intrinsic::rint: 5170 case Intrinsic::nearbyint: 5171 case Intrinsic::round: { 5172 unsigned Opcode; 5173 switch (Intrinsic) { 5174 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5175 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5176 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5177 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5178 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5179 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5180 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5181 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5182 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5183 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5184 case Intrinsic::round: Opcode = ISD::FROUND; break; 5185 } 5186 5187 setValue(&I, DAG.getNode(Opcode, sdl, 5188 getValue(I.getArgOperand(0)).getValueType(), 5189 getValue(I.getArgOperand(0)))); 5190 return nullptr; 5191 } 5192 case Intrinsic::minnum: 5193 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5194 getValue(I.getArgOperand(0)).getValueType(), 5195 getValue(I.getArgOperand(0)), 5196 getValue(I.getArgOperand(1)))); 5197 return nullptr; 5198 case Intrinsic::maxnum: 5199 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5200 getValue(I.getArgOperand(0)).getValueType(), 5201 getValue(I.getArgOperand(0)), 5202 getValue(I.getArgOperand(1)))); 5203 return nullptr; 5204 case Intrinsic::copysign: 5205 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5206 getValue(I.getArgOperand(0)).getValueType(), 5207 getValue(I.getArgOperand(0)), 5208 getValue(I.getArgOperand(1)))); 5209 return nullptr; 5210 case Intrinsic::fma: 5211 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5212 getValue(I.getArgOperand(0)).getValueType(), 5213 getValue(I.getArgOperand(0)), 5214 getValue(I.getArgOperand(1)), 5215 getValue(I.getArgOperand(2)))); 5216 return nullptr; 5217 case Intrinsic::fmuladd: { 5218 EVT VT = TLI.getValueType(I.getType()); 5219 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5220 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5221 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5222 getValue(I.getArgOperand(0)).getValueType(), 5223 getValue(I.getArgOperand(0)), 5224 getValue(I.getArgOperand(1)), 5225 getValue(I.getArgOperand(2)))); 5226 } else { 5227 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5228 getValue(I.getArgOperand(0)).getValueType(), 5229 getValue(I.getArgOperand(0)), 5230 getValue(I.getArgOperand(1))); 5231 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5232 getValue(I.getArgOperand(0)).getValueType(), 5233 Mul, 5234 getValue(I.getArgOperand(2))); 5235 setValue(&I, Add); 5236 } 5237 return nullptr; 5238 } 5239 case Intrinsic::convert_to_fp16: 5240 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5241 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5242 getValue(I.getArgOperand(0)), 5243 DAG.getTargetConstant(0, MVT::i32)))); 5244 return nullptr; 5245 case Intrinsic::convert_from_fp16: 5246 setValue(&I, 5247 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5248 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5249 getValue(I.getArgOperand(0))))); 5250 return nullptr; 5251 case Intrinsic::pcmarker: { 5252 SDValue Tmp = getValue(I.getArgOperand(0)); 5253 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5254 return nullptr; 5255 } 5256 case Intrinsic::readcyclecounter: { 5257 SDValue Op = getRoot(); 5258 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5259 DAG.getVTList(MVT::i64, MVT::Other), Op); 5260 setValue(&I, Res); 5261 DAG.setRoot(Res.getValue(1)); 5262 return nullptr; 5263 } 5264 case Intrinsic::bswap: 5265 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5266 getValue(I.getArgOperand(0)).getValueType(), 5267 getValue(I.getArgOperand(0)))); 5268 return nullptr; 5269 case Intrinsic::cttz: { 5270 SDValue Arg = getValue(I.getArgOperand(0)); 5271 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5272 EVT Ty = Arg.getValueType(); 5273 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5274 sdl, Ty, Arg)); 5275 return nullptr; 5276 } 5277 case Intrinsic::ctlz: { 5278 SDValue Arg = getValue(I.getArgOperand(0)); 5279 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5280 EVT Ty = Arg.getValueType(); 5281 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5282 sdl, Ty, Arg)); 5283 return nullptr; 5284 } 5285 case Intrinsic::ctpop: { 5286 SDValue Arg = getValue(I.getArgOperand(0)); 5287 EVT Ty = Arg.getValueType(); 5288 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5289 return nullptr; 5290 } 5291 case Intrinsic::stacksave: { 5292 SDValue Op = getRoot(); 5293 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5294 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5295 setValue(&I, Res); 5296 DAG.setRoot(Res.getValue(1)); 5297 return nullptr; 5298 } 5299 case Intrinsic::stackrestore: { 5300 Res = getValue(I.getArgOperand(0)); 5301 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5302 return nullptr; 5303 } 5304 case Intrinsic::stackprotector: { 5305 // Emit code into the DAG to store the stack guard onto the stack. 5306 MachineFunction &MF = DAG.getMachineFunction(); 5307 MachineFrameInfo *MFI = MF.getFrameInfo(); 5308 EVT PtrTy = TLI.getPointerTy(); 5309 SDValue Src, Chain = getRoot(); 5310 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5311 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5312 5313 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5314 // global variable __stack_chk_guard. 5315 if (!GV) 5316 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5317 if (BC->getOpcode() == Instruction::BitCast) 5318 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5319 5320 if (GV && TLI.useLoadStackGuardNode()) { 5321 // Emit a LOAD_STACK_GUARD node. 5322 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5323 sdl, PtrTy, Chain); 5324 MachinePointerInfo MPInfo(GV); 5325 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5326 unsigned Flags = MachineMemOperand::MOLoad | 5327 MachineMemOperand::MOInvariant; 5328 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5329 PtrTy.getSizeInBits() / 8, 5330 DAG.getEVTAlignment(PtrTy)); 5331 Node->setMemRefs(MemRefs, MemRefs + 1); 5332 5333 // Copy the guard value to a virtual register so that it can be 5334 // retrieved in the epilogue. 5335 Src = SDValue(Node, 0); 5336 const TargetRegisterClass *RC = 5337 TLI.getRegClassFor(Src.getSimpleValueType()); 5338 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5339 5340 SPDescriptor.setGuardReg(Reg); 5341 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5342 } else { 5343 Src = getValue(I.getArgOperand(0)); // The guard's value. 5344 } 5345 5346 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5347 5348 int FI = FuncInfo.StaticAllocaMap[Slot]; 5349 MFI->setStackProtectorIndex(FI); 5350 5351 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5352 5353 // Store the stack protector onto the stack. 5354 Res = DAG.getStore(Chain, sdl, Src, FIN, 5355 MachinePointerInfo::getFixedStack(FI), 5356 true, false, 0); 5357 setValue(&I, Res); 5358 DAG.setRoot(Res); 5359 return nullptr; 5360 } 5361 case Intrinsic::objectsize: { 5362 // If we don't know by now, we're never going to know. 5363 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5364 5365 assert(CI && "Non-constant type in __builtin_object_size?"); 5366 5367 SDValue Arg = getValue(I.getCalledValue()); 5368 EVT Ty = Arg.getValueType(); 5369 5370 if (CI->isZero()) 5371 Res = DAG.getConstant(-1ULL, Ty); 5372 else 5373 Res = DAG.getConstant(0, Ty); 5374 5375 setValue(&I, Res); 5376 return nullptr; 5377 } 5378 case Intrinsic::annotation: 5379 case Intrinsic::ptr_annotation: 5380 // Drop the intrinsic, but forward the value 5381 setValue(&I, getValue(I.getOperand(0))); 5382 return nullptr; 5383 case Intrinsic::assume: 5384 case Intrinsic::var_annotation: 5385 // Discard annotate attributes and assumptions 5386 return nullptr; 5387 5388 case Intrinsic::init_trampoline: { 5389 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5390 5391 SDValue Ops[6]; 5392 Ops[0] = getRoot(); 5393 Ops[1] = getValue(I.getArgOperand(0)); 5394 Ops[2] = getValue(I.getArgOperand(1)); 5395 Ops[3] = getValue(I.getArgOperand(2)); 5396 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5397 Ops[5] = DAG.getSrcValue(F); 5398 5399 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5400 5401 DAG.setRoot(Res); 5402 return nullptr; 5403 } 5404 case Intrinsic::adjust_trampoline: { 5405 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5406 TLI.getPointerTy(), 5407 getValue(I.getArgOperand(0)))); 5408 return nullptr; 5409 } 5410 case Intrinsic::gcroot: 5411 if (GFI) { 5412 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5413 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5414 5415 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5416 GFI->addStackRoot(FI->getIndex(), TypeMap); 5417 } 5418 return nullptr; 5419 case Intrinsic::gcread: 5420 case Intrinsic::gcwrite: 5421 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5422 case Intrinsic::flt_rounds: 5423 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5424 return nullptr; 5425 5426 case Intrinsic::expect: { 5427 // Just replace __builtin_expect(exp, c) with EXP. 5428 setValue(&I, getValue(I.getArgOperand(0))); 5429 return nullptr; 5430 } 5431 5432 case Intrinsic::debugtrap: 5433 case Intrinsic::trap: { 5434 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5435 if (TrapFuncName.empty()) { 5436 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5437 ISD::TRAP : ISD::DEBUGTRAP; 5438 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5439 return nullptr; 5440 } 5441 TargetLowering::ArgListTy Args; 5442 5443 TargetLowering::CallLoweringInfo CLI(DAG); 5444 CLI.setDebugLoc(sdl).setChain(getRoot()) 5445 .setCallee(CallingConv::C, I.getType(), 5446 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5447 std::move(Args), 0); 5448 5449 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5450 DAG.setRoot(Result.second); 5451 return nullptr; 5452 } 5453 5454 case Intrinsic::uadd_with_overflow: 5455 case Intrinsic::sadd_with_overflow: 5456 case Intrinsic::usub_with_overflow: 5457 case Intrinsic::ssub_with_overflow: 5458 case Intrinsic::umul_with_overflow: 5459 case Intrinsic::smul_with_overflow: { 5460 ISD::NodeType Op; 5461 switch (Intrinsic) { 5462 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5463 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5464 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5465 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5466 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5467 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5468 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5469 } 5470 SDValue Op1 = getValue(I.getArgOperand(0)); 5471 SDValue Op2 = getValue(I.getArgOperand(1)); 5472 5473 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5474 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5475 return nullptr; 5476 } 5477 case Intrinsic::prefetch: { 5478 SDValue Ops[5]; 5479 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5480 Ops[0] = getRoot(); 5481 Ops[1] = getValue(I.getArgOperand(0)); 5482 Ops[2] = getValue(I.getArgOperand(1)); 5483 Ops[3] = getValue(I.getArgOperand(2)); 5484 Ops[4] = getValue(I.getArgOperand(3)); 5485 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5486 DAG.getVTList(MVT::Other), Ops, 5487 EVT::getIntegerVT(*Context, 8), 5488 MachinePointerInfo(I.getArgOperand(0)), 5489 0, /* align */ 5490 false, /* volatile */ 5491 rw==0, /* read */ 5492 rw==1)); /* write */ 5493 return nullptr; 5494 } 5495 case Intrinsic::lifetime_start: 5496 case Intrinsic::lifetime_end: { 5497 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5498 // Stack coloring is not enabled in O0, discard region information. 5499 if (TM.getOptLevel() == CodeGenOpt::None) 5500 return nullptr; 5501 5502 SmallVector<Value *, 4> Allocas; 5503 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5504 5505 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5506 E = Allocas.end(); Object != E; ++Object) { 5507 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5508 5509 // Could not find an Alloca. 5510 if (!LifetimeObject) 5511 continue; 5512 5513 // First check that the Alloca is static, otherwise it won't have a 5514 // valid frame index. 5515 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5516 if (SI == FuncInfo.StaticAllocaMap.end()) 5517 return nullptr; 5518 5519 int FI = SI->second; 5520 5521 SDValue Ops[2]; 5522 Ops[0] = getRoot(); 5523 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5524 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5525 5526 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5527 DAG.setRoot(Res); 5528 } 5529 return nullptr; 5530 } 5531 case Intrinsic::invariant_start: 5532 // Discard region information. 5533 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5534 return nullptr; 5535 case Intrinsic::invariant_end: 5536 // Discard region information. 5537 return nullptr; 5538 case Intrinsic::stackprotectorcheck: { 5539 // Do not actually emit anything for this basic block. Instead we initialize 5540 // the stack protector descriptor and export the guard variable so we can 5541 // access it in FinishBasicBlock. 5542 const BasicBlock *BB = I.getParent(); 5543 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5544 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5545 5546 // Flush our exports since we are going to process a terminator. 5547 (void)getControlRoot(); 5548 return nullptr; 5549 } 5550 case Intrinsic::clear_cache: 5551 return TLI.getClearCacheBuiltinName(); 5552 case Intrinsic::donothing: 5553 // ignore 5554 return nullptr; 5555 case Intrinsic::experimental_stackmap: { 5556 visitStackmap(I); 5557 return nullptr; 5558 } 5559 case Intrinsic::experimental_patchpoint_void: 5560 case Intrinsic::experimental_patchpoint_i64: { 5561 visitPatchpoint(&I); 5562 return nullptr; 5563 } 5564 case Intrinsic::experimental_gc_statepoint: { 5565 visitStatepoint(I); 5566 return nullptr; 5567 } 5568 case Intrinsic::experimental_gc_result_int: 5569 case Intrinsic::experimental_gc_result_float: 5570 case Intrinsic::experimental_gc_result_ptr: { 5571 visitGCResult(I); 5572 return nullptr; 5573 } 5574 case Intrinsic::experimental_gc_relocate: { 5575 visitGCRelocate(I); 5576 return nullptr; 5577 } 5578 case Intrinsic::instrprof_increment: 5579 llvm_unreachable("instrprof failed to lower an increment"); 5580 } 5581 } 5582 5583 std::pair<SDValue, SDValue> 5584 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5585 MachineBasicBlock *LandingPad) { 5586 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5587 MCSymbol *BeginLabel = nullptr; 5588 5589 if (LandingPad) { 5590 // Insert a label before the invoke call to mark the try range. This can be 5591 // used to detect deletion of the invoke via the MachineModuleInfo. 5592 BeginLabel = MMI.getContext().CreateTempSymbol(); 5593 5594 // For SjLj, keep track of which landing pads go with which invokes 5595 // so as to maintain the ordering of pads in the LSDA. 5596 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5597 if (CallSiteIndex) { 5598 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5599 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5600 5601 // Now that the call site is handled, stop tracking it. 5602 MMI.setCurrentCallSite(0); 5603 } 5604 5605 // Both PendingLoads and PendingExports must be flushed here; 5606 // this call might not return. 5607 (void)getRoot(); 5608 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5609 5610 CLI.setChain(getRoot()); 5611 } 5612 5613 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5614 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5615 5616 assert((CLI.IsTailCall || Result.second.getNode()) && 5617 "Non-null chain expected with non-tail call!"); 5618 assert((Result.second.getNode() || !Result.first.getNode()) && 5619 "Null value expected with tail call!"); 5620 5621 if (!Result.second.getNode()) { 5622 // As a special case, a null chain means that a tail call has been emitted 5623 // and the DAG root is already updated. 5624 HasTailCall = true; 5625 5626 // Since there's no actual continuation from this block, nothing can be 5627 // relying on us setting vregs for them. 5628 PendingExports.clear(); 5629 } else { 5630 DAG.setRoot(Result.second); 5631 } 5632 5633 if (LandingPad) { 5634 // Insert a label at the end of the invoke call to mark the try range. This 5635 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5636 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5637 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5638 5639 // Inform MachineModuleInfo of range. 5640 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5641 } 5642 5643 return Result; 5644 } 5645 5646 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5647 bool isTailCall, 5648 MachineBasicBlock *LandingPad) { 5649 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5650 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5651 Type *RetTy = FTy->getReturnType(); 5652 5653 TargetLowering::ArgListTy Args; 5654 TargetLowering::ArgListEntry Entry; 5655 Args.reserve(CS.arg_size()); 5656 5657 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5658 i != e; ++i) { 5659 const Value *V = *i; 5660 5661 // Skip empty types 5662 if (V->getType()->isEmptyTy()) 5663 continue; 5664 5665 SDValue ArgNode = getValue(V); 5666 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5667 5668 // Skip the first return-type Attribute to get to params. 5669 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5670 Args.push_back(Entry); 5671 } 5672 5673 // Check if target-independent constraints permit a tail call here. 5674 // Target-dependent constraints are checked within TLI->LowerCallTo. 5675 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5676 isTailCall = false; 5677 5678 TargetLowering::CallLoweringInfo CLI(DAG); 5679 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5680 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5681 .setTailCall(isTailCall); 5682 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5683 5684 if (Result.first.getNode()) 5685 setValue(CS.getInstruction(), Result.first); 5686 } 5687 5688 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5689 /// value is equal or not-equal to zero. 5690 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5691 for (const User *U : V->users()) { 5692 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5693 if (IC->isEquality()) 5694 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5695 if (C->isNullValue()) 5696 continue; 5697 // Unknown instruction. 5698 return false; 5699 } 5700 return true; 5701 } 5702 5703 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5704 Type *LoadTy, 5705 SelectionDAGBuilder &Builder) { 5706 5707 // Check to see if this load can be trivially constant folded, e.g. if the 5708 // input is from a string literal. 5709 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5710 // Cast pointer to the type we really want to load. 5711 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5712 PointerType::getUnqual(LoadTy)); 5713 5714 if (const Constant *LoadCst = 5715 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5716 Builder.DL)) 5717 return Builder.getValue(LoadCst); 5718 } 5719 5720 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5721 // still constant memory, the input chain can be the entry node. 5722 SDValue Root; 5723 bool ConstantMemory = false; 5724 5725 // Do not serialize (non-volatile) loads of constant memory with anything. 5726 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5727 Root = Builder.DAG.getEntryNode(); 5728 ConstantMemory = true; 5729 } else { 5730 // Do not serialize non-volatile loads against each other. 5731 Root = Builder.DAG.getRoot(); 5732 } 5733 5734 SDValue Ptr = Builder.getValue(PtrVal); 5735 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5736 Ptr, MachinePointerInfo(PtrVal), 5737 false /*volatile*/, 5738 false /*nontemporal*/, 5739 false /*isinvariant*/, 1 /* align=1 */); 5740 5741 if (!ConstantMemory) 5742 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5743 return LoadVal; 5744 } 5745 5746 /// processIntegerCallValue - Record the value for an instruction that 5747 /// produces an integer result, converting the type where necessary. 5748 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5749 SDValue Value, 5750 bool IsSigned) { 5751 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5752 if (IsSigned) 5753 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5754 else 5755 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5756 setValue(&I, Value); 5757 } 5758 5759 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5760 /// If so, return true and lower it, otherwise return false and it will be 5761 /// lowered like a normal call. 5762 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5763 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5764 if (I.getNumArgOperands() != 3) 5765 return false; 5766 5767 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5768 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5769 !I.getArgOperand(2)->getType()->isIntegerTy() || 5770 !I.getType()->isIntegerTy()) 5771 return false; 5772 5773 const Value *Size = I.getArgOperand(2); 5774 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5775 if (CSize && CSize->getZExtValue() == 0) { 5776 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5777 setValue(&I, DAG.getConstant(0, CallVT)); 5778 return true; 5779 } 5780 5781 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5782 std::pair<SDValue, SDValue> Res = 5783 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5784 getValue(LHS), getValue(RHS), getValue(Size), 5785 MachinePointerInfo(LHS), 5786 MachinePointerInfo(RHS)); 5787 if (Res.first.getNode()) { 5788 processIntegerCallValue(I, Res.first, true); 5789 PendingLoads.push_back(Res.second); 5790 return true; 5791 } 5792 5793 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5794 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5795 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5796 bool ActuallyDoIt = true; 5797 MVT LoadVT; 5798 Type *LoadTy; 5799 switch (CSize->getZExtValue()) { 5800 default: 5801 LoadVT = MVT::Other; 5802 LoadTy = nullptr; 5803 ActuallyDoIt = false; 5804 break; 5805 case 2: 5806 LoadVT = MVT::i16; 5807 LoadTy = Type::getInt16Ty(CSize->getContext()); 5808 break; 5809 case 4: 5810 LoadVT = MVT::i32; 5811 LoadTy = Type::getInt32Ty(CSize->getContext()); 5812 break; 5813 case 8: 5814 LoadVT = MVT::i64; 5815 LoadTy = Type::getInt64Ty(CSize->getContext()); 5816 break; 5817 /* 5818 case 16: 5819 LoadVT = MVT::v4i32; 5820 LoadTy = Type::getInt32Ty(CSize->getContext()); 5821 LoadTy = VectorType::get(LoadTy, 4); 5822 break; 5823 */ 5824 } 5825 5826 // This turns into unaligned loads. We only do this if the target natively 5827 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5828 // we'll only produce a small number of byte loads. 5829 5830 // Require that we can find a legal MVT, and only do this if the target 5831 // supports unaligned loads of that type. Expanding into byte loads would 5832 // bloat the code. 5833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5834 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5835 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5836 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5837 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5838 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5839 // TODO: Check alignment of src and dest ptrs. 5840 if (!TLI.isTypeLegal(LoadVT) || 5841 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5842 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5843 ActuallyDoIt = false; 5844 } 5845 5846 if (ActuallyDoIt) { 5847 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5848 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5849 5850 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5851 ISD::SETNE); 5852 processIntegerCallValue(I, Res, false); 5853 return true; 5854 } 5855 } 5856 5857 5858 return false; 5859 } 5860 5861 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5862 /// form. If so, return true and lower it, otherwise return false and it 5863 /// will be lowered like a normal call. 5864 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5865 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5866 if (I.getNumArgOperands() != 3) 5867 return false; 5868 5869 const Value *Src = I.getArgOperand(0); 5870 const Value *Char = I.getArgOperand(1); 5871 const Value *Length = I.getArgOperand(2); 5872 if (!Src->getType()->isPointerTy() || 5873 !Char->getType()->isIntegerTy() || 5874 !Length->getType()->isIntegerTy() || 5875 !I.getType()->isPointerTy()) 5876 return false; 5877 5878 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5879 std::pair<SDValue, SDValue> Res = 5880 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5881 getValue(Src), getValue(Char), getValue(Length), 5882 MachinePointerInfo(Src)); 5883 if (Res.first.getNode()) { 5884 setValue(&I, Res.first); 5885 PendingLoads.push_back(Res.second); 5886 return true; 5887 } 5888 5889 return false; 5890 } 5891 5892 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5893 /// optimized form. If so, return true and lower it, otherwise return false 5894 /// and it will be lowered like a normal call. 5895 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5896 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5897 if (I.getNumArgOperands() != 2) 5898 return false; 5899 5900 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5901 if (!Arg0->getType()->isPointerTy() || 5902 !Arg1->getType()->isPointerTy() || 5903 !I.getType()->isPointerTy()) 5904 return false; 5905 5906 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5907 std::pair<SDValue, SDValue> Res = 5908 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5909 getValue(Arg0), getValue(Arg1), 5910 MachinePointerInfo(Arg0), 5911 MachinePointerInfo(Arg1), isStpcpy); 5912 if (Res.first.getNode()) { 5913 setValue(&I, Res.first); 5914 DAG.setRoot(Res.second); 5915 return true; 5916 } 5917 5918 return false; 5919 } 5920 5921 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5922 /// If so, return true and lower it, otherwise return false and it will be 5923 /// lowered like a normal call. 5924 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5925 // Verify that the prototype makes sense. int strcmp(void*,void*) 5926 if (I.getNumArgOperands() != 2) 5927 return false; 5928 5929 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5930 if (!Arg0->getType()->isPointerTy() || 5931 !Arg1->getType()->isPointerTy() || 5932 !I.getType()->isIntegerTy()) 5933 return false; 5934 5935 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5936 std::pair<SDValue, SDValue> Res = 5937 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5938 getValue(Arg0), getValue(Arg1), 5939 MachinePointerInfo(Arg0), 5940 MachinePointerInfo(Arg1)); 5941 if (Res.first.getNode()) { 5942 processIntegerCallValue(I, Res.first, true); 5943 PendingLoads.push_back(Res.second); 5944 return true; 5945 } 5946 5947 return false; 5948 } 5949 5950 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5951 /// form. If so, return true and lower it, otherwise return false and it 5952 /// will be lowered like a normal call. 5953 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5954 // Verify that the prototype makes sense. size_t strlen(char *) 5955 if (I.getNumArgOperands() != 1) 5956 return false; 5957 5958 const Value *Arg0 = I.getArgOperand(0); 5959 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5960 return false; 5961 5962 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5963 std::pair<SDValue, SDValue> Res = 5964 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5965 getValue(Arg0), MachinePointerInfo(Arg0)); 5966 if (Res.first.getNode()) { 5967 processIntegerCallValue(I, Res.first, false); 5968 PendingLoads.push_back(Res.second); 5969 return true; 5970 } 5971 5972 return false; 5973 } 5974 5975 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5976 /// form. If so, return true and lower it, otherwise return false and it 5977 /// will be lowered like a normal call. 5978 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5979 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5980 if (I.getNumArgOperands() != 2) 5981 return false; 5982 5983 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5984 if (!Arg0->getType()->isPointerTy() || 5985 !Arg1->getType()->isIntegerTy() || 5986 !I.getType()->isIntegerTy()) 5987 return false; 5988 5989 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5990 std::pair<SDValue, SDValue> Res = 5991 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5992 getValue(Arg0), getValue(Arg1), 5993 MachinePointerInfo(Arg0)); 5994 if (Res.first.getNode()) { 5995 processIntegerCallValue(I, Res.first, false); 5996 PendingLoads.push_back(Res.second); 5997 return true; 5998 } 5999 6000 return false; 6001 } 6002 6003 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6004 /// operation (as expected), translate it to an SDNode with the specified opcode 6005 /// and return true. 6006 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6007 unsigned Opcode) { 6008 // Sanity check that it really is a unary floating-point call. 6009 if (I.getNumArgOperands() != 1 || 6010 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6011 I.getType() != I.getArgOperand(0)->getType() || 6012 !I.onlyReadsMemory()) 6013 return false; 6014 6015 SDValue Tmp = getValue(I.getArgOperand(0)); 6016 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6017 return true; 6018 } 6019 6020 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6021 /// operation (as expected), translate it to an SDNode with the specified opcode 6022 /// and return true. 6023 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6024 unsigned Opcode) { 6025 // Sanity check that it really is a binary floating-point call. 6026 if (I.getNumArgOperands() != 2 || 6027 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6028 I.getType() != I.getArgOperand(0)->getType() || 6029 I.getType() != I.getArgOperand(1)->getType() || 6030 !I.onlyReadsMemory()) 6031 return false; 6032 6033 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6034 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6035 EVT VT = Tmp0.getValueType(); 6036 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6037 return true; 6038 } 6039 6040 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6041 // Handle inline assembly differently. 6042 if (isa<InlineAsm>(I.getCalledValue())) { 6043 visitInlineAsm(&I); 6044 return; 6045 } 6046 6047 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6048 ComputeUsesVAFloatArgument(I, &MMI); 6049 6050 const char *RenameFn = nullptr; 6051 if (Function *F = I.getCalledFunction()) { 6052 if (F->isDeclaration()) { 6053 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6054 if (unsigned IID = II->getIntrinsicID(F)) { 6055 RenameFn = visitIntrinsicCall(I, IID); 6056 if (!RenameFn) 6057 return; 6058 } 6059 } 6060 if (unsigned IID = F->getIntrinsicID()) { 6061 RenameFn = visitIntrinsicCall(I, IID); 6062 if (!RenameFn) 6063 return; 6064 } 6065 } 6066 6067 // Check for well-known libc/libm calls. If the function is internal, it 6068 // can't be a library call. 6069 LibFunc::Func Func; 6070 if (!F->hasLocalLinkage() && F->hasName() && 6071 LibInfo->getLibFunc(F->getName(), Func) && 6072 LibInfo->hasOptimizedCodeGen(Func)) { 6073 switch (Func) { 6074 default: break; 6075 case LibFunc::copysign: 6076 case LibFunc::copysignf: 6077 case LibFunc::copysignl: 6078 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6079 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6080 I.getType() == I.getArgOperand(0)->getType() && 6081 I.getType() == I.getArgOperand(1)->getType() && 6082 I.onlyReadsMemory()) { 6083 SDValue LHS = getValue(I.getArgOperand(0)); 6084 SDValue RHS = getValue(I.getArgOperand(1)); 6085 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6086 LHS.getValueType(), LHS, RHS)); 6087 return; 6088 } 6089 break; 6090 case LibFunc::fabs: 6091 case LibFunc::fabsf: 6092 case LibFunc::fabsl: 6093 if (visitUnaryFloatCall(I, ISD::FABS)) 6094 return; 6095 break; 6096 case LibFunc::fmin: 6097 case LibFunc::fminf: 6098 case LibFunc::fminl: 6099 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6100 return; 6101 break; 6102 case LibFunc::fmax: 6103 case LibFunc::fmaxf: 6104 case LibFunc::fmaxl: 6105 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6106 return; 6107 break; 6108 case LibFunc::sin: 6109 case LibFunc::sinf: 6110 case LibFunc::sinl: 6111 if (visitUnaryFloatCall(I, ISD::FSIN)) 6112 return; 6113 break; 6114 case LibFunc::cos: 6115 case LibFunc::cosf: 6116 case LibFunc::cosl: 6117 if (visitUnaryFloatCall(I, ISD::FCOS)) 6118 return; 6119 break; 6120 case LibFunc::sqrt: 6121 case LibFunc::sqrtf: 6122 case LibFunc::sqrtl: 6123 case LibFunc::sqrt_finite: 6124 case LibFunc::sqrtf_finite: 6125 case LibFunc::sqrtl_finite: 6126 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6127 return; 6128 break; 6129 case LibFunc::floor: 6130 case LibFunc::floorf: 6131 case LibFunc::floorl: 6132 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6133 return; 6134 break; 6135 case LibFunc::nearbyint: 6136 case LibFunc::nearbyintf: 6137 case LibFunc::nearbyintl: 6138 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6139 return; 6140 break; 6141 case LibFunc::ceil: 6142 case LibFunc::ceilf: 6143 case LibFunc::ceill: 6144 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6145 return; 6146 break; 6147 case LibFunc::rint: 6148 case LibFunc::rintf: 6149 case LibFunc::rintl: 6150 if (visitUnaryFloatCall(I, ISD::FRINT)) 6151 return; 6152 break; 6153 case LibFunc::round: 6154 case LibFunc::roundf: 6155 case LibFunc::roundl: 6156 if (visitUnaryFloatCall(I, ISD::FROUND)) 6157 return; 6158 break; 6159 case LibFunc::trunc: 6160 case LibFunc::truncf: 6161 case LibFunc::truncl: 6162 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6163 return; 6164 break; 6165 case LibFunc::log2: 6166 case LibFunc::log2f: 6167 case LibFunc::log2l: 6168 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6169 return; 6170 break; 6171 case LibFunc::exp2: 6172 case LibFunc::exp2f: 6173 case LibFunc::exp2l: 6174 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6175 return; 6176 break; 6177 case LibFunc::memcmp: 6178 if (visitMemCmpCall(I)) 6179 return; 6180 break; 6181 case LibFunc::memchr: 6182 if (visitMemChrCall(I)) 6183 return; 6184 break; 6185 case LibFunc::strcpy: 6186 if (visitStrCpyCall(I, false)) 6187 return; 6188 break; 6189 case LibFunc::stpcpy: 6190 if (visitStrCpyCall(I, true)) 6191 return; 6192 break; 6193 case LibFunc::strcmp: 6194 if (visitStrCmpCall(I)) 6195 return; 6196 break; 6197 case LibFunc::strlen: 6198 if (visitStrLenCall(I)) 6199 return; 6200 break; 6201 case LibFunc::strnlen: 6202 if (visitStrNLenCall(I)) 6203 return; 6204 break; 6205 } 6206 } 6207 } 6208 6209 SDValue Callee; 6210 if (!RenameFn) 6211 Callee = getValue(I.getCalledValue()); 6212 else 6213 Callee = DAG.getExternalSymbol(RenameFn, 6214 DAG.getTargetLoweringInfo().getPointerTy()); 6215 6216 // Check if we can potentially perform a tail call. More detailed checking is 6217 // be done within LowerCallTo, after more information about the call is known. 6218 LowerCallTo(&I, Callee, I.isTailCall()); 6219 } 6220 6221 namespace { 6222 6223 /// AsmOperandInfo - This contains information for each constraint that we are 6224 /// lowering. 6225 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6226 public: 6227 /// CallOperand - If this is the result output operand or a clobber 6228 /// this is null, otherwise it is the incoming operand to the CallInst. 6229 /// This gets modified as the asm is processed. 6230 SDValue CallOperand; 6231 6232 /// AssignedRegs - If this is a register or register class operand, this 6233 /// contains the set of register corresponding to the operand. 6234 RegsForValue AssignedRegs; 6235 6236 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6237 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6238 } 6239 6240 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6241 /// corresponds to. If there is no Value* for this operand, it returns 6242 /// MVT::Other. 6243 EVT getCallOperandValEVT(LLVMContext &Context, 6244 const TargetLowering &TLI, 6245 const DataLayout *DL) const { 6246 if (!CallOperandVal) return MVT::Other; 6247 6248 if (isa<BasicBlock>(CallOperandVal)) 6249 return TLI.getPointerTy(); 6250 6251 llvm::Type *OpTy = CallOperandVal->getType(); 6252 6253 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6254 // If this is an indirect operand, the operand is a pointer to the 6255 // accessed type. 6256 if (isIndirect) { 6257 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6258 if (!PtrTy) 6259 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6260 OpTy = PtrTy->getElementType(); 6261 } 6262 6263 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6264 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6265 if (STy->getNumElements() == 1) 6266 OpTy = STy->getElementType(0); 6267 6268 // If OpTy is not a single value, it may be a struct/union that we 6269 // can tile with integers. 6270 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6271 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6272 switch (BitSize) { 6273 default: break; 6274 case 1: 6275 case 8: 6276 case 16: 6277 case 32: 6278 case 64: 6279 case 128: 6280 OpTy = IntegerType::get(Context, BitSize); 6281 break; 6282 } 6283 } 6284 6285 return TLI.getValueType(OpTy, true); 6286 } 6287 }; 6288 6289 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6290 6291 } // end anonymous namespace 6292 6293 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6294 /// specified operand. We prefer to assign virtual registers, to allow the 6295 /// register allocator to handle the assignment process. However, if the asm 6296 /// uses features that we can't model on machineinstrs, we have SDISel do the 6297 /// allocation. This produces generally horrible, but correct, code. 6298 /// 6299 /// OpInfo describes the operand. 6300 /// 6301 static void GetRegistersForValue(SelectionDAG &DAG, 6302 const TargetLowering &TLI, 6303 SDLoc DL, 6304 SDISelAsmOperandInfo &OpInfo) { 6305 LLVMContext &Context = *DAG.getContext(); 6306 6307 MachineFunction &MF = DAG.getMachineFunction(); 6308 SmallVector<unsigned, 4> Regs; 6309 6310 // If this is a constraint for a single physreg, or a constraint for a 6311 // register class, find it. 6312 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6313 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6314 OpInfo.ConstraintVT); 6315 6316 unsigned NumRegs = 1; 6317 if (OpInfo.ConstraintVT != MVT::Other) { 6318 // If this is a FP input in an integer register (or visa versa) insert a bit 6319 // cast of the input value. More generally, handle any case where the input 6320 // value disagrees with the register class we plan to stick this in. 6321 if (OpInfo.Type == InlineAsm::isInput && 6322 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6323 // Try to convert to the first EVT that the reg class contains. If the 6324 // types are identical size, use a bitcast to convert (e.g. two differing 6325 // vector types). 6326 MVT RegVT = *PhysReg.second->vt_begin(); 6327 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6328 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6329 RegVT, OpInfo.CallOperand); 6330 OpInfo.ConstraintVT = RegVT; 6331 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6332 // If the input is a FP value and we want it in FP registers, do a 6333 // bitcast to the corresponding integer type. This turns an f64 value 6334 // into i64, which can be passed with two i32 values on a 32-bit 6335 // machine. 6336 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6337 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6338 RegVT, OpInfo.CallOperand); 6339 OpInfo.ConstraintVT = RegVT; 6340 } 6341 } 6342 6343 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6344 } 6345 6346 MVT RegVT; 6347 EVT ValueVT = OpInfo.ConstraintVT; 6348 6349 // If this is a constraint for a specific physical register, like {r17}, 6350 // assign it now. 6351 if (unsigned AssignedReg = PhysReg.first) { 6352 const TargetRegisterClass *RC = PhysReg.second; 6353 if (OpInfo.ConstraintVT == MVT::Other) 6354 ValueVT = *RC->vt_begin(); 6355 6356 // Get the actual register value type. This is important, because the user 6357 // may have asked for (e.g.) the AX register in i32 type. We need to 6358 // remember that AX is actually i16 to get the right extension. 6359 RegVT = *RC->vt_begin(); 6360 6361 // This is a explicit reference to a physical register. 6362 Regs.push_back(AssignedReg); 6363 6364 // If this is an expanded reference, add the rest of the regs to Regs. 6365 if (NumRegs != 1) { 6366 TargetRegisterClass::iterator I = RC->begin(); 6367 for (; *I != AssignedReg; ++I) 6368 assert(I != RC->end() && "Didn't find reg!"); 6369 6370 // Already added the first reg. 6371 --NumRegs; ++I; 6372 for (; NumRegs; --NumRegs, ++I) { 6373 assert(I != RC->end() && "Ran out of registers to allocate!"); 6374 Regs.push_back(*I); 6375 } 6376 } 6377 6378 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6379 return; 6380 } 6381 6382 // Otherwise, if this was a reference to an LLVM register class, create vregs 6383 // for this reference. 6384 if (const TargetRegisterClass *RC = PhysReg.second) { 6385 RegVT = *RC->vt_begin(); 6386 if (OpInfo.ConstraintVT == MVT::Other) 6387 ValueVT = RegVT; 6388 6389 // Create the appropriate number of virtual registers. 6390 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6391 for (; NumRegs; --NumRegs) 6392 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6393 6394 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6395 return; 6396 } 6397 6398 // Otherwise, we couldn't allocate enough registers for this. 6399 } 6400 6401 /// visitInlineAsm - Handle a call to an InlineAsm object. 6402 /// 6403 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6404 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6405 6406 /// ConstraintOperands - Information about all of the constraints. 6407 SDISelAsmOperandInfoVector ConstraintOperands; 6408 6409 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6410 TargetLowering::AsmOperandInfoVector 6411 TargetConstraints = TLI.ParseConstraints(CS); 6412 6413 bool hasMemory = false; 6414 6415 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6416 unsigned ResNo = 0; // ResNo - The result number of the next output. 6417 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6418 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6419 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6420 6421 MVT OpVT = MVT::Other; 6422 6423 // Compute the value type for each operand. 6424 switch (OpInfo.Type) { 6425 case InlineAsm::isOutput: 6426 // Indirect outputs just consume an argument. 6427 if (OpInfo.isIndirect) { 6428 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6429 break; 6430 } 6431 6432 // The return value of the call is this value. As such, there is no 6433 // corresponding argument. 6434 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6435 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6436 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6437 } else { 6438 assert(ResNo == 0 && "Asm only has one result!"); 6439 OpVT = TLI.getSimpleValueType(CS.getType()); 6440 } 6441 ++ResNo; 6442 break; 6443 case InlineAsm::isInput: 6444 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6445 break; 6446 case InlineAsm::isClobber: 6447 // Nothing to do. 6448 break; 6449 } 6450 6451 // If this is an input or an indirect output, process the call argument. 6452 // BasicBlocks are labels, currently appearing only in asm's. 6453 if (OpInfo.CallOperandVal) { 6454 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6455 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6456 } else { 6457 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6458 } 6459 6460 OpVT = 6461 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6462 } 6463 6464 OpInfo.ConstraintVT = OpVT; 6465 6466 // Indirect operand accesses access memory. 6467 if (OpInfo.isIndirect) 6468 hasMemory = true; 6469 else { 6470 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6471 TargetLowering::ConstraintType 6472 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6473 if (CType == TargetLowering::C_Memory) { 6474 hasMemory = true; 6475 break; 6476 } 6477 } 6478 } 6479 } 6480 6481 SDValue Chain, Flag; 6482 6483 // We won't need to flush pending loads if this asm doesn't touch 6484 // memory and is nonvolatile. 6485 if (hasMemory || IA->hasSideEffects()) 6486 Chain = getRoot(); 6487 else 6488 Chain = DAG.getRoot(); 6489 6490 // Second pass over the constraints: compute which constraint option to use 6491 // and assign registers to constraints that want a specific physreg. 6492 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6493 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6494 6495 // If this is an output operand with a matching input operand, look up the 6496 // matching input. If their types mismatch, e.g. one is an integer, the 6497 // other is floating point, or their sizes are different, flag it as an 6498 // error. 6499 if (OpInfo.hasMatchingInput()) { 6500 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6501 6502 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6503 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6504 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6505 OpInfo.ConstraintVT); 6506 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6507 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6508 Input.ConstraintVT); 6509 if ((OpInfo.ConstraintVT.isInteger() != 6510 Input.ConstraintVT.isInteger()) || 6511 (MatchRC.second != InputRC.second)) { 6512 report_fatal_error("Unsupported asm: input constraint" 6513 " with a matching output constraint of" 6514 " incompatible type!"); 6515 } 6516 Input.ConstraintVT = OpInfo.ConstraintVT; 6517 } 6518 } 6519 6520 // Compute the constraint code and ConstraintType to use. 6521 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6522 6523 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6524 OpInfo.Type == InlineAsm::isClobber) 6525 continue; 6526 6527 // If this is a memory input, and if the operand is not indirect, do what we 6528 // need to to provide an address for the memory input. 6529 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6530 !OpInfo.isIndirect) { 6531 assert((OpInfo.isMultipleAlternative || 6532 (OpInfo.Type == InlineAsm::isInput)) && 6533 "Can only indirectify direct input operands!"); 6534 6535 // Memory operands really want the address of the value. If we don't have 6536 // an indirect input, put it in the constpool if we can, otherwise spill 6537 // it to a stack slot. 6538 // TODO: This isn't quite right. We need to handle these according to 6539 // the addressing mode that the constraint wants. Also, this may take 6540 // an additional register for the computation and we don't want that 6541 // either. 6542 6543 // If the operand is a float, integer, or vector constant, spill to a 6544 // constant pool entry to get its address. 6545 const Value *OpVal = OpInfo.CallOperandVal; 6546 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6547 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6548 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6549 TLI.getPointerTy()); 6550 } else { 6551 // Otherwise, create a stack slot and emit a store to it before the 6552 // asm. 6553 Type *Ty = OpVal->getType(); 6554 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6555 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6556 MachineFunction &MF = DAG.getMachineFunction(); 6557 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6558 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6559 Chain = DAG.getStore(Chain, getCurSDLoc(), 6560 OpInfo.CallOperand, StackSlot, 6561 MachinePointerInfo::getFixedStack(SSFI), 6562 false, false, 0); 6563 OpInfo.CallOperand = StackSlot; 6564 } 6565 6566 // There is no longer a Value* corresponding to this operand. 6567 OpInfo.CallOperandVal = nullptr; 6568 6569 // It is now an indirect operand. 6570 OpInfo.isIndirect = true; 6571 } 6572 6573 // If this constraint is for a specific register, allocate it before 6574 // anything else. 6575 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6576 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6577 } 6578 6579 // Second pass - Loop over all of the operands, assigning virtual or physregs 6580 // to register class operands. 6581 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6582 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6583 6584 // C_Register operands have already been allocated, Other/Memory don't need 6585 // to be. 6586 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6587 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6588 } 6589 6590 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6591 std::vector<SDValue> AsmNodeOperands; 6592 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6593 AsmNodeOperands.push_back( 6594 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6595 TLI.getPointerTy())); 6596 6597 // If we have a !srcloc metadata node associated with it, we want to attach 6598 // this to the ultimately generated inline asm machineinstr. To do this, we 6599 // pass in the third operand as this (potentially null) inline asm MDNode. 6600 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6601 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6602 6603 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6604 // bits as operand 3. 6605 unsigned ExtraInfo = 0; 6606 if (IA->hasSideEffects()) 6607 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6608 if (IA->isAlignStack()) 6609 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6610 // Set the asm dialect. 6611 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6612 6613 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6614 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6615 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6616 6617 // Compute the constraint code and ConstraintType to use. 6618 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6619 6620 // Ideally, we would only check against memory constraints. However, the 6621 // meaning of an other constraint can be target-specific and we can't easily 6622 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6623 // for other constriants as well. 6624 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6625 OpInfo.ConstraintType == TargetLowering::C_Other) { 6626 if (OpInfo.Type == InlineAsm::isInput) 6627 ExtraInfo |= InlineAsm::Extra_MayLoad; 6628 else if (OpInfo.Type == InlineAsm::isOutput) 6629 ExtraInfo |= InlineAsm::Extra_MayStore; 6630 else if (OpInfo.Type == InlineAsm::isClobber) 6631 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6632 } 6633 } 6634 6635 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6636 TLI.getPointerTy())); 6637 6638 // Loop over all of the inputs, copying the operand values into the 6639 // appropriate registers and processing the output regs. 6640 RegsForValue RetValRegs; 6641 6642 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6643 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6644 6645 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6646 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6647 6648 switch (OpInfo.Type) { 6649 case InlineAsm::isOutput: { 6650 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6651 OpInfo.ConstraintType != TargetLowering::C_Register) { 6652 // Memory output, or 'other' output (e.g. 'X' constraint). 6653 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6654 6655 // Add information to the INLINEASM node to know about this output. 6656 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6657 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6658 TLI.getPointerTy())); 6659 AsmNodeOperands.push_back(OpInfo.CallOperand); 6660 break; 6661 } 6662 6663 // Otherwise, this is a register or register class output. 6664 6665 // Copy the output from the appropriate register. Find a register that 6666 // we can use. 6667 if (OpInfo.AssignedRegs.Regs.empty()) { 6668 LLVMContext &Ctx = *DAG.getContext(); 6669 Ctx.emitError(CS.getInstruction(), 6670 "couldn't allocate output register for constraint '" + 6671 Twine(OpInfo.ConstraintCode) + "'"); 6672 return; 6673 } 6674 6675 // If this is an indirect operand, store through the pointer after the 6676 // asm. 6677 if (OpInfo.isIndirect) { 6678 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6679 OpInfo.CallOperandVal)); 6680 } else { 6681 // This is the result value of the call. 6682 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6683 // Concatenate this output onto the outputs list. 6684 RetValRegs.append(OpInfo.AssignedRegs); 6685 } 6686 6687 // Add information to the INLINEASM node to know that this register is 6688 // set. 6689 OpInfo.AssignedRegs 6690 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6691 ? InlineAsm::Kind_RegDefEarlyClobber 6692 : InlineAsm::Kind_RegDef, 6693 false, 0, DAG, AsmNodeOperands); 6694 break; 6695 } 6696 case InlineAsm::isInput: { 6697 SDValue InOperandVal = OpInfo.CallOperand; 6698 6699 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6700 // If this is required to match an output register we have already set, 6701 // just use its register. 6702 unsigned OperandNo = OpInfo.getMatchedOperand(); 6703 6704 // Scan until we find the definition we already emitted of this operand. 6705 // When we find it, create a RegsForValue operand. 6706 unsigned CurOp = InlineAsm::Op_FirstOperand; 6707 for (; OperandNo; --OperandNo) { 6708 // Advance to the next operand. 6709 unsigned OpFlag = 6710 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6711 assert((InlineAsm::isRegDefKind(OpFlag) || 6712 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6713 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6714 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6715 } 6716 6717 unsigned OpFlag = 6718 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6719 if (InlineAsm::isRegDefKind(OpFlag) || 6720 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6721 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6722 if (OpInfo.isIndirect) { 6723 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6724 LLVMContext &Ctx = *DAG.getContext(); 6725 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6726 " don't know how to handle tied " 6727 "indirect register inputs"); 6728 return; 6729 } 6730 6731 RegsForValue MatchedRegs; 6732 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6733 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6734 MatchedRegs.RegVTs.push_back(RegVT); 6735 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6736 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6737 i != e; ++i) { 6738 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6739 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6740 else { 6741 LLVMContext &Ctx = *DAG.getContext(); 6742 Ctx.emitError(CS.getInstruction(), 6743 "inline asm error: This value" 6744 " type register class is not natively supported!"); 6745 return; 6746 } 6747 } 6748 // Use the produced MatchedRegs object to 6749 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6750 Chain, &Flag, CS.getInstruction()); 6751 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6752 true, OpInfo.getMatchedOperand(), 6753 DAG, AsmNodeOperands); 6754 break; 6755 } 6756 6757 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6758 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6759 "Unexpected number of operands"); 6760 // Add information to the INLINEASM node to know about this input. 6761 // See InlineAsm.h isUseOperandTiedToDef. 6762 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6763 OpInfo.getMatchedOperand()); 6764 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6765 TLI.getPointerTy())); 6766 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6767 break; 6768 } 6769 6770 // Treat indirect 'X' constraint as memory. 6771 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6772 OpInfo.isIndirect) 6773 OpInfo.ConstraintType = TargetLowering::C_Memory; 6774 6775 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6776 std::vector<SDValue> Ops; 6777 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6778 Ops, DAG); 6779 if (Ops.empty()) { 6780 LLVMContext &Ctx = *DAG.getContext(); 6781 Ctx.emitError(CS.getInstruction(), 6782 "invalid operand for inline asm constraint '" + 6783 Twine(OpInfo.ConstraintCode) + "'"); 6784 return; 6785 } 6786 6787 // Add information to the INLINEASM node to know about this input. 6788 unsigned ResOpType = 6789 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6790 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6791 TLI.getPointerTy())); 6792 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6793 break; 6794 } 6795 6796 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6797 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6798 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6799 "Memory operands expect pointer values"); 6800 6801 // Add information to the INLINEASM node to know about this input. 6802 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6803 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6804 TLI.getPointerTy())); 6805 AsmNodeOperands.push_back(InOperandVal); 6806 break; 6807 } 6808 6809 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6810 OpInfo.ConstraintType == TargetLowering::C_Register) && 6811 "Unknown constraint type!"); 6812 6813 // TODO: Support this. 6814 if (OpInfo.isIndirect) { 6815 LLVMContext &Ctx = *DAG.getContext(); 6816 Ctx.emitError(CS.getInstruction(), 6817 "Don't know how to handle indirect register inputs yet " 6818 "for constraint '" + 6819 Twine(OpInfo.ConstraintCode) + "'"); 6820 return; 6821 } 6822 6823 // Copy the input into the appropriate registers. 6824 if (OpInfo.AssignedRegs.Regs.empty()) { 6825 LLVMContext &Ctx = *DAG.getContext(); 6826 Ctx.emitError(CS.getInstruction(), 6827 "couldn't allocate input reg for constraint '" + 6828 Twine(OpInfo.ConstraintCode) + "'"); 6829 return; 6830 } 6831 6832 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6833 Chain, &Flag, CS.getInstruction()); 6834 6835 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6836 DAG, AsmNodeOperands); 6837 break; 6838 } 6839 case InlineAsm::isClobber: { 6840 // Add the clobbered value to the operand list, so that the register 6841 // allocator is aware that the physreg got clobbered. 6842 if (!OpInfo.AssignedRegs.Regs.empty()) 6843 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6844 false, 0, DAG, 6845 AsmNodeOperands); 6846 break; 6847 } 6848 } 6849 } 6850 6851 // Finish up input operands. Set the input chain and add the flag last. 6852 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6853 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6854 6855 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6856 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6857 Flag = Chain.getValue(1); 6858 6859 // If this asm returns a register value, copy the result from that register 6860 // and set it as the value of the call. 6861 if (!RetValRegs.Regs.empty()) { 6862 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6863 Chain, &Flag, CS.getInstruction()); 6864 6865 // FIXME: Why don't we do this for inline asms with MRVs? 6866 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6867 EVT ResultType = TLI.getValueType(CS.getType()); 6868 6869 // If any of the results of the inline asm is a vector, it may have the 6870 // wrong width/num elts. This can happen for register classes that can 6871 // contain multiple different value types. The preg or vreg allocated may 6872 // not have the same VT as was expected. Convert it to the right type 6873 // with bit_convert. 6874 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6875 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6876 ResultType, Val); 6877 6878 } else if (ResultType != Val.getValueType() && 6879 ResultType.isInteger() && Val.getValueType().isInteger()) { 6880 // If a result value was tied to an input value, the computed result may 6881 // have a wider width than the expected result. Extract the relevant 6882 // portion. 6883 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6884 } 6885 6886 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6887 } 6888 6889 setValue(CS.getInstruction(), Val); 6890 // Don't need to use this as a chain in this case. 6891 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6892 return; 6893 } 6894 6895 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6896 6897 // Process indirect outputs, first output all of the flagged copies out of 6898 // physregs. 6899 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6900 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6901 const Value *Ptr = IndirectStoresToEmit[i].second; 6902 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6903 Chain, &Flag, IA); 6904 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6905 } 6906 6907 // Emit the non-flagged stores from the physregs. 6908 SmallVector<SDValue, 8> OutChains; 6909 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6910 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6911 StoresToEmit[i].first, 6912 getValue(StoresToEmit[i].second), 6913 MachinePointerInfo(StoresToEmit[i].second), 6914 false, false, 0); 6915 OutChains.push_back(Val); 6916 } 6917 6918 if (!OutChains.empty()) 6919 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6920 6921 DAG.setRoot(Chain); 6922 } 6923 6924 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6925 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6926 MVT::Other, getRoot(), 6927 getValue(I.getArgOperand(0)), 6928 DAG.getSrcValue(I.getArgOperand(0)))); 6929 } 6930 6931 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6933 const DataLayout &DL = *TLI.getDataLayout(); 6934 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6935 getRoot(), getValue(I.getOperand(0)), 6936 DAG.getSrcValue(I.getOperand(0)), 6937 DL.getABITypeAlignment(I.getType())); 6938 setValue(&I, V); 6939 DAG.setRoot(V.getValue(1)); 6940 } 6941 6942 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6943 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6944 MVT::Other, getRoot(), 6945 getValue(I.getArgOperand(0)), 6946 DAG.getSrcValue(I.getArgOperand(0)))); 6947 } 6948 6949 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6950 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6951 MVT::Other, getRoot(), 6952 getValue(I.getArgOperand(0)), 6953 getValue(I.getArgOperand(1)), 6954 DAG.getSrcValue(I.getArgOperand(0)), 6955 DAG.getSrcValue(I.getArgOperand(1)))); 6956 } 6957 6958 /// \brief Lower an argument list according to the target calling convention. 6959 /// 6960 /// \return A tuple of <return-value, token-chain> 6961 /// 6962 /// This is a helper for lowering intrinsics that follow a target calling 6963 /// convention or require stack pointer adjustment. Only a subset of the 6964 /// intrinsic's operands need to participate in the calling convention. 6965 std::pair<SDValue, SDValue> 6966 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6967 unsigned NumArgs, SDValue Callee, 6968 bool UseVoidTy, 6969 MachineBasicBlock *LandingPad) { 6970 TargetLowering::ArgListTy Args; 6971 Args.reserve(NumArgs); 6972 6973 // Populate the argument list. 6974 // Attributes for args start at offset 1, after the return attribute. 6975 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6976 ArgI != ArgE; ++ArgI) { 6977 const Value *V = CS->getOperand(ArgI); 6978 6979 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6980 6981 TargetLowering::ArgListEntry Entry; 6982 Entry.Node = getValue(V); 6983 Entry.Ty = V->getType(); 6984 Entry.setAttributes(&CS, AttrI); 6985 Args.push_back(Entry); 6986 } 6987 6988 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6989 TargetLowering::CallLoweringInfo CLI(DAG); 6990 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6991 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6992 .setDiscardResult(CS->use_empty()); 6993 6994 return lowerInvokable(CLI, LandingPad); 6995 } 6996 6997 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6998 /// or patchpoint target node's operand list. 6999 /// 7000 /// Constants are converted to TargetConstants purely as an optimization to 7001 /// avoid constant materialization and register allocation. 7002 /// 7003 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7004 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7005 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7006 /// address materialization and register allocation, but may also be required 7007 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7008 /// alloca in the entry block, then the runtime may assume that the alloca's 7009 /// StackMap location can be read immediately after compilation and that the 7010 /// location is valid at any point during execution (this is similar to the 7011 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7012 /// only available in a register, then the runtime would need to trap when 7013 /// execution reaches the StackMap in order to read the alloca's location. 7014 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7015 SmallVectorImpl<SDValue> &Ops, 7016 SelectionDAGBuilder &Builder) { 7017 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7018 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7019 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7020 Ops.push_back( 7021 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 7022 Ops.push_back( 7023 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 7024 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7025 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7026 Ops.push_back( 7027 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 7028 } else 7029 Ops.push_back(OpVal); 7030 } 7031 } 7032 7033 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7034 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7035 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7036 // [live variables...]) 7037 7038 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7039 7040 SDValue Chain, InFlag, Callee, NullPtr; 7041 SmallVector<SDValue, 32> Ops; 7042 7043 SDLoc DL = getCurSDLoc(); 7044 Callee = getValue(CI.getCalledValue()); 7045 NullPtr = DAG.getIntPtrConstant(0, true); 7046 7047 // The stackmap intrinsic only records the live variables (the arguemnts 7048 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7049 // intrinsic, this won't be lowered to a function call. This means we don't 7050 // have to worry about calling conventions and target specific lowering code. 7051 // Instead we perform the call lowering right here. 7052 // 7053 // chain, flag = CALLSEQ_START(chain, 0) 7054 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7055 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7056 // 7057 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7058 InFlag = Chain.getValue(1); 7059 7060 // Add the <id> and <numBytes> constants. 7061 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7062 Ops.push_back(DAG.getTargetConstant( 7063 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7064 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7065 Ops.push_back(DAG.getTargetConstant( 7066 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7067 7068 // Push live variables for the stack map. 7069 addStackMapLiveVars(&CI, 2, Ops, *this); 7070 7071 // We are not pushing any register mask info here on the operands list, 7072 // because the stackmap doesn't clobber anything. 7073 7074 // Push the chain and the glue flag. 7075 Ops.push_back(Chain); 7076 Ops.push_back(InFlag); 7077 7078 // Create the STACKMAP node. 7079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7080 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7081 Chain = SDValue(SM, 0); 7082 InFlag = Chain.getValue(1); 7083 7084 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7085 7086 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7087 7088 // Set the root to the target-lowered call chain. 7089 DAG.setRoot(Chain); 7090 7091 // Inform the Frame Information that we have a stackmap in this function. 7092 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7093 } 7094 7095 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7096 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7097 MachineBasicBlock *LandingPad) { 7098 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7099 // i32 <numBytes>, 7100 // i8* <target>, 7101 // i32 <numArgs>, 7102 // [Args...], 7103 // [live variables...]) 7104 7105 CallingConv::ID CC = CS.getCallingConv(); 7106 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7107 bool HasDef = !CS->getType()->isVoidTy(); 7108 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7109 7110 // Get the real number of arguments participating in the call <numArgs> 7111 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7112 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7113 7114 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7115 // Intrinsics include all meta-operands up to but not including CC. 7116 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7117 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7118 "Not enough arguments provided to the patchpoint intrinsic"); 7119 7120 // For AnyRegCC the arguments are lowered later on manually. 7121 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7122 std::pair<SDValue, SDValue> Result = 7123 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7124 LandingPad); 7125 7126 SDNode *CallEnd = Result.second.getNode(); 7127 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7128 CallEnd = CallEnd->getOperand(0).getNode(); 7129 7130 /// Get a call instruction from the call sequence chain. 7131 /// Tail calls are not allowed. 7132 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7133 "Expected a callseq node."); 7134 SDNode *Call = CallEnd->getOperand(0).getNode(); 7135 bool HasGlue = Call->getGluedNode(); 7136 7137 // Replace the target specific call node with the patchable intrinsic. 7138 SmallVector<SDValue, 8> Ops; 7139 7140 // Add the <id> and <numBytes> constants. 7141 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7142 Ops.push_back(DAG.getTargetConstant( 7143 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7144 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7145 Ops.push_back(DAG.getTargetConstant( 7146 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7147 7148 // Assume that the Callee is a constant address. 7149 // FIXME: handle function symbols in the future. 7150 Ops.push_back( 7151 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7152 /*isTarget=*/true)); 7153 7154 // Adjust <numArgs> to account for any arguments that have been passed on the 7155 // stack instead. 7156 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7157 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7158 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7159 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7160 7161 // Add the calling convention 7162 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7163 7164 // Add the arguments we omitted previously. The register allocator should 7165 // place these in any free register. 7166 if (IsAnyRegCC) 7167 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7168 Ops.push_back(getValue(CS.getArgument(i))); 7169 7170 // Push the arguments from the call instruction up to the register mask. 7171 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7172 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7173 Ops.push_back(*i); 7174 7175 // Push live variables for the stack map. 7176 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7177 7178 // Push the register mask info. 7179 if (HasGlue) 7180 Ops.push_back(*(Call->op_end()-2)); 7181 else 7182 Ops.push_back(*(Call->op_end()-1)); 7183 7184 // Push the chain (this is originally the first operand of the call, but 7185 // becomes now the last or second to last operand). 7186 Ops.push_back(*(Call->op_begin())); 7187 7188 // Push the glue flag (last operand). 7189 if (HasGlue) 7190 Ops.push_back(*(Call->op_end()-1)); 7191 7192 SDVTList NodeTys; 7193 if (IsAnyRegCC && HasDef) { 7194 // Create the return types based on the intrinsic definition 7195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7196 SmallVector<EVT, 3> ValueVTs; 7197 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7198 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7199 7200 // There is always a chain and a glue type at the end 7201 ValueVTs.push_back(MVT::Other); 7202 ValueVTs.push_back(MVT::Glue); 7203 NodeTys = DAG.getVTList(ValueVTs); 7204 } else 7205 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7206 7207 // Replace the target specific call node with a PATCHPOINT node. 7208 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7209 getCurSDLoc(), NodeTys, Ops); 7210 7211 // Update the NodeMap. 7212 if (HasDef) { 7213 if (IsAnyRegCC) 7214 setValue(CS.getInstruction(), SDValue(MN, 0)); 7215 else 7216 setValue(CS.getInstruction(), Result.first); 7217 } 7218 7219 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7220 // call sequence. Furthermore the location of the chain and glue can change 7221 // when the AnyReg calling convention is used and the intrinsic returns a 7222 // value. 7223 if (IsAnyRegCC && HasDef) { 7224 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7225 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7226 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7227 } else 7228 DAG.ReplaceAllUsesWith(Call, MN); 7229 DAG.DeleteNode(Call); 7230 7231 // Inform the Frame Information that we have a patchpoint in this function. 7232 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7233 } 7234 7235 /// Returns an AttributeSet representing the attributes applied to the return 7236 /// value of the given call. 7237 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7238 SmallVector<Attribute::AttrKind, 2> Attrs; 7239 if (CLI.RetSExt) 7240 Attrs.push_back(Attribute::SExt); 7241 if (CLI.RetZExt) 7242 Attrs.push_back(Attribute::ZExt); 7243 if (CLI.IsInReg) 7244 Attrs.push_back(Attribute::InReg); 7245 7246 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7247 Attrs); 7248 } 7249 7250 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7251 /// implementation, which just calls LowerCall. 7252 /// FIXME: When all targets are 7253 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7254 std::pair<SDValue, SDValue> 7255 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7256 // Handle the incoming return values from the call. 7257 CLI.Ins.clear(); 7258 Type *OrigRetTy = CLI.RetTy; 7259 SmallVector<EVT, 4> RetTys; 7260 SmallVector<uint64_t, 4> Offsets; 7261 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7262 7263 SmallVector<ISD::OutputArg, 4> Outs; 7264 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7265 7266 bool CanLowerReturn = 7267 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7268 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7269 7270 SDValue DemoteStackSlot; 7271 int DemoteStackIdx = -100; 7272 if (!CanLowerReturn) { 7273 // FIXME: equivalent assert? 7274 // assert(!CS.hasInAllocaArgument() && 7275 // "sret demotion is incompatible with inalloca"); 7276 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7277 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7278 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7279 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7280 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7281 7282 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7283 ArgListEntry Entry; 7284 Entry.Node = DemoteStackSlot; 7285 Entry.Ty = StackSlotPtrType; 7286 Entry.isSExt = false; 7287 Entry.isZExt = false; 7288 Entry.isInReg = false; 7289 Entry.isSRet = true; 7290 Entry.isNest = false; 7291 Entry.isByVal = false; 7292 Entry.isReturned = false; 7293 Entry.Alignment = Align; 7294 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7295 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7296 } else { 7297 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7298 EVT VT = RetTys[I]; 7299 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7300 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7301 for (unsigned i = 0; i != NumRegs; ++i) { 7302 ISD::InputArg MyFlags; 7303 MyFlags.VT = RegisterVT; 7304 MyFlags.ArgVT = VT; 7305 MyFlags.Used = CLI.IsReturnValueUsed; 7306 if (CLI.RetSExt) 7307 MyFlags.Flags.setSExt(); 7308 if (CLI.RetZExt) 7309 MyFlags.Flags.setZExt(); 7310 if (CLI.IsInReg) 7311 MyFlags.Flags.setInReg(); 7312 CLI.Ins.push_back(MyFlags); 7313 } 7314 } 7315 } 7316 7317 // Handle all of the outgoing arguments. 7318 CLI.Outs.clear(); 7319 CLI.OutVals.clear(); 7320 ArgListTy &Args = CLI.getArgs(); 7321 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7322 SmallVector<EVT, 4> ValueVTs; 7323 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7324 Type *FinalType = Args[i].Ty; 7325 if (Args[i].isByVal) 7326 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7327 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7328 FinalType, CLI.CallConv, CLI.IsVarArg); 7329 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7330 ++Value) { 7331 EVT VT = ValueVTs[Value]; 7332 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7333 SDValue Op = SDValue(Args[i].Node.getNode(), 7334 Args[i].Node.getResNo() + Value); 7335 ISD::ArgFlagsTy Flags; 7336 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7337 7338 if (Args[i].isZExt) 7339 Flags.setZExt(); 7340 if (Args[i].isSExt) 7341 Flags.setSExt(); 7342 if (Args[i].isInReg) 7343 Flags.setInReg(); 7344 if (Args[i].isSRet) 7345 Flags.setSRet(); 7346 if (Args[i].isByVal) 7347 Flags.setByVal(); 7348 if (Args[i].isInAlloca) { 7349 Flags.setInAlloca(); 7350 // Set the byval flag for CCAssignFn callbacks that don't know about 7351 // inalloca. This way we can know how many bytes we should've allocated 7352 // and how many bytes a callee cleanup function will pop. If we port 7353 // inalloca to more targets, we'll have to add custom inalloca handling 7354 // in the various CC lowering callbacks. 7355 Flags.setByVal(); 7356 } 7357 if (Args[i].isByVal || Args[i].isInAlloca) { 7358 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7359 Type *ElementTy = Ty->getElementType(); 7360 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7361 // For ByVal, alignment should come from FE. BE will guess if this 7362 // info is not there but there are cases it cannot get right. 7363 unsigned FrameAlign; 7364 if (Args[i].Alignment) 7365 FrameAlign = Args[i].Alignment; 7366 else 7367 FrameAlign = getByValTypeAlignment(ElementTy); 7368 Flags.setByValAlign(FrameAlign); 7369 } 7370 if (Args[i].isNest) 7371 Flags.setNest(); 7372 if (NeedsRegBlock) { 7373 Flags.setInConsecutiveRegs(); 7374 if (Value == NumValues - 1) 7375 Flags.setInConsecutiveRegsLast(); 7376 } 7377 Flags.setOrigAlign(OriginalAlignment); 7378 7379 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7380 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7381 SmallVector<SDValue, 4> Parts(NumParts); 7382 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7383 7384 if (Args[i].isSExt) 7385 ExtendKind = ISD::SIGN_EXTEND; 7386 else if (Args[i].isZExt) 7387 ExtendKind = ISD::ZERO_EXTEND; 7388 7389 // Conservatively only handle 'returned' on non-vectors for now 7390 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7391 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7392 "unexpected use of 'returned'"); 7393 // Before passing 'returned' to the target lowering code, ensure that 7394 // either the register MVT and the actual EVT are the same size or that 7395 // the return value and argument are extended in the same way; in these 7396 // cases it's safe to pass the argument register value unchanged as the 7397 // return register value (although it's at the target's option whether 7398 // to do so) 7399 // TODO: allow code generation to take advantage of partially preserved 7400 // registers rather than clobbering the entire register when the 7401 // parameter extension method is not compatible with the return 7402 // extension method 7403 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7404 (ExtendKind != ISD::ANY_EXTEND && 7405 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7406 Flags.setReturned(); 7407 } 7408 7409 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7410 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7411 7412 for (unsigned j = 0; j != NumParts; ++j) { 7413 // if it isn't first piece, alignment must be 1 7414 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7415 i < CLI.NumFixedArgs, 7416 i, j*Parts[j].getValueType().getStoreSize()); 7417 if (NumParts > 1 && j == 0) 7418 MyFlags.Flags.setSplit(); 7419 else if (j != 0) 7420 MyFlags.Flags.setOrigAlign(1); 7421 7422 CLI.Outs.push_back(MyFlags); 7423 CLI.OutVals.push_back(Parts[j]); 7424 } 7425 } 7426 } 7427 7428 SmallVector<SDValue, 4> InVals; 7429 CLI.Chain = LowerCall(CLI, InVals); 7430 7431 // Verify that the target's LowerCall behaved as expected. 7432 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7433 "LowerCall didn't return a valid chain!"); 7434 assert((!CLI.IsTailCall || InVals.empty()) && 7435 "LowerCall emitted a return value for a tail call!"); 7436 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7437 "LowerCall didn't emit the correct number of values!"); 7438 7439 // For a tail call, the return value is merely live-out and there aren't 7440 // any nodes in the DAG representing it. Return a special value to 7441 // indicate that a tail call has been emitted and no more Instructions 7442 // should be processed in the current block. 7443 if (CLI.IsTailCall) { 7444 CLI.DAG.setRoot(CLI.Chain); 7445 return std::make_pair(SDValue(), SDValue()); 7446 } 7447 7448 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7449 assert(InVals[i].getNode() && 7450 "LowerCall emitted a null value!"); 7451 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7452 "LowerCall emitted a value with the wrong type!"); 7453 }); 7454 7455 SmallVector<SDValue, 4> ReturnValues; 7456 if (!CanLowerReturn) { 7457 // The instruction result is the result of loading from the 7458 // hidden sret parameter. 7459 SmallVector<EVT, 1> PVTs; 7460 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7461 7462 ComputeValueVTs(*this, PtrRetTy, PVTs); 7463 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7464 EVT PtrVT = PVTs[0]; 7465 7466 unsigned NumValues = RetTys.size(); 7467 ReturnValues.resize(NumValues); 7468 SmallVector<SDValue, 4> Chains(NumValues); 7469 7470 for (unsigned i = 0; i < NumValues; ++i) { 7471 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7472 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7473 SDValue L = CLI.DAG.getLoad( 7474 RetTys[i], CLI.DL, CLI.Chain, Add, 7475 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7476 false, false, 1); 7477 ReturnValues[i] = L; 7478 Chains[i] = L.getValue(1); 7479 } 7480 7481 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7482 } else { 7483 // Collect the legal value parts into potentially illegal values 7484 // that correspond to the original function's return values. 7485 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7486 if (CLI.RetSExt) 7487 AssertOp = ISD::AssertSext; 7488 else if (CLI.RetZExt) 7489 AssertOp = ISD::AssertZext; 7490 unsigned CurReg = 0; 7491 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7492 EVT VT = RetTys[I]; 7493 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7494 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7495 7496 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7497 NumRegs, RegisterVT, VT, nullptr, 7498 AssertOp)); 7499 CurReg += NumRegs; 7500 } 7501 7502 // For a function returning void, there is no return value. We can't create 7503 // such a node, so we just return a null return value in that case. In 7504 // that case, nothing will actually look at the value. 7505 if (ReturnValues.empty()) 7506 return std::make_pair(SDValue(), CLI.Chain); 7507 } 7508 7509 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7510 CLI.DAG.getVTList(RetTys), ReturnValues); 7511 return std::make_pair(Res, CLI.Chain); 7512 } 7513 7514 void TargetLowering::LowerOperationWrapper(SDNode *N, 7515 SmallVectorImpl<SDValue> &Results, 7516 SelectionDAG &DAG) const { 7517 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7518 if (Res.getNode()) 7519 Results.push_back(Res); 7520 } 7521 7522 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7523 llvm_unreachable("LowerOperation not implemented for this target!"); 7524 } 7525 7526 void 7527 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7528 SDValue Op = getNonRegisterValue(V); 7529 assert((Op.getOpcode() != ISD::CopyFromReg || 7530 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7531 "Copy from a reg to the same reg!"); 7532 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7533 7534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7535 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7536 SDValue Chain = DAG.getEntryNode(); 7537 7538 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7539 FuncInfo.PreferredExtendType.end()) 7540 ? ISD::ANY_EXTEND 7541 : FuncInfo.PreferredExtendType[V]; 7542 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7543 PendingExports.push_back(Chain); 7544 } 7545 7546 #include "llvm/CodeGen/SelectionDAGISel.h" 7547 7548 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7549 /// entry block, return true. This includes arguments used by switches, since 7550 /// the switch may expand into multiple basic blocks. 7551 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7552 // With FastISel active, we may be splitting blocks, so force creation 7553 // of virtual registers for all non-dead arguments. 7554 if (FastISel) 7555 return A->use_empty(); 7556 7557 const BasicBlock *Entry = A->getParent()->begin(); 7558 for (const User *U : A->users()) 7559 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7560 return false; // Use not in entry block. 7561 7562 return true; 7563 } 7564 7565 void SelectionDAGISel::LowerArguments(const Function &F) { 7566 SelectionDAG &DAG = SDB->DAG; 7567 SDLoc dl = SDB->getCurSDLoc(); 7568 const DataLayout *DL = TLI->getDataLayout(); 7569 SmallVector<ISD::InputArg, 16> Ins; 7570 7571 if (!FuncInfo->CanLowerReturn) { 7572 // Put in an sret pointer parameter before all the other parameters. 7573 SmallVector<EVT, 1> ValueVTs; 7574 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7575 7576 // NOTE: Assuming that a pointer will never break down to more than one VT 7577 // or one register. 7578 ISD::ArgFlagsTy Flags; 7579 Flags.setSRet(); 7580 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7581 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7582 Ins.push_back(RetArg); 7583 } 7584 7585 // Set up the incoming argument description vector. 7586 unsigned Idx = 1; 7587 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7588 I != E; ++I, ++Idx) { 7589 SmallVector<EVT, 4> ValueVTs; 7590 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7591 bool isArgValueUsed = !I->use_empty(); 7592 unsigned PartBase = 0; 7593 Type *FinalType = I->getType(); 7594 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7595 FinalType = cast<PointerType>(FinalType)->getElementType(); 7596 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7597 FinalType, F.getCallingConv(), F.isVarArg()); 7598 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7599 Value != NumValues; ++Value) { 7600 EVT VT = ValueVTs[Value]; 7601 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7602 ISD::ArgFlagsTy Flags; 7603 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7604 7605 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7606 Flags.setZExt(); 7607 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7608 Flags.setSExt(); 7609 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7610 Flags.setInReg(); 7611 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7612 Flags.setSRet(); 7613 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7614 Flags.setByVal(); 7615 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7616 Flags.setInAlloca(); 7617 // Set the byval flag for CCAssignFn callbacks that don't know about 7618 // inalloca. This way we can know how many bytes we should've allocated 7619 // and how many bytes a callee cleanup function will pop. If we port 7620 // inalloca to more targets, we'll have to add custom inalloca handling 7621 // in the various CC lowering callbacks. 7622 Flags.setByVal(); 7623 } 7624 if (Flags.isByVal() || Flags.isInAlloca()) { 7625 PointerType *Ty = cast<PointerType>(I->getType()); 7626 Type *ElementTy = Ty->getElementType(); 7627 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7628 // For ByVal, alignment should be passed from FE. BE will guess if 7629 // this info is not there but there are cases it cannot get right. 7630 unsigned FrameAlign; 7631 if (F.getParamAlignment(Idx)) 7632 FrameAlign = F.getParamAlignment(Idx); 7633 else 7634 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7635 Flags.setByValAlign(FrameAlign); 7636 } 7637 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7638 Flags.setNest(); 7639 if (NeedsRegBlock) { 7640 Flags.setInConsecutiveRegs(); 7641 if (Value == NumValues - 1) 7642 Flags.setInConsecutiveRegsLast(); 7643 } 7644 Flags.setOrigAlign(OriginalAlignment); 7645 7646 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7647 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7648 for (unsigned i = 0; i != NumRegs; ++i) { 7649 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7650 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7651 if (NumRegs > 1 && i == 0) 7652 MyFlags.Flags.setSplit(); 7653 // if it isn't first piece, alignment must be 1 7654 else if (i > 0) 7655 MyFlags.Flags.setOrigAlign(1); 7656 Ins.push_back(MyFlags); 7657 } 7658 PartBase += VT.getStoreSize(); 7659 } 7660 } 7661 7662 // Call the target to set up the argument values. 7663 SmallVector<SDValue, 8> InVals; 7664 SDValue NewRoot = TLI->LowerFormalArguments( 7665 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7666 7667 // Verify that the target's LowerFormalArguments behaved as expected. 7668 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7669 "LowerFormalArguments didn't return a valid chain!"); 7670 assert(InVals.size() == Ins.size() && 7671 "LowerFormalArguments didn't emit the correct number of values!"); 7672 DEBUG({ 7673 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7674 assert(InVals[i].getNode() && 7675 "LowerFormalArguments emitted a null value!"); 7676 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7677 "LowerFormalArguments emitted a value with the wrong type!"); 7678 } 7679 }); 7680 7681 // Update the DAG with the new chain value resulting from argument lowering. 7682 DAG.setRoot(NewRoot); 7683 7684 // Set up the argument values. 7685 unsigned i = 0; 7686 Idx = 1; 7687 if (!FuncInfo->CanLowerReturn) { 7688 // Create a virtual register for the sret pointer, and put in a copy 7689 // from the sret argument into it. 7690 SmallVector<EVT, 1> ValueVTs; 7691 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7692 MVT VT = ValueVTs[0].getSimpleVT(); 7693 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7694 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7695 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7696 RegVT, VT, nullptr, AssertOp); 7697 7698 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7699 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7700 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7701 FuncInfo->DemoteRegister = SRetReg; 7702 NewRoot = 7703 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7704 DAG.setRoot(NewRoot); 7705 7706 // i indexes lowered arguments. Bump it past the hidden sret argument. 7707 // Idx indexes LLVM arguments. Don't touch it. 7708 ++i; 7709 } 7710 7711 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7712 ++I, ++Idx) { 7713 SmallVector<SDValue, 4> ArgValues; 7714 SmallVector<EVT, 4> ValueVTs; 7715 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7716 unsigned NumValues = ValueVTs.size(); 7717 7718 // If this argument is unused then remember its value. It is used to generate 7719 // debugging information. 7720 if (I->use_empty() && NumValues) { 7721 SDB->setUnusedArgValue(I, InVals[i]); 7722 7723 // Also remember any frame index for use in FastISel. 7724 if (FrameIndexSDNode *FI = 7725 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7726 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7727 } 7728 7729 for (unsigned Val = 0; Val != NumValues; ++Val) { 7730 EVT VT = ValueVTs[Val]; 7731 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7732 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7733 7734 if (!I->use_empty()) { 7735 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7736 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7737 AssertOp = ISD::AssertSext; 7738 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7739 AssertOp = ISD::AssertZext; 7740 7741 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7742 NumParts, PartVT, VT, 7743 nullptr, AssertOp)); 7744 } 7745 7746 i += NumParts; 7747 } 7748 7749 // We don't need to do anything else for unused arguments. 7750 if (ArgValues.empty()) 7751 continue; 7752 7753 // Note down frame index. 7754 if (FrameIndexSDNode *FI = 7755 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7756 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7757 7758 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7759 SDB->getCurSDLoc()); 7760 7761 SDB->setValue(I, Res); 7762 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7763 if (LoadSDNode *LNode = 7764 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7765 if (FrameIndexSDNode *FI = 7766 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7767 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7768 } 7769 7770 // If this argument is live outside of the entry block, insert a copy from 7771 // wherever we got it to the vreg that other BB's will reference it as. 7772 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7773 // If we can, though, try to skip creating an unnecessary vreg. 7774 // FIXME: This isn't very clean... it would be nice to make this more 7775 // general. It's also subtly incompatible with the hacks FastISel 7776 // uses with vregs. 7777 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7778 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7779 FuncInfo->ValueMap[I] = Reg; 7780 continue; 7781 } 7782 } 7783 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7784 FuncInfo->InitializeRegForValue(I); 7785 SDB->CopyToExportRegsIfNeeded(I); 7786 } 7787 } 7788 7789 assert(i == InVals.size() && "Argument register count mismatch!"); 7790 7791 // Finally, if the target has anything special to do, allow it to do so. 7792 // FIXME: this should insert code into the DAG! 7793 EmitFunctionEntryCode(); 7794 } 7795 7796 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7797 /// ensure constants are generated when needed. Remember the virtual registers 7798 /// that need to be added to the Machine PHI nodes as input. We cannot just 7799 /// directly add them, because expansion might result in multiple MBB's for one 7800 /// BB. As such, the start of the BB might correspond to a different MBB than 7801 /// the end. 7802 /// 7803 void 7804 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7805 const TerminatorInst *TI = LLVMBB->getTerminator(); 7806 7807 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7808 7809 // Check successor nodes' PHI nodes that expect a constant to be available 7810 // from this block. 7811 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7812 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7813 if (!isa<PHINode>(SuccBB->begin())) continue; 7814 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7815 7816 // If this terminator has multiple identical successors (common for 7817 // switches), only handle each succ once. 7818 if (!SuccsHandled.insert(SuccMBB).second) 7819 continue; 7820 7821 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7822 7823 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7824 // nodes and Machine PHI nodes, but the incoming operands have not been 7825 // emitted yet. 7826 for (BasicBlock::const_iterator I = SuccBB->begin(); 7827 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7828 // Ignore dead phi's. 7829 if (PN->use_empty()) continue; 7830 7831 // Skip empty types 7832 if (PN->getType()->isEmptyTy()) 7833 continue; 7834 7835 unsigned Reg; 7836 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7837 7838 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7839 unsigned &RegOut = ConstantsOut[C]; 7840 if (RegOut == 0) { 7841 RegOut = FuncInfo.CreateRegs(C->getType()); 7842 CopyValueToVirtualRegister(C, RegOut); 7843 } 7844 Reg = RegOut; 7845 } else { 7846 DenseMap<const Value *, unsigned>::iterator I = 7847 FuncInfo.ValueMap.find(PHIOp); 7848 if (I != FuncInfo.ValueMap.end()) 7849 Reg = I->second; 7850 else { 7851 assert(isa<AllocaInst>(PHIOp) && 7852 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7853 "Didn't codegen value into a register!??"); 7854 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7855 CopyValueToVirtualRegister(PHIOp, Reg); 7856 } 7857 } 7858 7859 // Remember that this register needs to added to the machine PHI node as 7860 // the input for this MBB. 7861 SmallVector<EVT, 4> ValueVTs; 7862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7863 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7864 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7865 EVT VT = ValueVTs[vti]; 7866 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7867 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7868 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7869 Reg += NumRegisters; 7870 } 7871 } 7872 } 7873 7874 ConstantsOut.clear(); 7875 } 7876 7877 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7878 /// is 0. 7879 MachineBasicBlock * 7880 SelectionDAGBuilder::StackProtectorDescriptor:: 7881 AddSuccessorMBB(const BasicBlock *BB, 7882 MachineBasicBlock *ParentMBB, 7883 bool IsLikely, 7884 MachineBasicBlock *SuccMBB) { 7885 // If SuccBB has not been created yet, create it. 7886 if (!SuccMBB) { 7887 MachineFunction *MF = ParentMBB->getParent(); 7888 MachineFunction::iterator BBI = ParentMBB; 7889 SuccMBB = MF->CreateMachineBasicBlock(BB); 7890 MF->insert(++BBI, SuccMBB); 7891 } 7892 // Add it as a successor of ParentMBB. 7893 ParentMBB->addSuccessor( 7894 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7895 return SuccMBB; 7896 } 7897