1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 41 #include "llvm/CodeGen/MachineMemOperand.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RuntimeLibcalls.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 48 #include "llvm/CodeGen/StackMaps.h" 49 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 50 #include "llvm/CodeGen/TargetFrameLowering.h" 51 #include "llvm/CodeGen/TargetInstrInfo.h" 52 #include "llvm/CodeGen/TargetOpcodes.h" 53 #include "llvm/CodeGen/TargetRegisterInfo.h" 54 #include "llvm/CodeGen/TargetSubtargetInfo.h" 55 #include "llvm/CodeGen/WinEHFuncInfo.h" 56 #include "llvm/IR/Argument.h" 57 #include "llvm/IR/Attributes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/CFG.h" 60 #include "llvm/IR/CallingConv.h" 61 #include "llvm/IR/Constant.h" 62 #include "llvm/IR/ConstantRange.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfo.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/EHPersonalities.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <optional> 104 #include <tuple> 105 106 using namespace llvm; 107 using namespace PatternMatch; 108 using namespace SwitchCG; 109 110 #define DEBUG_TYPE "isel" 111 112 /// LimitFloatPrecision - Generate low-precision inline sequences for 113 /// some float libcalls (6, 8 or 12 bits). 114 static unsigned LimitFloatPrecision; 115 116 static cl::opt<bool> 117 InsertAssertAlign("insert-assert-align", cl::init(true), 118 cl::desc("Insert the experimental `assertalign` node."), 119 cl::ReallyHidden); 120 121 static cl::opt<unsigned, true> 122 LimitFPPrecision("limit-float-precision", 123 cl::desc("Generate low-precision inline sequences " 124 "for some float libcalls"), 125 cl::location(LimitFloatPrecision), cl::Hidden, 126 cl::init(0)); 127 128 static cl::opt<unsigned> SwitchPeelThreshold( 129 "switch-peel-threshold", cl::Hidden, cl::init(66), 130 cl::desc("Set the case probability threshold for peeling the case from a " 131 "switch statement. A value greater than 100 will void this " 132 "optimization")); 133 134 // Limit the width of DAG chains. This is important in general to prevent 135 // DAG-based analysis from blowing up. For example, alias analysis and 136 // load clustering may not complete in reasonable time. It is difficult to 137 // recognize and avoid this situation within each individual analysis, and 138 // future analyses are likely to have the same behavior. Limiting DAG width is 139 // the safe approach and will be especially important with global DAGs. 140 // 141 // MaxParallelChains default is arbitrarily high to avoid affecting 142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 143 // sequence over this should have been converted to llvm.memcpy by the 144 // frontend. It is easy to induce this behavior with .ll code such as: 145 // %buffer = alloca [4096 x i8] 146 // %data = load [4096 x i8]* %argPtr 147 // store [4096 x i8] %data, [4096 x i8]* %buffer 148 static const unsigned MaxParallelChains = 64; 149 150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 151 const SDValue *Parts, unsigned NumParts, 152 MVT PartVT, EVT ValueVT, const Value *V, 153 std::optional<CallingConv::ID> CC); 154 155 /// getCopyFromParts - Create a value that contains the specified legal parts 156 /// combined into the value they represent. If the parts combine to a type 157 /// larger than ValueVT then AssertOp can be used to specify whether the extra 158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 159 /// (ISD::AssertSext). 160 static SDValue 161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 162 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 163 std::optional<CallingConv::ID> CC = std::nullopt, 164 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 165 // Let the target assemble the parts if it wants to 166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 167 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 168 PartVT, ValueVT, CC)) 169 return Val; 170 171 if (ValueVT.isVector()) 172 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 173 CC); 174 175 assert(NumParts > 0 && "No parts to assemble!"); 176 SDValue Val = Parts[0]; 177 178 if (NumParts > 1) { 179 // Assemble the value from multiple parts. 180 if (ValueVT.isInteger()) { 181 unsigned PartBits = PartVT.getSizeInBits(); 182 unsigned ValueBits = ValueVT.getSizeInBits(); 183 184 // Assemble the power of 2 part. 185 unsigned RoundParts = llvm::bit_floor(NumParts); 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 std::optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 std::optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void 482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 483 unsigned NumParts, MVT PartVT, const Value *V, 484 std::optional<CallingConv::ID> CallConv = std::nullopt, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = llvm::bit_floor(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 std::optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 723 RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 std::optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, std::optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 std::optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = isABIMangled() 851 ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), *CallConv, RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = isABIMangled() 934 ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), *CallConv, RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Add SDDbgValue nodes for any var locs here. Do so before updating 1139 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1140 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1141 // Add SDDbgValue nodes for any var locs here. Do so before updating 1142 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1143 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1144 It != End; ++It) { 1145 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1146 dropDanglingDebugInfo(Var, It->Expr); 1147 if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder, 1148 /*IsVariadic=*/false)) 1149 addDanglingDebugInfo(It, SDNodeOrder); 1150 } 1151 } 1152 1153 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1154 if (!isa<DbgInfoIntrinsic>(I)) 1155 ++SDNodeOrder; 1156 1157 CurInst = &I; 1158 1159 // Set inserted listener only if required. 1160 bool NodeInserted = false; 1161 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1162 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1163 if (PCSectionsMD) { 1164 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1165 DAG, [&](SDNode *) { NodeInserted = true; }); 1166 } 1167 1168 visit(I.getOpcode(), I); 1169 1170 if (!I.isTerminator() && !HasTailCall && 1171 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1172 CopyToExportRegsIfNeeded(&I); 1173 1174 // Handle metadata. 1175 if (PCSectionsMD) { 1176 auto It = NodeMap.find(&I); 1177 if (It != NodeMap.end()) { 1178 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1179 } else if (NodeInserted) { 1180 // This should not happen; if it does, don't let it go unnoticed so we can 1181 // fix it. Relevant visit*() function is probably missing a setValue(). 1182 errs() << "warning: loosing !pcsections metadata [" 1183 << I.getModule()->getName() << "]\n"; 1184 LLVM_DEBUG(I.dump()); 1185 assert(false); 1186 } 1187 } 1188 1189 CurInst = nullptr; 1190 } 1191 1192 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1193 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1194 } 1195 1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1197 // Note: this doesn't use InstVisitor, because it has to work with 1198 // ConstantExpr's in addition to instructions. 1199 switch (Opcode) { 1200 default: llvm_unreachable("Unknown instruction type encountered!"); 1201 // Build the switch statement using the Instruction.def file. 1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1203 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1204 #include "llvm/IR/Instruction.def" 1205 } 1206 } 1207 1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1209 unsigned Order) { 1210 DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order); 1211 } 1212 1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1214 unsigned Order) { 1215 // We treat variadic dbg_values differently at this stage. 1216 if (DI->hasArgList()) { 1217 // For variadic dbg_values we will now insert an undef. 1218 // FIXME: We can potentially recover these! 1219 SmallVector<SDDbgOperand, 2> Locs; 1220 for (const Value *V : DI->getValues()) { 1221 auto Undef = UndefValue::get(V->getType()); 1222 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1223 } 1224 SDDbgValue *SDV = DAG.getDbgValueList( 1225 DI->getVariable(), DI->getExpression(), Locs, {}, 1226 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1227 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1228 } else { 1229 // TODO: Dangling debug info will eventually either be resolved or produce 1230 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1231 // between the original dbg.value location and its resolved DBG_VALUE, 1232 // which we should ideally fill with an extra Undef DBG_VALUE. 1233 assert(DI->getNumVariableLocationOps() == 1 && 1234 "DbgValueInst without an ArgList should have a single location " 1235 "operand."); 1236 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1237 } 1238 } 1239 1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1241 const DIExpression *Expr) { 1242 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1243 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1244 DIExpression *DanglingExpr = DDI.getExpression(); 1245 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1246 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1247 << "\n"); 1248 return true; 1249 } 1250 return false; 1251 }; 1252 1253 for (auto &DDIMI : DanglingDebugInfoMap) { 1254 DanglingDebugInfoVector &DDIV = DDIMI.second; 1255 1256 // If debug info is to be dropped, run it through final checks to see 1257 // whether it can be salvaged. 1258 for (auto &DDI : DDIV) 1259 if (isMatchingDbgValue(DDI)) 1260 salvageUnresolvedDbgValue(DDI); 1261 1262 erase_if(DDIV, isMatchingDbgValue); 1263 } 1264 } 1265 1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1267 // generate the debug data structures now that we've seen its definition. 1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1269 SDValue Val) { 1270 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1271 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1272 return; 1273 1274 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1275 for (auto &DDI : DDIV) { 1276 DebugLoc DL = DDI.getDebugLoc(); 1277 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1278 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1279 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1280 DIExpression *Expr = DDI.getExpression(); 1281 assert(Variable->isValidLocationForIntrinsic(DL) && 1282 "Expected inlined-at fields to agree"); 1283 SDDbgValue *SDV; 1284 if (Val.getNode()) { 1285 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1286 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1287 // we couldn't resolve it directly when examining the DbgValue intrinsic 1288 // in the first place we should not be more successful here). Unless we 1289 // have some test case that prove this to be correct we should avoid 1290 // calling EmitFuncArgumentDbgValue here. 1291 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1292 FuncArgumentDbgValueKind::Value, Val)) { 1293 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1294 << "\n"); 1295 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1296 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1297 // inserted after the definition of Val when emitting the instructions 1298 // after ISel. An alternative could be to teach 1299 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1300 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1301 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1302 << ValSDNodeOrder << "\n"); 1303 SDV = getDbgValue(Val, Variable, Expr, DL, 1304 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1305 DAG.AddDbgValue(SDV, false); 1306 } else 1307 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1308 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1309 } else { 1310 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1311 auto Undef = UndefValue::get(V->getType()); 1312 auto SDV = 1313 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1314 DAG.AddDbgValue(SDV, false); 1315 } 1316 } 1317 DDIV.clear(); 1318 } 1319 1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1321 // TODO: For the variadic implementation, instead of only checking the fail 1322 // state of `handleDebugValue`, we need know specifically which values were 1323 // invalid, so that we attempt to salvage only those values when processing 1324 // a DIArgList. 1325 Value *V = DDI.getVariableLocationOp(0); 1326 Value *OrigV = V; 1327 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1328 DIExpression *Expr = DDI.getExpression(); 1329 DebugLoc DL = DDI.getDebugLoc(); 1330 unsigned SDOrder = DDI.getSDNodeOrder(); 1331 1332 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1333 // that DW_OP_stack_value is desired. 1334 bool StackValue = true; 1335 1336 // Can this Value can be encoded without any further work? 1337 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1338 return; 1339 1340 // Attempt to salvage back through as many instructions as possible. Bail if 1341 // a non-instruction is seen, such as a constant expression or global 1342 // variable. FIXME: Further work could recover those too. 1343 while (isa<Instruction>(V)) { 1344 Instruction &VAsInst = *cast<Instruction>(V); 1345 // Temporary "0", awaiting real implementation. 1346 SmallVector<uint64_t, 16> Ops; 1347 SmallVector<Value *, 4> AdditionalValues; 1348 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1349 AdditionalValues); 1350 // If we cannot salvage any further, and haven't yet found a suitable debug 1351 // expression, bail out. 1352 if (!V) 1353 break; 1354 1355 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1356 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1357 // here for variadic dbg_values, remove that condition. 1358 if (!AdditionalValues.empty()) 1359 break; 1360 1361 // New value and expr now represent this debuginfo. 1362 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1363 1364 // Some kind of simplification occurred: check whether the operand of the 1365 // salvaged debug expression can be encoded in this DAG. 1366 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1367 LLVM_DEBUG( 1368 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1369 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1370 return; 1371 } 1372 } 1373 1374 // This was the final opportunity to salvage this debug information, and it 1375 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1376 // any earlier variable location. 1377 assert(OrigV && "V shouldn't be null"); 1378 auto *Undef = UndefValue::get(OrigV->getType()); 1379 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1380 DAG.AddDbgValue(SDV, false); 1381 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1382 << "\n"); 1383 } 1384 1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1386 DILocalVariable *Var, 1387 DIExpression *Expr, DebugLoc DbgLoc, 1388 unsigned Order, bool IsVariadic) { 1389 if (Values.empty()) 1390 return true; 1391 SmallVector<SDDbgOperand> LocationOps; 1392 SmallVector<SDNode *> Dependencies; 1393 for (const Value *V : Values) { 1394 // Constant value. 1395 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1396 isa<ConstantPointerNull>(V)) { 1397 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1398 continue; 1399 } 1400 1401 // Look through IntToPtr constants. 1402 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1403 if (CE->getOpcode() == Instruction::IntToPtr) { 1404 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1405 continue; 1406 } 1407 1408 // If the Value is a frame index, we can create a FrameIndex debug value 1409 // without relying on the DAG at all. 1410 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1411 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1412 if (SI != FuncInfo.StaticAllocaMap.end()) { 1413 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1414 continue; 1415 } 1416 } 1417 1418 // Do not use getValue() in here; we don't want to generate code at 1419 // this point if it hasn't been done yet. 1420 SDValue N = NodeMap[V]; 1421 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1422 N = UnusedArgNodeMap[V]; 1423 if (N.getNode()) { 1424 // Only emit func arg dbg value for non-variadic dbg.values for now. 1425 if (!IsVariadic && 1426 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1427 FuncArgumentDbgValueKind::Value, N)) 1428 return true; 1429 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1430 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1431 // describe stack slot locations. 1432 // 1433 // Consider "int x = 0; int *px = &x;". There are two kinds of 1434 // interesting debug values here after optimization: 1435 // 1436 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1437 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1438 // 1439 // Both describe the direct values of their associated variables. 1440 Dependencies.push_back(N.getNode()); 1441 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1442 continue; 1443 } 1444 LocationOps.emplace_back( 1445 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1446 continue; 1447 } 1448 1449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1450 // Special rules apply for the first dbg.values of parameter variables in a 1451 // function. Identify them by the fact they reference Argument Values, that 1452 // they're parameters, and they are parameters of the current function. We 1453 // need to let them dangle until they get an SDNode. 1454 bool IsParamOfFunc = 1455 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1456 if (IsParamOfFunc) 1457 return false; 1458 1459 // The value is not used in this block yet (or it would have an SDNode). 1460 // We still want the value to appear for the user if possible -- if it has 1461 // an associated VReg, we can refer to that instead. 1462 auto VMI = FuncInfo.ValueMap.find(V); 1463 if (VMI != FuncInfo.ValueMap.end()) { 1464 unsigned Reg = VMI->second; 1465 // If this is a PHI node, it may be split up into several MI PHI nodes 1466 // (in FunctionLoweringInfo::set). 1467 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1468 V->getType(), std::nullopt); 1469 if (RFV.occupiesMultipleRegs()) { 1470 // FIXME: We could potentially support variadic dbg_values here. 1471 if (IsVariadic) 1472 return false; 1473 unsigned Offset = 0; 1474 unsigned BitsToDescribe = 0; 1475 if (auto VarSize = Var->getSizeInBits()) 1476 BitsToDescribe = *VarSize; 1477 if (auto Fragment = Expr->getFragmentInfo()) 1478 BitsToDescribe = Fragment->SizeInBits; 1479 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1480 // Bail out if all bits are described already. 1481 if (Offset >= BitsToDescribe) 1482 break; 1483 // TODO: handle scalable vectors. 1484 unsigned RegisterSize = RegAndSize.second; 1485 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1486 ? BitsToDescribe - Offset 1487 : RegisterSize; 1488 auto FragmentExpr = DIExpression::createFragmentExpression( 1489 Expr, Offset, FragmentSize); 1490 if (!FragmentExpr) 1491 continue; 1492 SDDbgValue *SDV = DAG.getVRegDbgValue( 1493 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1494 DAG.AddDbgValue(SDV, false); 1495 Offset += RegisterSize; 1496 } 1497 return true; 1498 } 1499 // We can use simple vreg locations for variadic dbg_values as well. 1500 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1501 continue; 1502 } 1503 // We failed to create a SDDbgOperand for V. 1504 return false; 1505 } 1506 1507 // We have created a SDDbgOperand for each Value in Values. 1508 // Should use Order instead of SDNodeOrder? 1509 assert(!LocationOps.empty()); 1510 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1511 /*IsIndirect=*/false, DbgLoc, 1512 SDNodeOrder, IsVariadic); 1513 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1514 return true; 1515 } 1516 1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1518 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1519 for (auto &Pair : DanglingDebugInfoMap) 1520 for (auto &DDI : Pair.second) 1521 salvageUnresolvedDbgValue(DDI); 1522 clearDanglingDebugInfo(); 1523 } 1524 1525 /// getCopyFromRegs - If there was virtual register allocated for the value V 1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1528 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1529 SDValue Result; 1530 1531 if (It != FuncInfo.ValueMap.end()) { 1532 Register InReg = It->second; 1533 1534 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1535 DAG.getDataLayout(), InReg, Ty, 1536 std::nullopt); // This is not an ABI copy. 1537 SDValue Chain = DAG.getEntryNode(); 1538 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1539 V); 1540 resolveDanglingDebugInfo(V, Result); 1541 } 1542 1543 return Result; 1544 } 1545 1546 /// getValue - Return an SDValue for the given Value. 1547 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1548 // If we already have an SDValue for this value, use it. It's important 1549 // to do this first, so that we don't create a CopyFromReg if we already 1550 // have a regular SDValue. 1551 SDValue &N = NodeMap[V]; 1552 if (N.getNode()) return N; 1553 1554 // If there's a virtual register allocated and initialized for this 1555 // value, use it. 1556 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1557 return copyFromReg; 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getNonRegisterValue - Return an SDValue for the given Value, but 1567 /// don't look in FuncInfo.ValueMap for a virtual register. 1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1569 // If we already have an SDValue for this value, use it. 1570 SDValue &N = NodeMap[V]; 1571 if (N.getNode()) { 1572 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1573 // Remove the debug location from the node as the node is about to be used 1574 // in a location which may differ from the original debug location. This 1575 // is relevant to Constant and ConstantFP nodes because they can appear 1576 // as constant expressions inside PHI nodes. 1577 N->setDebugLoc(DebugLoc()); 1578 } 1579 return N; 1580 } 1581 1582 // Otherwise create a new SDValue and remember it. 1583 SDValue Val = getValueImpl(V); 1584 NodeMap[V] = Val; 1585 resolveDanglingDebugInfo(V, Val); 1586 return Val; 1587 } 1588 1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1590 /// Create an SDValue for the given value. 1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1592 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1593 1594 if (const Constant *C = dyn_cast<Constant>(V)) { 1595 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1596 1597 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1598 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1599 1600 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1601 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1602 1603 if (isa<ConstantPointerNull>(C)) { 1604 unsigned AS = V->getType()->getPointerAddressSpace(); 1605 return DAG.getConstant(0, getCurSDLoc(), 1606 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1607 } 1608 1609 if (match(C, m_VScale(DAG.getDataLayout()))) 1610 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1611 1612 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1613 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1614 1615 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1616 return DAG.getUNDEF(VT); 1617 1618 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1619 visit(CE->getOpcode(), *CE); 1620 SDValue N1 = NodeMap[V]; 1621 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1622 return N1; 1623 } 1624 1625 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1626 SmallVector<SDValue, 4> Constants; 1627 for (const Use &U : C->operands()) { 1628 SDNode *Val = getValue(U).getNode(); 1629 // If the operand is an empty aggregate, there are no values. 1630 if (!Val) continue; 1631 // Add each leaf value from the operand to the Constants list 1632 // to form a flattened list of all the values. 1633 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1634 Constants.push_back(SDValue(Val, i)); 1635 } 1636 1637 return DAG.getMergeValues(Constants, getCurSDLoc()); 1638 } 1639 1640 if (const ConstantDataSequential *CDS = 1641 dyn_cast<ConstantDataSequential>(C)) { 1642 SmallVector<SDValue, 4> Ops; 1643 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1644 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1645 // Add each leaf value from the operand to the Constants list 1646 // to form a flattened list of all the values. 1647 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1648 Ops.push_back(SDValue(Val, i)); 1649 } 1650 1651 if (isa<ArrayType>(CDS->getType())) 1652 return DAG.getMergeValues(Ops, getCurSDLoc()); 1653 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1654 } 1655 1656 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1657 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1658 "Unknown struct or array constant!"); 1659 1660 SmallVector<EVT, 4> ValueVTs; 1661 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1662 unsigned NumElts = ValueVTs.size(); 1663 if (NumElts == 0) 1664 return SDValue(); // empty struct 1665 SmallVector<SDValue, 4> Constants(NumElts); 1666 for (unsigned i = 0; i != NumElts; ++i) { 1667 EVT EltVT = ValueVTs[i]; 1668 if (isa<UndefValue>(C)) 1669 Constants[i] = DAG.getUNDEF(EltVT); 1670 else if (EltVT.isFloatingPoint()) 1671 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1672 else 1673 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1674 } 1675 1676 return DAG.getMergeValues(Constants, getCurSDLoc()); 1677 } 1678 1679 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1680 return DAG.getBlockAddress(BA, VT); 1681 1682 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1683 return getValue(Equiv->getGlobalValue()); 1684 1685 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1686 return getValue(NC->getGlobalValue()); 1687 1688 VectorType *VecTy = cast<VectorType>(V->getType()); 1689 1690 // Now that we know the number and type of the elements, get that number of 1691 // elements into the Ops array based on what kind of constant it is. 1692 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1693 SmallVector<SDValue, 16> Ops; 1694 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1695 for (unsigned i = 0; i != NumElements; ++i) 1696 Ops.push_back(getValue(CV->getOperand(i))); 1697 1698 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1699 } 1700 1701 if (isa<ConstantAggregateZero>(C)) { 1702 EVT EltVT = 1703 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1704 1705 SDValue Op; 1706 if (EltVT.isFloatingPoint()) 1707 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1708 else 1709 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1710 1711 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1712 } 1713 1714 llvm_unreachable("Unknown vector constant"); 1715 } 1716 1717 // If this is a static alloca, generate it as the frameindex instead of 1718 // computation. 1719 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1720 DenseMap<const AllocaInst*, int>::iterator SI = 1721 FuncInfo.StaticAllocaMap.find(AI); 1722 if (SI != FuncInfo.StaticAllocaMap.end()) 1723 return DAG.getFrameIndex( 1724 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1725 } 1726 1727 // If this is an instruction which fast-isel has deferred, select it now. 1728 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1729 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1730 1731 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1732 Inst->getType(), std::nullopt); 1733 SDValue Chain = DAG.getEntryNode(); 1734 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1735 } 1736 1737 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1738 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1739 1740 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1741 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1742 1743 llvm_unreachable("Can't get register for value!"); 1744 } 1745 1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1747 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1748 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1749 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1750 bool IsSEH = isAsynchronousEHPersonality(Pers); 1751 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1752 if (!IsSEH) 1753 CatchPadMBB->setIsEHScopeEntry(); 1754 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1755 if (IsMSVCCXX || IsCoreCLR) 1756 CatchPadMBB->setIsEHFuncletEntry(); 1757 } 1758 1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1760 // Update machine-CFG edge. 1761 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1762 FuncInfo.MBB->addSuccessor(TargetMBB); 1763 TargetMBB->setIsEHCatchretTarget(true); 1764 DAG.getMachineFunction().setHasEHCatchret(true); 1765 1766 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1767 bool IsSEH = isAsynchronousEHPersonality(Pers); 1768 if (IsSEH) { 1769 // If this is not a fall-through branch or optimizations are switched off, 1770 // emit the branch. 1771 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1772 TM.getOptLevel() == CodeGenOpt::None) 1773 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1774 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1775 return; 1776 } 1777 1778 // Figure out the funclet membership for the catchret's successor. 1779 // This will be used by the FuncletLayout pass to determine how to order the 1780 // BB's. 1781 // A 'catchret' returns to the outer scope's color. 1782 Value *ParentPad = I.getCatchSwitchParentPad(); 1783 const BasicBlock *SuccessorColor; 1784 if (isa<ConstantTokenNone>(ParentPad)) 1785 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1786 else 1787 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1788 assert(SuccessorColor && "No parent funclet for catchret!"); 1789 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1790 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1791 1792 // Create the terminator node. 1793 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1794 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1795 DAG.getBasicBlock(SuccessorColorMBB)); 1796 DAG.setRoot(Ret); 1797 } 1798 1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1800 // Don't emit any special code for the cleanuppad instruction. It just marks 1801 // the start of an EH scope/funclet. 1802 FuncInfo.MBB->setIsEHScopeEntry(); 1803 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1804 if (Pers != EHPersonality::Wasm_CXX) { 1805 FuncInfo.MBB->setIsEHFuncletEntry(); 1806 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1807 } 1808 } 1809 1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1811 // not match, it is OK to add only the first unwind destination catchpad to the 1812 // successors, because there will be at least one invoke instruction within the 1813 // catch scope that points to the next unwind destination, if one exists, so 1814 // CFGSort cannot mess up with BB sorting order. 1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1816 // call within them, and catchpads only consisting of 'catch (...)' have a 1817 // '__cxa_end_catch' call within them, both of which generate invokes in case 1818 // the next unwind destination exists, i.e., the next unwind destination is not 1819 // the caller.) 1820 // 1821 // Having at most one EH pad successor is also simpler and helps later 1822 // transformations. 1823 // 1824 // For example, 1825 // current: 1826 // invoke void @foo to ... unwind label %catch.dispatch 1827 // catch.dispatch: 1828 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1829 // catch.start: 1830 // ... 1831 // ... in this BB or some other child BB dominated by this BB there will be an 1832 // invoke that points to 'next' BB as an unwind destination 1833 // 1834 // next: ; We don't need to add this to 'current' BB's successor 1835 // ... 1836 static void findWasmUnwindDestinations( 1837 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1838 BranchProbability Prob, 1839 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1840 &UnwindDests) { 1841 while (EHPadBB) { 1842 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1843 if (isa<CleanupPadInst>(Pad)) { 1844 // Stop on cleanup pads. 1845 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1846 UnwindDests.back().first->setIsEHScopeEntry(); 1847 break; 1848 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1849 // Add the catchpad handlers to the possible destinations. We don't 1850 // continue to the unwind destination of the catchswitch for wasm. 1851 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1852 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1853 UnwindDests.back().first->setIsEHScopeEntry(); 1854 } 1855 break; 1856 } else { 1857 continue; 1858 } 1859 } 1860 } 1861 1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1863 /// many places it could ultimately go. In the IR, we have a single unwind 1864 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1865 /// This function skips over imaginary basic blocks that hold catchswitch 1866 /// instructions, and finds all the "real" machine 1867 /// basic block destinations. As those destinations may not be successors of 1868 /// EHPadBB, here we also calculate the edge probability to those destinations. 1869 /// The passed-in Prob is the edge probability to EHPadBB. 1870 static void findUnwindDestinations( 1871 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1872 BranchProbability Prob, 1873 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1874 &UnwindDests) { 1875 EHPersonality Personality = 1876 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1877 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1878 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1879 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1880 bool IsSEH = isAsynchronousEHPersonality(Personality); 1881 1882 if (IsWasmCXX) { 1883 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1884 assert(UnwindDests.size() <= 1 && 1885 "There should be at most one unwind destination for wasm"); 1886 return; 1887 } 1888 1889 while (EHPadBB) { 1890 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1891 BasicBlock *NewEHPadBB = nullptr; 1892 if (isa<LandingPadInst>(Pad)) { 1893 // Stop on landingpads. They are not funclets. 1894 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1895 break; 1896 } else if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1898 // personalities. 1899 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1900 UnwindDests.back().first->setIsEHScopeEntry(); 1901 UnwindDests.back().first->setIsEHFuncletEntry(); 1902 break; 1903 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1904 // Add the catchpad handlers to the possible destinations. 1905 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1906 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1907 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1908 if (IsMSVCCXX || IsCoreCLR) 1909 UnwindDests.back().first->setIsEHFuncletEntry(); 1910 if (!IsSEH) 1911 UnwindDests.back().first->setIsEHScopeEntry(); 1912 } 1913 NewEHPadBB = CatchSwitch->getUnwindDest(); 1914 } else { 1915 continue; 1916 } 1917 1918 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1919 if (BPI && NewEHPadBB) 1920 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1921 EHPadBB = NewEHPadBB; 1922 } 1923 } 1924 1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1926 // Update successor info. 1927 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1928 auto UnwindDest = I.getUnwindDest(); 1929 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1930 BranchProbability UnwindDestProb = 1931 (BPI && UnwindDest) 1932 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1933 : BranchProbability::getZero(); 1934 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1935 for (auto &UnwindDest : UnwindDests) { 1936 UnwindDest.first->setIsEHPad(); 1937 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1938 } 1939 FuncInfo.MBB->normalizeSuccProbs(); 1940 1941 // Create the terminator node. 1942 SDValue Ret = 1943 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1944 DAG.setRoot(Ret); 1945 } 1946 1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1948 report_fatal_error("visitCatchSwitch not yet implemented!"); 1949 } 1950 1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1953 auto &DL = DAG.getDataLayout(); 1954 SDValue Chain = getControlRoot(); 1955 SmallVector<ISD::OutputArg, 8> Outs; 1956 SmallVector<SDValue, 8> OutVals; 1957 1958 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1959 // lower 1960 // 1961 // %val = call <ty> @llvm.experimental.deoptimize() 1962 // ret <ty> %val 1963 // 1964 // differently. 1965 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1966 LowerDeoptimizingReturn(); 1967 return; 1968 } 1969 1970 if (!FuncInfo.CanLowerReturn) { 1971 unsigned DemoteReg = FuncInfo.DemoteRegister; 1972 const Function *F = I.getParent()->getParent(); 1973 1974 // Emit a store of the return value through the virtual register. 1975 // Leave Outs empty so that LowerReturn won't try to load return 1976 // registers the usual way. 1977 SmallVector<EVT, 1> PtrValueVTs; 1978 ComputeValueVTs(TLI, DL, 1979 F->getReturnType()->getPointerTo( 1980 DAG.getDataLayout().getAllocaAddrSpace()), 1981 PtrValueVTs); 1982 1983 SDValue RetPtr = 1984 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1985 SDValue RetOp = getValue(I.getOperand(0)); 1986 1987 SmallVector<EVT, 4> ValueVTs, MemVTs; 1988 SmallVector<uint64_t, 4> Offsets; 1989 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1990 &Offsets); 1991 unsigned NumValues = ValueVTs.size(); 1992 1993 SmallVector<SDValue, 4> Chains(NumValues); 1994 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1995 for (unsigned i = 0; i != NumValues; ++i) { 1996 // An aggregate return value cannot wrap around the address space, so 1997 // offsets to its parts don't wrap either. 1998 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1999 TypeSize::Fixed(Offsets[i])); 2000 2001 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2002 if (MemVTs[i] != ValueVTs[i]) 2003 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2004 Chains[i] = DAG.getStore( 2005 Chain, getCurSDLoc(), Val, 2006 // FIXME: better loc info would be nice. 2007 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2008 commonAlignment(BaseAlign, Offsets[i])); 2009 } 2010 2011 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2012 MVT::Other, Chains); 2013 } else if (I.getNumOperands() != 0) { 2014 SmallVector<EVT, 4> ValueVTs; 2015 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2016 unsigned NumValues = ValueVTs.size(); 2017 if (NumValues) { 2018 SDValue RetOp = getValue(I.getOperand(0)); 2019 2020 const Function *F = I.getParent()->getParent(); 2021 2022 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2023 I.getOperand(0)->getType(), F->getCallingConv(), 2024 /*IsVarArg*/ false, DL); 2025 2026 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2027 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2028 ExtendKind = ISD::SIGN_EXTEND; 2029 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2030 ExtendKind = ISD::ZERO_EXTEND; 2031 2032 LLVMContext &Context = F->getContext(); 2033 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2034 2035 for (unsigned j = 0; j != NumValues; ++j) { 2036 EVT VT = ValueVTs[j]; 2037 2038 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2039 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2040 2041 CallingConv::ID CC = F->getCallingConv(); 2042 2043 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2044 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2045 SmallVector<SDValue, 4> Parts(NumParts); 2046 getCopyToParts(DAG, getCurSDLoc(), 2047 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2048 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2049 2050 // 'inreg' on function refers to return value 2051 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2052 if (RetInReg) 2053 Flags.setInReg(); 2054 2055 if (I.getOperand(0)->getType()->isPointerTy()) { 2056 Flags.setPointer(); 2057 Flags.setPointerAddrSpace( 2058 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2059 } 2060 2061 if (NeedsRegBlock) { 2062 Flags.setInConsecutiveRegs(); 2063 if (j == NumValues - 1) 2064 Flags.setInConsecutiveRegsLast(); 2065 } 2066 2067 // Propagate extension type if any 2068 if (ExtendKind == ISD::SIGN_EXTEND) 2069 Flags.setSExt(); 2070 else if (ExtendKind == ISD::ZERO_EXTEND) 2071 Flags.setZExt(); 2072 2073 for (unsigned i = 0; i < NumParts; ++i) { 2074 Outs.push_back(ISD::OutputArg(Flags, 2075 Parts[i].getValueType().getSimpleVT(), 2076 VT, /*isfixed=*/true, 0, 0)); 2077 OutVals.push_back(Parts[i]); 2078 } 2079 } 2080 } 2081 } 2082 2083 // Push in swifterror virtual register as the last element of Outs. This makes 2084 // sure swifterror virtual register will be returned in the swifterror 2085 // physical register. 2086 const Function *F = I.getParent()->getParent(); 2087 if (TLI.supportSwiftError() && 2088 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2089 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2090 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2091 Flags.setSwiftError(); 2092 Outs.push_back(ISD::OutputArg( 2093 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2094 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2095 // Create SDNode for the swifterror virtual register. 2096 OutVals.push_back( 2097 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2098 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2099 EVT(TLI.getPointerTy(DL)))); 2100 } 2101 2102 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2103 CallingConv::ID CallConv = 2104 DAG.getMachineFunction().getFunction().getCallingConv(); 2105 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2106 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2107 2108 // Verify that the target's LowerReturn behaved as expected. 2109 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2110 "LowerReturn didn't return a valid chain!"); 2111 2112 // Update the DAG with the new chain value resulting from return lowering. 2113 DAG.setRoot(Chain); 2114 } 2115 2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2117 /// created for it, emit nodes to copy the value into the virtual 2118 /// registers. 2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2120 // Skip empty types 2121 if (V->getType()->isEmptyTy()) 2122 return; 2123 2124 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2125 if (VMI != FuncInfo.ValueMap.end()) { 2126 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2127 CopyValueToVirtualRegister(V, VMI->second); 2128 } 2129 } 2130 2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2132 /// the current basic block, add it to ValueMap now so that we'll get a 2133 /// CopyTo/FromReg. 2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2135 // No need to export constants. 2136 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2137 2138 // Already exported? 2139 if (FuncInfo.isExportedInst(V)) return; 2140 2141 Register Reg = FuncInfo.InitializeRegForValue(V); 2142 CopyValueToVirtualRegister(V, Reg); 2143 } 2144 2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2146 const BasicBlock *FromBB) { 2147 // The operands of the setcc have to be in this block. We don't know 2148 // how to export them from some other block. 2149 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2150 // Can export from current BB. 2151 if (VI->getParent() == FromBB) 2152 return true; 2153 2154 // Is already exported, noop. 2155 return FuncInfo.isExportedInst(V); 2156 } 2157 2158 // If this is an argument, we can export it if the BB is the entry block or 2159 // if it is already exported. 2160 if (isa<Argument>(V)) { 2161 if (FromBB->isEntryBlock()) 2162 return true; 2163 2164 // Otherwise, can only export this if it is already exported. 2165 return FuncInfo.isExportedInst(V); 2166 } 2167 2168 // Otherwise, constants can always be exported. 2169 return true; 2170 } 2171 2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2173 BranchProbability 2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2175 const MachineBasicBlock *Dst) const { 2176 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2177 const BasicBlock *SrcBB = Src->getBasicBlock(); 2178 const BasicBlock *DstBB = Dst->getBasicBlock(); 2179 if (!BPI) { 2180 // If BPI is not available, set the default probability as 1 / N, where N is 2181 // the number of successors. 2182 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2183 return BranchProbability(1, SuccSize); 2184 } 2185 return BPI->getEdgeProbability(SrcBB, DstBB); 2186 } 2187 2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2189 MachineBasicBlock *Dst, 2190 BranchProbability Prob) { 2191 if (!FuncInfo.BPI) 2192 Src->addSuccessorWithoutProb(Dst); 2193 else { 2194 if (Prob.isUnknown()) 2195 Prob = getEdgeProbability(Src, Dst); 2196 Src->addSuccessor(Dst, Prob); 2197 } 2198 } 2199 2200 static bool InBlock(const Value *V, const BasicBlock *BB) { 2201 if (const Instruction *I = dyn_cast<Instruction>(V)) 2202 return I->getParent() == BB; 2203 return true; 2204 } 2205 2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2207 /// This function emits a branch and is used at the leaves of an OR or an 2208 /// AND operator tree. 2209 void 2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2211 MachineBasicBlock *TBB, 2212 MachineBasicBlock *FBB, 2213 MachineBasicBlock *CurBB, 2214 MachineBasicBlock *SwitchBB, 2215 BranchProbability TProb, 2216 BranchProbability FProb, 2217 bool InvertCond) { 2218 const BasicBlock *BB = CurBB->getBasicBlock(); 2219 2220 // If the leaf of the tree is a comparison, merge the condition into 2221 // the caseblock. 2222 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2223 // The operands of the cmp have to be in this block. We don't know 2224 // how to export them from some other block. If this is the first block 2225 // of the sequence, no exporting is needed. 2226 if (CurBB == SwitchBB || 2227 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2228 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2229 ISD::CondCode Condition; 2230 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2231 ICmpInst::Predicate Pred = 2232 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2233 Condition = getICmpCondCode(Pred); 2234 } else { 2235 const FCmpInst *FC = cast<FCmpInst>(Cond); 2236 FCmpInst::Predicate Pred = 2237 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2238 Condition = getFCmpCondCode(Pred); 2239 if (TM.Options.NoNaNsFPMath) 2240 Condition = getFCmpCodeWithoutNaN(Condition); 2241 } 2242 2243 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2244 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2245 SL->SwitchCases.push_back(CB); 2246 return; 2247 } 2248 } 2249 2250 // Create a CaseBlock record representing this branch. 2251 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2252 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2253 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2254 SL->SwitchCases.push_back(CB); 2255 } 2256 2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2258 MachineBasicBlock *TBB, 2259 MachineBasicBlock *FBB, 2260 MachineBasicBlock *CurBB, 2261 MachineBasicBlock *SwitchBB, 2262 Instruction::BinaryOps Opc, 2263 BranchProbability TProb, 2264 BranchProbability FProb, 2265 bool InvertCond) { 2266 // Skip over not part of the tree and remember to invert op and operands at 2267 // next level. 2268 Value *NotCond; 2269 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2270 InBlock(NotCond, CurBB->getBasicBlock())) { 2271 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2272 !InvertCond); 2273 return; 2274 } 2275 2276 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2277 const Value *BOpOp0, *BOpOp1; 2278 // Compute the effective opcode for Cond, taking into account whether it needs 2279 // to be inverted, e.g. 2280 // and (not (or A, B)), C 2281 // gets lowered as 2282 // and (and (not A, not B), C) 2283 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2284 if (BOp) { 2285 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2286 ? Instruction::And 2287 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2288 ? Instruction::Or 2289 : (Instruction::BinaryOps)0); 2290 if (InvertCond) { 2291 if (BOpc == Instruction::And) 2292 BOpc = Instruction::Or; 2293 else if (BOpc == Instruction::Or) 2294 BOpc = Instruction::And; 2295 } 2296 } 2297 2298 // If this node is not part of the or/and tree, emit it as a branch. 2299 // Note that all nodes in the tree should have same opcode. 2300 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2301 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2302 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2303 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2304 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2305 TProb, FProb, InvertCond); 2306 return; 2307 } 2308 2309 // Create TmpBB after CurBB. 2310 MachineFunction::iterator BBI(CurBB); 2311 MachineFunction &MF = DAG.getMachineFunction(); 2312 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2313 CurBB->getParent()->insert(++BBI, TmpBB); 2314 2315 if (Opc == Instruction::Or) { 2316 // Codegen X | Y as: 2317 // BB1: 2318 // jmp_if_X TBB 2319 // jmp TmpBB 2320 // TmpBB: 2321 // jmp_if_Y TBB 2322 // jmp FBB 2323 // 2324 2325 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2326 // The requirement is that 2327 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2328 // = TrueProb for original BB. 2329 // Assuming the original probabilities are A and B, one choice is to set 2330 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2331 // A/(1+B) and 2B/(1+B). This choice assumes that 2332 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2333 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2334 // TmpBB, but the math is more complicated. 2335 2336 auto NewTrueProb = TProb / 2; 2337 auto NewFalseProb = TProb / 2 + FProb; 2338 // Emit the LHS condition. 2339 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2340 NewFalseProb, InvertCond); 2341 2342 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2343 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2344 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2345 // Emit the RHS condition into TmpBB. 2346 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2347 Probs[1], InvertCond); 2348 } else { 2349 assert(Opc == Instruction::And && "Unknown merge op!"); 2350 // Codegen X & Y as: 2351 // BB1: 2352 // jmp_if_X TmpBB 2353 // jmp FBB 2354 // TmpBB: 2355 // jmp_if_Y TBB 2356 // jmp FBB 2357 // 2358 // This requires creation of TmpBB after CurBB. 2359 2360 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2361 // The requirement is that 2362 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2363 // = FalseProb for original BB. 2364 // Assuming the original probabilities are A and B, one choice is to set 2365 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2366 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2367 // TrueProb for BB1 * FalseProb for TmpBB. 2368 2369 auto NewTrueProb = TProb + FProb / 2; 2370 auto NewFalseProb = FProb / 2; 2371 // Emit the LHS condition. 2372 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2373 NewFalseProb, InvertCond); 2374 2375 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2376 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2377 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2378 // Emit the RHS condition into TmpBB. 2379 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2380 Probs[1], InvertCond); 2381 } 2382 } 2383 2384 /// If the set of cases should be emitted as a series of branches, return true. 2385 /// If we should emit this as a bunch of and/or'd together conditions, return 2386 /// false. 2387 bool 2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2389 if (Cases.size() != 2) return true; 2390 2391 // If this is two comparisons of the same values or'd or and'd together, they 2392 // will get folded into a single comparison, so don't emit two blocks. 2393 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2394 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2395 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2396 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2397 return false; 2398 } 2399 2400 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2401 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2402 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2403 Cases[0].CC == Cases[1].CC && 2404 isa<Constant>(Cases[0].CmpRHS) && 2405 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2406 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2407 return false; 2408 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2409 return false; 2410 } 2411 2412 return true; 2413 } 2414 2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2416 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2417 2418 // Update machine-CFG edges. 2419 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2420 2421 if (I.isUnconditional()) { 2422 // Update machine-CFG edges. 2423 BrMBB->addSuccessor(Succ0MBB); 2424 2425 // If this is not a fall-through branch or optimizations are switched off, 2426 // emit the branch. 2427 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2428 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2429 MVT::Other, getControlRoot(), 2430 DAG.getBasicBlock(Succ0MBB))); 2431 2432 return; 2433 } 2434 2435 // If this condition is one of the special cases we handle, do special stuff 2436 // now. 2437 const Value *CondVal = I.getCondition(); 2438 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2439 2440 // If this is a series of conditions that are or'd or and'd together, emit 2441 // this as a sequence of branches instead of setcc's with and/or operations. 2442 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2443 // unpredictable branches, and vector extracts because those jumps are likely 2444 // expensive for any target), this should improve performance. 2445 // For example, instead of something like: 2446 // cmp A, B 2447 // C = seteq 2448 // cmp D, E 2449 // F = setle 2450 // or C, F 2451 // jnz foo 2452 // Emit: 2453 // cmp A, B 2454 // je foo 2455 // cmp D, E 2456 // jle foo 2457 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2458 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2459 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2460 Value *Vec; 2461 const Value *BOp0, *BOp1; 2462 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2463 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2464 Opcode = Instruction::And; 2465 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2466 Opcode = Instruction::Or; 2467 2468 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2469 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2470 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2471 getEdgeProbability(BrMBB, Succ0MBB), 2472 getEdgeProbability(BrMBB, Succ1MBB), 2473 /*InvertCond=*/false); 2474 // If the compares in later blocks need to use values not currently 2475 // exported from this block, export them now. This block should always 2476 // be the first entry. 2477 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2478 2479 // Allow some cases to be rejected. 2480 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2481 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2482 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2483 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2484 } 2485 2486 // Emit the branch for this block. 2487 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2488 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2489 return; 2490 } 2491 2492 // Okay, we decided not to do this, remove any inserted MBB's and clear 2493 // SwitchCases. 2494 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2495 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2496 2497 SL->SwitchCases.clear(); 2498 } 2499 } 2500 2501 // Create a CaseBlock record representing this branch. 2502 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2503 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2504 2505 // Use visitSwitchCase to actually insert the fast branch sequence for this 2506 // cond branch. 2507 visitSwitchCase(CB, BrMBB); 2508 } 2509 2510 /// visitSwitchCase - Emits the necessary code to represent a single node in 2511 /// the binary search tree resulting from lowering a switch instruction. 2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2513 MachineBasicBlock *SwitchBB) { 2514 SDValue Cond; 2515 SDValue CondLHS = getValue(CB.CmpLHS); 2516 SDLoc dl = CB.DL; 2517 2518 if (CB.CC == ISD::SETTRUE) { 2519 // Branch or fall through to TrueBB. 2520 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2521 SwitchBB->normalizeSuccProbs(); 2522 if (CB.TrueBB != NextBlock(SwitchBB)) { 2523 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2524 DAG.getBasicBlock(CB.TrueBB))); 2525 } 2526 return; 2527 } 2528 2529 auto &TLI = DAG.getTargetLoweringInfo(); 2530 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2531 2532 // Build the setcc now. 2533 if (!CB.CmpMHS) { 2534 // Fold "(X == true)" to X and "(X == false)" to !X to 2535 // handle common cases produced by branch lowering. 2536 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2537 CB.CC == ISD::SETEQ) 2538 Cond = CondLHS; 2539 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2540 CB.CC == ISD::SETEQ) { 2541 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2542 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2543 } else { 2544 SDValue CondRHS = getValue(CB.CmpRHS); 2545 2546 // If a pointer's DAG type is larger than its memory type then the DAG 2547 // values are zero-extended. This breaks signed comparisons so truncate 2548 // back to the underlying type before doing the compare. 2549 if (CondLHS.getValueType() != MemVT) { 2550 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2551 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2552 } 2553 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2554 } 2555 } else { 2556 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2557 2558 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2559 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2560 2561 SDValue CmpOp = getValue(CB.CmpMHS); 2562 EVT VT = CmpOp.getValueType(); 2563 2564 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2565 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2566 ISD::SETLE); 2567 } else { 2568 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2569 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2570 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2571 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2572 } 2573 } 2574 2575 // Update successor info 2576 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2577 // TrueBB and FalseBB are always different unless the incoming IR is 2578 // degenerate. This only happens when running llc on weird IR. 2579 if (CB.TrueBB != CB.FalseBB) 2580 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2581 SwitchBB->normalizeSuccProbs(); 2582 2583 // If the lhs block is the next block, invert the condition so that we can 2584 // fall through to the lhs instead of the rhs block. 2585 if (CB.TrueBB == NextBlock(SwitchBB)) { 2586 std::swap(CB.TrueBB, CB.FalseBB); 2587 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2588 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2589 } 2590 2591 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2592 MVT::Other, getControlRoot(), Cond, 2593 DAG.getBasicBlock(CB.TrueBB)); 2594 2595 setValue(CurInst, BrCond); 2596 2597 // Insert the false branch. Do this even if it's a fall through branch, 2598 // this makes it easier to do DAG optimizations which require inverting 2599 // the branch condition. 2600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2601 DAG.getBasicBlock(CB.FalseBB)); 2602 2603 DAG.setRoot(BrCond); 2604 } 2605 2606 /// visitJumpTable - Emit JumpTable node in the current MBB 2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2608 // Emit the code for the jump table 2609 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2610 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2611 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2612 JT.Reg, PTy); 2613 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2614 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2615 MVT::Other, Index.getValue(1), 2616 Table, Index); 2617 DAG.setRoot(BrJumpTable); 2618 } 2619 2620 /// visitJumpTableHeader - This function emits necessary code to produce index 2621 /// in the JumpTable from switch case. 2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2623 JumpTableHeader &JTH, 2624 MachineBasicBlock *SwitchBB) { 2625 SDLoc dl = getCurSDLoc(); 2626 2627 // Subtract the lowest switch case value from the value being switched on. 2628 SDValue SwitchOp = getValue(JTH.SValue); 2629 EVT VT = SwitchOp.getValueType(); 2630 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2631 DAG.getConstant(JTH.First, dl, VT)); 2632 2633 // The SDNode we just created, which holds the value being switched on minus 2634 // the smallest case value, needs to be copied to a virtual register so it 2635 // can be used as an index into the jump table in a subsequent basic block. 2636 // This value may be smaller or larger than the target's pointer type, and 2637 // therefore require extension or truncating. 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2640 2641 unsigned JumpTableReg = 2642 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2643 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2644 JumpTableReg, SwitchOp); 2645 JT.Reg = JumpTableReg; 2646 2647 if (!JTH.FallthroughUnreachable) { 2648 // Emit the range check for the jump table, and branch to the default block 2649 // for the switch statement if the value being switched on exceeds the 2650 // largest case in the switch. 2651 SDValue CMP = DAG.getSetCC( 2652 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2653 Sub.getValueType()), 2654 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2655 2656 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2657 MVT::Other, CopyTo, CMP, 2658 DAG.getBasicBlock(JT.Default)); 2659 2660 // Avoid emitting unnecessary branches to the next block. 2661 if (JT.MBB != NextBlock(SwitchBB)) 2662 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2663 DAG.getBasicBlock(JT.MBB)); 2664 2665 DAG.setRoot(BrCond); 2666 } else { 2667 // Avoid emitting unnecessary branches to the next block. 2668 if (JT.MBB != NextBlock(SwitchBB)) 2669 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2670 DAG.getBasicBlock(JT.MBB))); 2671 else 2672 DAG.setRoot(CopyTo); 2673 } 2674 } 2675 2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2677 /// variable if there exists one. 2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2679 SDValue &Chain) { 2680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2681 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2682 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2683 MachineFunction &MF = DAG.getMachineFunction(); 2684 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2685 MachineSDNode *Node = 2686 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2687 if (Global) { 2688 MachinePointerInfo MPInfo(Global); 2689 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2690 MachineMemOperand::MODereferenceable; 2691 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2692 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2693 DAG.setNodeMemRefs(Node, {MemRef}); 2694 } 2695 if (PtrTy != PtrMemTy) 2696 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2697 return SDValue(Node, 0); 2698 } 2699 2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2701 /// tail spliced into a stack protector check success bb. 2702 /// 2703 /// For a high level explanation of how this fits into the stack protector 2704 /// generation see the comment on the declaration of class 2705 /// StackProtectorDescriptor. 2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2707 MachineBasicBlock *ParentBB) { 2708 2709 // First create the loads to the guard/stack slot for the comparison. 2710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2711 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2712 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2713 2714 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2715 int FI = MFI.getStackProtectorIndex(); 2716 2717 SDValue Guard; 2718 SDLoc dl = getCurSDLoc(); 2719 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2720 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2721 Align Align = 2722 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2723 2724 // Generate code to load the content of the guard slot. 2725 SDValue GuardVal = DAG.getLoad( 2726 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2727 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2728 MachineMemOperand::MOVolatile); 2729 2730 if (TLI.useStackGuardXorFP()) 2731 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2732 2733 // Retrieve guard check function, nullptr if instrumentation is inlined. 2734 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2735 // The target provides a guard check function to validate the guard value. 2736 // Generate a call to that function with the content of the guard slot as 2737 // argument. 2738 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2739 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2740 2741 TargetLowering::ArgListTy Args; 2742 TargetLowering::ArgListEntry Entry; 2743 Entry.Node = GuardVal; 2744 Entry.Ty = FnTy->getParamType(0); 2745 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2746 Entry.IsInReg = true; 2747 Args.push_back(Entry); 2748 2749 TargetLowering::CallLoweringInfo CLI(DAG); 2750 CLI.setDebugLoc(getCurSDLoc()) 2751 .setChain(DAG.getEntryNode()) 2752 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2753 getValue(GuardCheckFn), std::move(Args)); 2754 2755 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2756 DAG.setRoot(Result.second); 2757 return; 2758 } 2759 2760 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2761 // Otherwise, emit a volatile load to retrieve the stack guard value. 2762 SDValue Chain = DAG.getEntryNode(); 2763 if (TLI.useLoadStackGuardNode()) { 2764 Guard = getLoadStackGuard(DAG, dl, Chain); 2765 } else { 2766 const Value *IRGuard = TLI.getSDagStackGuard(M); 2767 SDValue GuardPtr = getValue(IRGuard); 2768 2769 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2770 MachinePointerInfo(IRGuard, 0), Align, 2771 MachineMemOperand::MOVolatile); 2772 } 2773 2774 // Perform the comparison via a getsetcc. 2775 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2776 *DAG.getContext(), 2777 Guard.getValueType()), 2778 Guard, GuardVal, ISD::SETNE); 2779 2780 // If the guard/stackslot do not equal, branch to failure MBB. 2781 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2782 MVT::Other, GuardVal.getOperand(0), 2783 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2784 // Otherwise branch to success MBB. 2785 SDValue Br = DAG.getNode(ISD::BR, dl, 2786 MVT::Other, BrCond, 2787 DAG.getBasicBlock(SPD.getSuccessMBB())); 2788 2789 DAG.setRoot(Br); 2790 } 2791 2792 /// Codegen the failure basic block for a stack protector check. 2793 /// 2794 /// A failure stack protector machine basic block consists simply of a call to 2795 /// __stack_chk_fail(). 2796 /// 2797 /// For a high level explanation of how this fits into the stack protector 2798 /// generation see the comment on the declaration of class 2799 /// StackProtectorDescriptor. 2800 void 2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2803 TargetLowering::MakeLibCallOptions CallOptions; 2804 CallOptions.setDiscardResult(true); 2805 SDValue Chain = 2806 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2807 std::nullopt, CallOptions, getCurSDLoc()) 2808 .second; 2809 // On PS4/PS5, the "return address" must still be within the calling 2810 // function, even if it's at the very end, so emit an explicit TRAP here. 2811 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2812 if (TM.getTargetTriple().isPS()) 2813 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2814 // WebAssembly needs an unreachable instruction after a non-returning call, 2815 // because the function return type can be different from __stack_chk_fail's 2816 // return type (void). 2817 if (TM.getTargetTriple().isWasm()) 2818 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2819 2820 DAG.setRoot(Chain); 2821 } 2822 2823 /// visitBitTestHeader - This function emits necessary code to produce value 2824 /// suitable for "bit tests" 2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2826 MachineBasicBlock *SwitchBB) { 2827 SDLoc dl = getCurSDLoc(); 2828 2829 // Subtract the minimum value. 2830 SDValue SwitchOp = getValue(B.SValue); 2831 EVT VT = SwitchOp.getValueType(); 2832 SDValue RangeSub = 2833 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2834 2835 // Determine the type of the test operands. 2836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2837 bool UsePtrType = false; 2838 if (!TLI.isTypeLegal(VT)) { 2839 UsePtrType = true; 2840 } else { 2841 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2842 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2843 // Switch table case range are encoded into series of masks. 2844 // Just use pointer type, it's guaranteed to fit. 2845 UsePtrType = true; 2846 break; 2847 } 2848 } 2849 SDValue Sub = RangeSub; 2850 if (UsePtrType) { 2851 VT = TLI.getPointerTy(DAG.getDataLayout()); 2852 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2853 } 2854 2855 B.RegVT = VT.getSimpleVT(); 2856 B.Reg = FuncInfo.CreateReg(B.RegVT); 2857 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2858 2859 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2860 2861 if (!B.FallthroughUnreachable) 2862 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2863 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2864 SwitchBB->normalizeSuccProbs(); 2865 2866 SDValue Root = CopyTo; 2867 if (!B.FallthroughUnreachable) { 2868 // Conditional branch to the default block. 2869 SDValue RangeCmp = DAG.getSetCC(dl, 2870 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2871 RangeSub.getValueType()), 2872 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2873 ISD::SETUGT); 2874 2875 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2876 DAG.getBasicBlock(B.Default)); 2877 } 2878 2879 // Avoid emitting unnecessary branches to the next block. 2880 if (MBB != NextBlock(SwitchBB)) 2881 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2882 2883 DAG.setRoot(Root); 2884 } 2885 2886 /// visitBitTestCase - this function produces one "bit test" 2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2888 MachineBasicBlock* NextMBB, 2889 BranchProbability BranchProbToNext, 2890 unsigned Reg, 2891 BitTestCase &B, 2892 MachineBasicBlock *SwitchBB) { 2893 SDLoc dl = getCurSDLoc(); 2894 MVT VT = BB.RegVT; 2895 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2896 SDValue Cmp; 2897 unsigned PopCount = llvm::popcount(B.Mask); 2898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2899 if (PopCount == 1) { 2900 // Testing for a single bit; just compare the shift count with what it 2901 // would need to be to shift a 1 bit in that position. 2902 Cmp = DAG.getSetCC( 2903 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2904 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2905 ISD::SETEQ); 2906 } else if (PopCount == BB.Range) { 2907 // There is only one zero bit in the range, test for it directly. 2908 Cmp = DAG.getSetCC( 2909 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2910 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2911 } else { 2912 // Make desired shift 2913 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2914 DAG.getConstant(1, dl, VT), ShiftOp); 2915 2916 // Emit bit tests and jumps 2917 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2918 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2919 Cmp = DAG.getSetCC( 2920 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2921 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2922 } 2923 2924 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2925 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2926 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2927 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2928 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2929 // one as they are relative probabilities (and thus work more like weights), 2930 // and hence we need to normalize them to let the sum of them become one. 2931 SwitchBB->normalizeSuccProbs(); 2932 2933 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2934 MVT::Other, getControlRoot(), 2935 Cmp, DAG.getBasicBlock(B.TargetBB)); 2936 2937 // Avoid emitting unnecessary branches to the next block. 2938 if (NextMBB != NextBlock(SwitchBB)) 2939 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2940 DAG.getBasicBlock(NextMBB)); 2941 2942 DAG.setRoot(BrAnd); 2943 } 2944 2945 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2946 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2947 2948 // Retrieve successors. Look through artificial IR level blocks like 2949 // catchswitch for successors. 2950 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2951 const BasicBlock *EHPadBB = I.getSuccessor(1); 2952 2953 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2954 // have to do anything here to lower funclet bundles. 2955 assert(!I.hasOperandBundlesOtherThan( 2956 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2957 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2958 LLVMContext::OB_cfguardtarget, 2959 LLVMContext::OB_clang_arc_attachedcall}) && 2960 "Cannot lower invokes with arbitrary operand bundles yet!"); 2961 2962 const Value *Callee(I.getCalledOperand()); 2963 const Function *Fn = dyn_cast<Function>(Callee); 2964 if (isa<InlineAsm>(Callee)) 2965 visitInlineAsm(I, EHPadBB); 2966 else if (Fn && Fn->isIntrinsic()) { 2967 switch (Fn->getIntrinsicID()) { 2968 default: 2969 llvm_unreachable("Cannot invoke this intrinsic"); 2970 case Intrinsic::donothing: 2971 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2972 case Intrinsic::seh_try_begin: 2973 case Intrinsic::seh_scope_begin: 2974 case Intrinsic::seh_try_end: 2975 case Intrinsic::seh_scope_end: 2976 break; 2977 case Intrinsic::experimental_patchpoint_void: 2978 case Intrinsic::experimental_patchpoint_i64: 2979 visitPatchpoint(I, EHPadBB); 2980 break; 2981 case Intrinsic::experimental_gc_statepoint: 2982 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2983 break; 2984 case Intrinsic::wasm_rethrow: { 2985 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2986 // special because it can be invoked, so we manually lower it to a DAG 2987 // node here. 2988 SmallVector<SDValue, 8> Ops; 2989 Ops.push_back(getRoot()); // inchain 2990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2991 Ops.push_back( 2992 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2993 TLI.getPointerTy(DAG.getDataLayout()))); 2994 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2995 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2996 break; 2997 } 2998 } 2999 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3000 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3001 // Eventually we will support lowering the @llvm.experimental.deoptimize 3002 // intrinsic, and right now there are no plans to support other intrinsics 3003 // with deopt state. 3004 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3005 } else { 3006 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3007 } 3008 3009 // If the value of the invoke is used outside of its defining block, make it 3010 // available as a virtual register. 3011 // We already took care of the exported value for the statepoint instruction 3012 // during call to the LowerStatepoint. 3013 if (!isa<GCStatepointInst>(I)) { 3014 CopyToExportRegsIfNeeded(&I); 3015 } 3016 3017 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3019 BranchProbability EHPadBBProb = 3020 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3021 : BranchProbability::getZero(); 3022 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3023 3024 // Update successor info. 3025 addSuccessorWithProb(InvokeMBB, Return); 3026 for (auto &UnwindDest : UnwindDests) { 3027 UnwindDest.first->setIsEHPad(); 3028 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3029 } 3030 InvokeMBB->normalizeSuccProbs(); 3031 3032 // Drop into normal successor. 3033 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3034 DAG.getBasicBlock(Return))); 3035 } 3036 3037 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3038 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3039 3040 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3041 // have to do anything here to lower funclet bundles. 3042 assert(!I.hasOperandBundlesOtherThan( 3043 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3044 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3045 3046 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3047 visitInlineAsm(I); 3048 CopyToExportRegsIfNeeded(&I); 3049 3050 // Retrieve successors. 3051 SmallPtrSet<BasicBlock *, 8> Dests; 3052 Dests.insert(I.getDefaultDest()); 3053 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3054 3055 // Update successor info. 3056 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3057 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3058 BasicBlock *Dest = I.getIndirectDest(i); 3059 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3060 Target->setIsInlineAsmBrIndirectTarget(); 3061 Target->setMachineBlockAddressTaken(); 3062 Target->setLabelMustBeEmitted(); 3063 // Don't add duplicate machine successors. 3064 if (Dests.insert(Dest).second) 3065 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3066 } 3067 CallBrMBB->normalizeSuccProbs(); 3068 3069 // Drop into default successor. 3070 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3071 MVT::Other, getControlRoot(), 3072 DAG.getBasicBlock(Return))); 3073 } 3074 3075 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3076 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3077 } 3078 3079 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3080 assert(FuncInfo.MBB->isEHPad() && 3081 "Call to landingpad not in landing pad!"); 3082 3083 // If there aren't registers to copy the values into (e.g., during SjLj 3084 // exceptions), then don't bother to create these DAG nodes. 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3087 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3088 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3089 return; 3090 3091 // If landingpad's return type is token type, we don't create DAG nodes 3092 // for its exception pointer and selector value. The extraction of exception 3093 // pointer or selector value from token type landingpads is not currently 3094 // supported. 3095 if (LP.getType()->isTokenTy()) 3096 return; 3097 3098 SmallVector<EVT, 2> ValueVTs; 3099 SDLoc dl = getCurSDLoc(); 3100 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3101 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3102 3103 // Get the two live-in registers as SDValues. The physregs have already been 3104 // copied into virtual registers. 3105 SDValue Ops[2]; 3106 if (FuncInfo.ExceptionPointerVirtReg) { 3107 Ops[0] = DAG.getZExtOrTrunc( 3108 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3109 FuncInfo.ExceptionPointerVirtReg, 3110 TLI.getPointerTy(DAG.getDataLayout())), 3111 dl, ValueVTs[0]); 3112 } else { 3113 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3114 } 3115 Ops[1] = DAG.getZExtOrTrunc( 3116 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3117 FuncInfo.ExceptionSelectorVirtReg, 3118 TLI.getPointerTy(DAG.getDataLayout())), 3119 dl, ValueVTs[1]); 3120 3121 // Merge into one. 3122 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3123 DAG.getVTList(ValueVTs), Ops); 3124 setValue(&LP, Res); 3125 } 3126 3127 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3128 MachineBasicBlock *Last) { 3129 // Update JTCases. 3130 for (JumpTableBlock &JTB : SL->JTCases) 3131 if (JTB.first.HeaderBB == First) 3132 JTB.first.HeaderBB = Last; 3133 3134 // Update BitTestCases. 3135 for (BitTestBlock &BTB : SL->BitTestCases) 3136 if (BTB.Parent == First) 3137 BTB.Parent = Last; 3138 } 3139 3140 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3141 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3142 3143 // Update machine-CFG edges with unique successors. 3144 SmallSet<BasicBlock*, 32> Done; 3145 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3146 BasicBlock *BB = I.getSuccessor(i); 3147 bool Inserted = Done.insert(BB).second; 3148 if (!Inserted) 3149 continue; 3150 3151 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3152 addSuccessorWithProb(IndirectBrMBB, Succ); 3153 } 3154 IndirectBrMBB->normalizeSuccProbs(); 3155 3156 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3157 MVT::Other, getControlRoot(), 3158 getValue(I.getAddress()))); 3159 } 3160 3161 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3162 if (!DAG.getTarget().Options.TrapUnreachable) 3163 return; 3164 3165 // We may be able to ignore unreachable behind a noreturn call. 3166 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3167 const BasicBlock &BB = *I.getParent(); 3168 if (&I != &BB.front()) { 3169 BasicBlock::const_iterator PredI = 3170 std::prev(BasicBlock::const_iterator(&I)); 3171 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3172 if (Call->doesNotReturn()) 3173 return; 3174 } 3175 } 3176 } 3177 3178 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3179 } 3180 3181 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3182 SDNodeFlags Flags; 3183 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3184 Flags.copyFMF(*FPOp); 3185 3186 SDValue Op = getValue(I.getOperand(0)); 3187 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3188 Op, Flags); 3189 setValue(&I, UnNodeValue); 3190 } 3191 3192 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3193 SDNodeFlags Flags; 3194 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3195 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3196 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3197 } 3198 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3199 Flags.setExact(ExactOp->isExact()); 3200 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3201 Flags.copyFMF(*FPOp); 3202 3203 SDValue Op1 = getValue(I.getOperand(0)); 3204 SDValue Op2 = getValue(I.getOperand(1)); 3205 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3206 Op1, Op2, Flags); 3207 setValue(&I, BinNodeValue); 3208 } 3209 3210 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3211 SDValue Op1 = getValue(I.getOperand(0)); 3212 SDValue Op2 = getValue(I.getOperand(1)); 3213 3214 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3215 Op1.getValueType(), DAG.getDataLayout()); 3216 3217 // Coerce the shift amount to the right type if we can. This exposes the 3218 // truncate or zext to optimization early. 3219 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3220 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3221 "Unexpected shift type"); 3222 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3223 } 3224 3225 bool nuw = false; 3226 bool nsw = false; 3227 bool exact = false; 3228 3229 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3230 3231 if (const OverflowingBinaryOperator *OFBinOp = 3232 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3233 nuw = OFBinOp->hasNoUnsignedWrap(); 3234 nsw = OFBinOp->hasNoSignedWrap(); 3235 } 3236 if (const PossiblyExactOperator *ExactOp = 3237 dyn_cast<const PossiblyExactOperator>(&I)) 3238 exact = ExactOp->isExact(); 3239 } 3240 SDNodeFlags Flags; 3241 Flags.setExact(exact); 3242 Flags.setNoSignedWrap(nsw); 3243 Flags.setNoUnsignedWrap(nuw); 3244 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3245 Flags); 3246 setValue(&I, Res); 3247 } 3248 3249 void SelectionDAGBuilder::visitSDiv(const User &I) { 3250 SDValue Op1 = getValue(I.getOperand(0)); 3251 SDValue Op2 = getValue(I.getOperand(1)); 3252 3253 SDNodeFlags Flags; 3254 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3255 cast<PossiblyExactOperator>(&I)->isExact()); 3256 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3257 Op2, Flags)); 3258 } 3259 3260 void SelectionDAGBuilder::visitICmp(const User &I) { 3261 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3262 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3263 predicate = IC->getPredicate(); 3264 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3265 predicate = ICmpInst::Predicate(IC->getPredicate()); 3266 SDValue Op1 = getValue(I.getOperand(0)); 3267 SDValue Op2 = getValue(I.getOperand(1)); 3268 ISD::CondCode Opcode = getICmpCondCode(predicate); 3269 3270 auto &TLI = DAG.getTargetLoweringInfo(); 3271 EVT MemVT = 3272 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3273 3274 // If a pointer's DAG type is larger than its memory type then the DAG values 3275 // are zero-extended. This breaks signed comparisons so truncate back to the 3276 // underlying type before doing the compare. 3277 if (Op1.getValueType() != MemVT) { 3278 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3279 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3280 } 3281 3282 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3283 I.getType()); 3284 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3285 } 3286 3287 void SelectionDAGBuilder::visitFCmp(const User &I) { 3288 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3289 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3290 predicate = FC->getPredicate(); 3291 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3292 predicate = FCmpInst::Predicate(FC->getPredicate()); 3293 SDValue Op1 = getValue(I.getOperand(0)); 3294 SDValue Op2 = getValue(I.getOperand(1)); 3295 3296 ISD::CondCode Condition = getFCmpCondCode(predicate); 3297 auto *FPMO = cast<FPMathOperator>(&I); 3298 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3299 Condition = getFCmpCodeWithoutNaN(Condition); 3300 3301 SDNodeFlags Flags; 3302 Flags.copyFMF(*FPMO); 3303 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3304 3305 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3306 I.getType()); 3307 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3308 } 3309 3310 // Check if the condition of the select has one use or two users that are both 3311 // selects with the same condition. 3312 static bool hasOnlySelectUsers(const Value *Cond) { 3313 return llvm::all_of(Cond->users(), [](const Value *V) { 3314 return isa<SelectInst>(V); 3315 }); 3316 } 3317 3318 void SelectionDAGBuilder::visitSelect(const User &I) { 3319 SmallVector<EVT, 4> ValueVTs; 3320 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3321 ValueVTs); 3322 unsigned NumValues = ValueVTs.size(); 3323 if (NumValues == 0) return; 3324 3325 SmallVector<SDValue, 4> Values(NumValues); 3326 SDValue Cond = getValue(I.getOperand(0)); 3327 SDValue LHSVal = getValue(I.getOperand(1)); 3328 SDValue RHSVal = getValue(I.getOperand(2)); 3329 SmallVector<SDValue, 1> BaseOps(1, Cond); 3330 ISD::NodeType OpCode = 3331 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3332 3333 bool IsUnaryAbs = false; 3334 bool Negate = false; 3335 3336 SDNodeFlags Flags; 3337 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3338 Flags.copyFMF(*FPOp); 3339 3340 // Min/max matching is only viable if all output VTs are the same. 3341 if (all_equal(ValueVTs)) { 3342 EVT VT = ValueVTs[0]; 3343 LLVMContext &Ctx = *DAG.getContext(); 3344 auto &TLI = DAG.getTargetLoweringInfo(); 3345 3346 // We care about the legality of the operation after it has been type 3347 // legalized. 3348 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3349 VT = TLI.getTypeToTransformTo(Ctx, VT); 3350 3351 // If the vselect is legal, assume we want to leave this as a vector setcc + 3352 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3353 // min/max is legal on the scalar type. 3354 bool UseScalarMinMax = VT.isVector() && 3355 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3356 3357 // ValueTracking's select pattern matching does not account for -0.0, 3358 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3359 // -0.0 is less than +0.0. 3360 Value *LHS, *RHS; 3361 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3362 ISD::NodeType Opc = ISD::DELETED_NODE; 3363 switch (SPR.Flavor) { 3364 case SPF_UMAX: Opc = ISD::UMAX; break; 3365 case SPF_UMIN: Opc = ISD::UMIN; break; 3366 case SPF_SMAX: Opc = ISD::SMAX; break; 3367 case SPF_SMIN: Opc = ISD::SMIN; break; 3368 case SPF_FMINNUM: 3369 switch (SPR.NaNBehavior) { 3370 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3371 case SPNB_RETURNS_NAN: break; 3372 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3373 case SPNB_RETURNS_ANY: 3374 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3375 (UseScalarMinMax && 3376 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3377 Opc = ISD::FMINNUM; 3378 break; 3379 } 3380 break; 3381 case SPF_FMAXNUM: 3382 switch (SPR.NaNBehavior) { 3383 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3384 case SPNB_RETURNS_NAN: break; 3385 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3386 case SPNB_RETURNS_ANY: 3387 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3388 (UseScalarMinMax && 3389 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3390 Opc = ISD::FMAXNUM; 3391 break; 3392 } 3393 break; 3394 case SPF_NABS: 3395 Negate = true; 3396 [[fallthrough]]; 3397 case SPF_ABS: 3398 IsUnaryAbs = true; 3399 Opc = ISD::ABS; 3400 break; 3401 default: break; 3402 } 3403 3404 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3405 (TLI.isOperationLegalOrCustom(Opc, VT) || 3406 (UseScalarMinMax && 3407 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3408 // If the underlying comparison instruction is used by any other 3409 // instruction, the consumed instructions won't be destroyed, so it is 3410 // not profitable to convert to a min/max. 3411 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3412 OpCode = Opc; 3413 LHSVal = getValue(LHS); 3414 RHSVal = getValue(RHS); 3415 BaseOps.clear(); 3416 } 3417 3418 if (IsUnaryAbs) { 3419 OpCode = Opc; 3420 LHSVal = getValue(LHS); 3421 BaseOps.clear(); 3422 } 3423 } 3424 3425 if (IsUnaryAbs) { 3426 for (unsigned i = 0; i != NumValues; ++i) { 3427 SDLoc dl = getCurSDLoc(); 3428 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3429 Values[i] = 3430 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3431 if (Negate) 3432 Values[i] = DAG.getNegative(Values[i], dl, VT); 3433 } 3434 } else { 3435 for (unsigned i = 0; i != NumValues; ++i) { 3436 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3437 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3438 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3439 Values[i] = DAG.getNode( 3440 OpCode, getCurSDLoc(), 3441 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3442 } 3443 } 3444 3445 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3446 DAG.getVTList(ValueVTs), Values)); 3447 } 3448 3449 void SelectionDAGBuilder::visitTrunc(const User &I) { 3450 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3451 SDValue N = getValue(I.getOperand(0)); 3452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3453 I.getType()); 3454 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3455 } 3456 3457 void SelectionDAGBuilder::visitZExt(const User &I) { 3458 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3459 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3460 SDValue N = getValue(I.getOperand(0)); 3461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3462 I.getType()); 3463 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3464 } 3465 3466 void SelectionDAGBuilder::visitSExt(const User &I) { 3467 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3468 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3469 SDValue N = getValue(I.getOperand(0)); 3470 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3471 I.getType()); 3472 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3473 } 3474 3475 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3476 // FPTrunc is never a no-op cast, no need to check 3477 SDValue N = getValue(I.getOperand(0)); 3478 SDLoc dl = getCurSDLoc(); 3479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3480 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3481 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3482 DAG.getTargetConstant( 3483 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3484 } 3485 3486 void SelectionDAGBuilder::visitFPExt(const User &I) { 3487 // FPExt is never a no-op cast, no need to check 3488 SDValue N = getValue(I.getOperand(0)); 3489 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3490 I.getType()); 3491 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3492 } 3493 3494 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3495 // FPToUI is never a no-op cast, no need to check 3496 SDValue N = getValue(I.getOperand(0)); 3497 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3498 I.getType()); 3499 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3500 } 3501 3502 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3503 // FPToSI is never a no-op cast, no need to check 3504 SDValue N = getValue(I.getOperand(0)); 3505 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3506 I.getType()); 3507 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3508 } 3509 3510 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3511 // UIToFP is never a no-op cast, no need to check 3512 SDValue N = getValue(I.getOperand(0)); 3513 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3514 I.getType()); 3515 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3516 } 3517 3518 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3519 // SIToFP is never a no-op cast, no need to check 3520 SDValue N = getValue(I.getOperand(0)); 3521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3522 I.getType()); 3523 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3524 } 3525 3526 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3527 // What to do depends on the size of the integer and the size of the pointer. 3528 // We can either truncate, zero extend, or no-op, accordingly. 3529 SDValue N = getValue(I.getOperand(0)); 3530 auto &TLI = DAG.getTargetLoweringInfo(); 3531 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3532 I.getType()); 3533 EVT PtrMemVT = 3534 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3535 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3536 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3537 setValue(&I, N); 3538 } 3539 3540 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3541 // What to do depends on the size of the integer and the size of the pointer. 3542 // We can either truncate, zero extend, or no-op, accordingly. 3543 SDValue N = getValue(I.getOperand(0)); 3544 auto &TLI = DAG.getTargetLoweringInfo(); 3545 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3547 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3548 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3549 setValue(&I, N); 3550 } 3551 3552 void SelectionDAGBuilder::visitBitCast(const User &I) { 3553 SDValue N = getValue(I.getOperand(0)); 3554 SDLoc dl = getCurSDLoc(); 3555 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3556 I.getType()); 3557 3558 // BitCast assures us that source and destination are the same size so this is 3559 // either a BITCAST or a no-op. 3560 if (DestVT != N.getValueType()) 3561 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3562 DestVT, N)); // convert types. 3563 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3564 // might fold any kind of constant expression to an integer constant and that 3565 // is not what we are looking for. Only recognize a bitcast of a genuine 3566 // constant integer as an opaque constant. 3567 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3568 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3569 /*isOpaque*/true)); 3570 else 3571 setValue(&I, N); // noop cast. 3572 } 3573 3574 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3576 const Value *SV = I.getOperand(0); 3577 SDValue N = getValue(SV); 3578 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3579 3580 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3581 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3582 3583 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3584 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3585 3586 setValue(&I, N); 3587 } 3588 3589 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3590 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3591 SDValue InVec = getValue(I.getOperand(0)); 3592 SDValue InVal = getValue(I.getOperand(1)); 3593 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3594 TLI.getVectorIdxTy(DAG.getDataLayout())); 3595 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3596 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3597 InVec, InVal, InIdx)); 3598 } 3599 3600 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3602 SDValue InVec = getValue(I.getOperand(0)); 3603 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3604 TLI.getVectorIdxTy(DAG.getDataLayout())); 3605 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3606 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3607 InVec, InIdx)); 3608 } 3609 3610 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3611 SDValue Src1 = getValue(I.getOperand(0)); 3612 SDValue Src2 = getValue(I.getOperand(1)); 3613 ArrayRef<int> Mask; 3614 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3615 Mask = SVI->getShuffleMask(); 3616 else 3617 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3618 SDLoc DL = getCurSDLoc(); 3619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3620 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3621 EVT SrcVT = Src1.getValueType(); 3622 3623 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3624 VT.isScalableVector()) { 3625 // Canonical splat form of first element of first input vector. 3626 SDValue FirstElt = 3627 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3628 DAG.getVectorIdxConstant(0, DL)); 3629 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3630 return; 3631 } 3632 3633 // For now, we only handle splats for scalable vectors. 3634 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3635 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3636 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3637 3638 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3639 unsigned MaskNumElts = Mask.size(); 3640 3641 if (SrcNumElts == MaskNumElts) { 3642 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3643 return; 3644 } 3645 3646 // Normalize the shuffle vector since mask and vector length don't match. 3647 if (SrcNumElts < MaskNumElts) { 3648 // Mask is longer than the source vectors. We can use concatenate vector to 3649 // make the mask and vectors lengths match. 3650 3651 if (MaskNumElts % SrcNumElts == 0) { 3652 // Mask length is a multiple of the source vector length. 3653 // Check if the shuffle is some kind of concatenation of the input 3654 // vectors. 3655 unsigned NumConcat = MaskNumElts / SrcNumElts; 3656 bool IsConcat = true; 3657 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3658 for (unsigned i = 0; i != MaskNumElts; ++i) { 3659 int Idx = Mask[i]; 3660 if (Idx < 0) 3661 continue; 3662 // Ensure the indices in each SrcVT sized piece are sequential and that 3663 // the same source is used for the whole piece. 3664 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3665 (ConcatSrcs[i / SrcNumElts] >= 0 && 3666 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3667 IsConcat = false; 3668 break; 3669 } 3670 // Remember which source this index came from. 3671 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3672 } 3673 3674 // The shuffle is concatenating multiple vectors together. Just emit 3675 // a CONCAT_VECTORS operation. 3676 if (IsConcat) { 3677 SmallVector<SDValue, 8> ConcatOps; 3678 for (auto Src : ConcatSrcs) { 3679 if (Src < 0) 3680 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3681 else if (Src == 0) 3682 ConcatOps.push_back(Src1); 3683 else 3684 ConcatOps.push_back(Src2); 3685 } 3686 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3687 return; 3688 } 3689 } 3690 3691 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3692 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3693 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3694 PaddedMaskNumElts); 3695 3696 // Pad both vectors with undefs to make them the same length as the mask. 3697 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3698 3699 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3700 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3701 MOps1[0] = Src1; 3702 MOps2[0] = Src2; 3703 3704 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3705 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3706 3707 // Readjust mask for new input vector length. 3708 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3709 for (unsigned i = 0; i != MaskNumElts; ++i) { 3710 int Idx = Mask[i]; 3711 if (Idx >= (int)SrcNumElts) 3712 Idx -= SrcNumElts - PaddedMaskNumElts; 3713 MappedOps[i] = Idx; 3714 } 3715 3716 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3717 3718 // If the concatenated vector was padded, extract a subvector with the 3719 // correct number of elements. 3720 if (MaskNumElts != PaddedMaskNumElts) 3721 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3722 DAG.getVectorIdxConstant(0, DL)); 3723 3724 setValue(&I, Result); 3725 return; 3726 } 3727 3728 if (SrcNumElts > MaskNumElts) { 3729 // Analyze the access pattern of the vector to see if we can extract 3730 // two subvectors and do the shuffle. 3731 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3732 bool CanExtract = true; 3733 for (int Idx : Mask) { 3734 unsigned Input = 0; 3735 if (Idx < 0) 3736 continue; 3737 3738 if (Idx >= (int)SrcNumElts) { 3739 Input = 1; 3740 Idx -= SrcNumElts; 3741 } 3742 3743 // If all the indices come from the same MaskNumElts sized portion of 3744 // the sources we can use extract. Also make sure the extract wouldn't 3745 // extract past the end of the source. 3746 int NewStartIdx = alignDown(Idx, MaskNumElts); 3747 if (NewStartIdx + MaskNumElts > SrcNumElts || 3748 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3749 CanExtract = false; 3750 // Make sure we always update StartIdx as we use it to track if all 3751 // elements are undef. 3752 StartIdx[Input] = NewStartIdx; 3753 } 3754 3755 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3756 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3757 return; 3758 } 3759 if (CanExtract) { 3760 // Extract appropriate subvector and generate a vector shuffle 3761 for (unsigned Input = 0; Input < 2; ++Input) { 3762 SDValue &Src = Input == 0 ? Src1 : Src2; 3763 if (StartIdx[Input] < 0) 3764 Src = DAG.getUNDEF(VT); 3765 else { 3766 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3767 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3768 } 3769 } 3770 3771 // Calculate new mask. 3772 SmallVector<int, 8> MappedOps(Mask); 3773 for (int &Idx : MappedOps) { 3774 if (Idx >= (int)SrcNumElts) 3775 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3776 else if (Idx >= 0) 3777 Idx -= StartIdx[0]; 3778 } 3779 3780 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3781 return; 3782 } 3783 } 3784 3785 // We can't use either concat vectors or extract subvectors so fall back to 3786 // replacing the shuffle with extract and build vector. 3787 // to insert and build vector. 3788 EVT EltVT = VT.getVectorElementType(); 3789 SmallVector<SDValue,8> Ops; 3790 for (int Idx : Mask) { 3791 SDValue Res; 3792 3793 if (Idx < 0) { 3794 Res = DAG.getUNDEF(EltVT); 3795 } else { 3796 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3797 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3798 3799 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3800 DAG.getVectorIdxConstant(Idx, DL)); 3801 } 3802 3803 Ops.push_back(Res); 3804 } 3805 3806 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3807 } 3808 3809 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3810 ArrayRef<unsigned> Indices = I.getIndices(); 3811 const Value *Op0 = I.getOperand(0); 3812 const Value *Op1 = I.getOperand(1); 3813 Type *AggTy = I.getType(); 3814 Type *ValTy = Op1->getType(); 3815 bool IntoUndef = isa<UndefValue>(Op0); 3816 bool FromUndef = isa<UndefValue>(Op1); 3817 3818 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3819 3820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3821 SmallVector<EVT, 4> AggValueVTs; 3822 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3823 SmallVector<EVT, 4> ValValueVTs; 3824 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3825 3826 unsigned NumAggValues = AggValueVTs.size(); 3827 unsigned NumValValues = ValValueVTs.size(); 3828 SmallVector<SDValue, 4> Values(NumAggValues); 3829 3830 // Ignore an insertvalue that produces an empty object 3831 if (!NumAggValues) { 3832 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3833 return; 3834 } 3835 3836 SDValue Agg = getValue(Op0); 3837 unsigned i = 0; 3838 // Copy the beginning value(s) from the original aggregate. 3839 for (; i != LinearIndex; ++i) 3840 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3841 SDValue(Agg.getNode(), Agg.getResNo() + i); 3842 // Copy values from the inserted value(s). 3843 if (NumValValues) { 3844 SDValue Val = getValue(Op1); 3845 for (; i != LinearIndex + NumValValues; ++i) 3846 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3847 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3848 } 3849 // Copy remaining value(s) from the original aggregate. 3850 for (; i != NumAggValues; ++i) 3851 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3852 SDValue(Agg.getNode(), Agg.getResNo() + i); 3853 3854 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3855 DAG.getVTList(AggValueVTs), Values)); 3856 } 3857 3858 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3859 ArrayRef<unsigned> Indices = I.getIndices(); 3860 const Value *Op0 = I.getOperand(0); 3861 Type *AggTy = Op0->getType(); 3862 Type *ValTy = I.getType(); 3863 bool OutOfUndef = isa<UndefValue>(Op0); 3864 3865 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3866 3867 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3868 SmallVector<EVT, 4> ValValueVTs; 3869 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3870 3871 unsigned NumValValues = ValValueVTs.size(); 3872 3873 // Ignore a extractvalue that produces an empty object 3874 if (!NumValValues) { 3875 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3876 return; 3877 } 3878 3879 SmallVector<SDValue, 4> Values(NumValValues); 3880 3881 SDValue Agg = getValue(Op0); 3882 // Copy out the selected value(s). 3883 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3884 Values[i - LinearIndex] = 3885 OutOfUndef ? 3886 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3887 SDValue(Agg.getNode(), Agg.getResNo() + i); 3888 3889 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3890 DAG.getVTList(ValValueVTs), Values)); 3891 } 3892 3893 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3894 Value *Op0 = I.getOperand(0); 3895 // Note that the pointer operand may be a vector of pointers. Take the scalar 3896 // element which holds a pointer. 3897 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3898 SDValue N = getValue(Op0); 3899 SDLoc dl = getCurSDLoc(); 3900 auto &TLI = DAG.getTargetLoweringInfo(); 3901 3902 // Normalize Vector GEP - all scalar operands should be converted to the 3903 // splat vector. 3904 bool IsVectorGEP = I.getType()->isVectorTy(); 3905 ElementCount VectorElementCount = 3906 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3907 : ElementCount::getFixed(0); 3908 3909 if (IsVectorGEP && !N.getValueType().isVector()) { 3910 LLVMContext &Context = *DAG.getContext(); 3911 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3912 N = DAG.getSplat(VT, dl, N); 3913 } 3914 3915 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3916 GTI != E; ++GTI) { 3917 const Value *Idx = GTI.getOperand(); 3918 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3919 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3920 if (Field) { 3921 // N = N + Offset 3922 uint64_t Offset = 3923 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3924 3925 // In an inbounds GEP with an offset that is nonnegative even when 3926 // interpreted as signed, assume there is no unsigned overflow. 3927 SDNodeFlags Flags; 3928 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3929 Flags.setNoUnsignedWrap(true); 3930 3931 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3932 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3933 } 3934 } else { 3935 // IdxSize is the width of the arithmetic according to IR semantics. 3936 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3937 // (and fix up the result later). 3938 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3939 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3940 TypeSize ElementSize = 3941 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3942 // We intentionally mask away the high bits here; ElementSize may not 3943 // fit in IdxTy. 3944 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 3945 bool ElementScalable = ElementSize.isScalable(); 3946 3947 // If this is a scalar constant or a splat vector of constants, 3948 // handle it quickly. 3949 const auto *C = dyn_cast<Constant>(Idx); 3950 if (C && isa<VectorType>(C->getType())) 3951 C = C->getSplatValue(); 3952 3953 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3954 if (CI && CI->isZero()) 3955 continue; 3956 if (CI && !ElementScalable) { 3957 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3958 LLVMContext &Context = *DAG.getContext(); 3959 SDValue OffsVal; 3960 if (IsVectorGEP) 3961 OffsVal = DAG.getConstant( 3962 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3963 else 3964 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3965 3966 // In an inbounds GEP with an offset that is nonnegative even when 3967 // interpreted as signed, assume there is no unsigned overflow. 3968 SDNodeFlags Flags; 3969 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3970 Flags.setNoUnsignedWrap(true); 3971 3972 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3973 3974 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3975 continue; 3976 } 3977 3978 // N = N + Idx * ElementMul; 3979 SDValue IdxN = getValue(Idx); 3980 3981 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3982 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3983 VectorElementCount); 3984 IdxN = DAG.getSplat(VT, dl, IdxN); 3985 } 3986 3987 // If the index is smaller or larger than intptr_t, truncate or extend 3988 // it. 3989 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3990 3991 if (ElementScalable) { 3992 EVT VScaleTy = N.getValueType().getScalarType(); 3993 SDValue VScale = DAG.getNode( 3994 ISD::VSCALE, dl, VScaleTy, 3995 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3996 if (IsVectorGEP) 3997 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3998 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3999 } else { 4000 // If this is a multiply by a power of two, turn it into a shl 4001 // immediately. This is a very common case. 4002 if (ElementMul != 1) { 4003 if (ElementMul.isPowerOf2()) { 4004 unsigned Amt = ElementMul.logBase2(); 4005 IdxN = DAG.getNode(ISD::SHL, dl, 4006 N.getValueType(), IdxN, 4007 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4008 } else { 4009 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4010 IdxN.getValueType()); 4011 IdxN = DAG.getNode(ISD::MUL, dl, 4012 N.getValueType(), IdxN, Scale); 4013 } 4014 } 4015 } 4016 4017 N = DAG.getNode(ISD::ADD, dl, 4018 N.getValueType(), N, IdxN); 4019 } 4020 } 4021 4022 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4023 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4024 if (IsVectorGEP) { 4025 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4026 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4027 } 4028 4029 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4030 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4031 4032 setValue(&I, N); 4033 } 4034 4035 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4036 // If this is a fixed sized alloca in the entry block of the function, 4037 // allocate it statically on the stack. 4038 if (FuncInfo.StaticAllocaMap.count(&I)) 4039 return; // getValue will auto-populate this. 4040 4041 SDLoc dl = getCurSDLoc(); 4042 Type *Ty = I.getAllocatedType(); 4043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4044 auto &DL = DAG.getDataLayout(); 4045 TypeSize TySize = DL.getTypeAllocSize(Ty); 4046 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4047 4048 SDValue AllocSize = getValue(I.getArraySize()); 4049 4050 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4051 if (AllocSize.getValueType() != IntPtr) 4052 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4053 4054 if (TySize.isScalable()) 4055 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4056 DAG.getVScale(dl, IntPtr, 4057 APInt(IntPtr.getScalarSizeInBits(), 4058 TySize.getKnownMinValue()))); 4059 else 4060 AllocSize = 4061 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4062 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4063 4064 // Handle alignment. If the requested alignment is less than or equal to 4065 // the stack alignment, ignore it. If the size is greater than or equal to 4066 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4067 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4068 if (*Alignment <= StackAlign) 4069 Alignment = std::nullopt; 4070 4071 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4072 // Round the size of the allocation up to the stack alignment size 4073 // by add SA-1 to the size. This doesn't overflow because we're computing 4074 // an address inside an alloca. 4075 SDNodeFlags Flags; 4076 Flags.setNoUnsignedWrap(true); 4077 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4078 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4079 4080 // Mask out the low bits for alignment purposes. 4081 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4082 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4083 4084 SDValue Ops[] = { 4085 getRoot(), AllocSize, 4086 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4087 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4088 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4089 setValue(&I, DSA); 4090 DAG.setRoot(DSA.getValue(1)); 4091 4092 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4093 } 4094 4095 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4096 if (I.isAtomic()) 4097 return visitAtomicLoad(I); 4098 4099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4100 const Value *SV = I.getOperand(0); 4101 if (TLI.supportSwiftError()) { 4102 // Swifterror values can come from either a function parameter with 4103 // swifterror attribute or an alloca with swifterror attribute. 4104 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4105 if (Arg->hasSwiftErrorAttr()) 4106 return visitLoadFromSwiftError(I); 4107 } 4108 4109 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4110 if (Alloca->isSwiftError()) 4111 return visitLoadFromSwiftError(I); 4112 } 4113 } 4114 4115 SDValue Ptr = getValue(SV); 4116 4117 Type *Ty = I.getType(); 4118 SmallVector<EVT, 4> ValueVTs, MemVTs; 4119 SmallVector<uint64_t, 4> Offsets; 4120 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4121 unsigned NumValues = ValueVTs.size(); 4122 if (NumValues == 0) 4123 return; 4124 4125 Align Alignment = I.getAlign(); 4126 AAMDNodes AAInfo = I.getAAMetadata(); 4127 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4128 bool isVolatile = I.isVolatile(); 4129 MachineMemOperand::Flags MMOFlags = 4130 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4131 4132 SDValue Root; 4133 bool ConstantMemory = false; 4134 if (isVolatile) 4135 // Serialize volatile loads with other side effects. 4136 Root = getRoot(); 4137 else if (NumValues > MaxParallelChains) 4138 Root = getMemoryRoot(); 4139 else if (AA && 4140 AA->pointsToConstantMemory(MemoryLocation( 4141 SV, 4142 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4143 AAInfo))) { 4144 // Do not serialize (non-volatile) loads of constant memory with anything. 4145 Root = DAG.getEntryNode(); 4146 ConstantMemory = true; 4147 MMOFlags |= MachineMemOperand::MOInvariant; 4148 } else { 4149 // Do not serialize non-volatile loads against each other. 4150 Root = DAG.getRoot(); 4151 } 4152 4153 SDLoc dl = getCurSDLoc(); 4154 4155 if (isVolatile) 4156 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4157 4158 // An aggregate load cannot wrap around the address space, so offsets to its 4159 // parts don't wrap either. 4160 SDNodeFlags Flags; 4161 Flags.setNoUnsignedWrap(true); 4162 4163 SmallVector<SDValue, 4> Values(NumValues); 4164 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4165 EVT PtrVT = Ptr.getValueType(); 4166 4167 unsigned ChainI = 0; 4168 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4169 // Serializing loads here may result in excessive register pressure, and 4170 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4171 // could recover a bit by hoisting nodes upward in the chain by recognizing 4172 // they are side-effect free or do not alias. The optimizer should really 4173 // avoid this case by converting large object/array copies to llvm.memcpy 4174 // (MaxParallelChains should always remain as failsafe). 4175 if (ChainI == MaxParallelChains) { 4176 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4177 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4178 ArrayRef(Chains.data(), ChainI)); 4179 Root = Chain; 4180 ChainI = 0; 4181 } 4182 SDValue A = DAG.getNode(ISD::ADD, dl, 4183 PtrVT, Ptr, 4184 DAG.getConstant(Offsets[i], dl, PtrVT), 4185 Flags); 4186 4187 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4188 MachinePointerInfo(SV, Offsets[i]), Alignment, 4189 MMOFlags, AAInfo, Ranges); 4190 Chains[ChainI] = L.getValue(1); 4191 4192 if (MemVTs[i] != ValueVTs[i]) 4193 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4194 4195 Values[i] = L; 4196 } 4197 4198 if (!ConstantMemory) { 4199 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4200 ArrayRef(Chains.data(), ChainI)); 4201 if (isVolatile) 4202 DAG.setRoot(Chain); 4203 else 4204 PendingLoads.push_back(Chain); 4205 } 4206 4207 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4208 DAG.getVTList(ValueVTs), Values)); 4209 } 4210 4211 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4212 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4213 "call visitStoreToSwiftError when backend supports swifterror"); 4214 4215 SmallVector<EVT, 4> ValueVTs; 4216 SmallVector<uint64_t, 4> Offsets; 4217 const Value *SrcV = I.getOperand(0); 4218 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4219 SrcV->getType(), ValueVTs, &Offsets); 4220 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4221 "expect a single EVT for swifterror"); 4222 4223 SDValue Src = getValue(SrcV); 4224 // Create a virtual register, then update the virtual register. 4225 Register VReg = 4226 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4227 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4228 // Chain can be getRoot or getControlRoot. 4229 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4230 SDValue(Src.getNode(), Src.getResNo())); 4231 DAG.setRoot(CopyNode); 4232 } 4233 4234 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4235 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4236 "call visitLoadFromSwiftError when backend supports swifterror"); 4237 4238 assert(!I.isVolatile() && 4239 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4240 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4241 "Support volatile, non temporal, invariant for load_from_swift_error"); 4242 4243 const Value *SV = I.getOperand(0); 4244 Type *Ty = I.getType(); 4245 assert( 4246 (!AA || 4247 !AA->pointsToConstantMemory(MemoryLocation( 4248 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4249 I.getAAMetadata()))) && 4250 "load_from_swift_error should not be constant memory"); 4251 4252 SmallVector<EVT, 4> ValueVTs; 4253 SmallVector<uint64_t, 4> Offsets; 4254 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4255 ValueVTs, &Offsets); 4256 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4257 "expect a single EVT for swifterror"); 4258 4259 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4260 SDValue L = DAG.getCopyFromReg( 4261 getRoot(), getCurSDLoc(), 4262 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4263 4264 setValue(&I, L); 4265 } 4266 4267 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4268 if (I.isAtomic()) 4269 return visitAtomicStore(I); 4270 4271 const Value *SrcV = I.getOperand(0); 4272 const Value *PtrV = I.getOperand(1); 4273 4274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4275 if (TLI.supportSwiftError()) { 4276 // Swifterror values can come from either a function parameter with 4277 // swifterror attribute or an alloca with swifterror attribute. 4278 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4279 if (Arg->hasSwiftErrorAttr()) 4280 return visitStoreToSwiftError(I); 4281 } 4282 4283 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4284 if (Alloca->isSwiftError()) 4285 return visitStoreToSwiftError(I); 4286 } 4287 } 4288 4289 SmallVector<EVT, 4> ValueVTs, MemVTs; 4290 SmallVector<uint64_t, 4> Offsets; 4291 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4292 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4293 unsigned NumValues = ValueVTs.size(); 4294 if (NumValues == 0) 4295 return; 4296 4297 // Get the lowered operands. Note that we do this after 4298 // checking if NumResults is zero, because with zero results 4299 // the operands won't have values in the map. 4300 SDValue Src = getValue(SrcV); 4301 SDValue Ptr = getValue(PtrV); 4302 4303 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4304 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4305 SDLoc dl = getCurSDLoc(); 4306 Align Alignment = I.getAlign(); 4307 AAMDNodes AAInfo = I.getAAMetadata(); 4308 4309 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4310 4311 // An aggregate load cannot wrap around the address space, so offsets to its 4312 // parts don't wrap either. 4313 SDNodeFlags Flags; 4314 Flags.setNoUnsignedWrap(true); 4315 4316 unsigned ChainI = 0; 4317 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4318 // See visitLoad comments. 4319 if (ChainI == MaxParallelChains) { 4320 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4321 ArrayRef(Chains.data(), ChainI)); 4322 Root = Chain; 4323 ChainI = 0; 4324 } 4325 SDValue Add = 4326 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4327 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4328 if (MemVTs[i] != ValueVTs[i]) 4329 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4330 SDValue St = 4331 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4332 Alignment, MMOFlags, AAInfo); 4333 Chains[ChainI] = St; 4334 } 4335 4336 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4337 ArrayRef(Chains.data(), ChainI)); 4338 setValue(&I, StoreNode); 4339 DAG.setRoot(StoreNode); 4340 } 4341 4342 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4343 bool IsCompressing) { 4344 SDLoc sdl = getCurSDLoc(); 4345 4346 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4347 MaybeAlign &Alignment) { 4348 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4349 Src0 = I.getArgOperand(0); 4350 Ptr = I.getArgOperand(1); 4351 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4352 Mask = I.getArgOperand(3); 4353 }; 4354 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4355 MaybeAlign &Alignment) { 4356 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4357 Src0 = I.getArgOperand(0); 4358 Ptr = I.getArgOperand(1); 4359 Mask = I.getArgOperand(2); 4360 Alignment = std::nullopt; 4361 }; 4362 4363 Value *PtrOperand, *MaskOperand, *Src0Operand; 4364 MaybeAlign Alignment; 4365 if (IsCompressing) 4366 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4367 else 4368 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4369 4370 SDValue Ptr = getValue(PtrOperand); 4371 SDValue Src0 = getValue(Src0Operand); 4372 SDValue Mask = getValue(MaskOperand); 4373 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4374 4375 EVT VT = Src0.getValueType(); 4376 if (!Alignment) 4377 Alignment = DAG.getEVTAlign(VT); 4378 4379 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4380 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4381 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4382 SDValue StoreNode = 4383 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4384 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4385 DAG.setRoot(StoreNode); 4386 setValue(&I, StoreNode); 4387 } 4388 4389 // Get a uniform base for the Gather/Scatter intrinsic. 4390 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4391 // We try to represent it as a base pointer + vector of indices. 4392 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4393 // The first operand of the GEP may be a single pointer or a vector of pointers 4394 // Example: 4395 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4396 // or 4397 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4398 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4399 // 4400 // When the first GEP operand is a single pointer - it is the uniform base we 4401 // are looking for. If first operand of the GEP is a splat vector - we 4402 // extract the splat value and use it as a uniform base. 4403 // In all other cases the function returns 'false'. 4404 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4405 ISD::MemIndexType &IndexType, SDValue &Scale, 4406 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4407 uint64_t ElemSize) { 4408 SelectionDAG& DAG = SDB->DAG; 4409 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4410 const DataLayout &DL = DAG.getDataLayout(); 4411 4412 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4413 4414 // Handle splat constant pointer. 4415 if (auto *C = dyn_cast<Constant>(Ptr)) { 4416 C = C->getSplatValue(); 4417 if (!C) 4418 return false; 4419 4420 Base = SDB->getValue(C); 4421 4422 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4423 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4424 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4425 IndexType = ISD::SIGNED_SCALED; 4426 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4427 return true; 4428 } 4429 4430 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4431 if (!GEP || GEP->getParent() != CurBB) 4432 return false; 4433 4434 if (GEP->getNumOperands() != 2) 4435 return false; 4436 4437 const Value *BasePtr = GEP->getPointerOperand(); 4438 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4439 4440 // Make sure the base is scalar and the index is a vector. 4441 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4442 return false; 4443 4444 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4445 4446 // Target may not support the required addressing mode. 4447 if (ScaleVal != 1 && 4448 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4449 return false; 4450 4451 Base = SDB->getValue(BasePtr); 4452 Index = SDB->getValue(IndexVal); 4453 IndexType = ISD::SIGNED_SCALED; 4454 4455 Scale = 4456 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4457 return true; 4458 } 4459 4460 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4461 SDLoc sdl = getCurSDLoc(); 4462 4463 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4464 const Value *Ptr = I.getArgOperand(1); 4465 SDValue Src0 = getValue(I.getArgOperand(0)); 4466 SDValue Mask = getValue(I.getArgOperand(3)); 4467 EVT VT = Src0.getValueType(); 4468 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4469 ->getMaybeAlignValue() 4470 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4472 4473 SDValue Base; 4474 SDValue Index; 4475 ISD::MemIndexType IndexType; 4476 SDValue Scale; 4477 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4478 I.getParent(), VT.getScalarStoreSize()); 4479 4480 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4481 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4482 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4483 // TODO: Make MachineMemOperands aware of scalable 4484 // vectors. 4485 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4486 if (!UniformBase) { 4487 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4488 Index = getValue(Ptr); 4489 IndexType = ISD::SIGNED_SCALED; 4490 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4491 } 4492 4493 EVT IdxVT = Index.getValueType(); 4494 EVT EltTy = IdxVT.getVectorElementType(); 4495 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4496 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4497 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4498 } 4499 4500 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4501 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4502 Ops, MMO, IndexType, false); 4503 DAG.setRoot(Scatter); 4504 setValue(&I, Scatter); 4505 } 4506 4507 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4508 SDLoc sdl = getCurSDLoc(); 4509 4510 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4511 MaybeAlign &Alignment) { 4512 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4513 Ptr = I.getArgOperand(0); 4514 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4515 Mask = I.getArgOperand(2); 4516 Src0 = I.getArgOperand(3); 4517 }; 4518 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4519 MaybeAlign &Alignment) { 4520 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4521 Ptr = I.getArgOperand(0); 4522 Alignment = std::nullopt; 4523 Mask = I.getArgOperand(1); 4524 Src0 = I.getArgOperand(2); 4525 }; 4526 4527 Value *PtrOperand, *MaskOperand, *Src0Operand; 4528 MaybeAlign Alignment; 4529 if (IsExpanding) 4530 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4531 else 4532 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4533 4534 SDValue Ptr = getValue(PtrOperand); 4535 SDValue Src0 = getValue(Src0Operand); 4536 SDValue Mask = getValue(MaskOperand); 4537 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4538 4539 EVT VT = Src0.getValueType(); 4540 if (!Alignment) 4541 Alignment = DAG.getEVTAlign(VT); 4542 4543 AAMDNodes AAInfo = I.getAAMetadata(); 4544 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4545 4546 // Do not serialize masked loads of constant memory with anything. 4547 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4548 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4549 4550 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4551 4552 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4553 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4554 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4555 4556 SDValue Load = 4557 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4558 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4559 if (AddToChain) 4560 PendingLoads.push_back(Load.getValue(1)); 4561 setValue(&I, Load); 4562 } 4563 4564 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4565 SDLoc sdl = getCurSDLoc(); 4566 4567 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4568 const Value *Ptr = I.getArgOperand(0); 4569 SDValue Src0 = getValue(I.getArgOperand(3)); 4570 SDValue Mask = getValue(I.getArgOperand(2)); 4571 4572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4573 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4574 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4575 ->getMaybeAlignValue() 4576 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4577 4578 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4579 4580 SDValue Root = DAG.getRoot(); 4581 SDValue Base; 4582 SDValue Index; 4583 ISD::MemIndexType IndexType; 4584 SDValue Scale; 4585 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4586 I.getParent(), VT.getScalarStoreSize()); 4587 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4588 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4589 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4590 // TODO: Make MachineMemOperands aware of scalable 4591 // vectors. 4592 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4593 4594 if (!UniformBase) { 4595 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4596 Index = getValue(Ptr); 4597 IndexType = ISD::SIGNED_SCALED; 4598 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4599 } 4600 4601 EVT IdxVT = Index.getValueType(); 4602 EVT EltTy = IdxVT.getVectorElementType(); 4603 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4604 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4605 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4606 } 4607 4608 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4609 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4610 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4611 4612 PendingLoads.push_back(Gather.getValue(1)); 4613 setValue(&I, Gather); 4614 } 4615 4616 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4617 SDLoc dl = getCurSDLoc(); 4618 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4619 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4620 SyncScope::ID SSID = I.getSyncScopeID(); 4621 4622 SDValue InChain = getRoot(); 4623 4624 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4625 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4626 4627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4628 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4629 4630 MachineFunction &MF = DAG.getMachineFunction(); 4631 MachineMemOperand *MMO = MF.getMachineMemOperand( 4632 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4633 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4634 FailureOrdering); 4635 4636 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4637 dl, MemVT, VTs, InChain, 4638 getValue(I.getPointerOperand()), 4639 getValue(I.getCompareOperand()), 4640 getValue(I.getNewValOperand()), MMO); 4641 4642 SDValue OutChain = L.getValue(2); 4643 4644 setValue(&I, L); 4645 DAG.setRoot(OutChain); 4646 } 4647 4648 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4649 SDLoc dl = getCurSDLoc(); 4650 ISD::NodeType NT; 4651 switch (I.getOperation()) { 4652 default: llvm_unreachable("Unknown atomicrmw operation"); 4653 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4654 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4655 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4656 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4657 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4658 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4659 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4660 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4661 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4662 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4663 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4664 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4665 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4666 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4667 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4668 case AtomicRMWInst::UIncWrap: 4669 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4670 break; 4671 case AtomicRMWInst::UDecWrap: 4672 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4673 break; 4674 } 4675 AtomicOrdering Ordering = I.getOrdering(); 4676 SyncScope::ID SSID = I.getSyncScopeID(); 4677 4678 SDValue InChain = getRoot(); 4679 4680 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4682 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4683 4684 MachineFunction &MF = DAG.getMachineFunction(); 4685 MachineMemOperand *MMO = MF.getMachineMemOperand( 4686 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4687 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4688 4689 SDValue L = 4690 DAG.getAtomic(NT, dl, MemVT, InChain, 4691 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4692 MMO); 4693 4694 SDValue OutChain = L.getValue(1); 4695 4696 setValue(&I, L); 4697 DAG.setRoot(OutChain); 4698 } 4699 4700 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4701 SDLoc dl = getCurSDLoc(); 4702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4703 SDValue Ops[3]; 4704 Ops[0] = getRoot(); 4705 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4706 TLI.getFenceOperandTy(DAG.getDataLayout())); 4707 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4708 TLI.getFenceOperandTy(DAG.getDataLayout())); 4709 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4710 setValue(&I, N); 4711 DAG.setRoot(N); 4712 } 4713 4714 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4715 SDLoc dl = getCurSDLoc(); 4716 AtomicOrdering Order = I.getOrdering(); 4717 SyncScope::ID SSID = I.getSyncScopeID(); 4718 4719 SDValue InChain = getRoot(); 4720 4721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4722 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4723 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4724 4725 if (!TLI.supportsUnalignedAtomics() && 4726 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4727 report_fatal_error("Cannot generate unaligned atomic load"); 4728 4729 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4730 4731 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4732 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4733 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4734 4735 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4736 4737 SDValue Ptr = getValue(I.getPointerOperand()); 4738 4739 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4740 // TODO: Once this is better exercised by tests, it should be merged with 4741 // the normal path for loads to prevent future divergence. 4742 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4743 if (MemVT != VT) 4744 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4745 4746 setValue(&I, L); 4747 SDValue OutChain = L.getValue(1); 4748 if (!I.isUnordered()) 4749 DAG.setRoot(OutChain); 4750 else 4751 PendingLoads.push_back(OutChain); 4752 return; 4753 } 4754 4755 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4756 Ptr, MMO); 4757 4758 SDValue OutChain = L.getValue(1); 4759 if (MemVT != VT) 4760 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4761 4762 setValue(&I, L); 4763 DAG.setRoot(OutChain); 4764 } 4765 4766 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4767 SDLoc dl = getCurSDLoc(); 4768 4769 AtomicOrdering Ordering = I.getOrdering(); 4770 SyncScope::ID SSID = I.getSyncScopeID(); 4771 4772 SDValue InChain = getRoot(); 4773 4774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4775 EVT MemVT = 4776 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4777 4778 if (!TLI.supportsUnalignedAtomics() && 4779 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4780 report_fatal_error("Cannot generate unaligned atomic store"); 4781 4782 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4783 4784 MachineFunction &MF = DAG.getMachineFunction(); 4785 MachineMemOperand *MMO = MF.getMachineMemOperand( 4786 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4787 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4788 4789 SDValue Val = getValue(I.getValueOperand()); 4790 if (Val.getValueType() != MemVT) 4791 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4792 SDValue Ptr = getValue(I.getPointerOperand()); 4793 4794 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4795 // TODO: Once this is better exercised by tests, it should be merged with 4796 // the normal path for stores to prevent future divergence. 4797 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4798 setValue(&I, S); 4799 DAG.setRoot(S); 4800 return; 4801 } 4802 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4803 Ptr, Val, MMO); 4804 4805 setValue(&I, OutChain); 4806 DAG.setRoot(OutChain); 4807 } 4808 4809 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4810 /// node. 4811 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4812 unsigned Intrinsic) { 4813 // Ignore the callsite's attributes. A specific call site may be marked with 4814 // readnone, but the lowering code will expect the chain based on the 4815 // definition. 4816 const Function *F = I.getCalledFunction(); 4817 bool HasChain = !F->doesNotAccessMemory(); 4818 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4819 4820 // Build the operand list. 4821 SmallVector<SDValue, 8> Ops; 4822 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4823 if (OnlyLoad) { 4824 // We don't need to serialize loads against other loads. 4825 Ops.push_back(DAG.getRoot()); 4826 } else { 4827 Ops.push_back(getRoot()); 4828 } 4829 } 4830 4831 // Info is set by getTgtMemIntrinsic 4832 TargetLowering::IntrinsicInfo Info; 4833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4834 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4835 DAG.getMachineFunction(), 4836 Intrinsic); 4837 4838 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4839 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4840 Info.opc == ISD::INTRINSIC_W_CHAIN) 4841 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4842 TLI.getPointerTy(DAG.getDataLayout()))); 4843 4844 // Add all operands of the call to the operand list. 4845 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4846 const Value *Arg = I.getArgOperand(i); 4847 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4848 Ops.push_back(getValue(Arg)); 4849 continue; 4850 } 4851 4852 // Use TargetConstant instead of a regular constant for immarg. 4853 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4854 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4855 assert(CI->getBitWidth() <= 64 && 4856 "large intrinsic immediates not handled"); 4857 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4858 } else { 4859 Ops.push_back( 4860 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4861 } 4862 } 4863 4864 SmallVector<EVT, 4> ValueVTs; 4865 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4866 4867 if (HasChain) 4868 ValueVTs.push_back(MVT::Other); 4869 4870 SDVTList VTs = DAG.getVTList(ValueVTs); 4871 4872 // Propagate fast-math-flags from IR to node(s). 4873 SDNodeFlags Flags; 4874 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4875 Flags.copyFMF(*FPMO); 4876 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4877 4878 // Create the node. 4879 SDValue Result; 4880 // In some cases, custom collection of operands from CallInst I may be needed. 4881 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4882 if (IsTgtIntrinsic) { 4883 // This is target intrinsic that touches memory 4884 // 4885 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4886 // didn't yield anything useful. 4887 MachinePointerInfo MPI; 4888 if (Info.ptrVal) 4889 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4890 else if (Info.fallbackAddressSpace) 4891 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4892 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4893 Info.memVT, MPI, Info.align, Info.flags, 4894 Info.size, I.getAAMetadata()); 4895 } else if (!HasChain) { 4896 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4897 } else if (!I.getType()->isVoidTy()) { 4898 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4899 } else { 4900 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4901 } 4902 4903 if (HasChain) { 4904 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4905 if (OnlyLoad) 4906 PendingLoads.push_back(Chain); 4907 else 4908 DAG.setRoot(Chain); 4909 } 4910 4911 if (!I.getType()->isVoidTy()) { 4912 if (!isa<VectorType>(I.getType())) 4913 Result = lowerRangeToAssertZExt(DAG, I, Result); 4914 4915 MaybeAlign Alignment = I.getRetAlign(); 4916 4917 // Insert `assertalign` node if there's an alignment. 4918 if (InsertAssertAlign && Alignment) { 4919 Result = 4920 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4921 } 4922 4923 setValue(&I, Result); 4924 } 4925 } 4926 4927 /// GetSignificand - Get the significand and build it into a floating-point 4928 /// number with exponent of 1: 4929 /// 4930 /// Op = (Op & 0x007fffff) | 0x3f800000; 4931 /// 4932 /// where Op is the hexadecimal representation of floating point value. 4933 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4934 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4935 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4936 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4937 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4938 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4939 } 4940 4941 /// GetExponent - Get the exponent: 4942 /// 4943 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4944 /// 4945 /// where Op is the hexadecimal representation of floating point value. 4946 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4947 const TargetLowering &TLI, const SDLoc &dl) { 4948 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4949 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4950 SDValue t1 = DAG.getNode( 4951 ISD::SRL, dl, MVT::i32, t0, 4952 DAG.getConstant(23, dl, 4953 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4954 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4955 DAG.getConstant(127, dl, MVT::i32)); 4956 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4957 } 4958 4959 /// getF32Constant - Get 32-bit floating point constant. 4960 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4961 const SDLoc &dl) { 4962 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4963 MVT::f32); 4964 } 4965 4966 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4967 SelectionDAG &DAG) { 4968 // TODO: What fast-math-flags should be set on the floating-point nodes? 4969 4970 // IntegerPartOfX = ((int32_t)(t0); 4971 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4972 4973 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4974 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4975 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4976 4977 // IntegerPartOfX <<= 23; 4978 IntegerPartOfX = 4979 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4980 DAG.getConstant(23, dl, 4981 DAG.getTargetLoweringInfo().getShiftAmountTy( 4982 MVT::i32, DAG.getDataLayout()))); 4983 4984 SDValue TwoToFractionalPartOfX; 4985 if (LimitFloatPrecision <= 6) { 4986 // For floating-point precision of 6: 4987 // 4988 // TwoToFractionalPartOfX = 4989 // 0.997535578f + 4990 // (0.735607626f + 0.252464424f * x) * x; 4991 // 4992 // error 0.0144103317, which is 6 bits 4993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4994 getF32Constant(DAG, 0x3e814304, dl)); 4995 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4996 getF32Constant(DAG, 0x3f3c50c8, dl)); 4997 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4998 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4999 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5000 } else if (LimitFloatPrecision <= 12) { 5001 // For floating-point precision of 12: 5002 // 5003 // TwoToFractionalPartOfX = 5004 // 0.999892986f + 5005 // (0.696457318f + 5006 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5007 // 5008 // error 0.000107046256, which is 13 to 14 bits 5009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5010 getF32Constant(DAG, 0x3da235e3, dl)); 5011 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5012 getF32Constant(DAG, 0x3e65b8f3, dl)); 5013 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5014 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5015 getF32Constant(DAG, 0x3f324b07, dl)); 5016 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5017 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5018 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5019 } else { // LimitFloatPrecision <= 18 5020 // For floating-point precision of 18: 5021 // 5022 // TwoToFractionalPartOfX = 5023 // 0.999999982f + 5024 // (0.693148872f + 5025 // (0.240227044f + 5026 // (0.554906021e-1f + 5027 // (0.961591928e-2f + 5028 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5029 // error 2.47208000*10^(-7), which is better than 18 bits 5030 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5031 getF32Constant(DAG, 0x3924b03e, dl)); 5032 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5033 getF32Constant(DAG, 0x3ab24b87, dl)); 5034 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5035 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5036 getF32Constant(DAG, 0x3c1d8c17, dl)); 5037 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5038 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5039 getF32Constant(DAG, 0x3d634a1d, dl)); 5040 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5041 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5042 getF32Constant(DAG, 0x3e75fe14, dl)); 5043 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5044 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5045 getF32Constant(DAG, 0x3f317234, dl)); 5046 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5047 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5048 getF32Constant(DAG, 0x3f800000, dl)); 5049 } 5050 5051 // Add the exponent into the result in integer domain. 5052 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5053 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5054 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5055 } 5056 5057 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5058 /// limited-precision mode. 5059 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5060 const TargetLowering &TLI, SDNodeFlags Flags) { 5061 if (Op.getValueType() == MVT::f32 && 5062 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5063 5064 // Put the exponent in the right bit position for later addition to the 5065 // final result: 5066 // 5067 // t0 = Op * log2(e) 5068 5069 // TODO: What fast-math-flags should be set here? 5070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5071 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5072 return getLimitedPrecisionExp2(t0, dl, DAG); 5073 } 5074 5075 // No special expansion. 5076 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5077 } 5078 5079 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5080 /// limited-precision mode. 5081 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5082 const TargetLowering &TLI, SDNodeFlags Flags) { 5083 // TODO: What fast-math-flags should be set on the floating-point nodes? 5084 5085 if (Op.getValueType() == MVT::f32 && 5086 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5087 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5088 5089 // Scale the exponent by log(2). 5090 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5091 SDValue LogOfExponent = 5092 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5093 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5094 5095 // Get the significand and build it into a floating-point number with 5096 // exponent of 1. 5097 SDValue X = GetSignificand(DAG, Op1, dl); 5098 5099 SDValue LogOfMantissa; 5100 if (LimitFloatPrecision <= 6) { 5101 // For floating-point precision of 6: 5102 // 5103 // LogofMantissa = 5104 // -1.1609546f + 5105 // (1.4034025f - 0.23903021f * x) * x; 5106 // 5107 // error 0.0034276066, which is better than 8 bits 5108 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5109 getF32Constant(DAG, 0xbe74c456, dl)); 5110 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5111 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5112 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5113 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5114 getF32Constant(DAG, 0x3f949a29, dl)); 5115 } else if (LimitFloatPrecision <= 12) { 5116 // For floating-point precision of 12: 5117 // 5118 // LogOfMantissa = 5119 // -1.7417939f + 5120 // (2.8212026f + 5121 // (-1.4699568f + 5122 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5123 // 5124 // error 0.000061011436, which is 14 bits 5125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5126 getF32Constant(DAG, 0xbd67b6d6, dl)); 5127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5128 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5130 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5131 getF32Constant(DAG, 0x3fbc278b, dl)); 5132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5133 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5134 getF32Constant(DAG, 0x40348e95, dl)); 5135 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5136 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5137 getF32Constant(DAG, 0x3fdef31a, dl)); 5138 } else { // LimitFloatPrecision <= 18 5139 // For floating-point precision of 18: 5140 // 5141 // LogOfMantissa = 5142 // -2.1072184f + 5143 // (4.2372794f + 5144 // (-3.7029485f + 5145 // (2.2781945f + 5146 // (-0.87823314f + 5147 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5148 // 5149 // error 0.0000023660568, which is better than 18 bits 5150 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5151 getF32Constant(DAG, 0xbc91e5ac, dl)); 5152 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5153 getF32Constant(DAG, 0x3e4350aa, dl)); 5154 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5155 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5156 getF32Constant(DAG, 0x3f60d3e3, dl)); 5157 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5158 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5159 getF32Constant(DAG, 0x4011cdf0, dl)); 5160 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5161 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5162 getF32Constant(DAG, 0x406cfd1c, dl)); 5163 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5164 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5165 getF32Constant(DAG, 0x408797cb, dl)); 5166 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5167 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5168 getF32Constant(DAG, 0x4006dcab, dl)); 5169 } 5170 5171 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5172 } 5173 5174 // No special expansion. 5175 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5176 } 5177 5178 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5179 /// limited-precision mode. 5180 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5181 const TargetLowering &TLI, SDNodeFlags Flags) { 5182 // TODO: What fast-math-flags should be set on the floating-point nodes? 5183 5184 if (Op.getValueType() == MVT::f32 && 5185 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5186 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5187 5188 // Get the exponent. 5189 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5190 5191 // Get the significand and build it into a floating-point number with 5192 // exponent of 1. 5193 SDValue X = GetSignificand(DAG, Op1, dl); 5194 5195 // Different possible minimax approximations of significand in 5196 // floating-point for various degrees of accuracy over [1,2]. 5197 SDValue Log2ofMantissa; 5198 if (LimitFloatPrecision <= 6) { 5199 // For floating-point precision of 6: 5200 // 5201 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5202 // 5203 // error 0.0049451742, which is more than 7 bits 5204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5205 getF32Constant(DAG, 0xbeb08fe0, dl)); 5206 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5207 getF32Constant(DAG, 0x40019463, dl)); 5208 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5209 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5210 getF32Constant(DAG, 0x3fd6633d, dl)); 5211 } else if (LimitFloatPrecision <= 12) { 5212 // For floating-point precision of 12: 5213 // 5214 // Log2ofMantissa = 5215 // -2.51285454f + 5216 // (4.07009056f + 5217 // (-2.12067489f + 5218 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5219 // 5220 // error 0.0000876136000, which is better than 13 bits 5221 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5222 getF32Constant(DAG, 0xbda7262e, dl)); 5223 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5224 getF32Constant(DAG, 0x3f25280b, dl)); 5225 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5226 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5227 getF32Constant(DAG, 0x4007b923, dl)); 5228 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5229 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5230 getF32Constant(DAG, 0x40823e2f, dl)); 5231 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5232 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5233 getF32Constant(DAG, 0x4020d29c, dl)); 5234 } else { // LimitFloatPrecision <= 18 5235 // For floating-point precision of 18: 5236 // 5237 // Log2ofMantissa = 5238 // -3.0400495f + 5239 // (6.1129976f + 5240 // (-5.3420409f + 5241 // (3.2865683f + 5242 // (-1.2669343f + 5243 // (0.27515199f - 5244 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5245 // 5246 // error 0.0000018516, which is better than 18 bits 5247 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5248 getF32Constant(DAG, 0xbcd2769e, dl)); 5249 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5250 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5252 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5253 getF32Constant(DAG, 0x3fa22ae7, dl)); 5254 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5255 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5256 getF32Constant(DAG, 0x40525723, dl)); 5257 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5258 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5259 getF32Constant(DAG, 0x40aaf200, dl)); 5260 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5261 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5262 getF32Constant(DAG, 0x40c39dad, dl)); 5263 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5264 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5265 getF32Constant(DAG, 0x4042902c, dl)); 5266 } 5267 5268 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5269 } 5270 5271 // No special expansion. 5272 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5273 } 5274 5275 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5276 /// limited-precision mode. 5277 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5278 const TargetLowering &TLI, SDNodeFlags Flags) { 5279 // TODO: What fast-math-flags should be set on the floating-point nodes? 5280 5281 if (Op.getValueType() == MVT::f32 && 5282 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5283 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5284 5285 // Scale the exponent by log10(2) [0.30102999f]. 5286 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5287 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5288 getF32Constant(DAG, 0x3e9a209a, dl)); 5289 5290 // Get the significand and build it into a floating-point number with 5291 // exponent of 1. 5292 SDValue X = GetSignificand(DAG, Op1, dl); 5293 5294 SDValue Log10ofMantissa; 5295 if (LimitFloatPrecision <= 6) { 5296 // For floating-point precision of 6: 5297 // 5298 // Log10ofMantissa = 5299 // -0.50419619f + 5300 // (0.60948995f - 0.10380950f * x) * x; 5301 // 5302 // error 0.0014886165, which is 6 bits 5303 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5304 getF32Constant(DAG, 0xbdd49a13, dl)); 5305 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5306 getF32Constant(DAG, 0x3f1c0789, dl)); 5307 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5308 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5309 getF32Constant(DAG, 0x3f011300, dl)); 5310 } else if (LimitFloatPrecision <= 12) { 5311 // For floating-point precision of 12: 5312 // 5313 // Log10ofMantissa = 5314 // -0.64831180f + 5315 // (0.91751397f + 5316 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5317 // 5318 // error 0.00019228036, which is better than 12 bits 5319 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5320 getF32Constant(DAG, 0x3d431f31, dl)); 5321 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5322 getF32Constant(DAG, 0x3ea21fb2, dl)); 5323 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5324 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5325 getF32Constant(DAG, 0x3f6ae232, dl)); 5326 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5327 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5328 getF32Constant(DAG, 0x3f25f7c3, dl)); 5329 } else { // LimitFloatPrecision <= 18 5330 // For floating-point precision of 18: 5331 // 5332 // Log10ofMantissa = 5333 // -0.84299375f + 5334 // (1.5327582f + 5335 // (-1.0688956f + 5336 // (0.49102474f + 5337 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5338 // 5339 // error 0.0000037995730, which is better than 18 bits 5340 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5341 getF32Constant(DAG, 0x3c5d51ce, dl)); 5342 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5343 getF32Constant(DAG, 0x3e00685a, dl)); 5344 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5345 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5346 getF32Constant(DAG, 0x3efb6798, dl)); 5347 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5348 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5349 getF32Constant(DAG, 0x3f88d192, dl)); 5350 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5351 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5352 getF32Constant(DAG, 0x3fc4316c, dl)); 5353 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5354 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5355 getF32Constant(DAG, 0x3f57ce70, dl)); 5356 } 5357 5358 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5359 } 5360 5361 // No special expansion. 5362 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5363 } 5364 5365 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5366 /// limited-precision mode. 5367 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5368 const TargetLowering &TLI, SDNodeFlags Flags) { 5369 if (Op.getValueType() == MVT::f32 && 5370 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5371 return getLimitedPrecisionExp2(Op, dl, DAG); 5372 5373 // No special expansion. 5374 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5375 } 5376 5377 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5378 /// limited-precision mode with x == 10.0f. 5379 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5380 SelectionDAG &DAG, const TargetLowering &TLI, 5381 SDNodeFlags Flags) { 5382 bool IsExp10 = false; 5383 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5384 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5385 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5386 APFloat Ten(10.0f); 5387 IsExp10 = LHSC->isExactlyValue(Ten); 5388 } 5389 } 5390 5391 // TODO: What fast-math-flags should be set on the FMUL node? 5392 if (IsExp10) { 5393 // Put the exponent in the right bit position for later addition to the 5394 // final result: 5395 // 5396 // #define LOG2OF10 3.3219281f 5397 // t0 = Op * LOG2OF10; 5398 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5399 getF32Constant(DAG, 0x40549a78, dl)); 5400 return getLimitedPrecisionExp2(t0, dl, DAG); 5401 } 5402 5403 // No special expansion. 5404 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5405 } 5406 5407 /// ExpandPowI - Expand a llvm.powi intrinsic. 5408 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5409 SelectionDAG &DAG) { 5410 // If RHS is a constant, we can expand this out to a multiplication tree if 5411 // it's beneficial on the target, otherwise we end up lowering to a call to 5412 // __powidf2 (for example). 5413 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5414 unsigned Val = RHSC->getSExtValue(); 5415 5416 // powi(x, 0) -> 1.0 5417 if (Val == 0) 5418 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5419 5420 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5421 Val, DAG.shouldOptForSize())) { 5422 // Get the exponent as a positive value. 5423 if ((int)Val < 0) 5424 Val = -Val; 5425 // We use the simple binary decomposition method to generate the multiply 5426 // sequence. There are more optimal ways to do this (for example, 5427 // powi(x,15) generates one more multiply than it should), but this has 5428 // the benefit of being both really simple and much better than a libcall. 5429 SDValue Res; // Logically starts equal to 1.0 5430 SDValue CurSquare = LHS; 5431 // TODO: Intrinsics should have fast-math-flags that propagate to these 5432 // nodes. 5433 while (Val) { 5434 if (Val & 1) { 5435 if (Res.getNode()) 5436 Res = 5437 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5438 else 5439 Res = CurSquare; // 1.0*CurSquare. 5440 } 5441 5442 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5443 CurSquare, CurSquare); 5444 Val >>= 1; 5445 } 5446 5447 // If the original was negative, invert the result, producing 1/(x*x*x). 5448 if (RHSC->getSExtValue() < 0) 5449 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5450 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5451 return Res; 5452 } 5453 } 5454 5455 // Otherwise, expand to a libcall. 5456 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5457 } 5458 5459 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5460 SDValue LHS, SDValue RHS, SDValue Scale, 5461 SelectionDAG &DAG, const TargetLowering &TLI) { 5462 EVT VT = LHS.getValueType(); 5463 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5464 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5465 LLVMContext &Ctx = *DAG.getContext(); 5466 5467 // If the type is legal but the operation isn't, this node might survive all 5468 // the way to operation legalization. If we end up there and we do not have 5469 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5470 // node. 5471 5472 // Coax the legalizer into expanding the node during type legalization instead 5473 // by bumping the size by one bit. This will force it to Promote, enabling the 5474 // early expansion and avoiding the need to expand later. 5475 5476 // We don't have to do this if Scale is 0; that can always be expanded, unless 5477 // it's a saturating signed operation. Those can experience true integer 5478 // division overflow, a case which we must avoid. 5479 5480 // FIXME: We wouldn't have to do this (or any of the early 5481 // expansion/promotion) if it was possible to expand a libcall of an 5482 // illegal type during operation legalization. But it's not, so things 5483 // get a bit hacky. 5484 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5485 if ((ScaleInt > 0 || (Saturating && Signed)) && 5486 (TLI.isTypeLegal(VT) || 5487 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5488 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5489 Opcode, VT, ScaleInt); 5490 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5491 EVT PromVT; 5492 if (VT.isScalarInteger()) 5493 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5494 else if (VT.isVector()) { 5495 PromVT = VT.getVectorElementType(); 5496 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5497 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5498 } else 5499 llvm_unreachable("Wrong VT for DIVFIX?"); 5500 if (Signed) { 5501 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5502 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5503 } else { 5504 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5505 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5506 } 5507 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5508 // For saturating operations, we need to shift up the LHS to get the 5509 // proper saturation width, and then shift down again afterwards. 5510 if (Saturating) 5511 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5512 DAG.getConstant(1, DL, ShiftTy)); 5513 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5514 if (Saturating) 5515 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5516 DAG.getConstant(1, DL, ShiftTy)); 5517 return DAG.getZExtOrTrunc(Res, DL, VT); 5518 } 5519 } 5520 5521 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5522 } 5523 5524 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5525 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5526 static void 5527 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5528 const SDValue &N) { 5529 switch (N.getOpcode()) { 5530 case ISD::CopyFromReg: { 5531 SDValue Op = N.getOperand(1); 5532 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5533 Op.getValueType().getSizeInBits()); 5534 return; 5535 } 5536 case ISD::BITCAST: 5537 case ISD::AssertZext: 5538 case ISD::AssertSext: 5539 case ISD::TRUNCATE: 5540 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5541 return; 5542 case ISD::BUILD_PAIR: 5543 case ISD::BUILD_VECTOR: 5544 case ISD::CONCAT_VECTORS: 5545 for (SDValue Op : N->op_values()) 5546 getUnderlyingArgRegs(Regs, Op); 5547 return; 5548 default: 5549 return; 5550 } 5551 } 5552 5553 /// If the DbgValueInst is a dbg_value of a function argument, create the 5554 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5555 /// instruction selection, they will be inserted to the entry BB. 5556 /// We don't currently support this for variadic dbg_values, as they shouldn't 5557 /// appear for function arguments or in the prologue. 5558 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5559 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5560 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5561 const Argument *Arg = dyn_cast<Argument>(V); 5562 if (!Arg) 5563 return false; 5564 5565 MachineFunction &MF = DAG.getMachineFunction(); 5566 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5567 5568 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5569 // we've been asked to pursue. 5570 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5571 bool Indirect) { 5572 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5573 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5574 // pointing at the VReg, which will be patched up later. 5575 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5576 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5577 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5578 /* isKill */ false, /* isDead */ false, 5579 /* isUndef */ false, /* isEarlyClobber */ false, 5580 /* SubReg */ 0, /* isDebug */ true)}); 5581 5582 auto *NewDIExpr = FragExpr; 5583 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5584 // the DIExpression. 5585 if (Indirect) 5586 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5587 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5588 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5589 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5590 } else { 5591 // Create a completely standard DBG_VALUE. 5592 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5593 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5594 } 5595 }; 5596 5597 if (Kind == FuncArgumentDbgValueKind::Value) { 5598 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5599 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5600 // the entry block. 5601 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5602 if (!IsInEntryBlock) 5603 return false; 5604 5605 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5606 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5607 // variable that also is a param. 5608 // 5609 // Although, if we are at the top of the entry block already, we can still 5610 // emit using ArgDbgValue. This might catch some situations when the 5611 // dbg.value refers to an argument that isn't used in the entry block, so 5612 // any CopyToReg node would be optimized out and the only way to express 5613 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5614 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5615 // we should only emit as ArgDbgValue if the Variable is an argument to the 5616 // current function, and the dbg.value intrinsic is found in the entry 5617 // block. 5618 bool VariableIsFunctionInputArg = Variable->isParameter() && 5619 !DL->getInlinedAt(); 5620 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5621 if (!IsInPrologue && !VariableIsFunctionInputArg) 5622 return false; 5623 5624 // Here we assume that a function argument on IR level only can be used to 5625 // describe one input parameter on source level. If we for example have 5626 // source code like this 5627 // 5628 // struct A { long x, y; }; 5629 // void foo(struct A a, long b) { 5630 // ... 5631 // b = a.x; 5632 // ... 5633 // } 5634 // 5635 // and IR like this 5636 // 5637 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5638 // entry: 5639 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5640 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5641 // call void @llvm.dbg.value(metadata i32 %b, "b", 5642 // ... 5643 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5644 // ... 5645 // 5646 // then the last dbg.value is describing a parameter "b" using a value that 5647 // is an argument. But since we already has used %a1 to describe a parameter 5648 // we should not handle that last dbg.value here (that would result in an 5649 // incorrect hoisting of the DBG_VALUE to the function entry). 5650 // Notice that we allow one dbg.value per IR level argument, to accommodate 5651 // for the situation with fragments above. 5652 if (VariableIsFunctionInputArg) { 5653 unsigned ArgNo = Arg->getArgNo(); 5654 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5655 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5656 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5657 return false; 5658 FuncInfo.DescribedArgs.set(ArgNo); 5659 } 5660 } 5661 5662 bool IsIndirect = false; 5663 std::optional<MachineOperand> Op; 5664 // Some arguments' frame index is recorded during argument lowering. 5665 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5666 if (FI != std::numeric_limits<int>::max()) 5667 Op = MachineOperand::CreateFI(FI); 5668 5669 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5670 if (!Op && N.getNode()) { 5671 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5672 Register Reg; 5673 if (ArgRegsAndSizes.size() == 1) 5674 Reg = ArgRegsAndSizes.front().first; 5675 5676 if (Reg && Reg.isVirtual()) { 5677 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5678 Register PR = RegInfo.getLiveInPhysReg(Reg); 5679 if (PR) 5680 Reg = PR; 5681 } 5682 if (Reg) { 5683 Op = MachineOperand::CreateReg(Reg, false); 5684 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5685 } 5686 } 5687 5688 if (!Op && N.getNode()) { 5689 // Check if frame index is available. 5690 SDValue LCandidate = peekThroughBitcasts(N); 5691 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5692 if (FrameIndexSDNode *FINode = 5693 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5694 Op = MachineOperand::CreateFI(FINode->getIndex()); 5695 } 5696 5697 if (!Op) { 5698 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5699 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5700 SplitRegs) { 5701 unsigned Offset = 0; 5702 for (const auto &RegAndSize : SplitRegs) { 5703 // If the expression is already a fragment, the current register 5704 // offset+size might extend beyond the fragment. In this case, only 5705 // the register bits that are inside the fragment are relevant. 5706 int RegFragmentSizeInBits = RegAndSize.second; 5707 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5708 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5709 // The register is entirely outside the expression fragment, 5710 // so is irrelevant for debug info. 5711 if (Offset >= ExprFragmentSizeInBits) 5712 break; 5713 // The register is partially outside the expression fragment, only 5714 // the low bits within the fragment are relevant for debug info. 5715 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5716 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5717 } 5718 } 5719 5720 auto FragmentExpr = DIExpression::createFragmentExpression( 5721 Expr, Offset, RegFragmentSizeInBits); 5722 Offset += RegAndSize.second; 5723 // If a valid fragment expression cannot be created, the variable's 5724 // correct value cannot be determined and so it is set as Undef. 5725 if (!FragmentExpr) { 5726 SDDbgValue *SDV = DAG.getConstantDbgValue( 5727 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5728 DAG.AddDbgValue(SDV, false); 5729 continue; 5730 } 5731 MachineInstr *NewMI = 5732 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5733 Kind != FuncArgumentDbgValueKind::Value); 5734 FuncInfo.ArgDbgValues.push_back(NewMI); 5735 } 5736 }; 5737 5738 // Check if ValueMap has reg number. 5739 DenseMap<const Value *, Register>::const_iterator 5740 VMI = FuncInfo.ValueMap.find(V); 5741 if (VMI != FuncInfo.ValueMap.end()) { 5742 const auto &TLI = DAG.getTargetLoweringInfo(); 5743 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5744 V->getType(), std::nullopt); 5745 if (RFV.occupiesMultipleRegs()) { 5746 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5747 return true; 5748 } 5749 5750 Op = MachineOperand::CreateReg(VMI->second, false); 5751 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5752 } else if (ArgRegsAndSizes.size() > 1) { 5753 // This was split due to the calling convention, and no virtual register 5754 // mapping exists for the value. 5755 splitMultiRegDbgValue(ArgRegsAndSizes); 5756 return true; 5757 } 5758 } 5759 5760 if (!Op) 5761 return false; 5762 5763 assert(Variable->isValidLocationForIntrinsic(DL) && 5764 "Expected inlined-at fields to agree"); 5765 MachineInstr *NewMI = nullptr; 5766 5767 if (Op->isReg()) 5768 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5769 else 5770 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5771 Variable, Expr); 5772 5773 // Otherwise, use ArgDbgValues. 5774 FuncInfo.ArgDbgValues.push_back(NewMI); 5775 return true; 5776 } 5777 5778 /// Return the appropriate SDDbgValue based on N. 5779 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5780 DILocalVariable *Variable, 5781 DIExpression *Expr, 5782 const DebugLoc &dl, 5783 unsigned DbgSDNodeOrder) { 5784 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5785 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5786 // stack slot locations. 5787 // 5788 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5789 // debug values here after optimization: 5790 // 5791 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5792 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5793 // 5794 // Both describe the direct values of their associated variables. 5795 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5796 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5797 } 5798 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5799 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5800 } 5801 5802 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5803 switch (Intrinsic) { 5804 case Intrinsic::smul_fix: 5805 return ISD::SMULFIX; 5806 case Intrinsic::umul_fix: 5807 return ISD::UMULFIX; 5808 case Intrinsic::smul_fix_sat: 5809 return ISD::SMULFIXSAT; 5810 case Intrinsic::umul_fix_sat: 5811 return ISD::UMULFIXSAT; 5812 case Intrinsic::sdiv_fix: 5813 return ISD::SDIVFIX; 5814 case Intrinsic::udiv_fix: 5815 return ISD::UDIVFIX; 5816 case Intrinsic::sdiv_fix_sat: 5817 return ISD::SDIVFIXSAT; 5818 case Intrinsic::udiv_fix_sat: 5819 return ISD::UDIVFIXSAT; 5820 default: 5821 llvm_unreachable("Unhandled fixed point intrinsic"); 5822 } 5823 } 5824 5825 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5826 const char *FunctionName) { 5827 assert(FunctionName && "FunctionName must not be nullptr"); 5828 SDValue Callee = DAG.getExternalSymbol( 5829 FunctionName, 5830 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5831 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5832 } 5833 5834 /// Given a @llvm.call.preallocated.setup, return the corresponding 5835 /// preallocated call. 5836 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5837 assert(cast<CallBase>(PreallocatedSetup) 5838 ->getCalledFunction() 5839 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5840 "expected call_preallocated_setup Value"); 5841 for (const auto *U : PreallocatedSetup->users()) { 5842 auto *UseCall = cast<CallBase>(U); 5843 const Function *Fn = UseCall->getCalledFunction(); 5844 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5845 return UseCall; 5846 } 5847 } 5848 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5849 } 5850 5851 /// Lower the call to the specified intrinsic function. 5852 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5853 unsigned Intrinsic) { 5854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5855 SDLoc sdl = getCurSDLoc(); 5856 DebugLoc dl = getCurDebugLoc(); 5857 SDValue Res; 5858 5859 SDNodeFlags Flags; 5860 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5861 Flags.copyFMF(*FPOp); 5862 5863 switch (Intrinsic) { 5864 default: 5865 // By default, turn this into a target intrinsic node. 5866 visitTargetIntrinsic(I, Intrinsic); 5867 return; 5868 case Intrinsic::vscale: { 5869 match(&I, m_VScale(DAG.getDataLayout())); 5870 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5871 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5872 return; 5873 } 5874 case Intrinsic::vastart: visitVAStart(I); return; 5875 case Intrinsic::vaend: visitVAEnd(I); return; 5876 case Intrinsic::vacopy: visitVACopy(I); return; 5877 case Intrinsic::returnaddress: 5878 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5879 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5880 getValue(I.getArgOperand(0)))); 5881 return; 5882 case Intrinsic::addressofreturnaddress: 5883 setValue(&I, 5884 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5885 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5886 return; 5887 case Intrinsic::sponentry: 5888 setValue(&I, 5889 DAG.getNode(ISD::SPONENTRY, sdl, 5890 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5891 return; 5892 case Intrinsic::frameaddress: 5893 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5894 TLI.getFrameIndexTy(DAG.getDataLayout()), 5895 getValue(I.getArgOperand(0)))); 5896 return; 5897 case Intrinsic::read_volatile_register: 5898 case Intrinsic::read_register: { 5899 Value *Reg = I.getArgOperand(0); 5900 SDValue Chain = getRoot(); 5901 SDValue RegName = 5902 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5903 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5904 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5905 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5906 setValue(&I, Res); 5907 DAG.setRoot(Res.getValue(1)); 5908 return; 5909 } 5910 case Intrinsic::write_register: { 5911 Value *Reg = I.getArgOperand(0); 5912 Value *RegValue = I.getArgOperand(1); 5913 SDValue Chain = getRoot(); 5914 SDValue RegName = 5915 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5916 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5917 RegName, getValue(RegValue))); 5918 return; 5919 } 5920 case Intrinsic::memcpy: { 5921 const auto &MCI = cast<MemCpyInst>(I); 5922 SDValue Op1 = getValue(I.getArgOperand(0)); 5923 SDValue Op2 = getValue(I.getArgOperand(1)); 5924 SDValue Op3 = getValue(I.getArgOperand(2)); 5925 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5926 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5927 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5928 Align Alignment = std::min(DstAlign, SrcAlign); 5929 bool isVol = MCI.isVolatile(); 5930 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5931 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5932 // node. 5933 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5934 SDValue MC = DAG.getMemcpy( 5935 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5936 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5937 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5938 updateDAGForMaybeTailCall(MC); 5939 setValue(&I, MC); 5940 return; 5941 } 5942 case Intrinsic::memcpy_inline: { 5943 const auto &MCI = cast<MemCpyInlineInst>(I); 5944 SDValue Dst = getValue(I.getArgOperand(0)); 5945 SDValue Src = getValue(I.getArgOperand(1)); 5946 SDValue Size = getValue(I.getArgOperand(2)); 5947 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5948 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5949 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5950 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5951 Align Alignment = std::min(DstAlign, SrcAlign); 5952 bool isVol = MCI.isVolatile(); 5953 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5954 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5955 // node. 5956 SDValue MC = DAG.getMemcpy( 5957 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5958 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5959 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5960 updateDAGForMaybeTailCall(MC); 5961 setValue(&I, MC); 5962 return; 5963 } 5964 case Intrinsic::memset: { 5965 const auto &MSI = cast<MemSetInst>(I); 5966 SDValue Op1 = getValue(I.getArgOperand(0)); 5967 SDValue Op2 = getValue(I.getArgOperand(1)); 5968 SDValue Op3 = getValue(I.getArgOperand(2)); 5969 // @llvm.memset defines 0 and 1 to both mean no alignment. 5970 Align Alignment = MSI.getDestAlign().valueOrOne(); 5971 bool isVol = MSI.isVolatile(); 5972 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5973 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5974 SDValue MS = DAG.getMemset( 5975 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5976 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5977 updateDAGForMaybeTailCall(MS); 5978 setValue(&I, MS); 5979 return; 5980 } 5981 case Intrinsic::memset_inline: { 5982 const auto &MSII = cast<MemSetInlineInst>(I); 5983 SDValue Dst = getValue(I.getArgOperand(0)); 5984 SDValue Value = getValue(I.getArgOperand(1)); 5985 SDValue Size = getValue(I.getArgOperand(2)); 5986 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5987 // @llvm.memset defines 0 and 1 to both mean no alignment. 5988 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5989 bool isVol = MSII.isVolatile(); 5990 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5991 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5992 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5993 /* AlwaysInline */ true, isTC, 5994 MachinePointerInfo(I.getArgOperand(0)), 5995 I.getAAMetadata()); 5996 updateDAGForMaybeTailCall(MC); 5997 setValue(&I, MC); 5998 return; 5999 } 6000 case Intrinsic::memmove: { 6001 const auto &MMI = cast<MemMoveInst>(I); 6002 SDValue Op1 = getValue(I.getArgOperand(0)); 6003 SDValue Op2 = getValue(I.getArgOperand(1)); 6004 SDValue Op3 = getValue(I.getArgOperand(2)); 6005 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6006 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6007 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6008 Align Alignment = std::min(DstAlign, SrcAlign); 6009 bool isVol = MMI.isVolatile(); 6010 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6011 // FIXME: Support passing different dest/src alignments to the memmove DAG 6012 // node. 6013 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6014 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6015 isTC, MachinePointerInfo(I.getArgOperand(0)), 6016 MachinePointerInfo(I.getArgOperand(1)), 6017 I.getAAMetadata(), AA); 6018 updateDAGForMaybeTailCall(MM); 6019 setValue(&I, MM); 6020 return; 6021 } 6022 case Intrinsic::memcpy_element_unordered_atomic: { 6023 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6024 SDValue Dst = getValue(MI.getRawDest()); 6025 SDValue Src = getValue(MI.getRawSource()); 6026 SDValue Length = getValue(MI.getLength()); 6027 6028 Type *LengthTy = MI.getLength()->getType(); 6029 unsigned ElemSz = MI.getElementSizeInBytes(); 6030 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6031 SDValue MC = 6032 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6033 isTC, MachinePointerInfo(MI.getRawDest()), 6034 MachinePointerInfo(MI.getRawSource())); 6035 updateDAGForMaybeTailCall(MC); 6036 setValue(&I, MC); 6037 return; 6038 } 6039 case Intrinsic::memmove_element_unordered_atomic: { 6040 auto &MI = cast<AtomicMemMoveInst>(I); 6041 SDValue Dst = getValue(MI.getRawDest()); 6042 SDValue Src = getValue(MI.getRawSource()); 6043 SDValue Length = getValue(MI.getLength()); 6044 6045 Type *LengthTy = MI.getLength()->getType(); 6046 unsigned ElemSz = MI.getElementSizeInBytes(); 6047 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6048 SDValue MC = 6049 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6050 isTC, MachinePointerInfo(MI.getRawDest()), 6051 MachinePointerInfo(MI.getRawSource())); 6052 updateDAGForMaybeTailCall(MC); 6053 setValue(&I, MC); 6054 return; 6055 } 6056 case Intrinsic::memset_element_unordered_atomic: { 6057 auto &MI = cast<AtomicMemSetInst>(I); 6058 SDValue Dst = getValue(MI.getRawDest()); 6059 SDValue Val = getValue(MI.getValue()); 6060 SDValue Length = getValue(MI.getLength()); 6061 6062 Type *LengthTy = MI.getLength()->getType(); 6063 unsigned ElemSz = MI.getElementSizeInBytes(); 6064 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6065 SDValue MC = 6066 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6067 isTC, MachinePointerInfo(MI.getRawDest())); 6068 updateDAGForMaybeTailCall(MC); 6069 setValue(&I, MC); 6070 return; 6071 } 6072 case Intrinsic::call_preallocated_setup: { 6073 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6074 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6075 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6076 getRoot(), SrcValue); 6077 setValue(&I, Res); 6078 DAG.setRoot(Res); 6079 return; 6080 } 6081 case Intrinsic::call_preallocated_arg: { 6082 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6083 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6084 SDValue Ops[3]; 6085 Ops[0] = getRoot(); 6086 Ops[1] = SrcValue; 6087 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6088 MVT::i32); // arg index 6089 SDValue Res = DAG.getNode( 6090 ISD::PREALLOCATED_ARG, sdl, 6091 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6092 setValue(&I, Res); 6093 DAG.setRoot(Res.getValue(1)); 6094 return; 6095 } 6096 case Intrinsic::dbg_addr: 6097 case Intrinsic::dbg_declare: { 6098 // Debug intrinsics are handled seperately in assignment tracking mode. 6099 if (isAssignmentTrackingEnabled(*I.getFunction()->getParent())) 6100 return; 6101 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6102 // they are non-variadic. 6103 const auto &DI = cast<DbgVariableIntrinsic>(I); 6104 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6105 DILocalVariable *Variable = DI.getVariable(); 6106 DIExpression *Expression = DI.getExpression(); 6107 dropDanglingDebugInfo(Variable, Expression); 6108 assert(Variable && "Missing variable"); 6109 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6110 << "\n"); 6111 // Check if address has undef value. 6112 const Value *Address = DI.getVariableLocationOp(0); 6113 if (!Address || isa<UndefValue>(Address) || 6114 (Address->use_empty() && !isa<Argument>(Address))) { 6115 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6116 << " (bad/undef/unused-arg address)\n"); 6117 return; 6118 } 6119 6120 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6121 6122 // Check if this variable can be described by a frame index, typically 6123 // either as a static alloca or a byval parameter. 6124 int FI = std::numeric_limits<int>::max(); 6125 if (const auto *AI = 6126 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6127 if (AI->isStaticAlloca()) { 6128 auto I = FuncInfo.StaticAllocaMap.find(AI); 6129 if (I != FuncInfo.StaticAllocaMap.end()) 6130 FI = I->second; 6131 } 6132 } else if (const auto *Arg = dyn_cast<Argument>( 6133 Address->stripInBoundsConstantOffsets())) { 6134 FI = FuncInfo.getArgumentFrameIndex(Arg); 6135 } 6136 6137 // llvm.dbg.addr is control dependent and always generates indirect 6138 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6139 // the MachineFunction variable table. 6140 if (FI != std::numeric_limits<int>::max()) { 6141 if (Intrinsic == Intrinsic::dbg_addr) { 6142 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6143 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6144 dl, SDNodeOrder); 6145 DAG.AddDbgValue(SDV, isParameter); 6146 } else { 6147 LLVM_DEBUG(dbgs() << "Skipping " << DI 6148 << " (variable info stashed in MF side table)\n"); 6149 } 6150 return; 6151 } 6152 6153 SDValue &N = NodeMap[Address]; 6154 if (!N.getNode() && isa<Argument>(Address)) 6155 // Check unused arguments map. 6156 N = UnusedArgNodeMap[Address]; 6157 SDDbgValue *SDV; 6158 if (N.getNode()) { 6159 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6160 Address = BCI->getOperand(0); 6161 // Parameters are handled specially. 6162 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6163 if (isParameter && FINode) { 6164 // Byval parameter. We have a frame index at this point. 6165 SDV = 6166 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6167 /*IsIndirect*/ true, dl, SDNodeOrder); 6168 } else if (isa<Argument>(Address)) { 6169 // Address is an argument, so try to emit its dbg value using 6170 // virtual register info from the FuncInfo.ValueMap. 6171 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6172 FuncArgumentDbgValueKind::Declare, N); 6173 return; 6174 } else { 6175 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6176 true, dl, SDNodeOrder); 6177 } 6178 DAG.AddDbgValue(SDV, isParameter); 6179 } else { 6180 // If Address is an argument then try to emit its dbg value using 6181 // virtual register info from the FuncInfo.ValueMap. 6182 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6183 FuncArgumentDbgValueKind::Declare, N)) { 6184 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6185 << " (could not emit func-arg dbg_value)\n"); 6186 } 6187 } 6188 return; 6189 } 6190 case Intrinsic::dbg_label: { 6191 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6192 DILabel *Label = DI.getLabel(); 6193 assert(Label && "Missing label"); 6194 6195 SDDbgLabel *SDV; 6196 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6197 DAG.AddDbgLabel(SDV); 6198 return; 6199 } 6200 case Intrinsic::dbg_assign: { 6201 // Debug intrinsics are handled seperately in assignment tracking mode. 6202 assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) && 6203 "expected assignment tracking to be enabled"); 6204 return; 6205 } 6206 case Intrinsic::dbg_value: { 6207 // Debug intrinsics are handled seperately in assignment tracking mode. 6208 if (isAssignmentTrackingEnabled(*I.getFunction()->getParent())) 6209 return; 6210 const DbgValueInst &DI = cast<DbgValueInst>(I); 6211 assert(DI.getVariable() && "Missing variable"); 6212 6213 DILocalVariable *Variable = DI.getVariable(); 6214 DIExpression *Expression = DI.getExpression(); 6215 dropDanglingDebugInfo(Variable, Expression); 6216 SmallVector<Value *, 4> Values(DI.getValues()); 6217 if (Values.empty()) 6218 return; 6219 6220 if (llvm::is_contained(Values, nullptr)) 6221 return; 6222 6223 bool IsVariadic = DI.hasArgList(); 6224 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6225 SDNodeOrder, IsVariadic)) 6226 addDanglingDebugInfo(&DI, SDNodeOrder); 6227 return; 6228 } 6229 6230 case Intrinsic::eh_typeid_for: { 6231 // Find the type id for the given typeinfo. 6232 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6233 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6234 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6235 setValue(&I, Res); 6236 return; 6237 } 6238 6239 case Intrinsic::eh_return_i32: 6240 case Intrinsic::eh_return_i64: 6241 DAG.getMachineFunction().setCallsEHReturn(true); 6242 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6243 MVT::Other, 6244 getControlRoot(), 6245 getValue(I.getArgOperand(0)), 6246 getValue(I.getArgOperand(1)))); 6247 return; 6248 case Intrinsic::eh_unwind_init: 6249 DAG.getMachineFunction().setCallsUnwindInit(true); 6250 return; 6251 case Intrinsic::eh_dwarf_cfa: 6252 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6253 TLI.getPointerTy(DAG.getDataLayout()), 6254 getValue(I.getArgOperand(0)))); 6255 return; 6256 case Intrinsic::eh_sjlj_callsite: { 6257 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6258 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6259 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6260 6261 MMI.setCurrentCallSite(CI->getZExtValue()); 6262 return; 6263 } 6264 case Intrinsic::eh_sjlj_functioncontext: { 6265 // Get and store the index of the function context. 6266 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6267 AllocaInst *FnCtx = 6268 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6269 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6270 MFI.setFunctionContextIndex(FI); 6271 return; 6272 } 6273 case Intrinsic::eh_sjlj_setjmp: { 6274 SDValue Ops[2]; 6275 Ops[0] = getRoot(); 6276 Ops[1] = getValue(I.getArgOperand(0)); 6277 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6278 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6279 setValue(&I, Op.getValue(0)); 6280 DAG.setRoot(Op.getValue(1)); 6281 return; 6282 } 6283 case Intrinsic::eh_sjlj_longjmp: 6284 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6285 getRoot(), getValue(I.getArgOperand(0)))); 6286 return; 6287 case Intrinsic::eh_sjlj_setup_dispatch: 6288 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6289 getRoot())); 6290 return; 6291 case Intrinsic::masked_gather: 6292 visitMaskedGather(I); 6293 return; 6294 case Intrinsic::masked_load: 6295 visitMaskedLoad(I); 6296 return; 6297 case Intrinsic::masked_scatter: 6298 visitMaskedScatter(I); 6299 return; 6300 case Intrinsic::masked_store: 6301 visitMaskedStore(I); 6302 return; 6303 case Intrinsic::masked_expandload: 6304 visitMaskedLoad(I, true /* IsExpanding */); 6305 return; 6306 case Intrinsic::masked_compressstore: 6307 visitMaskedStore(I, true /* IsCompressing */); 6308 return; 6309 case Intrinsic::powi: 6310 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6311 getValue(I.getArgOperand(1)), DAG)); 6312 return; 6313 case Intrinsic::log: 6314 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6315 return; 6316 case Intrinsic::log2: 6317 setValue(&I, 6318 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6319 return; 6320 case Intrinsic::log10: 6321 setValue(&I, 6322 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6323 return; 6324 case Intrinsic::exp: 6325 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6326 return; 6327 case Intrinsic::exp2: 6328 setValue(&I, 6329 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6330 return; 6331 case Intrinsic::pow: 6332 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6333 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6334 return; 6335 case Intrinsic::sqrt: 6336 case Intrinsic::fabs: 6337 case Intrinsic::sin: 6338 case Intrinsic::cos: 6339 case Intrinsic::floor: 6340 case Intrinsic::ceil: 6341 case Intrinsic::trunc: 6342 case Intrinsic::rint: 6343 case Intrinsic::nearbyint: 6344 case Intrinsic::round: 6345 case Intrinsic::roundeven: 6346 case Intrinsic::canonicalize: { 6347 unsigned Opcode; 6348 switch (Intrinsic) { 6349 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6350 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6351 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6352 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6353 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6354 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6355 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6356 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6357 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6358 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6359 case Intrinsic::round: Opcode = ISD::FROUND; break; 6360 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6361 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6362 } 6363 6364 setValue(&I, DAG.getNode(Opcode, sdl, 6365 getValue(I.getArgOperand(0)).getValueType(), 6366 getValue(I.getArgOperand(0)), Flags)); 6367 return; 6368 } 6369 case Intrinsic::lround: 6370 case Intrinsic::llround: 6371 case Intrinsic::lrint: 6372 case Intrinsic::llrint: { 6373 unsigned Opcode; 6374 switch (Intrinsic) { 6375 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6376 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6377 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6378 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6379 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6380 } 6381 6382 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6383 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6384 getValue(I.getArgOperand(0)))); 6385 return; 6386 } 6387 case Intrinsic::minnum: 6388 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6389 getValue(I.getArgOperand(0)).getValueType(), 6390 getValue(I.getArgOperand(0)), 6391 getValue(I.getArgOperand(1)), Flags)); 6392 return; 6393 case Intrinsic::maxnum: 6394 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6395 getValue(I.getArgOperand(0)).getValueType(), 6396 getValue(I.getArgOperand(0)), 6397 getValue(I.getArgOperand(1)), Flags)); 6398 return; 6399 case Intrinsic::minimum: 6400 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6401 getValue(I.getArgOperand(0)).getValueType(), 6402 getValue(I.getArgOperand(0)), 6403 getValue(I.getArgOperand(1)), Flags)); 6404 return; 6405 case Intrinsic::maximum: 6406 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6407 getValue(I.getArgOperand(0)).getValueType(), 6408 getValue(I.getArgOperand(0)), 6409 getValue(I.getArgOperand(1)), Flags)); 6410 return; 6411 case Intrinsic::copysign: 6412 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6413 getValue(I.getArgOperand(0)).getValueType(), 6414 getValue(I.getArgOperand(0)), 6415 getValue(I.getArgOperand(1)), Flags)); 6416 return; 6417 case Intrinsic::arithmetic_fence: { 6418 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6419 getValue(I.getArgOperand(0)).getValueType(), 6420 getValue(I.getArgOperand(0)), Flags)); 6421 return; 6422 } 6423 case Intrinsic::fma: 6424 setValue(&I, DAG.getNode( 6425 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6426 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6427 getValue(I.getArgOperand(2)), Flags)); 6428 return; 6429 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6430 case Intrinsic::INTRINSIC: 6431 #include "llvm/IR/ConstrainedOps.def" 6432 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6433 return; 6434 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6435 #include "llvm/IR/VPIntrinsics.def" 6436 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6437 return; 6438 case Intrinsic::fptrunc_round: { 6439 // Get the last argument, the metadata and convert it to an integer in the 6440 // call 6441 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6442 std::optional<RoundingMode> RoundMode = 6443 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6444 6445 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6446 6447 // Propagate fast-math-flags from IR to node(s). 6448 SDNodeFlags Flags; 6449 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6450 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6451 6452 SDValue Result; 6453 Result = DAG.getNode( 6454 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6455 DAG.getTargetConstant((int)*RoundMode, sdl, 6456 TLI.getPointerTy(DAG.getDataLayout()))); 6457 setValue(&I, Result); 6458 6459 return; 6460 } 6461 case Intrinsic::fmuladd: { 6462 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6463 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6464 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6465 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6466 getValue(I.getArgOperand(0)).getValueType(), 6467 getValue(I.getArgOperand(0)), 6468 getValue(I.getArgOperand(1)), 6469 getValue(I.getArgOperand(2)), Flags)); 6470 } else { 6471 // TODO: Intrinsic calls should have fast-math-flags. 6472 SDValue Mul = DAG.getNode( 6473 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6474 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6475 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6476 getValue(I.getArgOperand(0)).getValueType(), 6477 Mul, getValue(I.getArgOperand(2)), Flags); 6478 setValue(&I, Add); 6479 } 6480 return; 6481 } 6482 case Intrinsic::convert_to_fp16: 6483 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6484 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6485 getValue(I.getArgOperand(0)), 6486 DAG.getTargetConstant(0, sdl, 6487 MVT::i32)))); 6488 return; 6489 case Intrinsic::convert_from_fp16: 6490 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6491 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6492 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6493 getValue(I.getArgOperand(0))))); 6494 return; 6495 case Intrinsic::fptosi_sat: { 6496 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6497 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6498 getValue(I.getArgOperand(0)), 6499 DAG.getValueType(VT.getScalarType()))); 6500 return; 6501 } 6502 case Intrinsic::fptoui_sat: { 6503 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6504 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6505 getValue(I.getArgOperand(0)), 6506 DAG.getValueType(VT.getScalarType()))); 6507 return; 6508 } 6509 case Intrinsic::set_rounding: 6510 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6511 {getRoot(), getValue(I.getArgOperand(0))}); 6512 setValue(&I, Res); 6513 DAG.setRoot(Res.getValue(0)); 6514 return; 6515 case Intrinsic::is_fpclass: { 6516 const DataLayout DLayout = DAG.getDataLayout(); 6517 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6518 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6519 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6520 MachineFunction &MF = DAG.getMachineFunction(); 6521 const Function &F = MF.getFunction(); 6522 SDValue Op = getValue(I.getArgOperand(0)); 6523 SDNodeFlags Flags; 6524 Flags.setNoFPExcept( 6525 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6526 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6527 // expansion can use illegal types. Making expansion early allows 6528 // legalizing these types prior to selection. 6529 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6530 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6531 setValue(&I, Result); 6532 return; 6533 } 6534 6535 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6536 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6537 setValue(&I, V); 6538 return; 6539 } 6540 case Intrinsic::pcmarker: { 6541 SDValue Tmp = getValue(I.getArgOperand(0)); 6542 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6543 return; 6544 } 6545 case Intrinsic::readcyclecounter: { 6546 SDValue Op = getRoot(); 6547 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6548 DAG.getVTList(MVT::i64, MVT::Other), Op); 6549 setValue(&I, Res); 6550 DAG.setRoot(Res.getValue(1)); 6551 return; 6552 } 6553 case Intrinsic::bitreverse: 6554 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6555 getValue(I.getArgOperand(0)).getValueType(), 6556 getValue(I.getArgOperand(0)))); 6557 return; 6558 case Intrinsic::bswap: 6559 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6560 getValue(I.getArgOperand(0)).getValueType(), 6561 getValue(I.getArgOperand(0)))); 6562 return; 6563 case Intrinsic::cttz: { 6564 SDValue Arg = getValue(I.getArgOperand(0)); 6565 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6566 EVT Ty = Arg.getValueType(); 6567 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6568 sdl, Ty, Arg)); 6569 return; 6570 } 6571 case Intrinsic::ctlz: { 6572 SDValue Arg = getValue(I.getArgOperand(0)); 6573 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6574 EVT Ty = Arg.getValueType(); 6575 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6576 sdl, Ty, Arg)); 6577 return; 6578 } 6579 case Intrinsic::ctpop: { 6580 SDValue Arg = getValue(I.getArgOperand(0)); 6581 EVT Ty = Arg.getValueType(); 6582 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6583 return; 6584 } 6585 case Intrinsic::fshl: 6586 case Intrinsic::fshr: { 6587 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6588 SDValue X = getValue(I.getArgOperand(0)); 6589 SDValue Y = getValue(I.getArgOperand(1)); 6590 SDValue Z = getValue(I.getArgOperand(2)); 6591 EVT VT = X.getValueType(); 6592 6593 if (X == Y) { 6594 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6595 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6596 } else { 6597 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6598 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6599 } 6600 return; 6601 } 6602 case Intrinsic::sadd_sat: { 6603 SDValue Op1 = getValue(I.getArgOperand(0)); 6604 SDValue Op2 = getValue(I.getArgOperand(1)); 6605 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6606 return; 6607 } 6608 case Intrinsic::uadd_sat: { 6609 SDValue Op1 = getValue(I.getArgOperand(0)); 6610 SDValue Op2 = getValue(I.getArgOperand(1)); 6611 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6612 return; 6613 } 6614 case Intrinsic::ssub_sat: { 6615 SDValue Op1 = getValue(I.getArgOperand(0)); 6616 SDValue Op2 = getValue(I.getArgOperand(1)); 6617 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6618 return; 6619 } 6620 case Intrinsic::usub_sat: { 6621 SDValue Op1 = getValue(I.getArgOperand(0)); 6622 SDValue Op2 = getValue(I.getArgOperand(1)); 6623 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6624 return; 6625 } 6626 case Intrinsic::sshl_sat: { 6627 SDValue Op1 = getValue(I.getArgOperand(0)); 6628 SDValue Op2 = getValue(I.getArgOperand(1)); 6629 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6630 return; 6631 } 6632 case Intrinsic::ushl_sat: { 6633 SDValue Op1 = getValue(I.getArgOperand(0)); 6634 SDValue Op2 = getValue(I.getArgOperand(1)); 6635 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6636 return; 6637 } 6638 case Intrinsic::smul_fix: 6639 case Intrinsic::umul_fix: 6640 case Intrinsic::smul_fix_sat: 6641 case Intrinsic::umul_fix_sat: { 6642 SDValue Op1 = getValue(I.getArgOperand(0)); 6643 SDValue Op2 = getValue(I.getArgOperand(1)); 6644 SDValue Op3 = getValue(I.getArgOperand(2)); 6645 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6646 Op1.getValueType(), Op1, Op2, Op3)); 6647 return; 6648 } 6649 case Intrinsic::sdiv_fix: 6650 case Intrinsic::udiv_fix: 6651 case Intrinsic::sdiv_fix_sat: 6652 case Intrinsic::udiv_fix_sat: { 6653 SDValue Op1 = getValue(I.getArgOperand(0)); 6654 SDValue Op2 = getValue(I.getArgOperand(1)); 6655 SDValue Op3 = getValue(I.getArgOperand(2)); 6656 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6657 Op1, Op2, Op3, DAG, TLI)); 6658 return; 6659 } 6660 case Intrinsic::smax: { 6661 SDValue Op1 = getValue(I.getArgOperand(0)); 6662 SDValue Op2 = getValue(I.getArgOperand(1)); 6663 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6664 return; 6665 } 6666 case Intrinsic::smin: { 6667 SDValue Op1 = getValue(I.getArgOperand(0)); 6668 SDValue Op2 = getValue(I.getArgOperand(1)); 6669 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6670 return; 6671 } 6672 case Intrinsic::umax: { 6673 SDValue Op1 = getValue(I.getArgOperand(0)); 6674 SDValue Op2 = getValue(I.getArgOperand(1)); 6675 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6676 return; 6677 } 6678 case Intrinsic::umin: { 6679 SDValue Op1 = getValue(I.getArgOperand(0)); 6680 SDValue Op2 = getValue(I.getArgOperand(1)); 6681 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6682 return; 6683 } 6684 case Intrinsic::abs: { 6685 // TODO: Preserve "int min is poison" arg in SDAG? 6686 SDValue Op1 = getValue(I.getArgOperand(0)); 6687 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6688 return; 6689 } 6690 case Intrinsic::stacksave: { 6691 SDValue Op = getRoot(); 6692 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6693 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6694 setValue(&I, Res); 6695 DAG.setRoot(Res.getValue(1)); 6696 return; 6697 } 6698 case Intrinsic::stackrestore: 6699 Res = getValue(I.getArgOperand(0)); 6700 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6701 return; 6702 case Intrinsic::get_dynamic_area_offset: { 6703 SDValue Op = getRoot(); 6704 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6705 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6706 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6707 // target. 6708 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6709 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6710 " intrinsic!"); 6711 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6712 Op); 6713 DAG.setRoot(Op); 6714 setValue(&I, Res); 6715 return; 6716 } 6717 case Intrinsic::stackguard: { 6718 MachineFunction &MF = DAG.getMachineFunction(); 6719 const Module &M = *MF.getFunction().getParent(); 6720 SDValue Chain = getRoot(); 6721 if (TLI.useLoadStackGuardNode()) { 6722 Res = getLoadStackGuard(DAG, sdl, Chain); 6723 } else { 6724 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6725 const Value *Global = TLI.getSDagStackGuard(M); 6726 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6727 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6728 MachinePointerInfo(Global, 0), Align, 6729 MachineMemOperand::MOVolatile); 6730 } 6731 if (TLI.useStackGuardXorFP()) 6732 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6733 DAG.setRoot(Chain); 6734 setValue(&I, Res); 6735 return; 6736 } 6737 case Intrinsic::stackprotector: { 6738 // Emit code into the DAG to store the stack guard onto the stack. 6739 MachineFunction &MF = DAG.getMachineFunction(); 6740 MachineFrameInfo &MFI = MF.getFrameInfo(); 6741 SDValue Src, Chain = getRoot(); 6742 6743 if (TLI.useLoadStackGuardNode()) 6744 Src = getLoadStackGuard(DAG, sdl, Chain); 6745 else 6746 Src = getValue(I.getArgOperand(0)); // The guard's value. 6747 6748 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6749 6750 int FI = FuncInfo.StaticAllocaMap[Slot]; 6751 MFI.setStackProtectorIndex(FI); 6752 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6753 6754 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6755 6756 // Store the stack protector onto the stack. 6757 Res = DAG.getStore( 6758 Chain, sdl, Src, FIN, 6759 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6760 MaybeAlign(), MachineMemOperand::MOVolatile); 6761 setValue(&I, Res); 6762 DAG.setRoot(Res); 6763 return; 6764 } 6765 case Intrinsic::objectsize: 6766 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6767 6768 case Intrinsic::is_constant: 6769 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6770 6771 case Intrinsic::annotation: 6772 case Intrinsic::ptr_annotation: 6773 case Intrinsic::launder_invariant_group: 6774 case Intrinsic::strip_invariant_group: 6775 // Drop the intrinsic, but forward the value 6776 setValue(&I, getValue(I.getOperand(0))); 6777 return; 6778 6779 case Intrinsic::assume: 6780 case Intrinsic::experimental_noalias_scope_decl: 6781 case Intrinsic::var_annotation: 6782 case Intrinsic::sideeffect: 6783 // Discard annotate attributes, noalias scope declarations, assumptions, and 6784 // artificial side-effects. 6785 return; 6786 6787 case Intrinsic::codeview_annotation: { 6788 // Emit a label associated with this metadata. 6789 MachineFunction &MF = DAG.getMachineFunction(); 6790 MCSymbol *Label = 6791 MF.getMMI().getContext().createTempSymbol("annotation", true); 6792 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6793 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6794 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6795 DAG.setRoot(Res); 6796 return; 6797 } 6798 6799 case Intrinsic::init_trampoline: { 6800 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6801 6802 SDValue Ops[6]; 6803 Ops[0] = getRoot(); 6804 Ops[1] = getValue(I.getArgOperand(0)); 6805 Ops[2] = getValue(I.getArgOperand(1)); 6806 Ops[3] = getValue(I.getArgOperand(2)); 6807 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6808 Ops[5] = DAG.getSrcValue(F); 6809 6810 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6811 6812 DAG.setRoot(Res); 6813 return; 6814 } 6815 case Intrinsic::adjust_trampoline: 6816 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6817 TLI.getPointerTy(DAG.getDataLayout()), 6818 getValue(I.getArgOperand(0)))); 6819 return; 6820 case Intrinsic::gcroot: { 6821 assert(DAG.getMachineFunction().getFunction().hasGC() && 6822 "only valid in functions with gc specified, enforced by Verifier"); 6823 assert(GFI && "implied by previous"); 6824 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6825 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6826 6827 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6828 GFI->addStackRoot(FI->getIndex(), TypeMap); 6829 return; 6830 } 6831 case Intrinsic::gcread: 6832 case Intrinsic::gcwrite: 6833 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6834 case Intrinsic::get_rounding: 6835 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 6836 setValue(&I, Res); 6837 DAG.setRoot(Res.getValue(1)); 6838 return; 6839 6840 case Intrinsic::expect: 6841 // Just replace __builtin_expect(exp, c) with EXP. 6842 setValue(&I, getValue(I.getArgOperand(0))); 6843 return; 6844 6845 case Intrinsic::ubsantrap: 6846 case Intrinsic::debugtrap: 6847 case Intrinsic::trap: { 6848 StringRef TrapFuncName = 6849 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6850 if (TrapFuncName.empty()) { 6851 switch (Intrinsic) { 6852 case Intrinsic::trap: 6853 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6854 break; 6855 case Intrinsic::debugtrap: 6856 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6857 break; 6858 case Intrinsic::ubsantrap: 6859 DAG.setRoot(DAG.getNode( 6860 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6861 DAG.getTargetConstant( 6862 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6863 MVT::i32))); 6864 break; 6865 default: llvm_unreachable("unknown trap intrinsic"); 6866 } 6867 return; 6868 } 6869 TargetLowering::ArgListTy Args; 6870 if (Intrinsic == Intrinsic::ubsantrap) { 6871 Args.push_back(TargetLoweringBase::ArgListEntry()); 6872 Args[0].Val = I.getArgOperand(0); 6873 Args[0].Node = getValue(Args[0].Val); 6874 Args[0].Ty = Args[0].Val->getType(); 6875 } 6876 6877 TargetLowering::CallLoweringInfo CLI(DAG); 6878 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6879 CallingConv::C, I.getType(), 6880 DAG.getExternalSymbol(TrapFuncName.data(), 6881 TLI.getPointerTy(DAG.getDataLayout())), 6882 std::move(Args)); 6883 6884 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6885 DAG.setRoot(Result.second); 6886 return; 6887 } 6888 6889 case Intrinsic::uadd_with_overflow: 6890 case Intrinsic::sadd_with_overflow: 6891 case Intrinsic::usub_with_overflow: 6892 case Intrinsic::ssub_with_overflow: 6893 case Intrinsic::umul_with_overflow: 6894 case Intrinsic::smul_with_overflow: { 6895 ISD::NodeType Op; 6896 switch (Intrinsic) { 6897 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6898 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6899 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6900 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6901 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6902 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6903 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6904 } 6905 SDValue Op1 = getValue(I.getArgOperand(0)); 6906 SDValue Op2 = getValue(I.getArgOperand(1)); 6907 6908 EVT ResultVT = Op1.getValueType(); 6909 EVT OverflowVT = MVT::i1; 6910 if (ResultVT.isVector()) 6911 OverflowVT = EVT::getVectorVT( 6912 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6913 6914 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6915 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6916 return; 6917 } 6918 case Intrinsic::prefetch: { 6919 SDValue Ops[5]; 6920 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6921 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6922 Ops[0] = DAG.getRoot(); 6923 Ops[1] = getValue(I.getArgOperand(0)); 6924 Ops[2] = getValue(I.getArgOperand(1)); 6925 Ops[3] = getValue(I.getArgOperand(2)); 6926 Ops[4] = getValue(I.getArgOperand(3)); 6927 SDValue Result = DAG.getMemIntrinsicNode( 6928 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6929 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6930 /* align */ std::nullopt, Flags); 6931 6932 // Chain the prefetch in parallell with any pending loads, to stay out of 6933 // the way of later optimizations. 6934 PendingLoads.push_back(Result); 6935 Result = getRoot(); 6936 DAG.setRoot(Result); 6937 return; 6938 } 6939 case Intrinsic::lifetime_start: 6940 case Intrinsic::lifetime_end: { 6941 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6942 // Stack coloring is not enabled in O0, discard region information. 6943 if (TM.getOptLevel() == CodeGenOpt::None) 6944 return; 6945 6946 const int64_t ObjectSize = 6947 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6948 Value *const ObjectPtr = I.getArgOperand(1); 6949 SmallVector<const Value *, 4> Allocas; 6950 getUnderlyingObjects(ObjectPtr, Allocas); 6951 6952 for (const Value *Alloca : Allocas) { 6953 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6954 6955 // Could not find an Alloca. 6956 if (!LifetimeObject) 6957 continue; 6958 6959 // First check that the Alloca is static, otherwise it won't have a 6960 // valid frame index. 6961 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6962 if (SI == FuncInfo.StaticAllocaMap.end()) 6963 return; 6964 6965 const int FrameIndex = SI->second; 6966 int64_t Offset; 6967 if (GetPointerBaseWithConstantOffset( 6968 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6969 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6970 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6971 Offset); 6972 DAG.setRoot(Res); 6973 } 6974 return; 6975 } 6976 case Intrinsic::pseudoprobe: { 6977 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6978 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6979 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6980 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6981 DAG.setRoot(Res); 6982 return; 6983 } 6984 case Intrinsic::invariant_start: 6985 // Discard region information. 6986 setValue(&I, 6987 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6988 return; 6989 case Intrinsic::invariant_end: 6990 // Discard region information. 6991 return; 6992 case Intrinsic::clear_cache: 6993 /// FunctionName may be null. 6994 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6995 lowerCallToExternalSymbol(I, FunctionName); 6996 return; 6997 case Intrinsic::donothing: 6998 case Intrinsic::seh_try_begin: 6999 case Intrinsic::seh_scope_begin: 7000 case Intrinsic::seh_try_end: 7001 case Intrinsic::seh_scope_end: 7002 // ignore 7003 return; 7004 case Intrinsic::experimental_stackmap: 7005 visitStackmap(I); 7006 return; 7007 case Intrinsic::experimental_patchpoint_void: 7008 case Intrinsic::experimental_patchpoint_i64: 7009 visitPatchpoint(I); 7010 return; 7011 case Intrinsic::experimental_gc_statepoint: 7012 LowerStatepoint(cast<GCStatepointInst>(I)); 7013 return; 7014 case Intrinsic::experimental_gc_result: 7015 visitGCResult(cast<GCResultInst>(I)); 7016 return; 7017 case Intrinsic::experimental_gc_relocate: 7018 visitGCRelocate(cast<GCRelocateInst>(I)); 7019 return; 7020 case Intrinsic::instrprof_cover: 7021 llvm_unreachable("instrprof failed to lower a cover"); 7022 case Intrinsic::instrprof_increment: 7023 llvm_unreachable("instrprof failed to lower an increment"); 7024 case Intrinsic::instrprof_value_profile: 7025 llvm_unreachable("instrprof failed to lower a value profiling call"); 7026 case Intrinsic::localescape: { 7027 MachineFunction &MF = DAG.getMachineFunction(); 7028 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7029 7030 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7031 // is the same on all targets. 7032 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7033 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7034 if (isa<ConstantPointerNull>(Arg)) 7035 continue; // Skip null pointers. They represent a hole in index space. 7036 AllocaInst *Slot = cast<AllocaInst>(Arg); 7037 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7038 "can only escape static allocas"); 7039 int FI = FuncInfo.StaticAllocaMap[Slot]; 7040 MCSymbol *FrameAllocSym = 7041 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7042 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7044 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7045 .addSym(FrameAllocSym) 7046 .addFrameIndex(FI); 7047 } 7048 7049 return; 7050 } 7051 7052 case Intrinsic::localrecover: { 7053 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7054 MachineFunction &MF = DAG.getMachineFunction(); 7055 7056 // Get the symbol that defines the frame offset. 7057 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7058 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7059 unsigned IdxVal = 7060 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7061 MCSymbol *FrameAllocSym = 7062 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7063 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7064 7065 Value *FP = I.getArgOperand(1); 7066 SDValue FPVal = getValue(FP); 7067 EVT PtrVT = FPVal.getValueType(); 7068 7069 // Create a MCSymbol for the label to avoid any target lowering 7070 // that would make this PC relative. 7071 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7072 SDValue OffsetVal = 7073 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7074 7075 // Add the offset to the FP. 7076 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7077 setValue(&I, Add); 7078 7079 return; 7080 } 7081 7082 case Intrinsic::eh_exceptionpointer: 7083 case Intrinsic::eh_exceptioncode: { 7084 // Get the exception pointer vreg, copy from it, and resize it to fit. 7085 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7086 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7087 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7088 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7089 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7090 if (Intrinsic == Intrinsic::eh_exceptioncode) 7091 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7092 setValue(&I, N); 7093 return; 7094 } 7095 case Intrinsic::xray_customevent: { 7096 // Here we want to make sure that the intrinsic behaves as if it has a 7097 // specific calling convention, and only for x86_64. 7098 // FIXME: Support other platforms later. 7099 const auto &Triple = DAG.getTarget().getTargetTriple(); 7100 if (Triple.getArch() != Triple::x86_64) 7101 return; 7102 7103 SmallVector<SDValue, 8> Ops; 7104 7105 // We want to say that we always want the arguments in registers. 7106 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7107 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7108 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7109 SDValue Chain = getRoot(); 7110 Ops.push_back(LogEntryVal); 7111 Ops.push_back(StrSizeVal); 7112 Ops.push_back(Chain); 7113 7114 // We need to enforce the calling convention for the callsite, so that 7115 // argument ordering is enforced correctly, and that register allocation can 7116 // see that some registers may be assumed clobbered and have to preserve 7117 // them across calls to the intrinsic. 7118 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7119 sdl, NodeTys, Ops); 7120 SDValue patchableNode = SDValue(MN, 0); 7121 DAG.setRoot(patchableNode); 7122 setValue(&I, patchableNode); 7123 return; 7124 } 7125 case Intrinsic::xray_typedevent: { 7126 // Here we want to make sure that the intrinsic behaves as if it has a 7127 // specific calling convention, and only for x86_64. 7128 // FIXME: Support other platforms later. 7129 const auto &Triple = DAG.getTarget().getTargetTriple(); 7130 if (Triple.getArch() != Triple::x86_64) 7131 return; 7132 7133 SmallVector<SDValue, 8> Ops; 7134 7135 // We want to say that we always want the arguments in registers. 7136 // It's unclear to me how manipulating the selection DAG here forces callers 7137 // to provide arguments in registers instead of on the stack. 7138 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7139 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7140 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7141 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7142 SDValue Chain = getRoot(); 7143 Ops.push_back(LogTypeId); 7144 Ops.push_back(LogEntryVal); 7145 Ops.push_back(StrSizeVal); 7146 Ops.push_back(Chain); 7147 7148 // We need to enforce the calling convention for the callsite, so that 7149 // argument ordering is enforced correctly, and that register allocation can 7150 // see that some registers may be assumed clobbered and have to preserve 7151 // them across calls to the intrinsic. 7152 MachineSDNode *MN = DAG.getMachineNode( 7153 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7154 SDValue patchableNode = SDValue(MN, 0); 7155 DAG.setRoot(patchableNode); 7156 setValue(&I, patchableNode); 7157 return; 7158 } 7159 case Intrinsic::experimental_deoptimize: 7160 LowerDeoptimizeCall(&I); 7161 return; 7162 case Intrinsic::experimental_stepvector: 7163 visitStepVector(I); 7164 return; 7165 case Intrinsic::vector_reduce_fadd: 7166 case Intrinsic::vector_reduce_fmul: 7167 case Intrinsic::vector_reduce_add: 7168 case Intrinsic::vector_reduce_mul: 7169 case Intrinsic::vector_reduce_and: 7170 case Intrinsic::vector_reduce_or: 7171 case Intrinsic::vector_reduce_xor: 7172 case Intrinsic::vector_reduce_smax: 7173 case Intrinsic::vector_reduce_smin: 7174 case Intrinsic::vector_reduce_umax: 7175 case Intrinsic::vector_reduce_umin: 7176 case Intrinsic::vector_reduce_fmax: 7177 case Intrinsic::vector_reduce_fmin: 7178 visitVectorReduce(I, Intrinsic); 7179 return; 7180 7181 case Intrinsic::icall_branch_funnel: { 7182 SmallVector<SDValue, 16> Ops; 7183 Ops.push_back(getValue(I.getArgOperand(0))); 7184 7185 int64_t Offset; 7186 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7187 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7188 if (!Base) 7189 report_fatal_error( 7190 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7191 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7192 7193 struct BranchFunnelTarget { 7194 int64_t Offset; 7195 SDValue Target; 7196 }; 7197 SmallVector<BranchFunnelTarget, 8> Targets; 7198 7199 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7200 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7201 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7202 if (ElemBase != Base) 7203 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7204 "to the same GlobalValue"); 7205 7206 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7207 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7208 if (!GA) 7209 report_fatal_error( 7210 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7211 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7212 GA->getGlobal(), sdl, Val.getValueType(), 7213 GA->getOffset())}); 7214 } 7215 llvm::sort(Targets, 7216 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7217 return T1.Offset < T2.Offset; 7218 }); 7219 7220 for (auto &T : Targets) { 7221 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7222 Ops.push_back(T.Target); 7223 } 7224 7225 Ops.push_back(DAG.getRoot()); // Chain 7226 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7227 MVT::Other, Ops), 7228 0); 7229 DAG.setRoot(N); 7230 setValue(&I, N); 7231 HasTailCall = true; 7232 return; 7233 } 7234 7235 case Intrinsic::wasm_landingpad_index: 7236 // Information this intrinsic contained has been transferred to 7237 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7238 // delete it now. 7239 return; 7240 7241 case Intrinsic::aarch64_settag: 7242 case Intrinsic::aarch64_settag_zero: { 7243 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7244 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7245 SDValue Val = TSI.EmitTargetCodeForSetTag( 7246 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7247 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7248 ZeroMemory); 7249 DAG.setRoot(Val); 7250 setValue(&I, Val); 7251 return; 7252 } 7253 case Intrinsic::ptrmask: { 7254 SDValue Ptr = getValue(I.getOperand(0)); 7255 SDValue Const = getValue(I.getOperand(1)); 7256 7257 EVT PtrVT = Ptr.getValueType(); 7258 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7259 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7260 return; 7261 } 7262 case Intrinsic::threadlocal_address: { 7263 setValue(&I, getValue(I.getOperand(0))); 7264 return; 7265 } 7266 case Intrinsic::get_active_lane_mask: { 7267 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7268 SDValue Index = getValue(I.getOperand(0)); 7269 EVT ElementVT = Index.getValueType(); 7270 7271 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7272 visitTargetIntrinsic(I, Intrinsic); 7273 return; 7274 } 7275 7276 SDValue TripCount = getValue(I.getOperand(1)); 7277 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7278 7279 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7280 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7281 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7282 SDValue VectorInduction = DAG.getNode( 7283 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7284 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7285 VectorTripCount, ISD::CondCode::SETULT); 7286 setValue(&I, SetCC); 7287 return; 7288 } 7289 case Intrinsic::vector_insert: { 7290 SDValue Vec = getValue(I.getOperand(0)); 7291 SDValue SubVec = getValue(I.getOperand(1)); 7292 SDValue Index = getValue(I.getOperand(2)); 7293 7294 // The intrinsic's index type is i64, but the SDNode requires an index type 7295 // suitable for the target. Convert the index as required. 7296 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7297 if (Index.getValueType() != VectorIdxTy) 7298 Index = DAG.getVectorIdxConstant( 7299 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7300 7301 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7302 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7303 Index)); 7304 return; 7305 } 7306 case Intrinsic::vector_extract: { 7307 SDValue Vec = getValue(I.getOperand(0)); 7308 SDValue Index = getValue(I.getOperand(1)); 7309 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7310 7311 // The intrinsic's index type is i64, but the SDNode requires an index type 7312 // suitable for the target. Convert the index as required. 7313 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7314 if (Index.getValueType() != VectorIdxTy) 7315 Index = DAG.getVectorIdxConstant( 7316 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7317 7318 setValue(&I, 7319 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7320 return; 7321 } 7322 case Intrinsic::experimental_vector_reverse: 7323 visitVectorReverse(I); 7324 return; 7325 case Intrinsic::experimental_vector_splice: 7326 visitVectorSplice(I); 7327 return; 7328 } 7329 } 7330 7331 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7332 const ConstrainedFPIntrinsic &FPI) { 7333 SDLoc sdl = getCurSDLoc(); 7334 7335 // We do not need to serialize constrained FP intrinsics against 7336 // each other or against (nonvolatile) loads, so they can be 7337 // chained like loads. 7338 SDValue Chain = DAG.getRoot(); 7339 SmallVector<SDValue, 4> Opers; 7340 Opers.push_back(Chain); 7341 if (FPI.isUnaryOp()) { 7342 Opers.push_back(getValue(FPI.getArgOperand(0))); 7343 } else if (FPI.isTernaryOp()) { 7344 Opers.push_back(getValue(FPI.getArgOperand(0))); 7345 Opers.push_back(getValue(FPI.getArgOperand(1))); 7346 Opers.push_back(getValue(FPI.getArgOperand(2))); 7347 } else { 7348 Opers.push_back(getValue(FPI.getArgOperand(0))); 7349 Opers.push_back(getValue(FPI.getArgOperand(1))); 7350 } 7351 7352 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7353 assert(Result.getNode()->getNumValues() == 2); 7354 7355 // Push node to the appropriate list so that future instructions can be 7356 // chained up correctly. 7357 SDValue OutChain = Result.getValue(1); 7358 switch (EB) { 7359 case fp::ExceptionBehavior::ebIgnore: 7360 // The only reason why ebIgnore nodes still need to be chained is that 7361 // they might depend on the current rounding mode, and therefore must 7362 // not be moved across instruction that may change that mode. 7363 [[fallthrough]]; 7364 case fp::ExceptionBehavior::ebMayTrap: 7365 // These must not be moved across calls or instructions that may change 7366 // floating-point exception masks. 7367 PendingConstrainedFP.push_back(OutChain); 7368 break; 7369 case fp::ExceptionBehavior::ebStrict: 7370 // These must not be moved across calls or instructions that may change 7371 // floating-point exception masks or read floating-point exception flags. 7372 // In addition, they cannot be optimized out even if unused. 7373 PendingConstrainedFPStrict.push_back(OutChain); 7374 break; 7375 } 7376 }; 7377 7378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7379 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7380 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7381 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7382 7383 SDNodeFlags Flags; 7384 if (EB == fp::ExceptionBehavior::ebIgnore) 7385 Flags.setNoFPExcept(true); 7386 7387 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7388 Flags.copyFMF(*FPOp); 7389 7390 unsigned Opcode; 7391 switch (FPI.getIntrinsicID()) { 7392 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7393 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7394 case Intrinsic::INTRINSIC: \ 7395 Opcode = ISD::STRICT_##DAGN; \ 7396 break; 7397 #include "llvm/IR/ConstrainedOps.def" 7398 case Intrinsic::experimental_constrained_fmuladd: { 7399 Opcode = ISD::STRICT_FMA; 7400 // Break fmuladd into fmul and fadd. 7401 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7402 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7403 Opers.pop_back(); 7404 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7405 pushOutChain(Mul, EB); 7406 Opcode = ISD::STRICT_FADD; 7407 Opers.clear(); 7408 Opers.push_back(Mul.getValue(1)); 7409 Opers.push_back(Mul.getValue(0)); 7410 Opers.push_back(getValue(FPI.getArgOperand(2))); 7411 } 7412 break; 7413 } 7414 } 7415 7416 // A few strict DAG nodes carry additional operands that are not 7417 // set up by the default code above. 7418 switch (Opcode) { 7419 default: break; 7420 case ISD::STRICT_FP_ROUND: 7421 Opers.push_back( 7422 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7423 break; 7424 case ISD::STRICT_FSETCC: 7425 case ISD::STRICT_FSETCCS: { 7426 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7427 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7428 if (TM.Options.NoNaNsFPMath) 7429 Condition = getFCmpCodeWithoutNaN(Condition); 7430 Opers.push_back(DAG.getCondCode(Condition)); 7431 break; 7432 } 7433 } 7434 7435 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7436 pushOutChain(Result, EB); 7437 7438 SDValue FPResult = Result.getValue(0); 7439 setValue(&FPI, FPResult); 7440 } 7441 7442 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7443 std::optional<unsigned> ResOPC; 7444 switch (VPIntrin.getIntrinsicID()) { 7445 case Intrinsic::vp_ctlz: { 7446 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne(); 7447 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7448 break; 7449 } 7450 case Intrinsic::vp_cttz: { 7451 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne(); 7452 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7453 break; 7454 } 7455 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7456 case Intrinsic::VPID: \ 7457 ResOPC = ISD::VPSD; \ 7458 break; 7459 #include "llvm/IR/VPIntrinsics.def" 7460 } 7461 7462 if (!ResOPC) 7463 llvm_unreachable( 7464 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7465 7466 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7467 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7468 if (VPIntrin.getFastMathFlags().allowReassoc()) 7469 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7470 : ISD::VP_REDUCE_FMUL; 7471 } 7472 7473 return *ResOPC; 7474 } 7475 7476 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7477 SmallVector<SDValue, 7> &OpValues) { 7478 SDLoc DL = getCurSDLoc(); 7479 Value *PtrOperand = VPIntrin.getArgOperand(0); 7480 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7481 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7482 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7483 SDValue LD; 7484 bool AddToChain = true; 7485 // Do not serialize variable-length loads of constant memory with 7486 // anything. 7487 if (!Alignment) 7488 Alignment = DAG.getEVTAlign(VT); 7489 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7490 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7491 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7492 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7493 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7494 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7495 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7496 MMO, false /*IsExpanding */); 7497 if (AddToChain) 7498 PendingLoads.push_back(LD.getValue(1)); 7499 setValue(&VPIntrin, LD); 7500 } 7501 7502 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7503 SmallVector<SDValue, 7> &OpValues) { 7504 SDLoc DL = getCurSDLoc(); 7505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7506 Value *PtrOperand = VPIntrin.getArgOperand(0); 7507 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7508 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7509 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7510 SDValue LD; 7511 if (!Alignment) 7512 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7513 unsigned AS = 7514 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7515 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7516 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7517 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7518 SDValue Base, Index, Scale; 7519 ISD::MemIndexType IndexType; 7520 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7521 this, VPIntrin.getParent(), 7522 VT.getScalarStoreSize()); 7523 if (!UniformBase) { 7524 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7525 Index = getValue(PtrOperand); 7526 IndexType = ISD::SIGNED_SCALED; 7527 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7528 } 7529 EVT IdxVT = Index.getValueType(); 7530 EVT EltTy = IdxVT.getVectorElementType(); 7531 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7532 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7533 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7534 } 7535 LD = DAG.getGatherVP( 7536 DAG.getVTList(VT, MVT::Other), VT, DL, 7537 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7538 IndexType); 7539 PendingLoads.push_back(LD.getValue(1)); 7540 setValue(&VPIntrin, LD); 7541 } 7542 7543 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7544 SmallVector<SDValue, 7> &OpValues) { 7545 SDLoc DL = getCurSDLoc(); 7546 Value *PtrOperand = VPIntrin.getArgOperand(1); 7547 EVT VT = OpValues[0].getValueType(); 7548 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7549 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7550 SDValue ST; 7551 if (!Alignment) 7552 Alignment = DAG.getEVTAlign(VT); 7553 SDValue Ptr = OpValues[1]; 7554 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7555 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7556 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7557 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7558 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7559 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7560 /* IsTruncating */ false, /*IsCompressing*/ false); 7561 DAG.setRoot(ST); 7562 setValue(&VPIntrin, ST); 7563 } 7564 7565 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7566 SmallVector<SDValue, 7> &OpValues) { 7567 SDLoc DL = getCurSDLoc(); 7568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7569 Value *PtrOperand = VPIntrin.getArgOperand(1); 7570 EVT VT = OpValues[0].getValueType(); 7571 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7572 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7573 SDValue ST; 7574 if (!Alignment) 7575 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7576 unsigned AS = 7577 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7578 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7579 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7580 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7581 SDValue Base, Index, Scale; 7582 ISD::MemIndexType IndexType; 7583 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7584 this, VPIntrin.getParent(), 7585 VT.getScalarStoreSize()); 7586 if (!UniformBase) { 7587 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7588 Index = getValue(PtrOperand); 7589 IndexType = ISD::SIGNED_SCALED; 7590 Scale = 7591 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7592 } 7593 EVT IdxVT = Index.getValueType(); 7594 EVT EltTy = IdxVT.getVectorElementType(); 7595 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7596 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7597 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7598 } 7599 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7600 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7601 OpValues[2], OpValues[3]}, 7602 MMO, IndexType); 7603 DAG.setRoot(ST); 7604 setValue(&VPIntrin, ST); 7605 } 7606 7607 void SelectionDAGBuilder::visitVPStridedLoad( 7608 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7609 SDLoc DL = getCurSDLoc(); 7610 Value *PtrOperand = VPIntrin.getArgOperand(0); 7611 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7612 if (!Alignment) 7613 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7614 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7615 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7616 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7617 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7618 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7619 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7620 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7621 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7622 7623 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7624 OpValues[2], OpValues[3], MMO, 7625 false /*IsExpanding*/); 7626 7627 if (AddToChain) 7628 PendingLoads.push_back(LD.getValue(1)); 7629 setValue(&VPIntrin, LD); 7630 } 7631 7632 void SelectionDAGBuilder::visitVPStridedStore( 7633 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7634 SDLoc DL = getCurSDLoc(); 7635 Value *PtrOperand = VPIntrin.getArgOperand(1); 7636 EVT VT = OpValues[0].getValueType(); 7637 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7638 if (!Alignment) 7639 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7640 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7641 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7642 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7643 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7644 7645 SDValue ST = DAG.getStridedStoreVP( 7646 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7647 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7648 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7649 /*IsCompressing*/ false); 7650 7651 DAG.setRoot(ST); 7652 setValue(&VPIntrin, ST); 7653 } 7654 7655 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7657 SDLoc DL = getCurSDLoc(); 7658 7659 ISD::CondCode Condition; 7660 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7661 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7662 if (IsFP) { 7663 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7664 // flags, but calls that don't return floating-point types can't be 7665 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7666 Condition = getFCmpCondCode(CondCode); 7667 if (TM.Options.NoNaNsFPMath) 7668 Condition = getFCmpCodeWithoutNaN(Condition); 7669 } else { 7670 Condition = getICmpCondCode(CondCode); 7671 } 7672 7673 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7674 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7675 // #2 is the condition code 7676 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7677 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7678 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7679 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7680 "Unexpected target EVL type"); 7681 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7682 7683 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7684 VPIntrin.getType()); 7685 setValue(&VPIntrin, 7686 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7687 } 7688 7689 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7690 const VPIntrinsic &VPIntrin) { 7691 SDLoc DL = getCurSDLoc(); 7692 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7693 7694 auto IID = VPIntrin.getIntrinsicID(); 7695 7696 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7697 return visitVPCmp(*CmpI); 7698 7699 SmallVector<EVT, 4> ValueVTs; 7700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7701 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7702 SDVTList VTs = DAG.getVTList(ValueVTs); 7703 7704 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7705 7706 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7707 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7708 "Unexpected target EVL type"); 7709 7710 // Request operands. 7711 SmallVector<SDValue, 7> OpValues; 7712 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7713 auto Op = getValue(VPIntrin.getArgOperand(I)); 7714 if (I == EVLParamPos) 7715 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7716 OpValues.push_back(Op); 7717 } 7718 7719 switch (Opcode) { 7720 default: { 7721 SDNodeFlags SDFlags; 7722 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7723 SDFlags.copyFMF(*FPMO); 7724 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7725 setValue(&VPIntrin, Result); 7726 break; 7727 } 7728 case ISD::VP_LOAD: 7729 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7730 break; 7731 case ISD::VP_GATHER: 7732 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7733 break; 7734 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7735 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7736 break; 7737 case ISD::VP_STORE: 7738 visitVPStore(VPIntrin, OpValues); 7739 break; 7740 case ISD::VP_SCATTER: 7741 visitVPScatter(VPIntrin, OpValues); 7742 break; 7743 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7744 visitVPStridedStore(VPIntrin, OpValues); 7745 break; 7746 case ISD::VP_FMULADD: { 7747 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7748 SDNodeFlags SDFlags; 7749 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7750 SDFlags.copyFMF(*FPMO); 7751 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7752 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7753 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7754 } else { 7755 SDValue Mul = DAG.getNode( 7756 ISD::VP_FMUL, DL, VTs, 7757 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7758 SDValue Add = 7759 DAG.getNode(ISD::VP_FADD, DL, VTs, 7760 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7761 setValue(&VPIntrin, Add); 7762 } 7763 break; 7764 } 7765 case ISD::VP_INTTOPTR: { 7766 SDValue N = OpValues[0]; 7767 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7768 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7769 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7770 OpValues[2]); 7771 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7772 OpValues[2]); 7773 setValue(&VPIntrin, N); 7774 break; 7775 } 7776 case ISD::VP_PTRTOINT: { 7777 SDValue N = OpValues[0]; 7778 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7779 VPIntrin.getType()); 7780 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7781 VPIntrin.getOperand(0)->getType()); 7782 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7783 OpValues[2]); 7784 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7785 OpValues[2]); 7786 setValue(&VPIntrin, N); 7787 break; 7788 } 7789 case ISD::VP_ABS: 7790 case ISD::VP_CTLZ: 7791 case ISD::VP_CTLZ_ZERO_UNDEF: 7792 case ISD::VP_CTTZ: 7793 case ISD::VP_CTTZ_ZERO_UNDEF: { 7794 // Pop is_zero_poison operand for cp.ctlz/cttz or 7795 // is_int_min_poison operand for vp.abs. 7796 OpValues.pop_back(); 7797 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7798 setValue(&VPIntrin, Result); 7799 break; 7800 } 7801 } 7802 } 7803 7804 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7805 const BasicBlock *EHPadBB, 7806 MCSymbol *&BeginLabel) { 7807 MachineFunction &MF = DAG.getMachineFunction(); 7808 MachineModuleInfo &MMI = MF.getMMI(); 7809 7810 // Insert a label before the invoke call to mark the try range. This can be 7811 // used to detect deletion of the invoke via the MachineModuleInfo. 7812 BeginLabel = MMI.getContext().createTempSymbol(); 7813 7814 // For SjLj, keep track of which landing pads go with which invokes 7815 // so as to maintain the ordering of pads in the LSDA. 7816 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7817 if (CallSiteIndex) { 7818 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7819 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7820 7821 // Now that the call site is handled, stop tracking it. 7822 MMI.setCurrentCallSite(0); 7823 } 7824 7825 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7826 } 7827 7828 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7829 const BasicBlock *EHPadBB, 7830 MCSymbol *BeginLabel) { 7831 assert(BeginLabel && "BeginLabel should've been set"); 7832 7833 MachineFunction &MF = DAG.getMachineFunction(); 7834 MachineModuleInfo &MMI = MF.getMMI(); 7835 7836 // Insert a label at the end of the invoke call to mark the try range. This 7837 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7838 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7839 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7840 7841 // Inform MachineModuleInfo of range. 7842 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7843 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7844 // actually use outlined funclets and their LSDA info style. 7845 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7846 assert(II && "II should've been set"); 7847 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7848 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7849 } else if (!isScopedEHPersonality(Pers)) { 7850 assert(EHPadBB); 7851 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7852 } 7853 7854 return Chain; 7855 } 7856 7857 std::pair<SDValue, SDValue> 7858 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7859 const BasicBlock *EHPadBB) { 7860 MCSymbol *BeginLabel = nullptr; 7861 7862 if (EHPadBB) { 7863 // Both PendingLoads and PendingExports must be flushed here; 7864 // this call might not return. 7865 (void)getRoot(); 7866 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7867 CLI.setChain(getRoot()); 7868 } 7869 7870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7871 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7872 7873 assert((CLI.IsTailCall || Result.second.getNode()) && 7874 "Non-null chain expected with non-tail call!"); 7875 assert((Result.second.getNode() || !Result.first.getNode()) && 7876 "Null value expected with tail call!"); 7877 7878 if (!Result.second.getNode()) { 7879 // As a special case, a null chain means that a tail call has been emitted 7880 // and the DAG root is already updated. 7881 HasTailCall = true; 7882 7883 // Since there's no actual continuation from this block, nothing can be 7884 // relying on us setting vregs for them. 7885 PendingExports.clear(); 7886 } else { 7887 DAG.setRoot(Result.second); 7888 } 7889 7890 if (EHPadBB) { 7891 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7892 BeginLabel)); 7893 } 7894 7895 return Result; 7896 } 7897 7898 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7899 bool isTailCall, 7900 bool isMustTailCall, 7901 const BasicBlock *EHPadBB) { 7902 auto &DL = DAG.getDataLayout(); 7903 FunctionType *FTy = CB.getFunctionType(); 7904 Type *RetTy = CB.getType(); 7905 7906 TargetLowering::ArgListTy Args; 7907 Args.reserve(CB.arg_size()); 7908 7909 const Value *SwiftErrorVal = nullptr; 7910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7911 7912 if (isTailCall) { 7913 // Avoid emitting tail calls in functions with the disable-tail-calls 7914 // attribute. 7915 auto *Caller = CB.getParent()->getParent(); 7916 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7917 "true" && !isMustTailCall) 7918 isTailCall = false; 7919 7920 // We can't tail call inside a function with a swifterror argument. Lowering 7921 // does not support this yet. It would have to move into the swifterror 7922 // register before the call. 7923 if (TLI.supportSwiftError() && 7924 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7925 isTailCall = false; 7926 } 7927 7928 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7929 TargetLowering::ArgListEntry Entry; 7930 const Value *V = *I; 7931 7932 // Skip empty types 7933 if (V->getType()->isEmptyTy()) 7934 continue; 7935 7936 SDValue ArgNode = getValue(V); 7937 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7938 7939 Entry.setAttributes(&CB, I - CB.arg_begin()); 7940 7941 // Use swifterror virtual register as input to the call. 7942 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7943 SwiftErrorVal = V; 7944 // We find the virtual register for the actual swifterror argument. 7945 // Instead of using the Value, we use the virtual register instead. 7946 Entry.Node = 7947 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7948 EVT(TLI.getPointerTy(DL))); 7949 } 7950 7951 Args.push_back(Entry); 7952 7953 // If we have an explicit sret argument that is an Instruction, (i.e., it 7954 // might point to function-local memory), we can't meaningfully tail-call. 7955 if (Entry.IsSRet && isa<Instruction>(V)) 7956 isTailCall = false; 7957 } 7958 7959 // If call site has a cfguardtarget operand bundle, create and add an 7960 // additional ArgListEntry. 7961 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7962 TargetLowering::ArgListEntry Entry; 7963 Value *V = Bundle->Inputs[0]; 7964 SDValue ArgNode = getValue(V); 7965 Entry.Node = ArgNode; 7966 Entry.Ty = V->getType(); 7967 Entry.IsCFGuardTarget = true; 7968 Args.push_back(Entry); 7969 } 7970 7971 // Check if target-independent constraints permit a tail call here. 7972 // Target-dependent constraints are checked within TLI->LowerCallTo. 7973 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7974 isTailCall = false; 7975 7976 // Disable tail calls if there is an swifterror argument. Targets have not 7977 // been updated to support tail calls. 7978 if (TLI.supportSwiftError() && SwiftErrorVal) 7979 isTailCall = false; 7980 7981 ConstantInt *CFIType = nullptr; 7982 if (CB.isIndirectCall()) { 7983 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7984 if (!TLI.supportKCFIBundles()) 7985 report_fatal_error( 7986 "Target doesn't support calls with kcfi operand bundles."); 7987 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7988 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7989 } 7990 } 7991 7992 TargetLowering::CallLoweringInfo CLI(DAG); 7993 CLI.setDebugLoc(getCurSDLoc()) 7994 .setChain(getRoot()) 7995 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7996 .setTailCall(isTailCall) 7997 .setConvergent(CB.isConvergent()) 7998 .setIsPreallocated( 7999 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8000 .setCFIType(CFIType); 8001 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8002 8003 if (Result.first.getNode()) { 8004 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8005 setValue(&CB, Result.first); 8006 } 8007 8008 // The last element of CLI.InVals has the SDValue for swifterror return. 8009 // Here we copy it to a virtual register and update SwiftErrorMap for 8010 // book-keeping. 8011 if (SwiftErrorVal && TLI.supportSwiftError()) { 8012 // Get the last element of InVals. 8013 SDValue Src = CLI.InVals.back(); 8014 Register VReg = 8015 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8016 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8017 DAG.setRoot(CopyNode); 8018 } 8019 } 8020 8021 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8022 SelectionDAGBuilder &Builder) { 8023 // Check to see if this load can be trivially constant folded, e.g. if the 8024 // input is from a string literal. 8025 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8026 // Cast pointer to the type we really want to load. 8027 Type *LoadTy = 8028 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8029 if (LoadVT.isVector()) 8030 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8031 8032 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8033 PointerType::getUnqual(LoadTy)); 8034 8035 if (const Constant *LoadCst = 8036 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8037 LoadTy, Builder.DAG.getDataLayout())) 8038 return Builder.getValue(LoadCst); 8039 } 8040 8041 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8042 // still constant memory, the input chain can be the entry node. 8043 SDValue Root; 8044 bool ConstantMemory = false; 8045 8046 // Do not serialize (non-volatile) loads of constant memory with anything. 8047 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8048 Root = Builder.DAG.getEntryNode(); 8049 ConstantMemory = true; 8050 } else { 8051 // Do not serialize non-volatile loads against each other. 8052 Root = Builder.DAG.getRoot(); 8053 } 8054 8055 SDValue Ptr = Builder.getValue(PtrVal); 8056 SDValue LoadVal = 8057 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8058 MachinePointerInfo(PtrVal), Align(1)); 8059 8060 if (!ConstantMemory) 8061 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8062 return LoadVal; 8063 } 8064 8065 /// Record the value for an instruction that produces an integer result, 8066 /// converting the type where necessary. 8067 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8068 SDValue Value, 8069 bool IsSigned) { 8070 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8071 I.getType(), true); 8072 if (IsSigned) 8073 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8074 else 8075 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8076 setValue(&I, Value); 8077 } 8078 8079 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8080 /// true and lower it. Otherwise return false, and it will be lowered like a 8081 /// normal call. 8082 /// The caller already checked that \p I calls the appropriate LibFunc with a 8083 /// correct prototype. 8084 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8085 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8086 const Value *Size = I.getArgOperand(2); 8087 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8088 if (CSize && CSize->getZExtValue() == 0) { 8089 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8090 I.getType(), true); 8091 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8092 return true; 8093 } 8094 8095 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8096 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8097 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8098 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8099 if (Res.first.getNode()) { 8100 processIntegerCallValue(I, Res.first, true); 8101 PendingLoads.push_back(Res.second); 8102 return true; 8103 } 8104 8105 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8106 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8107 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8108 return false; 8109 8110 // If the target has a fast compare for the given size, it will return a 8111 // preferred load type for that size. Require that the load VT is legal and 8112 // that the target supports unaligned loads of that type. Otherwise, return 8113 // INVALID. 8114 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8116 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8117 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8118 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8119 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8120 // TODO: Check alignment of src and dest ptrs. 8121 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8122 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8123 if (!TLI.isTypeLegal(LVT) || 8124 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8125 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8126 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8127 } 8128 8129 return LVT; 8130 }; 8131 8132 // This turns into unaligned loads. We only do this if the target natively 8133 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8134 // we'll only produce a small number of byte loads. 8135 MVT LoadVT; 8136 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8137 switch (NumBitsToCompare) { 8138 default: 8139 return false; 8140 case 16: 8141 LoadVT = MVT::i16; 8142 break; 8143 case 32: 8144 LoadVT = MVT::i32; 8145 break; 8146 case 64: 8147 case 128: 8148 case 256: 8149 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8150 break; 8151 } 8152 8153 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8154 return false; 8155 8156 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8157 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8158 8159 // Bitcast to a wide integer type if the loads are vectors. 8160 if (LoadVT.isVector()) { 8161 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8162 LoadL = DAG.getBitcast(CmpVT, LoadL); 8163 LoadR = DAG.getBitcast(CmpVT, LoadR); 8164 } 8165 8166 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8167 processIntegerCallValue(I, Cmp, false); 8168 return true; 8169 } 8170 8171 /// See if we can lower a memchr call into an optimized form. If so, return 8172 /// true and lower it. Otherwise return false, and it will be lowered like a 8173 /// normal call. 8174 /// The caller already checked that \p I calls the appropriate LibFunc with a 8175 /// correct prototype. 8176 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8177 const Value *Src = I.getArgOperand(0); 8178 const Value *Char = I.getArgOperand(1); 8179 const Value *Length = I.getArgOperand(2); 8180 8181 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8182 std::pair<SDValue, SDValue> Res = 8183 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8184 getValue(Src), getValue(Char), getValue(Length), 8185 MachinePointerInfo(Src)); 8186 if (Res.first.getNode()) { 8187 setValue(&I, Res.first); 8188 PendingLoads.push_back(Res.second); 8189 return true; 8190 } 8191 8192 return false; 8193 } 8194 8195 /// See if we can lower a mempcpy call into an optimized form. If so, return 8196 /// true and lower it. Otherwise return false, and it will be lowered like a 8197 /// normal call. 8198 /// The caller already checked that \p I calls the appropriate LibFunc with a 8199 /// correct prototype. 8200 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8201 SDValue Dst = getValue(I.getArgOperand(0)); 8202 SDValue Src = getValue(I.getArgOperand(1)); 8203 SDValue Size = getValue(I.getArgOperand(2)); 8204 8205 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8206 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8207 // DAG::getMemcpy needs Alignment to be defined. 8208 Align Alignment = std::min(DstAlign, SrcAlign); 8209 8210 bool isVol = false; 8211 SDLoc sdl = getCurSDLoc(); 8212 8213 // In the mempcpy context we need to pass in a false value for isTailCall 8214 // because the return pointer needs to be adjusted by the size of 8215 // the copied memory. 8216 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8217 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8218 /*isTailCall=*/false, 8219 MachinePointerInfo(I.getArgOperand(0)), 8220 MachinePointerInfo(I.getArgOperand(1)), 8221 I.getAAMetadata()); 8222 assert(MC.getNode() != nullptr && 8223 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8224 DAG.setRoot(MC); 8225 8226 // Check if Size needs to be truncated or extended. 8227 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8228 8229 // Adjust return pointer to point just past the last dst byte. 8230 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8231 Dst, Size); 8232 setValue(&I, DstPlusSize); 8233 return true; 8234 } 8235 8236 /// See if we can lower a strcpy call into an optimized form. If so, return 8237 /// true and lower it, otherwise return false and it will be lowered like a 8238 /// normal call. 8239 /// The caller already checked that \p I calls the appropriate LibFunc with a 8240 /// correct prototype. 8241 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8242 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8243 8244 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8245 std::pair<SDValue, SDValue> Res = 8246 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8247 getValue(Arg0), getValue(Arg1), 8248 MachinePointerInfo(Arg0), 8249 MachinePointerInfo(Arg1), isStpcpy); 8250 if (Res.first.getNode()) { 8251 setValue(&I, Res.first); 8252 DAG.setRoot(Res.second); 8253 return true; 8254 } 8255 8256 return false; 8257 } 8258 8259 /// See if we can lower a strcmp call into an optimized form. If so, return 8260 /// true and lower it, otherwise return false and it will be lowered like a 8261 /// normal call. 8262 /// The caller already checked that \p I calls the appropriate LibFunc with a 8263 /// correct prototype. 8264 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8265 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8266 8267 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8268 std::pair<SDValue, SDValue> Res = 8269 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8270 getValue(Arg0), getValue(Arg1), 8271 MachinePointerInfo(Arg0), 8272 MachinePointerInfo(Arg1)); 8273 if (Res.first.getNode()) { 8274 processIntegerCallValue(I, Res.first, true); 8275 PendingLoads.push_back(Res.second); 8276 return true; 8277 } 8278 8279 return false; 8280 } 8281 8282 /// See if we can lower a strlen call into an optimized form. If so, return 8283 /// true and lower it, otherwise return false and it will be lowered like a 8284 /// normal call. 8285 /// The caller already checked that \p I calls the appropriate LibFunc with a 8286 /// correct prototype. 8287 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8288 const Value *Arg0 = I.getArgOperand(0); 8289 8290 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8291 std::pair<SDValue, SDValue> Res = 8292 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8293 getValue(Arg0), MachinePointerInfo(Arg0)); 8294 if (Res.first.getNode()) { 8295 processIntegerCallValue(I, Res.first, false); 8296 PendingLoads.push_back(Res.second); 8297 return true; 8298 } 8299 8300 return false; 8301 } 8302 8303 /// See if we can lower a strnlen call into an optimized form. If so, return 8304 /// true and lower it, otherwise return false and it will be lowered like a 8305 /// normal call. 8306 /// The caller already checked that \p I calls the appropriate LibFunc with a 8307 /// correct prototype. 8308 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8309 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8310 8311 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8312 std::pair<SDValue, SDValue> Res = 8313 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8314 getValue(Arg0), getValue(Arg1), 8315 MachinePointerInfo(Arg0)); 8316 if (Res.first.getNode()) { 8317 processIntegerCallValue(I, Res.first, false); 8318 PendingLoads.push_back(Res.second); 8319 return true; 8320 } 8321 8322 return false; 8323 } 8324 8325 /// See if we can lower a unary floating-point operation into an SDNode with 8326 /// the specified Opcode. If so, return true and lower it, otherwise return 8327 /// false and it will be lowered like a normal call. 8328 /// The caller already checked that \p I calls the appropriate LibFunc with a 8329 /// correct prototype. 8330 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8331 unsigned Opcode) { 8332 // We already checked this call's prototype; verify it doesn't modify errno. 8333 if (!I.onlyReadsMemory()) 8334 return false; 8335 8336 SDNodeFlags Flags; 8337 Flags.copyFMF(cast<FPMathOperator>(I)); 8338 8339 SDValue Tmp = getValue(I.getArgOperand(0)); 8340 setValue(&I, 8341 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8342 return true; 8343 } 8344 8345 /// See if we can lower a binary floating-point operation into an SDNode with 8346 /// the specified Opcode. If so, return true and lower it. Otherwise return 8347 /// false, and it will be lowered like a normal call. 8348 /// The caller already checked that \p I calls the appropriate LibFunc with a 8349 /// correct prototype. 8350 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8351 unsigned Opcode) { 8352 // We already checked this call's prototype; verify it doesn't modify errno. 8353 if (!I.onlyReadsMemory()) 8354 return false; 8355 8356 SDNodeFlags Flags; 8357 Flags.copyFMF(cast<FPMathOperator>(I)); 8358 8359 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8360 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8361 EVT VT = Tmp0.getValueType(); 8362 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8363 return true; 8364 } 8365 8366 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8367 // Handle inline assembly differently. 8368 if (I.isInlineAsm()) { 8369 visitInlineAsm(I); 8370 return; 8371 } 8372 8373 diagnoseDontCall(I); 8374 8375 if (Function *F = I.getCalledFunction()) { 8376 if (F->isDeclaration()) { 8377 // Is this an LLVM intrinsic or a target-specific intrinsic? 8378 unsigned IID = F->getIntrinsicID(); 8379 if (!IID) 8380 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8381 IID = II->getIntrinsicID(F); 8382 8383 if (IID) { 8384 visitIntrinsicCall(I, IID); 8385 return; 8386 } 8387 } 8388 8389 // Check for well-known libc/libm calls. If the function is internal, it 8390 // can't be a library call. Don't do the check if marked as nobuiltin for 8391 // some reason or the call site requires strict floating point semantics. 8392 LibFunc Func; 8393 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8394 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8395 LibInfo->hasOptimizedCodeGen(Func)) { 8396 switch (Func) { 8397 default: break; 8398 case LibFunc_bcmp: 8399 if (visitMemCmpBCmpCall(I)) 8400 return; 8401 break; 8402 case LibFunc_copysign: 8403 case LibFunc_copysignf: 8404 case LibFunc_copysignl: 8405 // We already checked this call's prototype; verify it doesn't modify 8406 // errno. 8407 if (I.onlyReadsMemory()) { 8408 SDValue LHS = getValue(I.getArgOperand(0)); 8409 SDValue RHS = getValue(I.getArgOperand(1)); 8410 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8411 LHS.getValueType(), LHS, RHS)); 8412 return; 8413 } 8414 break; 8415 case LibFunc_fabs: 8416 case LibFunc_fabsf: 8417 case LibFunc_fabsl: 8418 if (visitUnaryFloatCall(I, ISD::FABS)) 8419 return; 8420 break; 8421 case LibFunc_fmin: 8422 case LibFunc_fminf: 8423 case LibFunc_fminl: 8424 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8425 return; 8426 break; 8427 case LibFunc_fmax: 8428 case LibFunc_fmaxf: 8429 case LibFunc_fmaxl: 8430 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8431 return; 8432 break; 8433 case LibFunc_sin: 8434 case LibFunc_sinf: 8435 case LibFunc_sinl: 8436 if (visitUnaryFloatCall(I, ISD::FSIN)) 8437 return; 8438 break; 8439 case LibFunc_cos: 8440 case LibFunc_cosf: 8441 case LibFunc_cosl: 8442 if (visitUnaryFloatCall(I, ISD::FCOS)) 8443 return; 8444 break; 8445 case LibFunc_sqrt: 8446 case LibFunc_sqrtf: 8447 case LibFunc_sqrtl: 8448 case LibFunc_sqrt_finite: 8449 case LibFunc_sqrtf_finite: 8450 case LibFunc_sqrtl_finite: 8451 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8452 return; 8453 break; 8454 case LibFunc_floor: 8455 case LibFunc_floorf: 8456 case LibFunc_floorl: 8457 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8458 return; 8459 break; 8460 case LibFunc_nearbyint: 8461 case LibFunc_nearbyintf: 8462 case LibFunc_nearbyintl: 8463 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8464 return; 8465 break; 8466 case LibFunc_ceil: 8467 case LibFunc_ceilf: 8468 case LibFunc_ceill: 8469 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8470 return; 8471 break; 8472 case LibFunc_rint: 8473 case LibFunc_rintf: 8474 case LibFunc_rintl: 8475 if (visitUnaryFloatCall(I, ISD::FRINT)) 8476 return; 8477 break; 8478 case LibFunc_round: 8479 case LibFunc_roundf: 8480 case LibFunc_roundl: 8481 if (visitUnaryFloatCall(I, ISD::FROUND)) 8482 return; 8483 break; 8484 case LibFunc_trunc: 8485 case LibFunc_truncf: 8486 case LibFunc_truncl: 8487 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8488 return; 8489 break; 8490 case LibFunc_log2: 8491 case LibFunc_log2f: 8492 case LibFunc_log2l: 8493 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8494 return; 8495 break; 8496 case LibFunc_exp2: 8497 case LibFunc_exp2f: 8498 case LibFunc_exp2l: 8499 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8500 return; 8501 break; 8502 case LibFunc_memcmp: 8503 if (visitMemCmpBCmpCall(I)) 8504 return; 8505 break; 8506 case LibFunc_mempcpy: 8507 if (visitMemPCpyCall(I)) 8508 return; 8509 break; 8510 case LibFunc_memchr: 8511 if (visitMemChrCall(I)) 8512 return; 8513 break; 8514 case LibFunc_strcpy: 8515 if (visitStrCpyCall(I, false)) 8516 return; 8517 break; 8518 case LibFunc_stpcpy: 8519 if (visitStrCpyCall(I, true)) 8520 return; 8521 break; 8522 case LibFunc_strcmp: 8523 if (visitStrCmpCall(I)) 8524 return; 8525 break; 8526 case LibFunc_strlen: 8527 if (visitStrLenCall(I)) 8528 return; 8529 break; 8530 case LibFunc_strnlen: 8531 if (visitStrNLenCall(I)) 8532 return; 8533 break; 8534 } 8535 } 8536 } 8537 8538 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8539 // have to do anything here to lower funclet bundles. 8540 // CFGuardTarget bundles are lowered in LowerCallTo. 8541 assert(!I.hasOperandBundlesOtherThan( 8542 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8543 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8544 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8545 "Cannot lower calls with arbitrary operand bundles!"); 8546 8547 SDValue Callee = getValue(I.getCalledOperand()); 8548 8549 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8550 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8551 else 8552 // Check if we can potentially perform a tail call. More detailed checking 8553 // is be done within LowerCallTo, after more information about the call is 8554 // known. 8555 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8556 } 8557 8558 namespace { 8559 8560 /// AsmOperandInfo - This contains information for each constraint that we are 8561 /// lowering. 8562 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8563 public: 8564 /// CallOperand - If this is the result output operand or a clobber 8565 /// this is null, otherwise it is the incoming operand to the CallInst. 8566 /// This gets modified as the asm is processed. 8567 SDValue CallOperand; 8568 8569 /// AssignedRegs - If this is a register or register class operand, this 8570 /// contains the set of register corresponding to the operand. 8571 RegsForValue AssignedRegs; 8572 8573 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8574 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8575 } 8576 8577 /// Whether or not this operand accesses memory 8578 bool hasMemory(const TargetLowering &TLI) const { 8579 // Indirect operand accesses access memory. 8580 if (isIndirect) 8581 return true; 8582 8583 for (const auto &Code : Codes) 8584 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8585 return true; 8586 8587 return false; 8588 } 8589 }; 8590 8591 8592 } // end anonymous namespace 8593 8594 /// Make sure that the output operand \p OpInfo and its corresponding input 8595 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8596 /// out). 8597 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8598 SDISelAsmOperandInfo &MatchingOpInfo, 8599 SelectionDAG &DAG) { 8600 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8601 return; 8602 8603 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8604 const auto &TLI = DAG.getTargetLoweringInfo(); 8605 8606 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8607 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8608 OpInfo.ConstraintVT); 8609 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8610 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8611 MatchingOpInfo.ConstraintVT); 8612 if ((OpInfo.ConstraintVT.isInteger() != 8613 MatchingOpInfo.ConstraintVT.isInteger()) || 8614 (MatchRC.second != InputRC.second)) { 8615 // FIXME: error out in a more elegant fashion 8616 report_fatal_error("Unsupported asm: input constraint" 8617 " with a matching output constraint of" 8618 " incompatible type!"); 8619 } 8620 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8621 } 8622 8623 /// Get a direct memory input to behave well as an indirect operand. 8624 /// This may introduce stores, hence the need for a \p Chain. 8625 /// \return The (possibly updated) chain. 8626 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8627 SDISelAsmOperandInfo &OpInfo, 8628 SelectionDAG &DAG) { 8629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8630 8631 // If we don't have an indirect input, put it in the constpool if we can, 8632 // otherwise spill it to a stack slot. 8633 // TODO: This isn't quite right. We need to handle these according to 8634 // the addressing mode that the constraint wants. Also, this may take 8635 // an additional register for the computation and we don't want that 8636 // either. 8637 8638 // If the operand is a float, integer, or vector constant, spill to a 8639 // constant pool entry to get its address. 8640 const Value *OpVal = OpInfo.CallOperandVal; 8641 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8642 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8643 OpInfo.CallOperand = DAG.getConstantPool( 8644 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8645 return Chain; 8646 } 8647 8648 // Otherwise, create a stack slot and emit a store to it before the asm. 8649 Type *Ty = OpVal->getType(); 8650 auto &DL = DAG.getDataLayout(); 8651 uint64_t TySize = DL.getTypeAllocSize(Ty); 8652 MachineFunction &MF = DAG.getMachineFunction(); 8653 int SSFI = MF.getFrameInfo().CreateStackObject( 8654 TySize, DL.getPrefTypeAlign(Ty), false); 8655 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8656 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8657 MachinePointerInfo::getFixedStack(MF, SSFI), 8658 TLI.getMemValueType(DL, Ty)); 8659 OpInfo.CallOperand = StackSlot; 8660 8661 return Chain; 8662 } 8663 8664 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8665 /// specified operand. We prefer to assign virtual registers, to allow the 8666 /// register allocator to handle the assignment process. However, if the asm 8667 /// uses features that we can't model on machineinstrs, we have SDISel do the 8668 /// allocation. This produces generally horrible, but correct, code. 8669 /// 8670 /// OpInfo describes the operand 8671 /// RefOpInfo describes the matching operand if any, the operand otherwise 8672 static std::optional<unsigned> 8673 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8674 SDISelAsmOperandInfo &OpInfo, 8675 SDISelAsmOperandInfo &RefOpInfo) { 8676 LLVMContext &Context = *DAG.getContext(); 8677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8678 8679 MachineFunction &MF = DAG.getMachineFunction(); 8680 SmallVector<unsigned, 4> Regs; 8681 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8682 8683 // No work to do for memory/address operands. 8684 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8685 OpInfo.ConstraintType == TargetLowering::C_Address) 8686 return std::nullopt; 8687 8688 // If this is a constraint for a single physreg, or a constraint for a 8689 // register class, find it. 8690 unsigned AssignedReg; 8691 const TargetRegisterClass *RC; 8692 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8693 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8694 // RC is unset only on failure. Return immediately. 8695 if (!RC) 8696 return std::nullopt; 8697 8698 // Get the actual register value type. This is important, because the user 8699 // may have asked for (e.g.) the AX register in i32 type. We need to 8700 // remember that AX is actually i16 to get the right extension. 8701 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8702 8703 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8704 // If this is an FP operand in an integer register (or visa versa), or more 8705 // generally if the operand value disagrees with the register class we plan 8706 // to stick it in, fix the operand type. 8707 // 8708 // If this is an input value, the bitcast to the new type is done now. 8709 // Bitcast for output value is done at the end of visitInlineAsm(). 8710 if ((OpInfo.Type == InlineAsm::isOutput || 8711 OpInfo.Type == InlineAsm::isInput) && 8712 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8713 // Try to convert to the first EVT that the reg class contains. If the 8714 // types are identical size, use a bitcast to convert (e.g. two differing 8715 // vector types). Note: output bitcast is done at the end of 8716 // visitInlineAsm(). 8717 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8718 // Exclude indirect inputs while they are unsupported because the code 8719 // to perform the load is missing and thus OpInfo.CallOperand still 8720 // refers to the input address rather than the pointed-to value. 8721 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8722 OpInfo.CallOperand = 8723 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8724 OpInfo.ConstraintVT = RegVT; 8725 // If the operand is an FP value and we want it in integer registers, 8726 // use the corresponding integer type. This turns an f64 value into 8727 // i64, which can be passed with two i32 values on a 32-bit machine. 8728 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8729 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8730 if (OpInfo.Type == InlineAsm::isInput) 8731 OpInfo.CallOperand = 8732 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8733 OpInfo.ConstraintVT = VT; 8734 } 8735 } 8736 } 8737 8738 // No need to allocate a matching input constraint since the constraint it's 8739 // matching to has already been allocated. 8740 if (OpInfo.isMatchingInputConstraint()) 8741 return std::nullopt; 8742 8743 EVT ValueVT = OpInfo.ConstraintVT; 8744 if (OpInfo.ConstraintVT == MVT::Other) 8745 ValueVT = RegVT; 8746 8747 // Initialize NumRegs. 8748 unsigned NumRegs = 1; 8749 if (OpInfo.ConstraintVT != MVT::Other) 8750 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8751 8752 // If this is a constraint for a specific physical register, like {r17}, 8753 // assign it now. 8754 8755 // If this associated to a specific register, initialize iterator to correct 8756 // place. If virtual, make sure we have enough registers 8757 8758 // Initialize iterator if necessary 8759 TargetRegisterClass::iterator I = RC->begin(); 8760 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8761 8762 // Do not check for single registers. 8763 if (AssignedReg) { 8764 I = std::find(I, RC->end(), AssignedReg); 8765 if (I == RC->end()) { 8766 // RC does not contain the selected register, which indicates a 8767 // mismatch between the register and the required type/bitwidth. 8768 return {AssignedReg}; 8769 } 8770 } 8771 8772 for (; NumRegs; --NumRegs, ++I) { 8773 assert(I != RC->end() && "Ran out of registers to allocate!"); 8774 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8775 Regs.push_back(R); 8776 } 8777 8778 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8779 return std::nullopt; 8780 } 8781 8782 static unsigned 8783 findMatchingInlineAsmOperand(unsigned OperandNo, 8784 const std::vector<SDValue> &AsmNodeOperands) { 8785 // Scan until we find the definition we already emitted of this operand. 8786 unsigned CurOp = InlineAsm::Op_FirstOperand; 8787 for (; OperandNo; --OperandNo) { 8788 // Advance to the next operand. 8789 unsigned OpFlag = 8790 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8791 assert((InlineAsm::isRegDefKind(OpFlag) || 8792 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8793 InlineAsm::isMemKind(OpFlag)) && 8794 "Skipped past definitions?"); 8795 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8796 } 8797 return CurOp; 8798 } 8799 8800 namespace { 8801 8802 class ExtraFlags { 8803 unsigned Flags = 0; 8804 8805 public: 8806 explicit ExtraFlags(const CallBase &Call) { 8807 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8808 if (IA->hasSideEffects()) 8809 Flags |= InlineAsm::Extra_HasSideEffects; 8810 if (IA->isAlignStack()) 8811 Flags |= InlineAsm::Extra_IsAlignStack; 8812 if (Call.isConvergent()) 8813 Flags |= InlineAsm::Extra_IsConvergent; 8814 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8815 } 8816 8817 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8818 // Ideally, we would only check against memory constraints. However, the 8819 // meaning of an Other constraint can be target-specific and we can't easily 8820 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8821 // for Other constraints as well. 8822 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8823 OpInfo.ConstraintType == TargetLowering::C_Other) { 8824 if (OpInfo.Type == InlineAsm::isInput) 8825 Flags |= InlineAsm::Extra_MayLoad; 8826 else if (OpInfo.Type == InlineAsm::isOutput) 8827 Flags |= InlineAsm::Extra_MayStore; 8828 else if (OpInfo.Type == InlineAsm::isClobber) 8829 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8830 } 8831 } 8832 8833 unsigned get() const { return Flags; } 8834 }; 8835 8836 } // end anonymous namespace 8837 8838 static bool isFunction(SDValue Op) { 8839 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8840 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8841 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8842 8843 // In normal "call dllimport func" instruction (non-inlineasm) it force 8844 // indirect access by specifing call opcode. And usually specially print 8845 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8846 // not do in this way now. (In fact, this is similar with "Data Access" 8847 // action). So here we ignore dllimport function. 8848 if (Fn && !Fn->hasDLLImportStorageClass()) 8849 return true; 8850 } 8851 } 8852 return false; 8853 } 8854 8855 /// visitInlineAsm - Handle a call to an InlineAsm object. 8856 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8857 const BasicBlock *EHPadBB) { 8858 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8859 8860 /// ConstraintOperands - Information about all of the constraints. 8861 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8862 8863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8864 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8865 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8866 8867 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8868 // AsmDialect, MayLoad, MayStore). 8869 bool HasSideEffect = IA->hasSideEffects(); 8870 ExtraFlags ExtraInfo(Call); 8871 8872 for (auto &T : TargetConstraints) { 8873 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8874 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8875 8876 if (OpInfo.CallOperandVal) 8877 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8878 8879 if (!HasSideEffect) 8880 HasSideEffect = OpInfo.hasMemory(TLI); 8881 8882 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8883 // FIXME: Could we compute this on OpInfo rather than T? 8884 8885 // Compute the constraint code and ConstraintType to use. 8886 TLI.ComputeConstraintToUse(T, SDValue()); 8887 8888 if (T.ConstraintType == TargetLowering::C_Immediate && 8889 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8890 // We've delayed emitting a diagnostic like the "n" constraint because 8891 // inlining could cause an integer showing up. 8892 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8893 "' expects an integer constant " 8894 "expression"); 8895 8896 ExtraInfo.update(T); 8897 } 8898 8899 // We won't need to flush pending loads if this asm doesn't touch 8900 // memory and is nonvolatile. 8901 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8902 8903 bool EmitEHLabels = isa<InvokeInst>(Call); 8904 if (EmitEHLabels) { 8905 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8906 } 8907 bool IsCallBr = isa<CallBrInst>(Call); 8908 8909 if (IsCallBr || EmitEHLabels) { 8910 // If this is a callbr or invoke we need to flush pending exports since 8911 // inlineasm_br and invoke are terminators. 8912 // We need to do this before nodes are glued to the inlineasm_br node. 8913 Chain = getControlRoot(); 8914 } 8915 8916 MCSymbol *BeginLabel = nullptr; 8917 if (EmitEHLabels) { 8918 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8919 } 8920 8921 int OpNo = -1; 8922 SmallVector<StringRef> AsmStrs; 8923 IA->collectAsmStrs(AsmStrs); 8924 8925 // Second pass over the constraints: compute which constraint option to use. 8926 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8927 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8928 OpNo++; 8929 8930 // If this is an output operand with a matching input operand, look up the 8931 // matching input. If their types mismatch, e.g. one is an integer, the 8932 // other is floating point, or their sizes are different, flag it as an 8933 // error. 8934 if (OpInfo.hasMatchingInput()) { 8935 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8936 patchMatchingInput(OpInfo, Input, DAG); 8937 } 8938 8939 // Compute the constraint code and ConstraintType to use. 8940 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8941 8942 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8943 OpInfo.Type == InlineAsm::isClobber) || 8944 OpInfo.ConstraintType == TargetLowering::C_Address) 8945 continue; 8946 8947 // In Linux PIC model, there are 4 cases about value/label addressing: 8948 // 8949 // 1: Function call or Label jmp inside the module. 8950 // 2: Data access (such as global variable, static variable) inside module. 8951 // 3: Function call or Label jmp outside the module. 8952 // 4: Data access (such as global variable) outside the module. 8953 // 8954 // Due to current llvm inline asm architecture designed to not "recognize" 8955 // the asm code, there are quite troubles for us to treat mem addressing 8956 // differently for same value/adress used in different instuctions. 8957 // For example, in pic model, call a func may in plt way or direclty 8958 // pc-related, but lea/mov a function adress may use got. 8959 // 8960 // Here we try to "recognize" function call for the case 1 and case 3 in 8961 // inline asm. And try to adjust the constraint for them. 8962 // 8963 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8964 // label, so here we don't handle jmp function label now, but we need to 8965 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8966 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8967 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8968 TM.getCodeModel() != CodeModel::Large) { 8969 OpInfo.isIndirect = false; 8970 OpInfo.ConstraintType = TargetLowering::C_Address; 8971 } 8972 8973 // If this is a memory input, and if the operand is not indirect, do what we 8974 // need to provide an address for the memory input. 8975 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8976 !OpInfo.isIndirect) { 8977 assert((OpInfo.isMultipleAlternative || 8978 (OpInfo.Type == InlineAsm::isInput)) && 8979 "Can only indirectify direct input operands!"); 8980 8981 // Memory operands really want the address of the value. 8982 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8983 8984 // There is no longer a Value* corresponding to this operand. 8985 OpInfo.CallOperandVal = nullptr; 8986 8987 // It is now an indirect operand. 8988 OpInfo.isIndirect = true; 8989 } 8990 8991 } 8992 8993 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8994 std::vector<SDValue> AsmNodeOperands; 8995 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8996 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8997 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8998 8999 // If we have a !srcloc metadata node associated with it, we want to attach 9000 // this to the ultimately generated inline asm machineinstr. To do this, we 9001 // pass in the third operand as this (potentially null) inline asm MDNode. 9002 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9003 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9004 9005 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9006 // bits as operand 3. 9007 AsmNodeOperands.push_back(DAG.getTargetConstant( 9008 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9009 9010 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9011 // this, assign virtual and physical registers for inputs and otput. 9012 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9013 // Assign Registers. 9014 SDISelAsmOperandInfo &RefOpInfo = 9015 OpInfo.isMatchingInputConstraint() 9016 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9017 : OpInfo; 9018 const auto RegError = 9019 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9020 if (RegError) { 9021 const MachineFunction &MF = DAG.getMachineFunction(); 9022 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9023 const char *RegName = TRI.getName(*RegError); 9024 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9025 "' allocated for constraint '" + 9026 Twine(OpInfo.ConstraintCode) + 9027 "' does not match required type"); 9028 return; 9029 } 9030 9031 auto DetectWriteToReservedRegister = [&]() { 9032 const MachineFunction &MF = DAG.getMachineFunction(); 9033 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9034 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9035 if (Register::isPhysicalRegister(Reg) && 9036 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9037 const char *RegName = TRI.getName(Reg); 9038 emitInlineAsmError(Call, "write to reserved register '" + 9039 Twine(RegName) + "'"); 9040 return true; 9041 } 9042 } 9043 return false; 9044 }; 9045 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9046 (OpInfo.Type == InlineAsm::isInput && 9047 !OpInfo.isMatchingInputConstraint())) && 9048 "Only address as input operand is allowed."); 9049 9050 switch (OpInfo.Type) { 9051 case InlineAsm::isOutput: 9052 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9053 unsigned ConstraintID = 9054 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9055 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9056 "Failed to convert memory constraint code to constraint id."); 9057 9058 // Add information to the INLINEASM node to know about this output. 9059 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9060 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9061 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9062 MVT::i32)); 9063 AsmNodeOperands.push_back(OpInfo.CallOperand); 9064 } else { 9065 // Otherwise, this outputs to a register (directly for C_Register / 9066 // C_RegisterClass, and a target-defined fashion for 9067 // C_Immediate/C_Other). Find a register that we can use. 9068 if (OpInfo.AssignedRegs.Regs.empty()) { 9069 emitInlineAsmError( 9070 Call, "couldn't allocate output register for constraint '" + 9071 Twine(OpInfo.ConstraintCode) + "'"); 9072 return; 9073 } 9074 9075 if (DetectWriteToReservedRegister()) 9076 return; 9077 9078 // Add information to the INLINEASM node to know that this register is 9079 // set. 9080 OpInfo.AssignedRegs.AddInlineAsmOperands( 9081 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9082 : InlineAsm::Kind_RegDef, 9083 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9084 } 9085 break; 9086 9087 case InlineAsm::isInput: 9088 case InlineAsm::isLabel: { 9089 SDValue InOperandVal = OpInfo.CallOperand; 9090 9091 if (OpInfo.isMatchingInputConstraint()) { 9092 // If this is required to match an output register we have already set, 9093 // just use its register. 9094 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9095 AsmNodeOperands); 9096 unsigned OpFlag = 9097 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9098 if (InlineAsm::isRegDefKind(OpFlag) || 9099 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9100 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9101 if (OpInfo.isIndirect) { 9102 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9103 emitInlineAsmError(Call, "inline asm not supported yet: " 9104 "don't know how to handle tied " 9105 "indirect register inputs"); 9106 return; 9107 } 9108 9109 SmallVector<unsigned, 4> Regs; 9110 MachineFunction &MF = DAG.getMachineFunction(); 9111 MachineRegisterInfo &MRI = MF.getRegInfo(); 9112 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9113 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9114 Register TiedReg = R->getReg(); 9115 MVT RegVT = R->getSimpleValueType(0); 9116 const TargetRegisterClass *RC = 9117 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9118 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9119 : TRI.getMinimalPhysRegClass(TiedReg); 9120 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9121 for (unsigned i = 0; i != NumRegs; ++i) 9122 Regs.push_back(MRI.createVirtualRegister(RC)); 9123 9124 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9125 9126 SDLoc dl = getCurSDLoc(); 9127 // Use the produced MatchedRegs object to 9128 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9129 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9130 true, OpInfo.getMatchedOperand(), dl, 9131 DAG, AsmNodeOperands); 9132 break; 9133 } 9134 9135 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9136 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9137 "Unexpected number of operands"); 9138 // Add information to the INLINEASM node to know about this input. 9139 // See InlineAsm.h isUseOperandTiedToDef. 9140 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9141 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9142 OpInfo.getMatchedOperand()); 9143 AsmNodeOperands.push_back(DAG.getTargetConstant( 9144 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9145 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9146 break; 9147 } 9148 9149 // Treat indirect 'X' constraint as memory. 9150 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9151 OpInfo.isIndirect) 9152 OpInfo.ConstraintType = TargetLowering::C_Memory; 9153 9154 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9155 OpInfo.ConstraintType == TargetLowering::C_Other) { 9156 std::vector<SDValue> Ops; 9157 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9158 Ops, DAG); 9159 if (Ops.empty()) { 9160 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9161 if (isa<ConstantSDNode>(InOperandVal)) { 9162 emitInlineAsmError(Call, "value out of range for constraint '" + 9163 Twine(OpInfo.ConstraintCode) + "'"); 9164 return; 9165 } 9166 9167 emitInlineAsmError(Call, 9168 "invalid operand for inline asm constraint '" + 9169 Twine(OpInfo.ConstraintCode) + "'"); 9170 return; 9171 } 9172 9173 // Add information to the INLINEASM node to know about this input. 9174 unsigned ResOpType = 9175 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9176 AsmNodeOperands.push_back(DAG.getTargetConstant( 9177 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9178 llvm::append_range(AsmNodeOperands, Ops); 9179 break; 9180 } 9181 9182 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9183 assert((OpInfo.isIndirect || 9184 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9185 "Operand must be indirect to be a mem!"); 9186 assert(InOperandVal.getValueType() == 9187 TLI.getPointerTy(DAG.getDataLayout()) && 9188 "Memory operands expect pointer values"); 9189 9190 unsigned ConstraintID = 9191 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9192 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9193 "Failed to convert memory constraint code to constraint id."); 9194 9195 // Add information to the INLINEASM node to know about this input. 9196 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9197 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9198 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9199 getCurSDLoc(), 9200 MVT::i32)); 9201 AsmNodeOperands.push_back(InOperandVal); 9202 break; 9203 } 9204 9205 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9206 assert(InOperandVal.getValueType() == 9207 TLI.getPointerTy(DAG.getDataLayout()) && 9208 "Address operands expect pointer values"); 9209 9210 unsigned ConstraintID = 9211 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9212 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9213 "Failed to convert memory constraint code to constraint id."); 9214 9215 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9216 9217 SDValue AsmOp = InOperandVal; 9218 if (isFunction(InOperandVal)) { 9219 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9220 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9221 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9222 InOperandVal.getValueType(), 9223 GA->getOffset()); 9224 } 9225 9226 // Add information to the INLINEASM node to know about this input. 9227 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9228 9229 AsmNodeOperands.push_back( 9230 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9231 9232 AsmNodeOperands.push_back(AsmOp); 9233 break; 9234 } 9235 9236 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9237 OpInfo.ConstraintType == TargetLowering::C_Register) && 9238 "Unknown constraint type!"); 9239 9240 // TODO: Support this. 9241 if (OpInfo.isIndirect) { 9242 emitInlineAsmError( 9243 Call, "Don't know how to handle indirect register inputs yet " 9244 "for constraint '" + 9245 Twine(OpInfo.ConstraintCode) + "'"); 9246 return; 9247 } 9248 9249 // Copy the input into the appropriate registers. 9250 if (OpInfo.AssignedRegs.Regs.empty()) { 9251 emitInlineAsmError(Call, 9252 "couldn't allocate input reg for constraint '" + 9253 Twine(OpInfo.ConstraintCode) + "'"); 9254 return; 9255 } 9256 9257 if (DetectWriteToReservedRegister()) 9258 return; 9259 9260 SDLoc dl = getCurSDLoc(); 9261 9262 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9263 &Call); 9264 9265 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9266 dl, DAG, AsmNodeOperands); 9267 break; 9268 } 9269 case InlineAsm::isClobber: 9270 // Add the clobbered value to the operand list, so that the register 9271 // allocator is aware that the physreg got clobbered. 9272 if (!OpInfo.AssignedRegs.Regs.empty()) 9273 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9274 false, 0, getCurSDLoc(), DAG, 9275 AsmNodeOperands); 9276 break; 9277 } 9278 } 9279 9280 // Finish up input operands. Set the input chain and add the flag last. 9281 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9282 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9283 9284 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9285 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9286 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9287 Flag = Chain.getValue(1); 9288 9289 // Do additional work to generate outputs. 9290 9291 SmallVector<EVT, 1> ResultVTs; 9292 SmallVector<SDValue, 1> ResultValues; 9293 SmallVector<SDValue, 8> OutChains; 9294 9295 llvm::Type *CallResultType = Call.getType(); 9296 ArrayRef<Type *> ResultTypes; 9297 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9298 ResultTypes = StructResult->elements(); 9299 else if (!CallResultType->isVoidTy()) 9300 ResultTypes = ArrayRef(CallResultType); 9301 9302 auto CurResultType = ResultTypes.begin(); 9303 auto handleRegAssign = [&](SDValue V) { 9304 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9305 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9306 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9307 ++CurResultType; 9308 // If the type of the inline asm call site return value is different but has 9309 // same size as the type of the asm output bitcast it. One example of this 9310 // is for vectors with different width / number of elements. This can 9311 // happen for register classes that can contain multiple different value 9312 // types. The preg or vreg allocated may not have the same VT as was 9313 // expected. 9314 // 9315 // This can also happen for a return value that disagrees with the register 9316 // class it is put in, eg. a double in a general-purpose register on a 9317 // 32-bit machine. 9318 if (ResultVT != V.getValueType() && 9319 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9320 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9321 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9322 V.getValueType().isInteger()) { 9323 // If a result value was tied to an input value, the computed result 9324 // may have a wider width than the expected result. Extract the 9325 // relevant portion. 9326 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9327 } 9328 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9329 ResultVTs.push_back(ResultVT); 9330 ResultValues.push_back(V); 9331 }; 9332 9333 // Deal with output operands. 9334 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9335 if (OpInfo.Type == InlineAsm::isOutput) { 9336 SDValue Val; 9337 // Skip trivial output operands. 9338 if (OpInfo.AssignedRegs.Regs.empty()) 9339 continue; 9340 9341 switch (OpInfo.ConstraintType) { 9342 case TargetLowering::C_Register: 9343 case TargetLowering::C_RegisterClass: 9344 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9345 Chain, &Flag, &Call); 9346 break; 9347 case TargetLowering::C_Immediate: 9348 case TargetLowering::C_Other: 9349 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9350 OpInfo, DAG); 9351 break; 9352 case TargetLowering::C_Memory: 9353 break; // Already handled. 9354 case TargetLowering::C_Address: 9355 break; // Silence warning. 9356 case TargetLowering::C_Unknown: 9357 assert(false && "Unexpected unknown constraint"); 9358 } 9359 9360 // Indirect output manifest as stores. Record output chains. 9361 if (OpInfo.isIndirect) { 9362 const Value *Ptr = OpInfo.CallOperandVal; 9363 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9364 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9365 MachinePointerInfo(Ptr)); 9366 OutChains.push_back(Store); 9367 } else { 9368 // generate CopyFromRegs to associated registers. 9369 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9370 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9371 for (const SDValue &V : Val->op_values()) 9372 handleRegAssign(V); 9373 } else 9374 handleRegAssign(Val); 9375 } 9376 } 9377 } 9378 9379 // Set results. 9380 if (!ResultValues.empty()) { 9381 assert(CurResultType == ResultTypes.end() && 9382 "Mismatch in number of ResultTypes"); 9383 assert(ResultValues.size() == ResultTypes.size() && 9384 "Mismatch in number of output operands in asm result"); 9385 9386 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9387 DAG.getVTList(ResultVTs), ResultValues); 9388 setValue(&Call, V); 9389 } 9390 9391 // Collect store chains. 9392 if (!OutChains.empty()) 9393 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9394 9395 if (EmitEHLabels) { 9396 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9397 } 9398 9399 // Only Update Root if inline assembly has a memory effect. 9400 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9401 EmitEHLabels) 9402 DAG.setRoot(Chain); 9403 } 9404 9405 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9406 const Twine &Message) { 9407 LLVMContext &Ctx = *DAG.getContext(); 9408 Ctx.emitError(&Call, Message); 9409 9410 // Make sure we leave the DAG in a valid state 9411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9412 SmallVector<EVT, 1> ValueVTs; 9413 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9414 9415 if (ValueVTs.empty()) 9416 return; 9417 9418 SmallVector<SDValue, 1> Ops; 9419 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9420 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9421 9422 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9423 } 9424 9425 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9426 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9427 MVT::Other, getRoot(), 9428 getValue(I.getArgOperand(0)), 9429 DAG.getSrcValue(I.getArgOperand(0)))); 9430 } 9431 9432 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9434 const DataLayout &DL = DAG.getDataLayout(); 9435 SDValue V = DAG.getVAArg( 9436 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9437 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9438 DL.getABITypeAlign(I.getType()).value()); 9439 DAG.setRoot(V.getValue(1)); 9440 9441 if (I.getType()->isPointerTy()) 9442 V = DAG.getPtrExtOrTrunc( 9443 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9444 setValue(&I, V); 9445 } 9446 9447 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9448 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9449 MVT::Other, getRoot(), 9450 getValue(I.getArgOperand(0)), 9451 DAG.getSrcValue(I.getArgOperand(0)))); 9452 } 9453 9454 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9455 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9456 MVT::Other, getRoot(), 9457 getValue(I.getArgOperand(0)), 9458 getValue(I.getArgOperand(1)), 9459 DAG.getSrcValue(I.getArgOperand(0)), 9460 DAG.getSrcValue(I.getArgOperand(1)))); 9461 } 9462 9463 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9464 const Instruction &I, 9465 SDValue Op) { 9466 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9467 if (!Range) 9468 return Op; 9469 9470 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9471 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9472 return Op; 9473 9474 APInt Lo = CR.getUnsignedMin(); 9475 if (!Lo.isMinValue()) 9476 return Op; 9477 9478 APInt Hi = CR.getUnsignedMax(); 9479 unsigned Bits = std::max(Hi.getActiveBits(), 9480 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9481 9482 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9483 9484 SDLoc SL = getCurSDLoc(); 9485 9486 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9487 DAG.getValueType(SmallVT)); 9488 unsigned NumVals = Op.getNode()->getNumValues(); 9489 if (NumVals == 1) 9490 return ZExt; 9491 9492 SmallVector<SDValue, 4> Ops; 9493 9494 Ops.push_back(ZExt); 9495 for (unsigned I = 1; I != NumVals; ++I) 9496 Ops.push_back(Op.getValue(I)); 9497 9498 return DAG.getMergeValues(Ops, SL); 9499 } 9500 9501 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9502 /// the call being lowered. 9503 /// 9504 /// This is a helper for lowering intrinsics that follow a target calling 9505 /// convention or require stack pointer adjustment. Only a subset of the 9506 /// intrinsic's operands need to participate in the calling convention. 9507 void SelectionDAGBuilder::populateCallLoweringInfo( 9508 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9509 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9510 bool IsPatchPoint) { 9511 TargetLowering::ArgListTy Args; 9512 Args.reserve(NumArgs); 9513 9514 // Populate the argument list. 9515 // Attributes for args start at offset 1, after the return attribute. 9516 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9517 ArgI != ArgE; ++ArgI) { 9518 const Value *V = Call->getOperand(ArgI); 9519 9520 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9521 9522 TargetLowering::ArgListEntry Entry; 9523 Entry.Node = getValue(V); 9524 Entry.Ty = V->getType(); 9525 Entry.setAttributes(Call, ArgI); 9526 Args.push_back(Entry); 9527 } 9528 9529 CLI.setDebugLoc(getCurSDLoc()) 9530 .setChain(getRoot()) 9531 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9532 .setDiscardResult(Call->use_empty()) 9533 .setIsPatchPoint(IsPatchPoint) 9534 .setIsPreallocated( 9535 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9536 } 9537 9538 /// Add a stack map intrinsic call's live variable operands to a stackmap 9539 /// or patchpoint target node's operand list. 9540 /// 9541 /// Constants are converted to TargetConstants purely as an optimization to 9542 /// avoid constant materialization and register allocation. 9543 /// 9544 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9545 /// generate addess computation nodes, and so FinalizeISel can convert the 9546 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9547 /// address materialization and register allocation, but may also be required 9548 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9549 /// alloca in the entry block, then the runtime may assume that the alloca's 9550 /// StackMap location can be read immediately after compilation and that the 9551 /// location is valid at any point during execution (this is similar to the 9552 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9553 /// only available in a register, then the runtime would need to trap when 9554 /// execution reaches the StackMap in order to read the alloca's location. 9555 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9556 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9557 SelectionDAGBuilder &Builder) { 9558 SelectionDAG &DAG = Builder.DAG; 9559 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9560 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9561 9562 // Things on the stack are pointer-typed, meaning that they are already 9563 // legal and can be emitted directly to target nodes. 9564 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9565 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9566 } else { 9567 // Otherwise emit a target independent node to be legalised. 9568 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9569 } 9570 } 9571 } 9572 9573 /// Lower llvm.experimental.stackmap. 9574 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9575 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9576 // [live variables...]) 9577 9578 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9579 9580 SDValue Chain, InFlag, Callee; 9581 SmallVector<SDValue, 32> Ops; 9582 9583 SDLoc DL = getCurSDLoc(); 9584 Callee = getValue(CI.getCalledOperand()); 9585 9586 // The stackmap intrinsic only records the live variables (the arguments 9587 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9588 // intrinsic, this won't be lowered to a function call. This means we don't 9589 // have to worry about calling conventions and target specific lowering code. 9590 // Instead we perform the call lowering right here. 9591 // 9592 // chain, flag = CALLSEQ_START(chain, 0, 0) 9593 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9594 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9595 // 9596 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9597 InFlag = Chain.getValue(1); 9598 9599 // Add the STACKMAP operands, starting with DAG house-keeping. 9600 Ops.push_back(Chain); 9601 Ops.push_back(InFlag); 9602 9603 // Add the <id>, <numShadowBytes> operands. 9604 // 9605 // These do not require legalisation, and can be emitted directly to target 9606 // constant nodes. 9607 SDValue ID = getValue(CI.getArgOperand(0)); 9608 assert(ID.getValueType() == MVT::i64); 9609 SDValue IDConst = DAG.getTargetConstant( 9610 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9611 Ops.push_back(IDConst); 9612 9613 SDValue Shad = getValue(CI.getArgOperand(1)); 9614 assert(Shad.getValueType() == MVT::i32); 9615 SDValue ShadConst = DAG.getTargetConstant( 9616 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9617 Ops.push_back(ShadConst); 9618 9619 // Add the live variables. 9620 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9621 9622 // Create the STACKMAP node. 9623 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9624 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9625 InFlag = Chain.getValue(1); 9626 9627 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9628 9629 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9630 9631 // Set the root to the target-lowered call chain. 9632 DAG.setRoot(Chain); 9633 9634 // Inform the Frame Information that we have a stackmap in this function. 9635 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9636 } 9637 9638 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9639 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9640 const BasicBlock *EHPadBB) { 9641 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9642 // i32 <numBytes>, 9643 // i8* <target>, 9644 // i32 <numArgs>, 9645 // [Args...], 9646 // [live variables...]) 9647 9648 CallingConv::ID CC = CB.getCallingConv(); 9649 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9650 bool HasDef = !CB.getType()->isVoidTy(); 9651 SDLoc dl = getCurSDLoc(); 9652 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9653 9654 // Handle immediate and symbolic callees. 9655 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9656 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9657 /*isTarget=*/true); 9658 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9659 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9660 SDLoc(SymbolicCallee), 9661 SymbolicCallee->getValueType(0)); 9662 9663 // Get the real number of arguments participating in the call <numArgs> 9664 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9665 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9666 9667 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9668 // Intrinsics include all meta-operands up to but not including CC. 9669 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9670 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9671 "Not enough arguments provided to the patchpoint intrinsic"); 9672 9673 // For AnyRegCC the arguments are lowered later on manually. 9674 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9675 Type *ReturnTy = 9676 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9677 9678 TargetLowering::CallLoweringInfo CLI(DAG); 9679 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9680 ReturnTy, true); 9681 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9682 9683 SDNode *CallEnd = Result.second.getNode(); 9684 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9685 CallEnd = CallEnd->getOperand(0).getNode(); 9686 9687 /// Get a call instruction from the call sequence chain. 9688 /// Tail calls are not allowed. 9689 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9690 "Expected a callseq node."); 9691 SDNode *Call = CallEnd->getOperand(0).getNode(); 9692 bool HasGlue = Call->getGluedNode(); 9693 9694 // Replace the target specific call node with the patchable intrinsic. 9695 SmallVector<SDValue, 8> Ops; 9696 9697 // Push the chain. 9698 Ops.push_back(*(Call->op_begin())); 9699 9700 // Optionally, push the glue (if any). 9701 if (HasGlue) 9702 Ops.push_back(*(Call->op_end() - 1)); 9703 9704 // Push the register mask info. 9705 if (HasGlue) 9706 Ops.push_back(*(Call->op_end() - 2)); 9707 else 9708 Ops.push_back(*(Call->op_end() - 1)); 9709 9710 // Add the <id> and <numBytes> constants. 9711 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9712 Ops.push_back(DAG.getTargetConstant( 9713 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9714 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9715 Ops.push_back(DAG.getTargetConstant( 9716 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9717 MVT::i32)); 9718 9719 // Add the callee. 9720 Ops.push_back(Callee); 9721 9722 // Adjust <numArgs> to account for any arguments that have been passed on the 9723 // stack instead. 9724 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9725 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9726 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9727 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9728 9729 // Add the calling convention 9730 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9731 9732 // Add the arguments we omitted previously. The register allocator should 9733 // place these in any free register. 9734 if (IsAnyRegCC) 9735 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9736 Ops.push_back(getValue(CB.getArgOperand(i))); 9737 9738 // Push the arguments from the call instruction. 9739 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9740 Ops.append(Call->op_begin() + 2, e); 9741 9742 // Push live variables for the stack map. 9743 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9744 9745 SDVTList NodeTys; 9746 if (IsAnyRegCC && HasDef) { 9747 // Create the return types based on the intrinsic definition 9748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9749 SmallVector<EVT, 3> ValueVTs; 9750 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9751 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9752 9753 // There is always a chain and a glue type at the end 9754 ValueVTs.push_back(MVT::Other); 9755 ValueVTs.push_back(MVT::Glue); 9756 NodeTys = DAG.getVTList(ValueVTs); 9757 } else 9758 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9759 9760 // Replace the target specific call node with a PATCHPOINT node. 9761 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9762 9763 // Update the NodeMap. 9764 if (HasDef) { 9765 if (IsAnyRegCC) 9766 setValue(&CB, SDValue(PPV.getNode(), 0)); 9767 else 9768 setValue(&CB, Result.first); 9769 } 9770 9771 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9772 // call sequence. Furthermore the location of the chain and glue can change 9773 // when the AnyReg calling convention is used and the intrinsic returns a 9774 // value. 9775 if (IsAnyRegCC && HasDef) { 9776 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9777 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9778 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9779 } else 9780 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9781 DAG.DeleteNode(Call); 9782 9783 // Inform the Frame Information that we have a patchpoint in this function. 9784 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9785 } 9786 9787 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9788 unsigned Intrinsic) { 9789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9790 SDValue Op1 = getValue(I.getArgOperand(0)); 9791 SDValue Op2; 9792 if (I.arg_size() > 1) 9793 Op2 = getValue(I.getArgOperand(1)); 9794 SDLoc dl = getCurSDLoc(); 9795 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9796 SDValue Res; 9797 SDNodeFlags SDFlags; 9798 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9799 SDFlags.copyFMF(*FPMO); 9800 9801 switch (Intrinsic) { 9802 case Intrinsic::vector_reduce_fadd: 9803 if (SDFlags.hasAllowReassociation()) 9804 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9805 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9806 SDFlags); 9807 else 9808 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9809 break; 9810 case Intrinsic::vector_reduce_fmul: 9811 if (SDFlags.hasAllowReassociation()) 9812 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9813 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9814 SDFlags); 9815 else 9816 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9817 break; 9818 case Intrinsic::vector_reduce_add: 9819 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9820 break; 9821 case Intrinsic::vector_reduce_mul: 9822 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9823 break; 9824 case Intrinsic::vector_reduce_and: 9825 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9826 break; 9827 case Intrinsic::vector_reduce_or: 9828 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9829 break; 9830 case Intrinsic::vector_reduce_xor: 9831 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9832 break; 9833 case Intrinsic::vector_reduce_smax: 9834 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9835 break; 9836 case Intrinsic::vector_reduce_smin: 9837 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9838 break; 9839 case Intrinsic::vector_reduce_umax: 9840 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9841 break; 9842 case Intrinsic::vector_reduce_umin: 9843 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9844 break; 9845 case Intrinsic::vector_reduce_fmax: 9846 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9847 break; 9848 case Intrinsic::vector_reduce_fmin: 9849 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9850 break; 9851 default: 9852 llvm_unreachable("Unhandled vector reduce intrinsic"); 9853 } 9854 setValue(&I, Res); 9855 } 9856 9857 /// Returns an AttributeList representing the attributes applied to the return 9858 /// value of the given call. 9859 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9860 SmallVector<Attribute::AttrKind, 2> Attrs; 9861 if (CLI.RetSExt) 9862 Attrs.push_back(Attribute::SExt); 9863 if (CLI.RetZExt) 9864 Attrs.push_back(Attribute::ZExt); 9865 if (CLI.IsInReg) 9866 Attrs.push_back(Attribute::InReg); 9867 9868 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9869 Attrs); 9870 } 9871 9872 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9873 /// implementation, which just calls LowerCall. 9874 /// FIXME: When all targets are 9875 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9876 std::pair<SDValue, SDValue> 9877 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9878 // Handle the incoming return values from the call. 9879 CLI.Ins.clear(); 9880 Type *OrigRetTy = CLI.RetTy; 9881 SmallVector<EVT, 4> RetTys; 9882 SmallVector<uint64_t, 4> Offsets; 9883 auto &DL = CLI.DAG.getDataLayout(); 9884 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9885 9886 if (CLI.IsPostTypeLegalization) { 9887 // If we are lowering a libcall after legalization, split the return type. 9888 SmallVector<EVT, 4> OldRetTys; 9889 SmallVector<uint64_t, 4> OldOffsets; 9890 RetTys.swap(OldRetTys); 9891 Offsets.swap(OldOffsets); 9892 9893 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9894 EVT RetVT = OldRetTys[i]; 9895 uint64_t Offset = OldOffsets[i]; 9896 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9897 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9898 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9899 RetTys.append(NumRegs, RegisterVT); 9900 for (unsigned j = 0; j != NumRegs; ++j) 9901 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9902 } 9903 } 9904 9905 SmallVector<ISD::OutputArg, 4> Outs; 9906 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9907 9908 bool CanLowerReturn = 9909 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9910 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9911 9912 SDValue DemoteStackSlot; 9913 int DemoteStackIdx = -100; 9914 if (!CanLowerReturn) { 9915 // FIXME: equivalent assert? 9916 // assert(!CS.hasInAllocaArgument() && 9917 // "sret demotion is incompatible with inalloca"); 9918 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9919 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9920 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9921 DemoteStackIdx = 9922 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9923 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9924 DL.getAllocaAddrSpace()); 9925 9926 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9927 ArgListEntry Entry; 9928 Entry.Node = DemoteStackSlot; 9929 Entry.Ty = StackSlotPtrType; 9930 Entry.IsSExt = false; 9931 Entry.IsZExt = false; 9932 Entry.IsInReg = false; 9933 Entry.IsSRet = true; 9934 Entry.IsNest = false; 9935 Entry.IsByVal = false; 9936 Entry.IsByRef = false; 9937 Entry.IsReturned = false; 9938 Entry.IsSwiftSelf = false; 9939 Entry.IsSwiftAsync = false; 9940 Entry.IsSwiftError = false; 9941 Entry.IsCFGuardTarget = false; 9942 Entry.Alignment = Alignment; 9943 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9944 CLI.NumFixedArgs += 1; 9945 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9946 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9947 9948 // sret demotion isn't compatible with tail-calls, since the sret argument 9949 // points into the callers stack frame. 9950 CLI.IsTailCall = false; 9951 } else { 9952 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9953 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9954 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9955 ISD::ArgFlagsTy Flags; 9956 if (NeedsRegBlock) { 9957 Flags.setInConsecutiveRegs(); 9958 if (I == RetTys.size() - 1) 9959 Flags.setInConsecutiveRegsLast(); 9960 } 9961 EVT VT = RetTys[I]; 9962 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9963 CLI.CallConv, VT); 9964 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9965 CLI.CallConv, VT); 9966 for (unsigned i = 0; i != NumRegs; ++i) { 9967 ISD::InputArg MyFlags; 9968 MyFlags.Flags = Flags; 9969 MyFlags.VT = RegisterVT; 9970 MyFlags.ArgVT = VT; 9971 MyFlags.Used = CLI.IsReturnValueUsed; 9972 if (CLI.RetTy->isPointerTy()) { 9973 MyFlags.Flags.setPointer(); 9974 MyFlags.Flags.setPointerAddrSpace( 9975 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9976 } 9977 if (CLI.RetSExt) 9978 MyFlags.Flags.setSExt(); 9979 if (CLI.RetZExt) 9980 MyFlags.Flags.setZExt(); 9981 if (CLI.IsInReg) 9982 MyFlags.Flags.setInReg(); 9983 CLI.Ins.push_back(MyFlags); 9984 } 9985 } 9986 } 9987 9988 // We push in swifterror return as the last element of CLI.Ins. 9989 ArgListTy &Args = CLI.getArgs(); 9990 if (supportSwiftError()) { 9991 for (const ArgListEntry &Arg : Args) { 9992 if (Arg.IsSwiftError) { 9993 ISD::InputArg MyFlags; 9994 MyFlags.VT = getPointerTy(DL); 9995 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9996 MyFlags.Flags.setSwiftError(); 9997 CLI.Ins.push_back(MyFlags); 9998 } 9999 } 10000 } 10001 10002 // Handle all of the outgoing arguments. 10003 CLI.Outs.clear(); 10004 CLI.OutVals.clear(); 10005 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10006 SmallVector<EVT, 4> ValueVTs; 10007 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10008 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10009 Type *FinalType = Args[i].Ty; 10010 if (Args[i].IsByVal) 10011 FinalType = Args[i].IndirectType; 10012 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10013 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10014 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10015 ++Value) { 10016 EVT VT = ValueVTs[Value]; 10017 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10018 SDValue Op = SDValue(Args[i].Node.getNode(), 10019 Args[i].Node.getResNo() + Value); 10020 ISD::ArgFlagsTy Flags; 10021 10022 // Certain targets (such as MIPS), may have a different ABI alignment 10023 // for a type depending on the context. Give the target a chance to 10024 // specify the alignment it wants. 10025 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10026 Flags.setOrigAlign(OriginalAlignment); 10027 10028 if (Args[i].Ty->isPointerTy()) { 10029 Flags.setPointer(); 10030 Flags.setPointerAddrSpace( 10031 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10032 } 10033 if (Args[i].IsZExt) 10034 Flags.setZExt(); 10035 if (Args[i].IsSExt) 10036 Flags.setSExt(); 10037 if (Args[i].IsInReg) { 10038 // If we are using vectorcall calling convention, a structure that is 10039 // passed InReg - is surely an HVA 10040 if (CLI.CallConv == CallingConv::X86_VectorCall && 10041 isa<StructType>(FinalType)) { 10042 // The first value of a structure is marked 10043 if (0 == Value) 10044 Flags.setHvaStart(); 10045 Flags.setHva(); 10046 } 10047 // Set InReg Flag 10048 Flags.setInReg(); 10049 } 10050 if (Args[i].IsSRet) 10051 Flags.setSRet(); 10052 if (Args[i].IsSwiftSelf) 10053 Flags.setSwiftSelf(); 10054 if (Args[i].IsSwiftAsync) 10055 Flags.setSwiftAsync(); 10056 if (Args[i].IsSwiftError) 10057 Flags.setSwiftError(); 10058 if (Args[i].IsCFGuardTarget) 10059 Flags.setCFGuardTarget(); 10060 if (Args[i].IsByVal) 10061 Flags.setByVal(); 10062 if (Args[i].IsByRef) 10063 Flags.setByRef(); 10064 if (Args[i].IsPreallocated) { 10065 Flags.setPreallocated(); 10066 // Set the byval flag for CCAssignFn callbacks that don't know about 10067 // preallocated. This way we can know how many bytes we should've 10068 // allocated and how many bytes a callee cleanup function will pop. If 10069 // we port preallocated to more targets, we'll have to add custom 10070 // preallocated handling in the various CC lowering callbacks. 10071 Flags.setByVal(); 10072 } 10073 if (Args[i].IsInAlloca) { 10074 Flags.setInAlloca(); 10075 // Set the byval flag for CCAssignFn callbacks that don't know about 10076 // inalloca. This way we can know how many bytes we should've allocated 10077 // and how many bytes a callee cleanup function will pop. If we port 10078 // inalloca to more targets, we'll have to add custom inalloca handling 10079 // in the various CC lowering callbacks. 10080 Flags.setByVal(); 10081 } 10082 Align MemAlign; 10083 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10084 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10085 Flags.setByValSize(FrameSize); 10086 10087 // info is not there but there are cases it cannot get right. 10088 if (auto MA = Args[i].Alignment) 10089 MemAlign = *MA; 10090 else 10091 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10092 } else if (auto MA = Args[i].Alignment) { 10093 MemAlign = *MA; 10094 } else { 10095 MemAlign = OriginalAlignment; 10096 } 10097 Flags.setMemAlign(MemAlign); 10098 if (Args[i].IsNest) 10099 Flags.setNest(); 10100 if (NeedsRegBlock) 10101 Flags.setInConsecutiveRegs(); 10102 10103 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10104 CLI.CallConv, VT); 10105 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10106 CLI.CallConv, VT); 10107 SmallVector<SDValue, 4> Parts(NumParts); 10108 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10109 10110 if (Args[i].IsSExt) 10111 ExtendKind = ISD::SIGN_EXTEND; 10112 else if (Args[i].IsZExt) 10113 ExtendKind = ISD::ZERO_EXTEND; 10114 10115 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10116 // for now. 10117 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10118 CanLowerReturn) { 10119 assert((CLI.RetTy == Args[i].Ty || 10120 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10121 CLI.RetTy->getPointerAddressSpace() == 10122 Args[i].Ty->getPointerAddressSpace())) && 10123 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10124 // Before passing 'returned' to the target lowering code, ensure that 10125 // either the register MVT and the actual EVT are the same size or that 10126 // the return value and argument are extended in the same way; in these 10127 // cases it's safe to pass the argument register value unchanged as the 10128 // return register value (although it's at the target's option whether 10129 // to do so) 10130 // TODO: allow code generation to take advantage of partially preserved 10131 // registers rather than clobbering the entire register when the 10132 // parameter extension method is not compatible with the return 10133 // extension method 10134 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10135 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10136 CLI.RetZExt == Args[i].IsZExt)) 10137 Flags.setReturned(); 10138 } 10139 10140 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10141 CLI.CallConv, ExtendKind); 10142 10143 for (unsigned j = 0; j != NumParts; ++j) { 10144 // if it isn't first piece, alignment must be 1 10145 // For scalable vectors the scalable part is currently handled 10146 // by individual targets, so we just use the known minimum size here. 10147 ISD::OutputArg MyFlags( 10148 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10149 i < CLI.NumFixedArgs, i, 10150 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10151 if (NumParts > 1 && j == 0) 10152 MyFlags.Flags.setSplit(); 10153 else if (j != 0) { 10154 MyFlags.Flags.setOrigAlign(Align(1)); 10155 if (j == NumParts - 1) 10156 MyFlags.Flags.setSplitEnd(); 10157 } 10158 10159 CLI.Outs.push_back(MyFlags); 10160 CLI.OutVals.push_back(Parts[j]); 10161 } 10162 10163 if (NeedsRegBlock && Value == NumValues - 1) 10164 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10165 } 10166 } 10167 10168 SmallVector<SDValue, 4> InVals; 10169 CLI.Chain = LowerCall(CLI, InVals); 10170 10171 // Update CLI.InVals to use outside of this function. 10172 CLI.InVals = InVals; 10173 10174 // Verify that the target's LowerCall behaved as expected. 10175 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10176 "LowerCall didn't return a valid chain!"); 10177 assert((!CLI.IsTailCall || InVals.empty()) && 10178 "LowerCall emitted a return value for a tail call!"); 10179 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10180 "LowerCall didn't emit the correct number of values!"); 10181 10182 // For a tail call, the return value is merely live-out and there aren't 10183 // any nodes in the DAG representing it. Return a special value to 10184 // indicate that a tail call has been emitted and no more Instructions 10185 // should be processed in the current block. 10186 if (CLI.IsTailCall) { 10187 CLI.DAG.setRoot(CLI.Chain); 10188 return std::make_pair(SDValue(), SDValue()); 10189 } 10190 10191 #ifndef NDEBUG 10192 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10193 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10194 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10195 "LowerCall emitted a value with the wrong type!"); 10196 } 10197 #endif 10198 10199 SmallVector<SDValue, 4> ReturnValues; 10200 if (!CanLowerReturn) { 10201 // The instruction result is the result of loading from the 10202 // hidden sret parameter. 10203 SmallVector<EVT, 1> PVTs; 10204 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10205 10206 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10207 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10208 EVT PtrVT = PVTs[0]; 10209 10210 unsigned NumValues = RetTys.size(); 10211 ReturnValues.resize(NumValues); 10212 SmallVector<SDValue, 4> Chains(NumValues); 10213 10214 // An aggregate return value cannot wrap around the address space, so 10215 // offsets to its parts don't wrap either. 10216 SDNodeFlags Flags; 10217 Flags.setNoUnsignedWrap(true); 10218 10219 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10220 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10221 for (unsigned i = 0; i < NumValues; ++i) { 10222 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10223 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10224 PtrVT), Flags); 10225 SDValue L = CLI.DAG.getLoad( 10226 RetTys[i], CLI.DL, CLI.Chain, Add, 10227 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10228 DemoteStackIdx, Offsets[i]), 10229 HiddenSRetAlign); 10230 ReturnValues[i] = L; 10231 Chains[i] = L.getValue(1); 10232 } 10233 10234 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10235 } else { 10236 // Collect the legal value parts into potentially illegal values 10237 // that correspond to the original function's return values. 10238 std::optional<ISD::NodeType> AssertOp; 10239 if (CLI.RetSExt) 10240 AssertOp = ISD::AssertSext; 10241 else if (CLI.RetZExt) 10242 AssertOp = ISD::AssertZext; 10243 unsigned CurReg = 0; 10244 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10245 EVT VT = RetTys[I]; 10246 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10247 CLI.CallConv, VT); 10248 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10249 CLI.CallConv, VT); 10250 10251 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10252 NumRegs, RegisterVT, VT, nullptr, 10253 CLI.CallConv, AssertOp)); 10254 CurReg += NumRegs; 10255 } 10256 10257 // For a function returning void, there is no return value. We can't create 10258 // such a node, so we just return a null return value in that case. In 10259 // that case, nothing will actually look at the value. 10260 if (ReturnValues.empty()) 10261 return std::make_pair(SDValue(), CLI.Chain); 10262 } 10263 10264 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10265 CLI.DAG.getVTList(RetTys), ReturnValues); 10266 return std::make_pair(Res, CLI.Chain); 10267 } 10268 10269 /// Places new result values for the node in Results (their number 10270 /// and types must exactly match those of the original return values of 10271 /// the node), or leaves Results empty, which indicates that the node is not 10272 /// to be custom lowered after all. 10273 void TargetLowering::LowerOperationWrapper(SDNode *N, 10274 SmallVectorImpl<SDValue> &Results, 10275 SelectionDAG &DAG) const { 10276 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10277 10278 if (!Res.getNode()) 10279 return; 10280 10281 // If the original node has one result, take the return value from 10282 // LowerOperation as is. It might not be result number 0. 10283 if (N->getNumValues() == 1) { 10284 Results.push_back(Res); 10285 return; 10286 } 10287 10288 // If the original node has multiple results, then the return node should 10289 // have the same number of results. 10290 assert((N->getNumValues() == Res->getNumValues()) && 10291 "Lowering returned the wrong number of results!"); 10292 10293 // Places new result values base on N result number. 10294 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10295 Results.push_back(Res.getValue(I)); 10296 } 10297 10298 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10299 llvm_unreachable("LowerOperation not implemented for this target!"); 10300 } 10301 10302 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10303 unsigned Reg, 10304 ISD::NodeType ExtendType) { 10305 SDValue Op = getNonRegisterValue(V); 10306 assert((Op.getOpcode() != ISD::CopyFromReg || 10307 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10308 "Copy from a reg to the same reg!"); 10309 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10310 10311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10312 // If this is an InlineAsm we have to match the registers required, not the 10313 // notional registers required by the type. 10314 10315 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10316 std::nullopt); // This is not an ABI copy. 10317 SDValue Chain = DAG.getEntryNode(); 10318 10319 if (ExtendType == ISD::ANY_EXTEND) { 10320 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10321 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10322 ExtendType = PreferredExtendIt->second; 10323 } 10324 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10325 PendingExports.push_back(Chain); 10326 } 10327 10328 #include "llvm/CodeGen/SelectionDAGISel.h" 10329 10330 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10331 /// entry block, return true. This includes arguments used by switches, since 10332 /// the switch may expand into multiple basic blocks. 10333 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10334 // With FastISel active, we may be splitting blocks, so force creation 10335 // of virtual registers for all non-dead arguments. 10336 if (FastISel) 10337 return A->use_empty(); 10338 10339 const BasicBlock &Entry = A->getParent()->front(); 10340 for (const User *U : A->users()) 10341 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10342 return false; // Use not in entry block. 10343 10344 return true; 10345 } 10346 10347 using ArgCopyElisionMapTy = 10348 DenseMap<const Argument *, 10349 std::pair<const AllocaInst *, const StoreInst *>>; 10350 10351 /// Scan the entry block of the function in FuncInfo for arguments that look 10352 /// like copies into a local alloca. Record any copied arguments in 10353 /// ArgCopyElisionCandidates. 10354 static void 10355 findArgumentCopyElisionCandidates(const DataLayout &DL, 10356 FunctionLoweringInfo *FuncInfo, 10357 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10358 // Record the state of every static alloca used in the entry block. Argument 10359 // allocas are all used in the entry block, so we need approximately as many 10360 // entries as we have arguments. 10361 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10362 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10363 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10364 StaticAllocas.reserve(NumArgs * 2); 10365 10366 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10367 if (!V) 10368 return nullptr; 10369 V = V->stripPointerCasts(); 10370 const auto *AI = dyn_cast<AllocaInst>(V); 10371 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10372 return nullptr; 10373 auto Iter = StaticAllocas.insert({AI, Unknown}); 10374 return &Iter.first->second; 10375 }; 10376 10377 // Look for stores of arguments to static allocas. Look through bitcasts and 10378 // GEPs to handle type coercions, as long as the alloca is fully initialized 10379 // by the store. Any non-store use of an alloca escapes it and any subsequent 10380 // unanalyzed store might write it. 10381 // FIXME: Handle structs initialized with multiple stores. 10382 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10383 // Look for stores, and handle non-store uses conservatively. 10384 const auto *SI = dyn_cast<StoreInst>(&I); 10385 if (!SI) { 10386 // We will look through cast uses, so ignore them completely. 10387 if (I.isCast()) 10388 continue; 10389 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10390 // to allocas. 10391 if (I.isDebugOrPseudoInst()) 10392 continue; 10393 // This is an unknown instruction. Assume it escapes or writes to all 10394 // static alloca operands. 10395 for (const Use &U : I.operands()) { 10396 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10397 *Info = StaticAllocaInfo::Clobbered; 10398 } 10399 continue; 10400 } 10401 10402 // If the stored value is a static alloca, mark it as escaped. 10403 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10404 *Info = StaticAllocaInfo::Clobbered; 10405 10406 // Check if the destination is a static alloca. 10407 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10408 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10409 if (!Info) 10410 continue; 10411 const AllocaInst *AI = cast<AllocaInst>(Dst); 10412 10413 // Skip allocas that have been initialized or clobbered. 10414 if (*Info != StaticAllocaInfo::Unknown) 10415 continue; 10416 10417 // Check if the stored value is an argument, and that this store fully 10418 // initializes the alloca. 10419 // If the argument type has padding bits we can't directly forward a pointer 10420 // as the upper bits may contain garbage. 10421 // Don't elide copies from the same argument twice. 10422 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10423 const auto *Arg = dyn_cast<Argument>(Val); 10424 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10425 Arg->getType()->isEmptyTy() || 10426 DL.getTypeStoreSize(Arg->getType()) != 10427 DL.getTypeAllocSize(AI->getAllocatedType()) || 10428 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10429 ArgCopyElisionCandidates.count(Arg)) { 10430 *Info = StaticAllocaInfo::Clobbered; 10431 continue; 10432 } 10433 10434 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10435 << '\n'); 10436 10437 // Mark this alloca and store for argument copy elision. 10438 *Info = StaticAllocaInfo::Elidable; 10439 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10440 10441 // Stop scanning if we've seen all arguments. This will happen early in -O0 10442 // builds, which is useful, because -O0 builds have large entry blocks and 10443 // many allocas. 10444 if (ArgCopyElisionCandidates.size() == NumArgs) 10445 break; 10446 } 10447 } 10448 10449 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10450 /// ArgVal is a load from a suitable fixed stack object. 10451 static void tryToElideArgumentCopy( 10452 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10453 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10454 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10455 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10456 SDValue ArgVal, bool &ArgHasUses) { 10457 // Check if this is a load from a fixed stack object. 10458 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10459 if (!LNode) 10460 return; 10461 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10462 if (!FINode) 10463 return; 10464 10465 // Check that the fixed stack object is the right size and alignment. 10466 // Look at the alignment that the user wrote on the alloca instead of looking 10467 // at the stack object. 10468 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10469 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10470 const AllocaInst *AI = ArgCopyIter->second.first; 10471 int FixedIndex = FINode->getIndex(); 10472 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10473 int OldIndex = AllocaIndex; 10474 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10475 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10476 LLVM_DEBUG( 10477 dbgs() << " argument copy elision failed due to bad fixed stack " 10478 "object size\n"); 10479 return; 10480 } 10481 Align RequiredAlignment = AI->getAlign(); 10482 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10483 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10484 "greater than stack argument alignment (" 10485 << DebugStr(RequiredAlignment) << " vs " 10486 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10487 return; 10488 } 10489 10490 // Perform the elision. Delete the old stack object and replace its only use 10491 // in the variable info map. Mark the stack object as mutable. 10492 LLVM_DEBUG({ 10493 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10494 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10495 << '\n'; 10496 }); 10497 MFI.RemoveStackObject(OldIndex); 10498 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10499 AllocaIndex = FixedIndex; 10500 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10501 Chains.push_back(ArgVal.getValue(1)); 10502 10503 // Avoid emitting code for the store implementing the copy. 10504 const StoreInst *SI = ArgCopyIter->second.second; 10505 ElidedArgCopyInstrs.insert(SI); 10506 10507 // Check for uses of the argument again so that we can avoid exporting ArgVal 10508 // if it is't used by anything other than the store. 10509 for (const Value *U : Arg.users()) { 10510 if (U != SI) { 10511 ArgHasUses = true; 10512 break; 10513 } 10514 } 10515 } 10516 10517 void SelectionDAGISel::LowerArguments(const Function &F) { 10518 SelectionDAG &DAG = SDB->DAG; 10519 SDLoc dl = SDB->getCurSDLoc(); 10520 const DataLayout &DL = DAG.getDataLayout(); 10521 SmallVector<ISD::InputArg, 16> Ins; 10522 10523 // In Naked functions we aren't going to save any registers. 10524 if (F.hasFnAttribute(Attribute::Naked)) 10525 return; 10526 10527 if (!FuncInfo->CanLowerReturn) { 10528 // Put in an sret pointer parameter before all the other parameters. 10529 SmallVector<EVT, 1> ValueVTs; 10530 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10531 F.getReturnType()->getPointerTo( 10532 DAG.getDataLayout().getAllocaAddrSpace()), 10533 ValueVTs); 10534 10535 // NOTE: Assuming that a pointer will never break down to more than one VT 10536 // or one register. 10537 ISD::ArgFlagsTy Flags; 10538 Flags.setSRet(); 10539 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10540 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10541 ISD::InputArg::NoArgIndex, 0); 10542 Ins.push_back(RetArg); 10543 } 10544 10545 // Look for stores of arguments to static allocas. Mark such arguments with a 10546 // flag to ask the target to give us the memory location of that argument if 10547 // available. 10548 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10549 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10550 ArgCopyElisionCandidates); 10551 10552 // Set up the incoming argument description vector. 10553 for (const Argument &Arg : F.args()) { 10554 unsigned ArgNo = Arg.getArgNo(); 10555 SmallVector<EVT, 4> ValueVTs; 10556 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10557 bool isArgValueUsed = !Arg.use_empty(); 10558 unsigned PartBase = 0; 10559 Type *FinalType = Arg.getType(); 10560 if (Arg.hasAttribute(Attribute::ByVal)) 10561 FinalType = Arg.getParamByValType(); 10562 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10563 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10564 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10565 Value != NumValues; ++Value) { 10566 EVT VT = ValueVTs[Value]; 10567 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10568 ISD::ArgFlagsTy Flags; 10569 10570 10571 if (Arg.getType()->isPointerTy()) { 10572 Flags.setPointer(); 10573 Flags.setPointerAddrSpace( 10574 cast<PointerType>(Arg.getType())->getAddressSpace()); 10575 } 10576 if (Arg.hasAttribute(Attribute::ZExt)) 10577 Flags.setZExt(); 10578 if (Arg.hasAttribute(Attribute::SExt)) 10579 Flags.setSExt(); 10580 if (Arg.hasAttribute(Attribute::InReg)) { 10581 // If we are using vectorcall calling convention, a structure that is 10582 // passed InReg - is surely an HVA 10583 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10584 isa<StructType>(Arg.getType())) { 10585 // The first value of a structure is marked 10586 if (0 == Value) 10587 Flags.setHvaStart(); 10588 Flags.setHva(); 10589 } 10590 // Set InReg Flag 10591 Flags.setInReg(); 10592 } 10593 if (Arg.hasAttribute(Attribute::StructRet)) 10594 Flags.setSRet(); 10595 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10596 Flags.setSwiftSelf(); 10597 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10598 Flags.setSwiftAsync(); 10599 if (Arg.hasAttribute(Attribute::SwiftError)) 10600 Flags.setSwiftError(); 10601 if (Arg.hasAttribute(Attribute::ByVal)) 10602 Flags.setByVal(); 10603 if (Arg.hasAttribute(Attribute::ByRef)) 10604 Flags.setByRef(); 10605 if (Arg.hasAttribute(Attribute::InAlloca)) { 10606 Flags.setInAlloca(); 10607 // Set the byval flag for CCAssignFn callbacks that don't know about 10608 // inalloca. This way we can know how many bytes we should've allocated 10609 // and how many bytes a callee cleanup function will pop. If we port 10610 // inalloca to more targets, we'll have to add custom inalloca handling 10611 // in the various CC lowering callbacks. 10612 Flags.setByVal(); 10613 } 10614 if (Arg.hasAttribute(Attribute::Preallocated)) { 10615 Flags.setPreallocated(); 10616 // Set the byval flag for CCAssignFn callbacks that don't know about 10617 // preallocated. This way we can know how many bytes we should've 10618 // allocated and how many bytes a callee cleanup function will pop. If 10619 // we port preallocated to more targets, we'll have to add custom 10620 // preallocated handling in the various CC lowering callbacks. 10621 Flags.setByVal(); 10622 } 10623 10624 // Certain targets (such as MIPS), may have a different ABI alignment 10625 // for a type depending on the context. Give the target a chance to 10626 // specify the alignment it wants. 10627 const Align OriginalAlignment( 10628 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10629 Flags.setOrigAlign(OriginalAlignment); 10630 10631 Align MemAlign; 10632 Type *ArgMemTy = nullptr; 10633 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10634 Flags.isByRef()) { 10635 if (!ArgMemTy) 10636 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10637 10638 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10639 10640 // For in-memory arguments, size and alignment should be passed from FE. 10641 // BE will guess if this info is not there but there are cases it cannot 10642 // get right. 10643 if (auto ParamAlign = Arg.getParamStackAlign()) 10644 MemAlign = *ParamAlign; 10645 else if ((ParamAlign = Arg.getParamAlign())) 10646 MemAlign = *ParamAlign; 10647 else 10648 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10649 if (Flags.isByRef()) 10650 Flags.setByRefSize(MemSize); 10651 else 10652 Flags.setByValSize(MemSize); 10653 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10654 MemAlign = *ParamAlign; 10655 } else { 10656 MemAlign = OriginalAlignment; 10657 } 10658 Flags.setMemAlign(MemAlign); 10659 10660 if (Arg.hasAttribute(Attribute::Nest)) 10661 Flags.setNest(); 10662 if (NeedsRegBlock) 10663 Flags.setInConsecutiveRegs(); 10664 if (ArgCopyElisionCandidates.count(&Arg)) 10665 Flags.setCopyElisionCandidate(); 10666 if (Arg.hasAttribute(Attribute::Returned)) 10667 Flags.setReturned(); 10668 10669 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10670 *CurDAG->getContext(), F.getCallingConv(), VT); 10671 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10672 *CurDAG->getContext(), F.getCallingConv(), VT); 10673 for (unsigned i = 0; i != NumRegs; ++i) { 10674 // For scalable vectors, use the minimum size; individual targets 10675 // are responsible for handling scalable vector arguments and 10676 // return values. 10677 ISD::InputArg MyFlags( 10678 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10679 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10680 if (NumRegs > 1 && i == 0) 10681 MyFlags.Flags.setSplit(); 10682 // if it isn't first piece, alignment must be 1 10683 else if (i > 0) { 10684 MyFlags.Flags.setOrigAlign(Align(1)); 10685 if (i == NumRegs - 1) 10686 MyFlags.Flags.setSplitEnd(); 10687 } 10688 Ins.push_back(MyFlags); 10689 } 10690 if (NeedsRegBlock && Value == NumValues - 1) 10691 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10692 PartBase += VT.getStoreSize().getKnownMinValue(); 10693 } 10694 } 10695 10696 // Call the target to set up the argument values. 10697 SmallVector<SDValue, 8> InVals; 10698 SDValue NewRoot = TLI->LowerFormalArguments( 10699 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10700 10701 // Verify that the target's LowerFormalArguments behaved as expected. 10702 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10703 "LowerFormalArguments didn't return a valid chain!"); 10704 assert(InVals.size() == Ins.size() && 10705 "LowerFormalArguments didn't emit the correct number of values!"); 10706 LLVM_DEBUG({ 10707 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10708 assert(InVals[i].getNode() && 10709 "LowerFormalArguments emitted a null value!"); 10710 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10711 "LowerFormalArguments emitted a value with the wrong type!"); 10712 } 10713 }); 10714 10715 // Update the DAG with the new chain value resulting from argument lowering. 10716 DAG.setRoot(NewRoot); 10717 10718 // Set up the argument values. 10719 unsigned i = 0; 10720 if (!FuncInfo->CanLowerReturn) { 10721 // Create a virtual register for the sret pointer, and put in a copy 10722 // from the sret argument into it. 10723 SmallVector<EVT, 1> ValueVTs; 10724 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10725 F.getReturnType()->getPointerTo( 10726 DAG.getDataLayout().getAllocaAddrSpace()), 10727 ValueVTs); 10728 MVT VT = ValueVTs[0].getSimpleVT(); 10729 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10730 std::optional<ISD::NodeType> AssertOp; 10731 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10732 nullptr, F.getCallingConv(), AssertOp); 10733 10734 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10735 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10736 Register SRetReg = 10737 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10738 FuncInfo->DemoteRegister = SRetReg; 10739 NewRoot = 10740 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10741 DAG.setRoot(NewRoot); 10742 10743 // i indexes lowered arguments. Bump it past the hidden sret argument. 10744 ++i; 10745 } 10746 10747 SmallVector<SDValue, 4> Chains; 10748 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10749 for (const Argument &Arg : F.args()) { 10750 SmallVector<SDValue, 4> ArgValues; 10751 SmallVector<EVT, 4> ValueVTs; 10752 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10753 unsigned NumValues = ValueVTs.size(); 10754 if (NumValues == 0) 10755 continue; 10756 10757 bool ArgHasUses = !Arg.use_empty(); 10758 10759 // Elide the copying store if the target loaded this argument from a 10760 // suitable fixed stack object. 10761 if (Ins[i].Flags.isCopyElisionCandidate()) { 10762 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10763 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10764 InVals[i], ArgHasUses); 10765 } 10766 10767 // If this argument is unused then remember its value. It is used to generate 10768 // debugging information. 10769 bool isSwiftErrorArg = 10770 TLI->supportSwiftError() && 10771 Arg.hasAttribute(Attribute::SwiftError); 10772 if (!ArgHasUses && !isSwiftErrorArg) { 10773 SDB->setUnusedArgValue(&Arg, InVals[i]); 10774 10775 // Also remember any frame index for use in FastISel. 10776 if (FrameIndexSDNode *FI = 10777 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10778 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10779 } 10780 10781 for (unsigned Val = 0; Val != NumValues; ++Val) { 10782 EVT VT = ValueVTs[Val]; 10783 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10784 F.getCallingConv(), VT); 10785 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10786 *CurDAG->getContext(), F.getCallingConv(), VT); 10787 10788 // Even an apparent 'unused' swifterror argument needs to be returned. So 10789 // we do generate a copy for it that can be used on return from the 10790 // function. 10791 if (ArgHasUses || isSwiftErrorArg) { 10792 std::optional<ISD::NodeType> AssertOp; 10793 if (Arg.hasAttribute(Attribute::SExt)) 10794 AssertOp = ISD::AssertSext; 10795 else if (Arg.hasAttribute(Attribute::ZExt)) 10796 AssertOp = ISD::AssertZext; 10797 10798 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10799 PartVT, VT, nullptr, 10800 F.getCallingConv(), AssertOp)); 10801 } 10802 10803 i += NumParts; 10804 } 10805 10806 // We don't need to do anything else for unused arguments. 10807 if (ArgValues.empty()) 10808 continue; 10809 10810 // Note down frame index. 10811 if (FrameIndexSDNode *FI = 10812 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10813 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10814 10815 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 10816 SDB->getCurSDLoc()); 10817 10818 SDB->setValue(&Arg, Res); 10819 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10820 // We want to associate the argument with the frame index, among 10821 // involved operands, that correspond to the lowest address. The 10822 // getCopyFromParts function, called earlier, is swapping the order of 10823 // the operands to BUILD_PAIR depending on endianness. The result of 10824 // that swapping is that the least significant bits of the argument will 10825 // be in the first operand of the BUILD_PAIR node, and the most 10826 // significant bits will be in the second operand. 10827 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10828 if (LoadSDNode *LNode = 10829 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10830 if (FrameIndexSDNode *FI = 10831 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10832 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10833 } 10834 10835 // Analyses past this point are naive and don't expect an assertion. 10836 if (Res.getOpcode() == ISD::AssertZext) 10837 Res = Res.getOperand(0); 10838 10839 // Update the SwiftErrorVRegDefMap. 10840 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10841 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10842 if (Register::isVirtualRegister(Reg)) 10843 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10844 Reg); 10845 } 10846 10847 // If this argument is live outside of the entry block, insert a copy from 10848 // wherever we got it to the vreg that other BB's will reference it as. 10849 if (Res.getOpcode() == ISD::CopyFromReg) { 10850 // If we can, though, try to skip creating an unnecessary vreg. 10851 // FIXME: This isn't very clean... it would be nice to make this more 10852 // general. 10853 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10854 if (Register::isVirtualRegister(Reg)) { 10855 FuncInfo->ValueMap[&Arg] = Reg; 10856 continue; 10857 } 10858 } 10859 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10860 FuncInfo->InitializeRegForValue(&Arg); 10861 SDB->CopyToExportRegsIfNeeded(&Arg); 10862 } 10863 } 10864 10865 if (!Chains.empty()) { 10866 Chains.push_back(NewRoot); 10867 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10868 } 10869 10870 DAG.setRoot(NewRoot); 10871 10872 assert(i == InVals.size() && "Argument register count mismatch!"); 10873 10874 // If any argument copy elisions occurred and we have debug info, update the 10875 // stale frame indices used in the dbg.declare variable info table. 10876 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10877 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10878 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10879 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10880 if (I != ArgCopyElisionFrameIndexMap.end()) 10881 VI.Slot = I->second; 10882 } 10883 } 10884 10885 // Finally, if the target has anything special to do, allow it to do so. 10886 emitFunctionEntryCode(); 10887 } 10888 10889 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10890 /// ensure constants are generated when needed. Remember the virtual registers 10891 /// that need to be added to the Machine PHI nodes as input. We cannot just 10892 /// directly add them, because expansion might result in multiple MBB's for one 10893 /// BB. As such, the start of the BB might correspond to a different MBB than 10894 /// the end. 10895 void 10896 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10898 10899 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10900 10901 // Check PHI nodes in successors that expect a value to be available from this 10902 // block. 10903 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10904 if (!isa<PHINode>(SuccBB->begin())) continue; 10905 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10906 10907 // If this terminator has multiple identical successors (common for 10908 // switches), only handle each succ once. 10909 if (!SuccsHandled.insert(SuccMBB).second) 10910 continue; 10911 10912 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10913 10914 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10915 // nodes and Machine PHI nodes, but the incoming operands have not been 10916 // emitted yet. 10917 for (const PHINode &PN : SuccBB->phis()) { 10918 // Ignore dead phi's. 10919 if (PN.use_empty()) 10920 continue; 10921 10922 // Skip empty types 10923 if (PN.getType()->isEmptyTy()) 10924 continue; 10925 10926 unsigned Reg; 10927 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10928 10929 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10930 unsigned &RegOut = ConstantsOut[C]; 10931 if (RegOut == 0) { 10932 RegOut = FuncInfo.CreateRegs(C); 10933 // We need to zero/sign extend ConstantInt phi operands to match 10934 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10935 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10936 if (auto *CI = dyn_cast<ConstantInt>(C)) 10937 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10938 : ISD::ZERO_EXTEND; 10939 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10940 } 10941 Reg = RegOut; 10942 } else { 10943 DenseMap<const Value *, Register>::iterator I = 10944 FuncInfo.ValueMap.find(PHIOp); 10945 if (I != FuncInfo.ValueMap.end()) 10946 Reg = I->second; 10947 else { 10948 assert(isa<AllocaInst>(PHIOp) && 10949 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10950 "Didn't codegen value into a register!??"); 10951 Reg = FuncInfo.CreateRegs(PHIOp); 10952 CopyValueToVirtualRegister(PHIOp, Reg); 10953 } 10954 } 10955 10956 // Remember that this register needs to added to the machine PHI node as 10957 // the input for this MBB. 10958 SmallVector<EVT, 4> ValueVTs; 10959 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10960 for (EVT VT : ValueVTs) { 10961 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10962 for (unsigned i = 0; i != NumRegisters; ++i) 10963 FuncInfo.PHINodesToUpdate.push_back( 10964 std::make_pair(&*MBBI++, Reg + i)); 10965 Reg += NumRegisters; 10966 } 10967 } 10968 } 10969 10970 ConstantsOut.clear(); 10971 } 10972 10973 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10974 MachineFunction::iterator I(MBB); 10975 if (++I == FuncInfo.MF->end()) 10976 return nullptr; 10977 return &*I; 10978 } 10979 10980 /// During lowering new call nodes can be created (such as memset, etc.). 10981 /// Those will become new roots of the current DAG, but complications arise 10982 /// when they are tail calls. In such cases, the call lowering will update 10983 /// the root, but the builder still needs to know that a tail call has been 10984 /// lowered in order to avoid generating an additional return. 10985 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10986 // If the node is null, we do have a tail call. 10987 if (MaybeTC.getNode() != nullptr) 10988 DAG.setRoot(MaybeTC); 10989 else 10990 HasTailCall = true; 10991 } 10992 10993 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10994 MachineBasicBlock *SwitchMBB, 10995 MachineBasicBlock *DefaultMBB) { 10996 MachineFunction *CurMF = FuncInfo.MF; 10997 MachineBasicBlock *NextMBB = nullptr; 10998 MachineFunction::iterator BBI(W.MBB); 10999 if (++BBI != FuncInfo.MF->end()) 11000 NextMBB = &*BBI; 11001 11002 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11003 11004 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11005 11006 if (Size == 2 && W.MBB == SwitchMBB) { 11007 // If any two of the cases has the same destination, and if one value 11008 // is the same as the other, but has one bit unset that the other has set, 11009 // use bit manipulation to do two compares at once. For example: 11010 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11011 // TODO: This could be extended to merge any 2 cases in switches with 3 11012 // cases. 11013 // TODO: Handle cases where W.CaseBB != SwitchBB. 11014 CaseCluster &Small = *W.FirstCluster; 11015 CaseCluster &Big = *W.LastCluster; 11016 11017 if (Small.Low == Small.High && Big.Low == Big.High && 11018 Small.MBB == Big.MBB) { 11019 const APInt &SmallValue = Small.Low->getValue(); 11020 const APInt &BigValue = Big.Low->getValue(); 11021 11022 // Check that there is only one bit different. 11023 APInt CommonBit = BigValue ^ SmallValue; 11024 if (CommonBit.isPowerOf2()) { 11025 SDValue CondLHS = getValue(Cond); 11026 EVT VT = CondLHS.getValueType(); 11027 SDLoc DL = getCurSDLoc(); 11028 11029 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11030 DAG.getConstant(CommonBit, DL, VT)); 11031 SDValue Cond = DAG.getSetCC( 11032 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11033 ISD::SETEQ); 11034 11035 // Update successor info. 11036 // Both Small and Big will jump to Small.BB, so we sum up the 11037 // probabilities. 11038 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11039 if (BPI) 11040 addSuccessorWithProb( 11041 SwitchMBB, DefaultMBB, 11042 // The default destination is the first successor in IR. 11043 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11044 else 11045 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11046 11047 // Insert the true branch. 11048 SDValue BrCond = 11049 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11050 DAG.getBasicBlock(Small.MBB)); 11051 // Insert the false branch. 11052 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11053 DAG.getBasicBlock(DefaultMBB)); 11054 11055 DAG.setRoot(BrCond); 11056 return; 11057 } 11058 } 11059 } 11060 11061 if (TM.getOptLevel() != CodeGenOpt::None) { 11062 // Here, we order cases by probability so the most likely case will be 11063 // checked first. However, two clusters can have the same probability in 11064 // which case their relative ordering is non-deterministic. So we use Low 11065 // as a tie-breaker as clusters are guaranteed to never overlap. 11066 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11067 [](const CaseCluster &a, const CaseCluster &b) { 11068 return a.Prob != b.Prob ? 11069 a.Prob > b.Prob : 11070 a.Low->getValue().slt(b.Low->getValue()); 11071 }); 11072 11073 // Rearrange the case blocks so that the last one falls through if possible 11074 // without changing the order of probabilities. 11075 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11076 --I; 11077 if (I->Prob > W.LastCluster->Prob) 11078 break; 11079 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11080 std::swap(*I, *W.LastCluster); 11081 break; 11082 } 11083 } 11084 } 11085 11086 // Compute total probability. 11087 BranchProbability DefaultProb = W.DefaultProb; 11088 BranchProbability UnhandledProbs = DefaultProb; 11089 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11090 UnhandledProbs += I->Prob; 11091 11092 MachineBasicBlock *CurMBB = W.MBB; 11093 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11094 bool FallthroughUnreachable = false; 11095 MachineBasicBlock *Fallthrough; 11096 if (I == W.LastCluster) { 11097 // For the last cluster, fall through to the default destination. 11098 Fallthrough = DefaultMBB; 11099 FallthroughUnreachable = isa<UnreachableInst>( 11100 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11101 } else { 11102 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11103 CurMF->insert(BBI, Fallthrough); 11104 // Put Cond in a virtual register to make it available from the new blocks. 11105 ExportFromCurrentBlock(Cond); 11106 } 11107 UnhandledProbs -= I->Prob; 11108 11109 switch (I->Kind) { 11110 case CC_JumpTable: { 11111 // FIXME: Optimize away range check based on pivot comparisons. 11112 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11113 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11114 11115 // The jump block hasn't been inserted yet; insert it here. 11116 MachineBasicBlock *JumpMBB = JT->MBB; 11117 CurMF->insert(BBI, JumpMBB); 11118 11119 auto JumpProb = I->Prob; 11120 auto FallthroughProb = UnhandledProbs; 11121 11122 // If the default statement is a target of the jump table, we evenly 11123 // distribute the default probability to successors of CurMBB. Also 11124 // update the probability on the edge from JumpMBB to Fallthrough. 11125 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11126 SE = JumpMBB->succ_end(); 11127 SI != SE; ++SI) { 11128 if (*SI == DefaultMBB) { 11129 JumpProb += DefaultProb / 2; 11130 FallthroughProb -= DefaultProb / 2; 11131 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11132 JumpMBB->normalizeSuccProbs(); 11133 break; 11134 } 11135 } 11136 11137 if (FallthroughUnreachable) 11138 JTH->FallthroughUnreachable = true; 11139 11140 if (!JTH->FallthroughUnreachable) 11141 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11142 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11143 CurMBB->normalizeSuccProbs(); 11144 11145 // The jump table header will be inserted in our current block, do the 11146 // range check, and fall through to our fallthrough block. 11147 JTH->HeaderBB = CurMBB; 11148 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11149 11150 // If we're in the right place, emit the jump table header right now. 11151 if (CurMBB == SwitchMBB) { 11152 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11153 JTH->Emitted = true; 11154 } 11155 break; 11156 } 11157 case CC_BitTests: { 11158 // FIXME: Optimize away range check based on pivot comparisons. 11159 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11160 11161 // The bit test blocks haven't been inserted yet; insert them here. 11162 for (BitTestCase &BTC : BTB->Cases) 11163 CurMF->insert(BBI, BTC.ThisBB); 11164 11165 // Fill in fields of the BitTestBlock. 11166 BTB->Parent = CurMBB; 11167 BTB->Default = Fallthrough; 11168 11169 BTB->DefaultProb = UnhandledProbs; 11170 // If the cases in bit test don't form a contiguous range, we evenly 11171 // distribute the probability on the edge to Fallthrough to two 11172 // successors of CurMBB. 11173 if (!BTB->ContiguousRange) { 11174 BTB->Prob += DefaultProb / 2; 11175 BTB->DefaultProb -= DefaultProb / 2; 11176 } 11177 11178 if (FallthroughUnreachable) 11179 BTB->FallthroughUnreachable = true; 11180 11181 // If we're in the right place, emit the bit test header right now. 11182 if (CurMBB == SwitchMBB) { 11183 visitBitTestHeader(*BTB, SwitchMBB); 11184 BTB->Emitted = true; 11185 } 11186 break; 11187 } 11188 case CC_Range: { 11189 const Value *RHS, *LHS, *MHS; 11190 ISD::CondCode CC; 11191 if (I->Low == I->High) { 11192 // Check Cond == I->Low. 11193 CC = ISD::SETEQ; 11194 LHS = Cond; 11195 RHS=I->Low; 11196 MHS = nullptr; 11197 } else { 11198 // Check I->Low <= Cond <= I->High. 11199 CC = ISD::SETLE; 11200 LHS = I->Low; 11201 MHS = Cond; 11202 RHS = I->High; 11203 } 11204 11205 // If Fallthrough is unreachable, fold away the comparison. 11206 if (FallthroughUnreachable) 11207 CC = ISD::SETTRUE; 11208 11209 // The false probability is the sum of all unhandled cases. 11210 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11211 getCurSDLoc(), I->Prob, UnhandledProbs); 11212 11213 if (CurMBB == SwitchMBB) 11214 visitSwitchCase(CB, SwitchMBB); 11215 else 11216 SL->SwitchCases.push_back(CB); 11217 11218 break; 11219 } 11220 } 11221 CurMBB = Fallthrough; 11222 } 11223 } 11224 11225 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11226 CaseClusterIt First, 11227 CaseClusterIt Last) { 11228 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11229 if (X.Prob != CC.Prob) 11230 return X.Prob > CC.Prob; 11231 11232 // Ties are broken by comparing the case value. 11233 return X.Low->getValue().slt(CC.Low->getValue()); 11234 }); 11235 } 11236 11237 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11238 const SwitchWorkListItem &W, 11239 Value *Cond, 11240 MachineBasicBlock *SwitchMBB) { 11241 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11242 "Clusters not sorted?"); 11243 11244 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11245 11246 // Balance the tree based on branch probabilities to create a near-optimal (in 11247 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11248 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11249 CaseClusterIt LastLeft = W.FirstCluster; 11250 CaseClusterIt FirstRight = W.LastCluster; 11251 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11252 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11253 11254 // Move LastLeft and FirstRight towards each other from opposite directions to 11255 // find a partitioning of the clusters which balances the probability on both 11256 // sides. If LeftProb and RightProb are equal, alternate which side is 11257 // taken to ensure 0-probability nodes are distributed evenly. 11258 unsigned I = 0; 11259 while (LastLeft + 1 < FirstRight) { 11260 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11261 LeftProb += (++LastLeft)->Prob; 11262 else 11263 RightProb += (--FirstRight)->Prob; 11264 I++; 11265 } 11266 11267 while (true) { 11268 // Our binary search tree differs from a typical BST in that ours can have up 11269 // to three values in each leaf. The pivot selection above doesn't take that 11270 // into account, which means the tree might require more nodes and be less 11271 // efficient. We compensate for this here. 11272 11273 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11274 unsigned NumRight = W.LastCluster - FirstRight + 1; 11275 11276 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11277 // If one side has less than 3 clusters, and the other has more than 3, 11278 // consider taking a cluster from the other side. 11279 11280 if (NumLeft < NumRight) { 11281 // Consider moving the first cluster on the right to the left side. 11282 CaseCluster &CC = *FirstRight; 11283 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11284 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11285 if (LeftSideRank <= RightSideRank) { 11286 // Moving the cluster to the left does not demote it. 11287 ++LastLeft; 11288 ++FirstRight; 11289 continue; 11290 } 11291 } else { 11292 assert(NumRight < NumLeft); 11293 // Consider moving the last element on the left to the right side. 11294 CaseCluster &CC = *LastLeft; 11295 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11296 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11297 if (RightSideRank <= LeftSideRank) { 11298 // Moving the cluster to the right does not demot it. 11299 --LastLeft; 11300 --FirstRight; 11301 continue; 11302 } 11303 } 11304 } 11305 break; 11306 } 11307 11308 assert(LastLeft + 1 == FirstRight); 11309 assert(LastLeft >= W.FirstCluster); 11310 assert(FirstRight <= W.LastCluster); 11311 11312 // Use the first element on the right as pivot since we will make less-than 11313 // comparisons against it. 11314 CaseClusterIt PivotCluster = FirstRight; 11315 assert(PivotCluster > W.FirstCluster); 11316 assert(PivotCluster <= W.LastCluster); 11317 11318 CaseClusterIt FirstLeft = W.FirstCluster; 11319 CaseClusterIt LastRight = W.LastCluster; 11320 11321 const ConstantInt *Pivot = PivotCluster->Low; 11322 11323 // New blocks will be inserted immediately after the current one. 11324 MachineFunction::iterator BBI(W.MBB); 11325 ++BBI; 11326 11327 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11328 // we can branch to its destination directly if it's squeezed exactly in 11329 // between the known lower bound and Pivot - 1. 11330 MachineBasicBlock *LeftMBB; 11331 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11332 FirstLeft->Low == W.GE && 11333 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11334 LeftMBB = FirstLeft->MBB; 11335 } else { 11336 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11337 FuncInfo.MF->insert(BBI, LeftMBB); 11338 WorkList.push_back( 11339 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11340 // Put Cond in a virtual register to make it available from the new blocks. 11341 ExportFromCurrentBlock(Cond); 11342 } 11343 11344 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11345 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11346 // directly if RHS.High equals the current upper bound. 11347 MachineBasicBlock *RightMBB; 11348 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11349 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11350 RightMBB = FirstRight->MBB; 11351 } else { 11352 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11353 FuncInfo.MF->insert(BBI, RightMBB); 11354 WorkList.push_back( 11355 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11356 // Put Cond in a virtual register to make it available from the new blocks. 11357 ExportFromCurrentBlock(Cond); 11358 } 11359 11360 // Create the CaseBlock record that will be used to lower the branch. 11361 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11362 getCurSDLoc(), LeftProb, RightProb); 11363 11364 if (W.MBB == SwitchMBB) 11365 visitSwitchCase(CB, SwitchMBB); 11366 else 11367 SL->SwitchCases.push_back(CB); 11368 } 11369 11370 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11371 // from the swith statement. 11372 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11373 BranchProbability PeeledCaseProb) { 11374 if (PeeledCaseProb == BranchProbability::getOne()) 11375 return BranchProbability::getZero(); 11376 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11377 11378 uint32_t Numerator = CaseProb.getNumerator(); 11379 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11380 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11381 } 11382 11383 // Try to peel the top probability case if it exceeds the threshold. 11384 // Return current MachineBasicBlock for the switch statement if the peeling 11385 // does not occur. 11386 // If the peeling is performed, return the newly created MachineBasicBlock 11387 // for the peeled switch statement. Also update Clusters to remove the peeled 11388 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11389 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11390 const SwitchInst &SI, CaseClusterVector &Clusters, 11391 BranchProbability &PeeledCaseProb) { 11392 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11393 // Don't perform if there is only one cluster or optimizing for size. 11394 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11395 TM.getOptLevel() == CodeGenOpt::None || 11396 SwitchMBB->getParent()->getFunction().hasMinSize()) 11397 return SwitchMBB; 11398 11399 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11400 unsigned PeeledCaseIndex = 0; 11401 bool SwitchPeeled = false; 11402 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11403 CaseCluster &CC = Clusters[Index]; 11404 if (CC.Prob < TopCaseProb) 11405 continue; 11406 TopCaseProb = CC.Prob; 11407 PeeledCaseIndex = Index; 11408 SwitchPeeled = true; 11409 } 11410 if (!SwitchPeeled) 11411 return SwitchMBB; 11412 11413 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11414 << TopCaseProb << "\n"); 11415 11416 // Record the MBB for the peeled switch statement. 11417 MachineFunction::iterator BBI(SwitchMBB); 11418 ++BBI; 11419 MachineBasicBlock *PeeledSwitchMBB = 11420 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11421 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11422 11423 ExportFromCurrentBlock(SI.getCondition()); 11424 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11425 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11426 nullptr, nullptr, TopCaseProb.getCompl()}; 11427 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11428 11429 Clusters.erase(PeeledCaseIt); 11430 for (CaseCluster &CC : Clusters) { 11431 LLVM_DEBUG( 11432 dbgs() << "Scale the probablity for one cluster, before scaling: " 11433 << CC.Prob << "\n"); 11434 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11435 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11436 } 11437 PeeledCaseProb = TopCaseProb; 11438 return PeeledSwitchMBB; 11439 } 11440 11441 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11442 // Extract cases from the switch. 11443 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11444 CaseClusterVector Clusters; 11445 Clusters.reserve(SI.getNumCases()); 11446 for (auto I : SI.cases()) { 11447 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11448 const ConstantInt *CaseVal = I.getCaseValue(); 11449 BranchProbability Prob = 11450 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11451 : BranchProbability(1, SI.getNumCases() + 1); 11452 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11453 } 11454 11455 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11456 11457 // Cluster adjacent cases with the same destination. We do this at all 11458 // optimization levels because it's cheap to do and will make codegen faster 11459 // if there are many clusters. 11460 sortAndRangeify(Clusters); 11461 11462 // The branch probablity of the peeled case. 11463 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11464 MachineBasicBlock *PeeledSwitchMBB = 11465 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11466 11467 // If there is only the default destination, jump there directly. 11468 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11469 if (Clusters.empty()) { 11470 assert(PeeledSwitchMBB == SwitchMBB); 11471 SwitchMBB->addSuccessor(DefaultMBB); 11472 if (DefaultMBB != NextBlock(SwitchMBB)) { 11473 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11474 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11475 } 11476 return; 11477 } 11478 11479 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11480 SL->findBitTestClusters(Clusters, &SI); 11481 11482 LLVM_DEBUG({ 11483 dbgs() << "Case clusters: "; 11484 for (const CaseCluster &C : Clusters) { 11485 if (C.Kind == CC_JumpTable) 11486 dbgs() << "JT:"; 11487 if (C.Kind == CC_BitTests) 11488 dbgs() << "BT:"; 11489 11490 C.Low->getValue().print(dbgs(), true); 11491 if (C.Low != C.High) { 11492 dbgs() << '-'; 11493 C.High->getValue().print(dbgs(), true); 11494 } 11495 dbgs() << ' '; 11496 } 11497 dbgs() << '\n'; 11498 }); 11499 11500 assert(!Clusters.empty()); 11501 SwitchWorkList WorkList; 11502 CaseClusterIt First = Clusters.begin(); 11503 CaseClusterIt Last = Clusters.end() - 1; 11504 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11505 // Scale the branchprobability for DefaultMBB if the peel occurs and 11506 // DefaultMBB is not replaced. 11507 if (PeeledCaseProb != BranchProbability::getZero() && 11508 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11509 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11510 WorkList.push_back( 11511 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11512 11513 while (!WorkList.empty()) { 11514 SwitchWorkListItem W = WorkList.pop_back_val(); 11515 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11516 11517 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11518 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11519 // For optimized builds, lower large range as a balanced binary tree. 11520 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11521 continue; 11522 } 11523 11524 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11525 } 11526 } 11527 11528 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11530 auto DL = getCurSDLoc(); 11531 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11532 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11533 } 11534 11535 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11537 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11538 11539 SDLoc DL = getCurSDLoc(); 11540 SDValue V = getValue(I.getOperand(0)); 11541 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11542 11543 if (VT.isScalableVector()) { 11544 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11545 return; 11546 } 11547 11548 // Use VECTOR_SHUFFLE for the fixed-length vector 11549 // to maintain existing behavior. 11550 SmallVector<int, 8> Mask; 11551 unsigned NumElts = VT.getVectorMinNumElements(); 11552 for (unsigned i = 0; i != NumElts; ++i) 11553 Mask.push_back(NumElts - 1 - i); 11554 11555 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11556 } 11557 11558 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11559 SmallVector<EVT, 4> ValueVTs; 11560 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11561 ValueVTs); 11562 unsigned NumValues = ValueVTs.size(); 11563 if (NumValues == 0) return; 11564 11565 SmallVector<SDValue, 4> Values(NumValues); 11566 SDValue Op = getValue(I.getOperand(0)); 11567 11568 for (unsigned i = 0; i != NumValues; ++i) 11569 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11570 SDValue(Op.getNode(), Op.getResNo() + i)); 11571 11572 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11573 DAG.getVTList(ValueVTs), Values)); 11574 } 11575 11576 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11578 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11579 11580 SDLoc DL = getCurSDLoc(); 11581 SDValue V1 = getValue(I.getOperand(0)); 11582 SDValue V2 = getValue(I.getOperand(1)); 11583 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11584 11585 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11586 if (VT.isScalableVector()) { 11587 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11588 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11589 DAG.getConstant(Imm, DL, IdxVT))); 11590 return; 11591 } 11592 11593 unsigned NumElts = VT.getVectorNumElements(); 11594 11595 uint64_t Idx = (NumElts + Imm) % NumElts; 11596 11597 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11598 SmallVector<int, 8> Mask; 11599 for (unsigned i = 0; i < NumElts; ++i) 11600 Mask.push_back(Idx + i); 11601 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11602 } 11603