xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision fb3e3ef62e625e297ee9648e60b6e1c10eda3644)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfo.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/EHPersonalities.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <optional>
104 #include <tuple>
105 
106 using namespace llvm;
107 using namespace PatternMatch;
108 using namespace SwitchCG;
109 
110 #define DEBUG_TYPE "isel"
111 
112 /// LimitFloatPrecision - Generate low-precision inline sequences for
113 /// some float libcalls (6, 8 or 12 bits).
114 static unsigned LimitFloatPrecision;
115 
116 static cl::opt<bool>
117     InsertAssertAlign("insert-assert-align", cl::init(true),
118                       cl::desc("Insert the experimental `assertalign` node."),
119                       cl::ReallyHidden);
120 
121 static cl::opt<unsigned, true>
122     LimitFPPrecision("limit-float-precision",
123                      cl::desc("Generate low-precision inline sequences "
124                               "for some float libcalls"),
125                      cl::location(LimitFloatPrecision), cl::Hidden,
126                      cl::init(0));
127 
128 static cl::opt<unsigned> SwitchPeelThreshold(
129     "switch-peel-threshold", cl::Hidden, cl::init(66),
130     cl::desc("Set the case probability threshold for peeling the case from a "
131              "switch statement. A value greater than 100 will void this "
132              "optimization"));
133 
134 // Limit the width of DAG chains. This is important in general to prevent
135 // DAG-based analysis from blowing up. For example, alias analysis and
136 // load clustering may not complete in reasonable time. It is difficult to
137 // recognize and avoid this situation within each individual analysis, and
138 // future analyses are likely to have the same behavior. Limiting DAG width is
139 // the safe approach and will be especially important with global DAGs.
140 //
141 // MaxParallelChains default is arbitrarily high to avoid affecting
142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
143 // sequence over this should have been converted to llvm.memcpy by the
144 // frontend. It is easy to induce this behavior with .ll code such as:
145 // %buffer = alloca [4096 x i8]
146 // %data = load [4096 x i8]* %argPtr
147 // store [4096 x i8] %data, [4096 x i8]* %buffer
148 static const unsigned MaxParallelChains = 64;
149 
150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
151                                       const SDValue *Parts, unsigned NumParts,
152                                       MVT PartVT, EVT ValueVT, const Value *V,
153                                       std::optional<CallingConv::ID> CC);
154 
155 /// getCopyFromParts - Create a value that contains the specified legal parts
156 /// combined into the value they represent.  If the parts combine to a type
157 /// larger than ValueVT then AssertOp can be used to specify whether the extra
158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
159 /// (ISD::AssertSext).
160 static SDValue
161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
162                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
163                  std::optional<CallingConv::ID> CC = std::nullopt,
164                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
165   // Let the target assemble the parts if it wants to
166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
167   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
168                                                    PartVT, ValueVT, CC))
169     return Val;
170 
171   if (ValueVT.isVector())
172     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
173                                   CC);
174 
175   assert(NumParts > 0 && "No parts to assemble!");
176   SDValue Val = Parts[0];
177 
178   if (NumParts > 1) {
179     // Assemble the value from multiple parts.
180     if (ValueVT.isInteger()) {
181       unsigned PartBits = PartVT.getSizeInBits();
182       unsigned ValueBits = ValueVT.getSizeInBits();
183 
184       // Assemble the power of 2 part.
185       unsigned RoundParts = llvm::bit_floor(NumParts);
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       std::optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the parts vector has more elements than the value vector, then we
402     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
403     // Extract the elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
418         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419     }
420 
421     // Promoted vector extract
422     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
423   }
424 
425   // Trivial bitcast if the types are the same size and the destination
426   // vector type is legal.
427   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
428       TLI.isTypeLegal(ValueVT))
429     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
430 
431   if (ValueVT.getVectorNumElements() != 1) {
432      // Certain ABIs require that vectors are passed as integers. For vectors
433      // are the same size, this is an obvious bitcast.
434      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
435        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436      } else if (ValueVT.bitsLT(PartEVT)) {
437        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
438        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
439        // Drop the extra bits.
440        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
441        return DAG.getBitcast(ValueVT, Val);
442      }
443 
444      diagnosePossiblyInvalidConstraint(
445          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
446      return DAG.getUNDEF(ValueVT);
447   }
448 
449   // Handle cases such as i8 -> <1 x i1>
450   EVT ValueSVT = ValueVT.getVectorElementType();
451   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
452     unsigned ValueSize = ValueSVT.getSizeInBits();
453     if (ValueSize == PartEVT.getSizeInBits()) {
454       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
455     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
456       // It's possible a scalar floating point type gets softened to integer and
457       // then promoted to a larger integer. If PartEVT is the larger integer
458       // we need to truncate it and then bitcast to the FP type.
459       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
460       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462       Val = DAG.getBitcast(ValueSVT, Val);
463     } else {
464       Val = ValueVT.isFloatingPoint()
465                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467     }
468   }
469 
470   return DAG.getBuildVector(ValueVT, DL, Val);
471 }
472 
473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V,
476                                  std::optional<CallingConv::ID> CallConv);
477 
478 /// getCopyToParts - Create a series of nodes that contain the specified value
479 /// split into legal parts.  If the parts contain more bits than Val, then, for
480 /// integers, ExtendKind can be used to specify how to generate the extra bits.
481 static void
482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
483                unsigned NumParts, MVT PartVT, const Value *V,
484                std::optional<CallingConv::ID> CallConv = std::nullopt,
485                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
486   // Let the target split the parts if it wants to
487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
488   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
489                                       CallConv))
490     return;
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = llvm::bit_floor(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
575 
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
619                                      const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   ElementCount PartNumElts = PartVT.getVectorElementCount();
625   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
626 
627   // We only support widening vectors with equivalent element types and
628   // fixed/scalable properties. If a target needs to widen a fixed-length type
629   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
630   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
631       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
632       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
633     return SDValue();
634 
635   // Widening a scalable vector to another scalable vector is done by inserting
636   // the vector into a larger undef one.
637   if (PartNumElts.isScalable())
638     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
639                        Val, DAG.getVectorIdxConstant(0, DL));
640 
641   EVT ElementVT = PartVT.getVectorElementType();
642   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
643   // undef elements.
644   SmallVector<SDValue, 16> Ops;
645   DAG.ExtractVectorElements(Val, Ops);
646   SDValue EltUndef = DAG.getUNDEF(ElementVT);
647   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
648 
649   // FIXME: Use CONCAT for 2x -> 4x.
650   return DAG.getBuildVector(PartVT, DL, Ops);
651 }
652 
653 /// getCopyToPartsVector - Create a series of nodes that contain the specified
654 /// value split into legal parts.
655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
656                                  SDValue Val, SDValue *Parts, unsigned NumParts,
657                                  MVT PartVT, const Value *V,
658                                  std::optional<CallingConv::ID> CallConv) {
659   EVT ValueVT = Val.getValueType();
660   assert(ValueVT.isVector() && "Not a vector");
661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
662   const bool IsABIRegCopy = CallConv.has_value();
663 
664   if (NumParts == 1) {
665     EVT PartEVT = PartVT;
666     if (PartEVT == ValueVT) {
667       // Nothing to do.
668     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
669       // Bitconvert vector->vector case.
670       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
671     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
672       Val = Widened;
673     } else if (PartVT.isVector() &&
674                PartEVT.getVectorElementType().bitsGE(
675                    ValueVT.getVectorElementType()) &&
676                PartEVT.getVectorElementCount() ==
677                    ValueVT.getVectorElementCount()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else if (PartEVT.isVector() &&
682                PartEVT.getVectorElementType() !=
683                    ValueVT.getVectorElementType() &&
684                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
685                    TargetLowering::TypeWidenVector) {
686       // Combination of widening and promotion.
687       EVT WidenVT =
688           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
689                            PartVT.getVectorElementCount());
690       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
691       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
692     } else {
693       // Don't extract an integer from a float vector. This can happen if the
694       // FP type gets softened to integer and then promoted. The promotion
695       // prevents it from being picked up by the earlier bitcast case.
696       if (ValueVT.getVectorElementCount().isScalar() &&
697           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
698         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
699                           DAG.getVectorIdxConstant(0, DL));
700       } else {
701         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
702         assert(PartVT.getFixedSizeInBits() > ValueSize &&
703                "lossy conversion of vector to scalar type");
704         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
705         Val = DAG.getBitcast(IntermediateType, Val);
706         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
707       }
708     }
709 
710     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
711     Parts[0] = Val;
712     return;
713   }
714 
715   // Handle a multi-element vector.
716   EVT IntermediateVT;
717   MVT RegisterVT;
718   unsigned NumIntermediates;
719   unsigned NumRegs;
720   if (IsABIRegCopy) {
721     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
722         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
723         RegisterVT);
724   } else {
725     NumRegs =
726         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
727                                    NumIntermediates, RegisterVT);
728   }
729 
730   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
731   NumParts = NumRegs; // Silence a compiler warning.
732   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
733 
734   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
735          "Mixing scalable and fixed vectors when copying in parts");
736 
737   std::optional<ElementCount> DestEltCnt;
738 
739   if (IntermediateVT.isVector())
740     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
741   else
742     DestEltCnt = ElementCount::getFixed(NumIntermediates);
743 
744   EVT BuiltVectorTy = EVT::getVectorVT(
745       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
746 
747   if (ValueVT == BuiltVectorTy) {
748     // Nothing to do.
749   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
750     // Bitconvert vector->vector case.
751     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
752   } else {
753     if (BuiltVectorTy.getVectorElementType().bitsGT(
754             ValueVT.getVectorElementType())) {
755       // Integer promotion.
756       ValueVT = EVT::getVectorVT(*DAG.getContext(),
757                                  BuiltVectorTy.getVectorElementType(),
758                                  ValueVT.getVectorElementCount());
759       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
760     }
761 
762     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
763       Val = Widened;
764     }
765   }
766 
767   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
768 
769   // Split the vector into intermediate operands.
770   SmallVector<SDValue, 8> Ops(NumIntermediates);
771   for (unsigned i = 0; i != NumIntermediates; ++i) {
772     if (IntermediateVT.isVector()) {
773       // This does something sensible for scalable vectors - see the
774       // definition of EXTRACT_SUBVECTOR for further details.
775       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
776       Ops[i] =
777           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
778                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
779     } else {
780       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
781                            DAG.getVectorIdxConstant(i, DL));
782     }
783   }
784 
785   // Split the intermediate operands into legal parts.
786   if (NumParts == NumIntermediates) {
787     // If the register was not expanded, promote or copy the value,
788     // as appropriate.
789     for (unsigned i = 0; i != NumParts; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
791   } else if (NumParts > 0) {
792     // If the intermediate type was expanded, split each the value into
793     // legal parts.
794     assert(NumIntermediates != 0 && "division by zero");
795     assert(NumParts % NumIntermediates == 0 &&
796            "Must expand into a divisible number of parts!");
797     unsigned Factor = NumParts / NumIntermediates;
798     for (unsigned i = 0; i != NumIntermediates; ++i)
799       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
800                      CallConv);
801   }
802 }
803 
804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
805                            EVT valuevt, std::optional<CallingConv::ID> CC)
806     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
807       RegCount(1, regs.size()), CallConv(CC) {}
808 
809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
810                            const DataLayout &DL, unsigned Reg, Type *Ty,
811                            std::optional<CallingConv::ID> CC) {
812   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
813 
814   CallConv = CC;
815 
816   for (EVT ValueVT : ValueVTs) {
817     unsigned NumRegs =
818         isABIMangled()
819             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
820             : TLI.getNumRegisters(Context, ValueVT);
821     MVT RegisterVT =
822         isABIMangled()
823             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
824             : TLI.getRegisterType(Context, ValueVT);
825     for (unsigned i = 0; i != NumRegs; ++i)
826       Regs.push_back(Reg + i);
827     RegVTs.push_back(RegisterVT);
828     RegCount.push_back(NumRegs);
829     Reg += NumRegs;
830   }
831 }
832 
833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
834                                       FunctionLoweringInfo &FuncInfo,
835                                       const SDLoc &dl, SDValue &Chain,
836                                       SDValue *Flag, const Value *V) const {
837   // A Value with type {} or [0 x %t] needs no registers.
838   if (ValueVTs.empty())
839     return SDValue();
840 
841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
842 
843   // Assemble the legal parts into the final values.
844   SmallVector<SDValue, 4> Values(ValueVTs.size());
845   SmallVector<SDValue, 8> Parts;
846   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
847     // Copy the legal parts from the registers.
848     EVT ValueVT = ValueVTs[Value];
849     unsigned NumRegs = RegCount[Value];
850     MVT RegisterVT = isABIMangled()
851                          ? TLI.getRegisterTypeForCallingConv(
852                                *DAG.getContext(), *CallConv, RegVTs[Value])
853                          : RegVTs[Value];
854 
855     Parts.resize(NumRegs);
856     for (unsigned i = 0; i != NumRegs; ++i) {
857       SDValue P;
858       if (!Flag) {
859         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
860       } else {
861         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
862         *Flag = P.getValue(2);
863       }
864 
865       Chain = P.getValue(1);
866       Parts[i] = P;
867 
868       // If the source register was virtual and if we know something about it,
869       // add an assert node.
870       if (!Register::isVirtualRegister(Regs[Part + i]) ||
871           !RegisterVT.isInteger())
872         continue;
873 
874       const FunctionLoweringInfo::LiveOutInfo *LOI =
875         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
876       if (!LOI)
877         continue;
878 
879       unsigned RegSize = RegisterVT.getScalarSizeInBits();
880       unsigned NumSignBits = LOI->NumSignBits;
881       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
882 
883       if (NumZeroBits == RegSize) {
884         // The current value is a zero.
885         // Explicitly express that as it would be easier for
886         // optimizations to kick in.
887         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
888         continue;
889       }
890 
891       // FIXME: We capture more information than the dag can represent.  For
892       // now, just use the tightest assertzext/assertsext possible.
893       bool isSExt;
894       EVT FromVT(MVT::Other);
895       if (NumZeroBits) {
896         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
897         isSExt = false;
898       } else if (NumSignBits > 1) {
899         FromVT =
900             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
901         isSExt = true;
902       } else {
903         continue;
904       }
905       // Add an assertion node.
906       assert(FromVT != MVT::Other);
907       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
908                              RegisterVT, P, DAG.getValueType(FromVT));
909     }
910 
911     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
912                                      RegisterVT, ValueVT, V, CallConv);
913     Part += NumRegs;
914     Parts.clear();
915   }
916 
917   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
918 }
919 
920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
921                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
922                                  const Value *V,
923                                  ISD::NodeType PreferredExtendType) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925   ISD::NodeType ExtendKind = PreferredExtendType;
926 
927   // Get the list of the values's legal parts.
928   unsigned NumRegs = Regs.size();
929   SmallVector<SDValue, 8> Parts(NumRegs);
930   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
931     unsigned NumParts = RegCount[Value];
932 
933     MVT RegisterVT = isABIMangled()
934                          ? TLI.getRegisterTypeForCallingConv(
935                                *DAG.getContext(), *CallConv, RegVTs[Value])
936                          : RegVTs[Value];
937 
938     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
939       ExtendKind = ISD::ZERO_EXTEND;
940 
941     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
942                    NumParts, RegisterVT, V, CallConv, ExtendKind);
943     Part += NumParts;
944   }
945 
946   // Copy the parts into the registers.
947   SmallVector<SDValue, 8> Chains(NumRegs);
948   for (unsigned i = 0; i != NumRegs; ++i) {
949     SDValue Part;
950     if (!Flag) {
951       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
952     } else {
953       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
954       *Flag = Part.getValue(1);
955     }
956 
957     Chains[i] = Part.getValue(0);
958   }
959 
960   if (NumRegs == 1 || Flag)
961     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
962     // flagged to it. That is the CopyToReg nodes and the user are considered
963     // a single scheduling unit. If we create a TokenFactor and return it as
964     // chain, then the TokenFactor is both a predecessor (operand) of the
965     // user as well as a successor (the TF operands are flagged to the user).
966     // c1, f1 = CopyToReg
967     // c2, f2 = CopyToReg
968     // c3     = TokenFactor c1, c2
969     // ...
970     //        = op c3, ..., f2
971     Chain = Chains[NumRegs-1];
972   else
973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
974 }
975 
976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
977                                         unsigned MatchingIdx, const SDLoc &dl,
978                                         SelectionDAG &DAG,
979                                         std::vector<SDValue> &Ops) const {
980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
981 
982   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
983   if (HasMatching)
984     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
985   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
986     // Put the register class of the virtual registers in the flag word.  That
987     // way, later passes can recompute register class constraints for inline
988     // assembly as well as normal instructions.
989     // Don't do this for tied operands that can use the regclass information
990     // from the def.
991     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
992     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
993     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
994   }
995 
996   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
997   Ops.push_back(Res);
998 
999   if (Code == InlineAsm::Kind_Clobber) {
1000     // Clobbers should always have a 1:1 mapping with registers, and may
1001     // reference registers that have illegal (e.g. vector) types. Hence, we
1002     // shouldn't try to apply any sort of splitting logic to them.
1003     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1004            "No 1:1 mapping from clobbers to regs?");
1005     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1006     (void)SP;
1007     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1008       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1009       assert(
1010           (Regs[I] != SP ||
1011            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1012           "If we clobbered the stack pointer, MFI should know about it.");
1013     }
1014     return;
1015   }
1016 
1017   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1018     MVT RegisterVT = RegVTs[Value];
1019     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1020                                            RegisterVT);
1021     for (unsigned i = 0; i != NumRegs; ++i) {
1022       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1023       unsigned TheReg = Regs[Reg++];
1024       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1025     }
1026   }
1027 }
1028 
1029 SmallVector<std::pair<unsigned, TypeSize>, 4>
1030 RegsForValue::getRegsAndSizes() const {
1031   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1032   unsigned I = 0;
1033   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1034     unsigned RegCount = std::get<0>(CountAndVT);
1035     MVT RegisterVT = std::get<1>(CountAndVT);
1036     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1037     for (unsigned E = I + RegCount; I != E; ++I)
1038       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1039   }
1040   return OutVec;
1041 }
1042 
1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1044                                AssumptionCache *ac,
1045                                const TargetLibraryInfo *li) {
1046   AA = aa;
1047   AC = ac;
1048   GFI = gfi;
1049   LibInfo = li;
1050   Context = DAG.getContext();
1051   LPadToCallSiteMap.clear();
1052   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1053 }
1054 
1055 void SelectionDAGBuilder::clear() {
1056   NodeMap.clear();
1057   UnusedArgNodeMap.clear();
1058   PendingLoads.clear();
1059   PendingExports.clear();
1060   PendingConstrainedFP.clear();
1061   PendingConstrainedFPStrict.clear();
1062   CurInst = nullptr;
1063   HasTailCall = false;
1064   SDNodeOrder = LowestSDNodeOrder;
1065   StatepointLowering.clear();
1066 }
1067 
1068 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1069   DanglingDebugInfoMap.clear();
1070 }
1071 
1072 // Update DAG root to include dependencies on Pending chains.
1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1074   SDValue Root = DAG.getRoot();
1075 
1076   if (Pending.empty())
1077     return Root;
1078 
1079   // Add current root to PendingChains, unless we already indirectly
1080   // depend on it.
1081   if (Root.getOpcode() != ISD::EntryToken) {
1082     unsigned i = 0, e = Pending.size();
1083     for (; i != e; ++i) {
1084       assert(Pending[i].getNode()->getNumOperands() > 1);
1085       if (Pending[i].getNode()->getOperand(0) == Root)
1086         break;  // Don't add the root if we already indirectly depend on it.
1087     }
1088 
1089     if (i == e)
1090       Pending.push_back(Root);
1091   }
1092 
1093   if (Pending.size() == 1)
1094     Root = Pending[0];
1095   else
1096     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1097 
1098   DAG.setRoot(Root);
1099   Pending.clear();
1100   return Root;
1101 }
1102 
1103 SDValue SelectionDAGBuilder::getMemoryRoot() {
1104   return updateRoot(PendingLoads);
1105 }
1106 
1107 SDValue SelectionDAGBuilder::getRoot() {
1108   // Chain up all pending constrained intrinsics together with all
1109   // pending loads, by simply appending them to PendingLoads and
1110   // then calling getMemoryRoot().
1111   PendingLoads.reserve(PendingLoads.size() +
1112                        PendingConstrainedFP.size() +
1113                        PendingConstrainedFPStrict.size());
1114   PendingLoads.append(PendingConstrainedFP.begin(),
1115                       PendingConstrainedFP.end());
1116   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1117                       PendingConstrainedFPStrict.end());
1118   PendingConstrainedFP.clear();
1119   PendingConstrainedFPStrict.clear();
1120   return getMemoryRoot();
1121 }
1122 
1123 SDValue SelectionDAGBuilder::getControlRoot() {
1124   // We need to emit pending fpexcept.strict constrained intrinsics,
1125   // so append them to the PendingExports list.
1126   PendingExports.append(PendingConstrainedFPStrict.begin(),
1127                         PendingConstrainedFPStrict.end());
1128   PendingConstrainedFPStrict.clear();
1129   return updateRoot(PendingExports);
1130 }
1131 
1132 void SelectionDAGBuilder::visit(const Instruction &I) {
1133   // Set up outgoing PHI node register values before emitting the terminator.
1134   if (I.isTerminator()) {
1135     HandlePHINodesInSuccessorBlocks(I.getParent());
1136   }
1137 
1138   // Add SDDbgValue nodes for any var locs here. Do so before updating
1139   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1140   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1141     // Add SDDbgValue nodes for any var locs here. Do so before updating
1142     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1143     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1144          It != End; ++It) {
1145       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1146       dropDanglingDebugInfo(Var, It->Expr);
1147       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1148                             /*IsVariadic=*/false))
1149         addDanglingDebugInfo(It, SDNodeOrder);
1150     }
1151   }
1152 
1153   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1154   if (!isa<DbgInfoIntrinsic>(I))
1155     ++SDNodeOrder;
1156 
1157   CurInst = &I;
1158 
1159   // Set inserted listener only if required.
1160   bool NodeInserted = false;
1161   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1162   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1163   if (PCSectionsMD) {
1164     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1165         DAG, [&](SDNode *) { NodeInserted = true; });
1166   }
1167 
1168   visit(I.getOpcode(), I);
1169 
1170   if (!I.isTerminator() && !HasTailCall &&
1171       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1172     CopyToExportRegsIfNeeded(&I);
1173 
1174   // Handle metadata.
1175   if (PCSectionsMD) {
1176     auto It = NodeMap.find(&I);
1177     if (It != NodeMap.end()) {
1178       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1179     } else if (NodeInserted) {
1180       // This should not happen; if it does, don't let it go unnoticed so we can
1181       // fix it. Relevant visit*() function is probably missing a setValue().
1182       errs() << "warning: loosing !pcsections metadata ["
1183              << I.getModule()->getName() << "]\n";
1184       LLVM_DEBUG(I.dump());
1185       assert(false);
1186     }
1187   }
1188 
1189   CurInst = nullptr;
1190 }
1191 
1192 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1193   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1194 }
1195 
1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1197   // Note: this doesn't use InstVisitor, because it has to work with
1198   // ConstantExpr's in addition to instructions.
1199   switch (Opcode) {
1200   default: llvm_unreachable("Unknown instruction type encountered!");
1201     // Build the switch statement using the Instruction.def file.
1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1203     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1204 #include "llvm/IR/Instruction.def"
1205   }
1206 }
1207 
1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1209                                                unsigned Order) {
1210   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1211 }
1212 
1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1214                                                unsigned Order) {
1215   // We treat variadic dbg_values differently at this stage.
1216   if (DI->hasArgList()) {
1217     // For variadic dbg_values we will now insert an undef.
1218     // FIXME: We can potentially recover these!
1219     SmallVector<SDDbgOperand, 2> Locs;
1220     for (const Value *V : DI->getValues()) {
1221       auto Undef = UndefValue::get(V->getType());
1222       Locs.push_back(SDDbgOperand::fromConst(Undef));
1223     }
1224     SDDbgValue *SDV = DAG.getDbgValueList(
1225         DI->getVariable(), DI->getExpression(), Locs, {},
1226         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1227     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1228   } else {
1229     // TODO: Dangling debug info will eventually either be resolved or produce
1230     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1231     // between the original dbg.value location and its resolved DBG_VALUE,
1232     // which we should ideally fill with an extra Undef DBG_VALUE.
1233     assert(DI->getNumVariableLocationOps() == 1 &&
1234            "DbgValueInst without an ArgList should have a single location "
1235            "operand.");
1236     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1237   }
1238 }
1239 
1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1241                                                 const DIExpression *Expr) {
1242   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1243     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1244     DIExpression *DanglingExpr = DDI.getExpression();
1245     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1246       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1247                         << "\n");
1248       return true;
1249     }
1250     return false;
1251   };
1252 
1253   for (auto &DDIMI : DanglingDebugInfoMap) {
1254     DanglingDebugInfoVector &DDIV = DDIMI.second;
1255 
1256     // If debug info is to be dropped, run it through final checks to see
1257     // whether it can be salvaged.
1258     for (auto &DDI : DDIV)
1259       if (isMatchingDbgValue(DDI))
1260         salvageUnresolvedDbgValue(DDI);
1261 
1262     erase_if(DDIV, isMatchingDbgValue);
1263   }
1264 }
1265 
1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1267 // generate the debug data structures now that we've seen its definition.
1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1269                                                    SDValue Val) {
1270   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1271   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1272     return;
1273 
1274   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1275   for (auto &DDI : DDIV) {
1276     DebugLoc DL = DDI.getDebugLoc();
1277     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1278     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1279     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1280     DIExpression *Expr = DDI.getExpression();
1281     assert(Variable->isValidLocationForIntrinsic(DL) &&
1282            "Expected inlined-at fields to agree");
1283     SDDbgValue *SDV;
1284     if (Val.getNode()) {
1285       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1286       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1287       // we couldn't resolve it directly when examining the DbgValue intrinsic
1288       // in the first place we should not be more successful here). Unless we
1289       // have some test case that prove this to be correct we should avoid
1290       // calling EmitFuncArgumentDbgValue here.
1291       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1292                                     FuncArgumentDbgValueKind::Value, Val)) {
1293         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1294                           << "\n");
1295         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1296         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1297         // inserted after the definition of Val when emitting the instructions
1298         // after ISel. An alternative could be to teach
1299         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1300         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1301                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1302                    << ValSDNodeOrder << "\n");
1303         SDV = getDbgValue(Val, Variable, Expr, DL,
1304                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1305         DAG.AddDbgValue(SDV, false);
1306       } else
1307         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1308                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1309     } else {
1310       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1311       auto Undef = UndefValue::get(V->getType());
1312       auto SDV =
1313           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1314       DAG.AddDbgValue(SDV, false);
1315     }
1316   }
1317   DDIV.clear();
1318 }
1319 
1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1321   // TODO: For the variadic implementation, instead of only checking the fail
1322   // state of `handleDebugValue`, we need know specifically which values were
1323   // invalid, so that we attempt to salvage only those values when processing
1324   // a DIArgList.
1325   Value *V = DDI.getVariableLocationOp(0);
1326   Value *OrigV = V;
1327   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1328   DIExpression *Expr = DDI.getExpression();
1329   DebugLoc DL = DDI.getDebugLoc();
1330   unsigned SDOrder = DDI.getSDNodeOrder();
1331 
1332   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1333   // that DW_OP_stack_value is desired.
1334   bool StackValue = true;
1335 
1336   // Can this Value can be encoded without any further work?
1337   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1338     return;
1339 
1340   // Attempt to salvage back through as many instructions as possible. Bail if
1341   // a non-instruction is seen, such as a constant expression or global
1342   // variable. FIXME: Further work could recover those too.
1343   while (isa<Instruction>(V)) {
1344     Instruction &VAsInst = *cast<Instruction>(V);
1345     // Temporary "0", awaiting real implementation.
1346     SmallVector<uint64_t, 16> Ops;
1347     SmallVector<Value *, 4> AdditionalValues;
1348     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1349                              AdditionalValues);
1350     // If we cannot salvage any further, and haven't yet found a suitable debug
1351     // expression, bail out.
1352     if (!V)
1353       break;
1354 
1355     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1356     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1357     // here for variadic dbg_values, remove that condition.
1358     if (!AdditionalValues.empty())
1359       break;
1360 
1361     // New value and expr now represent this debuginfo.
1362     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1363 
1364     // Some kind of simplification occurred: check whether the operand of the
1365     // salvaged debug expression can be encoded in this DAG.
1366     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1367       LLVM_DEBUG(
1368           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1369                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1370       return;
1371     }
1372   }
1373 
1374   // This was the final opportunity to salvage this debug information, and it
1375   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1376   // any earlier variable location.
1377   assert(OrigV && "V shouldn't be null");
1378   auto *Undef = UndefValue::get(OrigV->getType());
1379   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1380   DAG.AddDbgValue(SDV, false);
1381   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1382                     << "\n");
1383 }
1384 
1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1386                                            DILocalVariable *Var,
1387                                            DIExpression *Expr, DebugLoc DbgLoc,
1388                                            unsigned Order, bool IsVariadic) {
1389   if (Values.empty())
1390     return true;
1391   SmallVector<SDDbgOperand> LocationOps;
1392   SmallVector<SDNode *> Dependencies;
1393   for (const Value *V : Values) {
1394     // Constant value.
1395     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1396         isa<ConstantPointerNull>(V)) {
1397       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1398       continue;
1399     }
1400 
1401     // Look through IntToPtr constants.
1402     if (auto *CE = dyn_cast<ConstantExpr>(V))
1403       if (CE->getOpcode() == Instruction::IntToPtr) {
1404         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1405         continue;
1406       }
1407 
1408     // If the Value is a frame index, we can create a FrameIndex debug value
1409     // without relying on the DAG at all.
1410     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1411       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1412       if (SI != FuncInfo.StaticAllocaMap.end()) {
1413         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1414         continue;
1415       }
1416     }
1417 
1418     // Do not use getValue() in here; we don't want to generate code at
1419     // this point if it hasn't been done yet.
1420     SDValue N = NodeMap[V];
1421     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1422       N = UnusedArgNodeMap[V];
1423     if (N.getNode()) {
1424       // Only emit func arg dbg value for non-variadic dbg.values for now.
1425       if (!IsVariadic &&
1426           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1427                                    FuncArgumentDbgValueKind::Value, N))
1428         return true;
1429       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1430         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1431         // describe stack slot locations.
1432         //
1433         // Consider "int x = 0; int *px = &x;". There are two kinds of
1434         // interesting debug values here after optimization:
1435         //
1436         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1437         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1438         //
1439         // Both describe the direct values of their associated variables.
1440         Dependencies.push_back(N.getNode());
1441         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1442         continue;
1443       }
1444       LocationOps.emplace_back(
1445           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1446       continue;
1447     }
1448 
1449     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1450     // Special rules apply for the first dbg.values of parameter variables in a
1451     // function. Identify them by the fact they reference Argument Values, that
1452     // they're parameters, and they are parameters of the current function. We
1453     // need to let them dangle until they get an SDNode.
1454     bool IsParamOfFunc =
1455         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1456     if (IsParamOfFunc)
1457       return false;
1458 
1459     // The value is not used in this block yet (or it would have an SDNode).
1460     // We still want the value to appear for the user if possible -- if it has
1461     // an associated VReg, we can refer to that instead.
1462     auto VMI = FuncInfo.ValueMap.find(V);
1463     if (VMI != FuncInfo.ValueMap.end()) {
1464       unsigned Reg = VMI->second;
1465       // If this is a PHI node, it may be split up into several MI PHI nodes
1466       // (in FunctionLoweringInfo::set).
1467       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1468                        V->getType(), std::nullopt);
1469       if (RFV.occupiesMultipleRegs()) {
1470         // FIXME: We could potentially support variadic dbg_values here.
1471         if (IsVariadic)
1472           return false;
1473         unsigned Offset = 0;
1474         unsigned BitsToDescribe = 0;
1475         if (auto VarSize = Var->getSizeInBits())
1476           BitsToDescribe = *VarSize;
1477         if (auto Fragment = Expr->getFragmentInfo())
1478           BitsToDescribe = Fragment->SizeInBits;
1479         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1480           // Bail out if all bits are described already.
1481           if (Offset >= BitsToDescribe)
1482             break;
1483           // TODO: handle scalable vectors.
1484           unsigned RegisterSize = RegAndSize.second;
1485           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1486                                       ? BitsToDescribe - Offset
1487                                       : RegisterSize;
1488           auto FragmentExpr = DIExpression::createFragmentExpression(
1489               Expr, Offset, FragmentSize);
1490           if (!FragmentExpr)
1491             continue;
1492           SDDbgValue *SDV = DAG.getVRegDbgValue(
1493               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1494           DAG.AddDbgValue(SDV, false);
1495           Offset += RegisterSize;
1496         }
1497         return true;
1498       }
1499       // We can use simple vreg locations for variadic dbg_values as well.
1500       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1501       continue;
1502     }
1503     // We failed to create a SDDbgOperand for V.
1504     return false;
1505   }
1506 
1507   // We have created a SDDbgOperand for each Value in Values.
1508   // Should use Order instead of SDNodeOrder?
1509   assert(!LocationOps.empty());
1510   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1511                                         /*IsIndirect=*/false, DbgLoc,
1512                                         SDNodeOrder, IsVariadic);
1513   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1514   return true;
1515 }
1516 
1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1518   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1519   for (auto &Pair : DanglingDebugInfoMap)
1520     for (auto &DDI : Pair.second)
1521       salvageUnresolvedDbgValue(DDI);
1522   clearDanglingDebugInfo();
1523 }
1524 
1525 /// getCopyFromRegs - If there was virtual register allocated for the value V
1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1528   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1529   SDValue Result;
1530 
1531   if (It != FuncInfo.ValueMap.end()) {
1532     Register InReg = It->second;
1533 
1534     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1535                      DAG.getDataLayout(), InReg, Ty,
1536                      std::nullopt); // This is not an ABI copy.
1537     SDValue Chain = DAG.getEntryNode();
1538     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1539                                  V);
1540     resolveDanglingDebugInfo(V, Result);
1541   }
1542 
1543   return Result;
1544 }
1545 
1546 /// getValue - Return an SDValue for the given Value.
1547 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1548   // If we already have an SDValue for this value, use it. It's important
1549   // to do this first, so that we don't create a CopyFromReg if we already
1550   // have a regular SDValue.
1551   SDValue &N = NodeMap[V];
1552   if (N.getNode()) return N;
1553 
1554   // If there's a virtual register allocated and initialized for this
1555   // value, use it.
1556   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1557     return copyFromReg;
1558 
1559   // Otherwise create a new SDValue and remember it.
1560   SDValue Val = getValueImpl(V);
1561   NodeMap[V] = Val;
1562   resolveDanglingDebugInfo(V, Val);
1563   return Val;
1564 }
1565 
1566 /// getNonRegisterValue - Return an SDValue for the given Value, but
1567 /// don't look in FuncInfo.ValueMap for a virtual register.
1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1569   // If we already have an SDValue for this value, use it.
1570   SDValue &N = NodeMap[V];
1571   if (N.getNode()) {
1572     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1573       // Remove the debug location from the node as the node is about to be used
1574       // in a location which may differ from the original debug location.  This
1575       // is relevant to Constant and ConstantFP nodes because they can appear
1576       // as constant expressions inside PHI nodes.
1577       N->setDebugLoc(DebugLoc());
1578     }
1579     return N;
1580   }
1581 
1582   // Otherwise create a new SDValue and remember it.
1583   SDValue Val = getValueImpl(V);
1584   NodeMap[V] = Val;
1585   resolveDanglingDebugInfo(V, Val);
1586   return Val;
1587 }
1588 
1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1590 /// Create an SDValue for the given value.
1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1593 
1594   if (const Constant *C = dyn_cast<Constant>(V)) {
1595     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1596 
1597     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1598       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1599 
1600     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1601       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1602 
1603     if (isa<ConstantPointerNull>(C)) {
1604       unsigned AS = V->getType()->getPointerAddressSpace();
1605       return DAG.getConstant(0, getCurSDLoc(),
1606                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1607     }
1608 
1609     if (match(C, m_VScale(DAG.getDataLayout())))
1610       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1611 
1612     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1613       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1614 
1615     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1616       return DAG.getUNDEF(VT);
1617 
1618     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1619       visit(CE->getOpcode(), *CE);
1620       SDValue N1 = NodeMap[V];
1621       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1622       return N1;
1623     }
1624 
1625     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1626       SmallVector<SDValue, 4> Constants;
1627       for (const Use &U : C->operands()) {
1628         SDNode *Val = getValue(U).getNode();
1629         // If the operand is an empty aggregate, there are no values.
1630         if (!Val) continue;
1631         // Add each leaf value from the operand to the Constants list
1632         // to form a flattened list of all the values.
1633         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1634           Constants.push_back(SDValue(Val, i));
1635       }
1636 
1637       return DAG.getMergeValues(Constants, getCurSDLoc());
1638     }
1639 
1640     if (const ConstantDataSequential *CDS =
1641           dyn_cast<ConstantDataSequential>(C)) {
1642       SmallVector<SDValue, 4> Ops;
1643       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1644         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1645         // Add each leaf value from the operand to the Constants list
1646         // to form a flattened list of all the values.
1647         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1648           Ops.push_back(SDValue(Val, i));
1649       }
1650 
1651       if (isa<ArrayType>(CDS->getType()))
1652         return DAG.getMergeValues(Ops, getCurSDLoc());
1653       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1654     }
1655 
1656     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1657       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1658              "Unknown struct or array constant!");
1659 
1660       SmallVector<EVT, 4> ValueVTs;
1661       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1662       unsigned NumElts = ValueVTs.size();
1663       if (NumElts == 0)
1664         return SDValue(); // empty struct
1665       SmallVector<SDValue, 4> Constants(NumElts);
1666       for (unsigned i = 0; i != NumElts; ++i) {
1667         EVT EltVT = ValueVTs[i];
1668         if (isa<UndefValue>(C))
1669           Constants[i] = DAG.getUNDEF(EltVT);
1670         else if (EltVT.isFloatingPoint())
1671           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1672         else
1673           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1674       }
1675 
1676       return DAG.getMergeValues(Constants, getCurSDLoc());
1677     }
1678 
1679     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1680       return DAG.getBlockAddress(BA, VT);
1681 
1682     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1683       return getValue(Equiv->getGlobalValue());
1684 
1685     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1686       return getValue(NC->getGlobalValue());
1687 
1688     VectorType *VecTy = cast<VectorType>(V->getType());
1689 
1690     // Now that we know the number and type of the elements, get that number of
1691     // elements into the Ops array based on what kind of constant it is.
1692     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1693       SmallVector<SDValue, 16> Ops;
1694       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1695       for (unsigned i = 0; i != NumElements; ++i)
1696         Ops.push_back(getValue(CV->getOperand(i)));
1697 
1698       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1699     }
1700 
1701     if (isa<ConstantAggregateZero>(C)) {
1702       EVT EltVT =
1703           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1704 
1705       SDValue Op;
1706       if (EltVT.isFloatingPoint())
1707         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1708       else
1709         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1710 
1711       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1712     }
1713 
1714     llvm_unreachable("Unknown vector constant");
1715   }
1716 
1717   // If this is a static alloca, generate it as the frameindex instead of
1718   // computation.
1719   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1720     DenseMap<const AllocaInst*, int>::iterator SI =
1721       FuncInfo.StaticAllocaMap.find(AI);
1722     if (SI != FuncInfo.StaticAllocaMap.end())
1723       return DAG.getFrameIndex(
1724           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1725   }
1726 
1727   // If this is an instruction which fast-isel has deferred, select it now.
1728   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1729     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1730 
1731     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1732                      Inst->getType(), std::nullopt);
1733     SDValue Chain = DAG.getEntryNode();
1734     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1735   }
1736 
1737   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1738     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1739 
1740   if (const auto *BB = dyn_cast<BasicBlock>(V))
1741     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1742 
1743   llvm_unreachable("Can't get register for value!");
1744 }
1745 
1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1749   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1750   bool IsSEH = isAsynchronousEHPersonality(Pers);
1751   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1752   if (!IsSEH)
1753     CatchPadMBB->setIsEHScopeEntry();
1754   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1755   if (IsMSVCCXX || IsCoreCLR)
1756     CatchPadMBB->setIsEHFuncletEntry();
1757 }
1758 
1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1760   // Update machine-CFG edge.
1761   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1762   FuncInfo.MBB->addSuccessor(TargetMBB);
1763   TargetMBB->setIsEHCatchretTarget(true);
1764   DAG.getMachineFunction().setHasEHCatchret(true);
1765 
1766   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1767   bool IsSEH = isAsynchronousEHPersonality(Pers);
1768   if (IsSEH) {
1769     // If this is not a fall-through branch or optimizations are switched off,
1770     // emit the branch.
1771     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1772         TM.getOptLevel() == CodeGenOpt::None)
1773       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1774                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1775     return;
1776   }
1777 
1778   // Figure out the funclet membership for the catchret's successor.
1779   // This will be used by the FuncletLayout pass to determine how to order the
1780   // BB's.
1781   // A 'catchret' returns to the outer scope's color.
1782   Value *ParentPad = I.getCatchSwitchParentPad();
1783   const BasicBlock *SuccessorColor;
1784   if (isa<ConstantTokenNone>(ParentPad))
1785     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1786   else
1787     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1788   assert(SuccessorColor && "No parent funclet for catchret!");
1789   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1790   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1791 
1792   // Create the terminator node.
1793   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1794                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1795                             DAG.getBasicBlock(SuccessorColorMBB));
1796   DAG.setRoot(Ret);
1797 }
1798 
1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1800   // Don't emit any special code for the cleanuppad instruction. It just marks
1801   // the start of an EH scope/funclet.
1802   FuncInfo.MBB->setIsEHScopeEntry();
1803   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1804   if (Pers != EHPersonality::Wasm_CXX) {
1805     FuncInfo.MBB->setIsEHFuncletEntry();
1806     FuncInfo.MBB->setIsCleanupFuncletEntry();
1807   }
1808 }
1809 
1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1811 // not match, it is OK to add only the first unwind destination catchpad to the
1812 // successors, because there will be at least one invoke instruction within the
1813 // catch scope that points to the next unwind destination, if one exists, so
1814 // CFGSort cannot mess up with BB sorting order.
1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1816 // call within them, and catchpads only consisting of 'catch (...)' have a
1817 // '__cxa_end_catch' call within them, both of which generate invokes in case
1818 // the next unwind destination exists, i.e., the next unwind destination is not
1819 // the caller.)
1820 //
1821 // Having at most one EH pad successor is also simpler and helps later
1822 // transformations.
1823 //
1824 // For example,
1825 // current:
1826 //   invoke void @foo to ... unwind label %catch.dispatch
1827 // catch.dispatch:
1828 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1829 // catch.start:
1830 //   ...
1831 //   ... in this BB or some other child BB dominated by this BB there will be an
1832 //   invoke that points to 'next' BB as an unwind destination
1833 //
1834 // next: ; We don't need to add this to 'current' BB's successor
1835 //   ...
1836 static void findWasmUnwindDestinations(
1837     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1838     BranchProbability Prob,
1839     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1840         &UnwindDests) {
1841   while (EHPadBB) {
1842     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1843     if (isa<CleanupPadInst>(Pad)) {
1844       // Stop on cleanup pads.
1845       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1846       UnwindDests.back().first->setIsEHScopeEntry();
1847       break;
1848     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations. We don't
1850       // continue to the unwind destination of the catchswitch for wasm.
1851       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1852         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1853         UnwindDests.back().first->setIsEHScopeEntry();
1854       }
1855       break;
1856     } else {
1857       continue;
1858     }
1859   }
1860 }
1861 
1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1863 /// many places it could ultimately go. In the IR, we have a single unwind
1864 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1865 /// This function skips over imaginary basic blocks that hold catchswitch
1866 /// instructions, and finds all the "real" machine
1867 /// basic block destinations. As those destinations may not be successors of
1868 /// EHPadBB, here we also calculate the edge probability to those destinations.
1869 /// The passed-in Prob is the edge probability to EHPadBB.
1870 static void findUnwindDestinations(
1871     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1872     BranchProbability Prob,
1873     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1874         &UnwindDests) {
1875   EHPersonality Personality =
1876     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1877   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1878   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1879   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1880   bool IsSEH = isAsynchronousEHPersonality(Personality);
1881 
1882   if (IsWasmCXX) {
1883     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1884     assert(UnwindDests.size() <= 1 &&
1885            "There should be at most one unwind destination for wasm");
1886     return;
1887   }
1888 
1889   while (EHPadBB) {
1890     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1891     BasicBlock *NewEHPadBB = nullptr;
1892     if (isa<LandingPadInst>(Pad)) {
1893       // Stop on landingpads. They are not funclets.
1894       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1895       break;
1896     } else if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1898       // personalities.
1899       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1900       UnwindDests.back().first->setIsEHScopeEntry();
1901       UnwindDests.back().first->setIsEHFuncletEntry();
1902       break;
1903     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1904       // Add the catchpad handlers to the possible destinations.
1905       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1906         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1907         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1908         if (IsMSVCCXX || IsCoreCLR)
1909           UnwindDests.back().first->setIsEHFuncletEntry();
1910         if (!IsSEH)
1911           UnwindDests.back().first->setIsEHScopeEntry();
1912       }
1913       NewEHPadBB = CatchSwitch->getUnwindDest();
1914     } else {
1915       continue;
1916     }
1917 
1918     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1919     if (BPI && NewEHPadBB)
1920       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1921     EHPadBB = NewEHPadBB;
1922   }
1923 }
1924 
1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1926   // Update successor info.
1927   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1928   auto UnwindDest = I.getUnwindDest();
1929   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1930   BranchProbability UnwindDestProb =
1931       (BPI && UnwindDest)
1932           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1933           : BranchProbability::getZero();
1934   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1935   for (auto &UnwindDest : UnwindDests) {
1936     UnwindDest.first->setIsEHPad();
1937     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1938   }
1939   FuncInfo.MBB->normalizeSuccProbs();
1940 
1941   // Create the terminator node.
1942   SDValue Ret =
1943       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1944   DAG.setRoot(Ret);
1945 }
1946 
1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1948   report_fatal_error("visitCatchSwitch not yet implemented!");
1949 }
1950 
1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1953   auto &DL = DAG.getDataLayout();
1954   SDValue Chain = getControlRoot();
1955   SmallVector<ISD::OutputArg, 8> Outs;
1956   SmallVector<SDValue, 8> OutVals;
1957 
1958   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1959   // lower
1960   //
1961   //   %val = call <ty> @llvm.experimental.deoptimize()
1962   //   ret <ty> %val
1963   //
1964   // differently.
1965   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1966     LowerDeoptimizingReturn();
1967     return;
1968   }
1969 
1970   if (!FuncInfo.CanLowerReturn) {
1971     unsigned DemoteReg = FuncInfo.DemoteRegister;
1972     const Function *F = I.getParent()->getParent();
1973 
1974     // Emit a store of the return value through the virtual register.
1975     // Leave Outs empty so that LowerReturn won't try to load return
1976     // registers the usual way.
1977     SmallVector<EVT, 1> PtrValueVTs;
1978     ComputeValueVTs(TLI, DL,
1979                     F->getReturnType()->getPointerTo(
1980                         DAG.getDataLayout().getAllocaAddrSpace()),
1981                     PtrValueVTs);
1982 
1983     SDValue RetPtr =
1984         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1985     SDValue RetOp = getValue(I.getOperand(0));
1986 
1987     SmallVector<EVT, 4> ValueVTs, MemVTs;
1988     SmallVector<uint64_t, 4> Offsets;
1989     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1990                     &Offsets);
1991     unsigned NumValues = ValueVTs.size();
1992 
1993     SmallVector<SDValue, 4> Chains(NumValues);
1994     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1995     for (unsigned i = 0; i != NumValues; ++i) {
1996       // An aggregate return value cannot wrap around the address space, so
1997       // offsets to its parts don't wrap either.
1998       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1999                                            TypeSize::Fixed(Offsets[i]));
2000 
2001       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2002       if (MemVTs[i] != ValueVTs[i])
2003         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2004       Chains[i] = DAG.getStore(
2005           Chain, getCurSDLoc(), Val,
2006           // FIXME: better loc info would be nice.
2007           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2008           commonAlignment(BaseAlign, Offsets[i]));
2009     }
2010 
2011     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2012                         MVT::Other, Chains);
2013   } else if (I.getNumOperands() != 0) {
2014     SmallVector<EVT, 4> ValueVTs;
2015     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2016     unsigned NumValues = ValueVTs.size();
2017     if (NumValues) {
2018       SDValue RetOp = getValue(I.getOperand(0));
2019 
2020       const Function *F = I.getParent()->getParent();
2021 
2022       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2023           I.getOperand(0)->getType(), F->getCallingConv(),
2024           /*IsVarArg*/ false, DL);
2025 
2026       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2027       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2028         ExtendKind = ISD::SIGN_EXTEND;
2029       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2030         ExtendKind = ISD::ZERO_EXTEND;
2031 
2032       LLVMContext &Context = F->getContext();
2033       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2034 
2035       for (unsigned j = 0; j != NumValues; ++j) {
2036         EVT VT = ValueVTs[j];
2037 
2038         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2039           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2040 
2041         CallingConv::ID CC = F->getCallingConv();
2042 
2043         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2044         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2045         SmallVector<SDValue, 4> Parts(NumParts);
2046         getCopyToParts(DAG, getCurSDLoc(),
2047                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2048                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2049 
2050         // 'inreg' on function refers to return value
2051         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2052         if (RetInReg)
2053           Flags.setInReg();
2054 
2055         if (I.getOperand(0)->getType()->isPointerTy()) {
2056           Flags.setPointer();
2057           Flags.setPointerAddrSpace(
2058               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2059         }
2060 
2061         if (NeedsRegBlock) {
2062           Flags.setInConsecutiveRegs();
2063           if (j == NumValues - 1)
2064             Flags.setInConsecutiveRegsLast();
2065         }
2066 
2067         // Propagate extension type if any
2068         if (ExtendKind == ISD::SIGN_EXTEND)
2069           Flags.setSExt();
2070         else if (ExtendKind == ISD::ZERO_EXTEND)
2071           Flags.setZExt();
2072 
2073         for (unsigned i = 0; i < NumParts; ++i) {
2074           Outs.push_back(ISD::OutputArg(Flags,
2075                                         Parts[i].getValueType().getSimpleVT(),
2076                                         VT, /*isfixed=*/true, 0, 0));
2077           OutVals.push_back(Parts[i]);
2078         }
2079       }
2080     }
2081   }
2082 
2083   // Push in swifterror virtual register as the last element of Outs. This makes
2084   // sure swifterror virtual register will be returned in the swifterror
2085   // physical register.
2086   const Function *F = I.getParent()->getParent();
2087   if (TLI.supportSwiftError() &&
2088       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2089     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2090     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2091     Flags.setSwiftError();
2092     Outs.push_back(ISD::OutputArg(
2093         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2094         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2095     // Create SDNode for the swifterror virtual register.
2096     OutVals.push_back(
2097         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2098                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2099                         EVT(TLI.getPointerTy(DL))));
2100   }
2101 
2102   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2103   CallingConv::ID CallConv =
2104     DAG.getMachineFunction().getFunction().getCallingConv();
2105   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2106       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2107 
2108   // Verify that the target's LowerReturn behaved as expected.
2109   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2110          "LowerReturn didn't return a valid chain!");
2111 
2112   // Update the DAG with the new chain value resulting from return lowering.
2113   DAG.setRoot(Chain);
2114 }
2115 
2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2117 /// created for it, emit nodes to copy the value into the virtual
2118 /// registers.
2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2120   // Skip empty types
2121   if (V->getType()->isEmptyTy())
2122     return;
2123 
2124   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2125   if (VMI != FuncInfo.ValueMap.end()) {
2126     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2127     CopyValueToVirtualRegister(V, VMI->second);
2128   }
2129 }
2130 
2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2132 /// the current basic block, add it to ValueMap now so that we'll get a
2133 /// CopyTo/FromReg.
2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2135   // No need to export constants.
2136   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2137 
2138   // Already exported?
2139   if (FuncInfo.isExportedInst(V)) return;
2140 
2141   Register Reg = FuncInfo.InitializeRegForValue(V);
2142   CopyValueToVirtualRegister(V, Reg);
2143 }
2144 
2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2146                                                      const BasicBlock *FromBB) {
2147   // The operands of the setcc have to be in this block.  We don't know
2148   // how to export them from some other block.
2149   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2150     // Can export from current BB.
2151     if (VI->getParent() == FromBB)
2152       return true;
2153 
2154     // Is already exported, noop.
2155     return FuncInfo.isExportedInst(V);
2156   }
2157 
2158   // If this is an argument, we can export it if the BB is the entry block or
2159   // if it is already exported.
2160   if (isa<Argument>(V)) {
2161     if (FromBB->isEntryBlock())
2162       return true;
2163 
2164     // Otherwise, can only export this if it is already exported.
2165     return FuncInfo.isExportedInst(V);
2166   }
2167 
2168   // Otherwise, constants can always be exported.
2169   return true;
2170 }
2171 
2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2173 BranchProbability
2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2175                                         const MachineBasicBlock *Dst) const {
2176   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2177   const BasicBlock *SrcBB = Src->getBasicBlock();
2178   const BasicBlock *DstBB = Dst->getBasicBlock();
2179   if (!BPI) {
2180     // If BPI is not available, set the default probability as 1 / N, where N is
2181     // the number of successors.
2182     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2183     return BranchProbability(1, SuccSize);
2184   }
2185   return BPI->getEdgeProbability(SrcBB, DstBB);
2186 }
2187 
2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2189                                                MachineBasicBlock *Dst,
2190                                                BranchProbability Prob) {
2191   if (!FuncInfo.BPI)
2192     Src->addSuccessorWithoutProb(Dst);
2193   else {
2194     if (Prob.isUnknown())
2195       Prob = getEdgeProbability(Src, Dst);
2196     Src->addSuccessor(Dst, Prob);
2197   }
2198 }
2199 
2200 static bool InBlock(const Value *V, const BasicBlock *BB) {
2201   if (const Instruction *I = dyn_cast<Instruction>(V))
2202     return I->getParent() == BB;
2203   return true;
2204 }
2205 
2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2207 /// This function emits a branch and is used at the leaves of an OR or an
2208 /// AND operator tree.
2209 void
2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2211                                                   MachineBasicBlock *TBB,
2212                                                   MachineBasicBlock *FBB,
2213                                                   MachineBasicBlock *CurBB,
2214                                                   MachineBasicBlock *SwitchBB,
2215                                                   BranchProbability TProb,
2216                                                   BranchProbability FProb,
2217                                                   bool InvertCond) {
2218   const BasicBlock *BB = CurBB->getBasicBlock();
2219 
2220   // If the leaf of the tree is a comparison, merge the condition into
2221   // the caseblock.
2222   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2223     // The operands of the cmp have to be in this block.  We don't know
2224     // how to export them from some other block.  If this is the first block
2225     // of the sequence, no exporting is needed.
2226     if (CurBB == SwitchBB ||
2227         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2228          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2229       ISD::CondCode Condition;
2230       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2231         ICmpInst::Predicate Pred =
2232             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2233         Condition = getICmpCondCode(Pred);
2234       } else {
2235         const FCmpInst *FC = cast<FCmpInst>(Cond);
2236         FCmpInst::Predicate Pred =
2237             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2238         Condition = getFCmpCondCode(Pred);
2239         if (TM.Options.NoNaNsFPMath)
2240           Condition = getFCmpCodeWithoutNaN(Condition);
2241       }
2242 
2243       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2244                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2245       SL->SwitchCases.push_back(CB);
2246       return;
2247     }
2248   }
2249 
2250   // Create a CaseBlock record representing this branch.
2251   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2252   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2253                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2254   SL->SwitchCases.push_back(CB);
2255 }
2256 
2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2258                                                MachineBasicBlock *TBB,
2259                                                MachineBasicBlock *FBB,
2260                                                MachineBasicBlock *CurBB,
2261                                                MachineBasicBlock *SwitchBB,
2262                                                Instruction::BinaryOps Opc,
2263                                                BranchProbability TProb,
2264                                                BranchProbability FProb,
2265                                                bool InvertCond) {
2266   // Skip over not part of the tree and remember to invert op and operands at
2267   // next level.
2268   Value *NotCond;
2269   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2270       InBlock(NotCond, CurBB->getBasicBlock())) {
2271     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2272                          !InvertCond);
2273     return;
2274   }
2275 
2276   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2277   const Value *BOpOp0, *BOpOp1;
2278   // Compute the effective opcode for Cond, taking into account whether it needs
2279   // to be inverted, e.g.
2280   //   and (not (or A, B)), C
2281   // gets lowered as
2282   //   and (and (not A, not B), C)
2283   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2284   if (BOp) {
2285     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2286                ? Instruction::And
2287                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2288                       ? Instruction::Or
2289                       : (Instruction::BinaryOps)0);
2290     if (InvertCond) {
2291       if (BOpc == Instruction::And)
2292         BOpc = Instruction::Or;
2293       else if (BOpc == Instruction::Or)
2294         BOpc = Instruction::And;
2295     }
2296   }
2297 
2298   // If this node is not part of the or/and tree, emit it as a branch.
2299   // Note that all nodes in the tree should have same opcode.
2300   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2301   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2302       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2303       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2304     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2305                                  TProb, FProb, InvertCond);
2306     return;
2307   }
2308 
2309   //  Create TmpBB after CurBB.
2310   MachineFunction::iterator BBI(CurBB);
2311   MachineFunction &MF = DAG.getMachineFunction();
2312   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2313   CurBB->getParent()->insert(++BBI, TmpBB);
2314 
2315   if (Opc == Instruction::Or) {
2316     // Codegen X | Y as:
2317     // BB1:
2318     //   jmp_if_X TBB
2319     //   jmp TmpBB
2320     // TmpBB:
2321     //   jmp_if_Y TBB
2322     //   jmp FBB
2323     //
2324 
2325     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2326     // The requirement is that
2327     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2328     //     = TrueProb for original BB.
2329     // Assuming the original probabilities are A and B, one choice is to set
2330     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2331     // A/(1+B) and 2B/(1+B). This choice assumes that
2332     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2333     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2334     // TmpBB, but the math is more complicated.
2335 
2336     auto NewTrueProb = TProb / 2;
2337     auto NewFalseProb = TProb / 2 + FProb;
2338     // Emit the LHS condition.
2339     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2340                          NewFalseProb, InvertCond);
2341 
2342     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2343     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2344     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2345     // Emit the RHS condition into TmpBB.
2346     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2347                          Probs[1], InvertCond);
2348   } else {
2349     assert(Opc == Instruction::And && "Unknown merge op!");
2350     // Codegen X & Y as:
2351     // BB1:
2352     //   jmp_if_X TmpBB
2353     //   jmp FBB
2354     // TmpBB:
2355     //   jmp_if_Y TBB
2356     //   jmp FBB
2357     //
2358     //  This requires creation of TmpBB after CurBB.
2359 
2360     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2361     // The requirement is that
2362     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2363     //     = FalseProb for original BB.
2364     // Assuming the original probabilities are A and B, one choice is to set
2365     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2366     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2367     // TrueProb for BB1 * FalseProb for TmpBB.
2368 
2369     auto NewTrueProb = TProb + FProb / 2;
2370     auto NewFalseProb = FProb / 2;
2371     // Emit the LHS condition.
2372     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2373                          NewFalseProb, InvertCond);
2374 
2375     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2376     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2377     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2378     // Emit the RHS condition into TmpBB.
2379     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2380                          Probs[1], InvertCond);
2381   }
2382 }
2383 
2384 /// If the set of cases should be emitted as a series of branches, return true.
2385 /// If we should emit this as a bunch of and/or'd together conditions, return
2386 /// false.
2387 bool
2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2389   if (Cases.size() != 2) return true;
2390 
2391   // If this is two comparisons of the same values or'd or and'd together, they
2392   // will get folded into a single comparison, so don't emit two blocks.
2393   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2394        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2395       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2396        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2397     return false;
2398   }
2399 
2400   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2401   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2402   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2403       Cases[0].CC == Cases[1].CC &&
2404       isa<Constant>(Cases[0].CmpRHS) &&
2405       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2406     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2407       return false;
2408     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2409       return false;
2410   }
2411 
2412   return true;
2413 }
2414 
2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2416   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2417 
2418   // Update machine-CFG edges.
2419   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2420 
2421   if (I.isUnconditional()) {
2422     // Update machine-CFG edges.
2423     BrMBB->addSuccessor(Succ0MBB);
2424 
2425     // If this is not a fall-through branch or optimizations are switched off,
2426     // emit the branch.
2427     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2428       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2429                               MVT::Other, getControlRoot(),
2430                               DAG.getBasicBlock(Succ0MBB)));
2431 
2432     return;
2433   }
2434 
2435   // If this condition is one of the special cases we handle, do special stuff
2436   // now.
2437   const Value *CondVal = I.getCondition();
2438   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2439 
2440   // If this is a series of conditions that are or'd or and'd together, emit
2441   // this as a sequence of branches instead of setcc's with and/or operations.
2442   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2443   // unpredictable branches, and vector extracts because those jumps are likely
2444   // expensive for any target), this should improve performance.
2445   // For example, instead of something like:
2446   //     cmp A, B
2447   //     C = seteq
2448   //     cmp D, E
2449   //     F = setle
2450   //     or C, F
2451   //     jnz foo
2452   // Emit:
2453   //     cmp A, B
2454   //     je foo
2455   //     cmp D, E
2456   //     jle foo
2457   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2458   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2459       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2460     Value *Vec;
2461     const Value *BOp0, *BOp1;
2462     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2463     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2464       Opcode = Instruction::And;
2465     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2466       Opcode = Instruction::Or;
2467 
2468     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2469                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2470       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2471                            getEdgeProbability(BrMBB, Succ0MBB),
2472                            getEdgeProbability(BrMBB, Succ1MBB),
2473                            /*InvertCond=*/false);
2474       // If the compares in later blocks need to use values not currently
2475       // exported from this block, export them now.  This block should always
2476       // be the first entry.
2477       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2478 
2479       // Allow some cases to be rejected.
2480       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2481         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2482           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2483           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2484         }
2485 
2486         // Emit the branch for this block.
2487         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2488         SL->SwitchCases.erase(SL->SwitchCases.begin());
2489         return;
2490       }
2491 
2492       // Okay, we decided not to do this, remove any inserted MBB's and clear
2493       // SwitchCases.
2494       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2495         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2496 
2497       SL->SwitchCases.clear();
2498     }
2499   }
2500 
2501   // Create a CaseBlock record representing this branch.
2502   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2503                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2504 
2505   // Use visitSwitchCase to actually insert the fast branch sequence for this
2506   // cond branch.
2507   visitSwitchCase(CB, BrMBB);
2508 }
2509 
2510 /// visitSwitchCase - Emits the necessary code to represent a single node in
2511 /// the binary search tree resulting from lowering a switch instruction.
2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2513                                           MachineBasicBlock *SwitchBB) {
2514   SDValue Cond;
2515   SDValue CondLHS = getValue(CB.CmpLHS);
2516   SDLoc dl = CB.DL;
2517 
2518   if (CB.CC == ISD::SETTRUE) {
2519     // Branch or fall through to TrueBB.
2520     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521     SwitchBB->normalizeSuccProbs();
2522     if (CB.TrueBB != NextBlock(SwitchBB)) {
2523       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2524                               DAG.getBasicBlock(CB.TrueBB)));
2525     }
2526     return;
2527   }
2528 
2529   auto &TLI = DAG.getTargetLoweringInfo();
2530   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2531 
2532   // Build the setcc now.
2533   if (!CB.CmpMHS) {
2534     // Fold "(X == true)" to X and "(X == false)" to !X to
2535     // handle common cases produced by branch lowering.
2536     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2537         CB.CC == ISD::SETEQ)
2538       Cond = CondLHS;
2539     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2540              CB.CC == ISD::SETEQ) {
2541       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2542       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2543     } else {
2544       SDValue CondRHS = getValue(CB.CmpRHS);
2545 
2546       // If a pointer's DAG type is larger than its memory type then the DAG
2547       // values are zero-extended. This breaks signed comparisons so truncate
2548       // back to the underlying type before doing the compare.
2549       if (CondLHS.getValueType() != MemVT) {
2550         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2551         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2552       }
2553       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2554     }
2555   } else {
2556     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2557 
2558     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2559     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2560 
2561     SDValue CmpOp = getValue(CB.CmpMHS);
2562     EVT VT = CmpOp.getValueType();
2563 
2564     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2565       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2566                           ISD::SETLE);
2567     } else {
2568       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2569                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2570       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2571                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2572     }
2573   }
2574 
2575   // Update successor info
2576   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577   // TrueBB and FalseBB are always different unless the incoming IR is
2578   // degenerate. This only happens when running llc on weird IR.
2579   if (CB.TrueBB != CB.FalseBB)
2580     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2581   SwitchBB->normalizeSuccProbs();
2582 
2583   // If the lhs block is the next block, invert the condition so that we can
2584   // fall through to the lhs instead of the rhs block.
2585   if (CB.TrueBB == NextBlock(SwitchBB)) {
2586     std::swap(CB.TrueBB, CB.FalseBB);
2587     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2588     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2589   }
2590 
2591   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2592                                MVT::Other, getControlRoot(), Cond,
2593                                DAG.getBasicBlock(CB.TrueBB));
2594 
2595   setValue(CurInst, BrCond);
2596 
2597   // Insert the false branch. Do this even if it's a fall through branch,
2598   // this makes it easier to do DAG optimizations which require inverting
2599   // the branch condition.
2600   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2601                        DAG.getBasicBlock(CB.FalseBB));
2602 
2603   DAG.setRoot(BrCond);
2604 }
2605 
2606 /// visitJumpTable - Emit JumpTable node in the current MBB
2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2608   // Emit the code for the jump table
2609   assert(JT.Reg != -1U && "Should lower JT Header first!");
2610   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2611   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2612                                      JT.Reg, PTy);
2613   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2614   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2615                                     MVT::Other, Index.getValue(1),
2616                                     Table, Index);
2617   DAG.setRoot(BrJumpTable);
2618 }
2619 
2620 /// visitJumpTableHeader - This function emits necessary code to produce index
2621 /// in the JumpTable from switch case.
2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2623                                                JumpTableHeader &JTH,
2624                                                MachineBasicBlock *SwitchBB) {
2625   SDLoc dl = getCurSDLoc();
2626 
2627   // Subtract the lowest switch case value from the value being switched on.
2628   SDValue SwitchOp = getValue(JTH.SValue);
2629   EVT VT = SwitchOp.getValueType();
2630   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2631                             DAG.getConstant(JTH.First, dl, VT));
2632 
2633   // The SDNode we just created, which holds the value being switched on minus
2634   // the smallest case value, needs to be copied to a virtual register so it
2635   // can be used as an index into the jump table in a subsequent basic block.
2636   // This value may be smaller or larger than the target's pointer type, and
2637   // therefore require extension or truncating.
2638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2639   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2640 
2641   unsigned JumpTableReg =
2642       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2643   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2644                                     JumpTableReg, SwitchOp);
2645   JT.Reg = JumpTableReg;
2646 
2647   if (!JTH.FallthroughUnreachable) {
2648     // Emit the range check for the jump table, and branch to the default block
2649     // for the switch statement if the value being switched on exceeds the
2650     // largest case in the switch.
2651     SDValue CMP = DAG.getSetCC(
2652         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2653                                    Sub.getValueType()),
2654         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2655 
2656     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2657                                  MVT::Other, CopyTo, CMP,
2658                                  DAG.getBasicBlock(JT.Default));
2659 
2660     // Avoid emitting unnecessary branches to the next block.
2661     if (JT.MBB != NextBlock(SwitchBB))
2662       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2663                            DAG.getBasicBlock(JT.MBB));
2664 
2665     DAG.setRoot(BrCond);
2666   } else {
2667     // Avoid emitting unnecessary branches to the next block.
2668     if (JT.MBB != NextBlock(SwitchBB))
2669       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2670                               DAG.getBasicBlock(JT.MBB)));
2671     else
2672       DAG.setRoot(CopyTo);
2673   }
2674 }
2675 
2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2677 /// variable if there exists one.
2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2679                                  SDValue &Chain) {
2680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2681   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2682   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2683   MachineFunction &MF = DAG.getMachineFunction();
2684   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2685   MachineSDNode *Node =
2686       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2687   if (Global) {
2688     MachinePointerInfo MPInfo(Global);
2689     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2690                  MachineMemOperand::MODereferenceable;
2691     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2692         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2693     DAG.setNodeMemRefs(Node, {MemRef});
2694   }
2695   if (PtrTy != PtrMemTy)
2696     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2697   return SDValue(Node, 0);
2698 }
2699 
2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2701 /// tail spliced into a stack protector check success bb.
2702 ///
2703 /// For a high level explanation of how this fits into the stack protector
2704 /// generation see the comment on the declaration of class
2705 /// StackProtectorDescriptor.
2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2707                                                   MachineBasicBlock *ParentBB) {
2708 
2709   // First create the loads to the guard/stack slot for the comparison.
2710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2711   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2712   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2713 
2714   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2715   int FI = MFI.getStackProtectorIndex();
2716 
2717   SDValue Guard;
2718   SDLoc dl = getCurSDLoc();
2719   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2720   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2721   Align Align =
2722       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2723 
2724   // Generate code to load the content of the guard slot.
2725   SDValue GuardVal = DAG.getLoad(
2726       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2727       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2728       MachineMemOperand::MOVolatile);
2729 
2730   if (TLI.useStackGuardXorFP())
2731     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2732 
2733   // Retrieve guard check function, nullptr if instrumentation is inlined.
2734   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2735     // The target provides a guard check function to validate the guard value.
2736     // Generate a call to that function with the content of the guard slot as
2737     // argument.
2738     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2739     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2740 
2741     TargetLowering::ArgListTy Args;
2742     TargetLowering::ArgListEntry Entry;
2743     Entry.Node = GuardVal;
2744     Entry.Ty = FnTy->getParamType(0);
2745     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2746       Entry.IsInReg = true;
2747     Args.push_back(Entry);
2748 
2749     TargetLowering::CallLoweringInfo CLI(DAG);
2750     CLI.setDebugLoc(getCurSDLoc())
2751         .setChain(DAG.getEntryNode())
2752         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2753                    getValue(GuardCheckFn), std::move(Args));
2754 
2755     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2756     DAG.setRoot(Result.second);
2757     return;
2758   }
2759 
2760   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2761   // Otherwise, emit a volatile load to retrieve the stack guard value.
2762   SDValue Chain = DAG.getEntryNode();
2763   if (TLI.useLoadStackGuardNode()) {
2764     Guard = getLoadStackGuard(DAG, dl, Chain);
2765   } else {
2766     const Value *IRGuard = TLI.getSDagStackGuard(M);
2767     SDValue GuardPtr = getValue(IRGuard);
2768 
2769     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2770                         MachinePointerInfo(IRGuard, 0), Align,
2771                         MachineMemOperand::MOVolatile);
2772   }
2773 
2774   // Perform the comparison via a getsetcc.
2775   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2776                                                         *DAG.getContext(),
2777                                                         Guard.getValueType()),
2778                              Guard, GuardVal, ISD::SETNE);
2779 
2780   // If the guard/stackslot do not equal, branch to failure MBB.
2781   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2782                                MVT::Other, GuardVal.getOperand(0),
2783                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2784   // Otherwise branch to success MBB.
2785   SDValue Br = DAG.getNode(ISD::BR, dl,
2786                            MVT::Other, BrCond,
2787                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2788 
2789   DAG.setRoot(Br);
2790 }
2791 
2792 /// Codegen the failure basic block for a stack protector check.
2793 ///
2794 /// A failure stack protector machine basic block consists simply of a call to
2795 /// __stack_chk_fail().
2796 ///
2797 /// For a high level explanation of how this fits into the stack protector
2798 /// generation see the comment on the declaration of class
2799 /// StackProtectorDescriptor.
2800 void
2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2803   TargetLowering::MakeLibCallOptions CallOptions;
2804   CallOptions.setDiscardResult(true);
2805   SDValue Chain =
2806       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2807                       std::nullopt, CallOptions, getCurSDLoc())
2808           .second;
2809   // On PS4/PS5, the "return address" must still be within the calling
2810   // function, even if it's at the very end, so emit an explicit TRAP here.
2811   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2812   if (TM.getTargetTriple().isPS())
2813     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2814   // WebAssembly needs an unreachable instruction after a non-returning call,
2815   // because the function return type can be different from __stack_chk_fail's
2816   // return type (void).
2817   if (TM.getTargetTriple().isWasm())
2818     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2819 
2820   DAG.setRoot(Chain);
2821 }
2822 
2823 /// visitBitTestHeader - This function emits necessary code to produce value
2824 /// suitable for "bit tests"
2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2826                                              MachineBasicBlock *SwitchBB) {
2827   SDLoc dl = getCurSDLoc();
2828 
2829   // Subtract the minimum value.
2830   SDValue SwitchOp = getValue(B.SValue);
2831   EVT VT = SwitchOp.getValueType();
2832   SDValue RangeSub =
2833       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2834 
2835   // Determine the type of the test operands.
2836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2837   bool UsePtrType = false;
2838   if (!TLI.isTypeLegal(VT)) {
2839     UsePtrType = true;
2840   } else {
2841     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2842       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2843         // Switch table case range are encoded into series of masks.
2844         // Just use pointer type, it's guaranteed to fit.
2845         UsePtrType = true;
2846         break;
2847       }
2848   }
2849   SDValue Sub = RangeSub;
2850   if (UsePtrType) {
2851     VT = TLI.getPointerTy(DAG.getDataLayout());
2852     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2853   }
2854 
2855   B.RegVT = VT.getSimpleVT();
2856   B.Reg = FuncInfo.CreateReg(B.RegVT);
2857   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2858 
2859   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2860 
2861   if (!B.FallthroughUnreachable)
2862     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2863   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2864   SwitchBB->normalizeSuccProbs();
2865 
2866   SDValue Root = CopyTo;
2867   if (!B.FallthroughUnreachable) {
2868     // Conditional branch to the default block.
2869     SDValue RangeCmp = DAG.getSetCC(dl,
2870         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2871                                RangeSub.getValueType()),
2872         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2873         ISD::SETUGT);
2874 
2875     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2876                        DAG.getBasicBlock(B.Default));
2877   }
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (MBB != NextBlock(SwitchBB))
2881     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2882 
2883   DAG.setRoot(Root);
2884 }
2885 
2886 /// visitBitTestCase - this function produces one "bit test"
2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2888                                            MachineBasicBlock* NextMBB,
2889                                            BranchProbability BranchProbToNext,
2890                                            unsigned Reg,
2891                                            BitTestCase &B,
2892                                            MachineBasicBlock *SwitchBB) {
2893   SDLoc dl = getCurSDLoc();
2894   MVT VT = BB.RegVT;
2895   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2896   SDValue Cmp;
2897   unsigned PopCount = llvm::popcount(B.Mask);
2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2899   if (PopCount == 1) {
2900     // Testing for a single bit; just compare the shift count with what it
2901     // would need to be to shift a 1 bit in that position.
2902     Cmp = DAG.getSetCC(
2903         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2904         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2905         ISD::SETEQ);
2906   } else if (PopCount == BB.Range) {
2907     // There is only one zero bit in the range, test for it directly.
2908     Cmp = DAG.getSetCC(
2909         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2910         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2911   } else {
2912     // Make desired shift
2913     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2914                                     DAG.getConstant(1, dl, VT), ShiftOp);
2915 
2916     // Emit bit tests and jumps
2917     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2918                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2919     Cmp = DAG.getSetCC(
2920         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2921         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2922   }
2923 
2924   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2925   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2926   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2927   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2928   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2929   // one as they are relative probabilities (and thus work more like weights),
2930   // and hence we need to normalize them to let the sum of them become one.
2931   SwitchBB->normalizeSuccProbs();
2932 
2933   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2934                               MVT::Other, getControlRoot(),
2935                               Cmp, DAG.getBasicBlock(B.TargetBB));
2936 
2937   // Avoid emitting unnecessary branches to the next block.
2938   if (NextMBB != NextBlock(SwitchBB))
2939     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2940                         DAG.getBasicBlock(NextMBB));
2941 
2942   DAG.setRoot(BrAnd);
2943 }
2944 
2945 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2946   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2947 
2948   // Retrieve successors. Look through artificial IR level blocks like
2949   // catchswitch for successors.
2950   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2951   const BasicBlock *EHPadBB = I.getSuccessor(1);
2952 
2953   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2954   // have to do anything here to lower funclet bundles.
2955   assert(!I.hasOperandBundlesOtherThan(
2956              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2957               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2958               LLVMContext::OB_cfguardtarget,
2959               LLVMContext::OB_clang_arc_attachedcall}) &&
2960          "Cannot lower invokes with arbitrary operand bundles yet!");
2961 
2962   const Value *Callee(I.getCalledOperand());
2963   const Function *Fn = dyn_cast<Function>(Callee);
2964   if (isa<InlineAsm>(Callee))
2965     visitInlineAsm(I, EHPadBB);
2966   else if (Fn && Fn->isIntrinsic()) {
2967     switch (Fn->getIntrinsicID()) {
2968     default:
2969       llvm_unreachable("Cannot invoke this intrinsic");
2970     case Intrinsic::donothing:
2971       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2972     case Intrinsic::seh_try_begin:
2973     case Intrinsic::seh_scope_begin:
2974     case Intrinsic::seh_try_end:
2975     case Intrinsic::seh_scope_end:
2976       break;
2977     case Intrinsic::experimental_patchpoint_void:
2978     case Intrinsic::experimental_patchpoint_i64:
2979       visitPatchpoint(I, EHPadBB);
2980       break;
2981     case Intrinsic::experimental_gc_statepoint:
2982       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2983       break;
2984     case Intrinsic::wasm_rethrow: {
2985       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2986       // special because it can be invoked, so we manually lower it to a DAG
2987       // node here.
2988       SmallVector<SDValue, 8> Ops;
2989       Ops.push_back(getRoot()); // inchain
2990       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2991       Ops.push_back(
2992           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2993                                 TLI.getPointerTy(DAG.getDataLayout())));
2994       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2995       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2996       break;
2997     }
2998     }
2999   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3000     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3001     // Eventually we will support lowering the @llvm.experimental.deoptimize
3002     // intrinsic, and right now there are no plans to support other intrinsics
3003     // with deopt state.
3004     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3005   } else {
3006     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3007   }
3008 
3009   // If the value of the invoke is used outside of its defining block, make it
3010   // available as a virtual register.
3011   // We already took care of the exported value for the statepoint instruction
3012   // during call to the LowerStatepoint.
3013   if (!isa<GCStatepointInst>(I)) {
3014     CopyToExportRegsIfNeeded(&I);
3015   }
3016 
3017   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3018   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3019   BranchProbability EHPadBBProb =
3020       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3021           : BranchProbability::getZero();
3022   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3023 
3024   // Update successor info.
3025   addSuccessorWithProb(InvokeMBB, Return);
3026   for (auto &UnwindDest : UnwindDests) {
3027     UnwindDest.first->setIsEHPad();
3028     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3029   }
3030   InvokeMBB->normalizeSuccProbs();
3031 
3032   // Drop into normal successor.
3033   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3034                           DAG.getBasicBlock(Return)));
3035 }
3036 
3037 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3038   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3039 
3040   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3041   // have to do anything here to lower funclet bundles.
3042   assert(!I.hasOperandBundlesOtherThan(
3043              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3044          "Cannot lower callbrs with arbitrary operand bundles yet!");
3045 
3046   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3047   visitInlineAsm(I);
3048   CopyToExportRegsIfNeeded(&I);
3049 
3050   // Retrieve successors.
3051   SmallPtrSet<BasicBlock *, 8> Dests;
3052   Dests.insert(I.getDefaultDest());
3053   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3054 
3055   // Update successor info.
3056   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3057   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3058     BasicBlock *Dest = I.getIndirectDest(i);
3059     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3060     Target->setIsInlineAsmBrIndirectTarget();
3061     Target->setMachineBlockAddressTaken();
3062     Target->setLabelMustBeEmitted();
3063     // Don't add duplicate machine successors.
3064     if (Dests.insert(Dest).second)
3065       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3066   }
3067   CallBrMBB->normalizeSuccProbs();
3068 
3069   // Drop into default successor.
3070   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3071                           MVT::Other, getControlRoot(),
3072                           DAG.getBasicBlock(Return)));
3073 }
3074 
3075 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3076   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3077 }
3078 
3079 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3080   assert(FuncInfo.MBB->isEHPad() &&
3081          "Call to landingpad not in landing pad!");
3082 
3083   // If there aren't registers to copy the values into (e.g., during SjLj
3084   // exceptions), then don't bother to create these DAG nodes.
3085   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3086   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3087   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3088       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3089     return;
3090 
3091   // If landingpad's return type is token type, we don't create DAG nodes
3092   // for its exception pointer and selector value. The extraction of exception
3093   // pointer or selector value from token type landingpads is not currently
3094   // supported.
3095   if (LP.getType()->isTokenTy())
3096     return;
3097 
3098   SmallVector<EVT, 2> ValueVTs;
3099   SDLoc dl = getCurSDLoc();
3100   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3101   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3102 
3103   // Get the two live-in registers as SDValues. The physregs have already been
3104   // copied into virtual registers.
3105   SDValue Ops[2];
3106   if (FuncInfo.ExceptionPointerVirtReg) {
3107     Ops[0] = DAG.getZExtOrTrunc(
3108         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3109                            FuncInfo.ExceptionPointerVirtReg,
3110                            TLI.getPointerTy(DAG.getDataLayout())),
3111         dl, ValueVTs[0]);
3112   } else {
3113     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3114   }
3115   Ops[1] = DAG.getZExtOrTrunc(
3116       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3117                          FuncInfo.ExceptionSelectorVirtReg,
3118                          TLI.getPointerTy(DAG.getDataLayout())),
3119       dl, ValueVTs[1]);
3120 
3121   // Merge into one.
3122   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3123                             DAG.getVTList(ValueVTs), Ops);
3124   setValue(&LP, Res);
3125 }
3126 
3127 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3128                                            MachineBasicBlock *Last) {
3129   // Update JTCases.
3130   for (JumpTableBlock &JTB : SL->JTCases)
3131     if (JTB.first.HeaderBB == First)
3132       JTB.first.HeaderBB = Last;
3133 
3134   // Update BitTestCases.
3135   for (BitTestBlock &BTB : SL->BitTestCases)
3136     if (BTB.Parent == First)
3137       BTB.Parent = Last;
3138 }
3139 
3140 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3141   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3142 
3143   // Update machine-CFG edges with unique successors.
3144   SmallSet<BasicBlock*, 32> Done;
3145   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3146     BasicBlock *BB = I.getSuccessor(i);
3147     bool Inserted = Done.insert(BB).second;
3148     if (!Inserted)
3149         continue;
3150 
3151     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3152     addSuccessorWithProb(IndirectBrMBB, Succ);
3153   }
3154   IndirectBrMBB->normalizeSuccProbs();
3155 
3156   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3157                           MVT::Other, getControlRoot(),
3158                           getValue(I.getAddress())));
3159 }
3160 
3161 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3162   if (!DAG.getTarget().Options.TrapUnreachable)
3163     return;
3164 
3165   // We may be able to ignore unreachable behind a noreturn call.
3166   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3167     const BasicBlock &BB = *I.getParent();
3168     if (&I != &BB.front()) {
3169       BasicBlock::const_iterator PredI =
3170         std::prev(BasicBlock::const_iterator(&I));
3171       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3172         if (Call->doesNotReturn())
3173           return;
3174       }
3175     }
3176   }
3177 
3178   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3179 }
3180 
3181 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3182   SDNodeFlags Flags;
3183   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3184     Flags.copyFMF(*FPOp);
3185 
3186   SDValue Op = getValue(I.getOperand(0));
3187   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3188                                     Op, Flags);
3189   setValue(&I, UnNodeValue);
3190 }
3191 
3192 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3193   SDNodeFlags Flags;
3194   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3195     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3196     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3197   }
3198   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3199     Flags.setExact(ExactOp->isExact());
3200   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3201     Flags.copyFMF(*FPOp);
3202 
3203   SDValue Op1 = getValue(I.getOperand(0));
3204   SDValue Op2 = getValue(I.getOperand(1));
3205   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3206                                      Op1, Op2, Flags);
3207   setValue(&I, BinNodeValue);
3208 }
3209 
3210 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3211   SDValue Op1 = getValue(I.getOperand(0));
3212   SDValue Op2 = getValue(I.getOperand(1));
3213 
3214   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3215       Op1.getValueType(), DAG.getDataLayout());
3216 
3217   // Coerce the shift amount to the right type if we can. This exposes the
3218   // truncate or zext to optimization early.
3219   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3220     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3221            "Unexpected shift type");
3222     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3223   }
3224 
3225   bool nuw = false;
3226   bool nsw = false;
3227   bool exact = false;
3228 
3229   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3230 
3231     if (const OverflowingBinaryOperator *OFBinOp =
3232             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3233       nuw = OFBinOp->hasNoUnsignedWrap();
3234       nsw = OFBinOp->hasNoSignedWrap();
3235     }
3236     if (const PossiblyExactOperator *ExactOp =
3237             dyn_cast<const PossiblyExactOperator>(&I))
3238       exact = ExactOp->isExact();
3239   }
3240   SDNodeFlags Flags;
3241   Flags.setExact(exact);
3242   Flags.setNoSignedWrap(nsw);
3243   Flags.setNoUnsignedWrap(nuw);
3244   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3245                             Flags);
3246   setValue(&I, Res);
3247 }
3248 
3249 void SelectionDAGBuilder::visitSDiv(const User &I) {
3250   SDValue Op1 = getValue(I.getOperand(0));
3251   SDValue Op2 = getValue(I.getOperand(1));
3252 
3253   SDNodeFlags Flags;
3254   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3255                  cast<PossiblyExactOperator>(&I)->isExact());
3256   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3257                            Op2, Flags));
3258 }
3259 
3260 void SelectionDAGBuilder::visitICmp(const User &I) {
3261   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3262   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3263     predicate = IC->getPredicate();
3264   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3265     predicate = ICmpInst::Predicate(IC->getPredicate());
3266   SDValue Op1 = getValue(I.getOperand(0));
3267   SDValue Op2 = getValue(I.getOperand(1));
3268   ISD::CondCode Opcode = getICmpCondCode(predicate);
3269 
3270   auto &TLI = DAG.getTargetLoweringInfo();
3271   EVT MemVT =
3272       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3273 
3274   // If a pointer's DAG type is larger than its memory type then the DAG values
3275   // are zero-extended. This breaks signed comparisons so truncate back to the
3276   // underlying type before doing the compare.
3277   if (Op1.getValueType() != MemVT) {
3278     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3279     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3280   }
3281 
3282   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3283                                                         I.getType());
3284   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3285 }
3286 
3287 void SelectionDAGBuilder::visitFCmp(const User &I) {
3288   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3289   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3290     predicate = FC->getPredicate();
3291   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3292     predicate = FCmpInst::Predicate(FC->getPredicate());
3293   SDValue Op1 = getValue(I.getOperand(0));
3294   SDValue Op2 = getValue(I.getOperand(1));
3295 
3296   ISD::CondCode Condition = getFCmpCondCode(predicate);
3297   auto *FPMO = cast<FPMathOperator>(&I);
3298   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3299     Condition = getFCmpCodeWithoutNaN(Condition);
3300 
3301   SDNodeFlags Flags;
3302   Flags.copyFMF(*FPMO);
3303   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3304 
3305   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3306                                                         I.getType());
3307   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3308 }
3309 
3310 // Check if the condition of the select has one use or two users that are both
3311 // selects with the same condition.
3312 static bool hasOnlySelectUsers(const Value *Cond) {
3313   return llvm::all_of(Cond->users(), [](const Value *V) {
3314     return isa<SelectInst>(V);
3315   });
3316 }
3317 
3318 void SelectionDAGBuilder::visitSelect(const User &I) {
3319   SmallVector<EVT, 4> ValueVTs;
3320   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3321                   ValueVTs);
3322   unsigned NumValues = ValueVTs.size();
3323   if (NumValues == 0) return;
3324 
3325   SmallVector<SDValue, 4> Values(NumValues);
3326   SDValue Cond     = getValue(I.getOperand(0));
3327   SDValue LHSVal   = getValue(I.getOperand(1));
3328   SDValue RHSVal   = getValue(I.getOperand(2));
3329   SmallVector<SDValue, 1> BaseOps(1, Cond);
3330   ISD::NodeType OpCode =
3331       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3332 
3333   bool IsUnaryAbs = false;
3334   bool Negate = false;
3335 
3336   SDNodeFlags Flags;
3337   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3338     Flags.copyFMF(*FPOp);
3339 
3340   // Min/max matching is only viable if all output VTs are the same.
3341   if (all_equal(ValueVTs)) {
3342     EVT VT = ValueVTs[0];
3343     LLVMContext &Ctx = *DAG.getContext();
3344     auto &TLI = DAG.getTargetLoweringInfo();
3345 
3346     // We care about the legality of the operation after it has been type
3347     // legalized.
3348     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3349       VT = TLI.getTypeToTransformTo(Ctx, VT);
3350 
3351     // If the vselect is legal, assume we want to leave this as a vector setcc +
3352     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3353     // min/max is legal on the scalar type.
3354     bool UseScalarMinMax = VT.isVector() &&
3355       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3356 
3357     // ValueTracking's select pattern matching does not account for -0.0,
3358     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3359     // -0.0 is less than +0.0.
3360     Value *LHS, *RHS;
3361     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3362     ISD::NodeType Opc = ISD::DELETED_NODE;
3363     switch (SPR.Flavor) {
3364     case SPF_UMAX:    Opc = ISD::UMAX; break;
3365     case SPF_UMIN:    Opc = ISD::UMIN; break;
3366     case SPF_SMAX:    Opc = ISD::SMAX; break;
3367     case SPF_SMIN:    Opc = ISD::SMIN; break;
3368     case SPF_FMINNUM:
3369       switch (SPR.NaNBehavior) {
3370       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3371       case SPNB_RETURNS_NAN: break;
3372       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3373       case SPNB_RETURNS_ANY:
3374         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3375             (UseScalarMinMax &&
3376              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3377           Opc = ISD::FMINNUM;
3378         break;
3379       }
3380       break;
3381     case SPF_FMAXNUM:
3382       switch (SPR.NaNBehavior) {
3383       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3384       case SPNB_RETURNS_NAN: break;
3385       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3386       case SPNB_RETURNS_ANY:
3387         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3388             (UseScalarMinMax &&
3389              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3390           Opc = ISD::FMAXNUM;
3391         break;
3392       }
3393       break;
3394     case SPF_NABS:
3395       Negate = true;
3396       [[fallthrough]];
3397     case SPF_ABS:
3398       IsUnaryAbs = true;
3399       Opc = ISD::ABS;
3400       break;
3401     default: break;
3402     }
3403 
3404     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3405         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3406          (UseScalarMinMax &&
3407           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3408         // If the underlying comparison instruction is used by any other
3409         // instruction, the consumed instructions won't be destroyed, so it is
3410         // not profitable to convert to a min/max.
3411         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3412       OpCode = Opc;
3413       LHSVal = getValue(LHS);
3414       RHSVal = getValue(RHS);
3415       BaseOps.clear();
3416     }
3417 
3418     if (IsUnaryAbs) {
3419       OpCode = Opc;
3420       LHSVal = getValue(LHS);
3421       BaseOps.clear();
3422     }
3423   }
3424 
3425   if (IsUnaryAbs) {
3426     for (unsigned i = 0; i != NumValues; ++i) {
3427       SDLoc dl = getCurSDLoc();
3428       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3429       Values[i] =
3430           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3431       if (Negate)
3432         Values[i] = DAG.getNegative(Values[i], dl, VT);
3433     }
3434   } else {
3435     for (unsigned i = 0; i != NumValues; ++i) {
3436       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3437       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3438       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3439       Values[i] = DAG.getNode(
3440           OpCode, getCurSDLoc(),
3441           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3442     }
3443   }
3444 
3445   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3446                            DAG.getVTList(ValueVTs), Values));
3447 }
3448 
3449 void SelectionDAGBuilder::visitTrunc(const User &I) {
3450   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3451   SDValue N = getValue(I.getOperand(0));
3452   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3453                                                         I.getType());
3454   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3455 }
3456 
3457 void SelectionDAGBuilder::visitZExt(const User &I) {
3458   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3459   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitSExt(const User &I) {
3467   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3468   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3469   SDValue N = getValue(I.getOperand(0));
3470   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3471                                                         I.getType());
3472   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3473 }
3474 
3475 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3476   // FPTrunc is never a no-op cast, no need to check
3477   SDValue N = getValue(I.getOperand(0));
3478   SDLoc dl = getCurSDLoc();
3479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3480   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3481   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3482                            DAG.getTargetConstant(
3483                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3484 }
3485 
3486 void SelectionDAGBuilder::visitFPExt(const User &I) {
3487   // FPExt is never a no-op cast, no need to check
3488   SDValue N = getValue(I.getOperand(0));
3489   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3490                                                         I.getType());
3491   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3492 }
3493 
3494 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3495   // FPToUI is never a no-op cast, no need to check
3496   SDValue N = getValue(I.getOperand(0));
3497   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3498                                                         I.getType());
3499   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3500 }
3501 
3502 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3503   // FPToSI is never a no-op cast, no need to check
3504   SDValue N = getValue(I.getOperand(0));
3505   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3506                                                         I.getType());
3507   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3508 }
3509 
3510 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3511   // UIToFP is never a no-op cast, no need to check
3512   SDValue N = getValue(I.getOperand(0));
3513   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3514                                                         I.getType());
3515   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3516 }
3517 
3518 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3519   // SIToFP is never a no-op cast, no need to check
3520   SDValue N = getValue(I.getOperand(0));
3521   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3522                                                         I.getType());
3523   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3524 }
3525 
3526 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3527   // What to do depends on the size of the integer and the size of the pointer.
3528   // We can either truncate, zero extend, or no-op, accordingly.
3529   SDValue N = getValue(I.getOperand(0));
3530   auto &TLI = DAG.getTargetLoweringInfo();
3531   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3532                                                         I.getType());
3533   EVT PtrMemVT =
3534       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3535   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3536   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3537   setValue(&I, N);
3538 }
3539 
3540 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3541   // What to do depends on the size of the integer and the size of the pointer.
3542   // We can either truncate, zero extend, or no-op, accordingly.
3543   SDValue N = getValue(I.getOperand(0));
3544   auto &TLI = DAG.getTargetLoweringInfo();
3545   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3547   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3548   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3549   setValue(&I, N);
3550 }
3551 
3552 void SelectionDAGBuilder::visitBitCast(const User &I) {
3553   SDValue N = getValue(I.getOperand(0));
3554   SDLoc dl = getCurSDLoc();
3555   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3556                                                         I.getType());
3557 
3558   // BitCast assures us that source and destination are the same size so this is
3559   // either a BITCAST or a no-op.
3560   if (DestVT != N.getValueType())
3561     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3562                              DestVT, N)); // convert types.
3563   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3564   // might fold any kind of constant expression to an integer constant and that
3565   // is not what we are looking for. Only recognize a bitcast of a genuine
3566   // constant integer as an opaque constant.
3567   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3568     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3569                                  /*isOpaque*/true));
3570   else
3571     setValue(&I, N);            // noop cast.
3572 }
3573 
3574 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3576   const Value *SV = I.getOperand(0);
3577   SDValue N = getValue(SV);
3578   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3579 
3580   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3581   unsigned DestAS = I.getType()->getPointerAddressSpace();
3582 
3583   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3584     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3585 
3586   setValue(&I, N);
3587 }
3588 
3589 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3590   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3591   SDValue InVec = getValue(I.getOperand(0));
3592   SDValue InVal = getValue(I.getOperand(1));
3593   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3594                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3595   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3596                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3597                            InVec, InVal, InIdx));
3598 }
3599 
3600 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3602   SDValue InVec = getValue(I.getOperand(0));
3603   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3604                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3605   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3606                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3607                            InVec, InIdx));
3608 }
3609 
3610 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3611   SDValue Src1 = getValue(I.getOperand(0));
3612   SDValue Src2 = getValue(I.getOperand(1));
3613   ArrayRef<int> Mask;
3614   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3615     Mask = SVI->getShuffleMask();
3616   else
3617     Mask = cast<ConstantExpr>(I).getShuffleMask();
3618   SDLoc DL = getCurSDLoc();
3619   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3620   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3621   EVT SrcVT = Src1.getValueType();
3622 
3623   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3624       VT.isScalableVector()) {
3625     // Canonical splat form of first element of first input vector.
3626     SDValue FirstElt =
3627         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3628                     DAG.getVectorIdxConstant(0, DL));
3629     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3630     return;
3631   }
3632 
3633   // For now, we only handle splats for scalable vectors.
3634   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3635   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3636   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3637 
3638   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3639   unsigned MaskNumElts = Mask.size();
3640 
3641   if (SrcNumElts == MaskNumElts) {
3642     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3643     return;
3644   }
3645 
3646   // Normalize the shuffle vector since mask and vector length don't match.
3647   if (SrcNumElts < MaskNumElts) {
3648     // Mask is longer than the source vectors. We can use concatenate vector to
3649     // make the mask and vectors lengths match.
3650 
3651     if (MaskNumElts % SrcNumElts == 0) {
3652       // Mask length is a multiple of the source vector length.
3653       // Check if the shuffle is some kind of concatenation of the input
3654       // vectors.
3655       unsigned NumConcat = MaskNumElts / SrcNumElts;
3656       bool IsConcat = true;
3657       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3658       for (unsigned i = 0; i != MaskNumElts; ++i) {
3659         int Idx = Mask[i];
3660         if (Idx < 0)
3661           continue;
3662         // Ensure the indices in each SrcVT sized piece are sequential and that
3663         // the same source is used for the whole piece.
3664         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3665             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3666              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3667           IsConcat = false;
3668           break;
3669         }
3670         // Remember which source this index came from.
3671         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3672       }
3673 
3674       // The shuffle is concatenating multiple vectors together. Just emit
3675       // a CONCAT_VECTORS operation.
3676       if (IsConcat) {
3677         SmallVector<SDValue, 8> ConcatOps;
3678         for (auto Src : ConcatSrcs) {
3679           if (Src < 0)
3680             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3681           else if (Src == 0)
3682             ConcatOps.push_back(Src1);
3683           else
3684             ConcatOps.push_back(Src2);
3685         }
3686         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3687         return;
3688       }
3689     }
3690 
3691     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3692     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3693     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3694                                     PaddedMaskNumElts);
3695 
3696     // Pad both vectors with undefs to make them the same length as the mask.
3697     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3698 
3699     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3700     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3701     MOps1[0] = Src1;
3702     MOps2[0] = Src2;
3703 
3704     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3705     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3706 
3707     // Readjust mask for new input vector length.
3708     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3709     for (unsigned i = 0; i != MaskNumElts; ++i) {
3710       int Idx = Mask[i];
3711       if (Idx >= (int)SrcNumElts)
3712         Idx -= SrcNumElts - PaddedMaskNumElts;
3713       MappedOps[i] = Idx;
3714     }
3715 
3716     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3717 
3718     // If the concatenated vector was padded, extract a subvector with the
3719     // correct number of elements.
3720     if (MaskNumElts != PaddedMaskNumElts)
3721       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3722                            DAG.getVectorIdxConstant(0, DL));
3723 
3724     setValue(&I, Result);
3725     return;
3726   }
3727 
3728   if (SrcNumElts > MaskNumElts) {
3729     // Analyze the access pattern of the vector to see if we can extract
3730     // two subvectors and do the shuffle.
3731     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3732     bool CanExtract = true;
3733     for (int Idx : Mask) {
3734       unsigned Input = 0;
3735       if (Idx < 0)
3736         continue;
3737 
3738       if (Idx >= (int)SrcNumElts) {
3739         Input = 1;
3740         Idx -= SrcNumElts;
3741       }
3742 
3743       // If all the indices come from the same MaskNumElts sized portion of
3744       // the sources we can use extract. Also make sure the extract wouldn't
3745       // extract past the end of the source.
3746       int NewStartIdx = alignDown(Idx, MaskNumElts);
3747       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3748           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3749         CanExtract = false;
3750       // Make sure we always update StartIdx as we use it to track if all
3751       // elements are undef.
3752       StartIdx[Input] = NewStartIdx;
3753     }
3754 
3755     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3756       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3757       return;
3758     }
3759     if (CanExtract) {
3760       // Extract appropriate subvector and generate a vector shuffle
3761       for (unsigned Input = 0; Input < 2; ++Input) {
3762         SDValue &Src = Input == 0 ? Src1 : Src2;
3763         if (StartIdx[Input] < 0)
3764           Src = DAG.getUNDEF(VT);
3765         else {
3766           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3767                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3768         }
3769       }
3770 
3771       // Calculate new mask.
3772       SmallVector<int, 8> MappedOps(Mask);
3773       for (int &Idx : MappedOps) {
3774         if (Idx >= (int)SrcNumElts)
3775           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3776         else if (Idx >= 0)
3777           Idx -= StartIdx[0];
3778       }
3779 
3780       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3781       return;
3782     }
3783   }
3784 
3785   // We can't use either concat vectors or extract subvectors so fall back to
3786   // replacing the shuffle with extract and build vector.
3787   // to insert and build vector.
3788   EVT EltVT = VT.getVectorElementType();
3789   SmallVector<SDValue,8> Ops;
3790   for (int Idx : Mask) {
3791     SDValue Res;
3792 
3793     if (Idx < 0) {
3794       Res = DAG.getUNDEF(EltVT);
3795     } else {
3796       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3797       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3798 
3799       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3800                         DAG.getVectorIdxConstant(Idx, DL));
3801     }
3802 
3803     Ops.push_back(Res);
3804   }
3805 
3806   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3807 }
3808 
3809 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3810   ArrayRef<unsigned> Indices = I.getIndices();
3811   const Value *Op0 = I.getOperand(0);
3812   const Value *Op1 = I.getOperand(1);
3813   Type *AggTy = I.getType();
3814   Type *ValTy = Op1->getType();
3815   bool IntoUndef = isa<UndefValue>(Op0);
3816   bool FromUndef = isa<UndefValue>(Op1);
3817 
3818   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3819 
3820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3821   SmallVector<EVT, 4> AggValueVTs;
3822   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3823   SmallVector<EVT, 4> ValValueVTs;
3824   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3825 
3826   unsigned NumAggValues = AggValueVTs.size();
3827   unsigned NumValValues = ValValueVTs.size();
3828   SmallVector<SDValue, 4> Values(NumAggValues);
3829 
3830   // Ignore an insertvalue that produces an empty object
3831   if (!NumAggValues) {
3832     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3833     return;
3834   }
3835 
3836   SDValue Agg = getValue(Op0);
3837   unsigned i = 0;
3838   // Copy the beginning value(s) from the original aggregate.
3839   for (; i != LinearIndex; ++i)
3840     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3841                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3842   // Copy values from the inserted value(s).
3843   if (NumValValues) {
3844     SDValue Val = getValue(Op1);
3845     for (; i != LinearIndex + NumValValues; ++i)
3846       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3847                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3848   }
3849   // Copy remaining value(s) from the original aggregate.
3850   for (; i != NumAggValues; ++i)
3851     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3852                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3853 
3854   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3855                            DAG.getVTList(AggValueVTs), Values));
3856 }
3857 
3858 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3859   ArrayRef<unsigned> Indices = I.getIndices();
3860   const Value *Op0 = I.getOperand(0);
3861   Type *AggTy = Op0->getType();
3862   Type *ValTy = I.getType();
3863   bool OutOfUndef = isa<UndefValue>(Op0);
3864 
3865   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3866 
3867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3868   SmallVector<EVT, 4> ValValueVTs;
3869   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3870 
3871   unsigned NumValValues = ValValueVTs.size();
3872 
3873   // Ignore a extractvalue that produces an empty object
3874   if (!NumValValues) {
3875     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3876     return;
3877   }
3878 
3879   SmallVector<SDValue, 4> Values(NumValValues);
3880 
3881   SDValue Agg = getValue(Op0);
3882   // Copy out the selected value(s).
3883   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3884     Values[i - LinearIndex] =
3885       OutOfUndef ?
3886         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3887         SDValue(Agg.getNode(), Agg.getResNo() + i);
3888 
3889   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3890                            DAG.getVTList(ValValueVTs), Values));
3891 }
3892 
3893 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3894   Value *Op0 = I.getOperand(0);
3895   // Note that the pointer operand may be a vector of pointers. Take the scalar
3896   // element which holds a pointer.
3897   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3898   SDValue N = getValue(Op0);
3899   SDLoc dl = getCurSDLoc();
3900   auto &TLI = DAG.getTargetLoweringInfo();
3901 
3902   // Normalize Vector GEP - all scalar operands should be converted to the
3903   // splat vector.
3904   bool IsVectorGEP = I.getType()->isVectorTy();
3905   ElementCount VectorElementCount =
3906       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3907                   : ElementCount::getFixed(0);
3908 
3909   if (IsVectorGEP && !N.getValueType().isVector()) {
3910     LLVMContext &Context = *DAG.getContext();
3911     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3912     N = DAG.getSplat(VT, dl, N);
3913   }
3914 
3915   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3916        GTI != E; ++GTI) {
3917     const Value *Idx = GTI.getOperand();
3918     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3919       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3920       if (Field) {
3921         // N = N + Offset
3922         uint64_t Offset =
3923             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3924 
3925         // In an inbounds GEP with an offset that is nonnegative even when
3926         // interpreted as signed, assume there is no unsigned overflow.
3927         SDNodeFlags Flags;
3928         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3929           Flags.setNoUnsignedWrap(true);
3930 
3931         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3932                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3933       }
3934     } else {
3935       // IdxSize is the width of the arithmetic according to IR semantics.
3936       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3937       // (and fix up the result later).
3938       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3939       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3940       TypeSize ElementSize =
3941           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3942       // We intentionally mask away the high bits here; ElementSize may not
3943       // fit in IdxTy.
3944       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3945       bool ElementScalable = ElementSize.isScalable();
3946 
3947       // If this is a scalar constant or a splat vector of constants,
3948       // handle it quickly.
3949       const auto *C = dyn_cast<Constant>(Idx);
3950       if (C && isa<VectorType>(C->getType()))
3951         C = C->getSplatValue();
3952 
3953       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3954       if (CI && CI->isZero())
3955         continue;
3956       if (CI && !ElementScalable) {
3957         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3958         LLVMContext &Context = *DAG.getContext();
3959         SDValue OffsVal;
3960         if (IsVectorGEP)
3961           OffsVal = DAG.getConstant(
3962               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3963         else
3964           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3965 
3966         // In an inbounds GEP with an offset that is nonnegative even when
3967         // interpreted as signed, assume there is no unsigned overflow.
3968         SDNodeFlags Flags;
3969         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3970           Flags.setNoUnsignedWrap(true);
3971 
3972         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3973 
3974         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3975         continue;
3976       }
3977 
3978       // N = N + Idx * ElementMul;
3979       SDValue IdxN = getValue(Idx);
3980 
3981       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3982         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3983                                   VectorElementCount);
3984         IdxN = DAG.getSplat(VT, dl, IdxN);
3985       }
3986 
3987       // If the index is smaller or larger than intptr_t, truncate or extend
3988       // it.
3989       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3990 
3991       if (ElementScalable) {
3992         EVT VScaleTy = N.getValueType().getScalarType();
3993         SDValue VScale = DAG.getNode(
3994             ISD::VSCALE, dl, VScaleTy,
3995             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3996         if (IsVectorGEP)
3997           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3998         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3999       } else {
4000         // If this is a multiply by a power of two, turn it into a shl
4001         // immediately.  This is a very common case.
4002         if (ElementMul != 1) {
4003           if (ElementMul.isPowerOf2()) {
4004             unsigned Amt = ElementMul.logBase2();
4005             IdxN = DAG.getNode(ISD::SHL, dl,
4006                                N.getValueType(), IdxN,
4007                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4008           } else {
4009             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4010                                             IdxN.getValueType());
4011             IdxN = DAG.getNode(ISD::MUL, dl,
4012                                N.getValueType(), IdxN, Scale);
4013           }
4014         }
4015       }
4016 
4017       N = DAG.getNode(ISD::ADD, dl,
4018                       N.getValueType(), N, IdxN);
4019     }
4020   }
4021 
4022   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4023   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4024   if (IsVectorGEP) {
4025     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4026     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4027   }
4028 
4029   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4030     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4031 
4032   setValue(&I, N);
4033 }
4034 
4035 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4036   // If this is a fixed sized alloca in the entry block of the function,
4037   // allocate it statically on the stack.
4038   if (FuncInfo.StaticAllocaMap.count(&I))
4039     return;   // getValue will auto-populate this.
4040 
4041   SDLoc dl = getCurSDLoc();
4042   Type *Ty = I.getAllocatedType();
4043   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4044   auto &DL = DAG.getDataLayout();
4045   TypeSize TySize = DL.getTypeAllocSize(Ty);
4046   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4047 
4048   SDValue AllocSize = getValue(I.getArraySize());
4049 
4050   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4051   if (AllocSize.getValueType() != IntPtr)
4052     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4053 
4054   if (TySize.isScalable())
4055     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4056                             DAG.getVScale(dl, IntPtr,
4057                                           APInt(IntPtr.getScalarSizeInBits(),
4058                                                 TySize.getKnownMinValue())));
4059   else
4060     AllocSize =
4061         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4062                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4063 
4064   // Handle alignment.  If the requested alignment is less than or equal to
4065   // the stack alignment, ignore it.  If the size is greater than or equal to
4066   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4067   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4068   if (*Alignment <= StackAlign)
4069     Alignment = std::nullopt;
4070 
4071   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4072   // Round the size of the allocation up to the stack alignment size
4073   // by add SA-1 to the size. This doesn't overflow because we're computing
4074   // an address inside an alloca.
4075   SDNodeFlags Flags;
4076   Flags.setNoUnsignedWrap(true);
4077   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4078                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4079 
4080   // Mask out the low bits for alignment purposes.
4081   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4082                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4083 
4084   SDValue Ops[] = {
4085       getRoot(), AllocSize,
4086       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4087   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4088   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4089   setValue(&I, DSA);
4090   DAG.setRoot(DSA.getValue(1));
4091 
4092   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4093 }
4094 
4095 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4096   if (I.isAtomic())
4097     return visitAtomicLoad(I);
4098 
4099   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4100   const Value *SV = I.getOperand(0);
4101   if (TLI.supportSwiftError()) {
4102     // Swifterror values can come from either a function parameter with
4103     // swifterror attribute or an alloca with swifterror attribute.
4104     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4105       if (Arg->hasSwiftErrorAttr())
4106         return visitLoadFromSwiftError(I);
4107     }
4108 
4109     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4110       if (Alloca->isSwiftError())
4111         return visitLoadFromSwiftError(I);
4112     }
4113   }
4114 
4115   SDValue Ptr = getValue(SV);
4116 
4117   Type *Ty = I.getType();
4118   SmallVector<EVT, 4> ValueVTs, MemVTs;
4119   SmallVector<uint64_t, 4> Offsets;
4120   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4121   unsigned NumValues = ValueVTs.size();
4122   if (NumValues == 0)
4123     return;
4124 
4125   Align Alignment = I.getAlign();
4126   AAMDNodes AAInfo = I.getAAMetadata();
4127   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4128   bool isVolatile = I.isVolatile();
4129   MachineMemOperand::Flags MMOFlags =
4130       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4131 
4132   SDValue Root;
4133   bool ConstantMemory = false;
4134   if (isVolatile)
4135     // Serialize volatile loads with other side effects.
4136     Root = getRoot();
4137   else if (NumValues > MaxParallelChains)
4138     Root = getMemoryRoot();
4139   else if (AA &&
4140            AA->pointsToConstantMemory(MemoryLocation(
4141                SV,
4142                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4143                AAInfo))) {
4144     // Do not serialize (non-volatile) loads of constant memory with anything.
4145     Root = DAG.getEntryNode();
4146     ConstantMemory = true;
4147     MMOFlags |= MachineMemOperand::MOInvariant;
4148   } else {
4149     // Do not serialize non-volatile loads against each other.
4150     Root = DAG.getRoot();
4151   }
4152 
4153   SDLoc dl = getCurSDLoc();
4154 
4155   if (isVolatile)
4156     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4157 
4158   // An aggregate load cannot wrap around the address space, so offsets to its
4159   // parts don't wrap either.
4160   SDNodeFlags Flags;
4161   Flags.setNoUnsignedWrap(true);
4162 
4163   SmallVector<SDValue, 4> Values(NumValues);
4164   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4165   EVT PtrVT = Ptr.getValueType();
4166 
4167   unsigned ChainI = 0;
4168   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4169     // Serializing loads here may result in excessive register pressure, and
4170     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4171     // could recover a bit by hoisting nodes upward in the chain by recognizing
4172     // they are side-effect free or do not alias. The optimizer should really
4173     // avoid this case by converting large object/array copies to llvm.memcpy
4174     // (MaxParallelChains should always remain as failsafe).
4175     if (ChainI == MaxParallelChains) {
4176       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4177       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4178                                   ArrayRef(Chains.data(), ChainI));
4179       Root = Chain;
4180       ChainI = 0;
4181     }
4182     SDValue A = DAG.getNode(ISD::ADD, dl,
4183                             PtrVT, Ptr,
4184                             DAG.getConstant(Offsets[i], dl, PtrVT),
4185                             Flags);
4186 
4187     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4188                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4189                             MMOFlags, AAInfo, Ranges);
4190     Chains[ChainI] = L.getValue(1);
4191 
4192     if (MemVTs[i] != ValueVTs[i])
4193       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4194 
4195     Values[i] = L;
4196   }
4197 
4198   if (!ConstantMemory) {
4199     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4200                                 ArrayRef(Chains.data(), ChainI));
4201     if (isVolatile)
4202       DAG.setRoot(Chain);
4203     else
4204       PendingLoads.push_back(Chain);
4205   }
4206 
4207   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4208                            DAG.getVTList(ValueVTs), Values));
4209 }
4210 
4211 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4212   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4213          "call visitStoreToSwiftError when backend supports swifterror");
4214 
4215   SmallVector<EVT, 4> ValueVTs;
4216   SmallVector<uint64_t, 4> Offsets;
4217   const Value *SrcV = I.getOperand(0);
4218   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4219                   SrcV->getType(), ValueVTs, &Offsets);
4220   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4221          "expect a single EVT for swifterror");
4222 
4223   SDValue Src = getValue(SrcV);
4224   // Create a virtual register, then update the virtual register.
4225   Register VReg =
4226       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4227   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4228   // Chain can be getRoot or getControlRoot.
4229   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4230                                       SDValue(Src.getNode(), Src.getResNo()));
4231   DAG.setRoot(CopyNode);
4232 }
4233 
4234 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4235   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4236          "call visitLoadFromSwiftError when backend supports swifterror");
4237 
4238   assert(!I.isVolatile() &&
4239          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4240          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4241          "Support volatile, non temporal, invariant for load_from_swift_error");
4242 
4243   const Value *SV = I.getOperand(0);
4244   Type *Ty = I.getType();
4245   assert(
4246       (!AA ||
4247        !AA->pointsToConstantMemory(MemoryLocation(
4248            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4249            I.getAAMetadata()))) &&
4250       "load_from_swift_error should not be constant memory");
4251 
4252   SmallVector<EVT, 4> ValueVTs;
4253   SmallVector<uint64_t, 4> Offsets;
4254   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4255                   ValueVTs, &Offsets);
4256   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4257          "expect a single EVT for swifterror");
4258 
4259   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4260   SDValue L = DAG.getCopyFromReg(
4261       getRoot(), getCurSDLoc(),
4262       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4263 
4264   setValue(&I, L);
4265 }
4266 
4267 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4268   if (I.isAtomic())
4269     return visitAtomicStore(I);
4270 
4271   const Value *SrcV = I.getOperand(0);
4272   const Value *PtrV = I.getOperand(1);
4273 
4274   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4275   if (TLI.supportSwiftError()) {
4276     // Swifterror values can come from either a function parameter with
4277     // swifterror attribute or an alloca with swifterror attribute.
4278     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4279       if (Arg->hasSwiftErrorAttr())
4280         return visitStoreToSwiftError(I);
4281     }
4282 
4283     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4284       if (Alloca->isSwiftError())
4285         return visitStoreToSwiftError(I);
4286     }
4287   }
4288 
4289   SmallVector<EVT, 4> ValueVTs, MemVTs;
4290   SmallVector<uint64_t, 4> Offsets;
4291   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4292                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4293   unsigned NumValues = ValueVTs.size();
4294   if (NumValues == 0)
4295     return;
4296 
4297   // Get the lowered operands. Note that we do this after
4298   // checking if NumResults is zero, because with zero results
4299   // the operands won't have values in the map.
4300   SDValue Src = getValue(SrcV);
4301   SDValue Ptr = getValue(PtrV);
4302 
4303   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4304   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4305   SDLoc dl = getCurSDLoc();
4306   Align Alignment = I.getAlign();
4307   AAMDNodes AAInfo = I.getAAMetadata();
4308 
4309   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4310 
4311   // An aggregate load cannot wrap around the address space, so offsets to its
4312   // parts don't wrap either.
4313   SDNodeFlags Flags;
4314   Flags.setNoUnsignedWrap(true);
4315 
4316   unsigned ChainI = 0;
4317   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4318     // See visitLoad comments.
4319     if (ChainI == MaxParallelChains) {
4320       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4321                                   ArrayRef(Chains.data(), ChainI));
4322       Root = Chain;
4323       ChainI = 0;
4324     }
4325     SDValue Add =
4326         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4327     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4328     if (MemVTs[i] != ValueVTs[i])
4329       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4330     SDValue St =
4331         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4332                      Alignment, MMOFlags, AAInfo);
4333     Chains[ChainI] = St;
4334   }
4335 
4336   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4337                                   ArrayRef(Chains.data(), ChainI));
4338   setValue(&I, StoreNode);
4339   DAG.setRoot(StoreNode);
4340 }
4341 
4342 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4343                                            bool IsCompressing) {
4344   SDLoc sdl = getCurSDLoc();
4345 
4346   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4347                                MaybeAlign &Alignment) {
4348     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4349     Src0 = I.getArgOperand(0);
4350     Ptr = I.getArgOperand(1);
4351     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4352     Mask = I.getArgOperand(3);
4353   };
4354   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4355                                     MaybeAlign &Alignment) {
4356     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4357     Src0 = I.getArgOperand(0);
4358     Ptr = I.getArgOperand(1);
4359     Mask = I.getArgOperand(2);
4360     Alignment = std::nullopt;
4361   };
4362 
4363   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4364   MaybeAlign Alignment;
4365   if (IsCompressing)
4366     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4367   else
4368     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4369 
4370   SDValue Ptr = getValue(PtrOperand);
4371   SDValue Src0 = getValue(Src0Operand);
4372   SDValue Mask = getValue(MaskOperand);
4373   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4374 
4375   EVT VT = Src0.getValueType();
4376   if (!Alignment)
4377     Alignment = DAG.getEVTAlign(VT);
4378 
4379   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4380       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4381       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4382   SDValue StoreNode =
4383       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4384                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4385   DAG.setRoot(StoreNode);
4386   setValue(&I, StoreNode);
4387 }
4388 
4389 // Get a uniform base for the Gather/Scatter intrinsic.
4390 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4391 // We try to represent it as a base pointer + vector of indices.
4392 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4393 // The first operand of the GEP may be a single pointer or a vector of pointers
4394 // Example:
4395 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4396 //  or
4397 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4398 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4399 //
4400 // When the first GEP operand is a single pointer - it is the uniform base we
4401 // are looking for. If first operand of the GEP is a splat vector - we
4402 // extract the splat value and use it as a uniform base.
4403 // In all other cases the function returns 'false'.
4404 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4405                            ISD::MemIndexType &IndexType, SDValue &Scale,
4406                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4407                            uint64_t ElemSize) {
4408   SelectionDAG& DAG = SDB->DAG;
4409   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4410   const DataLayout &DL = DAG.getDataLayout();
4411 
4412   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4413 
4414   // Handle splat constant pointer.
4415   if (auto *C = dyn_cast<Constant>(Ptr)) {
4416     C = C->getSplatValue();
4417     if (!C)
4418       return false;
4419 
4420     Base = SDB->getValue(C);
4421 
4422     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4423     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4424     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4425     IndexType = ISD::SIGNED_SCALED;
4426     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4427     return true;
4428   }
4429 
4430   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4431   if (!GEP || GEP->getParent() != CurBB)
4432     return false;
4433 
4434   if (GEP->getNumOperands() != 2)
4435     return false;
4436 
4437   const Value *BasePtr = GEP->getPointerOperand();
4438   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4439 
4440   // Make sure the base is scalar and the index is a vector.
4441   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4442     return false;
4443 
4444   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4445 
4446   // Target may not support the required addressing mode.
4447   if (ScaleVal != 1 &&
4448       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4449     return false;
4450 
4451   Base = SDB->getValue(BasePtr);
4452   Index = SDB->getValue(IndexVal);
4453   IndexType = ISD::SIGNED_SCALED;
4454 
4455   Scale =
4456       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4457   return true;
4458 }
4459 
4460 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4461   SDLoc sdl = getCurSDLoc();
4462 
4463   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4464   const Value *Ptr = I.getArgOperand(1);
4465   SDValue Src0 = getValue(I.getArgOperand(0));
4466   SDValue Mask = getValue(I.getArgOperand(3));
4467   EVT VT = Src0.getValueType();
4468   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4469                         ->getMaybeAlignValue()
4470                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4472 
4473   SDValue Base;
4474   SDValue Index;
4475   ISD::MemIndexType IndexType;
4476   SDValue Scale;
4477   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4478                                     I.getParent(), VT.getScalarStoreSize());
4479 
4480   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4481   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4482       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4483       // TODO: Make MachineMemOperands aware of scalable
4484       // vectors.
4485       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4486   if (!UniformBase) {
4487     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4488     Index = getValue(Ptr);
4489     IndexType = ISD::SIGNED_SCALED;
4490     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4491   }
4492 
4493   EVT IdxVT = Index.getValueType();
4494   EVT EltTy = IdxVT.getVectorElementType();
4495   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4496     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4497     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4498   }
4499 
4500   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4501   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4502                                          Ops, MMO, IndexType, false);
4503   DAG.setRoot(Scatter);
4504   setValue(&I, Scatter);
4505 }
4506 
4507 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4508   SDLoc sdl = getCurSDLoc();
4509 
4510   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4511                               MaybeAlign &Alignment) {
4512     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4513     Ptr = I.getArgOperand(0);
4514     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4515     Mask = I.getArgOperand(2);
4516     Src0 = I.getArgOperand(3);
4517   };
4518   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4519                                  MaybeAlign &Alignment) {
4520     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4521     Ptr = I.getArgOperand(0);
4522     Alignment = std::nullopt;
4523     Mask = I.getArgOperand(1);
4524     Src0 = I.getArgOperand(2);
4525   };
4526 
4527   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4528   MaybeAlign Alignment;
4529   if (IsExpanding)
4530     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4531   else
4532     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4533 
4534   SDValue Ptr = getValue(PtrOperand);
4535   SDValue Src0 = getValue(Src0Operand);
4536   SDValue Mask = getValue(MaskOperand);
4537   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4538 
4539   EVT VT = Src0.getValueType();
4540   if (!Alignment)
4541     Alignment = DAG.getEVTAlign(VT);
4542 
4543   AAMDNodes AAInfo = I.getAAMetadata();
4544   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4545 
4546   // Do not serialize masked loads of constant memory with anything.
4547   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4548   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4549 
4550   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4551 
4552   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4553       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4554       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4555 
4556   SDValue Load =
4557       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4558                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4559   if (AddToChain)
4560     PendingLoads.push_back(Load.getValue(1));
4561   setValue(&I, Load);
4562 }
4563 
4564 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4565   SDLoc sdl = getCurSDLoc();
4566 
4567   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4568   const Value *Ptr = I.getArgOperand(0);
4569   SDValue Src0 = getValue(I.getArgOperand(3));
4570   SDValue Mask = getValue(I.getArgOperand(2));
4571 
4572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4573   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4574   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4575                         ->getMaybeAlignValue()
4576                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4577 
4578   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4579 
4580   SDValue Root = DAG.getRoot();
4581   SDValue Base;
4582   SDValue Index;
4583   ISD::MemIndexType IndexType;
4584   SDValue Scale;
4585   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4586                                     I.getParent(), VT.getScalarStoreSize());
4587   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4588   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4589       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4590       // TODO: Make MachineMemOperands aware of scalable
4591       // vectors.
4592       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4593 
4594   if (!UniformBase) {
4595     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4596     Index = getValue(Ptr);
4597     IndexType = ISD::SIGNED_SCALED;
4598     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4599   }
4600 
4601   EVT IdxVT = Index.getValueType();
4602   EVT EltTy = IdxVT.getVectorElementType();
4603   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4604     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4605     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4606   }
4607 
4608   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4609   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4610                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4611 
4612   PendingLoads.push_back(Gather.getValue(1));
4613   setValue(&I, Gather);
4614 }
4615 
4616 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4617   SDLoc dl = getCurSDLoc();
4618   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4619   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4620   SyncScope::ID SSID = I.getSyncScopeID();
4621 
4622   SDValue InChain = getRoot();
4623 
4624   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4625   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4626 
4627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4628   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4629 
4630   MachineFunction &MF = DAG.getMachineFunction();
4631   MachineMemOperand *MMO = MF.getMachineMemOperand(
4632       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4633       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4634       FailureOrdering);
4635 
4636   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4637                                    dl, MemVT, VTs, InChain,
4638                                    getValue(I.getPointerOperand()),
4639                                    getValue(I.getCompareOperand()),
4640                                    getValue(I.getNewValOperand()), MMO);
4641 
4642   SDValue OutChain = L.getValue(2);
4643 
4644   setValue(&I, L);
4645   DAG.setRoot(OutChain);
4646 }
4647 
4648 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4649   SDLoc dl = getCurSDLoc();
4650   ISD::NodeType NT;
4651   switch (I.getOperation()) {
4652   default: llvm_unreachable("Unknown atomicrmw operation");
4653   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4654   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4655   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4656   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4657   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4658   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4659   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4660   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4661   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4662   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4663   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4664   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4665   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4666   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4667   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4668   case AtomicRMWInst::UIncWrap:
4669     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4670     break;
4671   case AtomicRMWInst::UDecWrap:
4672     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4673     break;
4674   }
4675   AtomicOrdering Ordering = I.getOrdering();
4676   SyncScope::ID SSID = I.getSyncScopeID();
4677 
4678   SDValue InChain = getRoot();
4679 
4680   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4682   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4683 
4684   MachineFunction &MF = DAG.getMachineFunction();
4685   MachineMemOperand *MMO = MF.getMachineMemOperand(
4686       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4687       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4688 
4689   SDValue L =
4690     DAG.getAtomic(NT, dl, MemVT, InChain,
4691                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4692                   MMO);
4693 
4694   SDValue OutChain = L.getValue(1);
4695 
4696   setValue(&I, L);
4697   DAG.setRoot(OutChain);
4698 }
4699 
4700 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4701   SDLoc dl = getCurSDLoc();
4702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703   SDValue Ops[3];
4704   Ops[0] = getRoot();
4705   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4706                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4707   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4708                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4709   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4710   setValue(&I, N);
4711   DAG.setRoot(N);
4712 }
4713 
4714 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4715   SDLoc dl = getCurSDLoc();
4716   AtomicOrdering Order = I.getOrdering();
4717   SyncScope::ID SSID = I.getSyncScopeID();
4718 
4719   SDValue InChain = getRoot();
4720 
4721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4722   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4723   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4724 
4725   if (!TLI.supportsUnalignedAtomics() &&
4726       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4727     report_fatal_error("Cannot generate unaligned atomic load");
4728 
4729   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4730 
4731   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4732       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4733       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4734 
4735   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4736 
4737   SDValue Ptr = getValue(I.getPointerOperand());
4738 
4739   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4740     // TODO: Once this is better exercised by tests, it should be merged with
4741     // the normal path for loads to prevent future divergence.
4742     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4743     if (MemVT != VT)
4744       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4745 
4746     setValue(&I, L);
4747     SDValue OutChain = L.getValue(1);
4748     if (!I.isUnordered())
4749       DAG.setRoot(OutChain);
4750     else
4751       PendingLoads.push_back(OutChain);
4752     return;
4753   }
4754 
4755   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4756                             Ptr, MMO);
4757 
4758   SDValue OutChain = L.getValue(1);
4759   if (MemVT != VT)
4760     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4761 
4762   setValue(&I, L);
4763   DAG.setRoot(OutChain);
4764 }
4765 
4766 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4767   SDLoc dl = getCurSDLoc();
4768 
4769   AtomicOrdering Ordering = I.getOrdering();
4770   SyncScope::ID SSID = I.getSyncScopeID();
4771 
4772   SDValue InChain = getRoot();
4773 
4774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4775   EVT MemVT =
4776       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4777 
4778   if (!TLI.supportsUnalignedAtomics() &&
4779       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4780     report_fatal_error("Cannot generate unaligned atomic store");
4781 
4782   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4783 
4784   MachineFunction &MF = DAG.getMachineFunction();
4785   MachineMemOperand *MMO = MF.getMachineMemOperand(
4786       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4787       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4788 
4789   SDValue Val = getValue(I.getValueOperand());
4790   if (Val.getValueType() != MemVT)
4791     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4792   SDValue Ptr = getValue(I.getPointerOperand());
4793 
4794   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4795     // TODO: Once this is better exercised by tests, it should be merged with
4796     // the normal path for stores to prevent future divergence.
4797     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4798     setValue(&I, S);
4799     DAG.setRoot(S);
4800     return;
4801   }
4802   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4803                                    Ptr, Val, MMO);
4804 
4805   setValue(&I, OutChain);
4806   DAG.setRoot(OutChain);
4807 }
4808 
4809 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4810 /// node.
4811 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4812                                                unsigned Intrinsic) {
4813   // Ignore the callsite's attributes. A specific call site may be marked with
4814   // readnone, but the lowering code will expect the chain based on the
4815   // definition.
4816   const Function *F = I.getCalledFunction();
4817   bool HasChain = !F->doesNotAccessMemory();
4818   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4819 
4820   // Build the operand list.
4821   SmallVector<SDValue, 8> Ops;
4822   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4823     if (OnlyLoad) {
4824       // We don't need to serialize loads against other loads.
4825       Ops.push_back(DAG.getRoot());
4826     } else {
4827       Ops.push_back(getRoot());
4828     }
4829   }
4830 
4831   // Info is set by getTgtMemIntrinsic
4832   TargetLowering::IntrinsicInfo Info;
4833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4834   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4835                                                DAG.getMachineFunction(),
4836                                                Intrinsic);
4837 
4838   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4839   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4840       Info.opc == ISD::INTRINSIC_W_CHAIN)
4841     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4842                                         TLI.getPointerTy(DAG.getDataLayout())));
4843 
4844   // Add all operands of the call to the operand list.
4845   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4846     const Value *Arg = I.getArgOperand(i);
4847     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4848       Ops.push_back(getValue(Arg));
4849       continue;
4850     }
4851 
4852     // Use TargetConstant instead of a regular constant for immarg.
4853     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4854     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4855       assert(CI->getBitWidth() <= 64 &&
4856              "large intrinsic immediates not handled");
4857       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4858     } else {
4859       Ops.push_back(
4860           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4861     }
4862   }
4863 
4864   SmallVector<EVT, 4> ValueVTs;
4865   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4866 
4867   if (HasChain)
4868     ValueVTs.push_back(MVT::Other);
4869 
4870   SDVTList VTs = DAG.getVTList(ValueVTs);
4871 
4872   // Propagate fast-math-flags from IR to node(s).
4873   SDNodeFlags Flags;
4874   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4875     Flags.copyFMF(*FPMO);
4876   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4877 
4878   // Create the node.
4879   SDValue Result;
4880   // In some cases, custom collection of operands from CallInst I may be needed.
4881   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4882   if (IsTgtIntrinsic) {
4883     // This is target intrinsic that touches memory
4884     //
4885     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4886     //       didn't yield anything useful.
4887     MachinePointerInfo MPI;
4888     if (Info.ptrVal)
4889       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4890     else if (Info.fallbackAddressSpace)
4891       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4892     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4893                                      Info.memVT, MPI, Info.align, Info.flags,
4894                                      Info.size, I.getAAMetadata());
4895   } else if (!HasChain) {
4896     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4897   } else if (!I.getType()->isVoidTy()) {
4898     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4899   } else {
4900     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4901   }
4902 
4903   if (HasChain) {
4904     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4905     if (OnlyLoad)
4906       PendingLoads.push_back(Chain);
4907     else
4908       DAG.setRoot(Chain);
4909   }
4910 
4911   if (!I.getType()->isVoidTy()) {
4912     if (!isa<VectorType>(I.getType()))
4913       Result = lowerRangeToAssertZExt(DAG, I, Result);
4914 
4915     MaybeAlign Alignment = I.getRetAlign();
4916 
4917     // Insert `assertalign` node if there's an alignment.
4918     if (InsertAssertAlign && Alignment) {
4919       Result =
4920           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4921     }
4922 
4923     setValue(&I, Result);
4924   }
4925 }
4926 
4927 /// GetSignificand - Get the significand and build it into a floating-point
4928 /// number with exponent of 1:
4929 ///
4930 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4931 ///
4932 /// where Op is the hexadecimal representation of floating point value.
4933 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4934   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4935                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4936   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4937                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4938   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4939 }
4940 
4941 /// GetExponent - Get the exponent:
4942 ///
4943 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4944 ///
4945 /// where Op is the hexadecimal representation of floating point value.
4946 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4947                            const TargetLowering &TLI, const SDLoc &dl) {
4948   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4949                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4950   SDValue t1 = DAG.getNode(
4951       ISD::SRL, dl, MVT::i32, t0,
4952       DAG.getConstant(23, dl,
4953                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4954   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4955                            DAG.getConstant(127, dl, MVT::i32));
4956   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4957 }
4958 
4959 /// getF32Constant - Get 32-bit floating point constant.
4960 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4961                               const SDLoc &dl) {
4962   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4963                            MVT::f32);
4964 }
4965 
4966 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4967                                        SelectionDAG &DAG) {
4968   // TODO: What fast-math-flags should be set on the floating-point nodes?
4969 
4970   //   IntegerPartOfX = ((int32_t)(t0);
4971   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4972 
4973   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4974   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4975   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4976 
4977   //   IntegerPartOfX <<= 23;
4978   IntegerPartOfX =
4979       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4980                   DAG.getConstant(23, dl,
4981                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4982                                       MVT::i32, DAG.getDataLayout())));
4983 
4984   SDValue TwoToFractionalPartOfX;
4985   if (LimitFloatPrecision <= 6) {
4986     // For floating-point precision of 6:
4987     //
4988     //   TwoToFractionalPartOfX =
4989     //     0.997535578f +
4990     //       (0.735607626f + 0.252464424f * x) * x;
4991     //
4992     // error 0.0144103317, which is 6 bits
4993     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4994                              getF32Constant(DAG, 0x3e814304, dl));
4995     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4996                              getF32Constant(DAG, 0x3f3c50c8, dl));
4997     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4998     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4999                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5000   } else if (LimitFloatPrecision <= 12) {
5001     // For floating-point precision of 12:
5002     //
5003     //   TwoToFractionalPartOfX =
5004     //     0.999892986f +
5005     //       (0.696457318f +
5006     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5007     //
5008     // error 0.000107046256, which is 13 to 14 bits
5009     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5010                              getF32Constant(DAG, 0x3da235e3, dl));
5011     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5012                              getF32Constant(DAG, 0x3e65b8f3, dl));
5013     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5014     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5015                              getF32Constant(DAG, 0x3f324b07, dl));
5016     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5017     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5018                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5019   } else { // LimitFloatPrecision <= 18
5020     // For floating-point precision of 18:
5021     //
5022     //   TwoToFractionalPartOfX =
5023     //     0.999999982f +
5024     //       (0.693148872f +
5025     //         (0.240227044f +
5026     //           (0.554906021e-1f +
5027     //             (0.961591928e-2f +
5028     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5029     // error 2.47208000*10^(-7), which is better than 18 bits
5030     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5031                              getF32Constant(DAG, 0x3924b03e, dl));
5032     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5033                              getF32Constant(DAG, 0x3ab24b87, dl));
5034     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5035     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5036                              getF32Constant(DAG, 0x3c1d8c17, dl));
5037     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5038     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5039                              getF32Constant(DAG, 0x3d634a1d, dl));
5040     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5041     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5042                              getF32Constant(DAG, 0x3e75fe14, dl));
5043     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5044     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5045                               getF32Constant(DAG, 0x3f317234, dl));
5046     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5047     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5048                                          getF32Constant(DAG, 0x3f800000, dl));
5049   }
5050 
5051   // Add the exponent into the result in integer domain.
5052   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5053   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5054                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5055 }
5056 
5057 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5058 /// limited-precision mode.
5059 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5060                          const TargetLowering &TLI, SDNodeFlags Flags) {
5061   if (Op.getValueType() == MVT::f32 &&
5062       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5063 
5064     // Put the exponent in the right bit position for later addition to the
5065     // final result:
5066     //
5067     // t0 = Op * log2(e)
5068 
5069     // TODO: What fast-math-flags should be set here?
5070     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5071                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5072     return getLimitedPrecisionExp2(t0, dl, DAG);
5073   }
5074 
5075   // No special expansion.
5076   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5077 }
5078 
5079 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5080 /// limited-precision mode.
5081 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5082                          const TargetLowering &TLI, SDNodeFlags Flags) {
5083   // TODO: What fast-math-flags should be set on the floating-point nodes?
5084 
5085   if (Op.getValueType() == MVT::f32 &&
5086       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5087     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5088 
5089     // Scale the exponent by log(2).
5090     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5091     SDValue LogOfExponent =
5092         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5093                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5094 
5095     // Get the significand and build it into a floating-point number with
5096     // exponent of 1.
5097     SDValue X = GetSignificand(DAG, Op1, dl);
5098 
5099     SDValue LogOfMantissa;
5100     if (LimitFloatPrecision <= 6) {
5101       // For floating-point precision of 6:
5102       //
5103       //   LogofMantissa =
5104       //     -1.1609546f +
5105       //       (1.4034025f - 0.23903021f * x) * x;
5106       //
5107       // error 0.0034276066, which is better than 8 bits
5108       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5109                                getF32Constant(DAG, 0xbe74c456, dl));
5110       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5111                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5112       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5113       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5114                                   getF32Constant(DAG, 0x3f949a29, dl));
5115     } else if (LimitFloatPrecision <= 12) {
5116       // For floating-point precision of 12:
5117       //
5118       //   LogOfMantissa =
5119       //     -1.7417939f +
5120       //       (2.8212026f +
5121       //         (-1.4699568f +
5122       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5123       //
5124       // error 0.000061011436, which is 14 bits
5125       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5126                                getF32Constant(DAG, 0xbd67b6d6, dl));
5127       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5128                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5129       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5130       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5131                                getF32Constant(DAG, 0x3fbc278b, dl));
5132       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5133       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5134                                getF32Constant(DAG, 0x40348e95, dl));
5135       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5136       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5137                                   getF32Constant(DAG, 0x3fdef31a, dl));
5138     } else { // LimitFloatPrecision <= 18
5139       // For floating-point precision of 18:
5140       //
5141       //   LogOfMantissa =
5142       //     -2.1072184f +
5143       //       (4.2372794f +
5144       //         (-3.7029485f +
5145       //           (2.2781945f +
5146       //             (-0.87823314f +
5147       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5148       //
5149       // error 0.0000023660568, which is better than 18 bits
5150       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5151                                getF32Constant(DAG, 0xbc91e5ac, dl));
5152       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5153                                getF32Constant(DAG, 0x3e4350aa, dl));
5154       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5155       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5156                                getF32Constant(DAG, 0x3f60d3e3, dl));
5157       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5158       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5159                                getF32Constant(DAG, 0x4011cdf0, dl));
5160       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5161       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5162                                getF32Constant(DAG, 0x406cfd1c, dl));
5163       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5164       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5165                                getF32Constant(DAG, 0x408797cb, dl));
5166       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5167       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5168                                   getF32Constant(DAG, 0x4006dcab, dl));
5169     }
5170 
5171     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5172   }
5173 
5174   // No special expansion.
5175   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5176 }
5177 
5178 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5179 /// limited-precision mode.
5180 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5181                           const TargetLowering &TLI, SDNodeFlags Flags) {
5182   // TODO: What fast-math-flags should be set on the floating-point nodes?
5183 
5184   if (Op.getValueType() == MVT::f32 &&
5185       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5186     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5187 
5188     // Get the exponent.
5189     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5190 
5191     // Get the significand and build it into a floating-point number with
5192     // exponent of 1.
5193     SDValue X = GetSignificand(DAG, Op1, dl);
5194 
5195     // Different possible minimax approximations of significand in
5196     // floating-point for various degrees of accuracy over [1,2].
5197     SDValue Log2ofMantissa;
5198     if (LimitFloatPrecision <= 6) {
5199       // For floating-point precision of 6:
5200       //
5201       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5202       //
5203       // error 0.0049451742, which is more than 7 bits
5204       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5205                                getF32Constant(DAG, 0xbeb08fe0, dl));
5206       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5207                                getF32Constant(DAG, 0x40019463, dl));
5208       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5209       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5210                                    getF32Constant(DAG, 0x3fd6633d, dl));
5211     } else if (LimitFloatPrecision <= 12) {
5212       // For floating-point precision of 12:
5213       //
5214       //   Log2ofMantissa =
5215       //     -2.51285454f +
5216       //       (4.07009056f +
5217       //         (-2.12067489f +
5218       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5219       //
5220       // error 0.0000876136000, which is better than 13 bits
5221       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5222                                getF32Constant(DAG, 0xbda7262e, dl));
5223       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5224                                getF32Constant(DAG, 0x3f25280b, dl));
5225       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5226       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5227                                getF32Constant(DAG, 0x4007b923, dl));
5228       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5229       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5230                                getF32Constant(DAG, 0x40823e2f, dl));
5231       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5232       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5233                                    getF32Constant(DAG, 0x4020d29c, dl));
5234     } else { // LimitFloatPrecision <= 18
5235       // For floating-point precision of 18:
5236       //
5237       //   Log2ofMantissa =
5238       //     -3.0400495f +
5239       //       (6.1129976f +
5240       //         (-5.3420409f +
5241       //           (3.2865683f +
5242       //             (-1.2669343f +
5243       //               (0.27515199f -
5244       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5245       //
5246       // error 0.0000018516, which is better than 18 bits
5247       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5248                                getF32Constant(DAG, 0xbcd2769e, dl));
5249       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5250                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5251       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5252       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5253                                getF32Constant(DAG, 0x3fa22ae7, dl));
5254       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5255       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5256                                getF32Constant(DAG, 0x40525723, dl));
5257       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5258       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5259                                getF32Constant(DAG, 0x40aaf200, dl));
5260       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5261       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5262                                getF32Constant(DAG, 0x40c39dad, dl));
5263       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5264       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5265                                    getF32Constant(DAG, 0x4042902c, dl));
5266     }
5267 
5268     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5269   }
5270 
5271   // No special expansion.
5272   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5273 }
5274 
5275 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5276 /// limited-precision mode.
5277 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5278                            const TargetLowering &TLI, SDNodeFlags Flags) {
5279   // TODO: What fast-math-flags should be set on the floating-point nodes?
5280 
5281   if (Op.getValueType() == MVT::f32 &&
5282       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5283     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5284 
5285     // Scale the exponent by log10(2) [0.30102999f].
5286     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5287     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5288                                         getF32Constant(DAG, 0x3e9a209a, dl));
5289 
5290     // Get the significand and build it into a floating-point number with
5291     // exponent of 1.
5292     SDValue X = GetSignificand(DAG, Op1, dl);
5293 
5294     SDValue Log10ofMantissa;
5295     if (LimitFloatPrecision <= 6) {
5296       // For floating-point precision of 6:
5297       //
5298       //   Log10ofMantissa =
5299       //     -0.50419619f +
5300       //       (0.60948995f - 0.10380950f * x) * x;
5301       //
5302       // error 0.0014886165, which is 6 bits
5303       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5304                                getF32Constant(DAG, 0xbdd49a13, dl));
5305       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5306                                getF32Constant(DAG, 0x3f1c0789, dl));
5307       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5308       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5309                                     getF32Constant(DAG, 0x3f011300, dl));
5310     } else if (LimitFloatPrecision <= 12) {
5311       // For floating-point precision of 12:
5312       //
5313       //   Log10ofMantissa =
5314       //     -0.64831180f +
5315       //       (0.91751397f +
5316       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5317       //
5318       // error 0.00019228036, which is better than 12 bits
5319       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5320                                getF32Constant(DAG, 0x3d431f31, dl));
5321       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5322                                getF32Constant(DAG, 0x3ea21fb2, dl));
5323       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5324       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5325                                getF32Constant(DAG, 0x3f6ae232, dl));
5326       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5327       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5328                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5329     } else { // LimitFloatPrecision <= 18
5330       // For floating-point precision of 18:
5331       //
5332       //   Log10ofMantissa =
5333       //     -0.84299375f +
5334       //       (1.5327582f +
5335       //         (-1.0688956f +
5336       //           (0.49102474f +
5337       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5338       //
5339       // error 0.0000037995730, which is better than 18 bits
5340       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5341                                getF32Constant(DAG, 0x3c5d51ce, dl));
5342       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5343                                getF32Constant(DAG, 0x3e00685a, dl));
5344       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5345       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5346                                getF32Constant(DAG, 0x3efb6798, dl));
5347       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5348       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5349                                getF32Constant(DAG, 0x3f88d192, dl));
5350       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5351       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5352                                getF32Constant(DAG, 0x3fc4316c, dl));
5353       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5354       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5355                                     getF32Constant(DAG, 0x3f57ce70, dl));
5356     }
5357 
5358     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5359   }
5360 
5361   // No special expansion.
5362   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5363 }
5364 
5365 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5366 /// limited-precision mode.
5367 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5368                           const TargetLowering &TLI, SDNodeFlags Flags) {
5369   if (Op.getValueType() == MVT::f32 &&
5370       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5371     return getLimitedPrecisionExp2(Op, dl, DAG);
5372 
5373   // No special expansion.
5374   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5375 }
5376 
5377 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5378 /// limited-precision mode with x == 10.0f.
5379 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5380                          SelectionDAG &DAG, const TargetLowering &TLI,
5381                          SDNodeFlags Flags) {
5382   bool IsExp10 = false;
5383   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5384       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5385     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5386       APFloat Ten(10.0f);
5387       IsExp10 = LHSC->isExactlyValue(Ten);
5388     }
5389   }
5390 
5391   // TODO: What fast-math-flags should be set on the FMUL node?
5392   if (IsExp10) {
5393     // Put the exponent in the right bit position for later addition to the
5394     // final result:
5395     //
5396     //   #define LOG2OF10 3.3219281f
5397     //   t0 = Op * LOG2OF10;
5398     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5399                              getF32Constant(DAG, 0x40549a78, dl));
5400     return getLimitedPrecisionExp2(t0, dl, DAG);
5401   }
5402 
5403   // No special expansion.
5404   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5405 }
5406 
5407 /// ExpandPowI - Expand a llvm.powi intrinsic.
5408 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5409                           SelectionDAG &DAG) {
5410   // If RHS is a constant, we can expand this out to a multiplication tree if
5411   // it's beneficial on the target, otherwise we end up lowering to a call to
5412   // __powidf2 (for example).
5413   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5414     unsigned Val = RHSC->getSExtValue();
5415 
5416     // powi(x, 0) -> 1.0
5417     if (Val == 0)
5418       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5419 
5420     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5421             Val, DAG.shouldOptForSize())) {
5422       // Get the exponent as a positive value.
5423       if ((int)Val < 0)
5424         Val = -Val;
5425       // We use the simple binary decomposition method to generate the multiply
5426       // sequence.  There are more optimal ways to do this (for example,
5427       // powi(x,15) generates one more multiply than it should), but this has
5428       // the benefit of being both really simple and much better than a libcall.
5429       SDValue Res; // Logically starts equal to 1.0
5430       SDValue CurSquare = LHS;
5431       // TODO: Intrinsics should have fast-math-flags that propagate to these
5432       // nodes.
5433       while (Val) {
5434         if (Val & 1) {
5435           if (Res.getNode())
5436             Res =
5437                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5438           else
5439             Res = CurSquare; // 1.0*CurSquare.
5440         }
5441 
5442         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5443                                 CurSquare, CurSquare);
5444         Val >>= 1;
5445       }
5446 
5447       // If the original was negative, invert the result, producing 1/(x*x*x).
5448       if (RHSC->getSExtValue() < 0)
5449         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5450                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5451       return Res;
5452     }
5453   }
5454 
5455   // Otherwise, expand to a libcall.
5456   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5457 }
5458 
5459 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5460                             SDValue LHS, SDValue RHS, SDValue Scale,
5461                             SelectionDAG &DAG, const TargetLowering &TLI) {
5462   EVT VT = LHS.getValueType();
5463   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5464   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5465   LLVMContext &Ctx = *DAG.getContext();
5466 
5467   // If the type is legal but the operation isn't, this node might survive all
5468   // the way to operation legalization. If we end up there and we do not have
5469   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5470   // node.
5471 
5472   // Coax the legalizer into expanding the node during type legalization instead
5473   // by bumping the size by one bit. This will force it to Promote, enabling the
5474   // early expansion and avoiding the need to expand later.
5475 
5476   // We don't have to do this if Scale is 0; that can always be expanded, unless
5477   // it's a saturating signed operation. Those can experience true integer
5478   // division overflow, a case which we must avoid.
5479 
5480   // FIXME: We wouldn't have to do this (or any of the early
5481   // expansion/promotion) if it was possible to expand a libcall of an
5482   // illegal type during operation legalization. But it's not, so things
5483   // get a bit hacky.
5484   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5485   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5486       (TLI.isTypeLegal(VT) ||
5487        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5488     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5489         Opcode, VT, ScaleInt);
5490     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5491       EVT PromVT;
5492       if (VT.isScalarInteger())
5493         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5494       else if (VT.isVector()) {
5495         PromVT = VT.getVectorElementType();
5496         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5497         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5498       } else
5499         llvm_unreachable("Wrong VT for DIVFIX?");
5500       if (Signed) {
5501         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5502         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5503       } else {
5504         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5505         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5506       }
5507       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5508       // For saturating operations, we need to shift up the LHS to get the
5509       // proper saturation width, and then shift down again afterwards.
5510       if (Saturating)
5511         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5512                           DAG.getConstant(1, DL, ShiftTy));
5513       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5514       if (Saturating)
5515         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5516                           DAG.getConstant(1, DL, ShiftTy));
5517       return DAG.getZExtOrTrunc(Res, DL, VT);
5518     }
5519   }
5520 
5521   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5522 }
5523 
5524 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5525 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5526 static void
5527 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5528                      const SDValue &N) {
5529   switch (N.getOpcode()) {
5530   case ISD::CopyFromReg: {
5531     SDValue Op = N.getOperand(1);
5532     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5533                       Op.getValueType().getSizeInBits());
5534     return;
5535   }
5536   case ISD::BITCAST:
5537   case ISD::AssertZext:
5538   case ISD::AssertSext:
5539   case ISD::TRUNCATE:
5540     getUnderlyingArgRegs(Regs, N.getOperand(0));
5541     return;
5542   case ISD::BUILD_PAIR:
5543   case ISD::BUILD_VECTOR:
5544   case ISD::CONCAT_VECTORS:
5545     for (SDValue Op : N->op_values())
5546       getUnderlyingArgRegs(Regs, Op);
5547     return;
5548   default:
5549     return;
5550   }
5551 }
5552 
5553 /// If the DbgValueInst is a dbg_value of a function argument, create the
5554 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5555 /// instruction selection, they will be inserted to the entry BB.
5556 /// We don't currently support this for variadic dbg_values, as they shouldn't
5557 /// appear for function arguments or in the prologue.
5558 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5559     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5560     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5561   const Argument *Arg = dyn_cast<Argument>(V);
5562   if (!Arg)
5563     return false;
5564 
5565   MachineFunction &MF = DAG.getMachineFunction();
5566   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5567 
5568   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5569   // we've been asked to pursue.
5570   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5571                               bool Indirect) {
5572     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5573       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5574       // pointing at the VReg, which will be patched up later.
5575       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5576       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5577           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5578           /* isKill */ false, /* isDead */ false,
5579           /* isUndef */ false, /* isEarlyClobber */ false,
5580           /* SubReg */ 0, /* isDebug */ true)});
5581 
5582       auto *NewDIExpr = FragExpr;
5583       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5584       // the DIExpression.
5585       if (Indirect)
5586         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5587       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5588       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5589       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5590     } else {
5591       // Create a completely standard DBG_VALUE.
5592       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5593       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5594     }
5595   };
5596 
5597   if (Kind == FuncArgumentDbgValueKind::Value) {
5598     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5599     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5600     // the entry block.
5601     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5602     if (!IsInEntryBlock)
5603       return false;
5604 
5605     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5606     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5607     // variable that also is a param.
5608     //
5609     // Although, if we are at the top of the entry block already, we can still
5610     // emit using ArgDbgValue. This might catch some situations when the
5611     // dbg.value refers to an argument that isn't used in the entry block, so
5612     // any CopyToReg node would be optimized out and the only way to express
5613     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5614     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5615     // we should only emit as ArgDbgValue if the Variable is an argument to the
5616     // current function, and the dbg.value intrinsic is found in the entry
5617     // block.
5618     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5619         !DL->getInlinedAt();
5620     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5621     if (!IsInPrologue && !VariableIsFunctionInputArg)
5622       return false;
5623 
5624     // Here we assume that a function argument on IR level only can be used to
5625     // describe one input parameter on source level. If we for example have
5626     // source code like this
5627     //
5628     //    struct A { long x, y; };
5629     //    void foo(struct A a, long b) {
5630     //      ...
5631     //      b = a.x;
5632     //      ...
5633     //    }
5634     //
5635     // and IR like this
5636     //
5637     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5638     //  entry:
5639     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5640     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5641     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5642     //    ...
5643     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5644     //    ...
5645     //
5646     // then the last dbg.value is describing a parameter "b" using a value that
5647     // is an argument. But since we already has used %a1 to describe a parameter
5648     // we should not handle that last dbg.value here (that would result in an
5649     // incorrect hoisting of the DBG_VALUE to the function entry).
5650     // Notice that we allow one dbg.value per IR level argument, to accommodate
5651     // for the situation with fragments above.
5652     if (VariableIsFunctionInputArg) {
5653       unsigned ArgNo = Arg->getArgNo();
5654       if (ArgNo >= FuncInfo.DescribedArgs.size())
5655         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5656       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5657         return false;
5658       FuncInfo.DescribedArgs.set(ArgNo);
5659     }
5660   }
5661 
5662   bool IsIndirect = false;
5663   std::optional<MachineOperand> Op;
5664   // Some arguments' frame index is recorded during argument lowering.
5665   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5666   if (FI != std::numeric_limits<int>::max())
5667     Op = MachineOperand::CreateFI(FI);
5668 
5669   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5670   if (!Op && N.getNode()) {
5671     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5672     Register Reg;
5673     if (ArgRegsAndSizes.size() == 1)
5674       Reg = ArgRegsAndSizes.front().first;
5675 
5676     if (Reg && Reg.isVirtual()) {
5677       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5678       Register PR = RegInfo.getLiveInPhysReg(Reg);
5679       if (PR)
5680         Reg = PR;
5681     }
5682     if (Reg) {
5683       Op = MachineOperand::CreateReg(Reg, false);
5684       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5685     }
5686   }
5687 
5688   if (!Op && N.getNode()) {
5689     // Check if frame index is available.
5690     SDValue LCandidate = peekThroughBitcasts(N);
5691     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5692       if (FrameIndexSDNode *FINode =
5693           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5694         Op = MachineOperand::CreateFI(FINode->getIndex());
5695   }
5696 
5697   if (!Op) {
5698     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5699     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5700                                          SplitRegs) {
5701       unsigned Offset = 0;
5702       for (const auto &RegAndSize : SplitRegs) {
5703         // If the expression is already a fragment, the current register
5704         // offset+size might extend beyond the fragment. In this case, only
5705         // the register bits that are inside the fragment are relevant.
5706         int RegFragmentSizeInBits = RegAndSize.second;
5707         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5708           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5709           // The register is entirely outside the expression fragment,
5710           // so is irrelevant for debug info.
5711           if (Offset >= ExprFragmentSizeInBits)
5712             break;
5713           // The register is partially outside the expression fragment, only
5714           // the low bits within the fragment are relevant for debug info.
5715           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5716             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5717           }
5718         }
5719 
5720         auto FragmentExpr = DIExpression::createFragmentExpression(
5721             Expr, Offset, RegFragmentSizeInBits);
5722         Offset += RegAndSize.second;
5723         // If a valid fragment expression cannot be created, the variable's
5724         // correct value cannot be determined and so it is set as Undef.
5725         if (!FragmentExpr) {
5726           SDDbgValue *SDV = DAG.getConstantDbgValue(
5727               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5728           DAG.AddDbgValue(SDV, false);
5729           continue;
5730         }
5731         MachineInstr *NewMI =
5732             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5733                              Kind != FuncArgumentDbgValueKind::Value);
5734         FuncInfo.ArgDbgValues.push_back(NewMI);
5735       }
5736     };
5737 
5738     // Check if ValueMap has reg number.
5739     DenseMap<const Value *, Register>::const_iterator
5740       VMI = FuncInfo.ValueMap.find(V);
5741     if (VMI != FuncInfo.ValueMap.end()) {
5742       const auto &TLI = DAG.getTargetLoweringInfo();
5743       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5744                        V->getType(), std::nullopt);
5745       if (RFV.occupiesMultipleRegs()) {
5746         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5747         return true;
5748       }
5749 
5750       Op = MachineOperand::CreateReg(VMI->second, false);
5751       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5752     } else if (ArgRegsAndSizes.size() > 1) {
5753       // This was split due to the calling convention, and no virtual register
5754       // mapping exists for the value.
5755       splitMultiRegDbgValue(ArgRegsAndSizes);
5756       return true;
5757     }
5758   }
5759 
5760   if (!Op)
5761     return false;
5762 
5763   assert(Variable->isValidLocationForIntrinsic(DL) &&
5764          "Expected inlined-at fields to agree");
5765   MachineInstr *NewMI = nullptr;
5766 
5767   if (Op->isReg())
5768     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5769   else
5770     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5771                     Variable, Expr);
5772 
5773   // Otherwise, use ArgDbgValues.
5774   FuncInfo.ArgDbgValues.push_back(NewMI);
5775   return true;
5776 }
5777 
5778 /// Return the appropriate SDDbgValue based on N.
5779 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5780                                              DILocalVariable *Variable,
5781                                              DIExpression *Expr,
5782                                              const DebugLoc &dl,
5783                                              unsigned DbgSDNodeOrder) {
5784   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5785     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5786     // stack slot locations.
5787     //
5788     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5789     // debug values here after optimization:
5790     //
5791     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5792     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5793     //
5794     // Both describe the direct values of their associated variables.
5795     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5796                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5797   }
5798   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5799                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5800 }
5801 
5802 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5803   switch (Intrinsic) {
5804   case Intrinsic::smul_fix:
5805     return ISD::SMULFIX;
5806   case Intrinsic::umul_fix:
5807     return ISD::UMULFIX;
5808   case Intrinsic::smul_fix_sat:
5809     return ISD::SMULFIXSAT;
5810   case Intrinsic::umul_fix_sat:
5811     return ISD::UMULFIXSAT;
5812   case Intrinsic::sdiv_fix:
5813     return ISD::SDIVFIX;
5814   case Intrinsic::udiv_fix:
5815     return ISD::UDIVFIX;
5816   case Intrinsic::sdiv_fix_sat:
5817     return ISD::SDIVFIXSAT;
5818   case Intrinsic::udiv_fix_sat:
5819     return ISD::UDIVFIXSAT;
5820   default:
5821     llvm_unreachable("Unhandled fixed point intrinsic");
5822   }
5823 }
5824 
5825 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5826                                            const char *FunctionName) {
5827   assert(FunctionName && "FunctionName must not be nullptr");
5828   SDValue Callee = DAG.getExternalSymbol(
5829       FunctionName,
5830       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5831   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5832 }
5833 
5834 /// Given a @llvm.call.preallocated.setup, return the corresponding
5835 /// preallocated call.
5836 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5837   assert(cast<CallBase>(PreallocatedSetup)
5838                  ->getCalledFunction()
5839                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5840          "expected call_preallocated_setup Value");
5841   for (const auto *U : PreallocatedSetup->users()) {
5842     auto *UseCall = cast<CallBase>(U);
5843     const Function *Fn = UseCall->getCalledFunction();
5844     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5845       return UseCall;
5846     }
5847   }
5848   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5849 }
5850 
5851 /// Lower the call to the specified intrinsic function.
5852 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5853                                              unsigned Intrinsic) {
5854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5855   SDLoc sdl = getCurSDLoc();
5856   DebugLoc dl = getCurDebugLoc();
5857   SDValue Res;
5858 
5859   SDNodeFlags Flags;
5860   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5861     Flags.copyFMF(*FPOp);
5862 
5863   switch (Intrinsic) {
5864   default:
5865     // By default, turn this into a target intrinsic node.
5866     visitTargetIntrinsic(I, Intrinsic);
5867     return;
5868   case Intrinsic::vscale: {
5869     match(&I, m_VScale(DAG.getDataLayout()));
5870     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5871     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5872     return;
5873   }
5874   case Intrinsic::vastart:  visitVAStart(I); return;
5875   case Intrinsic::vaend:    visitVAEnd(I); return;
5876   case Intrinsic::vacopy:   visitVACopy(I); return;
5877   case Intrinsic::returnaddress:
5878     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5879                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5880                              getValue(I.getArgOperand(0))));
5881     return;
5882   case Intrinsic::addressofreturnaddress:
5883     setValue(&I,
5884              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5885                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5886     return;
5887   case Intrinsic::sponentry:
5888     setValue(&I,
5889              DAG.getNode(ISD::SPONENTRY, sdl,
5890                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5891     return;
5892   case Intrinsic::frameaddress:
5893     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5894                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5895                              getValue(I.getArgOperand(0))));
5896     return;
5897   case Intrinsic::read_volatile_register:
5898   case Intrinsic::read_register: {
5899     Value *Reg = I.getArgOperand(0);
5900     SDValue Chain = getRoot();
5901     SDValue RegName =
5902         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5903     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5904     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5905       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5906     setValue(&I, Res);
5907     DAG.setRoot(Res.getValue(1));
5908     return;
5909   }
5910   case Intrinsic::write_register: {
5911     Value *Reg = I.getArgOperand(0);
5912     Value *RegValue = I.getArgOperand(1);
5913     SDValue Chain = getRoot();
5914     SDValue RegName =
5915         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5916     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5917                             RegName, getValue(RegValue)));
5918     return;
5919   }
5920   case Intrinsic::memcpy: {
5921     const auto &MCI = cast<MemCpyInst>(I);
5922     SDValue Op1 = getValue(I.getArgOperand(0));
5923     SDValue Op2 = getValue(I.getArgOperand(1));
5924     SDValue Op3 = getValue(I.getArgOperand(2));
5925     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5926     Align DstAlign = MCI.getDestAlign().valueOrOne();
5927     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5928     Align Alignment = std::min(DstAlign, SrcAlign);
5929     bool isVol = MCI.isVolatile();
5930     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5931     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5932     // node.
5933     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5934     SDValue MC = DAG.getMemcpy(
5935         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5936         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5937         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5938     updateDAGForMaybeTailCall(MC);
5939     setValue(&I, MC);
5940     return;
5941   }
5942   case Intrinsic::memcpy_inline: {
5943     const auto &MCI = cast<MemCpyInlineInst>(I);
5944     SDValue Dst = getValue(I.getArgOperand(0));
5945     SDValue Src = getValue(I.getArgOperand(1));
5946     SDValue Size = getValue(I.getArgOperand(2));
5947     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5948     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5949     Align DstAlign = MCI.getDestAlign().valueOrOne();
5950     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5951     Align Alignment = std::min(DstAlign, SrcAlign);
5952     bool isVol = MCI.isVolatile();
5953     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5954     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5955     // node.
5956     SDValue MC = DAG.getMemcpy(
5957         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5958         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5959         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5960     updateDAGForMaybeTailCall(MC);
5961     setValue(&I, MC);
5962     return;
5963   }
5964   case Intrinsic::memset: {
5965     const auto &MSI = cast<MemSetInst>(I);
5966     SDValue Op1 = getValue(I.getArgOperand(0));
5967     SDValue Op2 = getValue(I.getArgOperand(1));
5968     SDValue Op3 = getValue(I.getArgOperand(2));
5969     // @llvm.memset defines 0 and 1 to both mean no alignment.
5970     Align Alignment = MSI.getDestAlign().valueOrOne();
5971     bool isVol = MSI.isVolatile();
5972     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5973     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5974     SDValue MS = DAG.getMemset(
5975         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5976         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5977     updateDAGForMaybeTailCall(MS);
5978     setValue(&I, MS);
5979     return;
5980   }
5981   case Intrinsic::memset_inline: {
5982     const auto &MSII = cast<MemSetInlineInst>(I);
5983     SDValue Dst = getValue(I.getArgOperand(0));
5984     SDValue Value = getValue(I.getArgOperand(1));
5985     SDValue Size = getValue(I.getArgOperand(2));
5986     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5987     // @llvm.memset defines 0 and 1 to both mean no alignment.
5988     Align DstAlign = MSII.getDestAlign().valueOrOne();
5989     bool isVol = MSII.isVolatile();
5990     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5991     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5992     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5993                                /* AlwaysInline */ true, isTC,
5994                                MachinePointerInfo(I.getArgOperand(0)),
5995                                I.getAAMetadata());
5996     updateDAGForMaybeTailCall(MC);
5997     setValue(&I, MC);
5998     return;
5999   }
6000   case Intrinsic::memmove: {
6001     const auto &MMI = cast<MemMoveInst>(I);
6002     SDValue Op1 = getValue(I.getArgOperand(0));
6003     SDValue Op2 = getValue(I.getArgOperand(1));
6004     SDValue Op3 = getValue(I.getArgOperand(2));
6005     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6006     Align DstAlign = MMI.getDestAlign().valueOrOne();
6007     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6008     Align Alignment = std::min(DstAlign, SrcAlign);
6009     bool isVol = MMI.isVolatile();
6010     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6011     // FIXME: Support passing different dest/src alignments to the memmove DAG
6012     // node.
6013     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6014     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6015                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6016                                 MachinePointerInfo(I.getArgOperand(1)),
6017                                 I.getAAMetadata(), AA);
6018     updateDAGForMaybeTailCall(MM);
6019     setValue(&I, MM);
6020     return;
6021   }
6022   case Intrinsic::memcpy_element_unordered_atomic: {
6023     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6024     SDValue Dst = getValue(MI.getRawDest());
6025     SDValue Src = getValue(MI.getRawSource());
6026     SDValue Length = getValue(MI.getLength());
6027 
6028     Type *LengthTy = MI.getLength()->getType();
6029     unsigned ElemSz = MI.getElementSizeInBytes();
6030     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6031     SDValue MC =
6032         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6033                             isTC, MachinePointerInfo(MI.getRawDest()),
6034                             MachinePointerInfo(MI.getRawSource()));
6035     updateDAGForMaybeTailCall(MC);
6036     setValue(&I, MC);
6037     return;
6038   }
6039   case Intrinsic::memmove_element_unordered_atomic: {
6040     auto &MI = cast<AtomicMemMoveInst>(I);
6041     SDValue Dst = getValue(MI.getRawDest());
6042     SDValue Src = getValue(MI.getRawSource());
6043     SDValue Length = getValue(MI.getLength());
6044 
6045     Type *LengthTy = MI.getLength()->getType();
6046     unsigned ElemSz = MI.getElementSizeInBytes();
6047     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6048     SDValue MC =
6049         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6050                              isTC, MachinePointerInfo(MI.getRawDest()),
6051                              MachinePointerInfo(MI.getRawSource()));
6052     updateDAGForMaybeTailCall(MC);
6053     setValue(&I, MC);
6054     return;
6055   }
6056   case Intrinsic::memset_element_unordered_atomic: {
6057     auto &MI = cast<AtomicMemSetInst>(I);
6058     SDValue Dst = getValue(MI.getRawDest());
6059     SDValue Val = getValue(MI.getValue());
6060     SDValue Length = getValue(MI.getLength());
6061 
6062     Type *LengthTy = MI.getLength()->getType();
6063     unsigned ElemSz = MI.getElementSizeInBytes();
6064     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6065     SDValue MC =
6066         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6067                             isTC, MachinePointerInfo(MI.getRawDest()));
6068     updateDAGForMaybeTailCall(MC);
6069     setValue(&I, MC);
6070     return;
6071   }
6072   case Intrinsic::call_preallocated_setup: {
6073     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6074     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6075     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6076                               getRoot(), SrcValue);
6077     setValue(&I, Res);
6078     DAG.setRoot(Res);
6079     return;
6080   }
6081   case Intrinsic::call_preallocated_arg: {
6082     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6083     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6084     SDValue Ops[3];
6085     Ops[0] = getRoot();
6086     Ops[1] = SrcValue;
6087     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6088                                    MVT::i32); // arg index
6089     SDValue Res = DAG.getNode(
6090         ISD::PREALLOCATED_ARG, sdl,
6091         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6092     setValue(&I, Res);
6093     DAG.setRoot(Res.getValue(1));
6094     return;
6095   }
6096   case Intrinsic::dbg_addr:
6097   case Intrinsic::dbg_declare: {
6098     // Debug intrinsics are handled seperately in assignment tracking mode.
6099     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6100       return;
6101     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6102     // they are non-variadic.
6103     const auto &DI = cast<DbgVariableIntrinsic>(I);
6104     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6105     DILocalVariable *Variable = DI.getVariable();
6106     DIExpression *Expression = DI.getExpression();
6107     dropDanglingDebugInfo(Variable, Expression);
6108     assert(Variable && "Missing variable");
6109     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6110                       << "\n");
6111     // Check if address has undef value.
6112     const Value *Address = DI.getVariableLocationOp(0);
6113     if (!Address || isa<UndefValue>(Address) ||
6114         (Address->use_empty() && !isa<Argument>(Address))) {
6115       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6116                         << " (bad/undef/unused-arg address)\n");
6117       return;
6118     }
6119 
6120     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6121 
6122     // Check if this variable can be described by a frame index, typically
6123     // either as a static alloca or a byval parameter.
6124     int FI = std::numeric_limits<int>::max();
6125     if (const auto *AI =
6126             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6127       if (AI->isStaticAlloca()) {
6128         auto I = FuncInfo.StaticAllocaMap.find(AI);
6129         if (I != FuncInfo.StaticAllocaMap.end())
6130           FI = I->second;
6131       }
6132     } else if (const auto *Arg = dyn_cast<Argument>(
6133                    Address->stripInBoundsConstantOffsets())) {
6134       FI = FuncInfo.getArgumentFrameIndex(Arg);
6135     }
6136 
6137     // llvm.dbg.addr is control dependent and always generates indirect
6138     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6139     // the MachineFunction variable table.
6140     if (FI != std::numeric_limits<int>::max()) {
6141       if (Intrinsic == Intrinsic::dbg_addr) {
6142         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6143             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6144             dl, SDNodeOrder);
6145         DAG.AddDbgValue(SDV, isParameter);
6146       } else {
6147         LLVM_DEBUG(dbgs() << "Skipping " << DI
6148                           << " (variable info stashed in MF side table)\n");
6149       }
6150       return;
6151     }
6152 
6153     SDValue &N = NodeMap[Address];
6154     if (!N.getNode() && isa<Argument>(Address))
6155       // Check unused arguments map.
6156       N = UnusedArgNodeMap[Address];
6157     SDDbgValue *SDV;
6158     if (N.getNode()) {
6159       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6160         Address = BCI->getOperand(0);
6161       // Parameters are handled specially.
6162       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6163       if (isParameter && FINode) {
6164         // Byval parameter. We have a frame index at this point.
6165         SDV =
6166             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6167                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6168       } else if (isa<Argument>(Address)) {
6169         // Address is an argument, so try to emit its dbg value using
6170         // virtual register info from the FuncInfo.ValueMap.
6171         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6172                                  FuncArgumentDbgValueKind::Declare, N);
6173         return;
6174       } else {
6175         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6176                               true, dl, SDNodeOrder);
6177       }
6178       DAG.AddDbgValue(SDV, isParameter);
6179     } else {
6180       // If Address is an argument then try to emit its dbg value using
6181       // virtual register info from the FuncInfo.ValueMap.
6182       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6183                                     FuncArgumentDbgValueKind::Declare, N)) {
6184         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6185                           << " (could not emit func-arg dbg_value)\n");
6186       }
6187     }
6188     return;
6189   }
6190   case Intrinsic::dbg_label: {
6191     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6192     DILabel *Label = DI.getLabel();
6193     assert(Label && "Missing label");
6194 
6195     SDDbgLabel *SDV;
6196     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6197     DAG.AddDbgLabel(SDV);
6198     return;
6199   }
6200   case Intrinsic::dbg_assign: {
6201     // Debug intrinsics are handled seperately in assignment tracking mode.
6202     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6203            "expected assignment tracking to be enabled");
6204     return;
6205   }
6206   case Intrinsic::dbg_value: {
6207     // Debug intrinsics are handled seperately in assignment tracking mode.
6208     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6209       return;
6210     const DbgValueInst &DI = cast<DbgValueInst>(I);
6211     assert(DI.getVariable() && "Missing variable");
6212 
6213     DILocalVariable *Variable = DI.getVariable();
6214     DIExpression *Expression = DI.getExpression();
6215     dropDanglingDebugInfo(Variable, Expression);
6216     SmallVector<Value *, 4> Values(DI.getValues());
6217     if (Values.empty())
6218       return;
6219 
6220     if (llvm::is_contained(Values, nullptr))
6221       return;
6222 
6223     bool IsVariadic = DI.hasArgList();
6224     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6225                           SDNodeOrder, IsVariadic))
6226       addDanglingDebugInfo(&DI, SDNodeOrder);
6227     return;
6228   }
6229 
6230   case Intrinsic::eh_typeid_for: {
6231     // Find the type id for the given typeinfo.
6232     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6233     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6234     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6235     setValue(&I, Res);
6236     return;
6237   }
6238 
6239   case Intrinsic::eh_return_i32:
6240   case Intrinsic::eh_return_i64:
6241     DAG.getMachineFunction().setCallsEHReturn(true);
6242     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6243                             MVT::Other,
6244                             getControlRoot(),
6245                             getValue(I.getArgOperand(0)),
6246                             getValue(I.getArgOperand(1))));
6247     return;
6248   case Intrinsic::eh_unwind_init:
6249     DAG.getMachineFunction().setCallsUnwindInit(true);
6250     return;
6251   case Intrinsic::eh_dwarf_cfa:
6252     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6253                              TLI.getPointerTy(DAG.getDataLayout()),
6254                              getValue(I.getArgOperand(0))));
6255     return;
6256   case Intrinsic::eh_sjlj_callsite: {
6257     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6258     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6259     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6260 
6261     MMI.setCurrentCallSite(CI->getZExtValue());
6262     return;
6263   }
6264   case Intrinsic::eh_sjlj_functioncontext: {
6265     // Get and store the index of the function context.
6266     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6267     AllocaInst *FnCtx =
6268       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6269     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6270     MFI.setFunctionContextIndex(FI);
6271     return;
6272   }
6273   case Intrinsic::eh_sjlj_setjmp: {
6274     SDValue Ops[2];
6275     Ops[0] = getRoot();
6276     Ops[1] = getValue(I.getArgOperand(0));
6277     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6278                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6279     setValue(&I, Op.getValue(0));
6280     DAG.setRoot(Op.getValue(1));
6281     return;
6282   }
6283   case Intrinsic::eh_sjlj_longjmp:
6284     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6285                             getRoot(), getValue(I.getArgOperand(0))));
6286     return;
6287   case Intrinsic::eh_sjlj_setup_dispatch:
6288     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6289                             getRoot()));
6290     return;
6291   case Intrinsic::masked_gather:
6292     visitMaskedGather(I);
6293     return;
6294   case Intrinsic::masked_load:
6295     visitMaskedLoad(I);
6296     return;
6297   case Intrinsic::masked_scatter:
6298     visitMaskedScatter(I);
6299     return;
6300   case Intrinsic::masked_store:
6301     visitMaskedStore(I);
6302     return;
6303   case Intrinsic::masked_expandload:
6304     visitMaskedLoad(I, true /* IsExpanding */);
6305     return;
6306   case Intrinsic::masked_compressstore:
6307     visitMaskedStore(I, true /* IsCompressing */);
6308     return;
6309   case Intrinsic::powi:
6310     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6311                             getValue(I.getArgOperand(1)), DAG));
6312     return;
6313   case Intrinsic::log:
6314     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6315     return;
6316   case Intrinsic::log2:
6317     setValue(&I,
6318              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6319     return;
6320   case Intrinsic::log10:
6321     setValue(&I,
6322              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6323     return;
6324   case Intrinsic::exp:
6325     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6326     return;
6327   case Intrinsic::exp2:
6328     setValue(&I,
6329              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6330     return;
6331   case Intrinsic::pow:
6332     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6333                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6334     return;
6335   case Intrinsic::sqrt:
6336   case Intrinsic::fabs:
6337   case Intrinsic::sin:
6338   case Intrinsic::cos:
6339   case Intrinsic::floor:
6340   case Intrinsic::ceil:
6341   case Intrinsic::trunc:
6342   case Intrinsic::rint:
6343   case Intrinsic::nearbyint:
6344   case Intrinsic::round:
6345   case Intrinsic::roundeven:
6346   case Intrinsic::canonicalize: {
6347     unsigned Opcode;
6348     switch (Intrinsic) {
6349     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6350     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6351     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6352     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6353     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6354     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6355     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6356     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6357     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6358     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6359     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6360     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6361     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6362     }
6363 
6364     setValue(&I, DAG.getNode(Opcode, sdl,
6365                              getValue(I.getArgOperand(0)).getValueType(),
6366                              getValue(I.getArgOperand(0)), Flags));
6367     return;
6368   }
6369   case Intrinsic::lround:
6370   case Intrinsic::llround:
6371   case Intrinsic::lrint:
6372   case Intrinsic::llrint: {
6373     unsigned Opcode;
6374     switch (Intrinsic) {
6375     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6376     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6377     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6378     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6379     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6380     }
6381 
6382     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6383     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6384                              getValue(I.getArgOperand(0))));
6385     return;
6386   }
6387   case Intrinsic::minnum:
6388     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6389                              getValue(I.getArgOperand(0)).getValueType(),
6390                              getValue(I.getArgOperand(0)),
6391                              getValue(I.getArgOperand(1)), Flags));
6392     return;
6393   case Intrinsic::maxnum:
6394     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6395                              getValue(I.getArgOperand(0)).getValueType(),
6396                              getValue(I.getArgOperand(0)),
6397                              getValue(I.getArgOperand(1)), Flags));
6398     return;
6399   case Intrinsic::minimum:
6400     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6401                              getValue(I.getArgOperand(0)).getValueType(),
6402                              getValue(I.getArgOperand(0)),
6403                              getValue(I.getArgOperand(1)), Flags));
6404     return;
6405   case Intrinsic::maximum:
6406     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6407                              getValue(I.getArgOperand(0)).getValueType(),
6408                              getValue(I.getArgOperand(0)),
6409                              getValue(I.getArgOperand(1)), Flags));
6410     return;
6411   case Intrinsic::copysign:
6412     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6413                              getValue(I.getArgOperand(0)).getValueType(),
6414                              getValue(I.getArgOperand(0)),
6415                              getValue(I.getArgOperand(1)), Flags));
6416     return;
6417   case Intrinsic::arithmetic_fence: {
6418     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6419                              getValue(I.getArgOperand(0)).getValueType(),
6420                              getValue(I.getArgOperand(0)), Flags));
6421     return;
6422   }
6423   case Intrinsic::fma:
6424     setValue(&I, DAG.getNode(
6425                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6426                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6427                      getValue(I.getArgOperand(2)), Flags));
6428     return;
6429 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6430   case Intrinsic::INTRINSIC:
6431 #include "llvm/IR/ConstrainedOps.def"
6432     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6433     return;
6434 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6435 #include "llvm/IR/VPIntrinsics.def"
6436     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6437     return;
6438   case Intrinsic::fptrunc_round: {
6439     // Get the last argument, the metadata and convert it to an integer in the
6440     // call
6441     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6442     std::optional<RoundingMode> RoundMode =
6443         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6444 
6445     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6446 
6447     // Propagate fast-math-flags from IR to node(s).
6448     SDNodeFlags Flags;
6449     Flags.copyFMF(*cast<FPMathOperator>(&I));
6450     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6451 
6452     SDValue Result;
6453     Result = DAG.getNode(
6454         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6455         DAG.getTargetConstant((int)*RoundMode, sdl,
6456                               TLI.getPointerTy(DAG.getDataLayout())));
6457     setValue(&I, Result);
6458 
6459     return;
6460   }
6461   case Intrinsic::fmuladd: {
6462     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6463     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6464         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6465       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6466                                getValue(I.getArgOperand(0)).getValueType(),
6467                                getValue(I.getArgOperand(0)),
6468                                getValue(I.getArgOperand(1)),
6469                                getValue(I.getArgOperand(2)), Flags));
6470     } else {
6471       // TODO: Intrinsic calls should have fast-math-flags.
6472       SDValue Mul = DAG.getNode(
6473           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6474           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6475       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6476                                 getValue(I.getArgOperand(0)).getValueType(),
6477                                 Mul, getValue(I.getArgOperand(2)), Flags);
6478       setValue(&I, Add);
6479     }
6480     return;
6481   }
6482   case Intrinsic::convert_to_fp16:
6483     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6484                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6485                                          getValue(I.getArgOperand(0)),
6486                                          DAG.getTargetConstant(0, sdl,
6487                                                                MVT::i32))));
6488     return;
6489   case Intrinsic::convert_from_fp16:
6490     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6491                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6492                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6493                                          getValue(I.getArgOperand(0)))));
6494     return;
6495   case Intrinsic::fptosi_sat: {
6496     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6497     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6498                              getValue(I.getArgOperand(0)),
6499                              DAG.getValueType(VT.getScalarType())));
6500     return;
6501   }
6502   case Intrinsic::fptoui_sat: {
6503     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6504     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6505                              getValue(I.getArgOperand(0)),
6506                              DAG.getValueType(VT.getScalarType())));
6507     return;
6508   }
6509   case Intrinsic::set_rounding:
6510     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6511                       {getRoot(), getValue(I.getArgOperand(0))});
6512     setValue(&I, Res);
6513     DAG.setRoot(Res.getValue(0));
6514     return;
6515   case Intrinsic::is_fpclass: {
6516     const DataLayout DLayout = DAG.getDataLayout();
6517     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6518     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6519     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6520     MachineFunction &MF = DAG.getMachineFunction();
6521     const Function &F = MF.getFunction();
6522     SDValue Op = getValue(I.getArgOperand(0));
6523     SDNodeFlags Flags;
6524     Flags.setNoFPExcept(
6525         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6526     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6527     // expansion can use illegal types. Making expansion early allows
6528     // legalizing these types prior to selection.
6529     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6530       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6531       setValue(&I, Result);
6532       return;
6533     }
6534 
6535     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6536     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6537     setValue(&I, V);
6538     return;
6539   }
6540   case Intrinsic::pcmarker: {
6541     SDValue Tmp = getValue(I.getArgOperand(0));
6542     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6543     return;
6544   }
6545   case Intrinsic::readcyclecounter: {
6546     SDValue Op = getRoot();
6547     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6548                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6549     setValue(&I, Res);
6550     DAG.setRoot(Res.getValue(1));
6551     return;
6552   }
6553   case Intrinsic::bitreverse:
6554     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6555                              getValue(I.getArgOperand(0)).getValueType(),
6556                              getValue(I.getArgOperand(0))));
6557     return;
6558   case Intrinsic::bswap:
6559     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6560                              getValue(I.getArgOperand(0)).getValueType(),
6561                              getValue(I.getArgOperand(0))));
6562     return;
6563   case Intrinsic::cttz: {
6564     SDValue Arg = getValue(I.getArgOperand(0));
6565     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6566     EVT Ty = Arg.getValueType();
6567     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6568                              sdl, Ty, Arg));
6569     return;
6570   }
6571   case Intrinsic::ctlz: {
6572     SDValue Arg = getValue(I.getArgOperand(0));
6573     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6574     EVT Ty = Arg.getValueType();
6575     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6576                              sdl, Ty, Arg));
6577     return;
6578   }
6579   case Intrinsic::ctpop: {
6580     SDValue Arg = getValue(I.getArgOperand(0));
6581     EVT Ty = Arg.getValueType();
6582     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6583     return;
6584   }
6585   case Intrinsic::fshl:
6586   case Intrinsic::fshr: {
6587     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6588     SDValue X = getValue(I.getArgOperand(0));
6589     SDValue Y = getValue(I.getArgOperand(1));
6590     SDValue Z = getValue(I.getArgOperand(2));
6591     EVT VT = X.getValueType();
6592 
6593     if (X == Y) {
6594       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6595       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6596     } else {
6597       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6598       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6599     }
6600     return;
6601   }
6602   case Intrinsic::sadd_sat: {
6603     SDValue Op1 = getValue(I.getArgOperand(0));
6604     SDValue Op2 = getValue(I.getArgOperand(1));
6605     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6606     return;
6607   }
6608   case Intrinsic::uadd_sat: {
6609     SDValue Op1 = getValue(I.getArgOperand(0));
6610     SDValue Op2 = getValue(I.getArgOperand(1));
6611     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6612     return;
6613   }
6614   case Intrinsic::ssub_sat: {
6615     SDValue Op1 = getValue(I.getArgOperand(0));
6616     SDValue Op2 = getValue(I.getArgOperand(1));
6617     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6618     return;
6619   }
6620   case Intrinsic::usub_sat: {
6621     SDValue Op1 = getValue(I.getArgOperand(0));
6622     SDValue Op2 = getValue(I.getArgOperand(1));
6623     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6624     return;
6625   }
6626   case Intrinsic::sshl_sat: {
6627     SDValue Op1 = getValue(I.getArgOperand(0));
6628     SDValue Op2 = getValue(I.getArgOperand(1));
6629     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6630     return;
6631   }
6632   case Intrinsic::ushl_sat: {
6633     SDValue Op1 = getValue(I.getArgOperand(0));
6634     SDValue Op2 = getValue(I.getArgOperand(1));
6635     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6636     return;
6637   }
6638   case Intrinsic::smul_fix:
6639   case Intrinsic::umul_fix:
6640   case Intrinsic::smul_fix_sat:
6641   case Intrinsic::umul_fix_sat: {
6642     SDValue Op1 = getValue(I.getArgOperand(0));
6643     SDValue Op2 = getValue(I.getArgOperand(1));
6644     SDValue Op3 = getValue(I.getArgOperand(2));
6645     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6646                              Op1.getValueType(), Op1, Op2, Op3));
6647     return;
6648   }
6649   case Intrinsic::sdiv_fix:
6650   case Intrinsic::udiv_fix:
6651   case Intrinsic::sdiv_fix_sat:
6652   case Intrinsic::udiv_fix_sat: {
6653     SDValue Op1 = getValue(I.getArgOperand(0));
6654     SDValue Op2 = getValue(I.getArgOperand(1));
6655     SDValue Op3 = getValue(I.getArgOperand(2));
6656     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6657                               Op1, Op2, Op3, DAG, TLI));
6658     return;
6659   }
6660   case Intrinsic::smax: {
6661     SDValue Op1 = getValue(I.getArgOperand(0));
6662     SDValue Op2 = getValue(I.getArgOperand(1));
6663     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6664     return;
6665   }
6666   case Intrinsic::smin: {
6667     SDValue Op1 = getValue(I.getArgOperand(0));
6668     SDValue Op2 = getValue(I.getArgOperand(1));
6669     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6670     return;
6671   }
6672   case Intrinsic::umax: {
6673     SDValue Op1 = getValue(I.getArgOperand(0));
6674     SDValue Op2 = getValue(I.getArgOperand(1));
6675     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6676     return;
6677   }
6678   case Intrinsic::umin: {
6679     SDValue Op1 = getValue(I.getArgOperand(0));
6680     SDValue Op2 = getValue(I.getArgOperand(1));
6681     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6682     return;
6683   }
6684   case Intrinsic::abs: {
6685     // TODO: Preserve "int min is poison" arg in SDAG?
6686     SDValue Op1 = getValue(I.getArgOperand(0));
6687     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6688     return;
6689   }
6690   case Intrinsic::stacksave: {
6691     SDValue Op = getRoot();
6692     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6693     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6694     setValue(&I, Res);
6695     DAG.setRoot(Res.getValue(1));
6696     return;
6697   }
6698   case Intrinsic::stackrestore:
6699     Res = getValue(I.getArgOperand(0));
6700     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6701     return;
6702   case Intrinsic::get_dynamic_area_offset: {
6703     SDValue Op = getRoot();
6704     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6705     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6706     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6707     // target.
6708     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6709       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6710                          " intrinsic!");
6711     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6712                       Op);
6713     DAG.setRoot(Op);
6714     setValue(&I, Res);
6715     return;
6716   }
6717   case Intrinsic::stackguard: {
6718     MachineFunction &MF = DAG.getMachineFunction();
6719     const Module &M = *MF.getFunction().getParent();
6720     SDValue Chain = getRoot();
6721     if (TLI.useLoadStackGuardNode()) {
6722       Res = getLoadStackGuard(DAG, sdl, Chain);
6723     } else {
6724       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6725       const Value *Global = TLI.getSDagStackGuard(M);
6726       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6727       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6728                         MachinePointerInfo(Global, 0), Align,
6729                         MachineMemOperand::MOVolatile);
6730     }
6731     if (TLI.useStackGuardXorFP())
6732       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6733     DAG.setRoot(Chain);
6734     setValue(&I, Res);
6735     return;
6736   }
6737   case Intrinsic::stackprotector: {
6738     // Emit code into the DAG to store the stack guard onto the stack.
6739     MachineFunction &MF = DAG.getMachineFunction();
6740     MachineFrameInfo &MFI = MF.getFrameInfo();
6741     SDValue Src, Chain = getRoot();
6742 
6743     if (TLI.useLoadStackGuardNode())
6744       Src = getLoadStackGuard(DAG, sdl, Chain);
6745     else
6746       Src = getValue(I.getArgOperand(0));   // The guard's value.
6747 
6748     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6749 
6750     int FI = FuncInfo.StaticAllocaMap[Slot];
6751     MFI.setStackProtectorIndex(FI);
6752     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6753 
6754     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6755 
6756     // Store the stack protector onto the stack.
6757     Res = DAG.getStore(
6758         Chain, sdl, Src, FIN,
6759         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6760         MaybeAlign(), MachineMemOperand::MOVolatile);
6761     setValue(&I, Res);
6762     DAG.setRoot(Res);
6763     return;
6764   }
6765   case Intrinsic::objectsize:
6766     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6767 
6768   case Intrinsic::is_constant:
6769     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6770 
6771   case Intrinsic::annotation:
6772   case Intrinsic::ptr_annotation:
6773   case Intrinsic::launder_invariant_group:
6774   case Intrinsic::strip_invariant_group:
6775     // Drop the intrinsic, but forward the value
6776     setValue(&I, getValue(I.getOperand(0)));
6777     return;
6778 
6779   case Intrinsic::assume:
6780   case Intrinsic::experimental_noalias_scope_decl:
6781   case Intrinsic::var_annotation:
6782   case Intrinsic::sideeffect:
6783     // Discard annotate attributes, noalias scope declarations, assumptions, and
6784     // artificial side-effects.
6785     return;
6786 
6787   case Intrinsic::codeview_annotation: {
6788     // Emit a label associated with this metadata.
6789     MachineFunction &MF = DAG.getMachineFunction();
6790     MCSymbol *Label =
6791         MF.getMMI().getContext().createTempSymbol("annotation", true);
6792     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6793     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6794     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6795     DAG.setRoot(Res);
6796     return;
6797   }
6798 
6799   case Intrinsic::init_trampoline: {
6800     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6801 
6802     SDValue Ops[6];
6803     Ops[0] = getRoot();
6804     Ops[1] = getValue(I.getArgOperand(0));
6805     Ops[2] = getValue(I.getArgOperand(1));
6806     Ops[3] = getValue(I.getArgOperand(2));
6807     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6808     Ops[5] = DAG.getSrcValue(F);
6809 
6810     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6811 
6812     DAG.setRoot(Res);
6813     return;
6814   }
6815   case Intrinsic::adjust_trampoline:
6816     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6817                              TLI.getPointerTy(DAG.getDataLayout()),
6818                              getValue(I.getArgOperand(0))));
6819     return;
6820   case Intrinsic::gcroot: {
6821     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6822            "only valid in functions with gc specified, enforced by Verifier");
6823     assert(GFI && "implied by previous");
6824     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6825     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6826 
6827     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6828     GFI->addStackRoot(FI->getIndex(), TypeMap);
6829     return;
6830   }
6831   case Intrinsic::gcread:
6832   case Intrinsic::gcwrite:
6833     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6834   case Intrinsic::get_rounding:
6835     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6836     setValue(&I, Res);
6837     DAG.setRoot(Res.getValue(1));
6838     return;
6839 
6840   case Intrinsic::expect:
6841     // Just replace __builtin_expect(exp, c) with EXP.
6842     setValue(&I, getValue(I.getArgOperand(0)));
6843     return;
6844 
6845   case Intrinsic::ubsantrap:
6846   case Intrinsic::debugtrap:
6847   case Intrinsic::trap: {
6848     StringRef TrapFuncName =
6849         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6850     if (TrapFuncName.empty()) {
6851       switch (Intrinsic) {
6852       case Intrinsic::trap:
6853         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6854         break;
6855       case Intrinsic::debugtrap:
6856         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6857         break;
6858       case Intrinsic::ubsantrap:
6859         DAG.setRoot(DAG.getNode(
6860             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6861             DAG.getTargetConstant(
6862                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6863                 MVT::i32)));
6864         break;
6865       default: llvm_unreachable("unknown trap intrinsic");
6866       }
6867       return;
6868     }
6869     TargetLowering::ArgListTy Args;
6870     if (Intrinsic == Intrinsic::ubsantrap) {
6871       Args.push_back(TargetLoweringBase::ArgListEntry());
6872       Args[0].Val = I.getArgOperand(0);
6873       Args[0].Node = getValue(Args[0].Val);
6874       Args[0].Ty = Args[0].Val->getType();
6875     }
6876 
6877     TargetLowering::CallLoweringInfo CLI(DAG);
6878     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6879         CallingConv::C, I.getType(),
6880         DAG.getExternalSymbol(TrapFuncName.data(),
6881                               TLI.getPointerTy(DAG.getDataLayout())),
6882         std::move(Args));
6883 
6884     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6885     DAG.setRoot(Result.second);
6886     return;
6887   }
6888 
6889   case Intrinsic::uadd_with_overflow:
6890   case Intrinsic::sadd_with_overflow:
6891   case Intrinsic::usub_with_overflow:
6892   case Intrinsic::ssub_with_overflow:
6893   case Intrinsic::umul_with_overflow:
6894   case Intrinsic::smul_with_overflow: {
6895     ISD::NodeType Op;
6896     switch (Intrinsic) {
6897     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6898     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6899     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6900     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6901     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6902     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6903     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6904     }
6905     SDValue Op1 = getValue(I.getArgOperand(0));
6906     SDValue Op2 = getValue(I.getArgOperand(1));
6907 
6908     EVT ResultVT = Op1.getValueType();
6909     EVT OverflowVT = MVT::i1;
6910     if (ResultVT.isVector())
6911       OverflowVT = EVT::getVectorVT(
6912           *Context, OverflowVT, ResultVT.getVectorElementCount());
6913 
6914     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6915     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6916     return;
6917   }
6918   case Intrinsic::prefetch: {
6919     SDValue Ops[5];
6920     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6921     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6922     Ops[0] = DAG.getRoot();
6923     Ops[1] = getValue(I.getArgOperand(0));
6924     Ops[2] = getValue(I.getArgOperand(1));
6925     Ops[3] = getValue(I.getArgOperand(2));
6926     Ops[4] = getValue(I.getArgOperand(3));
6927     SDValue Result = DAG.getMemIntrinsicNode(
6928         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6929         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6930         /* align */ std::nullopt, Flags);
6931 
6932     // Chain the prefetch in parallell with any pending loads, to stay out of
6933     // the way of later optimizations.
6934     PendingLoads.push_back(Result);
6935     Result = getRoot();
6936     DAG.setRoot(Result);
6937     return;
6938   }
6939   case Intrinsic::lifetime_start:
6940   case Intrinsic::lifetime_end: {
6941     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6942     // Stack coloring is not enabled in O0, discard region information.
6943     if (TM.getOptLevel() == CodeGenOpt::None)
6944       return;
6945 
6946     const int64_t ObjectSize =
6947         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6948     Value *const ObjectPtr = I.getArgOperand(1);
6949     SmallVector<const Value *, 4> Allocas;
6950     getUnderlyingObjects(ObjectPtr, Allocas);
6951 
6952     for (const Value *Alloca : Allocas) {
6953       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6954 
6955       // Could not find an Alloca.
6956       if (!LifetimeObject)
6957         continue;
6958 
6959       // First check that the Alloca is static, otherwise it won't have a
6960       // valid frame index.
6961       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6962       if (SI == FuncInfo.StaticAllocaMap.end())
6963         return;
6964 
6965       const int FrameIndex = SI->second;
6966       int64_t Offset;
6967       if (GetPointerBaseWithConstantOffset(
6968               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6969         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6970       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6971                                 Offset);
6972       DAG.setRoot(Res);
6973     }
6974     return;
6975   }
6976   case Intrinsic::pseudoprobe: {
6977     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6978     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6979     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6980     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6981     DAG.setRoot(Res);
6982     return;
6983   }
6984   case Intrinsic::invariant_start:
6985     // Discard region information.
6986     setValue(&I,
6987              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6988     return;
6989   case Intrinsic::invariant_end:
6990     // Discard region information.
6991     return;
6992   case Intrinsic::clear_cache:
6993     /// FunctionName may be null.
6994     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6995       lowerCallToExternalSymbol(I, FunctionName);
6996     return;
6997   case Intrinsic::donothing:
6998   case Intrinsic::seh_try_begin:
6999   case Intrinsic::seh_scope_begin:
7000   case Intrinsic::seh_try_end:
7001   case Intrinsic::seh_scope_end:
7002     // ignore
7003     return;
7004   case Intrinsic::experimental_stackmap:
7005     visitStackmap(I);
7006     return;
7007   case Intrinsic::experimental_patchpoint_void:
7008   case Intrinsic::experimental_patchpoint_i64:
7009     visitPatchpoint(I);
7010     return;
7011   case Intrinsic::experimental_gc_statepoint:
7012     LowerStatepoint(cast<GCStatepointInst>(I));
7013     return;
7014   case Intrinsic::experimental_gc_result:
7015     visitGCResult(cast<GCResultInst>(I));
7016     return;
7017   case Intrinsic::experimental_gc_relocate:
7018     visitGCRelocate(cast<GCRelocateInst>(I));
7019     return;
7020   case Intrinsic::instrprof_cover:
7021     llvm_unreachable("instrprof failed to lower a cover");
7022   case Intrinsic::instrprof_increment:
7023     llvm_unreachable("instrprof failed to lower an increment");
7024   case Intrinsic::instrprof_value_profile:
7025     llvm_unreachable("instrprof failed to lower a value profiling call");
7026   case Intrinsic::localescape: {
7027     MachineFunction &MF = DAG.getMachineFunction();
7028     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7029 
7030     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7031     // is the same on all targets.
7032     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7033       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7034       if (isa<ConstantPointerNull>(Arg))
7035         continue; // Skip null pointers. They represent a hole in index space.
7036       AllocaInst *Slot = cast<AllocaInst>(Arg);
7037       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7038              "can only escape static allocas");
7039       int FI = FuncInfo.StaticAllocaMap[Slot];
7040       MCSymbol *FrameAllocSym =
7041           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7042               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7043       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7044               TII->get(TargetOpcode::LOCAL_ESCAPE))
7045           .addSym(FrameAllocSym)
7046           .addFrameIndex(FI);
7047     }
7048 
7049     return;
7050   }
7051 
7052   case Intrinsic::localrecover: {
7053     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7054     MachineFunction &MF = DAG.getMachineFunction();
7055 
7056     // Get the symbol that defines the frame offset.
7057     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7058     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7059     unsigned IdxVal =
7060         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7061     MCSymbol *FrameAllocSym =
7062         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7063             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7064 
7065     Value *FP = I.getArgOperand(1);
7066     SDValue FPVal = getValue(FP);
7067     EVT PtrVT = FPVal.getValueType();
7068 
7069     // Create a MCSymbol for the label to avoid any target lowering
7070     // that would make this PC relative.
7071     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7072     SDValue OffsetVal =
7073         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7074 
7075     // Add the offset to the FP.
7076     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7077     setValue(&I, Add);
7078 
7079     return;
7080   }
7081 
7082   case Intrinsic::eh_exceptionpointer:
7083   case Intrinsic::eh_exceptioncode: {
7084     // Get the exception pointer vreg, copy from it, and resize it to fit.
7085     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7086     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7087     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7088     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7089     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7090     if (Intrinsic == Intrinsic::eh_exceptioncode)
7091       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7092     setValue(&I, N);
7093     return;
7094   }
7095   case Intrinsic::xray_customevent: {
7096     // Here we want to make sure that the intrinsic behaves as if it has a
7097     // specific calling convention, and only for x86_64.
7098     // FIXME: Support other platforms later.
7099     const auto &Triple = DAG.getTarget().getTargetTriple();
7100     if (Triple.getArch() != Triple::x86_64)
7101       return;
7102 
7103     SmallVector<SDValue, 8> Ops;
7104 
7105     // We want to say that we always want the arguments in registers.
7106     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7107     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7108     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7109     SDValue Chain = getRoot();
7110     Ops.push_back(LogEntryVal);
7111     Ops.push_back(StrSizeVal);
7112     Ops.push_back(Chain);
7113 
7114     // We need to enforce the calling convention for the callsite, so that
7115     // argument ordering is enforced correctly, and that register allocation can
7116     // see that some registers may be assumed clobbered and have to preserve
7117     // them across calls to the intrinsic.
7118     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7119                                            sdl, NodeTys, Ops);
7120     SDValue patchableNode = SDValue(MN, 0);
7121     DAG.setRoot(patchableNode);
7122     setValue(&I, patchableNode);
7123     return;
7124   }
7125   case Intrinsic::xray_typedevent: {
7126     // Here we want to make sure that the intrinsic behaves as if it has a
7127     // specific calling convention, and only for x86_64.
7128     // FIXME: Support other platforms later.
7129     const auto &Triple = DAG.getTarget().getTargetTriple();
7130     if (Triple.getArch() != Triple::x86_64)
7131       return;
7132 
7133     SmallVector<SDValue, 8> Ops;
7134 
7135     // We want to say that we always want the arguments in registers.
7136     // It's unclear to me how manipulating the selection DAG here forces callers
7137     // to provide arguments in registers instead of on the stack.
7138     SDValue LogTypeId = getValue(I.getArgOperand(0));
7139     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7140     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7141     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7142     SDValue Chain = getRoot();
7143     Ops.push_back(LogTypeId);
7144     Ops.push_back(LogEntryVal);
7145     Ops.push_back(StrSizeVal);
7146     Ops.push_back(Chain);
7147 
7148     // We need to enforce the calling convention for the callsite, so that
7149     // argument ordering is enforced correctly, and that register allocation can
7150     // see that some registers may be assumed clobbered and have to preserve
7151     // them across calls to the intrinsic.
7152     MachineSDNode *MN = DAG.getMachineNode(
7153         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7154     SDValue patchableNode = SDValue(MN, 0);
7155     DAG.setRoot(patchableNode);
7156     setValue(&I, patchableNode);
7157     return;
7158   }
7159   case Intrinsic::experimental_deoptimize:
7160     LowerDeoptimizeCall(&I);
7161     return;
7162   case Intrinsic::experimental_stepvector:
7163     visitStepVector(I);
7164     return;
7165   case Intrinsic::vector_reduce_fadd:
7166   case Intrinsic::vector_reduce_fmul:
7167   case Intrinsic::vector_reduce_add:
7168   case Intrinsic::vector_reduce_mul:
7169   case Intrinsic::vector_reduce_and:
7170   case Intrinsic::vector_reduce_or:
7171   case Intrinsic::vector_reduce_xor:
7172   case Intrinsic::vector_reduce_smax:
7173   case Intrinsic::vector_reduce_smin:
7174   case Intrinsic::vector_reduce_umax:
7175   case Intrinsic::vector_reduce_umin:
7176   case Intrinsic::vector_reduce_fmax:
7177   case Intrinsic::vector_reduce_fmin:
7178     visitVectorReduce(I, Intrinsic);
7179     return;
7180 
7181   case Intrinsic::icall_branch_funnel: {
7182     SmallVector<SDValue, 16> Ops;
7183     Ops.push_back(getValue(I.getArgOperand(0)));
7184 
7185     int64_t Offset;
7186     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7187         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7188     if (!Base)
7189       report_fatal_error(
7190           "llvm.icall.branch.funnel operand must be a GlobalValue");
7191     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7192 
7193     struct BranchFunnelTarget {
7194       int64_t Offset;
7195       SDValue Target;
7196     };
7197     SmallVector<BranchFunnelTarget, 8> Targets;
7198 
7199     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7200       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7201           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7202       if (ElemBase != Base)
7203         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7204                            "to the same GlobalValue");
7205 
7206       SDValue Val = getValue(I.getArgOperand(Op + 1));
7207       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7208       if (!GA)
7209         report_fatal_error(
7210             "llvm.icall.branch.funnel operand must be a GlobalValue");
7211       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7212                                      GA->getGlobal(), sdl, Val.getValueType(),
7213                                      GA->getOffset())});
7214     }
7215     llvm::sort(Targets,
7216                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7217                  return T1.Offset < T2.Offset;
7218                });
7219 
7220     for (auto &T : Targets) {
7221       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7222       Ops.push_back(T.Target);
7223     }
7224 
7225     Ops.push_back(DAG.getRoot()); // Chain
7226     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7227                                  MVT::Other, Ops),
7228               0);
7229     DAG.setRoot(N);
7230     setValue(&I, N);
7231     HasTailCall = true;
7232     return;
7233   }
7234 
7235   case Intrinsic::wasm_landingpad_index:
7236     // Information this intrinsic contained has been transferred to
7237     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7238     // delete it now.
7239     return;
7240 
7241   case Intrinsic::aarch64_settag:
7242   case Intrinsic::aarch64_settag_zero: {
7243     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7244     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7245     SDValue Val = TSI.EmitTargetCodeForSetTag(
7246         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7247         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7248         ZeroMemory);
7249     DAG.setRoot(Val);
7250     setValue(&I, Val);
7251     return;
7252   }
7253   case Intrinsic::ptrmask: {
7254     SDValue Ptr = getValue(I.getOperand(0));
7255     SDValue Const = getValue(I.getOperand(1));
7256 
7257     EVT PtrVT = Ptr.getValueType();
7258     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7259                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7260     return;
7261   }
7262   case Intrinsic::threadlocal_address: {
7263     setValue(&I, getValue(I.getOperand(0)));
7264     return;
7265   }
7266   case Intrinsic::get_active_lane_mask: {
7267     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7268     SDValue Index = getValue(I.getOperand(0));
7269     EVT ElementVT = Index.getValueType();
7270 
7271     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7272       visitTargetIntrinsic(I, Intrinsic);
7273       return;
7274     }
7275 
7276     SDValue TripCount = getValue(I.getOperand(1));
7277     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7278 
7279     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7280     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7281     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7282     SDValue VectorInduction = DAG.getNode(
7283         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7284     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7285                                  VectorTripCount, ISD::CondCode::SETULT);
7286     setValue(&I, SetCC);
7287     return;
7288   }
7289   case Intrinsic::vector_insert: {
7290     SDValue Vec = getValue(I.getOperand(0));
7291     SDValue SubVec = getValue(I.getOperand(1));
7292     SDValue Index = getValue(I.getOperand(2));
7293 
7294     // The intrinsic's index type is i64, but the SDNode requires an index type
7295     // suitable for the target. Convert the index as required.
7296     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7297     if (Index.getValueType() != VectorIdxTy)
7298       Index = DAG.getVectorIdxConstant(
7299           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7300 
7301     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7302     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7303                              Index));
7304     return;
7305   }
7306   case Intrinsic::vector_extract: {
7307     SDValue Vec = getValue(I.getOperand(0));
7308     SDValue Index = getValue(I.getOperand(1));
7309     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7310 
7311     // The intrinsic's index type is i64, but the SDNode requires an index type
7312     // suitable for the target. Convert the index as required.
7313     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7314     if (Index.getValueType() != VectorIdxTy)
7315       Index = DAG.getVectorIdxConstant(
7316           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7317 
7318     setValue(&I,
7319              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7320     return;
7321   }
7322   case Intrinsic::experimental_vector_reverse:
7323     visitVectorReverse(I);
7324     return;
7325   case Intrinsic::experimental_vector_splice:
7326     visitVectorSplice(I);
7327     return;
7328   }
7329 }
7330 
7331 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7332     const ConstrainedFPIntrinsic &FPI) {
7333   SDLoc sdl = getCurSDLoc();
7334 
7335   // We do not need to serialize constrained FP intrinsics against
7336   // each other or against (nonvolatile) loads, so they can be
7337   // chained like loads.
7338   SDValue Chain = DAG.getRoot();
7339   SmallVector<SDValue, 4> Opers;
7340   Opers.push_back(Chain);
7341   if (FPI.isUnaryOp()) {
7342     Opers.push_back(getValue(FPI.getArgOperand(0)));
7343   } else if (FPI.isTernaryOp()) {
7344     Opers.push_back(getValue(FPI.getArgOperand(0)));
7345     Opers.push_back(getValue(FPI.getArgOperand(1)));
7346     Opers.push_back(getValue(FPI.getArgOperand(2)));
7347   } else {
7348     Opers.push_back(getValue(FPI.getArgOperand(0)));
7349     Opers.push_back(getValue(FPI.getArgOperand(1)));
7350   }
7351 
7352   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7353     assert(Result.getNode()->getNumValues() == 2);
7354 
7355     // Push node to the appropriate list so that future instructions can be
7356     // chained up correctly.
7357     SDValue OutChain = Result.getValue(1);
7358     switch (EB) {
7359     case fp::ExceptionBehavior::ebIgnore:
7360       // The only reason why ebIgnore nodes still need to be chained is that
7361       // they might depend on the current rounding mode, and therefore must
7362       // not be moved across instruction that may change that mode.
7363       [[fallthrough]];
7364     case fp::ExceptionBehavior::ebMayTrap:
7365       // These must not be moved across calls or instructions that may change
7366       // floating-point exception masks.
7367       PendingConstrainedFP.push_back(OutChain);
7368       break;
7369     case fp::ExceptionBehavior::ebStrict:
7370       // These must not be moved across calls or instructions that may change
7371       // floating-point exception masks or read floating-point exception flags.
7372       // In addition, they cannot be optimized out even if unused.
7373       PendingConstrainedFPStrict.push_back(OutChain);
7374       break;
7375     }
7376   };
7377 
7378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7379   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7380   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7381   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7382 
7383   SDNodeFlags Flags;
7384   if (EB == fp::ExceptionBehavior::ebIgnore)
7385     Flags.setNoFPExcept(true);
7386 
7387   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7388     Flags.copyFMF(*FPOp);
7389 
7390   unsigned Opcode;
7391   switch (FPI.getIntrinsicID()) {
7392   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7393 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7394   case Intrinsic::INTRINSIC:                                                   \
7395     Opcode = ISD::STRICT_##DAGN;                                               \
7396     break;
7397 #include "llvm/IR/ConstrainedOps.def"
7398   case Intrinsic::experimental_constrained_fmuladd: {
7399     Opcode = ISD::STRICT_FMA;
7400     // Break fmuladd into fmul and fadd.
7401     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7402         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7403       Opers.pop_back();
7404       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7405       pushOutChain(Mul, EB);
7406       Opcode = ISD::STRICT_FADD;
7407       Opers.clear();
7408       Opers.push_back(Mul.getValue(1));
7409       Opers.push_back(Mul.getValue(0));
7410       Opers.push_back(getValue(FPI.getArgOperand(2)));
7411     }
7412     break;
7413   }
7414   }
7415 
7416   // A few strict DAG nodes carry additional operands that are not
7417   // set up by the default code above.
7418   switch (Opcode) {
7419   default: break;
7420   case ISD::STRICT_FP_ROUND:
7421     Opers.push_back(
7422         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7423     break;
7424   case ISD::STRICT_FSETCC:
7425   case ISD::STRICT_FSETCCS: {
7426     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7427     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7428     if (TM.Options.NoNaNsFPMath)
7429       Condition = getFCmpCodeWithoutNaN(Condition);
7430     Opers.push_back(DAG.getCondCode(Condition));
7431     break;
7432   }
7433   }
7434 
7435   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7436   pushOutChain(Result, EB);
7437 
7438   SDValue FPResult = Result.getValue(0);
7439   setValue(&FPI, FPResult);
7440 }
7441 
7442 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7443   std::optional<unsigned> ResOPC;
7444   switch (VPIntrin.getIntrinsicID()) {
7445   case Intrinsic::vp_ctlz: {
7446     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7447     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7448     break;
7449   }
7450   case Intrinsic::vp_cttz: {
7451     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7452     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7453     break;
7454   }
7455 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7456   case Intrinsic::VPID:                                                        \
7457     ResOPC = ISD::VPSD;                                                        \
7458     break;
7459 #include "llvm/IR/VPIntrinsics.def"
7460   }
7461 
7462   if (!ResOPC)
7463     llvm_unreachable(
7464         "Inconsistency: no SDNode available for this VPIntrinsic!");
7465 
7466   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7467       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7468     if (VPIntrin.getFastMathFlags().allowReassoc())
7469       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7470                                                 : ISD::VP_REDUCE_FMUL;
7471   }
7472 
7473   return *ResOPC;
7474 }
7475 
7476 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7477                                       SmallVector<SDValue, 7> &OpValues) {
7478   SDLoc DL = getCurSDLoc();
7479   Value *PtrOperand = VPIntrin.getArgOperand(0);
7480   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7481   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7482   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7483   SDValue LD;
7484   bool AddToChain = true;
7485   // Do not serialize variable-length loads of constant memory with
7486   // anything.
7487   if (!Alignment)
7488     Alignment = DAG.getEVTAlign(VT);
7489   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7490   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7491   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7492   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7493       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7494       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7495   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7496                      MMO, false /*IsExpanding */);
7497   if (AddToChain)
7498     PendingLoads.push_back(LD.getValue(1));
7499   setValue(&VPIntrin, LD);
7500 }
7501 
7502 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7503                                         SmallVector<SDValue, 7> &OpValues) {
7504   SDLoc DL = getCurSDLoc();
7505   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7506   Value *PtrOperand = VPIntrin.getArgOperand(0);
7507   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7508   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7509   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7510   SDValue LD;
7511   if (!Alignment)
7512     Alignment = DAG.getEVTAlign(VT.getScalarType());
7513   unsigned AS =
7514     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7515   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7516      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7517      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7518   SDValue Base, Index, Scale;
7519   ISD::MemIndexType IndexType;
7520   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7521                                     this, VPIntrin.getParent(),
7522                                     VT.getScalarStoreSize());
7523   if (!UniformBase) {
7524     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7525     Index = getValue(PtrOperand);
7526     IndexType = ISD::SIGNED_SCALED;
7527     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7528   }
7529   EVT IdxVT = Index.getValueType();
7530   EVT EltTy = IdxVT.getVectorElementType();
7531   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7532     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7533     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7534   }
7535   LD = DAG.getGatherVP(
7536       DAG.getVTList(VT, MVT::Other), VT, DL,
7537       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7538       IndexType);
7539   PendingLoads.push_back(LD.getValue(1));
7540   setValue(&VPIntrin, LD);
7541 }
7542 
7543 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7544                                        SmallVector<SDValue, 7> &OpValues) {
7545   SDLoc DL = getCurSDLoc();
7546   Value *PtrOperand = VPIntrin.getArgOperand(1);
7547   EVT VT = OpValues[0].getValueType();
7548   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7549   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7550   SDValue ST;
7551   if (!Alignment)
7552     Alignment = DAG.getEVTAlign(VT);
7553   SDValue Ptr = OpValues[1];
7554   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7555   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7556       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7557       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7558   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7559                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7560                       /* IsTruncating */ false, /*IsCompressing*/ false);
7561   DAG.setRoot(ST);
7562   setValue(&VPIntrin, ST);
7563 }
7564 
7565 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7566                                               SmallVector<SDValue, 7> &OpValues) {
7567   SDLoc DL = getCurSDLoc();
7568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7569   Value *PtrOperand = VPIntrin.getArgOperand(1);
7570   EVT VT = OpValues[0].getValueType();
7571   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7572   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7573   SDValue ST;
7574   if (!Alignment)
7575     Alignment = DAG.getEVTAlign(VT.getScalarType());
7576   unsigned AS =
7577       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7578   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7579       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7580       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7581   SDValue Base, Index, Scale;
7582   ISD::MemIndexType IndexType;
7583   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7584                                     this, VPIntrin.getParent(),
7585                                     VT.getScalarStoreSize());
7586   if (!UniformBase) {
7587     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7588     Index = getValue(PtrOperand);
7589     IndexType = ISD::SIGNED_SCALED;
7590     Scale =
7591       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7592   }
7593   EVT IdxVT = Index.getValueType();
7594   EVT EltTy = IdxVT.getVectorElementType();
7595   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7596     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7597     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7598   }
7599   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7600                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7601                          OpValues[2], OpValues[3]},
7602                         MMO, IndexType);
7603   DAG.setRoot(ST);
7604   setValue(&VPIntrin, ST);
7605 }
7606 
7607 void SelectionDAGBuilder::visitVPStridedLoad(
7608     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7609   SDLoc DL = getCurSDLoc();
7610   Value *PtrOperand = VPIntrin.getArgOperand(0);
7611   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7612   if (!Alignment)
7613     Alignment = DAG.getEVTAlign(VT.getScalarType());
7614   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7615   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7616   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7617   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7618   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7619   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7620       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7621       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7622 
7623   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7624                                     OpValues[2], OpValues[3], MMO,
7625                                     false /*IsExpanding*/);
7626 
7627   if (AddToChain)
7628     PendingLoads.push_back(LD.getValue(1));
7629   setValue(&VPIntrin, LD);
7630 }
7631 
7632 void SelectionDAGBuilder::visitVPStridedStore(
7633     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7634   SDLoc DL = getCurSDLoc();
7635   Value *PtrOperand = VPIntrin.getArgOperand(1);
7636   EVT VT = OpValues[0].getValueType();
7637   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7638   if (!Alignment)
7639     Alignment = DAG.getEVTAlign(VT.getScalarType());
7640   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7641   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7642       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7643       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7644 
7645   SDValue ST = DAG.getStridedStoreVP(
7646       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7647       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7648       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7649       /*IsCompressing*/ false);
7650 
7651   DAG.setRoot(ST);
7652   setValue(&VPIntrin, ST);
7653 }
7654 
7655 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7657   SDLoc DL = getCurSDLoc();
7658 
7659   ISD::CondCode Condition;
7660   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7661   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7662   if (IsFP) {
7663     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7664     // flags, but calls that don't return floating-point types can't be
7665     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7666     Condition = getFCmpCondCode(CondCode);
7667     if (TM.Options.NoNaNsFPMath)
7668       Condition = getFCmpCodeWithoutNaN(Condition);
7669   } else {
7670     Condition = getICmpCondCode(CondCode);
7671   }
7672 
7673   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7674   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7675   // #2 is the condition code
7676   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7677   SDValue EVL = getValue(VPIntrin.getOperand(4));
7678   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7679   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7680          "Unexpected target EVL type");
7681   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7682 
7683   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7684                                                         VPIntrin.getType());
7685   setValue(&VPIntrin,
7686            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7687 }
7688 
7689 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7690     const VPIntrinsic &VPIntrin) {
7691   SDLoc DL = getCurSDLoc();
7692   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7693 
7694   auto IID = VPIntrin.getIntrinsicID();
7695 
7696   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7697     return visitVPCmp(*CmpI);
7698 
7699   SmallVector<EVT, 4> ValueVTs;
7700   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7701   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7702   SDVTList VTs = DAG.getVTList(ValueVTs);
7703 
7704   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7705 
7706   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7707   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7708          "Unexpected target EVL type");
7709 
7710   // Request operands.
7711   SmallVector<SDValue, 7> OpValues;
7712   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7713     auto Op = getValue(VPIntrin.getArgOperand(I));
7714     if (I == EVLParamPos)
7715       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7716     OpValues.push_back(Op);
7717   }
7718 
7719   switch (Opcode) {
7720   default: {
7721     SDNodeFlags SDFlags;
7722     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7723       SDFlags.copyFMF(*FPMO);
7724     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7725     setValue(&VPIntrin, Result);
7726     break;
7727   }
7728   case ISD::VP_LOAD:
7729     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7730     break;
7731   case ISD::VP_GATHER:
7732     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7733     break;
7734   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7735     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7736     break;
7737   case ISD::VP_STORE:
7738     visitVPStore(VPIntrin, OpValues);
7739     break;
7740   case ISD::VP_SCATTER:
7741     visitVPScatter(VPIntrin, OpValues);
7742     break;
7743   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7744     visitVPStridedStore(VPIntrin, OpValues);
7745     break;
7746   case ISD::VP_FMULADD: {
7747     assert(OpValues.size() == 5 && "Unexpected number of operands");
7748     SDNodeFlags SDFlags;
7749     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7750       SDFlags.copyFMF(*FPMO);
7751     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7752         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7753       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7754     } else {
7755       SDValue Mul = DAG.getNode(
7756           ISD::VP_FMUL, DL, VTs,
7757           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7758       SDValue Add =
7759           DAG.getNode(ISD::VP_FADD, DL, VTs,
7760                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7761       setValue(&VPIntrin, Add);
7762     }
7763     break;
7764   }
7765   case ISD::VP_INTTOPTR: {
7766     SDValue N = OpValues[0];
7767     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7768     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7769     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7770                                OpValues[2]);
7771     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7772                              OpValues[2]);
7773     setValue(&VPIntrin, N);
7774     break;
7775   }
7776   case ISD::VP_PTRTOINT: {
7777     SDValue N = OpValues[0];
7778     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7779                                                           VPIntrin.getType());
7780     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7781                                        VPIntrin.getOperand(0)->getType());
7782     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7783                                OpValues[2]);
7784     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7785                              OpValues[2]);
7786     setValue(&VPIntrin, N);
7787     break;
7788   }
7789   case ISD::VP_ABS:
7790   case ISD::VP_CTLZ:
7791   case ISD::VP_CTLZ_ZERO_UNDEF:
7792   case ISD::VP_CTTZ:
7793   case ISD::VP_CTTZ_ZERO_UNDEF: {
7794     // Pop is_zero_poison operand for cp.ctlz/cttz or
7795     // is_int_min_poison operand for vp.abs.
7796     OpValues.pop_back();
7797     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7798     setValue(&VPIntrin, Result);
7799     break;
7800   }
7801   }
7802 }
7803 
7804 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7805                                           const BasicBlock *EHPadBB,
7806                                           MCSymbol *&BeginLabel) {
7807   MachineFunction &MF = DAG.getMachineFunction();
7808   MachineModuleInfo &MMI = MF.getMMI();
7809 
7810   // Insert a label before the invoke call to mark the try range.  This can be
7811   // used to detect deletion of the invoke via the MachineModuleInfo.
7812   BeginLabel = MMI.getContext().createTempSymbol();
7813 
7814   // For SjLj, keep track of which landing pads go with which invokes
7815   // so as to maintain the ordering of pads in the LSDA.
7816   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7817   if (CallSiteIndex) {
7818     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7819     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7820 
7821     // Now that the call site is handled, stop tracking it.
7822     MMI.setCurrentCallSite(0);
7823   }
7824 
7825   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7826 }
7827 
7828 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7829                                         const BasicBlock *EHPadBB,
7830                                         MCSymbol *BeginLabel) {
7831   assert(BeginLabel && "BeginLabel should've been set");
7832 
7833   MachineFunction &MF = DAG.getMachineFunction();
7834   MachineModuleInfo &MMI = MF.getMMI();
7835 
7836   // Insert a label at the end of the invoke call to mark the try range.  This
7837   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7838   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7839   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7840 
7841   // Inform MachineModuleInfo of range.
7842   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7843   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7844   // actually use outlined funclets and their LSDA info style.
7845   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7846     assert(II && "II should've been set");
7847     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7848     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7849   } else if (!isScopedEHPersonality(Pers)) {
7850     assert(EHPadBB);
7851     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7852   }
7853 
7854   return Chain;
7855 }
7856 
7857 std::pair<SDValue, SDValue>
7858 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7859                                     const BasicBlock *EHPadBB) {
7860   MCSymbol *BeginLabel = nullptr;
7861 
7862   if (EHPadBB) {
7863     // Both PendingLoads and PendingExports must be flushed here;
7864     // this call might not return.
7865     (void)getRoot();
7866     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7867     CLI.setChain(getRoot());
7868   }
7869 
7870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7871   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7872 
7873   assert((CLI.IsTailCall || Result.second.getNode()) &&
7874          "Non-null chain expected with non-tail call!");
7875   assert((Result.second.getNode() || !Result.first.getNode()) &&
7876          "Null value expected with tail call!");
7877 
7878   if (!Result.second.getNode()) {
7879     // As a special case, a null chain means that a tail call has been emitted
7880     // and the DAG root is already updated.
7881     HasTailCall = true;
7882 
7883     // Since there's no actual continuation from this block, nothing can be
7884     // relying on us setting vregs for them.
7885     PendingExports.clear();
7886   } else {
7887     DAG.setRoot(Result.second);
7888   }
7889 
7890   if (EHPadBB) {
7891     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7892                            BeginLabel));
7893   }
7894 
7895   return Result;
7896 }
7897 
7898 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7899                                       bool isTailCall,
7900                                       bool isMustTailCall,
7901                                       const BasicBlock *EHPadBB) {
7902   auto &DL = DAG.getDataLayout();
7903   FunctionType *FTy = CB.getFunctionType();
7904   Type *RetTy = CB.getType();
7905 
7906   TargetLowering::ArgListTy Args;
7907   Args.reserve(CB.arg_size());
7908 
7909   const Value *SwiftErrorVal = nullptr;
7910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7911 
7912   if (isTailCall) {
7913     // Avoid emitting tail calls in functions with the disable-tail-calls
7914     // attribute.
7915     auto *Caller = CB.getParent()->getParent();
7916     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7917         "true" && !isMustTailCall)
7918       isTailCall = false;
7919 
7920     // We can't tail call inside a function with a swifterror argument. Lowering
7921     // does not support this yet. It would have to move into the swifterror
7922     // register before the call.
7923     if (TLI.supportSwiftError() &&
7924         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7925       isTailCall = false;
7926   }
7927 
7928   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7929     TargetLowering::ArgListEntry Entry;
7930     const Value *V = *I;
7931 
7932     // Skip empty types
7933     if (V->getType()->isEmptyTy())
7934       continue;
7935 
7936     SDValue ArgNode = getValue(V);
7937     Entry.Node = ArgNode; Entry.Ty = V->getType();
7938 
7939     Entry.setAttributes(&CB, I - CB.arg_begin());
7940 
7941     // Use swifterror virtual register as input to the call.
7942     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7943       SwiftErrorVal = V;
7944       // We find the virtual register for the actual swifterror argument.
7945       // Instead of using the Value, we use the virtual register instead.
7946       Entry.Node =
7947           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7948                           EVT(TLI.getPointerTy(DL)));
7949     }
7950 
7951     Args.push_back(Entry);
7952 
7953     // If we have an explicit sret argument that is an Instruction, (i.e., it
7954     // might point to function-local memory), we can't meaningfully tail-call.
7955     if (Entry.IsSRet && isa<Instruction>(V))
7956       isTailCall = false;
7957   }
7958 
7959   // If call site has a cfguardtarget operand bundle, create and add an
7960   // additional ArgListEntry.
7961   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7962     TargetLowering::ArgListEntry Entry;
7963     Value *V = Bundle->Inputs[0];
7964     SDValue ArgNode = getValue(V);
7965     Entry.Node = ArgNode;
7966     Entry.Ty = V->getType();
7967     Entry.IsCFGuardTarget = true;
7968     Args.push_back(Entry);
7969   }
7970 
7971   // Check if target-independent constraints permit a tail call here.
7972   // Target-dependent constraints are checked within TLI->LowerCallTo.
7973   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7974     isTailCall = false;
7975 
7976   // Disable tail calls if there is an swifterror argument. Targets have not
7977   // been updated to support tail calls.
7978   if (TLI.supportSwiftError() && SwiftErrorVal)
7979     isTailCall = false;
7980 
7981   ConstantInt *CFIType = nullptr;
7982   if (CB.isIndirectCall()) {
7983     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7984       if (!TLI.supportKCFIBundles())
7985         report_fatal_error(
7986             "Target doesn't support calls with kcfi operand bundles.");
7987       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7988       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7989     }
7990   }
7991 
7992   TargetLowering::CallLoweringInfo CLI(DAG);
7993   CLI.setDebugLoc(getCurSDLoc())
7994       .setChain(getRoot())
7995       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7996       .setTailCall(isTailCall)
7997       .setConvergent(CB.isConvergent())
7998       .setIsPreallocated(
7999           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8000       .setCFIType(CFIType);
8001   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8002 
8003   if (Result.first.getNode()) {
8004     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8005     setValue(&CB, Result.first);
8006   }
8007 
8008   // The last element of CLI.InVals has the SDValue for swifterror return.
8009   // Here we copy it to a virtual register and update SwiftErrorMap for
8010   // book-keeping.
8011   if (SwiftErrorVal && TLI.supportSwiftError()) {
8012     // Get the last element of InVals.
8013     SDValue Src = CLI.InVals.back();
8014     Register VReg =
8015         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8016     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8017     DAG.setRoot(CopyNode);
8018   }
8019 }
8020 
8021 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8022                              SelectionDAGBuilder &Builder) {
8023   // Check to see if this load can be trivially constant folded, e.g. if the
8024   // input is from a string literal.
8025   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8026     // Cast pointer to the type we really want to load.
8027     Type *LoadTy =
8028         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8029     if (LoadVT.isVector())
8030       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8031 
8032     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8033                                          PointerType::getUnqual(LoadTy));
8034 
8035     if (const Constant *LoadCst =
8036             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8037                                          LoadTy, Builder.DAG.getDataLayout()))
8038       return Builder.getValue(LoadCst);
8039   }
8040 
8041   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8042   // still constant memory, the input chain can be the entry node.
8043   SDValue Root;
8044   bool ConstantMemory = false;
8045 
8046   // Do not serialize (non-volatile) loads of constant memory with anything.
8047   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8048     Root = Builder.DAG.getEntryNode();
8049     ConstantMemory = true;
8050   } else {
8051     // Do not serialize non-volatile loads against each other.
8052     Root = Builder.DAG.getRoot();
8053   }
8054 
8055   SDValue Ptr = Builder.getValue(PtrVal);
8056   SDValue LoadVal =
8057       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8058                           MachinePointerInfo(PtrVal), Align(1));
8059 
8060   if (!ConstantMemory)
8061     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8062   return LoadVal;
8063 }
8064 
8065 /// Record the value for an instruction that produces an integer result,
8066 /// converting the type where necessary.
8067 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8068                                                   SDValue Value,
8069                                                   bool IsSigned) {
8070   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8071                                                     I.getType(), true);
8072   if (IsSigned)
8073     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8074   else
8075     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8076   setValue(&I, Value);
8077 }
8078 
8079 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8080 /// true and lower it. Otherwise return false, and it will be lowered like a
8081 /// normal call.
8082 /// The caller already checked that \p I calls the appropriate LibFunc with a
8083 /// correct prototype.
8084 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8085   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8086   const Value *Size = I.getArgOperand(2);
8087   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8088   if (CSize && CSize->getZExtValue() == 0) {
8089     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8090                                                           I.getType(), true);
8091     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8092     return true;
8093   }
8094 
8095   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8096   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8097       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8098       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8099   if (Res.first.getNode()) {
8100     processIntegerCallValue(I, Res.first, true);
8101     PendingLoads.push_back(Res.second);
8102     return true;
8103   }
8104 
8105   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8106   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8107   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8108     return false;
8109 
8110   // If the target has a fast compare for the given size, it will return a
8111   // preferred load type for that size. Require that the load VT is legal and
8112   // that the target supports unaligned loads of that type. Otherwise, return
8113   // INVALID.
8114   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8115     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8116     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8117     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8118       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8119       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8120       // TODO: Check alignment of src and dest ptrs.
8121       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8122       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8123       if (!TLI.isTypeLegal(LVT) ||
8124           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8125           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8126         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8127     }
8128 
8129     return LVT;
8130   };
8131 
8132   // This turns into unaligned loads. We only do this if the target natively
8133   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8134   // we'll only produce a small number of byte loads.
8135   MVT LoadVT;
8136   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8137   switch (NumBitsToCompare) {
8138   default:
8139     return false;
8140   case 16:
8141     LoadVT = MVT::i16;
8142     break;
8143   case 32:
8144     LoadVT = MVT::i32;
8145     break;
8146   case 64:
8147   case 128:
8148   case 256:
8149     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8150     break;
8151   }
8152 
8153   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8154     return false;
8155 
8156   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8157   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8158 
8159   // Bitcast to a wide integer type if the loads are vectors.
8160   if (LoadVT.isVector()) {
8161     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8162     LoadL = DAG.getBitcast(CmpVT, LoadL);
8163     LoadR = DAG.getBitcast(CmpVT, LoadR);
8164   }
8165 
8166   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8167   processIntegerCallValue(I, Cmp, false);
8168   return true;
8169 }
8170 
8171 /// See if we can lower a memchr call into an optimized form. If so, return
8172 /// true and lower it. Otherwise return false, and it will be lowered like a
8173 /// normal call.
8174 /// The caller already checked that \p I calls the appropriate LibFunc with a
8175 /// correct prototype.
8176 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8177   const Value *Src = I.getArgOperand(0);
8178   const Value *Char = I.getArgOperand(1);
8179   const Value *Length = I.getArgOperand(2);
8180 
8181   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8182   std::pair<SDValue, SDValue> Res =
8183     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8184                                 getValue(Src), getValue(Char), getValue(Length),
8185                                 MachinePointerInfo(Src));
8186   if (Res.first.getNode()) {
8187     setValue(&I, Res.first);
8188     PendingLoads.push_back(Res.second);
8189     return true;
8190   }
8191 
8192   return false;
8193 }
8194 
8195 /// See if we can lower a mempcpy call into an optimized form. If so, return
8196 /// true and lower it. Otherwise return false, and it will be lowered like a
8197 /// normal call.
8198 /// The caller already checked that \p I calls the appropriate LibFunc with a
8199 /// correct prototype.
8200 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8201   SDValue Dst = getValue(I.getArgOperand(0));
8202   SDValue Src = getValue(I.getArgOperand(1));
8203   SDValue Size = getValue(I.getArgOperand(2));
8204 
8205   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8206   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8207   // DAG::getMemcpy needs Alignment to be defined.
8208   Align Alignment = std::min(DstAlign, SrcAlign);
8209 
8210   bool isVol = false;
8211   SDLoc sdl = getCurSDLoc();
8212 
8213   // In the mempcpy context we need to pass in a false value for isTailCall
8214   // because the return pointer needs to be adjusted by the size of
8215   // the copied memory.
8216   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8217   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8218                              /*isTailCall=*/false,
8219                              MachinePointerInfo(I.getArgOperand(0)),
8220                              MachinePointerInfo(I.getArgOperand(1)),
8221                              I.getAAMetadata());
8222   assert(MC.getNode() != nullptr &&
8223          "** memcpy should not be lowered as TailCall in mempcpy context **");
8224   DAG.setRoot(MC);
8225 
8226   // Check if Size needs to be truncated or extended.
8227   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8228 
8229   // Adjust return pointer to point just past the last dst byte.
8230   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8231                                     Dst, Size);
8232   setValue(&I, DstPlusSize);
8233   return true;
8234 }
8235 
8236 /// See if we can lower a strcpy call into an optimized form.  If so, return
8237 /// true and lower it, otherwise return false and it will be lowered like a
8238 /// normal call.
8239 /// The caller already checked that \p I calls the appropriate LibFunc with a
8240 /// correct prototype.
8241 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8242   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8243 
8244   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8245   std::pair<SDValue, SDValue> Res =
8246     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8247                                 getValue(Arg0), getValue(Arg1),
8248                                 MachinePointerInfo(Arg0),
8249                                 MachinePointerInfo(Arg1), isStpcpy);
8250   if (Res.first.getNode()) {
8251     setValue(&I, Res.first);
8252     DAG.setRoot(Res.second);
8253     return true;
8254   }
8255 
8256   return false;
8257 }
8258 
8259 /// See if we can lower a strcmp call into an optimized form.  If so, return
8260 /// true and lower it, otherwise return false and it will be lowered like a
8261 /// normal call.
8262 /// The caller already checked that \p I calls the appropriate LibFunc with a
8263 /// correct prototype.
8264 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8265   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8266 
8267   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8268   std::pair<SDValue, SDValue> Res =
8269     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8270                                 getValue(Arg0), getValue(Arg1),
8271                                 MachinePointerInfo(Arg0),
8272                                 MachinePointerInfo(Arg1));
8273   if (Res.first.getNode()) {
8274     processIntegerCallValue(I, Res.first, true);
8275     PendingLoads.push_back(Res.second);
8276     return true;
8277   }
8278 
8279   return false;
8280 }
8281 
8282 /// See if we can lower a strlen call into an optimized form.  If so, return
8283 /// true and lower it, otherwise return false and it will be lowered like a
8284 /// normal call.
8285 /// The caller already checked that \p I calls the appropriate LibFunc with a
8286 /// correct prototype.
8287 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8288   const Value *Arg0 = I.getArgOperand(0);
8289 
8290   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8291   std::pair<SDValue, SDValue> Res =
8292     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8293                                 getValue(Arg0), MachinePointerInfo(Arg0));
8294   if (Res.first.getNode()) {
8295     processIntegerCallValue(I, Res.first, false);
8296     PendingLoads.push_back(Res.second);
8297     return true;
8298   }
8299 
8300   return false;
8301 }
8302 
8303 /// See if we can lower a strnlen call into an optimized form.  If so, return
8304 /// true and lower it, otherwise return false and it will be lowered like a
8305 /// normal call.
8306 /// The caller already checked that \p I calls the appropriate LibFunc with a
8307 /// correct prototype.
8308 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8309   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8310 
8311   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8312   std::pair<SDValue, SDValue> Res =
8313     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8314                                  getValue(Arg0), getValue(Arg1),
8315                                  MachinePointerInfo(Arg0));
8316   if (Res.first.getNode()) {
8317     processIntegerCallValue(I, Res.first, false);
8318     PendingLoads.push_back(Res.second);
8319     return true;
8320   }
8321 
8322   return false;
8323 }
8324 
8325 /// See if we can lower a unary floating-point operation into an SDNode with
8326 /// the specified Opcode.  If so, return true and lower it, otherwise return
8327 /// false and it will be lowered like a normal call.
8328 /// The caller already checked that \p I calls the appropriate LibFunc with a
8329 /// correct prototype.
8330 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8331                                               unsigned Opcode) {
8332   // We already checked this call's prototype; verify it doesn't modify errno.
8333   if (!I.onlyReadsMemory())
8334     return false;
8335 
8336   SDNodeFlags Flags;
8337   Flags.copyFMF(cast<FPMathOperator>(I));
8338 
8339   SDValue Tmp = getValue(I.getArgOperand(0));
8340   setValue(&I,
8341            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8342   return true;
8343 }
8344 
8345 /// See if we can lower a binary floating-point operation into an SDNode with
8346 /// the specified Opcode. If so, return true and lower it. Otherwise return
8347 /// false, and it will be lowered like a normal call.
8348 /// The caller already checked that \p I calls the appropriate LibFunc with a
8349 /// correct prototype.
8350 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8351                                                unsigned Opcode) {
8352   // We already checked this call's prototype; verify it doesn't modify errno.
8353   if (!I.onlyReadsMemory())
8354     return false;
8355 
8356   SDNodeFlags Flags;
8357   Flags.copyFMF(cast<FPMathOperator>(I));
8358 
8359   SDValue Tmp0 = getValue(I.getArgOperand(0));
8360   SDValue Tmp1 = getValue(I.getArgOperand(1));
8361   EVT VT = Tmp0.getValueType();
8362   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8363   return true;
8364 }
8365 
8366 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8367   // Handle inline assembly differently.
8368   if (I.isInlineAsm()) {
8369     visitInlineAsm(I);
8370     return;
8371   }
8372 
8373   diagnoseDontCall(I);
8374 
8375   if (Function *F = I.getCalledFunction()) {
8376     if (F->isDeclaration()) {
8377       // Is this an LLVM intrinsic or a target-specific intrinsic?
8378       unsigned IID = F->getIntrinsicID();
8379       if (!IID)
8380         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8381           IID = II->getIntrinsicID(F);
8382 
8383       if (IID) {
8384         visitIntrinsicCall(I, IID);
8385         return;
8386       }
8387     }
8388 
8389     // Check for well-known libc/libm calls.  If the function is internal, it
8390     // can't be a library call.  Don't do the check if marked as nobuiltin for
8391     // some reason or the call site requires strict floating point semantics.
8392     LibFunc Func;
8393     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8394         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8395         LibInfo->hasOptimizedCodeGen(Func)) {
8396       switch (Func) {
8397       default: break;
8398       case LibFunc_bcmp:
8399         if (visitMemCmpBCmpCall(I))
8400           return;
8401         break;
8402       case LibFunc_copysign:
8403       case LibFunc_copysignf:
8404       case LibFunc_copysignl:
8405         // We already checked this call's prototype; verify it doesn't modify
8406         // errno.
8407         if (I.onlyReadsMemory()) {
8408           SDValue LHS = getValue(I.getArgOperand(0));
8409           SDValue RHS = getValue(I.getArgOperand(1));
8410           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8411                                    LHS.getValueType(), LHS, RHS));
8412           return;
8413         }
8414         break;
8415       case LibFunc_fabs:
8416       case LibFunc_fabsf:
8417       case LibFunc_fabsl:
8418         if (visitUnaryFloatCall(I, ISD::FABS))
8419           return;
8420         break;
8421       case LibFunc_fmin:
8422       case LibFunc_fminf:
8423       case LibFunc_fminl:
8424         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8425           return;
8426         break;
8427       case LibFunc_fmax:
8428       case LibFunc_fmaxf:
8429       case LibFunc_fmaxl:
8430         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8431           return;
8432         break;
8433       case LibFunc_sin:
8434       case LibFunc_sinf:
8435       case LibFunc_sinl:
8436         if (visitUnaryFloatCall(I, ISD::FSIN))
8437           return;
8438         break;
8439       case LibFunc_cos:
8440       case LibFunc_cosf:
8441       case LibFunc_cosl:
8442         if (visitUnaryFloatCall(I, ISD::FCOS))
8443           return;
8444         break;
8445       case LibFunc_sqrt:
8446       case LibFunc_sqrtf:
8447       case LibFunc_sqrtl:
8448       case LibFunc_sqrt_finite:
8449       case LibFunc_sqrtf_finite:
8450       case LibFunc_sqrtl_finite:
8451         if (visitUnaryFloatCall(I, ISD::FSQRT))
8452           return;
8453         break;
8454       case LibFunc_floor:
8455       case LibFunc_floorf:
8456       case LibFunc_floorl:
8457         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8458           return;
8459         break;
8460       case LibFunc_nearbyint:
8461       case LibFunc_nearbyintf:
8462       case LibFunc_nearbyintl:
8463         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8464           return;
8465         break;
8466       case LibFunc_ceil:
8467       case LibFunc_ceilf:
8468       case LibFunc_ceill:
8469         if (visitUnaryFloatCall(I, ISD::FCEIL))
8470           return;
8471         break;
8472       case LibFunc_rint:
8473       case LibFunc_rintf:
8474       case LibFunc_rintl:
8475         if (visitUnaryFloatCall(I, ISD::FRINT))
8476           return;
8477         break;
8478       case LibFunc_round:
8479       case LibFunc_roundf:
8480       case LibFunc_roundl:
8481         if (visitUnaryFloatCall(I, ISD::FROUND))
8482           return;
8483         break;
8484       case LibFunc_trunc:
8485       case LibFunc_truncf:
8486       case LibFunc_truncl:
8487         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8488           return;
8489         break;
8490       case LibFunc_log2:
8491       case LibFunc_log2f:
8492       case LibFunc_log2l:
8493         if (visitUnaryFloatCall(I, ISD::FLOG2))
8494           return;
8495         break;
8496       case LibFunc_exp2:
8497       case LibFunc_exp2f:
8498       case LibFunc_exp2l:
8499         if (visitUnaryFloatCall(I, ISD::FEXP2))
8500           return;
8501         break;
8502       case LibFunc_memcmp:
8503         if (visitMemCmpBCmpCall(I))
8504           return;
8505         break;
8506       case LibFunc_mempcpy:
8507         if (visitMemPCpyCall(I))
8508           return;
8509         break;
8510       case LibFunc_memchr:
8511         if (visitMemChrCall(I))
8512           return;
8513         break;
8514       case LibFunc_strcpy:
8515         if (visitStrCpyCall(I, false))
8516           return;
8517         break;
8518       case LibFunc_stpcpy:
8519         if (visitStrCpyCall(I, true))
8520           return;
8521         break;
8522       case LibFunc_strcmp:
8523         if (visitStrCmpCall(I))
8524           return;
8525         break;
8526       case LibFunc_strlen:
8527         if (visitStrLenCall(I))
8528           return;
8529         break;
8530       case LibFunc_strnlen:
8531         if (visitStrNLenCall(I))
8532           return;
8533         break;
8534       }
8535     }
8536   }
8537 
8538   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8539   // have to do anything here to lower funclet bundles.
8540   // CFGuardTarget bundles are lowered in LowerCallTo.
8541   assert(!I.hasOperandBundlesOtherThan(
8542              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8543               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8544               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8545          "Cannot lower calls with arbitrary operand bundles!");
8546 
8547   SDValue Callee = getValue(I.getCalledOperand());
8548 
8549   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8550     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8551   else
8552     // Check if we can potentially perform a tail call. More detailed checking
8553     // is be done within LowerCallTo, after more information about the call is
8554     // known.
8555     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8556 }
8557 
8558 namespace {
8559 
8560 /// AsmOperandInfo - This contains information for each constraint that we are
8561 /// lowering.
8562 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8563 public:
8564   /// CallOperand - If this is the result output operand or a clobber
8565   /// this is null, otherwise it is the incoming operand to the CallInst.
8566   /// This gets modified as the asm is processed.
8567   SDValue CallOperand;
8568 
8569   /// AssignedRegs - If this is a register or register class operand, this
8570   /// contains the set of register corresponding to the operand.
8571   RegsForValue AssignedRegs;
8572 
8573   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8574     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8575   }
8576 
8577   /// Whether or not this operand accesses memory
8578   bool hasMemory(const TargetLowering &TLI) const {
8579     // Indirect operand accesses access memory.
8580     if (isIndirect)
8581       return true;
8582 
8583     for (const auto &Code : Codes)
8584       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8585         return true;
8586 
8587     return false;
8588   }
8589 };
8590 
8591 
8592 } // end anonymous namespace
8593 
8594 /// Make sure that the output operand \p OpInfo and its corresponding input
8595 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8596 /// out).
8597 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8598                                SDISelAsmOperandInfo &MatchingOpInfo,
8599                                SelectionDAG &DAG) {
8600   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8601     return;
8602 
8603   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8604   const auto &TLI = DAG.getTargetLoweringInfo();
8605 
8606   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8607       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8608                                        OpInfo.ConstraintVT);
8609   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8610       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8611                                        MatchingOpInfo.ConstraintVT);
8612   if ((OpInfo.ConstraintVT.isInteger() !=
8613        MatchingOpInfo.ConstraintVT.isInteger()) ||
8614       (MatchRC.second != InputRC.second)) {
8615     // FIXME: error out in a more elegant fashion
8616     report_fatal_error("Unsupported asm: input constraint"
8617                        " with a matching output constraint of"
8618                        " incompatible type!");
8619   }
8620   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8621 }
8622 
8623 /// Get a direct memory input to behave well as an indirect operand.
8624 /// This may introduce stores, hence the need for a \p Chain.
8625 /// \return The (possibly updated) chain.
8626 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8627                                         SDISelAsmOperandInfo &OpInfo,
8628                                         SelectionDAG &DAG) {
8629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8630 
8631   // If we don't have an indirect input, put it in the constpool if we can,
8632   // otherwise spill it to a stack slot.
8633   // TODO: This isn't quite right. We need to handle these according to
8634   // the addressing mode that the constraint wants. Also, this may take
8635   // an additional register for the computation and we don't want that
8636   // either.
8637 
8638   // If the operand is a float, integer, or vector constant, spill to a
8639   // constant pool entry to get its address.
8640   const Value *OpVal = OpInfo.CallOperandVal;
8641   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8642       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8643     OpInfo.CallOperand = DAG.getConstantPool(
8644         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8645     return Chain;
8646   }
8647 
8648   // Otherwise, create a stack slot and emit a store to it before the asm.
8649   Type *Ty = OpVal->getType();
8650   auto &DL = DAG.getDataLayout();
8651   uint64_t TySize = DL.getTypeAllocSize(Ty);
8652   MachineFunction &MF = DAG.getMachineFunction();
8653   int SSFI = MF.getFrameInfo().CreateStackObject(
8654       TySize, DL.getPrefTypeAlign(Ty), false);
8655   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8656   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8657                             MachinePointerInfo::getFixedStack(MF, SSFI),
8658                             TLI.getMemValueType(DL, Ty));
8659   OpInfo.CallOperand = StackSlot;
8660 
8661   return Chain;
8662 }
8663 
8664 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8665 /// specified operand.  We prefer to assign virtual registers, to allow the
8666 /// register allocator to handle the assignment process.  However, if the asm
8667 /// uses features that we can't model on machineinstrs, we have SDISel do the
8668 /// allocation.  This produces generally horrible, but correct, code.
8669 ///
8670 ///   OpInfo describes the operand
8671 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8672 static std::optional<unsigned>
8673 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8674                      SDISelAsmOperandInfo &OpInfo,
8675                      SDISelAsmOperandInfo &RefOpInfo) {
8676   LLVMContext &Context = *DAG.getContext();
8677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8678 
8679   MachineFunction &MF = DAG.getMachineFunction();
8680   SmallVector<unsigned, 4> Regs;
8681   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8682 
8683   // No work to do for memory/address operands.
8684   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8685       OpInfo.ConstraintType == TargetLowering::C_Address)
8686     return std::nullopt;
8687 
8688   // If this is a constraint for a single physreg, or a constraint for a
8689   // register class, find it.
8690   unsigned AssignedReg;
8691   const TargetRegisterClass *RC;
8692   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8693       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8694   // RC is unset only on failure. Return immediately.
8695   if (!RC)
8696     return std::nullopt;
8697 
8698   // Get the actual register value type.  This is important, because the user
8699   // may have asked for (e.g.) the AX register in i32 type.  We need to
8700   // remember that AX is actually i16 to get the right extension.
8701   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8702 
8703   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8704     // If this is an FP operand in an integer register (or visa versa), or more
8705     // generally if the operand value disagrees with the register class we plan
8706     // to stick it in, fix the operand type.
8707     //
8708     // If this is an input value, the bitcast to the new type is done now.
8709     // Bitcast for output value is done at the end of visitInlineAsm().
8710     if ((OpInfo.Type == InlineAsm::isOutput ||
8711          OpInfo.Type == InlineAsm::isInput) &&
8712         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8713       // Try to convert to the first EVT that the reg class contains.  If the
8714       // types are identical size, use a bitcast to convert (e.g. two differing
8715       // vector types).  Note: output bitcast is done at the end of
8716       // visitInlineAsm().
8717       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8718         // Exclude indirect inputs while they are unsupported because the code
8719         // to perform the load is missing and thus OpInfo.CallOperand still
8720         // refers to the input address rather than the pointed-to value.
8721         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8722           OpInfo.CallOperand =
8723               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8724         OpInfo.ConstraintVT = RegVT;
8725         // If the operand is an FP value and we want it in integer registers,
8726         // use the corresponding integer type. This turns an f64 value into
8727         // i64, which can be passed with two i32 values on a 32-bit machine.
8728       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8729         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8730         if (OpInfo.Type == InlineAsm::isInput)
8731           OpInfo.CallOperand =
8732               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8733         OpInfo.ConstraintVT = VT;
8734       }
8735     }
8736   }
8737 
8738   // No need to allocate a matching input constraint since the constraint it's
8739   // matching to has already been allocated.
8740   if (OpInfo.isMatchingInputConstraint())
8741     return std::nullopt;
8742 
8743   EVT ValueVT = OpInfo.ConstraintVT;
8744   if (OpInfo.ConstraintVT == MVT::Other)
8745     ValueVT = RegVT;
8746 
8747   // Initialize NumRegs.
8748   unsigned NumRegs = 1;
8749   if (OpInfo.ConstraintVT != MVT::Other)
8750     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8751 
8752   // If this is a constraint for a specific physical register, like {r17},
8753   // assign it now.
8754 
8755   // If this associated to a specific register, initialize iterator to correct
8756   // place. If virtual, make sure we have enough registers
8757 
8758   // Initialize iterator if necessary
8759   TargetRegisterClass::iterator I = RC->begin();
8760   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8761 
8762   // Do not check for single registers.
8763   if (AssignedReg) {
8764     I = std::find(I, RC->end(), AssignedReg);
8765     if (I == RC->end()) {
8766       // RC does not contain the selected register, which indicates a
8767       // mismatch between the register and the required type/bitwidth.
8768       return {AssignedReg};
8769     }
8770   }
8771 
8772   for (; NumRegs; --NumRegs, ++I) {
8773     assert(I != RC->end() && "Ran out of registers to allocate!");
8774     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8775     Regs.push_back(R);
8776   }
8777 
8778   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8779   return std::nullopt;
8780 }
8781 
8782 static unsigned
8783 findMatchingInlineAsmOperand(unsigned OperandNo,
8784                              const std::vector<SDValue> &AsmNodeOperands) {
8785   // Scan until we find the definition we already emitted of this operand.
8786   unsigned CurOp = InlineAsm::Op_FirstOperand;
8787   for (; OperandNo; --OperandNo) {
8788     // Advance to the next operand.
8789     unsigned OpFlag =
8790         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8791     assert((InlineAsm::isRegDefKind(OpFlag) ||
8792             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8793             InlineAsm::isMemKind(OpFlag)) &&
8794            "Skipped past definitions?");
8795     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8796   }
8797   return CurOp;
8798 }
8799 
8800 namespace {
8801 
8802 class ExtraFlags {
8803   unsigned Flags = 0;
8804 
8805 public:
8806   explicit ExtraFlags(const CallBase &Call) {
8807     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8808     if (IA->hasSideEffects())
8809       Flags |= InlineAsm::Extra_HasSideEffects;
8810     if (IA->isAlignStack())
8811       Flags |= InlineAsm::Extra_IsAlignStack;
8812     if (Call.isConvergent())
8813       Flags |= InlineAsm::Extra_IsConvergent;
8814     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8815   }
8816 
8817   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8818     // Ideally, we would only check against memory constraints.  However, the
8819     // meaning of an Other constraint can be target-specific and we can't easily
8820     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8821     // for Other constraints as well.
8822     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8823         OpInfo.ConstraintType == TargetLowering::C_Other) {
8824       if (OpInfo.Type == InlineAsm::isInput)
8825         Flags |= InlineAsm::Extra_MayLoad;
8826       else if (OpInfo.Type == InlineAsm::isOutput)
8827         Flags |= InlineAsm::Extra_MayStore;
8828       else if (OpInfo.Type == InlineAsm::isClobber)
8829         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8830     }
8831   }
8832 
8833   unsigned get() const { return Flags; }
8834 };
8835 
8836 } // end anonymous namespace
8837 
8838 static bool isFunction(SDValue Op) {
8839   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8840     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8841       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8842 
8843       // In normal "call dllimport func" instruction (non-inlineasm) it force
8844       // indirect access by specifing call opcode. And usually specially print
8845       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8846       // not do in this way now. (In fact, this is similar with "Data Access"
8847       // action). So here we ignore dllimport function.
8848       if (Fn && !Fn->hasDLLImportStorageClass())
8849         return true;
8850     }
8851   }
8852   return false;
8853 }
8854 
8855 /// visitInlineAsm - Handle a call to an InlineAsm object.
8856 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8857                                          const BasicBlock *EHPadBB) {
8858   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8859 
8860   /// ConstraintOperands - Information about all of the constraints.
8861   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8862 
8863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8864   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8865       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8866 
8867   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8868   // AsmDialect, MayLoad, MayStore).
8869   bool HasSideEffect = IA->hasSideEffects();
8870   ExtraFlags ExtraInfo(Call);
8871 
8872   for (auto &T : TargetConstraints) {
8873     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8874     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8875 
8876     if (OpInfo.CallOperandVal)
8877       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8878 
8879     if (!HasSideEffect)
8880       HasSideEffect = OpInfo.hasMemory(TLI);
8881 
8882     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8883     // FIXME: Could we compute this on OpInfo rather than T?
8884 
8885     // Compute the constraint code and ConstraintType to use.
8886     TLI.ComputeConstraintToUse(T, SDValue());
8887 
8888     if (T.ConstraintType == TargetLowering::C_Immediate &&
8889         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8890       // We've delayed emitting a diagnostic like the "n" constraint because
8891       // inlining could cause an integer showing up.
8892       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8893                                           "' expects an integer constant "
8894                                           "expression");
8895 
8896     ExtraInfo.update(T);
8897   }
8898 
8899   // We won't need to flush pending loads if this asm doesn't touch
8900   // memory and is nonvolatile.
8901   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8902 
8903   bool EmitEHLabels = isa<InvokeInst>(Call);
8904   if (EmitEHLabels) {
8905     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8906   }
8907   bool IsCallBr = isa<CallBrInst>(Call);
8908 
8909   if (IsCallBr || EmitEHLabels) {
8910     // If this is a callbr or invoke we need to flush pending exports since
8911     // inlineasm_br and invoke are terminators.
8912     // We need to do this before nodes are glued to the inlineasm_br node.
8913     Chain = getControlRoot();
8914   }
8915 
8916   MCSymbol *BeginLabel = nullptr;
8917   if (EmitEHLabels) {
8918     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8919   }
8920 
8921   int OpNo = -1;
8922   SmallVector<StringRef> AsmStrs;
8923   IA->collectAsmStrs(AsmStrs);
8924 
8925   // Second pass over the constraints: compute which constraint option to use.
8926   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8927     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8928       OpNo++;
8929 
8930     // If this is an output operand with a matching input operand, look up the
8931     // matching input. If their types mismatch, e.g. one is an integer, the
8932     // other is floating point, or their sizes are different, flag it as an
8933     // error.
8934     if (OpInfo.hasMatchingInput()) {
8935       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8936       patchMatchingInput(OpInfo, Input, DAG);
8937     }
8938 
8939     // Compute the constraint code and ConstraintType to use.
8940     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8941 
8942     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8943          OpInfo.Type == InlineAsm::isClobber) ||
8944         OpInfo.ConstraintType == TargetLowering::C_Address)
8945       continue;
8946 
8947     // In Linux PIC model, there are 4 cases about value/label addressing:
8948     //
8949     // 1: Function call or Label jmp inside the module.
8950     // 2: Data access (such as global variable, static variable) inside module.
8951     // 3: Function call or Label jmp outside the module.
8952     // 4: Data access (such as global variable) outside the module.
8953     //
8954     // Due to current llvm inline asm architecture designed to not "recognize"
8955     // the asm code, there are quite troubles for us to treat mem addressing
8956     // differently for same value/adress used in different instuctions.
8957     // For example, in pic model, call a func may in plt way or direclty
8958     // pc-related, but lea/mov a function adress may use got.
8959     //
8960     // Here we try to "recognize" function call for the case 1 and case 3 in
8961     // inline asm. And try to adjust the constraint for them.
8962     //
8963     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8964     // label, so here we don't handle jmp function label now, but we need to
8965     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8966     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8967         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8968         TM.getCodeModel() != CodeModel::Large) {
8969       OpInfo.isIndirect = false;
8970       OpInfo.ConstraintType = TargetLowering::C_Address;
8971     }
8972 
8973     // If this is a memory input, and if the operand is not indirect, do what we
8974     // need to provide an address for the memory input.
8975     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8976         !OpInfo.isIndirect) {
8977       assert((OpInfo.isMultipleAlternative ||
8978               (OpInfo.Type == InlineAsm::isInput)) &&
8979              "Can only indirectify direct input operands!");
8980 
8981       // Memory operands really want the address of the value.
8982       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8983 
8984       // There is no longer a Value* corresponding to this operand.
8985       OpInfo.CallOperandVal = nullptr;
8986 
8987       // It is now an indirect operand.
8988       OpInfo.isIndirect = true;
8989     }
8990 
8991   }
8992 
8993   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8994   std::vector<SDValue> AsmNodeOperands;
8995   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8996   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8997       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8998 
8999   // If we have a !srcloc metadata node associated with it, we want to attach
9000   // this to the ultimately generated inline asm machineinstr.  To do this, we
9001   // pass in the third operand as this (potentially null) inline asm MDNode.
9002   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9003   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9004 
9005   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9006   // bits as operand 3.
9007   AsmNodeOperands.push_back(DAG.getTargetConstant(
9008       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9009 
9010   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9011   // this, assign virtual and physical registers for inputs and otput.
9012   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9013     // Assign Registers.
9014     SDISelAsmOperandInfo &RefOpInfo =
9015         OpInfo.isMatchingInputConstraint()
9016             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9017             : OpInfo;
9018     const auto RegError =
9019         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9020     if (RegError) {
9021       const MachineFunction &MF = DAG.getMachineFunction();
9022       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9023       const char *RegName = TRI.getName(*RegError);
9024       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9025                                    "' allocated for constraint '" +
9026                                    Twine(OpInfo.ConstraintCode) +
9027                                    "' does not match required type");
9028       return;
9029     }
9030 
9031     auto DetectWriteToReservedRegister = [&]() {
9032       const MachineFunction &MF = DAG.getMachineFunction();
9033       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9034       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9035         if (Register::isPhysicalRegister(Reg) &&
9036             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9037           const char *RegName = TRI.getName(Reg);
9038           emitInlineAsmError(Call, "write to reserved register '" +
9039                                        Twine(RegName) + "'");
9040           return true;
9041         }
9042       }
9043       return false;
9044     };
9045     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9046             (OpInfo.Type == InlineAsm::isInput &&
9047              !OpInfo.isMatchingInputConstraint())) &&
9048            "Only address as input operand is allowed.");
9049 
9050     switch (OpInfo.Type) {
9051     case InlineAsm::isOutput:
9052       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9053         unsigned ConstraintID =
9054             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9055         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9056                "Failed to convert memory constraint code to constraint id.");
9057 
9058         // Add information to the INLINEASM node to know about this output.
9059         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9060         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9061         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9062                                                         MVT::i32));
9063         AsmNodeOperands.push_back(OpInfo.CallOperand);
9064       } else {
9065         // Otherwise, this outputs to a register (directly for C_Register /
9066         // C_RegisterClass, and a target-defined fashion for
9067         // C_Immediate/C_Other). Find a register that we can use.
9068         if (OpInfo.AssignedRegs.Regs.empty()) {
9069           emitInlineAsmError(
9070               Call, "couldn't allocate output register for constraint '" +
9071                         Twine(OpInfo.ConstraintCode) + "'");
9072           return;
9073         }
9074 
9075         if (DetectWriteToReservedRegister())
9076           return;
9077 
9078         // Add information to the INLINEASM node to know that this register is
9079         // set.
9080         OpInfo.AssignedRegs.AddInlineAsmOperands(
9081             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9082                                   : InlineAsm::Kind_RegDef,
9083             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9084       }
9085       break;
9086 
9087     case InlineAsm::isInput:
9088     case InlineAsm::isLabel: {
9089       SDValue InOperandVal = OpInfo.CallOperand;
9090 
9091       if (OpInfo.isMatchingInputConstraint()) {
9092         // If this is required to match an output register we have already set,
9093         // just use its register.
9094         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9095                                                   AsmNodeOperands);
9096         unsigned OpFlag =
9097           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9098         if (InlineAsm::isRegDefKind(OpFlag) ||
9099             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9100           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9101           if (OpInfo.isIndirect) {
9102             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9103             emitInlineAsmError(Call, "inline asm not supported yet: "
9104                                      "don't know how to handle tied "
9105                                      "indirect register inputs");
9106             return;
9107           }
9108 
9109           SmallVector<unsigned, 4> Regs;
9110           MachineFunction &MF = DAG.getMachineFunction();
9111           MachineRegisterInfo &MRI = MF.getRegInfo();
9112           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9113           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9114           Register TiedReg = R->getReg();
9115           MVT RegVT = R->getSimpleValueType(0);
9116           const TargetRegisterClass *RC =
9117               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9118               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9119                                       : TRI.getMinimalPhysRegClass(TiedReg);
9120           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9121           for (unsigned i = 0; i != NumRegs; ++i)
9122             Regs.push_back(MRI.createVirtualRegister(RC));
9123 
9124           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9125 
9126           SDLoc dl = getCurSDLoc();
9127           // Use the produced MatchedRegs object to
9128           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9129           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9130                                            true, OpInfo.getMatchedOperand(), dl,
9131                                            DAG, AsmNodeOperands);
9132           break;
9133         }
9134 
9135         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9136         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9137                "Unexpected number of operands");
9138         // Add information to the INLINEASM node to know about this input.
9139         // See InlineAsm.h isUseOperandTiedToDef.
9140         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9141         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9142                                                     OpInfo.getMatchedOperand());
9143         AsmNodeOperands.push_back(DAG.getTargetConstant(
9144             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9145         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9146         break;
9147       }
9148 
9149       // Treat indirect 'X' constraint as memory.
9150       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9151           OpInfo.isIndirect)
9152         OpInfo.ConstraintType = TargetLowering::C_Memory;
9153 
9154       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9155           OpInfo.ConstraintType == TargetLowering::C_Other) {
9156         std::vector<SDValue> Ops;
9157         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9158                                           Ops, DAG);
9159         if (Ops.empty()) {
9160           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9161             if (isa<ConstantSDNode>(InOperandVal)) {
9162               emitInlineAsmError(Call, "value out of range for constraint '" +
9163                                            Twine(OpInfo.ConstraintCode) + "'");
9164               return;
9165             }
9166 
9167           emitInlineAsmError(Call,
9168                              "invalid operand for inline asm constraint '" +
9169                                  Twine(OpInfo.ConstraintCode) + "'");
9170           return;
9171         }
9172 
9173         // Add information to the INLINEASM node to know about this input.
9174         unsigned ResOpType =
9175           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9176         AsmNodeOperands.push_back(DAG.getTargetConstant(
9177             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9178         llvm::append_range(AsmNodeOperands, Ops);
9179         break;
9180       }
9181 
9182       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9183         assert((OpInfo.isIndirect ||
9184                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9185                "Operand must be indirect to be a mem!");
9186         assert(InOperandVal.getValueType() ==
9187                    TLI.getPointerTy(DAG.getDataLayout()) &&
9188                "Memory operands expect pointer values");
9189 
9190         unsigned ConstraintID =
9191             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9192         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9193                "Failed to convert memory constraint code to constraint id.");
9194 
9195         // Add information to the INLINEASM node to know about this input.
9196         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9197         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9198         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9199                                                         getCurSDLoc(),
9200                                                         MVT::i32));
9201         AsmNodeOperands.push_back(InOperandVal);
9202         break;
9203       }
9204 
9205       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9206         assert(InOperandVal.getValueType() ==
9207                    TLI.getPointerTy(DAG.getDataLayout()) &&
9208                "Address operands expect pointer values");
9209 
9210         unsigned ConstraintID =
9211             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9212         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9213                "Failed to convert memory constraint code to constraint id.");
9214 
9215         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9216 
9217         SDValue AsmOp = InOperandVal;
9218         if (isFunction(InOperandVal)) {
9219           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9220           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9221           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9222                                              InOperandVal.getValueType(),
9223                                              GA->getOffset());
9224         }
9225 
9226         // Add information to the INLINEASM node to know about this input.
9227         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9228 
9229         AsmNodeOperands.push_back(
9230             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9231 
9232         AsmNodeOperands.push_back(AsmOp);
9233         break;
9234       }
9235 
9236       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9237               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9238              "Unknown constraint type!");
9239 
9240       // TODO: Support this.
9241       if (OpInfo.isIndirect) {
9242         emitInlineAsmError(
9243             Call, "Don't know how to handle indirect register inputs yet "
9244                   "for constraint '" +
9245                       Twine(OpInfo.ConstraintCode) + "'");
9246         return;
9247       }
9248 
9249       // Copy the input into the appropriate registers.
9250       if (OpInfo.AssignedRegs.Regs.empty()) {
9251         emitInlineAsmError(Call,
9252                            "couldn't allocate input reg for constraint '" +
9253                                Twine(OpInfo.ConstraintCode) + "'");
9254         return;
9255       }
9256 
9257       if (DetectWriteToReservedRegister())
9258         return;
9259 
9260       SDLoc dl = getCurSDLoc();
9261 
9262       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9263                                         &Call);
9264 
9265       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9266                                                dl, DAG, AsmNodeOperands);
9267       break;
9268     }
9269     case InlineAsm::isClobber:
9270       // Add the clobbered value to the operand list, so that the register
9271       // allocator is aware that the physreg got clobbered.
9272       if (!OpInfo.AssignedRegs.Regs.empty())
9273         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9274                                                  false, 0, getCurSDLoc(), DAG,
9275                                                  AsmNodeOperands);
9276       break;
9277     }
9278   }
9279 
9280   // Finish up input operands.  Set the input chain and add the flag last.
9281   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9282   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9283 
9284   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9285   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9286                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9287   Flag = Chain.getValue(1);
9288 
9289   // Do additional work to generate outputs.
9290 
9291   SmallVector<EVT, 1> ResultVTs;
9292   SmallVector<SDValue, 1> ResultValues;
9293   SmallVector<SDValue, 8> OutChains;
9294 
9295   llvm::Type *CallResultType = Call.getType();
9296   ArrayRef<Type *> ResultTypes;
9297   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9298     ResultTypes = StructResult->elements();
9299   else if (!CallResultType->isVoidTy())
9300     ResultTypes = ArrayRef(CallResultType);
9301 
9302   auto CurResultType = ResultTypes.begin();
9303   auto handleRegAssign = [&](SDValue V) {
9304     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9305     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9306     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9307     ++CurResultType;
9308     // If the type of the inline asm call site return value is different but has
9309     // same size as the type of the asm output bitcast it.  One example of this
9310     // is for vectors with different width / number of elements.  This can
9311     // happen for register classes that can contain multiple different value
9312     // types.  The preg or vreg allocated may not have the same VT as was
9313     // expected.
9314     //
9315     // This can also happen for a return value that disagrees with the register
9316     // class it is put in, eg. a double in a general-purpose register on a
9317     // 32-bit machine.
9318     if (ResultVT != V.getValueType() &&
9319         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9320       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9321     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9322              V.getValueType().isInteger()) {
9323       // If a result value was tied to an input value, the computed result
9324       // may have a wider width than the expected result.  Extract the
9325       // relevant portion.
9326       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9327     }
9328     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9329     ResultVTs.push_back(ResultVT);
9330     ResultValues.push_back(V);
9331   };
9332 
9333   // Deal with output operands.
9334   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9335     if (OpInfo.Type == InlineAsm::isOutput) {
9336       SDValue Val;
9337       // Skip trivial output operands.
9338       if (OpInfo.AssignedRegs.Regs.empty())
9339         continue;
9340 
9341       switch (OpInfo.ConstraintType) {
9342       case TargetLowering::C_Register:
9343       case TargetLowering::C_RegisterClass:
9344         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9345                                                   Chain, &Flag, &Call);
9346         break;
9347       case TargetLowering::C_Immediate:
9348       case TargetLowering::C_Other:
9349         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9350                                               OpInfo, DAG);
9351         break;
9352       case TargetLowering::C_Memory:
9353         break; // Already handled.
9354       case TargetLowering::C_Address:
9355         break; // Silence warning.
9356       case TargetLowering::C_Unknown:
9357         assert(false && "Unexpected unknown constraint");
9358       }
9359 
9360       // Indirect output manifest as stores. Record output chains.
9361       if (OpInfo.isIndirect) {
9362         const Value *Ptr = OpInfo.CallOperandVal;
9363         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9364         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9365                                      MachinePointerInfo(Ptr));
9366         OutChains.push_back(Store);
9367       } else {
9368         // generate CopyFromRegs to associated registers.
9369         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9370         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9371           for (const SDValue &V : Val->op_values())
9372             handleRegAssign(V);
9373         } else
9374           handleRegAssign(Val);
9375       }
9376     }
9377   }
9378 
9379   // Set results.
9380   if (!ResultValues.empty()) {
9381     assert(CurResultType == ResultTypes.end() &&
9382            "Mismatch in number of ResultTypes");
9383     assert(ResultValues.size() == ResultTypes.size() &&
9384            "Mismatch in number of output operands in asm result");
9385 
9386     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9387                             DAG.getVTList(ResultVTs), ResultValues);
9388     setValue(&Call, V);
9389   }
9390 
9391   // Collect store chains.
9392   if (!OutChains.empty())
9393     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9394 
9395   if (EmitEHLabels) {
9396     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9397   }
9398 
9399   // Only Update Root if inline assembly has a memory effect.
9400   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9401       EmitEHLabels)
9402     DAG.setRoot(Chain);
9403 }
9404 
9405 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9406                                              const Twine &Message) {
9407   LLVMContext &Ctx = *DAG.getContext();
9408   Ctx.emitError(&Call, Message);
9409 
9410   // Make sure we leave the DAG in a valid state
9411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9412   SmallVector<EVT, 1> ValueVTs;
9413   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9414 
9415   if (ValueVTs.empty())
9416     return;
9417 
9418   SmallVector<SDValue, 1> Ops;
9419   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9420     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9421 
9422   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9423 }
9424 
9425 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9426   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9427                           MVT::Other, getRoot(),
9428                           getValue(I.getArgOperand(0)),
9429                           DAG.getSrcValue(I.getArgOperand(0))));
9430 }
9431 
9432 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9434   const DataLayout &DL = DAG.getDataLayout();
9435   SDValue V = DAG.getVAArg(
9436       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9437       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9438       DL.getABITypeAlign(I.getType()).value());
9439   DAG.setRoot(V.getValue(1));
9440 
9441   if (I.getType()->isPointerTy())
9442     V = DAG.getPtrExtOrTrunc(
9443         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9444   setValue(&I, V);
9445 }
9446 
9447 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9448   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9449                           MVT::Other, getRoot(),
9450                           getValue(I.getArgOperand(0)),
9451                           DAG.getSrcValue(I.getArgOperand(0))));
9452 }
9453 
9454 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9455   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9456                           MVT::Other, getRoot(),
9457                           getValue(I.getArgOperand(0)),
9458                           getValue(I.getArgOperand(1)),
9459                           DAG.getSrcValue(I.getArgOperand(0)),
9460                           DAG.getSrcValue(I.getArgOperand(1))));
9461 }
9462 
9463 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9464                                                     const Instruction &I,
9465                                                     SDValue Op) {
9466   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9467   if (!Range)
9468     return Op;
9469 
9470   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9471   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9472     return Op;
9473 
9474   APInt Lo = CR.getUnsignedMin();
9475   if (!Lo.isMinValue())
9476     return Op;
9477 
9478   APInt Hi = CR.getUnsignedMax();
9479   unsigned Bits = std::max(Hi.getActiveBits(),
9480                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9481 
9482   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9483 
9484   SDLoc SL = getCurSDLoc();
9485 
9486   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9487                              DAG.getValueType(SmallVT));
9488   unsigned NumVals = Op.getNode()->getNumValues();
9489   if (NumVals == 1)
9490     return ZExt;
9491 
9492   SmallVector<SDValue, 4> Ops;
9493 
9494   Ops.push_back(ZExt);
9495   for (unsigned I = 1; I != NumVals; ++I)
9496     Ops.push_back(Op.getValue(I));
9497 
9498   return DAG.getMergeValues(Ops, SL);
9499 }
9500 
9501 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9502 /// the call being lowered.
9503 ///
9504 /// This is a helper for lowering intrinsics that follow a target calling
9505 /// convention or require stack pointer adjustment. Only a subset of the
9506 /// intrinsic's operands need to participate in the calling convention.
9507 void SelectionDAGBuilder::populateCallLoweringInfo(
9508     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9509     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9510     bool IsPatchPoint) {
9511   TargetLowering::ArgListTy Args;
9512   Args.reserve(NumArgs);
9513 
9514   // Populate the argument list.
9515   // Attributes for args start at offset 1, after the return attribute.
9516   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9517        ArgI != ArgE; ++ArgI) {
9518     const Value *V = Call->getOperand(ArgI);
9519 
9520     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9521 
9522     TargetLowering::ArgListEntry Entry;
9523     Entry.Node = getValue(V);
9524     Entry.Ty = V->getType();
9525     Entry.setAttributes(Call, ArgI);
9526     Args.push_back(Entry);
9527   }
9528 
9529   CLI.setDebugLoc(getCurSDLoc())
9530       .setChain(getRoot())
9531       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9532       .setDiscardResult(Call->use_empty())
9533       .setIsPatchPoint(IsPatchPoint)
9534       .setIsPreallocated(
9535           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9536 }
9537 
9538 /// Add a stack map intrinsic call's live variable operands to a stackmap
9539 /// or patchpoint target node's operand list.
9540 ///
9541 /// Constants are converted to TargetConstants purely as an optimization to
9542 /// avoid constant materialization and register allocation.
9543 ///
9544 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9545 /// generate addess computation nodes, and so FinalizeISel can convert the
9546 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9547 /// address materialization and register allocation, but may also be required
9548 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9549 /// alloca in the entry block, then the runtime may assume that the alloca's
9550 /// StackMap location can be read immediately after compilation and that the
9551 /// location is valid at any point during execution (this is similar to the
9552 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9553 /// only available in a register, then the runtime would need to trap when
9554 /// execution reaches the StackMap in order to read the alloca's location.
9555 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9556                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9557                                 SelectionDAGBuilder &Builder) {
9558   SelectionDAG &DAG = Builder.DAG;
9559   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9560     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9561 
9562     // Things on the stack are pointer-typed, meaning that they are already
9563     // legal and can be emitted directly to target nodes.
9564     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9565       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9566     } else {
9567       // Otherwise emit a target independent node to be legalised.
9568       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9569     }
9570   }
9571 }
9572 
9573 /// Lower llvm.experimental.stackmap.
9574 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9575   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9576   //                                  [live variables...])
9577 
9578   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9579 
9580   SDValue Chain, InFlag, Callee;
9581   SmallVector<SDValue, 32> Ops;
9582 
9583   SDLoc DL = getCurSDLoc();
9584   Callee = getValue(CI.getCalledOperand());
9585 
9586   // The stackmap intrinsic only records the live variables (the arguments
9587   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9588   // intrinsic, this won't be lowered to a function call. This means we don't
9589   // have to worry about calling conventions and target specific lowering code.
9590   // Instead we perform the call lowering right here.
9591   //
9592   // chain, flag = CALLSEQ_START(chain, 0, 0)
9593   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9594   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9595   //
9596   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9597   InFlag = Chain.getValue(1);
9598 
9599   // Add the STACKMAP operands, starting with DAG house-keeping.
9600   Ops.push_back(Chain);
9601   Ops.push_back(InFlag);
9602 
9603   // Add the <id>, <numShadowBytes> operands.
9604   //
9605   // These do not require legalisation, and can be emitted directly to target
9606   // constant nodes.
9607   SDValue ID = getValue(CI.getArgOperand(0));
9608   assert(ID.getValueType() == MVT::i64);
9609   SDValue IDConst = DAG.getTargetConstant(
9610       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9611   Ops.push_back(IDConst);
9612 
9613   SDValue Shad = getValue(CI.getArgOperand(1));
9614   assert(Shad.getValueType() == MVT::i32);
9615   SDValue ShadConst = DAG.getTargetConstant(
9616       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9617   Ops.push_back(ShadConst);
9618 
9619   // Add the live variables.
9620   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9621 
9622   // Create the STACKMAP node.
9623   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9624   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9625   InFlag = Chain.getValue(1);
9626 
9627   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9628 
9629   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9630 
9631   // Set the root to the target-lowered call chain.
9632   DAG.setRoot(Chain);
9633 
9634   // Inform the Frame Information that we have a stackmap in this function.
9635   FuncInfo.MF->getFrameInfo().setHasStackMap();
9636 }
9637 
9638 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9639 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9640                                           const BasicBlock *EHPadBB) {
9641   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9642   //                                                 i32 <numBytes>,
9643   //                                                 i8* <target>,
9644   //                                                 i32 <numArgs>,
9645   //                                                 [Args...],
9646   //                                                 [live variables...])
9647 
9648   CallingConv::ID CC = CB.getCallingConv();
9649   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9650   bool HasDef = !CB.getType()->isVoidTy();
9651   SDLoc dl = getCurSDLoc();
9652   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9653 
9654   // Handle immediate and symbolic callees.
9655   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9656     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9657                                    /*isTarget=*/true);
9658   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9659     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9660                                          SDLoc(SymbolicCallee),
9661                                          SymbolicCallee->getValueType(0));
9662 
9663   // Get the real number of arguments participating in the call <numArgs>
9664   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9665   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9666 
9667   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9668   // Intrinsics include all meta-operands up to but not including CC.
9669   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9670   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9671          "Not enough arguments provided to the patchpoint intrinsic");
9672 
9673   // For AnyRegCC the arguments are lowered later on manually.
9674   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9675   Type *ReturnTy =
9676       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9677 
9678   TargetLowering::CallLoweringInfo CLI(DAG);
9679   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9680                            ReturnTy, true);
9681   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9682 
9683   SDNode *CallEnd = Result.second.getNode();
9684   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9685     CallEnd = CallEnd->getOperand(0).getNode();
9686 
9687   /// Get a call instruction from the call sequence chain.
9688   /// Tail calls are not allowed.
9689   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9690          "Expected a callseq node.");
9691   SDNode *Call = CallEnd->getOperand(0).getNode();
9692   bool HasGlue = Call->getGluedNode();
9693 
9694   // Replace the target specific call node with the patchable intrinsic.
9695   SmallVector<SDValue, 8> Ops;
9696 
9697   // Push the chain.
9698   Ops.push_back(*(Call->op_begin()));
9699 
9700   // Optionally, push the glue (if any).
9701   if (HasGlue)
9702     Ops.push_back(*(Call->op_end() - 1));
9703 
9704   // Push the register mask info.
9705   if (HasGlue)
9706     Ops.push_back(*(Call->op_end() - 2));
9707   else
9708     Ops.push_back(*(Call->op_end() - 1));
9709 
9710   // Add the <id> and <numBytes> constants.
9711   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9712   Ops.push_back(DAG.getTargetConstant(
9713                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9714   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9715   Ops.push_back(DAG.getTargetConstant(
9716                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9717                   MVT::i32));
9718 
9719   // Add the callee.
9720   Ops.push_back(Callee);
9721 
9722   // Adjust <numArgs> to account for any arguments that have been passed on the
9723   // stack instead.
9724   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9725   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9726   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9727   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9728 
9729   // Add the calling convention
9730   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9731 
9732   // Add the arguments we omitted previously. The register allocator should
9733   // place these in any free register.
9734   if (IsAnyRegCC)
9735     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9736       Ops.push_back(getValue(CB.getArgOperand(i)));
9737 
9738   // Push the arguments from the call instruction.
9739   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9740   Ops.append(Call->op_begin() + 2, e);
9741 
9742   // Push live variables for the stack map.
9743   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9744 
9745   SDVTList NodeTys;
9746   if (IsAnyRegCC && HasDef) {
9747     // Create the return types based on the intrinsic definition
9748     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9749     SmallVector<EVT, 3> ValueVTs;
9750     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9751     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9752 
9753     // There is always a chain and a glue type at the end
9754     ValueVTs.push_back(MVT::Other);
9755     ValueVTs.push_back(MVT::Glue);
9756     NodeTys = DAG.getVTList(ValueVTs);
9757   } else
9758     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9759 
9760   // Replace the target specific call node with a PATCHPOINT node.
9761   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9762 
9763   // Update the NodeMap.
9764   if (HasDef) {
9765     if (IsAnyRegCC)
9766       setValue(&CB, SDValue(PPV.getNode(), 0));
9767     else
9768       setValue(&CB, Result.first);
9769   }
9770 
9771   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9772   // call sequence. Furthermore the location of the chain and glue can change
9773   // when the AnyReg calling convention is used and the intrinsic returns a
9774   // value.
9775   if (IsAnyRegCC && HasDef) {
9776     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9777     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9778     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9779   } else
9780     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9781   DAG.DeleteNode(Call);
9782 
9783   // Inform the Frame Information that we have a patchpoint in this function.
9784   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9785 }
9786 
9787 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9788                                             unsigned Intrinsic) {
9789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9790   SDValue Op1 = getValue(I.getArgOperand(0));
9791   SDValue Op2;
9792   if (I.arg_size() > 1)
9793     Op2 = getValue(I.getArgOperand(1));
9794   SDLoc dl = getCurSDLoc();
9795   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9796   SDValue Res;
9797   SDNodeFlags SDFlags;
9798   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9799     SDFlags.copyFMF(*FPMO);
9800 
9801   switch (Intrinsic) {
9802   case Intrinsic::vector_reduce_fadd:
9803     if (SDFlags.hasAllowReassociation())
9804       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9805                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9806                         SDFlags);
9807     else
9808       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9809     break;
9810   case Intrinsic::vector_reduce_fmul:
9811     if (SDFlags.hasAllowReassociation())
9812       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9813                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9814                         SDFlags);
9815     else
9816       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9817     break;
9818   case Intrinsic::vector_reduce_add:
9819     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9820     break;
9821   case Intrinsic::vector_reduce_mul:
9822     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9823     break;
9824   case Intrinsic::vector_reduce_and:
9825     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9826     break;
9827   case Intrinsic::vector_reduce_or:
9828     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9829     break;
9830   case Intrinsic::vector_reduce_xor:
9831     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9832     break;
9833   case Intrinsic::vector_reduce_smax:
9834     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9835     break;
9836   case Intrinsic::vector_reduce_smin:
9837     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9838     break;
9839   case Intrinsic::vector_reduce_umax:
9840     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9841     break;
9842   case Intrinsic::vector_reduce_umin:
9843     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9844     break;
9845   case Intrinsic::vector_reduce_fmax:
9846     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9847     break;
9848   case Intrinsic::vector_reduce_fmin:
9849     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9850     break;
9851   default:
9852     llvm_unreachable("Unhandled vector reduce intrinsic");
9853   }
9854   setValue(&I, Res);
9855 }
9856 
9857 /// Returns an AttributeList representing the attributes applied to the return
9858 /// value of the given call.
9859 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9860   SmallVector<Attribute::AttrKind, 2> Attrs;
9861   if (CLI.RetSExt)
9862     Attrs.push_back(Attribute::SExt);
9863   if (CLI.RetZExt)
9864     Attrs.push_back(Attribute::ZExt);
9865   if (CLI.IsInReg)
9866     Attrs.push_back(Attribute::InReg);
9867 
9868   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9869                             Attrs);
9870 }
9871 
9872 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9873 /// implementation, which just calls LowerCall.
9874 /// FIXME: When all targets are
9875 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9876 std::pair<SDValue, SDValue>
9877 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9878   // Handle the incoming return values from the call.
9879   CLI.Ins.clear();
9880   Type *OrigRetTy = CLI.RetTy;
9881   SmallVector<EVT, 4> RetTys;
9882   SmallVector<uint64_t, 4> Offsets;
9883   auto &DL = CLI.DAG.getDataLayout();
9884   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9885 
9886   if (CLI.IsPostTypeLegalization) {
9887     // If we are lowering a libcall after legalization, split the return type.
9888     SmallVector<EVT, 4> OldRetTys;
9889     SmallVector<uint64_t, 4> OldOffsets;
9890     RetTys.swap(OldRetTys);
9891     Offsets.swap(OldOffsets);
9892 
9893     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9894       EVT RetVT = OldRetTys[i];
9895       uint64_t Offset = OldOffsets[i];
9896       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9897       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9898       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9899       RetTys.append(NumRegs, RegisterVT);
9900       for (unsigned j = 0; j != NumRegs; ++j)
9901         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9902     }
9903   }
9904 
9905   SmallVector<ISD::OutputArg, 4> Outs;
9906   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9907 
9908   bool CanLowerReturn =
9909       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9910                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9911 
9912   SDValue DemoteStackSlot;
9913   int DemoteStackIdx = -100;
9914   if (!CanLowerReturn) {
9915     // FIXME: equivalent assert?
9916     // assert(!CS.hasInAllocaArgument() &&
9917     //        "sret demotion is incompatible with inalloca");
9918     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9919     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9920     MachineFunction &MF = CLI.DAG.getMachineFunction();
9921     DemoteStackIdx =
9922         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9923     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9924                                               DL.getAllocaAddrSpace());
9925 
9926     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9927     ArgListEntry Entry;
9928     Entry.Node = DemoteStackSlot;
9929     Entry.Ty = StackSlotPtrType;
9930     Entry.IsSExt = false;
9931     Entry.IsZExt = false;
9932     Entry.IsInReg = false;
9933     Entry.IsSRet = true;
9934     Entry.IsNest = false;
9935     Entry.IsByVal = false;
9936     Entry.IsByRef = false;
9937     Entry.IsReturned = false;
9938     Entry.IsSwiftSelf = false;
9939     Entry.IsSwiftAsync = false;
9940     Entry.IsSwiftError = false;
9941     Entry.IsCFGuardTarget = false;
9942     Entry.Alignment = Alignment;
9943     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9944     CLI.NumFixedArgs += 1;
9945     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9946     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9947 
9948     // sret demotion isn't compatible with tail-calls, since the sret argument
9949     // points into the callers stack frame.
9950     CLI.IsTailCall = false;
9951   } else {
9952     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9953         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9954     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9955       ISD::ArgFlagsTy Flags;
9956       if (NeedsRegBlock) {
9957         Flags.setInConsecutiveRegs();
9958         if (I == RetTys.size() - 1)
9959           Flags.setInConsecutiveRegsLast();
9960       }
9961       EVT VT = RetTys[I];
9962       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9963                                                      CLI.CallConv, VT);
9964       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9965                                                        CLI.CallConv, VT);
9966       for (unsigned i = 0; i != NumRegs; ++i) {
9967         ISD::InputArg MyFlags;
9968         MyFlags.Flags = Flags;
9969         MyFlags.VT = RegisterVT;
9970         MyFlags.ArgVT = VT;
9971         MyFlags.Used = CLI.IsReturnValueUsed;
9972         if (CLI.RetTy->isPointerTy()) {
9973           MyFlags.Flags.setPointer();
9974           MyFlags.Flags.setPointerAddrSpace(
9975               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9976         }
9977         if (CLI.RetSExt)
9978           MyFlags.Flags.setSExt();
9979         if (CLI.RetZExt)
9980           MyFlags.Flags.setZExt();
9981         if (CLI.IsInReg)
9982           MyFlags.Flags.setInReg();
9983         CLI.Ins.push_back(MyFlags);
9984       }
9985     }
9986   }
9987 
9988   // We push in swifterror return as the last element of CLI.Ins.
9989   ArgListTy &Args = CLI.getArgs();
9990   if (supportSwiftError()) {
9991     for (const ArgListEntry &Arg : Args) {
9992       if (Arg.IsSwiftError) {
9993         ISD::InputArg MyFlags;
9994         MyFlags.VT = getPointerTy(DL);
9995         MyFlags.ArgVT = EVT(getPointerTy(DL));
9996         MyFlags.Flags.setSwiftError();
9997         CLI.Ins.push_back(MyFlags);
9998       }
9999     }
10000   }
10001 
10002   // Handle all of the outgoing arguments.
10003   CLI.Outs.clear();
10004   CLI.OutVals.clear();
10005   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10006     SmallVector<EVT, 4> ValueVTs;
10007     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10008     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10009     Type *FinalType = Args[i].Ty;
10010     if (Args[i].IsByVal)
10011       FinalType = Args[i].IndirectType;
10012     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10013         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10014     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10015          ++Value) {
10016       EVT VT = ValueVTs[Value];
10017       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10018       SDValue Op = SDValue(Args[i].Node.getNode(),
10019                            Args[i].Node.getResNo() + Value);
10020       ISD::ArgFlagsTy Flags;
10021 
10022       // Certain targets (such as MIPS), may have a different ABI alignment
10023       // for a type depending on the context. Give the target a chance to
10024       // specify the alignment it wants.
10025       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10026       Flags.setOrigAlign(OriginalAlignment);
10027 
10028       if (Args[i].Ty->isPointerTy()) {
10029         Flags.setPointer();
10030         Flags.setPointerAddrSpace(
10031             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10032       }
10033       if (Args[i].IsZExt)
10034         Flags.setZExt();
10035       if (Args[i].IsSExt)
10036         Flags.setSExt();
10037       if (Args[i].IsInReg) {
10038         // If we are using vectorcall calling convention, a structure that is
10039         // passed InReg - is surely an HVA
10040         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10041             isa<StructType>(FinalType)) {
10042           // The first value of a structure is marked
10043           if (0 == Value)
10044             Flags.setHvaStart();
10045           Flags.setHva();
10046         }
10047         // Set InReg Flag
10048         Flags.setInReg();
10049       }
10050       if (Args[i].IsSRet)
10051         Flags.setSRet();
10052       if (Args[i].IsSwiftSelf)
10053         Flags.setSwiftSelf();
10054       if (Args[i].IsSwiftAsync)
10055         Flags.setSwiftAsync();
10056       if (Args[i].IsSwiftError)
10057         Flags.setSwiftError();
10058       if (Args[i].IsCFGuardTarget)
10059         Flags.setCFGuardTarget();
10060       if (Args[i].IsByVal)
10061         Flags.setByVal();
10062       if (Args[i].IsByRef)
10063         Flags.setByRef();
10064       if (Args[i].IsPreallocated) {
10065         Flags.setPreallocated();
10066         // Set the byval flag for CCAssignFn callbacks that don't know about
10067         // preallocated.  This way we can know how many bytes we should've
10068         // allocated and how many bytes a callee cleanup function will pop.  If
10069         // we port preallocated to more targets, we'll have to add custom
10070         // preallocated handling in the various CC lowering callbacks.
10071         Flags.setByVal();
10072       }
10073       if (Args[i].IsInAlloca) {
10074         Flags.setInAlloca();
10075         // Set the byval flag for CCAssignFn callbacks that don't know about
10076         // inalloca.  This way we can know how many bytes we should've allocated
10077         // and how many bytes a callee cleanup function will pop.  If we port
10078         // inalloca to more targets, we'll have to add custom inalloca handling
10079         // in the various CC lowering callbacks.
10080         Flags.setByVal();
10081       }
10082       Align MemAlign;
10083       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10084         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10085         Flags.setByValSize(FrameSize);
10086 
10087         // info is not there but there are cases it cannot get right.
10088         if (auto MA = Args[i].Alignment)
10089           MemAlign = *MA;
10090         else
10091           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10092       } else if (auto MA = Args[i].Alignment) {
10093         MemAlign = *MA;
10094       } else {
10095         MemAlign = OriginalAlignment;
10096       }
10097       Flags.setMemAlign(MemAlign);
10098       if (Args[i].IsNest)
10099         Flags.setNest();
10100       if (NeedsRegBlock)
10101         Flags.setInConsecutiveRegs();
10102 
10103       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10104                                                  CLI.CallConv, VT);
10105       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10106                                                         CLI.CallConv, VT);
10107       SmallVector<SDValue, 4> Parts(NumParts);
10108       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10109 
10110       if (Args[i].IsSExt)
10111         ExtendKind = ISD::SIGN_EXTEND;
10112       else if (Args[i].IsZExt)
10113         ExtendKind = ISD::ZERO_EXTEND;
10114 
10115       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10116       // for now.
10117       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10118           CanLowerReturn) {
10119         assert((CLI.RetTy == Args[i].Ty ||
10120                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10121                  CLI.RetTy->getPointerAddressSpace() ==
10122                      Args[i].Ty->getPointerAddressSpace())) &&
10123                RetTys.size() == NumValues && "unexpected use of 'returned'");
10124         // Before passing 'returned' to the target lowering code, ensure that
10125         // either the register MVT and the actual EVT are the same size or that
10126         // the return value and argument are extended in the same way; in these
10127         // cases it's safe to pass the argument register value unchanged as the
10128         // return register value (although it's at the target's option whether
10129         // to do so)
10130         // TODO: allow code generation to take advantage of partially preserved
10131         // registers rather than clobbering the entire register when the
10132         // parameter extension method is not compatible with the return
10133         // extension method
10134         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10135             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10136              CLI.RetZExt == Args[i].IsZExt))
10137           Flags.setReturned();
10138       }
10139 
10140       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10141                      CLI.CallConv, ExtendKind);
10142 
10143       for (unsigned j = 0; j != NumParts; ++j) {
10144         // if it isn't first piece, alignment must be 1
10145         // For scalable vectors the scalable part is currently handled
10146         // by individual targets, so we just use the known minimum size here.
10147         ISD::OutputArg MyFlags(
10148             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10149             i < CLI.NumFixedArgs, i,
10150             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10151         if (NumParts > 1 && j == 0)
10152           MyFlags.Flags.setSplit();
10153         else if (j != 0) {
10154           MyFlags.Flags.setOrigAlign(Align(1));
10155           if (j == NumParts - 1)
10156             MyFlags.Flags.setSplitEnd();
10157         }
10158 
10159         CLI.Outs.push_back(MyFlags);
10160         CLI.OutVals.push_back(Parts[j]);
10161       }
10162 
10163       if (NeedsRegBlock && Value == NumValues - 1)
10164         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10165     }
10166   }
10167 
10168   SmallVector<SDValue, 4> InVals;
10169   CLI.Chain = LowerCall(CLI, InVals);
10170 
10171   // Update CLI.InVals to use outside of this function.
10172   CLI.InVals = InVals;
10173 
10174   // Verify that the target's LowerCall behaved as expected.
10175   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10176          "LowerCall didn't return a valid chain!");
10177   assert((!CLI.IsTailCall || InVals.empty()) &&
10178          "LowerCall emitted a return value for a tail call!");
10179   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10180          "LowerCall didn't emit the correct number of values!");
10181 
10182   // For a tail call, the return value is merely live-out and there aren't
10183   // any nodes in the DAG representing it. Return a special value to
10184   // indicate that a tail call has been emitted and no more Instructions
10185   // should be processed in the current block.
10186   if (CLI.IsTailCall) {
10187     CLI.DAG.setRoot(CLI.Chain);
10188     return std::make_pair(SDValue(), SDValue());
10189   }
10190 
10191 #ifndef NDEBUG
10192   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10193     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10194     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10195            "LowerCall emitted a value with the wrong type!");
10196   }
10197 #endif
10198 
10199   SmallVector<SDValue, 4> ReturnValues;
10200   if (!CanLowerReturn) {
10201     // The instruction result is the result of loading from the
10202     // hidden sret parameter.
10203     SmallVector<EVT, 1> PVTs;
10204     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10205 
10206     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10207     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10208     EVT PtrVT = PVTs[0];
10209 
10210     unsigned NumValues = RetTys.size();
10211     ReturnValues.resize(NumValues);
10212     SmallVector<SDValue, 4> Chains(NumValues);
10213 
10214     // An aggregate return value cannot wrap around the address space, so
10215     // offsets to its parts don't wrap either.
10216     SDNodeFlags Flags;
10217     Flags.setNoUnsignedWrap(true);
10218 
10219     MachineFunction &MF = CLI.DAG.getMachineFunction();
10220     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10221     for (unsigned i = 0; i < NumValues; ++i) {
10222       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10223                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10224                                                         PtrVT), Flags);
10225       SDValue L = CLI.DAG.getLoad(
10226           RetTys[i], CLI.DL, CLI.Chain, Add,
10227           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10228                                             DemoteStackIdx, Offsets[i]),
10229           HiddenSRetAlign);
10230       ReturnValues[i] = L;
10231       Chains[i] = L.getValue(1);
10232     }
10233 
10234     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10235   } else {
10236     // Collect the legal value parts into potentially illegal values
10237     // that correspond to the original function's return values.
10238     std::optional<ISD::NodeType> AssertOp;
10239     if (CLI.RetSExt)
10240       AssertOp = ISD::AssertSext;
10241     else if (CLI.RetZExt)
10242       AssertOp = ISD::AssertZext;
10243     unsigned CurReg = 0;
10244     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10245       EVT VT = RetTys[I];
10246       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10247                                                      CLI.CallConv, VT);
10248       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10249                                                        CLI.CallConv, VT);
10250 
10251       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10252                                               NumRegs, RegisterVT, VT, nullptr,
10253                                               CLI.CallConv, AssertOp));
10254       CurReg += NumRegs;
10255     }
10256 
10257     // For a function returning void, there is no return value. We can't create
10258     // such a node, so we just return a null return value in that case. In
10259     // that case, nothing will actually look at the value.
10260     if (ReturnValues.empty())
10261       return std::make_pair(SDValue(), CLI.Chain);
10262   }
10263 
10264   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10265                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10266   return std::make_pair(Res, CLI.Chain);
10267 }
10268 
10269 /// Places new result values for the node in Results (their number
10270 /// and types must exactly match those of the original return values of
10271 /// the node), or leaves Results empty, which indicates that the node is not
10272 /// to be custom lowered after all.
10273 void TargetLowering::LowerOperationWrapper(SDNode *N,
10274                                            SmallVectorImpl<SDValue> &Results,
10275                                            SelectionDAG &DAG) const {
10276   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10277 
10278   if (!Res.getNode())
10279     return;
10280 
10281   // If the original node has one result, take the return value from
10282   // LowerOperation as is. It might not be result number 0.
10283   if (N->getNumValues() == 1) {
10284     Results.push_back(Res);
10285     return;
10286   }
10287 
10288   // If the original node has multiple results, then the return node should
10289   // have the same number of results.
10290   assert((N->getNumValues() == Res->getNumValues()) &&
10291       "Lowering returned the wrong number of results!");
10292 
10293   // Places new result values base on N result number.
10294   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10295     Results.push_back(Res.getValue(I));
10296 }
10297 
10298 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10299   llvm_unreachable("LowerOperation not implemented for this target!");
10300 }
10301 
10302 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10303                                                      unsigned Reg,
10304                                                      ISD::NodeType ExtendType) {
10305   SDValue Op = getNonRegisterValue(V);
10306   assert((Op.getOpcode() != ISD::CopyFromReg ||
10307           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10308          "Copy from a reg to the same reg!");
10309   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10310 
10311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10312   // If this is an InlineAsm we have to match the registers required, not the
10313   // notional registers required by the type.
10314 
10315   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10316                    std::nullopt); // This is not an ABI copy.
10317   SDValue Chain = DAG.getEntryNode();
10318 
10319   if (ExtendType == ISD::ANY_EXTEND) {
10320     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10321     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10322       ExtendType = PreferredExtendIt->second;
10323   }
10324   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10325   PendingExports.push_back(Chain);
10326 }
10327 
10328 #include "llvm/CodeGen/SelectionDAGISel.h"
10329 
10330 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10331 /// entry block, return true.  This includes arguments used by switches, since
10332 /// the switch may expand into multiple basic blocks.
10333 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10334   // With FastISel active, we may be splitting blocks, so force creation
10335   // of virtual registers for all non-dead arguments.
10336   if (FastISel)
10337     return A->use_empty();
10338 
10339   const BasicBlock &Entry = A->getParent()->front();
10340   for (const User *U : A->users())
10341     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10342       return false;  // Use not in entry block.
10343 
10344   return true;
10345 }
10346 
10347 using ArgCopyElisionMapTy =
10348     DenseMap<const Argument *,
10349              std::pair<const AllocaInst *, const StoreInst *>>;
10350 
10351 /// Scan the entry block of the function in FuncInfo for arguments that look
10352 /// like copies into a local alloca. Record any copied arguments in
10353 /// ArgCopyElisionCandidates.
10354 static void
10355 findArgumentCopyElisionCandidates(const DataLayout &DL,
10356                                   FunctionLoweringInfo *FuncInfo,
10357                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10358   // Record the state of every static alloca used in the entry block. Argument
10359   // allocas are all used in the entry block, so we need approximately as many
10360   // entries as we have arguments.
10361   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10362   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10363   unsigned NumArgs = FuncInfo->Fn->arg_size();
10364   StaticAllocas.reserve(NumArgs * 2);
10365 
10366   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10367     if (!V)
10368       return nullptr;
10369     V = V->stripPointerCasts();
10370     const auto *AI = dyn_cast<AllocaInst>(V);
10371     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10372       return nullptr;
10373     auto Iter = StaticAllocas.insert({AI, Unknown});
10374     return &Iter.first->second;
10375   };
10376 
10377   // Look for stores of arguments to static allocas. Look through bitcasts and
10378   // GEPs to handle type coercions, as long as the alloca is fully initialized
10379   // by the store. Any non-store use of an alloca escapes it and any subsequent
10380   // unanalyzed store might write it.
10381   // FIXME: Handle structs initialized with multiple stores.
10382   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10383     // Look for stores, and handle non-store uses conservatively.
10384     const auto *SI = dyn_cast<StoreInst>(&I);
10385     if (!SI) {
10386       // We will look through cast uses, so ignore them completely.
10387       if (I.isCast())
10388         continue;
10389       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10390       // to allocas.
10391       if (I.isDebugOrPseudoInst())
10392         continue;
10393       // This is an unknown instruction. Assume it escapes or writes to all
10394       // static alloca operands.
10395       for (const Use &U : I.operands()) {
10396         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10397           *Info = StaticAllocaInfo::Clobbered;
10398       }
10399       continue;
10400     }
10401 
10402     // If the stored value is a static alloca, mark it as escaped.
10403     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10404       *Info = StaticAllocaInfo::Clobbered;
10405 
10406     // Check if the destination is a static alloca.
10407     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10408     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10409     if (!Info)
10410       continue;
10411     const AllocaInst *AI = cast<AllocaInst>(Dst);
10412 
10413     // Skip allocas that have been initialized or clobbered.
10414     if (*Info != StaticAllocaInfo::Unknown)
10415       continue;
10416 
10417     // Check if the stored value is an argument, and that this store fully
10418     // initializes the alloca.
10419     // If the argument type has padding bits we can't directly forward a pointer
10420     // as the upper bits may contain garbage.
10421     // Don't elide copies from the same argument twice.
10422     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10423     const auto *Arg = dyn_cast<Argument>(Val);
10424     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10425         Arg->getType()->isEmptyTy() ||
10426         DL.getTypeStoreSize(Arg->getType()) !=
10427             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10428         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10429         ArgCopyElisionCandidates.count(Arg)) {
10430       *Info = StaticAllocaInfo::Clobbered;
10431       continue;
10432     }
10433 
10434     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10435                       << '\n');
10436 
10437     // Mark this alloca and store for argument copy elision.
10438     *Info = StaticAllocaInfo::Elidable;
10439     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10440 
10441     // Stop scanning if we've seen all arguments. This will happen early in -O0
10442     // builds, which is useful, because -O0 builds have large entry blocks and
10443     // many allocas.
10444     if (ArgCopyElisionCandidates.size() == NumArgs)
10445       break;
10446   }
10447 }
10448 
10449 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10450 /// ArgVal is a load from a suitable fixed stack object.
10451 static void tryToElideArgumentCopy(
10452     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10453     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10454     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10455     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10456     SDValue ArgVal, bool &ArgHasUses) {
10457   // Check if this is a load from a fixed stack object.
10458   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10459   if (!LNode)
10460     return;
10461   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10462   if (!FINode)
10463     return;
10464 
10465   // Check that the fixed stack object is the right size and alignment.
10466   // Look at the alignment that the user wrote on the alloca instead of looking
10467   // at the stack object.
10468   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10469   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10470   const AllocaInst *AI = ArgCopyIter->second.first;
10471   int FixedIndex = FINode->getIndex();
10472   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10473   int OldIndex = AllocaIndex;
10474   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10475   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10476     LLVM_DEBUG(
10477         dbgs() << "  argument copy elision failed due to bad fixed stack "
10478                   "object size\n");
10479     return;
10480   }
10481   Align RequiredAlignment = AI->getAlign();
10482   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10483     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10484                          "greater than stack argument alignment ("
10485                       << DebugStr(RequiredAlignment) << " vs "
10486                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10487     return;
10488   }
10489 
10490   // Perform the elision. Delete the old stack object and replace its only use
10491   // in the variable info map. Mark the stack object as mutable.
10492   LLVM_DEBUG({
10493     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10494            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10495            << '\n';
10496   });
10497   MFI.RemoveStackObject(OldIndex);
10498   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10499   AllocaIndex = FixedIndex;
10500   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10501   Chains.push_back(ArgVal.getValue(1));
10502 
10503   // Avoid emitting code for the store implementing the copy.
10504   const StoreInst *SI = ArgCopyIter->second.second;
10505   ElidedArgCopyInstrs.insert(SI);
10506 
10507   // Check for uses of the argument again so that we can avoid exporting ArgVal
10508   // if it is't used by anything other than the store.
10509   for (const Value *U : Arg.users()) {
10510     if (U != SI) {
10511       ArgHasUses = true;
10512       break;
10513     }
10514   }
10515 }
10516 
10517 void SelectionDAGISel::LowerArguments(const Function &F) {
10518   SelectionDAG &DAG = SDB->DAG;
10519   SDLoc dl = SDB->getCurSDLoc();
10520   const DataLayout &DL = DAG.getDataLayout();
10521   SmallVector<ISD::InputArg, 16> Ins;
10522 
10523   // In Naked functions we aren't going to save any registers.
10524   if (F.hasFnAttribute(Attribute::Naked))
10525     return;
10526 
10527   if (!FuncInfo->CanLowerReturn) {
10528     // Put in an sret pointer parameter before all the other parameters.
10529     SmallVector<EVT, 1> ValueVTs;
10530     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10531                     F.getReturnType()->getPointerTo(
10532                         DAG.getDataLayout().getAllocaAddrSpace()),
10533                     ValueVTs);
10534 
10535     // NOTE: Assuming that a pointer will never break down to more than one VT
10536     // or one register.
10537     ISD::ArgFlagsTy Flags;
10538     Flags.setSRet();
10539     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10540     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10541                          ISD::InputArg::NoArgIndex, 0);
10542     Ins.push_back(RetArg);
10543   }
10544 
10545   // Look for stores of arguments to static allocas. Mark such arguments with a
10546   // flag to ask the target to give us the memory location of that argument if
10547   // available.
10548   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10549   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10550                                     ArgCopyElisionCandidates);
10551 
10552   // Set up the incoming argument description vector.
10553   for (const Argument &Arg : F.args()) {
10554     unsigned ArgNo = Arg.getArgNo();
10555     SmallVector<EVT, 4> ValueVTs;
10556     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10557     bool isArgValueUsed = !Arg.use_empty();
10558     unsigned PartBase = 0;
10559     Type *FinalType = Arg.getType();
10560     if (Arg.hasAttribute(Attribute::ByVal))
10561       FinalType = Arg.getParamByValType();
10562     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10563         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10564     for (unsigned Value = 0, NumValues = ValueVTs.size();
10565          Value != NumValues; ++Value) {
10566       EVT VT = ValueVTs[Value];
10567       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10568       ISD::ArgFlagsTy Flags;
10569 
10570 
10571       if (Arg.getType()->isPointerTy()) {
10572         Flags.setPointer();
10573         Flags.setPointerAddrSpace(
10574             cast<PointerType>(Arg.getType())->getAddressSpace());
10575       }
10576       if (Arg.hasAttribute(Attribute::ZExt))
10577         Flags.setZExt();
10578       if (Arg.hasAttribute(Attribute::SExt))
10579         Flags.setSExt();
10580       if (Arg.hasAttribute(Attribute::InReg)) {
10581         // If we are using vectorcall calling convention, a structure that is
10582         // passed InReg - is surely an HVA
10583         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10584             isa<StructType>(Arg.getType())) {
10585           // The first value of a structure is marked
10586           if (0 == Value)
10587             Flags.setHvaStart();
10588           Flags.setHva();
10589         }
10590         // Set InReg Flag
10591         Flags.setInReg();
10592       }
10593       if (Arg.hasAttribute(Attribute::StructRet))
10594         Flags.setSRet();
10595       if (Arg.hasAttribute(Attribute::SwiftSelf))
10596         Flags.setSwiftSelf();
10597       if (Arg.hasAttribute(Attribute::SwiftAsync))
10598         Flags.setSwiftAsync();
10599       if (Arg.hasAttribute(Attribute::SwiftError))
10600         Flags.setSwiftError();
10601       if (Arg.hasAttribute(Attribute::ByVal))
10602         Flags.setByVal();
10603       if (Arg.hasAttribute(Attribute::ByRef))
10604         Flags.setByRef();
10605       if (Arg.hasAttribute(Attribute::InAlloca)) {
10606         Flags.setInAlloca();
10607         // Set the byval flag for CCAssignFn callbacks that don't know about
10608         // inalloca.  This way we can know how many bytes we should've allocated
10609         // and how many bytes a callee cleanup function will pop.  If we port
10610         // inalloca to more targets, we'll have to add custom inalloca handling
10611         // in the various CC lowering callbacks.
10612         Flags.setByVal();
10613       }
10614       if (Arg.hasAttribute(Attribute::Preallocated)) {
10615         Flags.setPreallocated();
10616         // Set the byval flag for CCAssignFn callbacks that don't know about
10617         // preallocated.  This way we can know how many bytes we should've
10618         // allocated and how many bytes a callee cleanup function will pop.  If
10619         // we port preallocated to more targets, we'll have to add custom
10620         // preallocated handling in the various CC lowering callbacks.
10621         Flags.setByVal();
10622       }
10623 
10624       // Certain targets (such as MIPS), may have a different ABI alignment
10625       // for a type depending on the context. Give the target a chance to
10626       // specify the alignment it wants.
10627       const Align OriginalAlignment(
10628           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10629       Flags.setOrigAlign(OriginalAlignment);
10630 
10631       Align MemAlign;
10632       Type *ArgMemTy = nullptr;
10633       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10634           Flags.isByRef()) {
10635         if (!ArgMemTy)
10636           ArgMemTy = Arg.getPointeeInMemoryValueType();
10637 
10638         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10639 
10640         // For in-memory arguments, size and alignment should be passed from FE.
10641         // BE will guess if this info is not there but there are cases it cannot
10642         // get right.
10643         if (auto ParamAlign = Arg.getParamStackAlign())
10644           MemAlign = *ParamAlign;
10645         else if ((ParamAlign = Arg.getParamAlign()))
10646           MemAlign = *ParamAlign;
10647         else
10648           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10649         if (Flags.isByRef())
10650           Flags.setByRefSize(MemSize);
10651         else
10652           Flags.setByValSize(MemSize);
10653       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10654         MemAlign = *ParamAlign;
10655       } else {
10656         MemAlign = OriginalAlignment;
10657       }
10658       Flags.setMemAlign(MemAlign);
10659 
10660       if (Arg.hasAttribute(Attribute::Nest))
10661         Flags.setNest();
10662       if (NeedsRegBlock)
10663         Flags.setInConsecutiveRegs();
10664       if (ArgCopyElisionCandidates.count(&Arg))
10665         Flags.setCopyElisionCandidate();
10666       if (Arg.hasAttribute(Attribute::Returned))
10667         Flags.setReturned();
10668 
10669       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10670           *CurDAG->getContext(), F.getCallingConv(), VT);
10671       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10672           *CurDAG->getContext(), F.getCallingConv(), VT);
10673       for (unsigned i = 0; i != NumRegs; ++i) {
10674         // For scalable vectors, use the minimum size; individual targets
10675         // are responsible for handling scalable vector arguments and
10676         // return values.
10677         ISD::InputArg MyFlags(
10678             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10679             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10680         if (NumRegs > 1 && i == 0)
10681           MyFlags.Flags.setSplit();
10682         // if it isn't first piece, alignment must be 1
10683         else if (i > 0) {
10684           MyFlags.Flags.setOrigAlign(Align(1));
10685           if (i == NumRegs - 1)
10686             MyFlags.Flags.setSplitEnd();
10687         }
10688         Ins.push_back(MyFlags);
10689       }
10690       if (NeedsRegBlock && Value == NumValues - 1)
10691         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10692       PartBase += VT.getStoreSize().getKnownMinValue();
10693     }
10694   }
10695 
10696   // Call the target to set up the argument values.
10697   SmallVector<SDValue, 8> InVals;
10698   SDValue NewRoot = TLI->LowerFormalArguments(
10699       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10700 
10701   // Verify that the target's LowerFormalArguments behaved as expected.
10702   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10703          "LowerFormalArguments didn't return a valid chain!");
10704   assert(InVals.size() == Ins.size() &&
10705          "LowerFormalArguments didn't emit the correct number of values!");
10706   LLVM_DEBUG({
10707     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10708       assert(InVals[i].getNode() &&
10709              "LowerFormalArguments emitted a null value!");
10710       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10711              "LowerFormalArguments emitted a value with the wrong type!");
10712     }
10713   });
10714 
10715   // Update the DAG with the new chain value resulting from argument lowering.
10716   DAG.setRoot(NewRoot);
10717 
10718   // Set up the argument values.
10719   unsigned i = 0;
10720   if (!FuncInfo->CanLowerReturn) {
10721     // Create a virtual register for the sret pointer, and put in a copy
10722     // from the sret argument into it.
10723     SmallVector<EVT, 1> ValueVTs;
10724     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10725                     F.getReturnType()->getPointerTo(
10726                         DAG.getDataLayout().getAllocaAddrSpace()),
10727                     ValueVTs);
10728     MVT VT = ValueVTs[0].getSimpleVT();
10729     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10730     std::optional<ISD::NodeType> AssertOp;
10731     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10732                                         nullptr, F.getCallingConv(), AssertOp);
10733 
10734     MachineFunction& MF = SDB->DAG.getMachineFunction();
10735     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10736     Register SRetReg =
10737         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10738     FuncInfo->DemoteRegister = SRetReg;
10739     NewRoot =
10740         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10741     DAG.setRoot(NewRoot);
10742 
10743     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10744     ++i;
10745   }
10746 
10747   SmallVector<SDValue, 4> Chains;
10748   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10749   for (const Argument &Arg : F.args()) {
10750     SmallVector<SDValue, 4> ArgValues;
10751     SmallVector<EVT, 4> ValueVTs;
10752     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10753     unsigned NumValues = ValueVTs.size();
10754     if (NumValues == 0)
10755       continue;
10756 
10757     bool ArgHasUses = !Arg.use_empty();
10758 
10759     // Elide the copying store if the target loaded this argument from a
10760     // suitable fixed stack object.
10761     if (Ins[i].Flags.isCopyElisionCandidate()) {
10762       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10763                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10764                              InVals[i], ArgHasUses);
10765     }
10766 
10767     // If this argument is unused then remember its value. It is used to generate
10768     // debugging information.
10769     bool isSwiftErrorArg =
10770         TLI->supportSwiftError() &&
10771         Arg.hasAttribute(Attribute::SwiftError);
10772     if (!ArgHasUses && !isSwiftErrorArg) {
10773       SDB->setUnusedArgValue(&Arg, InVals[i]);
10774 
10775       // Also remember any frame index for use in FastISel.
10776       if (FrameIndexSDNode *FI =
10777           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10778         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10779     }
10780 
10781     for (unsigned Val = 0; Val != NumValues; ++Val) {
10782       EVT VT = ValueVTs[Val];
10783       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10784                                                       F.getCallingConv(), VT);
10785       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10786           *CurDAG->getContext(), F.getCallingConv(), VT);
10787 
10788       // Even an apparent 'unused' swifterror argument needs to be returned. So
10789       // we do generate a copy for it that can be used on return from the
10790       // function.
10791       if (ArgHasUses || isSwiftErrorArg) {
10792         std::optional<ISD::NodeType> AssertOp;
10793         if (Arg.hasAttribute(Attribute::SExt))
10794           AssertOp = ISD::AssertSext;
10795         else if (Arg.hasAttribute(Attribute::ZExt))
10796           AssertOp = ISD::AssertZext;
10797 
10798         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10799                                              PartVT, VT, nullptr,
10800                                              F.getCallingConv(), AssertOp));
10801       }
10802 
10803       i += NumParts;
10804     }
10805 
10806     // We don't need to do anything else for unused arguments.
10807     if (ArgValues.empty())
10808       continue;
10809 
10810     // Note down frame index.
10811     if (FrameIndexSDNode *FI =
10812         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10813       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10814 
10815     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10816                                      SDB->getCurSDLoc());
10817 
10818     SDB->setValue(&Arg, Res);
10819     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10820       // We want to associate the argument with the frame index, among
10821       // involved operands, that correspond to the lowest address. The
10822       // getCopyFromParts function, called earlier, is swapping the order of
10823       // the operands to BUILD_PAIR depending on endianness. The result of
10824       // that swapping is that the least significant bits of the argument will
10825       // be in the first operand of the BUILD_PAIR node, and the most
10826       // significant bits will be in the second operand.
10827       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10828       if (LoadSDNode *LNode =
10829           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10830         if (FrameIndexSDNode *FI =
10831             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10832           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10833     }
10834 
10835     // Analyses past this point are naive and don't expect an assertion.
10836     if (Res.getOpcode() == ISD::AssertZext)
10837       Res = Res.getOperand(0);
10838 
10839     // Update the SwiftErrorVRegDefMap.
10840     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10841       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10842       if (Register::isVirtualRegister(Reg))
10843         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10844                                    Reg);
10845     }
10846 
10847     // If this argument is live outside of the entry block, insert a copy from
10848     // wherever we got it to the vreg that other BB's will reference it as.
10849     if (Res.getOpcode() == ISD::CopyFromReg) {
10850       // If we can, though, try to skip creating an unnecessary vreg.
10851       // FIXME: This isn't very clean... it would be nice to make this more
10852       // general.
10853       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10854       if (Register::isVirtualRegister(Reg)) {
10855         FuncInfo->ValueMap[&Arg] = Reg;
10856         continue;
10857       }
10858     }
10859     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10860       FuncInfo->InitializeRegForValue(&Arg);
10861       SDB->CopyToExportRegsIfNeeded(&Arg);
10862     }
10863   }
10864 
10865   if (!Chains.empty()) {
10866     Chains.push_back(NewRoot);
10867     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10868   }
10869 
10870   DAG.setRoot(NewRoot);
10871 
10872   assert(i == InVals.size() && "Argument register count mismatch!");
10873 
10874   // If any argument copy elisions occurred and we have debug info, update the
10875   // stale frame indices used in the dbg.declare variable info table.
10876   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10877   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10878     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10879       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10880       if (I != ArgCopyElisionFrameIndexMap.end())
10881         VI.Slot = I->second;
10882     }
10883   }
10884 
10885   // Finally, if the target has anything special to do, allow it to do so.
10886   emitFunctionEntryCode();
10887 }
10888 
10889 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10890 /// ensure constants are generated when needed.  Remember the virtual registers
10891 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10892 /// directly add them, because expansion might result in multiple MBB's for one
10893 /// BB.  As such, the start of the BB might correspond to a different MBB than
10894 /// the end.
10895 void
10896 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10898 
10899   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10900 
10901   // Check PHI nodes in successors that expect a value to be available from this
10902   // block.
10903   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10904     if (!isa<PHINode>(SuccBB->begin())) continue;
10905     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10906 
10907     // If this terminator has multiple identical successors (common for
10908     // switches), only handle each succ once.
10909     if (!SuccsHandled.insert(SuccMBB).second)
10910       continue;
10911 
10912     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10913 
10914     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10915     // nodes and Machine PHI nodes, but the incoming operands have not been
10916     // emitted yet.
10917     for (const PHINode &PN : SuccBB->phis()) {
10918       // Ignore dead phi's.
10919       if (PN.use_empty())
10920         continue;
10921 
10922       // Skip empty types
10923       if (PN.getType()->isEmptyTy())
10924         continue;
10925 
10926       unsigned Reg;
10927       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10928 
10929       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10930         unsigned &RegOut = ConstantsOut[C];
10931         if (RegOut == 0) {
10932           RegOut = FuncInfo.CreateRegs(C);
10933           // We need to zero/sign extend ConstantInt phi operands to match
10934           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10935           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10936           if (auto *CI = dyn_cast<ConstantInt>(C))
10937             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10938                                                     : ISD::ZERO_EXTEND;
10939           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10940         }
10941         Reg = RegOut;
10942       } else {
10943         DenseMap<const Value *, Register>::iterator I =
10944           FuncInfo.ValueMap.find(PHIOp);
10945         if (I != FuncInfo.ValueMap.end())
10946           Reg = I->second;
10947         else {
10948           assert(isa<AllocaInst>(PHIOp) &&
10949                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10950                  "Didn't codegen value into a register!??");
10951           Reg = FuncInfo.CreateRegs(PHIOp);
10952           CopyValueToVirtualRegister(PHIOp, Reg);
10953         }
10954       }
10955 
10956       // Remember that this register needs to added to the machine PHI node as
10957       // the input for this MBB.
10958       SmallVector<EVT, 4> ValueVTs;
10959       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10960       for (EVT VT : ValueVTs) {
10961         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10962         for (unsigned i = 0; i != NumRegisters; ++i)
10963           FuncInfo.PHINodesToUpdate.push_back(
10964               std::make_pair(&*MBBI++, Reg + i));
10965         Reg += NumRegisters;
10966       }
10967     }
10968   }
10969 
10970   ConstantsOut.clear();
10971 }
10972 
10973 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10974   MachineFunction::iterator I(MBB);
10975   if (++I == FuncInfo.MF->end())
10976     return nullptr;
10977   return &*I;
10978 }
10979 
10980 /// During lowering new call nodes can be created (such as memset, etc.).
10981 /// Those will become new roots of the current DAG, but complications arise
10982 /// when they are tail calls. In such cases, the call lowering will update
10983 /// the root, but the builder still needs to know that a tail call has been
10984 /// lowered in order to avoid generating an additional return.
10985 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10986   // If the node is null, we do have a tail call.
10987   if (MaybeTC.getNode() != nullptr)
10988     DAG.setRoot(MaybeTC);
10989   else
10990     HasTailCall = true;
10991 }
10992 
10993 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10994                                         MachineBasicBlock *SwitchMBB,
10995                                         MachineBasicBlock *DefaultMBB) {
10996   MachineFunction *CurMF = FuncInfo.MF;
10997   MachineBasicBlock *NextMBB = nullptr;
10998   MachineFunction::iterator BBI(W.MBB);
10999   if (++BBI != FuncInfo.MF->end())
11000     NextMBB = &*BBI;
11001 
11002   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11003 
11004   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11005 
11006   if (Size == 2 && W.MBB == SwitchMBB) {
11007     // If any two of the cases has the same destination, and if one value
11008     // is the same as the other, but has one bit unset that the other has set,
11009     // use bit manipulation to do two compares at once.  For example:
11010     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11011     // TODO: This could be extended to merge any 2 cases in switches with 3
11012     // cases.
11013     // TODO: Handle cases where W.CaseBB != SwitchBB.
11014     CaseCluster &Small = *W.FirstCluster;
11015     CaseCluster &Big = *W.LastCluster;
11016 
11017     if (Small.Low == Small.High && Big.Low == Big.High &&
11018         Small.MBB == Big.MBB) {
11019       const APInt &SmallValue = Small.Low->getValue();
11020       const APInt &BigValue = Big.Low->getValue();
11021 
11022       // Check that there is only one bit different.
11023       APInt CommonBit = BigValue ^ SmallValue;
11024       if (CommonBit.isPowerOf2()) {
11025         SDValue CondLHS = getValue(Cond);
11026         EVT VT = CondLHS.getValueType();
11027         SDLoc DL = getCurSDLoc();
11028 
11029         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11030                                  DAG.getConstant(CommonBit, DL, VT));
11031         SDValue Cond = DAG.getSetCC(
11032             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11033             ISD::SETEQ);
11034 
11035         // Update successor info.
11036         // Both Small and Big will jump to Small.BB, so we sum up the
11037         // probabilities.
11038         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11039         if (BPI)
11040           addSuccessorWithProb(
11041               SwitchMBB, DefaultMBB,
11042               // The default destination is the first successor in IR.
11043               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11044         else
11045           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11046 
11047         // Insert the true branch.
11048         SDValue BrCond =
11049             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11050                         DAG.getBasicBlock(Small.MBB));
11051         // Insert the false branch.
11052         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11053                              DAG.getBasicBlock(DefaultMBB));
11054 
11055         DAG.setRoot(BrCond);
11056         return;
11057       }
11058     }
11059   }
11060 
11061   if (TM.getOptLevel() != CodeGenOpt::None) {
11062     // Here, we order cases by probability so the most likely case will be
11063     // checked first. However, two clusters can have the same probability in
11064     // which case their relative ordering is non-deterministic. So we use Low
11065     // as a tie-breaker as clusters are guaranteed to never overlap.
11066     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11067                [](const CaseCluster &a, const CaseCluster &b) {
11068       return a.Prob != b.Prob ?
11069              a.Prob > b.Prob :
11070              a.Low->getValue().slt(b.Low->getValue());
11071     });
11072 
11073     // Rearrange the case blocks so that the last one falls through if possible
11074     // without changing the order of probabilities.
11075     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11076       --I;
11077       if (I->Prob > W.LastCluster->Prob)
11078         break;
11079       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11080         std::swap(*I, *W.LastCluster);
11081         break;
11082       }
11083     }
11084   }
11085 
11086   // Compute total probability.
11087   BranchProbability DefaultProb = W.DefaultProb;
11088   BranchProbability UnhandledProbs = DefaultProb;
11089   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11090     UnhandledProbs += I->Prob;
11091 
11092   MachineBasicBlock *CurMBB = W.MBB;
11093   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11094     bool FallthroughUnreachable = false;
11095     MachineBasicBlock *Fallthrough;
11096     if (I == W.LastCluster) {
11097       // For the last cluster, fall through to the default destination.
11098       Fallthrough = DefaultMBB;
11099       FallthroughUnreachable = isa<UnreachableInst>(
11100           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11101     } else {
11102       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11103       CurMF->insert(BBI, Fallthrough);
11104       // Put Cond in a virtual register to make it available from the new blocks.
11105       ExportFromCurrentBlock(Cond);
11106     }
11107     UnhandledProbs -= I->Prob;
11108 
11109     switch (I->Kind) {
11110       case CC_JumpTable: {
11111         // FIXME: Optimize away range check based on pivot comparisons.
11112         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11113         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11114 
11115         // The jump block hasn't been inserted yet; insert it here.
11116         MachineBasicBlock *JumpMBB = JT->MBB;
11117         CurMF->insert(BBI, JumpMBB);
11118 
11119         auto JumpProb = I->Prob;
11120         auto FallthroughProb = UnhandledProbs;
11121 
11122         // If the default statement is a target of the jump table, we evenly
11123         // distribute the default probability to successors of CurMBB. Also
11124         // update the probability on the edge from JumpMBB to Fallthrough.
11125         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11126                                               SE = JumpMBB->succ_end();
11127              SI != SE; ++SI) {
11128           if (*SI == DefaultMBB) {
11129             JumpProb += DefaultProb / 2;
11130             FallthroughProb -= DefaultProb / 2;
11131             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11132             JumpMBB->normalizeSuccProbs();
11133             break;
11134           }
11135         }
11136 
11137         if (FallthroughUnreachable)
11138           JTH->FallthroughUnreachable = true;
11139 
11140         if (!JTH->FallthroughUnreachable)
11141           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11142         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11143         CurMBB->normalizeSuccProbs();
11144 
11145         // The jump table header will be inserted in our current block, do the
11146         // range check, and fall through to our fallthrough block.
11147         JTH->HeaderBB = CurMBB;
11148         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11149 
11150         // If we're in the right place, emit the jump table header right now.
11151         if (CurMBB == SwitchMBB) {
11152           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11153           JTH->Emitted = true;
11154         }
11155         break;
11156       }
11157       case CC_BitTests: {
11158         // FIXME: Optimize away range check based on pivot comparisons.
11159         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11160 
11161         // The bit test blocks haven't been inserted yet; insert them here.
11162         for (BitTestCase &BTC : BTB->Cases)
11163           CurMF->insert(BBI, BTC.ThisBB);
11164 
11165         // Fill in fields of the BitTestBlock.
11166         BTB->Parent = CurMBB;
11167         BTB->Default = Fallthrough;
11168 
11169         BTB->DefaultProb = UnhandledProbs;
11170         // If the cases in bit test don't form a contiguous range, we evenly
11171         // distribute the probability on the edge to Fallthrough to two
11172         // successors of CurMBB.
11173         if (!BTB->ContiguousRange) {
11174           BTB->Prob += DefaultProb / 2;
11175           BTB->DefaultProb -= DefaultProb / 2;
11176         }
11177 
11178         if (FallthroughUnreachable)
11179           BTB->FallthroughUnreachable = true;
11180 
11181         // If we're in the right place, emit the bit test header right now.
11182         if (CurMBB == SwitchMBB) {
11183           visitBitTestHeader(*BTB, SwitchMBB);
11184           BTB->Emitted = true;
11185         }
11186         break;
11187       }
11188       case CC_Range: {
11189         const Value *RHS, *LHS, *MHS;
11190         ISD::CondCode CC;
11191         if (I->Low == I->High) {
11192           // Check Cond == I->Low.
11193           CC = ISD::SETEQ;
11194           LHS = Cond;
11195           RHS=I->Low;
11196           MHS = nullptr;
11197         } else {
11198           // Check I->Low <= Cond <= I->High.
11199           CC = ISD::SETLE;
11200           LHS = I->Low;
11201           MHS = Cond;
11202           RHS = I->High;
11203         }
11204 
11205         // If Fallthrough is unreachable, fold away the comparison.
11206         if (FallthroughUnreachable)
11207           CC = ISD::SETTRUE;
11208 
11209         // The false probability is the sum of all unhandled cases.
11210         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11211                      getCurSDLoc(), I->Prob, UnhandledProbs);
11212 
11213         if (CurMBB == SwitchMBB)
11214           visitSwitchCase(CB, SwitchMBB);
11215         else
11216           SL->SwitchCases.push_back(CB);
11217 
11218         break;
11219       }
11220     }
11221     CurMBB = Fallthrough;
11222   }
11223 }
11224 
11225 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11226                                               CaseClusterIt First,
11227                                               CaseClusterIt Last) {
11228   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11229     if (X.Prob != CC.Prob)
11230       return X.Prob > CC.Prob;
11231 
11232     // Ties are broken by comparing the case value.
11233     return X.Low->getValue().slt(CC.Low->getValue());
11234   });
11235 }
11236 
11237 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11238                                         const SwitchWorkListItem &W,
11239                                         Value *Cond,
11240                                         MachineBasicBlock *SwitchMBB) {
11241   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11242          "Clusters not sorted?");
11243 
11244   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11245 
11246   // Balance the tree based on branch probabilities to create a near-optimal (in
11247   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11248   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11249   CaseClusterIt LastLeft = W.FirstCluster;
11250   CaseClusterIt FirstRight = W.LastCluster;
11251   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11252   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11253 
11254   // Move LastLeft and FirstRight towards each other from opposite directions to
11255   // find a partitioning of the clusters which balances the probability on both
11256   // sides. If LeftProb and RightProb are equal, alternate which side is
11257   // taken to ensure 0-probability nodes are distributed evenly.
11258   unsigned I = 0;
11259   while (LastLeft + 1 < FirstRight) {
11260     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11261       LeftProb += (++LastLeft)->Prob;
11262     else
11263       RightProb += (--FirstRight)->Prob;
11264     I++;
11265   }
11266 
11267   while (true) {
11268     // Our binary search tree differs from a typical BST in that ours can have up
11269     // to three values in each leaf. The pivot selection above doesn't take that
11270     // into account, which means the tree might require more nodes and be less
11271     // efficient. We compensate for this here.
11272 
11273     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11274     unsigned NumRight = W.LastCluster - FirstRight + 1;
11275 
11276     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11277       // If one side has less than 3 clusters, and the other has more than 3,
11278       // consider taking a cluster from the other side.
11279 
11280       if (NumLeft < NumRight) {
11281         // Consider moving the first cluster on the right to the left side.
11282         CaseCluster &CC = *FirstRight;
11283         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11284         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11285         if (LeftSideRank <= RightSideRank) {
11286           // Moving the cluster to the left does not demote it.
11287           ++LastLeft;
11288           ++FirstRight;
11289           continue;
11290         }
11291       } else {
11292         assert(NumRight < NumLeft);
11293         // Consider moving the last element on the left to the right side.
11294         CaseCluster &CC = *LastLeft;
11295         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11296         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11297         if (RightSideRank <= LeftSideRank) {
11298           // Moving the cluster to the right does not demot it.
11299           --LastLeft;
11300           --FirstRight;
11301           continue;
11302         }
11303       }
11304     }
11305     break;
11306   }
11307 
11308   assert(LastLeft + 1 == FirstRight);
11309   assert(LastLeft >= W.FirstCluster);
11310   assert(FirstRight <= W.LastCluster);
11311 
11312   // Use the first element on the right as pivot since we will make less-than
11313   // comparisons against it.
11314   CaseClusterIt PivotCluster = FirstRight;
11315   assert(PivotCluster > W.FirstCluster);
11316   assert(PivotCluster <= W.LastCluster);
11317 
11318   CaseClusterIt FirstLeft = W.FirstCluster;
11319   CaseClusterIt LastRight = W.LastCluster;
11320 
11321   const ConstantInt *Pivot = PivotCluster->Low;
11322 
11323   // New blocks will be inserted immediately after the current one.
11324   MachineFunction::iterator BBI(W.MBB);
11325   ++BBI;
11326 
11327   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11328   // we can branch to its destination directly if it's squeezed exactly in
11329   // between the known lower bound and Pivot - 1.
11330   MachineBasicBlock *LeftMBB;
11331   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11332       FirstLeft->Low == W.GE &&
11333       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11334     LeftMBB = FirstLeft->MBB;
11335   } else {
11336     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11337     FuncInfo.MF->insert(BBI, LeftMBB);
11338     WorkList.push_back(
11339         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11340     // Put Cond in a virtual register to make it available from the new blocks.
11341     ExportFromCurrentBlock(Cond);
11342   }
11343 
11344   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11345   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11346   // directly if RHS.High equals the current upper bound.
11347   MachineBasicBlock *RightMBB;
11348   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11349       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11350     RightMBB = FirstRight->MBB;
11351   } else {
11352     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11353     FuncInfo.MF->insert(BBI, RightMBB);
11354     WorkList.push_back(
11355         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11356     // Put Cond in a virtual register to make it available from the new blocks.
11357     ExportFromCurrentBlock(Cond);
11358   }
11359 
11360   // Create the CaseBlock record that will be used to lower the branch.
11361   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11362                getCurSDLoc(), LeftProb, RightProb);
11363 
11364   if (W.MBB == SwitchMBB)
11365     visitSwitchCase(CB, SwitchMBB);
11366   else
11367     SL->SwitchCases.push_back(CB);
11368 }
11369 
11370 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11371 // from the swith statement.
11372 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11373                                             BranchProbability PeeledCaseProb) {
11374   if (PeeledCaseProb == BranchProbability::getOne())
11375     return BranchProbability::getZero();
11376   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11377 
11378   uint32_t Numerator = CaseProb.getNumerator();
11379   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11380   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11381 }
11382 
11383 // Try to peel the top probability case if it exceeds the threshold.
11384 // Return current MachineBasicBlock for the switch statement if the peeling
11385 // does not occur.
11386 // If the peeling is performed, return the newly created MachineBasicBlock
11387 // for the peeled switch statement. Also update Clusters to remove the peeled
11388 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11389 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11390     const SwitchInst &SI, CaseClusterVector &Clusters,
11391     BranchProbability &PeeledCaseProb) {
11392   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11393   // Don't perform if there is only one cluster or optimizing for size.
11394   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11395       TM.getOptLevel() == CodeGenOpt::None ||
11396       SwitchMBB->getParent()->getFunction().hasMinSize())
11397     return SwitchMBB;
11398 
11399   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11400   unsigned PeeledCaseIndex = 0;
11401   bool SwitchPeeled = false;
11402   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11403     CaseCluster &CC = Clusters[Index];
11404     if (CC.Prob < TopCaseProb)
11405       continue;
11406     TopCaseProb = CC.Prob;
11407     PeeledCaseIndex = Index;
11408     SwitchPeeled = true;
11409   }
11410   if (!SwitchPeeled)
11411     return SwitchMBB;
11412 
11413   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11414                     << TopCaseProb << "\n");
11415 
11416   // Record the MBB for the peeled switch statement.
11417   MachineFunction::iterator BBI(SwitchMBB);
11418   ++BBI;
11419   MachineBasicBlock *PeeledSwitchMBB =
11420       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11421   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11422 
11423   ExportFromCurrentBlock(SI.getCondition());
11424   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11425   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11426                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11427   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11428 
11429   Clusters.erase(PeeledCaseIt);
11430   for (CaseCluster &CC : Clusters) {
11431     LLVM_DEBUG(
11432         dbgs() << "Scale the probablity for one cluster, before scaling: "
11433                << CC.Prob << "\n");
11434     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11435     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11436   }
11437   PeeledCaseProb = TopCaseProb;
11438   return PeeledSwitchMBB;
11439 }
11440 
11441 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11442   // Extract cases from the switch.
11443   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11444   CaseClusterVector Clusters;
11445   Clusters.reserve(SI.getNumCases());
11446   for (auto I : SI.cases()) {
11447     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11448     const ConstantInt *CaseVal = I.getCaseValue();
11449     BranchProbability Prob =
11450         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11451             : BranchProbability(1, SI.getNumCases() + 1);
11452     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11453   }
11454 
11455   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11456 
11457   // Cluster adjacent cases with the same destination. We do this at all
11458   // optimization levels because it's cheap to do and will make codegen faster
11459   // if there are many clusters.
11460   sortAndRangeify(Clusters);
11461 
11462   // The branch probablity of the peeled case.
11463   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11464   MachineBasicBlock *PeeledSwitchMBB =
11465       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11466 
11467   // If there is only the default destination, jump there directly.
11468   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11469   if (Clusters.empty()) {
11470     assert(PeeledSwitchMBB == SwitchMBB);
11471     SwitchMBB->addSuccessor(DefaultMBB);
11472     if (DefaultMBB != NextBlock(SwitchMBB)) {
11473       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11474                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11475     }
11476     return;
11477   }
11478 
11479   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11480   SL->findBitTestClusters(Clusters, &SI);
11481 
11482   LLVM_DEBUG({
11483     dbgs() << "Case clusters: ";
11484     for (const CaseCluster &C : Clusters) {
11485       if (C.Kind == CC_JumpTable)
11486         dbgs() << "JT:";
11487       if (C.Kind == CC_BitTests)
11488         dbgs() << "BT:";
11489 
11490       C.Low->getValue().print(dbgs(), true);
11491       if (C.Low != C.High) {
11492         dbgs() << '-';
11493         C.High->getValue().print(dbgs(), true);
11494       }
11495       dbgs() << ' ';
11496     }
11497     dbgs() << '\n';
11498   });
11499 
11500   assert(!Clusters.empty());
11501   SwitchWorkList WorkList;
11502   CaseClusterIt First = Clusters.begin();
11503   CaseClusterIt Last = Clusters.end() - 1;
11504   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11505   // Scale the branchprobability for DefaultMBB if the peel occurs and
11506   // DefaultMBB is not replaced.
11507   if (PeeledCaseProb != BranchProbability::getZero() &&
11508       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11509     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11510   WorkList.push_back(
11511       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11512 
11513   while (!WorkList.empty()) {
11514     SwitchWorkListItem W = WorkList.pop_back_val();
11515     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11516 
11517     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11518         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11519       // For optimized builds, lower large range as a balanced binary tree.
11520       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11521       continue;
11522     }
11523 
11524     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11525   }
11526 }
11527 
11528 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11530   auto DL = getCurSDLoc();
11531   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11532   setValue(&I, DAG.getStepVector(DL, ResultVT));
11533 }
11534 
11535 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11537   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11538 
11539   SDLoc DL = getCurSDLoc();
11540   SDValue V = getValue(I.getOperand(0));
11541   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11542 
11543   if (VT.isScalableVector()) {
11544     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11545     return;
11546   }
11547 
11548   // Use VECTOR_SHUFFLE for the fixed-length vector
11549   // to maintain existing behavior.
11550   SmallVector<int, 8> Mask;
11551   unsigned NumElts = VT.getVectorMinNumElements();
11552   for (unsigned i = 0; i != NumElts; ++i)
11553     Mask.push_back(NumElts - 1 - i);
11554 
11555   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11556 }
11557 
11558 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11559   SmallVector<EVT, 4> ValueVTs;
11560   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11561                   ValueVTs);
11562   unsigned NumValues = ValueVTs.size();
11563   if (NumValues == 0) return;
11564 
11565   SmallVector<SDValue, 4> Values(NumValues);
11566   SDValue Op = getValue(I.getOperand(0));
11567 
11568   for (unsigned i = 0; i != NumValues; ++i)
11569     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11570                             SDValue(Op.getNode(), Op.getResNo() + i));
11571 
11572   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11573                            DAG.getVTList(ValueVTs), Values));
11574 }
11575 
11576 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11578   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11579 
11580   SDLoc DL = getCurSDLoc();
11581   SDValue V1 = getValue(I.getOperand(0));
11582   SDValue V2 = getValue(I.getOperand(1));
11583   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11584 
11585   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11586   if (VT.isScalableVector()) {
11587     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11588     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11589                              DAG.getConstant(Imm, DL, IdxVT)));
11590     return;
11591   }
11592 
11593   unsigned NumElts = VT.getVectorNumElements();
11594 
11595   uint64_t Idx = (NumElts + Imm) % NumElts;
11596 
11597   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11598   SmallVector<int, 8> Mask;
11599   for (unsigned i = 0; i < NumElts; ++i)
11600     Mask.push_back(Idx + i);
11601   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11602 }
11603