1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 CurInst = nullptr; 1029 HasTailCall = false; 1030 SDNodeOrder = LowestSDNodeOrder; 1031 StatepointLowering.clear(); 1032 } 1033 1034 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1035 DanglingDebugInfoMap.clear(); 1036 } 1037 1038 SDValue SelectionDAGBuilder::getRoot() { 1039 if (PendingLoads.empty()) 1040 return DAG.getRoot(); 1041 1042 if (PendingLoads.size() == 1) { 1043 SDValue Root = PendingLoads[0]; 1044 DAG.setRoot(Root); 1045 PendingLoads.clear(); 1046 return Root; 1047 } 1048 1049 // Otherwise, we have to make a token factor node. 1050 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1051 PendingLoads.clear(); 1052 DAG.setRoot(Root); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getControlRoot() { 1057 SDValue Root = DAG.getRoot(); 1058 1059 if (PendingExports.empty()) 1060 return Root; 1061 1062 // Turn all of the CopyToReg chains into one factored node. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = PendingExports.size(); 1065 for (; i != e; ++i) { 1066 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1067 if (PendingExports[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 PendingExports.push_back(Root); 1073 } 1074 1075 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1076 PendingExports); 1077 PendingExports.clear(); 1078 DAG.setRoot(Root); 1079 return Root; 1080 } 1081 1082 void SelectionDAGBuilder::visit(const Instruction &I) { 1083 // Set up outgoing PHI node register values before emitting the terminator. 1084 if (I.isTerminator()) { 1085 HandlePHINodesInSuccessorBlocks(I.getParent()); 1086 } 1087 1088 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1089 if (!isa<DbgInfoIntrinsic>(I)) 1090 ++SDNodeOrder; 1091 1092 CurInst = &I; 1093 1094 visit(I.getOpcode(), I); 1095 1096 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1097 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1098 // maps to this instruction. 1099 // TODO: We could handle all flags (nsw, etc) here. 1100 // TODO: If an IR instruction maps to >1 node, only the final node will have 1101 // flags set. 1102 if (SDNode *Node = getNodeForIRValue(&I)) { 1103 SDNodeFlags IncomingFlags; 1104 IncomingFlags.copyFMF(*FPMO); 1105 if (!Node->getFlags().isDefined()) 1106 Node->setFlags(IncomingFlags); 1107 else 1108 Node->intersectFlagsWith(IncomingFlags); 1109 } 1110 } 1111 1112 if (!I.isTerminator() && !HasTailCall && 1113 !isStatepoint(&I)) // statepoints handle their exports internally 1114 CopyToExportRegsIfNeeded(&I); 1115 1116 CurInst = nullptr; 1117 } 1118 1119 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1120 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1121 } 1122 1123 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1124 // Note: this doesn't use InstVisitor, because it has to work with 1125 // ConstantExpr's in addition to instructions. 1126 switch (Opcode) { 1127 default: llvm_unreachable("Unknown instruction type encountered!"); 1128 // Build the switch statement using the Instruction.def file. 1129 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1130 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1131 #include "llvm/IR/Instruction.def" 1132 } 1133 } 1134 1135 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1136 const DIExpression *Expr) { 1137 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1138 const DbgValueInst *DI = DDI.getDI(); 1139 DIVariable *DanglingVariable = DI->getVariable(); 1140 DIExpression *DanglingExpr = DI->getExpression(); 1141 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1142 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1143 return true; 1144 } 1145 return false; 1146 }; 1147 1148 for (auto &DDIMI : DanglingDebugInfoMap) { 1149 DanglingDebugInfoVector &DDIV = DDIMI.second; 1150 1151 // If debug info is to be dropped, run it through final checks to see 1152 // whether it can be salvaged. 1153 for (auto &DDI : DDIV) 1154 if (isMatchingDbgValue(DDI)) 1155 salvageUnresolvedDbgValue(DDI); 1156 1157 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1158 } 1159 } 1160 1161 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1162 // generate the debug data structures now that we've seen its definition. 1163 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1164 SDValue Val) { 1165 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1166 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1167 return; 1168 1169 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1170 for (auto &DDI : DDIV) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 assert(DI && "Ill-formed DanglingDebugInfo"); 1173 DebugLoc dl = DDI.getdl(); 1174 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1175 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1176 DILocalVariable *Variable = DI->getVariable(); 1177 DIExpression *Expr = DI->getExpression(); 1178 assert(Variable->isValidLocationForIntrinsic(dl) && 1179 "Expected inlined-at fields to agree"); 1180 SDDbgValue *SDV; 1181 if (Val.getNode()) { 1182 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1183 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1184 // we couldn't resolve it directly when examining the DbgValue intrinsic 1185 // in the first place we should not be more successful here). Unless we 1186 // have some test case that prove this to be correct we should avoid 1187 // calling EmitFuncArgumentDbgValue here. 1188 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1189 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1190 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1191 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1192 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1193 // inserted after the definition of Val when emitting the instructions 1194 // after ISel. An alternative could be to teach 1195 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1196 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1197 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1198 << ValSDNodeOrder << "\n"); 1199 SDV = getDbgValue(Val, Variable, Expr, dl, 1200 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1201 DAG.AddDbgValue(SDV, Val.getNode(), false); 1202 } else 1203 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1204 << "in EmitFuncArgumentDbgValue\n"); 1205 } else { 1206 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1207 auto Undef = 1208 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1209 auto SDV = 1210 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1211 DAG.AddDbgValue(SDV, nullptr, false); 1212 } 1213 } 1214 DDIV.clear(); 1215 } 1216 1217 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1218 Value *V = DDI.getDI()->getValue(); 1219 DILocalVariable *Var = DDI.getDI()->getVariable(); 1220 DIExpression *Expr = DDI.getDI()->getExpression(); 1221 DebugLoc DL = DDI.getdl(); 1222 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1223 unsigned SDOrder = DDI.getSDNodeOrder(); 1224 1225 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1226 // that DW_OP_stack_value is desired. 1227 assert(isa<DbgValueInst>(DDI.getDI())); 1228 bool StackValue = true; 1229 1230 // Can this Value can be encoded without any further work? 1231 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1232 return; 1233 1234 // Attempt to salvage back through as many instructions as possible. Bail if 1235 // a non-instruction is seen, such as a constant expression or global 1236 // variable. FIXME: Further work could recover those too. 1237 while (isa<Instruction>(V)) { 1238 Instruction &VAsInst = *cast<Instruction>(V); 1239 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1240 1241 // If we cannot salvage any further, and haven't yet found a suitable debug 1242 // expression, bail out. 1243 if (!NewExpr) 1244 break; 1245 1246 // New value and expr now represent this debuginfo. 1247 V = VAsInst.getOperand(0); 1248 Expr = NewExpr; 1249 1250 // Some kind of simplification occurred: check whether the operand of the 1251 // salvaged debug expression can be encoded in this DAG. 1252 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1253 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1254 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1255 return; 1256 } 1257 } 1258 1259 // This was the final opportunity to salvage this debug information, and it 1260 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1261 // any earlier variable location. 1262 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1263 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1264 DAG.AddDbgValue(SDV, nullptr, false); 1265 1266 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1267 << "\n"); 1268 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1269 << "\n"); 1270 } 1271 1272 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1273 DIExpression *Expr, DebugLoc dl, 1274 DebugLoc InstDL, unsigned Order) { 1275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1276 SDDbgValue *SDV; 1277 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1278 isa<ConstantPointerNull>(V)) { 1279 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 1284 // If the Value is a frame index, we can create a FrameIndex debug value 1285 // without relying on the DAG at all. 1286 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1287 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1288 if (SI != FuncInfo.StaticAllocaMap.end()) { 1289 auto SDV = 1290 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1291 /*IsIndirect*/ false, dl, SDNodeOrder); 1292 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1293 // is still available even if the SDNode gets optimized out. 1294 DAG.AddDbgValue(SDV, nullptr, false); 1295 return true; 1296 } 1297 } 1298 1299 // Do not use getValue() in here; we don't want to generate code at 1300 // this point if it hasn't been done yet. 1301 SDValue N = NodeMap[V]; 1302 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1303 N = UnusedArgNodeMap[V]; 1304 if (N.getNode()) { 1305 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1306 return true; 1307 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, N.getNode(), false); 1309 return true; 1310 } 1311 1312 // Special rules apply for the first dbg.values of parameter variables in a 1313 // function. Identify them by the fact they reference Argument Values, that 1314 // they're parameters, and they are parameters of the current function. We 1315 // need to let them dangle until they get an SDNode. 1316 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1317 !InstDL.getInlinedAt(); 1318 if (!IsParamOfFunc) { 1319 // The value is not used in this block yet (or it would have an SDNode). 1320 // We still want the value to appear for the user if possible -- if it has 1321 // an associated VReg, we can refer to that instead. 1322 auto VMI = FuncInfo.ValueMap.find(V); 1323 if (VMI != FuncInfo.ValueMap.end()) { 1324 unsigned Reg = VMI->second; 1325 // If this is a PHI node, it may be split up into several MI PHI nodes 1326 // (in FunctionLoweringInfo::set). 1327 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1328 V->getType(), None); 1329 if (RFV.occupiesMultipleRegs()) { 1330 unsigned Offset = 0; 1331 unsigned BitsToDescribe = 0; 1332 if (auto VarSize = Var->getSizeInBits()) 1333 BitsToDescribe = *VarSize; 1334 if (auto Fragment = Expr->getFragmentInfo()) 1335 BitsToDescribe = Fragment->SizeInBits; 1336 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1337 unsigned RegisterSize = RegAndSize.second; 1338 // Bail out if all bits are described already. 1339 if (Offset >= BitsToDescribe) 1340 break; 1341 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1342 ? BitsToDescribe - Offset 1343 : RegisterSize; 1344 auto FragmentExpr = DIExpression::createFragmentExpression( 1345 Expr, Offset, FragmentSize); 1346 if (!FragmentExpr) 1347 continue; 1348 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1349 false, dl, SDNodeOrder); 1350 DAG.AddDbgValue(SDV, nullptr, false); 1351 Offset += RegisterSize; 1352 } 1353 } else { 1354 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1355 DAG.AddDbgValue(SDV, nullptr, false); 1356 } 1357 return true; 1358 } 1359 } 1360 1361 return false; 1362 } 1363 1364 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1365 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1366 for (auto &Pair : DanglingDebugInfoMap) 1367 for (auto &DDI : Pair.second) 1368 salvageUnresolvedDbgValue(DDI); 1369 clearDanglingDebugInfo(); 1370 } 1371 1372 /// getCopyFromRegs - If there was virtual register allocated for the value V 1373 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1374 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1375 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1376 SDValue Result; 1377 1378 if (It != FuncInfo.ValueMap.end()) { 1379 unsigned InReg = It->second; 1380 1381 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1382 DAG.getDataLayout(), InReg, Ty, 1383 None); // This is not an ABI copy. 1384 SDValue Chain = DAG.getEntryNode(); 1385 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1386 V); 1387 resolveDanglingDebugInfo(V, Result); 1388 } 1389 1390 return Result; 1391 } 1392 1393 /// getValue - Return an SDValue for the given Value. 1394 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1395 // If we already have an SDValue for this value, use it. It's important 1396 // to do this first, so that we don't create a CopyFromReg if we already 1397 // have a regular SDValue. 1398 SDValue &N = NodeMap[V]; 1399 if (N.getNode()) return N; 1400 1401 // If there's a virtual register allocated and initialized for this 1402 // value, use it. 1403 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1404 return copyFromReg; 1405 1406 // Otherwise create a new SDValue and remember it. 1407 SDValue Val = getValueImpl(V); 1408 NodeMap[V] = Val; 1409 resolveDanglingDebugInfo(V, Val); 1410 return Val; 1411 } 1412 1413 // Return true if SDValue exists for the given Value 1414 bool SelectionDAGBuilder::findValue(const Value *V) const { 1415 return (NodeMap.find(V) != NodeMap.end()) || 1416 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1417 } 1418 1419 /// getNonRegisterValue - Return an SDValue for the given Value, but 1420 /// don't look in FuncInfo.ValueMap for a virtual register. 1421 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1422 // If we already have an SDValue for this value, use it. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) { 1425 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1426 // Remove the debug location from the node as the node is about to be used 1427 // in a location which may differ from the original debug location. This 1428 // is relevant to Constant and ConstantFP nodes because they can appear 1429 // as constant expressions inside PHI nodes. 1430 N->setDebugLoc(DebugLoc()); 1431 } 1432 return N; 1433 } 1434 1435 // Otherwise create a new SDValue and remember it. 1436 SDValue Val = getValueImpl(V); 1437 NodeMap[V] = Val; 1438 resolveDanglingDebugInfo(V, Val); 1439 return Val; 1440 } 1441 1442 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1443 /// Create an SDValue for the given value. 1444 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1446 1447 if (const Constant *C = dyn_cast<Constant>(V)) { 1448 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1449 1450 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1451 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1452 1453 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1454 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1455 1456 if (isa<ConstantPointerNull>(C)) { 1457 unsigned AS = V->getType()->getPointerAddressSpace(); 1458 return DAG.getConstant(0, getCurSDLoc(), 1459 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1460 } 1461 1462 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1463 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1464 1465 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1466 return DAG.getUNDEF(VT); 1467 1468 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1469 visit(CE->getOpcode(), *CE); 1470 SDValue N1 = NodeMap[V]; 1471 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1472 return N1; 1473 } 1474 1475 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1476 SmallVector<SDValue, 4> Constants; 1477 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1478 OI != OE; ++OI) { 1479 SDNode *Val = getValue(*OI).getNode(); 1480 // If the operand is an empty aggregate, there are no values. 1481 if (!Val) continue; 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Constants.push_back(SDValue(Val, i)); 1486 } 1487 1488 return DAG.getMergeValues(Constants, getCurSDLoc()); 1489 } 1490 1491 if (const ConstantDataSequential *CDS = 1492 dyn_cast<ConstantDataSequential>(C)) { 1493 SmallVector<SDValue, 4> Ops; 1494 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1495 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1496 // Add each leaf value from the operand to the Constants list 1497 // to form a flattened list of all the values. 1498 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1499 Ops.push_back(SDValue(Val, i)); 1500 } 1501 1502 if (isa<ArrayType>(CDS->getType())) 1503 return DAG.getMergeValues(Ops, getCurSDLoc()); 1504 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1505 } 1506 1507 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1508 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1509 "Unknown struct or array constant!"); 1510 1511 SmallVector<EVT, 4> ValueVTs; 1512 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1513 unsigned NumElts = ValueVTs.size(); 1514 if (NumElts == 0) 1515 return SDValue(); // empty struct 1516 SmallVector<SDValue, 4> Constants(NumElts); 1517 for (unsigned i = 0; i != NumElts; ++i) { 1518 EVT EltVT = ValueVTs[i]; 1519 if (isa<UndefValue>(C)) 1520 Constants[i] = DAG.getUNDEF(EltVT); 1521 else if (EltVT.isFloatingPoint()) 1522 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1523 else 1524 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1525 } 1526 1527 return DAG.getMergeValues(Constants, getCurSDLoc()); 1528 } 1529 1530 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1531 return DAG.getBlockAddress(BA, VT); 1532 1533 VectorType *VecTy = cast<VectorType>(V->getType()); 1534 unsigned NumElements = VecTy->getNumElements(); 1535 1536 // Now that we know the number and type of the elements, get that number of 1537 // elements into the Ops array based on what kind of constant it is. 1538 SmallVector<SDValue, 16> Ops; 1539 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1540 for (unsigned i = 0; i != NumElements; ++i) 1541 Ops.push_back(getValue(CV->getOperand(i))); 1542 } else { 1543 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1544 EVT EltVT = 1545 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1546 1547 SDValue Op; 1548 if (EltVT.isFloatingPoint()) 1549 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1550 else 1551 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1552 Ops.assign(NumElements, Op); 1553 } 1554 1555 // Create a BUILD_VECTOR node. 1556 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1557 } 1558 1559 // If this is a static alloca, generate it as the frameindex instead of 1560 // computation. 1561 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1562 DenseMap<const AllocaInst*, int>::iterator SI = 1563 FuncInfo.StaticAllocaMap.find(AI); 1564 if (SI != FuncInfo.StaticAllocaMap.end()) 1565 return DAG.getFrameIndex(SI->second, 1566 TLI.getFrameIndexTy(DAG.getDataLayout())); 1567 } 1568 1569 // If this is an instruction which fast-isel has deferred, select it now. 1570 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1571 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1572 1573 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1574 Inst->getType(), getABIRegCopyCC(V)); 1575 SDValue Chain = DAG.getEntryNode(); 1576 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1577 } 1578 1579 llvm_unreachable("Can't get register for value!"); 1580 } 1581 1582 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1583 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1584 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1585 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1586 bool IsSEH = isAsynchronousEHPersonality(Pers); 1587 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1588 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1589 if (!IsSEH) 1590 CatchPadMBB->setIsEHScopeEntry(); 1591 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1592 if (IsMSVCCXX || IsCoreCLR) 1593 CatchPadMBB->setIsEHFuncletEntry(); 1594 // Wasm does not need catchpads anymore 1595 if (!IsWasmCXX) 1596 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1597 getControlRoot())); 1598 } 1599 1600 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1601 // Update machine-CFG edge. 1602 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1603 FuncInfo.MBB->addSuccessor(TargetMBB); 1604 1605 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1606 bool IsSEH = isAsynchronousEHPersonality(Pers); 1607 if (IsSEH) { 1608 // If this is not a fall-through branch or optimizations are switched off, 1609 // emit the branch. 1610 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1611 TM.getOptLevel() == CodeGenOpt::None) 1612 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1613 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1614 return; 1615 } 1616 1617 // Figure out the funclet membership for the catchret's successor. 1618 // This will be used by the FuncletLayout pass to determine how to order the 1619 // BB's. 1620 // A 'catchret' returns to the outer scope's color. 1621 Value *ParentPad = I.getCatchSwitchParentPad(); 1622 const BasicBlock *SuccessorColor; 1623 if (isa<ConstantTokenNone>(ParentPad)) 1624 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1625 else 1626 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1627 assert(SuccessorColor && "No parent funclet for catchret!"); 1628 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1629 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1630 1631 // Create the terminator node. 1632 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1633 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1634 DAG.getBasicBlock(SuccessorColorMBB)); 1635 DAG.setRoot(Ret); 1636 } 1637 1638 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1639 // Don't emit any special code for the cleanuppad instruction. It just marks 1640 // the start of an EH scope/funclet. 1641 FuncInfo.MBB->setIsEHScopeEntry(); 1642 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1643 if (Pers != EHPersonality::Wasm_CXX) { 1644 FuncInfo.MBB->setIsEHFuncletEntry(); 1645 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1646 } 1647 } 1648 1649 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1650 // the control flow always stops at the single catch pad, as it does for a 1651 // cleanup pad. In case the exception caught is not of the types the catch pad 1652 // catches, it will be rethrown by a rethrow. 1653 static void findWasmUnwindDestinations( 1654 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1655 BranchProbability Prob, 1656 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1657 &UnwindDests) { 1658 while (EHPadBB) { 1659 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1660 if (isa<CleanupPadInst>(Pad)) { 1661 // Stop on cleanup pads. 1662 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1663 UnwindDests.back().first->setIsEHScopeEntry(); 1664 break; 1665 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1666 // Add the catchpad handlers to the possible destinations. We don't 1667 // continue to the unwind destination of the catchswitch for wasm. 1668 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1669 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1670 UnwindDests.back().first->setIsEHScopeEntry(); 1671 } 1672 break; 1673 } else { 1674 continue; 1675 } 1676 } 1677 } 1678 1679 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1680 /// many places it could ultimately go. In the IR, we have a single unwind 1681 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1682 /// This function skips over imaginary basic blocks that hold catchswitch 1683 /// instructions, and finds all the "real" machine 1684 /// basic block destinations. As those destinations may not be successors of 1685 /// EHPadBB, here we also calculate the edge probability to those destinations. 1686 /// The passed-in Prob is the edge probability to EHPadBB. 1687 static void findUnwindDestinations( 1688 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1689 BranchProbability Prob, 1690 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1691 &UnwindDests) { 1692 EHPersonality Personality = 1693 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1694 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1695 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1696 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1697 bool IsSEH = isAsynchronousEHPersonality(Personality); 1698 1699 if (IsWasmCXX) { 1700 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1701 assert(UnwindDests.size() <= 1 && 1702 "There should be at most one unwind destination for wasm"); 1703 return; 1704 } 1705 1706 while (EHPadBB) { 1707 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1708 BasicBlock *NewEHPadBB = nullptr; 1709 if (isa<LandingPadInst>(Pad)) { 1710 // Stop on landingpads. They are not funclets. 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1712 break; 1713 } else if (isa<CleanupPadInst>(Pad)) { 1714 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1715 // personalities. 1716 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1717 UnwindDests.back().first->setIsEHScopeEntry(); 1718 UnwindDests.back().first->setIsEHFuncletEntry(); 1719 break; 1720 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1721 // Add the catchpad handlers to the possible destinations. 1722 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1723 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1724 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1725 if (IsMSVCCXX || IsCoreCLR) 1726 UnwindDests.back().first->setIsEHFuncletEntry(); 1727 if (!IsSEH) 1728 UnwindDests.back().first->setIsEHScopeEntry(); 1729 } 1730 NewEHPadBB = CatchSwitch->getUnwindDest(); 1731 } else { 1732 continue; 1733 } 1734 1735 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1736 if (BPI && NewEHPadBB) 1737 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1738 EHPadBB = NewEHPadBB; 1739 } 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1743 // Update successor info. 1744 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1745 auto UnwindDest = I.getUnwindDest(); 1746 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1747 BranchProbability UnwindDestProb = 1748 (BPI && UnwindDest) 1749 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1750 : BranchProbability::getZero(); 1751 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1752 for (auto &UnwindDest : UnwindDests) { 1753 UnwindDest.first->setIsEHPad(); 1754 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1755 } 1756 FuncInfo.MBB->normalizeSuccProbs(); 1757 1758 // Create the terminator node. 1759 SDValue Ret = 1760 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1761 DAG.setRoot(Ret); 1762 } 1763 1764 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1765 report_fatal_error("visitCatchSwitch not yet implemented!"); 1766 } 1767 1768 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1770 auto &DL = DAG.getDataLayout(); 1771 SDValue Chain = getControlRoot(); 1772 SmallVector<ISD::OutputArg, 8> Outs; 1773 SmallVector<SDValue, 8> OutVals; 1774 1775 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1776 // lower 1777 // 1778 // %val = call <ty> @llvm.experimental.deoptimize() 1779 // ret <ty> %val 1780 // 1781 // differently. 1782 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1783 LowerDeoptimizingReturn(); 1784 return; 1785 } 1786 1787 if (!FuncInfo.CanLowerReturn) { 1788 unsigned DemoteReg = FuncInfo.DemoteRegister; 1789 const Function *F = I.getParent()->getParent(); 1790 1791 // Emit a store of the return value through the virtual register. 1792 // Leave Outs empty so that LowerReturn won't try to load return 1793 // registers the usual way. 1794 SmallVector<EVT, 1> PtrValueVTs; 1795 ComputeValueVTs(TLI, DL, 1796 F->getReturnType()->getPointerTo( 1797 DAG.getDataLayout().getAllocaAddrSpace()), 1798 PtrValueVTs); 1799 1800 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1801 DemoteReg, PtrValueVTs[0]); 1802 SDValue RetOp = getValue(I.getOperand(0)); 1803 1804 SmallVector<EVT, 4> ValueVTs, MemVTs; 1805 SmallVector<uint64_t, 4> Offsets; 1806 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1807 &Offsets); 1808 unsigned NumValues = ValueVTs.size(); 1809 1810 SmallVector<SDValue, 4> Chains(NumValues); 1811 for (unsigned i = 0; i != NumValues; ++i) { 1812 // An aggregate return value cannot wrap around the address space, so 1813 // offsets to its parts don't wrap either. 1814 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1815 1816 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1817 if (MemVTs[i] != ValueVTs[i]) 1818 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1819 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1820 // FIXME: better loc info would be nice. 1821 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1822 } 1823 1824 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1825 MVT::Other, Chains); 1826 } else if (I.getNumOperands() != 0) { 1827 SmallVector<EVT, 4> ValueVTs; 1828 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1829 unsigned NumValues = ValueVTs.size(); 1830 if (NumValues) { 1831 SDValue RetOp = getValue(I.getOperand(0)); 1832 1833 const Function *F = I.getParent()->getParent(); 1834 1835 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1836 I.getOperand(0)->getType(), F->getCallingConv(), 1837 /*IsVarArg*/ false); 1838 1839 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1840 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::SExt)) 1842 ExtendKind = ISD::SIGN_EXTEND; 1843 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1844 Attribute::ZExt)) 1845 ExtendKind = ISD::ZERO_EXTEND; 1846 1847 LLVMContext &Context = F->getContext(); 1848 bool RetInReg = F->getAttributes().hasAttribute( 1849 AttributeList::ReturnIndex, Attribute::InReg); 1850 1851 for (unsigned j = 0; j != NumValues; ++j) { 1852 EVT VT = ValueVTs[j]; 1853 1854 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1855 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1856 1857 CallingConv::ID CC = F->getCallingConv(); 1858 1859 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1860 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1861 SmallVector<SDValue, 4> Parts(NumParts); 1862 getCopyToParts(DAG, getCurSDLoc(), 1863 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1864 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1865 1866 // 'inreg' on function refers to return value 1867 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1868 if (RetInReg) 1869 Flags.setInReg(); 1870 1871 if (I.getOperand(0)->getType()->isPointerTy()) { 1872 Flags.setPointer(); 1873 Flags.setPointerAddrSpace( 1874 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1875 } 1876 1877 if (NeedsRegBlock) { 1878 Flags.setInConsecutiveRegs(); 1879 if (j == NumValues - 1) 1880 Flags.setInConsecutiveRegsLast(); 1881 } 1882 1883 // Propagate extension type if any 1884 if (ExtendKind == ISD::SIGN_EXTEND) 1885 Flags.setSExt(); 1886 else if (ExtendKind == ISD::ZERO_EXTEND) 1887 Flags.setZExt(); 1888 1889 for (unsigned i = 0; i < NumParts; ++i) { 1890 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1891 VT, /*isfixed=*/true, 0, 0)); 1892 OutVals.push_back(Parts[i]); 1893 } 1894 } 1895 } 1896 } 1897 1898 // Push in swifterror virtual register as the last element of Outs. This makes 1899 // sure swifterror virtual register will be returned in the swifterror 1900 // physical register. 1901 const Function *F = I.getParent()->getParent(); 1902 if (TLI.supportSwiftError() && 1903 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1904 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1905 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1906 Flags.setSwiftError(); 1907 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1908 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1909 true /*isfixed*/, 1 /*origidx*/, 1910 0 /*partOffs*/)); 1911 // Create SDNode for the swifterror virtual register. 1912 OutVals.push_back( 1913 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1914 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1915 EVT(TLI.getPointerTy(DL)))); 1916 } 1917 1918 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1919 CallingConv::ID CallConv = 1920 DAG.getMachineFunction().getFunction().getCallingConv(); 1921 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1922 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1923 1924 // Verify that the target's LowerReturn behaved as expected. 1925 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1926 "LowerReturn didn't return a valid chain!"); 1927 1928 // Update the DAG with the new chain value resulting from return lowering. 1929 DAG.setRoot(Chain); 1930 } 1931 1932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1933 /// created for it, emit nodes to copy the value into the virtual 1934 /// registers. 1935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1936 // Skip empty types 1937 if (V->getType()->isEmptyTy()) 1938 return; 1939 1940 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1941 if (VMI != FuncInfo.ValueMap.end()) { 1942 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1943 CopyValueToVirtualRegister(V, VMI->second); 1944 } 1945 } 1946 1947 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1948 /// the current basic block, add it to ValueMap now so that we'll get a 1949 /// CopyTo/FromReg. 1950 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1951 // No need to export constants. 1952 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1953 1954 // Already exported? 1955 if (FuncInfo.isExportedInst(V)) return; 1956 1957 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1958 CopyValueToVirtualRegister(V, Reg); 1959 } 1960 1961 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1962 const BasicBlock *FromBB) { 1963 // The operands of the setcc have to be in this block. We don't know 1964 // how to export them from some other block. 1965 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1966 // Can export from current BB. 1967 if (VI->getParent() == FromBB) 1968 return true; 1969 1970 // Is already exported, noop. 1971 return FuncInfo.isExportedInst(V); 1972 } 1973 1974 // If this is an argument, we can export it if the BB is the entry block or 1975 // if it is already exported. 1976 if (isa<Argument>(V)) { 1977 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1978 return true; 1979 1980 // Otherwise, can only export this if it is already exported. 1981 return FuncInfo.isExportedInst(V); 1982 } 1983 1984 // Otherwise, constants can always be exported. 1985 return true; 1986 } 1987 1988 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1989 BranchProbability 1990 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1991 const MachineBasicBlock *Dst) const { 1992 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1993 const BasicBlock *SrcBB = Src->getBasicBlock(); 1994 const BasicBlock *DstBB = Dst->getBasicBlock(); 1995 if (!BPI) { 1996 // If BPI is not available, set the default probability as 1 / N, where N is 1997 // the number of successors. 1998 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1999 return BranchProbability(1, SuccSize); 2000 } 2001 return BPI->getEdgeProbability(SrcBB, DstBB); 2002 } 2003 2004 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2005 MachineBasicBlock *Dst, 2006 BranchProbability Prob) { 2007 if (!FuncInfo.BPI) 2008 Src->addSuccessorWithoutProb(Dst); 2009 else { 2010 if (Prob.isUnknown()) 2011 Prob = getEdgeProbability(Src, Dst); 2012 Src->addSuccessor(Dst, Prob); 2013 } 2014 } 2015 2016 static bool InBlock(const Value *V, const BasicBlock *BB) { 2017 if (const Instruction *I = dyn_cast<Instruction>(V)) 2018 return I->getParent() == BB; 2019 return true; 2020 } 2021 2022 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2023 /// This function emits a branch and is used at the leaves of an OR or an 2024 /// AND operator tree. 2025 void 2026 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2027 MachineBasicBlock *TBB, 2028 MachineBasicBlock *FBB, 2029 MachineBasicBlock *CurBB, 2030 MachineBasicBlock *SwitchBB, 2031 BranchProbability TProb, 2032 BranchProbability FProb, 2033 bool InvertCond) { 2034 const BasicBlock *BB = CurBB->getBasicBlock(); 2035 2036 // If the leaf of the tree is a comparison, merge the condition into 2037 // the caseblock. 2038 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2039 // The operands of the cmp have to be in this block. We don't know 2040 // how to export them from some other block. If this is the first block 2041 // of the sequence, no exporting is needed. 2042 if (CurBB == SwitchBB || 2043 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2044 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2045 ISD::CondCode Condition; 2046 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2047 ICmpInst::Predicate Pred = 2048 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2049 Condition = getICmpCondCode(Pred); 2050 } else { 2051 const FCmpInst *FC = cast<FCmpInst>(Cond); 2052 FCmpInst::Predicate Pred = 2053 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2054 Condition = getFCmpCondCode(Pred); 2055 if (TM.Options.NoNaNsFPMath) 2056 Condition = getFCmpCodeWithoutNaN(Condition); 2057 } 2058 2059 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2060 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2061 SL->SwitchCases.push_back(CB); 2062 return; 2063 } 2064 } 2065 2066 // Create a CaseBlock record representing this branch. 2067 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2068 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2069 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2070 SL->SwitchCases.push_back(CB); 2071 } 2072 2073 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2074 MachineBasicBlock *TBB, 2075 MachineBasicBlock *FBB, 2076 MachineBasicBlock *CurBB, 2077 MachineBasicBlock *SwitchBB, 2078 Instruction::BinaryOps Opc, 2079 BranchProbability TProb, 2080 BranchProbability FProb, 2081 bool InvertCond) { 2082 // Skip over not part of the tree and remember to invert op and operands at 2083 // next level. 2084 Value *NotCond; 2085 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2086 InBlock(NotCond, CurBB->getBasicBlock())) { 2087 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2088 !InvertCond); 2089 return; 2090 } 2091 2092 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2093 // Compute the effective opcode for Cond, taking into account whether it needs 2094 // to be inverted, e.g. 2095 // and (not (or A, B)), C 2096 // gets lowered as 2097 // and (and (not A, not B), C) 2098 unsigned BOpc = 0; 2099 if (BOp) { 2100 BOpc = BOp->getOpcode(); 2101 if (InvertCond) { 2102 if (BOpc == Instruction::And) 2103 BOpc = Instruction::Or; 2104 else if (BOpc == Instruction::Or) 2105 BOpc = Instruction::And; 2106 } 2107 } 2108 2109 // If this node is not part of the or/and tree, emit it as a branch. 2110 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2111 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2112 BOp->getParent() != CurBB->getBasicBlock() || 2113 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2114 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2115 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2116 TProb, FProb, InvertCond); 2117 return; 2118 } 2119 2120 // Create TmpBB after CurBB. 2121 MachineFunction::iterator BBI(CurBB); 2122 MachineFunction &MF = DAG.getMachineFunction(); 2123 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2124 CurBB->getParent()->insert(++BBI, TmpBB); 2125 2126 if (Opc == Instruction::Or) { 2127 // Codegen X | Y as: 2128 // BB1: 2129 // jmp_if_X TBB 2130 // jmp TmpBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 2136 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2137 // The requirement is that 2138 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2139 // = TrueProb for original BB. 2140 // Assuming the original probabilities are A and B, one choice is to set 2141 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2142 // A/(1+B) and 2B/(1+B). This choice assumes that 2143 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2144 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2145 // TmpBB, but the math is more complicated. 2146 2147 auto NewTrueProb = TProb / 2; 2148 auto NewFalseProb = TProb / 2 + FProb; 2149 // Emit the LHS condition. 2150 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2151 NewTrueProb, NewFalseProb, InvertCond); 2152 2153 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2154 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2155 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2156 // Emit the RHS condition into TmpBB. 2157 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2158 Probs[0], Probs[1], InvertCond); 2159 } else { 2160 assert(Opc == Instruction::And && "Unknown merge op!"); 2161 // Codegen X & Y as: 2162 // BB1: 2163 // jmp_if_X TmpBB 2164 // jmp FBB 2165 // TmpBB: 2166 // jmp_if_Y TBB 2167 // jmp FBB 2168 // 2169 // This requires creation of TmpBB after CurBB. 2170 2171 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2172 // The requirement is that 2173 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2174 // = FalseProb for original BB. 2175 // Assuming the original probabilities are A and B, one choice is to set 2176 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2177 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2178 // TrueProb for BB1 * FalseProb for TmpBB. 2179 2180 auto NewTrueProb = TProb + FProb / 2; 2181 auto NewFalseProb = FProb / 2; 2182 // Emit the LHS condition. 2183 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2184 NewTrueProb, NewFalseProb, InvertCond); 2185 2186 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2187 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2188 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2189 // Emit the RHS condition into TmpBB. 2190 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2191 Probs[0], Probs[1], InvertCond); 2192 } 2193 } 2194 2195 /// If the set of cases should be emitted as a series of branches, return true. 2196 /// If we should emit this as a bunch of and/or'd together conditions, return 2197 /// false. 2198 bool 2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2200 if (Cases.size() != 2) return true; 2201 2202 // If this is two comparisons of the same values or'd or and'd together, they 2203 // will get folded into a single comparison, so don't emit two blocks. 2204 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2205 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2206 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2207 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2208 return false; 2209 } 2210 2211 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2212 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2213 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2214 Cases[0].CC == Cases[1].CC && 2215 isa<Constant>(Cases[0].CmpRHS) && 2216 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2217 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2218 return false; 2219 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2220 return false; 2221 } 2222 2223 return true; 2224 } 2225 2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2227 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2228 2229 // Update machine-CFG edges. 2230 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2231 2232 if (I.isUnconditional()) { 2233 // Update machine-CFG edges. 2234 BrMBB->addSuccessor(Succ0MBB); 2235 2236 // If this is not a fall-through branch or optimizations are switched off, 2237 // emit the branch. 2238 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2239 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2240 MVT::Other, getControlRoot(), 2241 DAG.getBasicBlock(Succ0MBB))); 2242 2243 return; 2244 } 2245 2246 // If this condition is one of the special cases we handle, do special stuff 2247 // now. 2248 const Value *CondVal = I.getCondition(); 2249 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2250 2251 // If this is a series of conditions that are or'd or and'd together, emit 2252 // this as a sequence of branches instead of setcc's with and/or operations. 2253 // As long as jumps are not expensive, this should improve performance. 2254 // For example, instead of something like: 2255 // cmp A, B 2256 // C = seteq 2257 // cmp D, E 2258 // F = setle 2259 // or C, F 2260 // jnz foo 2261 // Emit: 2262 // cmp A, B 2263 // je foo 2264 // cmp D, E 2265 // jle foo 2266 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2267 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2268 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2269 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2270 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2271 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2272 Opcode, 2273 getEdgeProbability(BrMBB, Succ0MBB), 2274 getEdgeProbability(BrMBB, Succ1MBB), 2275 /*InvertCond=*/false); 2276 // If the compares in later blocks need to use values not currently 2277 // exported from this block, export them now. This block should always 2278 // be the first entry. 2279 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2280 2281 // Allow some cases to be rejected. 2282 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2283 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2284 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2285 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2286 } 2287 2288 // Emit the branch for this block. 2289 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2290 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2291 return; 2292 } 2293 2294 // Okay, we decided not to do this, remove any inserted MBB's and clear 2295 // SwitchCases. 2296 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2297 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2298 2299 SL->SwitchCases.clear(); 2300 } 2301 } 2302 2303 // Create a CaseBlock record representing this branch. 2304 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2305 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2306 2307 // Use visitSwitchCase to actually insert the fast branch sequence for this 2308 // cond branch. 2309 visitSwitchCase(CB, BrMBB); 2310 } 2311 2312 /// visitSwitchCase - Emits the necessary code to represent a single node in 2313 /// the binary search tree resulting from lowering a switch instruction. 2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2315 MachineBasicBlock *SwitchBB) { 2316 SDValue Cond; 2317 SDValue CondLHS = getValue(CB.CmpLHS); 2318 SDLoc dl = CB.DL; 2319 2320 if (CB.CC == ISD::SETTRUE) { 2321 // Branch or fall through to TrueBB. 2322 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2323 SwitchBB->normalizeSuccProbs(); 2324 if (CB.TrueBB != NextBlock(SwitchBB)) { 2325 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2326 DAG.getBasicBlock(CB.TrueBB))); 2327 } 2328 return; 2329 } 2330 2331 auto &TLI = DAG.getTargetLoweringInfo(); 2332 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2333 2334 // Build the setcc now. 2335 if (!CB.CmpMHS) { 2336 // Fold "(X == true)" to X and "(X == false)" to !X to 2337 // handle common cases produced by branch lowering. 2338 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) 2340 Cond = CondLHS; 2341 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2342 CB.CC == ISD::SETEQ) { 2343 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2344 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2345 } else { 2346 SDValue CondRHS = getValue(CB.CmpRHS); 2347 2348 // If a pointer's DAG type is larger than its memory type then the DAG 2349 // values are zero-extended. This breaks signed comparisons so truncate 2350 // back to the underlying type before doing the compare. 2351 if (CondLHS.getValueType() != MemVT) { 2352 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2353 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2354 } 2355 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2356 } 2357 } else { 2358 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2359 2360 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2361 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2362 2363 SDValue CmpOp = getValue(CB.CmpMHS); 2364 EVT VT = CmpOp.getValueType(); 2365 2366 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2367 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2368 ISD::SETLE); 2369 } else { 2370 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2371 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2372 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2373 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2374 } 2375 } 2376 2377 // Update successor info 2378 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2379 // TrueBB and FalseBB are always different unless the incoming IR is 2380 // degenerate. This only happens when running llc on weird IR. 2381 if (CB.TrueBB != CB.FalseBB) 2382 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2383 SwitchBB->normalizeSuccProbs(); 2384 2385 // If the lhs block is the next block, invert the condition so that we can 2386 // fall through to the lhs instead of the rhs block. 2387 if (CB.TrueBB == NextBlock(SwitchBB)) { 2388 std::swap(CB.TrueBB, CB.FalseBB); 2389 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2390 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2391 } 2392 2393 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2394 MVT::Other, getControlRoot(), Cond, 2395 DAG.getBasicBlock(CB.TrueBB)); 2396 2397 // Insert the false branch. Do this even if it's a fall through branch, 2398 // this makes it easier to do DAG optimizations which require inverting 2399 // the branch condition. 2400 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2401 DAG.getBasicBlock(CB.FalseBB)); 2402 2403 DAG.setRoot(BrCond); 2404 } 2405 2406 /// visitJumpTable - Emit JumpTable node in the current MBB 2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2408 // Emit the code for the jump table 2409 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2410 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2411 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2412 JT.Reg, PTy); 2413 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2414 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2415 MVT::Other, Index.getValue(1), 2416 Table, Index); 2417 DAG.setRoot(BrJumpTable); 2418 } 2419 2420 /// visitJumpTableHeader - This function emits necessary code to produce index 2421 /// in the JumpTable from switch case. 2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2423 JumpTableHeader &JTH, 2424 MachineBasicBlock *SwitchBB) { 2425 SDLoc dl = getCurSDLoc(); 2426 2427 // Subtract the lowest switch case value from the value being switched on. 2428 SDValue SwitchOp = getValue(JTH.SValue); 2429 EVT VT = SwitchOp.getValueType(); 2430 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2431 DAG.getConstant(JTH.First, dl, VT)); 2432 2433 // The SDNode we just created, which holds the value being switched on minus 2434 // the smallest case value, needs to be copied to a virtual register so it 2435 // can be used as an index into the jump table in a subsequent basic block. 2436 // This value may be smaller or larger than the target's pointer type, and 2437 // therefore require extension or truncating. 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2440 2441 unsigned JumpTableReg = 2442 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2443 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2444 JumpTableReg, SwitchOp); 2445 JT.Reg = JumpTableReg; 2446 2447 if (!JTH.OmitRangeCheck) { 2448 // Emit the range check for the jump table, and branch to the default block 2449 // for the switch statement if the value being switched on exceeds the 2450 // largest case in the switch. 2451 SDValue CMP = DAG.getSetCC( 2452 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2453 Sub.getValueType()), 2454 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2455 2456 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2457 MVT::Other, CopyTo, CMP, 2458 DAG.getBasicBlock(JT.Default)); 2459 2460 // Avoid emitting unnecessary branches to the next block. 2461 if (JT.MBB != NextBlock(SwitchBB)) 2462 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2463 DAG.getBasicBlock(JT.MBB)); 2464 2465 DAG.setRoot(BrCond); 2466 } else { 2467 // Avoid emitting unnecessary branches to the next block. 2468 if (JT.MBB != NextBlock(SwitchBB)) 2469 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2470 DAG.getBasicBlock(JT.MBB))); 2471 else 2472 DAG.setRoot(CopyTo); 2473 } 2474 } 2475 2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2477 /// variable if there exists one. 2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2479 SDValue &Chain) { 2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2481 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2482 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2483 MachineFunction &MF = DAG.getMachineFunction(); 2484 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2485 MachineSDNode *Node = 2486 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2487 if (Global) { 2488 MachinePointerInfo MPInfo(Global); 2489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2490 MachineMemOperand::MODereferenceable; 2491 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2492 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2493 DAG.setNodeMemRefs(Node, {MemRef}); 2494 } 2495 if (PtrTy != PtrMemTy) 2496 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2497 return SDValue(Node, 0); 2498 } 2499 2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2501 /// tail spliced into a stack protector check success bb. 2502 /// 2503 /// For a high level explanation of how this fits into the stack protector 2504 /// generation see the comment on the declaration of class 2505 /// StackProtectorDescriptor. 2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2507 MachineBasicBlock *ParentBB) { 2508 2509 // First create the loads to the guard/stack slot for the comparison. 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2512 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2513 2514 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2515 int FI = MFI.getStackProtectorIndex(); 2516 2517 SDValue Guard; 2518 SDLoc dl = getCurSDLoc(); 2519 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2520 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2521 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2522 2523 // Generate code to load the content of the guard slot. 2524 SDValue GuardVal = DAG.getLoad( 2525 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2527 MachineMemOperand::MOVolatile); 2528 2529 if (TLI.useStackGuardXorFP()) 2530 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2531 2532 // Retrieve guard check function, nullptr if instrumentation is inlined. 2533 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2534 // The target provides a guard check function to validate the guard value. 2535 // Generate a call to that function with the content of the guard slot as 2536 // argument. 2537 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2538 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2539 2540 TargetLowering::ArgListTy Args; 2541 TargetLowering::ArgListEntry Entry; 2542 Entry.Node = GuardVal; 2543 Entry.Ty = FnTy->getParamType(0); 2544 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2545 Entry.IsInReg = true; 2546 Args.push_back(Entry); 2547 2548 TargetLowering::CallLoweringInfo CLI(DAG); 2549 CLI.setDebugLoc(getCurSDLoc()) 2550 .setChain(DAG.getEntryNode()) 2551 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2552 getValue(GuardCheckFn), std::move(Args)); 2553 2554 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2555 DAG.setRoot(Result.second); 2556 return; 2557 } 2558 2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2560 // Otherwise, emit a volatile load to retrieve the stack guard value. 2561 SDValue Chain = DAG.getEntryNode(); 2562 if (TLI.useLoadStackGuardNode()) { 2563 Guard = getLoadStackGuard(DAG, dl, Chain); 2564 } else { 2565 const Value *IRGuard = TLI.getSDagStackGuard(M); 2566 SDValue GuardPtr = getValue(IRGuard); 2567 2568 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2569 MachinePointerInfo(IRGuard, 0), Align, 2570 MachineMemOperand::MOVolatile); 2571 } 2572 2573 // Perform the comparison via a subtract/getsetcc. 2574 EVT VT = Guard.getValueType(); 2575 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2576 2577 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2578 *DAG.getContext(), 2579 Sub.getValueType()), 2580 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2581 2582 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2583 // branch to failure MBB. 2584 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2585 MVT::Other, GuardVal.getOperand(0), 2586 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2587 // Otherwise branch to success MBB. 2588 SDValue Br = DAG.getNode(ISD::BR, dl, 2589 MVT::Other, BrCond, 2590 DAG.getBasicBlock(SPD.getSuccessMBB())); 2591 2592 DAG.setRoot(Br); 2593 } 2594 2595 /// Codegen the failure basic block for a stack protector check. 2596 /// 2597 /// A failure stack protector machine basic block consists simply of a call to 2598 /// __stack_chk_fail(). 2599 /// 2600 /// For a high level explanation of how this fits into the stack protector 2601 /// generation see the comment on the declaration of class 2602 /// StackProtectorDescriptor. 2603 void 2604 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2606 TargetLowering::MakeLibCallOptions CallOptions; 2607 CallOptions.setDiscardResult(true); 2608 SDValue Chain = 2609 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2610 None, CallOptions, getCurSDLoc()).second; 2611 // On PS4, the "return address" must still be within the calling function, 2612 // even if it's at the very end, so emit an explicit TRAP here. 2613 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2614 if (TM.getTargetTriple().isPS4CPU()) 2615 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2616 2617 DAG.setRoot(Chain); 2618 } 2619 2620 /// visitBitTestHeader - This function emits necessary code to produce value 2621 /// suitable for "bit tests" 2622 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2623 MachineBasicBlock *SwitchBB) { 2624 SDLoc dl = getCurSDLoc(); 2625 2626 // Subtract the minimum value. 2627 SDValue SwitchOp = getValue(B.SValue); 2628 EVT VT = SwitchOp.getValueType(); 2629 SDValue RangeSub = 2630 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2631 2632 // Determine the type of the test operands. 2633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2634 bool UsePtrType = false; 2635 if (!TLI.isTypeLegal(VT)) { 2636 UsePtrType = true; 2637 } else { 2638 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2639 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2640 // Switch table case range are encoded into series of masks. 2641 // Just use pointer type, it's guaranteed to fit. 2642 UsePtrType = true; 2643 break; 2644 } 2645 } 2646 SDValue Sub = RangeSub; 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 if (!B.OmitRangeCheck) 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue Root = CopyTo; 2664 if (!B.OmitRangeCheck) { 2665 // Conditional branch to the default block. 2666 SDValue RangeCmp = DAG.getSetCC(dl, 2667 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2668 RangeSub.getValueType()), 2669 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2670 ISD::SETUGT); 2671 2672 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2673 DAG.getBasicBlock(B.Default)); 2674 } 2675 2676 // Avoid emitting unnecessary branches to the next block. 2677 if (MBB != NextBlock(SwitchBB)) 2678 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2679 2680 DAG.setRoot(Root); 2681 } 2682 2683 /// visitBitTestCase - this function produces one "bit test" 2684 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2685 MachineBasicBlock* NextMBB, 2686 BranchProbability BranchProbToNext, 2687 unsigned Reg, 2688 BitTestCase &B, 2689 MachineBasicBlock *SwitchBB) { 2690 SDLoc dl = getCurSDLoc(); 2691 MVT VT = BB.RegVT; 2692 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2693 SDValue Cmp; 2694 unsigned PopCount = countPopulation(B.Mask); 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 if (PopCount == 1) { 2697 // Testing for a single bit; just compare the shift count with what it 2698 // would need to be to shift a 1 bit in that position. 2699 Cmp = DAG.getSetCC( 2700 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2701 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2702 ISD::SETEQ); 2703 } else if (PopCount == BB.Range) { 2704 // There is only one zero bit in the range, test for it directly. 2705 Cmp = DAG.getSetCC( 2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2707 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2708 ISD::SETNE); 2709 } else { 2710 // Make desired shift 2711 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2712 DAG.getConstant(1, dl, VT), ShiftOp); 2713 2714 // Emit bit tests and jumps 2715 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2716 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2717 Cmp = DAG.getSetCC( 2718 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2719 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2720 } 2721 2722 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2723 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2724 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2725 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2726 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2727 // one as they are relative probabilities (and thus work more like weights), 2728 // and hence we need to normalize them to let the sum of them become one. 2729 SwitchBB->normalizeSuccProbs(); 2730 2731 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2732 MVT::Other, getControlRoot(), 2733 Cmp, DAG.getBasicBlock(B.TargetBB)); 2734 2735 // Avoid emitting unnecessary branches to the next block. 2736 if (NextMBB != NextBlock(SwitchBB)) 2737 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2738 DAG.getBasicBlock(NextMBB)); 2739 2740 DAG.setRoot(BrAnd); 2741 } 2742 2743 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2744 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2745 2746 // Retrieve successors. Look through artificial IR level blocks like 2747 // catchswitch for successors. 2748 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2749 const BasicBlock *EHPadBB = I.getSuccessor(1); 2750 2751 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2752 // have to do anything here to lower funclet bundles. 2753 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2754 LLVMContext::OB_funclet, 2755 LLVMContext::OB_cfguardtarget}) && 2756 "Cannot lower invokes with arbitrary operand bundles yet!"); 2757 2758 const Value *Callee(I.getCalledValue()); 2759 const Function *Fn = dyn_cast<Function>(Callee); 2760 if (isa<InlineAsm>(Callee)) 2761 visitInlineAsm(&I); 2762 else if (Fn && Fn->isIntrinsic()) { 2763 switch (Fn->getIntrinsicID()) { 2764 default: 2765 llvm_unreachable("Cannot invoke this intrinsic"); 2766 case Intrinsic::donothing: 2767 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2768 break; 2769 case Intrinsic::experimental_patchpoint_void: 2770 case Intrinsic::experimental_patchpoint_i64: 2771 visitPatchpoint(&I, EHPadBB); 2772 break; 2773 case Intrinsic::experimental_gc_statepoint: 2774 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2775 break; 2776 case Intrinsic::wasm_rethrow_in_catch: { 2777 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2778 // special because it can be invoked, so we manually lower it to a DAG 2779 // node here. 2780 SmallVector<SDValue, 8> Ops; 2781 Ops.push_back(getRoot()); // inchain 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 Ops.push_back( 2784 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2785 TLI.getPointerTy(DAG.getDataLayout()))); 2786 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2787 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2788 break; 2789 } 2790 } 2791 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2792 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2793 // Eventually we will support lowering the @llvm.experimental.deoptimize 2794 // intrinsic, and right now there are no plans to support other intrinsics 2795 // with deopt state. 2796 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2797 } else { 2798 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2799 } 2800 2801 // If the value of the invoke is used outside of its defining block, make it 2802 // available as a virtual register. 2803 // We already took care of the exported value for the statepoint instruction 2804 // during call to the LowerStatepoint. 2805 if (!isStatepoint(I)) { 2806 CopyToExportRegsIfNeeded(&I); 2807 } 2808 2809 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2810 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2811 BranchProbability EHPadBBProb = 2812 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2813 : BranchProbability::getZero(); 2814 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2815 2816 // Update successor info. 2817 addSuccessorWithProb(InvokeMBB, Return); 2818 for (auto &UnwindDest : UnwindDests) { 2819 UnwindDest.first->setIsEHPad(); 2820 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2821 } 2822 InvokeMBB->normalizeSuccProbs(); 2823 2824 // Drop into normal successor. 2825 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2826 DAG.getBasicBlock(Return))); 2827 } 2828 2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2830 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2831 2832 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2833 // have to do anything here to lower funclet bundles. 2834 assert(!I.hasOperandBundlesOtherThan( 2835 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2836 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2837 2838 assert(isa<InlineAsm>(I.getCalledValue()) && 2839 "Only know how to handle inlineasm callbr"); 2840 visitInlineAsm(&I); 2841 2842 // Retrieve successors. 2843 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2844 2845 // Update successor info. 2846 addSuccessorWithProb(CallBrMBB, Return); 2847 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2848 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2849 addSuccessorWithProb(CallBrMBB, Target); 2850 } 2851 CallBrMBB->normalizeSuccProbs(); 2852 2853 // Drop into default successor. 2854 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2855 MVT::Other, getControlRoot(), 2856 DAG.getBasicBlock(Return))); 2857 } 2858 2859 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2860 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2861 } 2862 2863 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2864 assert(FuncInfo.MBB->isEHPad() && 2865 "Call to landingpad not in landing pad!"); 2866 2867 // If there aren't registers to copy the values into (e.g., during SjLj 2868 // exceptions), then don't bother to create these DAG nodes. 2869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2870 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2871 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2872 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2873 return; 2874 2875 // If landingpad's return type is token type, we don't create DAG nodes 2876 // for its exception pointer and selector value. The extraction of exception 2877 // pointer or selector value from token type landingpads is not currently 2878 // supported. 2879 if (LP.getType()->isTokenTy()) 2880 return; 2881 2882 SmallVector<EVT, 2> ValueVTs; 2883 SDLoc dl = getCurSDLoc(); 2884 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2885 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2886 2887 // Get the two live-in registers as SDValues. The physregs have already been 2888 // copied into virtual registers. 2889 SDValue Ops[2]; 2890 if (FuncInfo.ExceptionPointerVirtReg) { 2891 Ops[0] = DAG.getZExtOrTrunc( 2892 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2893 FuncInfo.ExceptionPointerVirtReg, 2894 TLI.getPointerTy(DAG.getDataLayout())), 2895 dl, ValueVTs[0]); 2896 } else { 2897 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2898 } 2899 Ops[1] = DAG.getZExtOrTrunc( 2900 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2901 FuncInfo.ExceptionSelectorVirtReg, 2902 TLI.getPointerTy(DAG.getDataLayout())), 2903 dl, ValueVTs[1]); 2904 2905 // Merge into one. 2906 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2907 DAG.getVTList(ValueVTs), Ops); 2908 setValue(&LP, Res); 2909 } 2910 2911 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2912 MachineBasicBlock *Last) { 2913 // Update JTCases. 2914 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2915 if (SL->JTCases[i].first.HeaderBB == First) 2916 SL->JTCases[i].first.HeaderBB = Last; 2917 2918 // Update BitTestCases. 2919 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2920 if (SL->BitTestCases[i].Parent == First) 2921 SL->BitTestCases[i].Parent = Last; 2922 } 2923 2924 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2925 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2926 2927 // Update machine-CFG edges with unique successors. 2928 SmallSet<BasicBlock*, 32> Done; 2929 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2930 BasicBlock *BB = I.getSuccessor(i); 2931 bool Inserted = Done.insert(BB).second; 2932 if (!Inserted) 2933 continue; 2934 2935 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2936 addSuccessorWithProb(IndirectBrMBB, Succ); 2937 } 2938 IndirectBrMBB->normalizeSuccProbs(); 2939 2940 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2941 MVT::Other, getControlRoot(), 2942 getValue(I.getAddress()))); 2943 } 2944 2945 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2946 if (!DAG.getTarget().Options.TrapUnreachable) 2947 return; 2948 2949 // We may be able to ignore unreachable behind a noreturn call. 2950 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2951 const BasicBlock &BB = *I.getParent(); 2952 if (&I != &BB.front()) { 2953 BasicBlock::const_iterator PredI = 2954 std::prev(BasicBlock::const_iterator(&I)); 2955 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2956 if (Call->doesNotReturn()) 2957 return; 2958 } 2959 } 2960 } 2961 2962 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2963 } 2964 2965 void SelectionDAGBuilder::visitFSub(const User &I) { 2966 // -0.0 - X --> fneg 2967 Type *Ty = I.getType(); 2968 if (isa<Constant>(I.getOperand(0)) && 2969 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2970 SDValue Op2 = getValue(I.getOperand(1)); 2971 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2972 Op2.getValueType(), Op2)); 2973 return; 2974 } 2975 2976 visitBinary(I, ISD::FSUB); 2977 } 2978 2979 /// Checks if the given instruction performs a vector reduction, in which case 2980 /// we have the freedom to alter the elements in the result as long as the 2981 /// reduction of them stays unchanged. 2982 static bool isVectorReductionOp(const User *I) { 2983 const Instruction *Inst = dyn_cast<Instruction>(I); 2984 if (!Inst || !Inst->getType()->isVectorTy()) 2985 return false; 2986 2987 auto OpCode = Inst->getOpcode(); 2988 switch (OpCode) { 2989 case Instruction::Add: 2990 case Instruction::Mul: 2991 case Instruction::And: 2992 case Instruction::Or: 2993 case Instruction::Xor: 2994 break; 2995 case Instruction::FAdd: 2996 case Instruction::FMul: 2997 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2998 if (FPOp->getFastMathFlags().isFast()) 2999 break; 3000 LLVM_FALLTHROUGH; 3001 default: 3002 return false; 3003 } 3004 3005 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3006 // Ensure the reduction size is a power of 2. 3007 if (!isPowerOf2_32(ElemNum)) 3008 return false; 3009 3010 unsigned ElemNumToReduce = ElemNum; 3011 3012 // Do DFS search on the def-use chain from the given instruction. We only 3013 // allow four kinds of operations during the search until we reach the 3014 // instruction that extracts the first element from the vector: 3015 // 3016 // 1. The reduction operation of the same opcode as the given instruction. 3017 // 3018 // 2. PHI node. 3019 // 3020 // 3. ShuffleVector instruction together with a reduction operation that 3021 // does a partial reduction. 3022 // 3023 // 4. ExtractElement that extracts the first element from the vector, and we 3024 // stop searching the def-use chain here. 3025 // 3026 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3027 // from 1-3 to the stack to continue the DFS. The given instruction is not 3028 // a reduction operation if we meet any other instructions other than those 3029 // listed above. 3030 3031 SmallVector<const User *, 16> UsersToVisit{Inst}; 3032 SmallPtrSet<const User *, 16> Visited; 3033 bool ReduxExtracted = false; 3034 3035 while (!UsersToVisit.empty()) { 3036 auto User = UsersToVisit.back(); 3037 UsersToVisit.pop_back(); 3038 if (!Visited.insert(User).second) 3039 continue; 3040 3041 for (const auto &U : User->users()) { 3042 auto Inst = dyn_cast<Instruction>(U); 3043 if (!Inst) 3044 return false; 3045 3046 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3047 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3048 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3049 return false; 3050 UsersToVisit.push_back(U); 3051 } else if (const ShuffleVectorInst *ShufInst = 3052 dyn_cast<ShuffleVectorInst>(U)) { 3053 // Detect the following pattern: A ShuffleVector instruction together 3054 // with a reduction that do partial reduction on the first and second 3055 // ElemNumToReduce / 2 elements, and store the result in 3056 // ElemNumToReduce / 2 elements in another vector. 3057 3058 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3059 if (ResultElements < ElemNum) 3060 return false; 3061 3062 if (ElemNumToReduce == 1) 3063 return false; 3064 if (!isa<UndefValue>(U->getOperand(1))) 3065 return false; 3066 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3067 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3068 return false; 3069 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3070 if (ShufInst->getMaskValue(i) != -1) 3071 return false; 3072 3073 // There is only one user of this ShuffleVector instruction, which 3074 // must be a reduction operation. 3075 if (!U->hasOneUse()) 3076 return false; 3077 3078 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3079 if (!U2 || U2->getOpcode() != OpCode) 3080 return false; 3081 3082 // Check operands of the reduction operation. 3083 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3084 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3085 UsersToVisit.push_back(U2); 3086 ElemNumToReduce /= 2; 3087 } else 3088 return false; 3089 } else if (isa<ExtractElementInst>(U)) { 3090 // At this moment we should have reduced all elements in the vector. 3091 if (ElemNumToReduce != 1) 3092 return false; 3093 3094 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3095 if (!Val || !Val->isZero()) 3096 return false; 3097 3098 ReduxExtracted = true; 3099 } else 3100 return false; 3101 } 3102 } 3103 return ReduxExtracted; 3104 } 3105 3106 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 3109 SDValue Op = getValue(I.getOperand(0)); 3110 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3111 Op, Flags); 3112 setValue(&I, UnNodeValue); 3113 } 3114 3115 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3118 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3119 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3120 } 3121 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3122 Flags.setExact(ExactOp->isExact()); 3123 } 3124 if (isVectorReductionOp(&I)) { 3125 Flags.setVectorReduction(true); 3126 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3127 3128 // If no flags are set we will propagate the incoming flags, if any flags 3129 // are set, we will intersect them with the incoming flag and so we need to 3130 // copy the FMF flags here. 3131 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3132 Flags.copyFMF(*FPOp); 3133 } 3134 } 3135 3136 SDValue Op1 = getValue(I.getOperand(0)); 3137 SDValue Op2 = getValue(I.getOperand(1)); 3138 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3139 Op1, Op2, Flags); 3140 setValue(&I, BinNodeValue); 3141 } 3142 3143 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3144 SDValue Op1 = getValue(I.getOperand(0)); 3145 SDValue Op2 = getValue(I.getOperand(1)); 3146 3147 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3148 Op1.getValueType(), DAG.getDataLayout()); 3149 3150 // Coerce the shift amount to the right type if we can. 3151 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3152 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3153 unsigned Op2Size = Op2.getValueSizeInBits(); 3154 SDLoc DL = getCurSDLoc(); 3155 3156 // If the operand is smaller than the shift count type, promote it. 3157 if (ShiftSize > Op2Size) 3158 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3159 3160 // If the operand is larger than the shift count type but the shift 3161 // count type has enough bits to represent any shift value, truncate 3162 // it now. This is a common case and it exposes the truncate to 3163 // optimization early. 3164 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3165 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3166 // Otherwise we'll need to temporarily settle for some other convenient 3167 // type. Type legalization will make adjustments once the shiftee is split. 3168 else 3169 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3170 } 3171 3172 bool nuw = false; 3173 bool nsw = false; 3174 bool exact = false; 3175 3176 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3177 3178 if (const OverflowingBinaryOperator *OFBinOp = 3179 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3180 nuw = OFBinOp->hasNoUnsignedWrap(); 3181 nsw = OFBinOp->hasNoSignedWrap(); 3182 } 3183 if (const PossiblyExactOperator *ExactOp = 3184 dyn_cast<const PossiblyExactOperator>(&I)) 3185 exact = ExactOp->isExact(); 3186 } 3187 SDNodeFlags Flags; 3188 Flags.setExact(exact); 3189 Flags.setNoSignedWrap(nsw); 3190 Flags.setNoUnsignedWrap(nuw); 3191 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3192 Flags); 3193 setValue(&I, Res); 3194 } 3195 3196 void SelectionDAGBuilder::visitSDiv(const User &I) { 3197 SDValue Op1 = getValue(I.getOperand(0)); 3198 SDValue Op2 = getValue(I.getOperand(1)); 3199 3200 SDNodeFlags Flags; 3201 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3202 cast<PossiblyExactOperator>(&I)->isExact()); 3203 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3204 Op2, Flags)); 3205 } 3206 3207 void SelectionDAGBuilder::visitICmp(const User &I) { 3208 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3209 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3210 predicate = IC->getPredicate(); 3211 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3212 predicate = ICmpInst::Predicate(IC->getPredicate()); 3213 SDValue Op1 = getValue(I.getOperand(0)); 3214 SDValue Op2 = getValue(I.getOperand(1)); 3215 ISD::CondCode Opcode = getICmpCondCode(predicate); 3216 3217 auto &TLI = DAG.getTargetLoweringInfo(); 3218 EVT MemVT = 3219 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3220 3221 // If a pointer's DAG type is larger than its memory type then the DAG values 3222 // are zero-extended. This breaks signed comparisons so truncate back to the 3223 // underlying type before doing the compare. 3224 if (Op1.getValueType() != MemVT) { 3225 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3226 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3227 } 3228 3229 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3230 I.getType()); 3231 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3232 } 3233 3234 void SelectionDAGBuilder::visitFCmp(const User &I) { 3235 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3236 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3237 predicate = FC->getPredicate(); 3238 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3239 predicate = FCmpInst::Predicate(FC->getPredicate()); 3240 SDValue Op1 = getValue(I.getOperand(0)); 3241 SDValue Op2 = getValue(I.getOperand(1)); 3242 3243 ISD::CondCode Condition = getFCmpCondCode(predicate); 3244 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3245 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3246 Condition = getFCmpCodeWithoutNaN(Condition); 3247 3248 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3249 I.getType()); 3250 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3251 } 3252 3253 // Check if the condition of the select has one use or two users that are both 3254 // selects with the same condition. 3255 static bool hasOnlySelectUsers(const Value *Cond) { 3256 return llvm::all_of(Cond->users(), [](const Value *V) { 3257 return isa<SelectInst>(V); 3258 }); 3259 } 3260 3261 void SelectionDAGBuilder::visitSelect(const User &I) { 3262 SmallVector<EVT, 4> ValueVTs; 3263 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3264 ValueVTs); 3265 unsigned NumValues = ValueVTs.size(); 3266 if (NumValues == 0) return; 3267 3268 SmallVector<SDValue, 4> Values(NumValues); 3269 SDValue Cond = getValue(I.getOperand(0)); 3270 SDValue LHSVal = getValue(I.getOperand(1)); 3271 SDValue RHSVal = getValue(I.getOperand(2)); 3272 auto BaseOps = {Cond}; 3273 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3274 ISD::VSELECT : ISD::SELECT; 3275 3276 bool IsUnaryAbs = false; 3277 3278 // Min/max matching is only viable if all output VTs are the same. 3279 if (is_splat(ValueVTs)) { 3280 EVT VT = ValueVTs[0]; 3281 LLVMContext &Ctx = *DAG.getContext(); 3282 auto &TLI = DAG.getTargetLoweringInfo(); 3283 3284 // We care about the legality of the operation after it has been type 3285 // legalized. 3286 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3287 VT = TLI.getTypeToTransformTo(Ctx, VT); 3288 3289 // If the vselect is legal, assume we want to leave this as a vector setcc + 3290 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3291 // min/max is legal on the scalar type. 3292 bool UseScalarMinMax = VT.isVector() && 3293 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3294 3295 Value *LHS, *RHS; 3296 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3297 ISD::NodeType Opc = ISD::DELETED_NODE; 3298 switch (SPR.Flavor) { 3299 case SPF_UMAX: Opc = ISD::UMAX; break; 3300 case SPF_UMIN: Opc = ISD::UMIN; break; 3301 case SPF_SMAX: Opc = ISD::SMAX; break; 3302 case SPF_SMIN: Opc = ISD::SMIN; break; 3303 case SPF_FMINNUM: 3304 switch (SPR.NaNBehavior) { 3305 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3306 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3307 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3308 case SPNB_RETURNS_ANY: { 3309 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3310 Opc = ISD::FMINNUM; 3311 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3312 Opc = ISD::FMINIMUM; 3313 else if (UseScalarMinMax) 3314 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3315 ISD::FMINNUM : ISD::FMINIMUM; 3316 break; 3317 } 3318 } 3319 break; 3320 case SPF_FMAXNUM: 3321 switch (SPR.NaNBehavior) { 3322 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3323 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3324 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3325 case SPNB_RETURNS_ANY: 3326 3327 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3328 Opc = ISD::FMAXNUM; 3329 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3330 Opc = ISD::FMAXIMUM; 3331 else if (UseScalarMinMax) 3332 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3333 ISD::FMAXNUM : ISD::FMAXIMUM; 3334 break; 3335 } 3336 break; 3337 case SPF_ABS: 3338 IsUnaryAbs = true; 3339 Opc = ISD::ABS; 3340 break; 3341 case SPF_NABS: 3342 // TODO: we need to produce sub(0, abs(X)). 3343 default: break; 3344 } 3345 3346 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3347 (TLI.isOperationLegalOrCustom(Opc, VT) || 3348 (UseScalarMinMax && 3349 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3350 // If the underlying comparison instruction is used by any other 3351 // instruction, the consumed instructions won't be destroyed, so it is 3352 // not profitable to convert to a min/max. 3353 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3354 OpCode = Opc; 3355 LHSVal = getValue(LHS); 3356 RHSVal = getValue(RHS); 3357 BaseOps = {}; 3358 } 3359 3360 if (IsUnaryAbs) { 3361 OpCode = Opc; 3362 LHSVal = getValue(LHS); 3363 BaseOps = {}; 3364 } 3365 } 3366 3367 if (IsUnaryAbs) { 3368 for (unsigned i = 0; i != NumValues; ++i) { 3369 Values[i] = 3370 DAG.getNode(OpCode, getCurSDLoc(), 3371 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3372 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3373 } 3374 } else { 3375 for (unsigned i = 0; i != NumValues; ++i) { 3376 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3377 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3378 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3379 Values[i] = DAG.getNode( 3380 OpCode, getCurSDLoc(), 3381 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3382 } 3383 } 3384 3385 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3386 DAG.getVTList(ValueVTs), Values)); 3387 } 3388 3389 void SelectionDAGBuilder::visitTrunc(const User &I) { 3390 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3391 SDValue N = getValue(I.getOperand(0)); 3392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3393 I.getType()); 3394 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3395 } 3396 3397 void SelectionDAGBuilder::visitZExt(const User &I) { 3398 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3399 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3400 SDValue N = getValue(I.getOperand(0)); 3401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3402 I.getType()); 3403 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3404 } 3405 3406 void SelectionDAGBuilder::visitSExt(const User &I) { 3407 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3408 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3409 SDValue N = getValue(I.getOperand(0)); 3410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3411 I.getType()); 3412 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3413 } 3414 3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3416 // FPTrunc is never a no-op cast, no need to check 3417 SDValue N = getValue(I.getOperand(0)); 3418 SDLoc dl = getCurSDLoc(); 3419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3421 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3422 DAG.getTargetConstant( 3423 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPExt(const User &I) { 3427 // FPExt is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3435 // FPToUI is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3443 // FPToSI is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3451 // UIToFP is never a no-op cast, no need to check 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3459 // SIToFP is never a no-op cast, no need to check 3460 SDValue N = getValue(I.getOperand(0)); 3461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3462 I.getType()); 3463 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3464 } 3465 3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3467 // What to do depends on the size of the integer and the size of the pointer. 3468 // We can either truncate, zero extend, or no-op, accordingly. 3469 SDValue N = getValue(I.getOperand(0)); 3470 auto &TLI = DAG.getTargetLoweringInfo(); 3471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3472 I.getType()); 3473 EVT PtrMemVT = 3474 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3475 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3476 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3477 setValue(&I, N); 3478 } 3479 3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3481 // What to do depends on the size of the integer and the size of the pointer. 3482 // We can either truncate, zero extend, or no-op, accordingly. 3483 SDValue N = getValue(I.getOperand(0)); 3484 auto &TLI = DAG.getTargetLoweringInfo(); 3485 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3486 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3487 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3488 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3489 setValue(&I, N); 3490 } 3491 3492 void SelectionDAGBuilder::visitBitCast(const User &I) { 3493 SDValue N = getValue(I.getOperand(0)); 3494 SDLoc dl = getCurSDLoc(); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 3498 // BitCast assures us that source and destination are the same size so this is 3499 // either a BITCAST or a no-op. 3500 if (DestVT != N.getValueType()) 3501 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3502 DestVT, N)); // convert types. 3503 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3504 // might fold any kind of constant expression to an integer constant and that 3505 // is not what we are looking for. Only recognize a bitcast of a genuine 3506 // constant integer as an opaque constant. 3507 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3508 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3509 /*isOpaque*/true)); 3510 else 3511 setValue(&I, N); // noop cast. 3512 } 3513 3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 const Value *SV = I.getOperand(0); 3517 SDValue N = getValue(SV); 3518 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3519 3520 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3521 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3522 3523 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3524 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3525 3526 setValue(&I, N); 3527 } 3528 3529 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3531 SDValue InVec = getValue(I.getOperand(0)); 3532 SDValue InVal = getValue(I.getOperand(1)); 3533 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3534 TLI.getVectorIdxTy(DAG.getDataLayout())); 3535 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3536 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3537 InVec, InVal, InIdx)); 3538 } 3539 3540 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3542 SDValue InVec = getValue(I.getOperand(0)); 3543 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3544 TLI.getVectorIdxTy(DAG.getDataLayout())); 3545 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3546 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3547 InVec, InIdx)); 3548 } 3549 3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3551 SDValue Src1 = getValue(I.getOperand(0)); 3552 SDValue Src2 = getValue(I.getOperand(1)); 3553 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3554 SDLoc DL = getCurSDLoc(); 3555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3556 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3557 EVT SrcVT = Src1.getValueType(); 3558 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3559 3560 if (MaskV->isNullValue() && VT.isScalableVector()) { 3561 // Canonical splat form of first element of first input vector. 3562 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3563 SrcVT.getScalarType(), Src1, 3564 DAG.getConstant(0, DL, 3565 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3566 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3567 return; 3568 } 3569 3570 // For now, we only handle splats for scalable vectors. 3571 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3572 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3573 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3574 3575 SmallVector<int, 8> Mask; 3576 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3577 unsigned MaskNumElts = Mask.size(); 3578 3579 if (SrcNumElts == MaskNumElts) { 3580 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3581 return; 3582 } 3583 3584 // Normalize the shuffle vector since mask and vector length don't match. 3585 if (SrcNumElts < MaskNumElts) { 3586 // Mask is longer than the source vectors. We can use concatenate vector to 3587 // make the mask and vectors lengths match. 3588 3589 if (MaskNumElts % SrcNumElts == 0) { 3590 // Mask length is a multiple of the source vector length. 3591 // Check if the shuffle is some kind of concatenation of the input 3592 // vectors. 3593 unsigned NumConcat = MaskNumElts / SrcNumElts; 3594 bool IsConcat = true; 3595 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3596 for (unsigned i = 0; i != MaskNumElts; ++i) { 3597 int Idx = Mask[i]; 3598 if (Idx < 0) 3599 continue; 3600 // Ensure the indices in each SrcVT sized piece are sequential and that 3601 // the same source is used for the whole piece. 3602 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3603 (ConcatSrcs[i / SrcNumElts] >= 0 && 3604 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3605 IsConcat = false; 3606 break; 3607 } 3608 // Remember which source this index came from. 3609 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3610 } 3611 3612 // The shuffle is concatenating multiple vectors together. Just emit 3613 // a CONCAT_VECTORS operation. 3614 if (IsConcat) { 3615 SmallVector<SDValue, 8> ConcatOps; 3616 for (auto Src : ConcatSrcs) { 3617 if (Src < 0) 3618 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3619 else if (Src == 0) 3620 ConcatOps.push_back(Src1); 3621 else 3622 ConcatOps.push_back(Src2); 3623 } 3624 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3625 return; 3626 } 3627 } 3628 3629 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3630 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3631 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3632 PaddedMaskNumElts); 3633 3634 // Pad both vectors with undefs to make them the same length as the mask. 3635 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3636 3637 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3638 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3639 MOps1[0] = Src1; 3640 MOps2[0] = Src2; 3641 3642 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3643 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3644 3645 // Readjust mask for new input vector length. 3646 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3647 for (unsigned i = 0; i != MaskNumElts; ++i) { 3648 int Idx = Mask[i]; 3649 if (Idx >= (int)SrcNumElts) 3650 Idx -= SrcNumElts - PaddedMaskNumElts; 3651 MappedOps[i] = Idx; 3652 } 3653 3654 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3655 3656 // If the concatenated vector was padded, extract a subvector with the 3657 // correct number of elements. 3658 if (MaskNumElts != PaddedMaskNumElts) 3659 Result = DAG.getNode( 3660 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3661 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3662 3663 setValue(&I, Result); 3664 return; 3665 } 3666 3667 if (SrcNumElts > MaskNumElts) { 3668 // Analyze the access pattern of the vector to see if we can extract 3669 // two subvectors and do the shuffle. 3670 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3671 bool CanExtract = true; 3672 for (int Idx : Mask) { 3673 unsigned Input = 0; 3674 if (Idx < 0) 3675 continue; 3676 3677 if (Idx >= (int)SrcNumElts) { 3678 Input = 1; 3679 Idx -= SrcNumElts; 3680 } 3681 3682 // If all the indices come from the same MaskNumElts sized portion of 3683 // the sources we can use extract. Also make sure the extract wouldn't 3684 // extract past the end of the source. 3685 int NewStartIdx = alignDown(Idx, MaskNumElts); 3686 if (NewStartIdx + MaskNumElts > SrcNumElts || 3687 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3688 CanExtract = false; 3689 // Make sure we always update StartIdx as we use it to track if all 3690 // elements are undef. 3691 StartIdx[Input] = NewStartIdx; 3692 } 3693 3694 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3695 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3696 return; 3697 } 3698 if (CanExtract) { 3699 // Extract appropriate subvector and generate a vector shuffle 3700 for (unsigned Input = 0; Input < 2; ++Input) { 3701 SDValue &Src = Input == 0 ? Src1 : Src2; 3702 if (StartIdx[Input] < 0) 3703 Src = DAG.getUNDEF(VT); 3704 else { 3705 Src = DAG.getNode( 3706 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3707 DAG.getConstant(StartIdx[Input], DL, 3708 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3709 } 3710 } 3711 3712 // Calculate new mask. 3713 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3714 for (int &Idx : MappedOps) { 3715 if (Idx >= (int)SrcNumElts) 3716 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3717 else if (Idx >= 0) 3718 Idx -= StartIdx[0]; 3719 } 3720 3721 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3722 return; 3723 } 3724 } 3725 3726 // We can't use either concat vectors or extract subvectors so fall back to 3727 // replacing the shuffle with extract and build vector. 3728 // to insert and build vector. 3729 EVT EltVT = VT.getVectorElementType(); 3730 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3731 SmallVector<SDValue,8> Ops; 3732 for (int Idx : Mask) { 3733 SDValue Res; 3734 3735 if (Idx < 0) { 3736 Res = DAG.getUNDEF(EltVT); 3737 } else { 3738 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3739 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3740 3741 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3742 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3743 } 3744 3745 Ops.push_back(Res); 3746 } 3747 3748 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3749 } 3750 3751 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3752 ArrayRef<unsigned> Indices; 3753 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3754 Indices = IV->getIndices(); 3755 else 3756 Indices = cast<ConstantExpr>(&I)->getIndices(); 3757 3758 const Value *Op0 = I.getOperand(0); 3759 const Value *Op1 = I.getOperand(1); 3760 Type *AggTy = I.getType(); 3761 Type *ValTy = Op1->getType(); 3762 bool IntoUndef = isa<UndefValue>(Op0); 3763 bool FromUndef = isa<UndefValue>(Op1); 3764 3765 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3766 3767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3768 SmallVector<EVT, 4> AggValueVTs; 3769 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3770 SmallVector<EVT, 4> ValValueVTs; 3771 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3772 3773 unsigned NumAggValues = AggValueVTs.size(); 3774 unsigned NumValValues = ValValueVTs.size(); 3775 SmallVector<SDValue, 4> Values(NumAggValues); 3776 3777 // Ignore an insertvalue that produces an empty object 3778 if (!NumAggValues) { 3779 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3780 return; 3781 } 3782 3783 SDValue Agg = getValue(Op0); 3784 unsigned i = 0; 3785 // Copy the beginning value(s) from the original aggregate. 3786 for (; i != LinearIndex; ++i) 3787 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3788 SDValue(Agg.getNode(), Agg.getResNo() + i); 3789 // Copy values from the inserted value(s). 3790 if (NumValValues) { 3791 SDValue Val = getValue(Op1); 3792 for (; i != LinearIndex + NumValValues; ++i) 3793 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3794 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3795 } 3796 // Copy remaining value(s) from the original aggregate. 3797 for (; i != NumAggValues; ++i) 3798 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3799 SDValue(Agg.getNode(), Agg.getResNo() + i); 3800 3801 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3802 DAG.getVTList(AggValueVTs), Values)); 3803 } 3804 3805 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3806 ArrayRef<unsigned> Indices; 3807 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3808 Indices = EV->getIndices(); 3809 else 3810 Indices = cast<ConstantExpr>(&I)->getIndices(); 3811 3812 const Value *Op0 = I.getOperand(0); 3813 Type *AggTy = Op0->getType(); 3814 Type *ValTy = I.getType(); 3815 bool OutOfUndef = isa<UndefValue>(Op0); 3816 3817 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3818 3819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3820 SmallVector<EVT, 4> ValValueVTs; 3821 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3822 3823 unsigned NumValValues = ValValueVTs.size(); 3824 3825 // Ignore a extractvalue that produces an empty object 3826 if (!NumValValues) { 3827 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3828 return; 3829 } 3830 3831 SmallVector<SDValue, 4> Values(NumValValues); 3832 3833 SDValue Agg = getValue(Op0); 3834 // Copy out the selected value(s). 3835 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3836 Values[i - LinearIndex] = 3837 OutOfUndef ? 3838 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3839 SDValue(Agg.getNode(), Agg.getResNo() + i); 3840 3841 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3842 DAG.getVTList(ValValueVTs), Values)); 3843 } 3844 3845 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3846 Value *Op0 = I.getOperand(0); 3847 // Note that the pointer operand may be a vector of pointers. Take the scalar 3848 // element which holds a pointer. 3849 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3850 SDValue N = getValue(Op0); 3851 SDLoc dl = getCurSDLoc(); 3852 auto &TLI = DAG.getTargetLoweringInfo(); 3853 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3854 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3855 3856 // Normalize Vector GEP - all scalar operands should be converted to the 3857 // splat vector. 3858 unsigned VectorWidth = I.getType()->isVectorTy() ? 3859 I.getType()->getVectorNumElements() : 0; 3860 3861 if (VectorWidth && !N.getValueType().isVector()) { 3862 LLVMContext &Context = *DAG.getContext(); 3863 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3864 N = DAG.getSplatBuildVector(VT, dl, N); 3865 } 3866 3867 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3868 GTI != E; ++GTI) { 3869 const Value *Idx = GTI.getOperand(); 3870 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3871 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3872 if (Field) { 3873 // N = N + Offset 3874 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3875 3876 // In an inbounds GEP with an offset that is nonnegative even when 3877 // interpreted as signed, assume there is no unsigned overflow. 3878 SDNodeFlags Flags; 3879 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3880 Flags.setNoUnsignedWrap(true); 3881 3882 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3883 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3884 } 3885 } else { 3886 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3887 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3888 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3889 3890 // If this is a scalar constant or a splat vector of constants, 3891 // handle it quickly. 3892 const auto *C = dyn_cast<Constant>(Idx); 3893 if (C && isa<VectorType>(C->getType())) 3894 C = C->getSplatValue(); 3895 3896 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3897 if (CI->isZero()) 3898 continue; 3899 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3900 LLVMContext &Context = *DAG.getContext(); 3901 SDValue OffsVal = VectorWidth ? 3902 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3903 DAG.getConstant(Offs, dl, IdxTy); 3904 3905 // In an inbounds GEP with an offset that is nonnegative even when 3906 // interpreted as signed, assume there is no unsigned overflow. 3907 SDNodeFlags Flags; 3908 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3909 Flags.setNoUnsignedWrap(true); 3910 3911 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3912 3913 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3914 continue; 3915 } 3916 3917 // N = N + Idx * ElementSize; 3918 SDValue IdxN = getValue(Idx); 3919 3920 if (!IdxN.getValueType().isVector() && VectorWidth) { 3921 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3922 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3923 } 3924 3925 // If the index is smaller or larger than intptr_t, truncate or extend 3926 // it. 3927 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3928 3929 // If this is a multiply by a power of two, turn it into a shl 3930 // immediately. This is a very common case. 3931 if (ElementSize != 1) { 3932 if (ElementSize.isPowerOf2()) { 3933 unsigned Amt = ElementSize.logBase2(); 3934 IdxN = DAG.getNode(ISD::SHL, dl, 3935 N.getValueType(), IdxN, 3936 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3937 } else { 3938 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3939 IdxN.getValueType()); 3940 IdxN = DAG.getNode(ISD::MUL, dl, 3941 N.getValueType(), IdxN, Scale); 3942 } 3943 } 3944 3945 N = DAG.getNode(ISD::ADD, dl, 3946 N.getValueType(), N, IdxN); 3947 } 3948 } 3949 3950 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3951 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3952 3953 setValue(&I, N); 3954 } 3955 3956 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3957 // If this is a fixed sized alloca in the entry block of the function, 3958 // allocate it statically on the stack. 3959 if (FuncInfo.StaticAllocaMap.count(&I)) 3960 return; // getValue will auto-populate this. 3961 3962 SDLoc dl = getCurSDLoc(); 3963 Type *Ty = I.getAllocatedType(); 3964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3965 auto &DL = DAG.getDataLayout(); 3966 uint64_t TySize = DL.getTypeAllocSize(Ty); 3967 unsigned Align = 3968 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3969 3970 SDValue AllocSize = getValue(I.getArraySize()); 3971 3972 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3973 if (AllocSize.getValueType() != IntPtr) 3974 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3975 3976 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3977 AllocSize, 3978 DAG.getConstant(TySize, dl, IntPtr)); 3979 3980 // Handle alignment. If the requested alignment is less than or equal to 3981 // the stack alignment, ignore it. If the size is greater than or equal to 3982 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3983 unsigned StackAlign = 3984 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3985 if (Align <= StackAlign) 3986 Align = 0; 3987 3988 // Round the size of the allocation up to the stack alignment size 3989 // by add SA-1 to the size. This doesn't overflow because we're computing 3990 // an address inside an alloca. 3991 SDNodeFlags Flags; 3992 Flags.setNoUnsignedWrap(true); 3993 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3994 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3995 3996 // Mask out the low bits for alignment purposes. 3997 AllocSize = 3998 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3999 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4000 4001 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4002 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4003 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4004 setValue(&I, DSA); 4005 DAG.setRoot(DSA.getValue(1)); 4006 4007 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4008 } 4009 4010 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4011 if (I.isAtomic()) 4012 return visitAtomicLoad(I); 4013 4014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4015 const Value *SV = I.getOperand(0); 4016 if (TLI.supportSwiftError()) { 4017 // Swifterror values can come from either a function parameter with 4018 // swifterror attribute or an alloca with swifterror attribute. 4019 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4020 if (Arg->hasSwiftErrorAttr()) 4021 return visitLoadFromSwiftError(I); 4022 } 4023 4024 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4025 if (Alloca->isSwiftError()) 4026 return visitLoadFromSwiftError(I); 4027 } 4028 } 4029 4030 SDValue Ptr = getValue(SV); 4031 4032 Type *Ty = I.getType(); 4033 4034 bool isVolatile = I.isVolatile(); 4035 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4036 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4037 bool isDereferenceable = 4038 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4039 unsigned Alignment = I.getAlignment(); 4040 4041 AAMDNodes AAInfo; 4042 I.getAAMetadata(AAInfo); 4043 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4044 4045 SmallVector<EVT, 4> ValueVTs, MemVTs; 4046 SmallVector<uint64_t, 4> Offsets; 4047 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4048 unsigned NumValues = ValueVTs.size(); 4049 if (NumValues == 0) 4050 return; 4051 4052 SDValue Root; 4053 bool ConstantMemory = false; 4054 if (isVolatile || NumValues > MaxParallelChains) 4055 // Serialize volatile loads with other side effects. 4056 Root = getRoot(); 4057 else if (AA && 4058 AA->pointsToConstantMemory(MemoryLocation( 4059 SV, 4060 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4061 AAInfo))) { 4062 // Do not serialize (non-volatile) loads of constant memory with anything. 4063 Root = DAG.getEntryNode(); 4064 ConstantMemory = true; 4065 } else { 4066 // Do not serialize non-volatile loads against each other. 4067 Root = DAG.getRoot(); 4068 } 4069 4070 SDLoc dl = getCurSDLoc(); 4071 4072 if (isVolatile) 4073 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4074 4075 // An aggregate load cannot wrap around the address space, so offsets to its 4076 // parts don't wrap either. 4077 SDNodeFlags Flags; 4078 Flags.setNoUnsignedWrap(true); 4079 4080 SmallVector<SDValue, 4> Values(NumValues); 4081 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4082 EVT PtrVT = Ptr.getValueType(); 4083 unsigned ChainI = 0; 4084 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4085 // Serializing loads here may result in excessive register pressure, and 4086 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4087 // could recover a bit by hoisting nodes upward in the chain by recognizing 4088 // they are side-effect free or do not alias. The optimizer should really 4089 // avoid this case by converting large object/array copies to llvm.memcpy 4090 // (MaxParallelChains should always remain as failsafe). 4091 if (ChainI == MaxParallelChains) { 4092 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4093 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4094 makeArrayRef(Chains.data(), ChainI)); 4095 Root = Chain; 4096 ChainI = 0; 4097 } 4098 SDValue A = DAG.getNode(ISD::ADD, dl, 4099 PtrVT, Ptr, 4100 DAG.getConstant(Offsets[i], dl, PtrVT), 4101 Flags); 4102 auto MMOFlags = MachineMemOperand::MONone; 4103 if (isVolatile) 4104 MMOFlags |= MachineMemOperand::MOVolatile; 4105 if (isNonTemporal) 4106 MMOFlags |= MachineMemOperand::MONonTemporal; 4107 if (isInvariant) 4108 MMOFlags |= MachineMemOperand::MOInvariant; 4109 if (isDereferenceable) 4110 MMOFlags |= MachineMemOperand::MODereferenceable; 4111 MMOFlags |= TLI.getMMOFlags(I); 4112 4113 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4114 MachinePointerInfo(SV, Offsets[i]), Alignment, 4115 MMOFlags, AAInfo, Ranges); 4116 Chains[ChainI] = L.getValue(1); 4117 4118 if (MemVTs[i] != ValueVTs[i]) 4119 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4120 4121 Values[i] = L; 4122 } 4123 4124 if (!ConstantMemory) { 4125 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4126 makeArrayRef(Chains.data(), ChainI)); 4127 if (isVolatile) 4128 DAG.setRoot(Chain); 4129 else 4130 PendingLoads.push_back(Chain); 4131 } 4132 4133 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4134 DAG.getVTList(ValueVTs), Values)); 4135 } 4136 4137 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4138 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4139 "call visitStoreToSwiftError when backend supports swifterror"); 4140 4141 SmallVector<EVT, 4> ValueVTs; 4142 SmallVector<uint64_t, 4> Offsets; 4143 const Value *SrcV = I.getOperand(0); 4144 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4145 SrcV->getType(), ValueVTs, &Offsets); 4146 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4147 "expect a single EVT for swifterror"); 4148 4149 SDValue Src = getValue(SrcV); 4150 // Create a virtual register, then update the virtual register. 4151 Register VReg = 4152 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4153 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4154 // Chain can be getRoot or getControlRoot. 4155 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4156 SDValue(Src.getNode(), Src.getResNo())); 4157 DAG.setRoot(CopyNode); 4158 } 4159 4160 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4161 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4162 "call visitLoadFromSwiftError when backend supports swifterror"); 4163 4164 assert(!I.isVolatile() && 4165 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4166 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4167 "Support volatile, non temporal, invariant for load_from_swift_error"); 4168 4169 const Value *SV = I.getOperand(0); 4170 Type *Ty = I.getType(); 4171 AAMDNodes AAInfo; 4172 I.getAAMetadata(AAInfo); 4173 assert( 4174 (!AA || 4175 !AA->pointsToConstantMemory(MemoryLocation( 4176 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4177 AAInfo))) && 4178 "load_from_swift_error should not be constant memory"); 4179 4180 SmallVector<EVT, 4> ValueVTs; 4181 SmallVector<uint64_t, 4> Offsets; 4182 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4183 ValueVTs, &Offsets); 4184 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4185 "expect a single EVT for swifterror"); 4186 4187 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4188 SDValue L = DAG.getCopyFromReg( 4189 getRoot(), getCurSDLoc(), 4190 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4191 4192 setValue(&I, L); 4193 } 4194 4195 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4196 if (I.isAtomic()) 4197 return visitAtomicStore(I); 4198 4199 const Value *SrcV = I.getOperand(0); 4200 const Value *PtrV = I.getOperand(1); 4201 4202 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4203 if (TLI.supportSwiftError()) { 4204 // Swifterror values can come from either a function parameter with 4205 // swifterror attribute or an alloca with swifterror attribute. 4206 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4207 if (Arg->hasSwiftErrorAttr()) 4208 return visitStoreToSwiftError(I); 4209 } 4210 4211 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4212 if (Alloca->isSwiftError()) 4213 return visitStoreToSwiftError(I); 4214 } 4215 } 4216 4217 SmallVector<EVT, 4> ValueVTs, MemVTs; 4218 SmallVector<uint64_t, 4> Offsets; 4219 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4220 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4221 unsigned NumValues = ValueVTs.size(); 4222 if (NumValues == 0) 4223 return; 4224 4225 // Get the lowered operands. Note that we do this after 4226 // checking if NumResults is zero, because with zero results 4227 // the operands won't have values in the map. 4228 SDValue Src = getValue(SrcV); 4229 SDValue Ptr = getValue(PtrV); 4230 4231 SDValue Root = getRoot(); 4232 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4233 SDLoc dl = getCurSDLoc(); 4234 unsigned Alignment = I.getAlignment(); 4235 AAMDNodes AAInfo; 4236 I.getAAMetadata(AAInfo); 4237 4238 auto MMOFlags = MachineMemOperand::MONone; 4239 if (I.isVolatile()) 4240 MMOFlags |= MachineMemOperand::MOVolatile; 4241 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4242 MMOFlags |= MachineMemOperand::MONonTemporal; 4243 MMOFlags |= TLI.getMMOFlags(I); 4244 4245 // An aggregate load cannot wrap around the address space, so offsets to its 4246 // parts don't wrap either. 4247 SDNodeFlags Flags; 4248 Flags.setNoUnsignedWrap(true); 4249 4250 unsigned ChainI = 0; 4251 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4252 // See visitLoad comments. 4253 if (ChainI == MaxParallelChains) { 4254 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4255 makeArrayRef(Chains.data(), ChainI)); 4256 Root = Chain; 4257 ChainI = 0; 4258 } 4259 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4260 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4261 if (MemVTs[i] != ValueVTs[i]) 4262 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4263 SDValue St = 4264 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4265 Alignment, MMOFlags, AAInfo); 4266 Chains[ChainI] = St; 4267 } 4268 4269 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4270 makeArrayRef(Chains.data(), ChainI)); 4271 DAG.setRoot(StoreNode); 4272 } 4273 4274 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4275 bool IsCompressing) { 4276 SDLoc sdl = getCurSDLoc(); 4277 4278 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4279 unsigned& Alignment) { 4280 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4281 Src0 = I.getArgOperand(0); 4282 Ptr = I.getArgOperand(1); 4283 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4284 Mask = I.getArgOperand(3); 4285 }; 4286 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4287 unsigned& Alignment) { 4288 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4289 Src0 = I.getArgOperand(0); 4290 Ptr = I.getArgOperand(1); 4291 Mask = I.getArgOperand(2); 4292 Alignment = 0; 4293 }; 4294 4295 Value *PtrOperand, *MaskOperand, *Src0Operand; 4296 unsigned Alignment; 4297 if (IsCompressing) 4298 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4299 else 4300 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4301 4302 SDValue Ptr = getValue(PtrOperand); 4303 SDValue Src0 = getValue(Src0Operand); 4304 SDValue Mask = getValue(MaskOperand); 4305 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4306 4307 EVT VT = Src0.getValueType(); 4308 if (!Alignment) 4309 Alignment = DAG.getEVTAlignment(VT); 4310 4311 AAMDNodes AAInfo; 4312 I.getAAMetadata(AAInfo); 4313 4314 MachineMemOperand *MMO = 4315 DAG.getMachineFunction(). 4316 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4317 MachineMemOperand::MOStore, 4318 // TODO: Make MachineMemOperands aware of scalable 4319 // vectors. 4320 VT.getStoreSize().getKnownMinSize(), 4321 Alignment, AAInfo); 4322 SDValue StoreNode = 4323 DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4324 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4325 DAG.setRoot(StoreNode); 4326 setValue(&I, StoreNode); 4327 } 4328 4329 // Get a uniform base for the Gather/Scatter intrinsic. 4330 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4331 // We try to represent it as a base pointer + vector of indices. 4332 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4333 // The first operand of the GEP may be a single pointer or a vector of pointers 4334 // Example: 4335 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4336 // or 4337 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4338 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4339 // 4340 // When the first GEP operand is a single pointer - it is the uniform base we 4341 // are looking for. If first operand of the GEP is a splat vector - we 4342 // extract the splat value and use it as a uniform base. 4343 // In all other cases the function returns 'false'. 4344 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4345 ISD::MemIndexType &IndexType, SDValue &Scale, 4346 SelectionDAGBuilder *SDB) { 4347 SelectionDAG& DAG = SDB->DAG; 4348 LLVMContext &Context = *DAG.getContext(); 4349 4350 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4351 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4352 if (!GEP) 4353 return false; 4354 4355 const Value *GEPPtr = GEP->getPointerOperand(); 4356 if (!GEPPtr->getType()->isVectorTy()) 4357 Ptr = GEPPtr; 4358 else if (!(Ptr = getSplatValue(GEPPtr))) 4359 return false; 4360 4361 unsigned FinalIndex = GEP->getNumOperands() - 1; 4362 Value *IndexVal = GEP->getOperand(FinalIndex); 4363 gep_type_iterator GTI = gep_type_begin(*GEP); 4364 4365 // Ensure all the other indices are 0. 4366 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4367 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4368 if (!C) 4369 return false; 4370 if (isa<VectorType>(C->getType())) 4371 C = C->getSplatValue(); 4372 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4373 if (!CI || !CI->isZero()) 4374 return false; 4375 } 4376 4377 // The operands of the GEP may be defined in another basic block. 4378 // In this case we'll not find nodes for the operands. 4379 if (!SDB->findValue(Ptr)) 4380 return false; 4381 Constant *C = dyn_cast<Constant>(IndexVal); 4382 if (!C && !SDB->findValue(IndexVal)) 4383 return false; 4384 4385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4386 const DataLayout &DL = DAG.getDataLayout(); 4387 StructType *STy = GTI.getStructTypeOrNull(); 4388 4389 if (STy) { 4390 const StructLayout *SL = DL.getStructLayout(STy); 4391 if (isa<VectorType>(C->getType())) { 4392 C = C->getSplatValue(); 4393 // FIXME: If getSplatValue may return nullptr for a structure? 4394 // If not, the following check can be removed. 4395 if (!C) 4396 return false; 4397 } 4398 auto *CI = cast<ConstantInt>(C); 4399 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4400 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4401 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4402 } else { 4403 Scale = DAG.getTargetConstant( 4404 DL.getTypeAllocSize(GEP->getResultElementType()), 4405 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4406 Index = SDB->getValue(IndexVal); 4407 } 4408 Base = SDB->getValue(Ptr); 4409 IndexType = ISD::SIGNED_SCALED; 4410 4411 if (STy || !Index.getValueType().isVector()) { 4412 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4413 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4414 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4415 } 4416 return true; 4417 } 4418 4419 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4420 SDLoc sdl = getCurSDLoc(); 4421 4422 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4423 const Value *Ptr = I.getArgOperand(1); 4424 SDValue Src0 = getValue(I.getArgOperand(0)); 4425 SDValue Mask = getValue(I.getArgOperand(3)); 4426 EVT VT = Src0.getValueType(); 4427 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4428 if (!Alignment) 4429 Alignment = DAG.getEVTAlignment(VT); 4430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4431 4432 AAMDNodes AAInfo; 4433 I.getAAMetadata(AAInfo); 4434 4435 SDValue Base; 4436 SDValue Index; 4437 ISD::MemIndexType IndexType; 4438 SDValue Scale; 4439 const Value *BasePtr = Ptr; 4440 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4441 this); 4442 4443 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4444 MachineMemOperand *MMO = DAG.getMachineFunction(). 4445 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4446 MachineMemOperand::MOStore, 4447 // TODO: Make MachineMemOperands aware of scalable 4448 // vectors. 4449 VT.getStoreSize().getKnownMinSize(), 4450 Alignment, AAInfo); 4451 if (!UniformBase) { 4452 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4453 Index = getValue(Ptr); 4454 IndexType = ISD::SIGNED_SCALED; 4455 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4456 } 4457 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4458 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4459 Ops, MMO, IndexType); 4460 DAG.setRoot(Scatter); 4461 setValue(&I, Scatter); 4462 } 4463 4464 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4465 SDLoc sdl = getCurSDLoc(); 4466 4467 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4468 unsigned& Alignment) { 4469 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4470 Ptr = I.getArgOperand(0); 4471 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4472 Mask = I.getArgOperand(2); 4473 Src0 = I.getArgOperand(3); 4474 }; 4475 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4476 unsigned& Alignment) { 4477 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4478 Ptr = I.getArgOperand(0); 4479 Alignment = 0; 4480 Mask = I.getArgOperand(1); 4481 Src0 = I.getArgOperand(2); 4482 }; 4483 4484 Value *PtrOperand, *MaskOperand, *Src0Operand; 4485 unsigned Alignment; 4486 if (IsExpanding) 4487 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4488 else 4489 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4490 4491 SDValue Ptr = getValue(PtrOperand); 4492 SDValue Src0 = getValue(Src0Operand); 4493 SDValue Mask = getValue(MaskOperand); 4494 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4495 4496 EVT VT = Src0.getValueType(); 4497 if (!Alignment) 4498 Alignment = DAG.getEVTAlignment(VT); 4499 4500 AAMDNodes AAInfo; 4501 I.getAAMetadata(AAInfo); 4502 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4503 4504 // Do not serialize masked loads of constant memory with anything. 4505 MemoryLocation ML; 4506 if (VT.isScalableVector()) 4507 ML = MemoryLocation(PtrOperand); 4508 else 4509 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4510 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4511 AAInfo); 4512 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4513 4514 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4515 4516 MachineMemOperand *MMO = 4517 DAG.getMachineFunction(). 4518 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4519 MachineMemOperand::MOLoad, 4520 // TODO: Make MachineMemOperands aware of scalable 4521 // vectors. 4522 VT.getStoreSize().getKnownMinSize(), 4523 Alignment, AAInfo, Ranges); 4524 4525 SDValue Load = 4526 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4527 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4528 if (AddToChain) 4529 PendingLoads.push_back(Load.getValue(1)); 4530 setValue(&I, Load); 4531 } 4532 4533 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4534 SDLoc sdl = getCurSDLoc(); 4535 4536 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4537 const Value *Ptr = I.getArgOperand(0); 4538 SDValue Src0 = getValue(I.getArgOperand(3)); 4539 SDValue Mask = getValue(I.getArgOperand(2)); 4540 4541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4542 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4543 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4544 if (!Alignment) 4545 Alignment = DAG.getEVTAlignment(VT); 4546 4547 AAMDNodes AAInfo; 4548 I.getAAMetadata(AAInfo); 4549 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4550 4551 SDValue Root = DAG.getRoot(); 4552 SDValue Base; 4553 SDValue Index; 4554 ISD::MemIndexType IndexType; 4555 SDValue Scale; 4556 const Value *BasePtr = Ptr; 4557 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4558 this); 4559 bool ConstantMemory = false; 4560 if (UniformBase && AA && 4561 AA->pointsToConstantMemory( 4562 MemoryLocation(BasePtr, 4563 LocationSize::precise( 4564 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4565 AAInfo))) { 4566 // Do not serialize (non-volatile) loads of constant memory with anything. 4567 Root = DAG.getEntryNode(); 4568 ConstantMemory = true; 4569 } 4570 4571 MachineMemOperand *MMO = 4572 DAG.getMachineFunction(). 4573 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4574 MachineMemOperand::MOLoad, 4575 // TODO: Make MachineMemOperands aware of scalable 4576 // vectors. 4577 VT.getStoreSize().getKnownMinSize(), 4578 Alignment, AAInfo, Ranges); 4579 4580 if (!UniformBase) { 4581 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4582 Index = getValue(Ptr); 4583 IndexType = ISD::SIGNED_SCALED; 4584 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4585 } 4586 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4587 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4588 Ops, MMO, IndexType); 4589 4590 SDValue OutChain = Gather.getValue(1); 4591 if (!ConstantMemory) 4592 PendingLoads.push_back(OutChain); 4593 setValue(&I, Gather); 4594 } 4595 4596 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4597 SDLoc dl = getCurSDLoc(); 4598 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4599 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4600 SyncScope::ID SSID = I.getSyncScopeID(); 4601 4602 SDValue InChain = getRoot(); 4603 4604 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4605 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4606 4607 auto Alignment = DAG.getEVTAlignment(MemVT); 4608 4609 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4610 if (I.isVolatile()) 4611 Flags |= MachineMemOperand::MOVolatile; 4612 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4613 4614 MachineFunction &MF = DAG.getMachineFunction(); 4615 MachineMemOperand *MMO = 4616 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4617 Flags, MemVT.getStoreSize(), Alignment, 4618 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4619 FailureOrdering); 4620 4621 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4622 dl, MemVT, VTs, InChain, 4623 getValue(I.getPointerOperand()), 4624 getValue(I.getCompareOperand()), 4625 getValue(I.getNewValOperand()), MMO); 4626 4627 SDValue OutChain = L.getValue(2); 4628 4629 setValue(&I, L); 4630 DAG.setRoot(OutChain); 4631 } 4632 4633 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4634 SDLoc dl = getCurSDLoc(); 4635 ISD::NodeType NT; 4636 switch (I.getOperation()) { 4637 default: llvm_unreachable("Unknown atomicrmw operation"); 4638 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4639 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4640 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4641 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4642 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4643 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4644 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4645 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4646 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4647 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4648 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4649 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4650 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4651 } 4652 AtomicOrdering Ordering = I.getOrdering(); 4653 SyncScope::ID SSID = I.getSyncScopeID(); 4654 4655 SDValue InChain = getRoot(); 4656 4657 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4658 auto Alignment = DAG.getEVTAlignment(MemVT); 4659 4660 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4661 if (I.isVolatile()) 4662 Flags |= MachineMemOperand::MOVolatile; 4663 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4664 4665 MachineFunction &MF = DAG.getMachineFunction(); 4666 MachineMemOperand *MMO = 4667 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4668 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4669 nullptr, SSID, Ordering); 4670 4671 SDValue L = 4672 DAG.getAtomic(NT, dl, MemVT, InChain, 4673 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4674 MMO); 4675 4676 SDValue OutChain = L.getValue(1); 4677 4678 setValue(&I, L); 4679 DAG.setRoot(OutChain); 4680 } 4681 4682 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4683 SDLoc dl = getCurSDLoc(); 4684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4685 SDValue Ops[3]; 4686 Ops[0] = getRoot(); 4687 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4688 TLI.getFenceOperandTy(DAG.getDataLayout())); 4689 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4690 TLI.getFenceOperandTy(DAG.getDataLayout())); 4691 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4692 } 4693 4694 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4695 SDLoc dl = getCurSDLoc(); 4696 AtomicOrdering Order = I.getOrdering(); 4697 SyncScope::ID SSID = I.getSyncScopeID(); 4698 4699 SDValue InChain = getRoot(); 4700 4701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4702 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4703 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4704 4705 if (!TLI.supportsUnalignedAtomics() && 4706 I.getAlignment() < MemVT.getSizeInBits() / 8) 4707 report_fatal_error("Cannot generate unaligned atomic load"); 4708 4709 auto Flags = MachineMemOperand::MOLoad; 4710 if (I.isVolatile()) 4711 Flags |= MachineMemOperand::MOVolatile; 4712 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4713 Flags |= MachineMemOperand::MOInvariant; 4714 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4715 DAG.getDataLayout())) 4716 Flags |= MachineMemOperand::MODereferenceable; 4717 4718 Flags |= TLI.getMMOFlags(I); 4719 4720 MachineMemOperand *MMO = 4721 DAG.getMachineFunction(). 4722 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4723 Flags, MemVT.getStoreSize(), 4724 I.getAlignment() ? I.getAlignment() : 4725 DAG.getEVTAlignment(MemVT), 4726 AAMDNodes(), nullptr, SSID, Order); 4727 4728 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4729 4730 SDValue Ptr = getValue(I.getPointerOperand()); 4731 4732 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4733 // TODO: Once this is better exercised by tests, it should be merged with 4734 // the normal path for loads to prevent future divergence. 4735 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4736 if (MemVT != VT) 4737 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4738 4739 setValue(&I, L); 4740 SDValue OutChain = L.getValue(1); 4741 if (!I.isUnordered()) 4742 DAG.setRoot(OutChain); 4743 else 4744 PendingLoads.push_back(OutChain); 4745 return; 4746 } 4747 4748 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4749 Ptr, MMO); 4750 4751 SDValue OutChain = L.getValue(1); 4752 if (MemVT != VT) 4753 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4754 4755 setValue(&I, L); 4756 DAG.setRoot(OutChain); 4757 } 4758 4759 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4760 SDLoc dl = getCurSDLoc(); 4761 4762 AtomicOrdering Ordering = I.getOrdering(); 4763 SyncScope::ID SSID = I.getSyncScopeID(); 4764 4765 SDValue InChain = getRoot(); 4766 4767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4768 EVT MemVT = 4769 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4770 4771 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4772 report_fatal_error("Cannot generate unaligned atomic store"); 4773 4774 auto Flags = MachineMemOperand::MOStore; 4775 if (I.isVolatile()) 4776 Flags |= MachineMemOperand::MOVolatile; 4777 Flags |= TLI.getMMOFlags(I); 4778 4779 MachineFunction &MF = DAG.getMachineFunction(); 4780 MachineMemOperand *MMO = 4781 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4782 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4783 nullptr, SSID, Ordering); 4784 4785 SDValue Val = getValue(I.getValueOperand()); 4786 if (Val.getValueType() != MemVT) 4787 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4788 SDValue Ptr = getValue(I.getPointerOperand()); 4789 4790 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4791 // TODO: Once this is better exercised by tests, it should be merged with 4792 // the normal path for stores to prevent future divergence. 4793 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4794 DAG.setRoot(S); 4795 return; 4796 } 4797 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4798 Ptr, Val, MMO); 4799 4800 4801 DAG.setRoot(OutChain); 4802 } 4803 4804 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4805 /// node. 4806 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4807 unsigned Intrinsic) { 4808 // Ignore the callsite's attributes. A specific call site may be marked with 4809 // readnone, but the lowering code will expect the chain based on the 4810 // definition. 4811 const Function *F = I.getCalledFunction(); 4812 bool HasChain = !F->doesNotAccessMemory(); 4813 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4814 4815 // Build the operand list. 4816 SmallVector<SDValue, 8> Ops; 4817 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4818 if (OnlyLoad) { 4819 // We don't need to serialize loads against other loads. 4820 Ops.push_back(DAG.getRoot()); 4821 } else { 4822 Ops.push_back(getRoot()); 4823 } 4824 } 4825 4826 // Info is set by getTgtMemInstrinsic 4827 TargetLowering::IntrinsicInfo Info; 4828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4829 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4830 DAG.getMachineFunction(), 4831 Intrinsic); 4832 4833 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4834 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4835 Info.opc == ISD::INTRINSIC_W_CHAIN) 4836 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4837 TLI.getPointerTy(DAG.getDataLayout()))); 4838 4839 // Add all operands of the call to the operand list. 4840 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4841 const Value *Arg = I.getArgOperand(i); 4842 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4843 Ops.push_back(getValue(Arg)); 4844 continue; 4845 } 4846 4847 // Use TargetConstant instead of a regular constant for immarg. 4848 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4849 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4850 assert(CI->getBitWidth() <= 64 && 4851 "large intrinsic immediates not handled"); 4852 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4853 } else { 4854 Ops.push_back( 4855 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4856 } 4857 } 4858 4859 SmallVector<EVT, 4> ValueVTs; 4860 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4861 4862 if (HasChain) 4863 ValueVTs.push_back(MVT::Other); 4864 4865 SDVTList VTs = DAG.getVTList(ValueVTs); 4866 4867 // Create the node. 4868 SDValue Result; 4869 if (IsTgtIntrinsic) { 4870 // This is target intrinsic that touches memory 4871 AAMDNodes AAInfo; 4872 I.getAAMetadata(AAInfo); 4873 Result = DAG.getMemIntrinsicNode( 4874 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4875 MachinePointerInfo(Info.ptrVal, Info.offset), 4876 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4877 } else if (!HasChain) { 4878 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4879 } else if (!I.getType()->isVoidTy()) { 4880 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4881 } else { 4882 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4883 } 4884 4885 if (HasChain) { 4886 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4887 if (OnlyLoad) 4888 PendingLoads.push_back(Chain); 4889 else 4890 DAG.setRoot(Chain); 4891 } 4892 4893 if (!I.getType()->isVoidTy()) { 4894 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4895 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4896 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4897 } else 4898 Result = lowerRangeToAssertZExt(DAG, I, Result); 4899 4900 setValue(&I, Result); 4901 } 4902 } 4903 4904 /// GetSignificand - Get the significand and build it into a floating-point 4905 /// number with exponent of 1: 4906 /// 4907 /// Op = (Op & 0x007fffff) | 0x3f800000; 4908 /// 4909 /// where Op is the hexadecimal representation of floating point value. 4910 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4911 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4912 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4913 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4914 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4915 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4916 } 4917 4918 /// GetExponent - Get the exponent: 4919 /// 4920 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4921 /// 4922 /// where Op is the hexadecimal representation of floating point value. 4923 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4924 const TargetLowering &TLI, const SDLoc &dl) { 4925 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4926 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4927 SDValue t1 = DAG.getNode( 4928 ISD::SRL, dl, MVT::i32, t0, 4929 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4930 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4931 DAG.getConstant(127, dl, MVT::i32)); 4932 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4933 } 4934 4935 /// getF32Constant - Get 32-bit floating point constant. 4936 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4937 const SDLoc &dl) { 4938 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4939 MVT::f32); 4940 } 4941 4942 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4943 SelectionDAG &DAG) { 4944 // TODO: What fast-math-flags should be set on the floating-point nodes? 4945 4946 // IntegerPartOfX = ((int32_t)(t0); 4947 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4948 4949 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4950 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4951 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4952 4953 // IntegerPartOfX <<= 23; 4954 IntegerPartOfX = DAG.getNode( 4955 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4956 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4957 DAG.getDataLayout()))); 4958 4959 SDValue TwoToFractionalPartOfX; 4960 if (LimitFloatPrecision <= 6) { 4961 // For floating-point precision of 6: 4962 // 4963 // TwoToFractionalPartOfX = 4964 // 0.997535578f + 4965 // (0.735607626f + 0.252464424f * x) * x; 4966 // 4967 // error 0.0144103317, which is 6 bits 4968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4969 getF32Constant(DAG, 0x3e814304, dl)); 4970 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4971 getF32Constant(DAG, 0x3f3c50c8, dl)); 4972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4973 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4974 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4975 } else if (LimitFloatPrecision <= 12) { 4976 // For floating-point precision of 12: 4977 // 4978 // TwoToFractionalPartOfX = 4979 // 0.999892986f + 4980 // (0.696457318f + 4981 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4982 // 4983 // error 0.000107046256, which is 13 to 14 bits 4984 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4985 getF32Constant(DAG, 0x3da235e3, dl)); 4986 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4987 getF32Constant(DAG, 0x3e65b8f3, dl)); 4988 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4989 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4990 getF32Constant(DAG, 0x3f324b07, dl)); 4991 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4992 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4993 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4994 } else { // LimitFloatPrecision <= 18 4995 // For floating-point precision of 18: 4996 // 4997 // TwoToFractionalPartOfX = 4998 // 0.999999982f + 4999 // (0.693148872f + 5000 // (0.240227044f + 5001 // (0.554906021e-1f + 5002 // (0.961591928e-2f + 5003 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5004 // error 2.47208000*10^(-7), which is better than 18 bits 5005 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5006 getF32Constant(DAG, 0x3924b03e, dl)); 5007 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5008 getF32Constant(DAG, 0x3ab24b87, dl)); 5009 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5010 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5011 getF32Constant(DAG, 0x3c1d8c17, dl)); 5012 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5013 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5014 getF32Constant(DAG, 0x3d634a1d, dl)); 5015 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5016 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5017 getF32Constant(DAG, 0x3e75fe14, dl)); 5018 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5019 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5020 getF32Constant(DAG, 0x3f317234, dl)); 5021 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5022 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5023 getF32Constant(DAG, 0x3f800000, dl)); 5024 } 5025 5026 // Add the exponent into the result in integer domain. 5027 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5028 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5029 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5030 } 5031 5032 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5033 /// limited-precision mode. 5034 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5035 const TargetLowering &TLI) { 5036 if (Op.getValueType() == MVT::f32 && 5037 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5038 5039 // Put the exponent in the right bit position for later addition to the 5040 // final result: 5041 // 5042 // t0 = Op * log2(e) 5043 5044 // TODO: What fast-math-flags should be set here? 5045 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5046 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5047 return getLimitedPrecisionExp2(t0, dl, DAG); 5048 } 5049 5050 // No special expansion. 5051 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5052 } 5053 5054 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5055 /// limited-precision mode. 5056 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5057 const TargetLowering &TLI) { 5058 // TODO: What fast-math-flags should be set on the floating-point nodes? 5059 5060 if (Op.getValueType() == MVT::f32 && 5061 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5062 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5063 5064 // Scale the exponent by log(2). 5065 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5066 SDValue LogOfExponent = 5067 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5068 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5069 5070 // Get the significand and build it into a floating-point number with 5071 // exponent of 1. 5072 SDValue X = GetSignificand(DAG, Op1, dl); 5073 5074 SDValue LogOfMantissa; 5075 if (LimitFloatPrecision <= 6) { 5076 // For floating-point precision of 6: 5077 // 5078 // LogofMantissa = 5079 // -1.1609546f + 5080 // (1.4034025f - 0.23903021f * x) * x; 5081 // 5082 // error 0.0034276066, which is better than 8 bits 5083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5084 getF32Constant(DAG, 0xbe74c456, dl)); 5085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5086 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5088 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5089 getF32Constant(DAG, 0x3f949a29, dl)); 5090 } else if (LimitFloatPrecision <= 12) { 5091 // For floating-point precision of 12: 5092 // 5093 // LogOfMantissa = 5094 // -1.7417939f + 5095 // (2.8212026f + 5096 // (-1.4699568f + 5097 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5098 // 5099 // error 0.000061011436, which is 14 bits 5100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5101 getF32Constant(DAG, 0xbd67b6d6, dl)); 5102 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5103 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5105 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5106 getF32Constant(DAG, 0x3fbc278b, dl)); 5107 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5108 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5109 getF32Constant(DAG, 0x40348e95, dl)); 5110 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5111 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5112 getF32Constant(DAG, 0x3fdef31a, dl)); 5113 } else { // LimitFloatPrecision <= 18 5114 // For floating-point precision of 18: 5115 // 5116 // LogOfMantissa = 5117 // -2.1072184f + 5118 // (4.2372794f + 5119 // (-3.7029485f + 5120 // (2.2781945f + 5121 // (-0.87823314f + 5122 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5123 // 5124 // error 0.0000023660568, which is better than 18 bits 5125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5126 getF32Constant(DAG, 0xbc91e5ac, dl)); 5127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5128 getF32Constant(DAG, 0x3e4350aa, dl)); 5129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5130 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5131 getF32Constant(DAG, 0x3f60d3e3, dl)); 5132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5133 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5134 getF32Constant(DAG, 0x4011cdf0, dl)); 5135 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5136 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5137 getF32Constant(DAG, 0x406cfd1c, dl)); 5138 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5139 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5140 getF32Constant(DAG, 0x408797cb, dl)); 5141 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5142 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5143 getF32Constant(DAG, 0x4006dcab, dl)); 5144 } 5145 5146 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5147 } 5148 5149 // No special expansion. 5150 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5151 } 5152 5153 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5154 /// limited-precision mode. 5155 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5156 const TargetLowering &TLI) { 5157 // TODO: What fast-math-flags should be set on the floating-point nodes? 5158 5159 if (Op.getValueType() == MVT::f32 && 5160 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5161 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5162 5163 // Get the exponent. 5164 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5165 5166 // Get the significand and build it into a floating-point number with 5167 // exponent of 1. 5168 SDValue X = GetSignificand(DAG, Op1, dl); 5169 5170 // Different possible minimax approximations of significand in 5171 // floating-point for various degrees of accuracy over [1,2]. 5172 SDValue Log2ofMantissa; 5173 if (LimitFloatPrecision <= 6) { 5174 // For floating-point precision of 6: 5175 // 5176 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5177 // 5178 // error 0.0049451742, which is more than 7 bits 5179 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5180 getF32Constant(DAG, 0xbeb08fe0, dl)); 5181 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5182 getF32Constant(DAG, 0x40019463, dl)); 5183 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5184 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5185 getF32Constant(DAG, 0x3fd6633d, dl)); 5186 } else if (LimitFloatPrecision <= 12) { 5187 // For floating-point precision of 12: 5188 // 5189 // Log2ofMantissa = 5190 // -2.51285454f + 5191 // (4.07009056f + 5192 // (-2.12067489f + 5193 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5194 // 5195 // error 0.0000876136000, which is better than 13 bits 5196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5197 getF32Constant(DAG, 0xbda7262e, dl)); 5198 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5199 getF32Constant(DAG, 0x3f25280b, dl)); 5200 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5201 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5202 getF32Constant(DAG, 0x4007b923, dl)); 5203 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5204 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5205 getF32Constant(DAG, 0x40823e2f, dl)); 5206 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5207 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5208 getF32Constant(DAG, 0x4020d29c, dl)); 5209 } else { // LimitFloatPrecision <= 18 5210 // For floating-point precision of 18: 5211 // 5212 // Log2ofMantissa = 5213 // -3.0400495f + 5214 // (6.1129976f + 5215 // (-5.3420409f + 5216 // (3.2865683f + 5217 // (-1.2669343f + 5218 // (0.27515199f - 5219 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5220 // 5221 // error 0.0000018516, which is better than 18 bits 5222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5223 getF32Constant(DAG, 0xbcd2769e, dl)); 5224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5225 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5227 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5228 getF32Constant(DAG, 0x3fa22ae7, dl)); 5229 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5230 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5231 getF32Constant(DAG, 0x40525723, dl)); 5232 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5233 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5234 getF32Constant(DAG, 0x40aaf200, dl)); 5235 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5236 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5237 getF32Constant(DAG, 0x40c39dad, dl)); 5238 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5239 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5240 getF32Constant(DAG, 0x4042902c, dl)); 5241 } 5242 5243 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5244 } 5245 5246 // No special expansion. 5247 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5248 } 5249 5250 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5251 /// limited-precision mode. 5252 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5253 const TargetLowering &TLI) { 5254 // TODO: What fast-math-flags should be set on the floating-point nodes? 5255 5256 if (Op.getValueType() == MVT::f32 && 5257 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5258 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5259 5260 // Scale the exponent by log10(2) [0.30102999f]. 5261 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5262 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5263 getF32Constant(DAG, 0x3e9a209a, dl)); 5264 5265 // Get the significand and build it into a floating-point number with 5266 // exponent of 1. 5267 SDValue X = GetSignificand(DAG, Op1, dl); 5268 5269 SDValue Log10ofMantissa; 5270 if (LimitFloatPrecision <= 6) { 5271 // For floating-point precision of 6: 5272 // 5273 // Log10ofMantissa = 5274 // -0.50419619f + 5275 // (0.60948995f - 0.10380950f * x) * x; 5276 // 5277 // error 0.0014886165, which is 6 bits 5278 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5279 getF32Constant(DAG, 0xbdd49a13, dl)); 5280 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5281 getF32Constant(DAG, 0x3f1c0789, dl)); 5282 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5283 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5284 getF32Constant(DAG, 0x3f011300, dl)); 5285 } else if (LimitFloatPrecision <= 12) { 5286 // For floating-point precision of 12: 5287 // 5288 // Log10ofMantissa = 5289 // -0.64831180f + 5290 // (0.91751397f + 5291 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5292 // 5293 // error 0.00019228036, which is better than 12 bits 5294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5295 getF32Constant(DAG, 0x3d431f31, dl)); 5296 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5297 getF32Constant(DAG, 0x3ea21fb2, dl)); 5298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5299 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5300 getF32Constant(DAG, 0x3f6ae232, dl)); 5301 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5302 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5303 getF32Constant(DAG, 0x3f25f7c3, dl)); 5304 } else { // LimitFloatPrecision <= 18 5305 // For floating-point precision of 18: 5306 // 5307 // Log10ofMantissa = 5308 // -0.84299375f + 5309 // (1.5327582f + 5310 // (-1.0688956f + 5311 // (0.49102474f + 5312 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5313 // 5314 // error 0.0000037995730, which is better than 18 bits 5315 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5316 getF32Constant(DAG, 0x3c5d51ce, dl)); 5317 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5318 getF32Constant(DAG, 0x3e00685a, dl)); 5319 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5320 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5321 getF32Constant(DAG, 0x3efb6798, dl)); 5322 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5323 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5324 getF32Constant(DAG, 0x3f88d192, dl)); 5325 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5326 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5327 getF32Constant(DAG, 0x3fc4316c, dl)); 5328 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5329 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5330 getF32Constant(DAG, 0x3f57ce70, dl)); 5331 } 5332 5333 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5334 } 5335 5336 // No special expansion. 5337 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5338 } 5339 5340 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5341 /// limited-precision mode. 5342 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5343 const TargetLowering &TLI) { 5344 if (Op.getValueType() == MVT::f32 && 5345 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5346 return getLimitedPrecisionExp2(Op, dl, DAG); 5347 5348 // No special expansion. 5349 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5350 } 5351 5352 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5353 /// limited-precision mode with x == 10.0f. 5354 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5355 SelectionDAG &DAG, const TargetLowering &TLI) { 5356 bool IsExp10 = false; 5357 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5358 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5359 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5360 APFloat Ten(10.0f); 5361 IsExp10 = LHSC->isExactlyValue(Ten); 5362 } 5363 } 5364 5365 // TODO: What fast-math-flags should be set on the FMUL node? 5366 if (IsExp10) { 5367 // Put the exponent in the right bit position for later addition to the 5368 // final result: 5369 // 5370 // #define LOG2OF10 3.3219281f 5371 // t0 = Op * LOG2OF10; 5372 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5373 getF32Constant(DAG, 0x40549a78, dl)); 5374 return getLimitedPrecisionExp2(t0, dl, DAG); 5375 } 5376 5377 // No special expansion. 5378 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5379 } 5380 5381 /// ExpandPowI - Expand a llvm.powi intrinsic. 5382 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5383 SelectionDAG &DAG) { 5384 // If RHS is a constant, we can expand this out to a multiplication tree, 5385 // otherwise we end up lowering to a call to __powidf2 (for example). When 5386 // optimizing for size, we only want to do this if the expansion would produce 5387 // a small number of multiplies, otherwise we do the full expansion. 5388 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5389 // Get the exponent as a positive value. 5390 unsigned Val = RHSC->getSExtValue(); 5391 if ((int)Val < 0) Val = -Val; 5392 5393 // powi(x, 0) -> 1.0 5394 if (Val == 0) 5395 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5396 5397 bool OptForSize = DAG.shouldOptForSize(); 5398 if (!OptForSize || 5399 // If optimizing for size, don't insert too many multiplies. 5400 // This inserts up to 5 multiplies. 5401 countPopulation(Val) + Log2_32(Val) < 7) { 5402 // We use the simple binary decomposition method to generate the multiply 5403 // sequence. There are more optimal ways to do this (for example, 5404 // powi(x,15) generates one more multiply than it should), but this has 5405 // the benefit of being both really simple and much better than a libcall. 5406 SDValue Res; // Logically starts equal to 1.0 5407 SDValue CurSquare = LHS; 5408 // TODO: Intrinsics should have fast-math-flags that propagate to these 5409 // nodes. 5410 while (Val) { 5411 if (Val & 1) { 5412 if (Res.getNode()) 5413 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5414 else 5415 Res = CurSquare; // 1.0*CurSquare. 5416 } 5417 5418 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5419 CurSquare, CurSquare); 5420 Val >>= 1; 5421 } 5422 5423 // If the original was negative, invert the result, producing 1/(x*x*x). 5424 if (RHSC->getSExtValue() < 0) 5425 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5426 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5427 return Res; 5428 } 5429 } 5430 5431 // Otherwise, expand to a libcall. 5432 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5433 } 5434 5435 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5436 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5437 static void 5438 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5439 const SDValue &N) { 5440 switch (N.getOpcode()) { 5441 case ISD::CopyFromReg: { 5442 SDValue Op = N.getOperand(1); 5443 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5444 Op.getValueType().getSizeInBits()); 5445 return; 5446 } 5447 case ISD::BITCAST: 5448 case ISD::AssertZext: 5449 case ISD::AssertSext: 5450 case ISD::TRUNCATE: 5451 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5452 return; 5453 case ISD::BUILD_PAIR: 5454 case ISD::BUILD_VECTOR: 5455 case ISD::CONCAT_VECTORS: 5456 for (SDValue Op : N->op_values()) 5457 getUnderlyingArgRegs(Regs, Op); 5458 return; 5459 default: 5460 return; 5461 } 5462 } 5463 5464 /// If the DbgValueInst is a dbg_value of a function argument, create the 5465 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5466 /// instruction selection, they will be inserted to the entry BB. 5467 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5468 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5469 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5470 const Argument *Arg = dyn_cast<Argument>(V); 5471 if (!Arg) 5472 return false; 5473 5474 if (!IsDbgDeclare) { 5475 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5476 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5477 // the entry block. 5478 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5479 if (!IsInEntryBlock) 5480 return false; 5481 5482 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5483 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5484 // variable that also is a param. 5485 // 5486 // Although, if we are at the top of the entry block already, we can still 5487 // emit using ArgDbgValue. This might catch some situations when the 5488 // dbg.value refers to an argument that isn't used in the entry block, so 5489 // any CopyToReg node would be optimized out and the only way to express 5490 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5491 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5492 // we should only emit as ArgDbgValue if the Variable is an argument to the 5493 // current function, and the dbg.value intrinsic is found in the entry 5494 // block. 5495 bool VariableIsFunctionInputArg = Variable->isParameter() && 5496 !DL->getInlinedAt(); 5497 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5498 if (!IsInPrologue && !VariableIsFunctionInputArg) 5499 return false; 5500 5501 // Here we assume that a function argument on IR level only can be used to 5502 // describe one input parameter on source level. If we for example have 5503 // source code like this 5504 // 5505 // struct A { long x, y; }; 5506 // void foo(struct A a, long b) { 5507 // ... 5508 // b = a.x; 5509 // ... 5510 // } 5511 // 5512 // and IR like this 5513 // 5514 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5515 // entry: 5516 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5517 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5518 // call void @llvm.dbg.value(metadata i32 %b, "b", 5519 // ... 5520 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5521 // ... 5522 // 5523 // then the last dbg.value is describing a parameter "b" using a value that 5524 // is an argument. But since we already has used %a1 to describe a parameter 5525 // we should not handle that last dbg.value here (that would result in an 5526 // incorrect hoisting of the DBG_VALUE to the function entry). 5527 // Notice that we allow one dbg.value per IR level argument, to accommodate 5528 // for the situation with fragments above. 5529 if (VariableIsFunctionInputArg) { 5530 unsigned ArgNo = Arg->getArgNo(); 5531 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5532 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5533 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5534 return false; 5535 FuncInfo.DescribedArgs.set(ArgNo); 5536 } 5537 } 5538 5539 MachineFunction &MF = DAG.getMachineFunction(); 5540 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5541 5542 Optional<MachineOperand> Op; 5543 // Some arguments' frame index is recorded during argument lowering. 5544 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5545 if (FI != std::numeric_limits<int>::max()) 5546 Op = MachineOperand::CreateFI(FI); 5547 5548 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5549 if (!Op && N.getNode()) { 5550 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5551 Register Reg; 5552 if (ArgRegsAndSizes.size() == 1) 5553 Reg = ArgRegsAndSizes.front().first; 5554 5555 if (Reg && Reg.isVirtual()) { 5556 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5557 Register PR = RegInfo.getLiveInPhysReg(Reg); 5558 if (PR) 5559 Reg = PR; 5560 } 5561 if (Reg) { 5562 Op = MachineOperand::CreateReg(Reg, false); 5563 } 5564 } 5565 5566 if (!Op && N.getNode()) { 5567 // Check if frame index is available. 5568 SDValue LCandidate = peekThroughBitcasts(N); 5569 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5570 if (FrameIndexSDNode *FINode = 5571 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5572 Op = MachineOperand::CreateFI(FINode->getIndex()); 5573 } 5574 5575 if (!Op) { 5576 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5577 auto splitMultiRegDbgValue 5578 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5579 unsigned Offset = 0; 5580 for (auto RegAndSize : SplitRegs) { 5581 // If the expression is already a fragment, the current register 5582 // offset+size might extend beyond the fragment. In this case, only 5583 // the register bits that are inside the fragment are relevant. 5584 int RegFragmentSizeInBits = RegAndSize.second; 5585 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5586 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5587 // The register is entirely outside the expression fragment, 5588 // so is irrelevant for debug info. 5589 if (Offset >= ExprFragmentSizeInBits) 5590 break; 5591 // The register is partially outside the expression fragment, only 5592 // the low bits within the fragment are relevant for debug info. 5593 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5594 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5595 } 5596 } 5597 5598 auto FragmentExpr = DIExpression::createFragmentExpression( 5599 Expr, Offset, RegFragmentSizeInBits); 5600 Offset += RegAndSize.second; 5601 // If a valid fragment expression cannot be created, the variable's 5602 // correct value cannot be determined and so it is set as Undef. 5603 if (!FragmentExpr) { 5604 SDDbgValue *SDV = DAG.getConstantDbgValue( 5605 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5606 DAG.AddDbgValue(SDV, nullptr, false); 5607 continue; 5608 } 5609 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5610 FuncInfo.ArgDbgValues.push_back( 5611 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5612 RegAndSize.first, Variable, *FragmentExpr)); 5613 } 5614 }; 5615 5616 // Check if ValueMap has reg number. 5617 DenseMap<const Value *, unsigned>::const_iterator 5618 VMI = FuncInfo.ValueMap.find(V); 5619 if (VMI != FuncInfo.ValueMap.end()) { 5620 const auto &TLI = DAG.getTargetLoweringInfo(); 5621 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5622 V->getType(), getABIRegCopyCC(V)); 5623 if (RFV.occupiesMultipleRegs()) { 5624 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5625 return true; 5626 } 5627 5628 Op = MachineOperand::CreateReg(VMI->second, false); 5629 } else if (ArgRegsAndSizes.size() > 1) { 5630 // This was split due to the calling convention, and no virtual register 5631 // mapping exists for the value. 5632 splitMultiRegDbgValue(ArgRegsAndSizes); 5633 return true; 5634 } 5635 } 5636 5637 if (!Op) 5638 return false; 5639 5640 assert(Variable->isValidLocationForIntrinsic(DL) && 5641 "Expected inlined-at fields to agree"); 5642 5643 // If the argument arrives in a stack slot, then what the IR thought was a 5644 // normal Value is actually in memory, and we must add a deref to load it. 5645 if (Op->isFI()) { 5646 int FI = Op->getIndex(); 5647 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5648 if (Expr->isImplicit()) { 5649 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5650 Expr = DIExpression::prependOpcodes(Expr, Ops); 5651 } else { 5652 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5653 } 5654 } 5655 5656 // If this location was specified with a dbg.declare, then it and its 5657 // expression calculate the address of the variable. Append a deref to 5658 // force it to be a memory location. 5659 if (IsDbgDeclare) 5660 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5661 5662 FuncInfo.ArgDbgValues.push_back( 5663 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5664 *Op, Variable, Expr)); 5665 5666 return true; 5667 } 5668 5669 /// Return the appropriate SDDbgValue based on N. 5670 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5671 DILocalVariable *Variable, 5672 DIExpression *Expr, 5673 const DebugLoc &dl, 5674 unsigned DbgSDNodeOrder) { 5675 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5676 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5677 // stack slot locations. 5678 // 5679 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5680 // debug values here after optimization: 5681 // 5682 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5683 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5684 // 5685 // Both describe the direct values of their associated variables. 5686 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5687 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5688 } 5689 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5690 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5691 } 5692 5693 // VisualStudio defines setjmp as _setjmp 5694 #if defined(_MSC_VER) && defined(setjmp) && \ 5695 !defined(setjmp_undefined_for_msvc) 5696 # pragma push_macro("setjmp") 5697 # undef setjmp 5698 # define setjmp_undefined_for_msvc 5699 #endif 5700 5701 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5702 switch (Intrinsic) { 5703 case Intrinsic::smul_fix: 5704 return ISD::SMULFIX; 5705 case Intrinsic::umul_fix: 5706 return ISD::UMULFIX; 5707 default: 5708 llvm_unreachable("Unhandled fixed point intrinsic"); 5709 } 5710 } 5711 5712 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5713 const char *FunctionName) { 5714 assert(FunctionName && "FunctionName must not be nullptr"); 5715 SDValue Callee = DAG.getExternalSymbol( 5716 FunctionName, 5717 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5718 LowerCallTo(&I, Callee, I.isTailCall()); 5719 } 5720 5721 /// Lower the call to the specified intrinsic function. 5722 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5723 unsigned Intrinsic) { 5724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5725 SDLoc sdl = getCurSDLoc(); 5726 DebugLoc dl = getCurDebugLoc(); 5727 SDValue Res; 5728 5729 switch (Intrinsic) { 5730 default: 5731 // By default, turn this into a target intrinsic node. 5732 visitTargetIntrinsic(I, Intrinsic); 5733 return; 5734 case Intrinsic::vastart: visitVAStart(I); return; 5735 case Intrinsic::vaend: visitVAEnd(I); return; 5736 case Intrinsic::vacopy: visitVACopy(I); return; 5737 case Intrinsic::returnaddress: 5738 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5739 TLI.getPointerTy(DAG.getDataLayout()), 5740 getValue(I.getArgOperand(0)))); 5741 return; 5742 case Intrinsic::addressofreturnaddress: 5743 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5744 TLI.getPointerTy(DAG.getDataLayout()))); 5745 return; 5746 case Intrinsic::sponentry: 5747 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5748 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5749 return; 5750 case Intrinsic::frameaddress: 5751 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5752 TLI.getFrameIndexTy(DAG.getDataLayout()), 5753 getValue(I.getArgOperand(0)))); 5754 return; 5755 case Intrinsic::read_register: { 5756 Value *Reg = I.getArgOperand(0); 5757 SDValue Chain = getRoot(); 5758 SDValue RegName = 5759 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5760 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5761 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5762 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5763 setValue(&I, Res); 5764 DAG.setRoot(Res.getValue(1)); 5765 return; 5766 } 5767 case Intrinsic::write_register: { 5768 Value *Reg = I.getArgOperand(0); 5769 Value *RegValue = I.getArgOperand(1); 5770 SDValue Chain = getRoot(); 5771 SDValue RegName = 5772 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5773 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5774 RegName, getValue(RegValue))); 5775 return; 5776 } 5777 case Intrinsic::setjmp: 5778 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5779 return; 5780 case Intrinsic::longjmp: 5781 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5782 return; 5783 case Intrinsic::memcpy: { 5784 const auto &MCI = cast<MemCpyInst>(I); 5785 SDValue Op1 = getValue(I.getArgOperand(0)); 5786 SDValue Op2 = getValue(I.getArgOperand(1)); 5787 SDValue Op3 = getValue(I.getArgOperand(2)); 5788 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5789 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5790 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5791 unsigned Align = MinAlign(DstAlign, SrcAlign); 5792 bool isVol = MCI.isVolatile(); 5793 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5794 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5795 // node. 5796 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5797 false, isTC, 5798 MachinePointerInfo(I.getArgOperand(0)), 5799 MachinePointerInfo(I.getArgOperand(1))); 5800 updateDAGForMaybeTailCall(MC); 5801 return; 5802 } 5803 case Intrinsic::memset: { 5804 const auto &MSI = cast<MemSetInst>(I); 5805 SDValue Op1 = getValue(I.getArgOperand(0)); 5806 SDValue Op2 = getValue(I.getArgOperand(1)); 5807 SDValue Op3 = getValue(I.getArgOperand(2)); 5808 // @llvm.memset defines 0 and 1 to both mean no alignment. 5809 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5810 bool isVol = MSI.isVolatile(); 5811 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5812 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5813 isTC, MachinePointerInfo(I.getArgOperand(0))); 5814 updateDAGForMaybeTailCall(MS); 5815 return; 5816 } 5817 case Intrinsic::memmove: { 5818 const auto &MMI = cast<MemMoveInst>(I); 5819 SDValue Op1 = getValue(I.getArgOperand(0)); 5820 SDValue Op2 = getValue(I.getArgOperand(1)); 5821 SDValue Op3 = getValue(I.getArgOperand(2)); 5822 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5823 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5824 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5825 unsigned Align = MinAlign(DstAlign, SrcAlign); 5826 bool isVol = MMI.isVolatile(); 5827 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5828 // FIXME: Support passing different dest/src alignments to the memmove DAG 5829 // node. 5830 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5831 isTC, MachinePointerInfo(I.getArgOperand(0)), 5832 MachinePointerInfo(I.getArgOperand(1))); 5833 updateDAGForMaybeTailCall(MM); 5834 return; 5835 } 5836 case Intrinsic::memcpy_element_unordered_atomic: { 5837 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5838 SDValue Dst = getValue(MI.getRawDest()); 5839 SDValue Src = getValue(MI.getRawSource()); 5840 SDValue Length = getValue(MI.getLength()); 5841 5842 unsigned DstAlign = MI.getDestAlignment(); 5843 unsigned SrcAlign = MI.getSourceAlignment(); 5844 Type *LengthTy = MI.getLength()->getType(); 5845 unsigned ElemSz = MI.getElementSizeInBytes(); 5846 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5847 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5848 SrcAlign, Length, LengthTy, ElemSz, isTC, 5849 MachinePointerInfo(MI.getRawDest()), 5850 MachinePointerInfo(MI.getRawSource())); 5851 updateDAGForMaybeTailCall(MC); 5852 return; 5853 } 5854 case Intrinsic::memmove_element_unordered_atomic: { 5855 auto &MI = cast<AtomicMemMoveInst>(I); 5856 SDValue Dst = getValue(MI.getRawDest()); 5857 SDValue Src = getValue(MI.getRawSource()); 5858 SDValue Length = getValue(MI.getLength()); 5859 5860 unsigned DstAlign = MI.getDestAlignment(); 5861 unsigned SrcAlign = MI.getSourceAlignment(); 5862 Type *LengthTy = MI.getLength()->getType(); 5863 unsigned ElemSz = MI.getElementSizeInBytes(); 5864 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5865 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5866 SrcAlign, Length, LengthTy, ElemSz, isTC, 5867 MachinePointerInfo(MI.getRawDest()), 5868 MachinePointerInfo(MI.getRawSource())); 5869 updateDAGForMaybeTailCall(MC); 5870 return; 5871 } 5872 case Intrinsic::memset_element_unordered_atomic: { 5873 auto &MI = cast<AtomicMemSetInst>(I); 5874 SDValue Dst = getValue(MI.getRawDest()); 5875 SDValue Val = getValue(MI.getValue()); 5876 SDValue Length = getValue(MI.getLength()); 5877 5878 unsigned DstAlign = MI.getDestAlignment(); 5879 Type *LengthTy = MI.getLength()->getType(); 5880 unsigned ElemSz = MI.getElementSizeInBytes(); 5881 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5882 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5883 LengthTy, ElemSz, isTC, 5884 MachinePointerInfo(MI.getRawDest())); 5885 updateDAGForMaybeTailCall(MC); 5886 return; 5887 } 5888 case Intrinsic::dbg_addr: 5889 case Intrinsic::dbg_declare: { 5890 const auto &DI = cast<DbgVariableIntrinsic>(I); 5891 DILocalVariable *Variable = DI.getVariable(); 5892 DIExpression *Expression = DI.getExpression(); 5893 dropDanglingDebugInfo(Variable, Expression); 5894 assert(Variable && "Missing variable"); 5895 5896 // Check if address has undef value. 5897 const Value *Address = DI.getVariableLocation(); 5898 if (!Address || isa<UndefValue>(Address) || 5899 (Address->use_empty() && !isa<Argument>(Address))) { 5900 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5901 return; 5902 } 5903 5904 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5905 5906 // Check if this variable can be described by a frame index, typically 5907 // either as a static alloca or a byval parameter. 5908 int FI = std::numeric_limits<int>::max(); 5909 if (const auto *AI = 5910 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5911 if (AI->isStaticAlloca()) { 5912 auto I = FuncInfo.StaticAllocaMap.find(AI); 5913 if (I != FuncInfo.StaticAllocaMap.end()) 5914 FI = I->second; 5915 } 5916 } else if (const auto *Arg = dyn_cast<Argument>( 5917 Address->stripInBoundsConstantOffsets())) { 5918 FI = FuncInfo.getArgumentFrameIndex(Arg); 5919 } 5920 5921 // llvm.dbg.addr is control dependent and always generates indirect 5922 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5923 // the MachineFunction variable table. 5924 if (FI != std::numeric_limits<int>::max()) { 5925 if (Intrinsic == Intrinsic::dbg_addr) { 5926 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5927 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5928 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5929 } 5930 return; 5931 } 5932 5933 SDValue &N = NodeMap[Address]; 5934 if (!N.getNode() && isa<Argument>(Address)) 5935 // Check unused arguments map. 5936 N = UnusedArgNodeMap[Address]; 5937 SDDbgValue *SDV; 5938 if (N.getNode()) { 5939 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5940 Address = BCI->getOperand(0); 5941 // Parameters are handled specially. 5942 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5943 if (isParameter && FINode) { 5944 // Byval parameter. We have a frame index at this point. 5945 SDV = 5946 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5947 /*IsIndirect*/ true, dl, SDNodeOrder); 5948 } else if (isa<Argument>(Address)) { 5949 // Address is an argument, so try to emit its dbg value using 5950 // virtual register info from the FuncInfo.ValueMap. 5951 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5952 return; 5953 } else { 5954 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5955 true, dl, SDNodeOrder); 5956 } 5957 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5958 } else { 5959 // If Address is an argument then try to emit its dbg value using 5960 // virtual register info from the FuncInfo.ValueMap. 5961 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5962 N)) { 5963 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5964 } 5965 } 5966 return; 5967 } 5968 case Intrinsic::dbg_label: { 5969 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5970 DILabel *Label = DI.getLabel(); 5971 assert(Label && "Missing label"); 5972 5973 SDDbgLabel *SDV; 5974 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5975 DAG.AddDbgLabel(SDV); 5976 return; 5977 } 5978 case Intrinsic::dbg_value: { 5979 const DbgValueInst &DI = cast<DbgValueInst>(I); 5980 assert(DI.getVariable() && "Missing variable"); 5981 5982 DILocalVariable *Variable = DI.getVariable(); 5983 DIExpression *Expression = DI.getExpression(); 5984 dropDanglingDebugInfo(Variable, Expression); 5985 const Value *V = DI.getValue(); 5986 if (!V) 5987 return; 5988 5989 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5990 SDNodeOrder)) 5991 return; 5992 5993 // TODO: Dangling debug info will eventually either be resolved or produce 5994 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5995 // between the original dbg.value location and its resolved DBG_VALUE, which 5996 // we should ideally fill with an extra Undef DBG_VALUE. 5997 5998 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5999 return; 6000 } 6001 6002 case Intrinsic::eh_typeid_for: { 6003 // Find the type id for the given typeinfo. 6004 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6005 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6006 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6007 setValue(&I, Res); 6008 return; 6009 } 6010 6011 case Intrinsic::eh_return_i32: 6012 case Intrinsic::eh_return_i64: 6013 DAG.getMachineFunction().setCallsEHReturn(true); 6014 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6015 MVT::Other, 6016 getControlRoot(), 6017 getValue(I.getArgOperand(0)), 6018 getValue(I.getArgOperand(1)))); 6019 return; 6020 case Intrinsic::eh_unwind_init: 6021 DAG.getMachineFunction().setCallsUnwindInit(true); 6022 return; 6023 case Intrinsic::eh_dwarf_cfa: 6024 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6025 TLI.getPointerTy(DAG.getDataLayout()), 6026 getValue(I.getArgOperand(0)))); 6027 return; 6028 case Intrinsic::eh_sjlj_callsite: { 6029 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6030 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6031 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6032 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6033 6034 MMI.setCurrentCallSite(CI->getZExtValue()); 6035 return; 6036 } 6037 case Intrinsic::eh_sjlj_functioncontext: { 6038 // Get and store the index of the function context. 6039 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6040 AllocaInst *FnCtx = 6041 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6042 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6043 MFI.setFunctionContextIndex(FI); 6044 return; 6045 } 6046 case Intrinsic::eh_sjlj_setjmp: { 6047 SDValue Ops[2]; 6048 Ops[0] = getRoot(); 6049 Ops[1] = getValue(I.getArgOperand(0)); 6050 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6051 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6052 setValue(&I, Op.getValue(0)); 6053 DAG.setRoot(Op.getValue(1)); 6054 return; 6055 } 6056 case Intrinsic::eh_sjlj_longjmp: 6057 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6058 getRoot(), getValue(I.getArgOperand(0)))); 6059 return; 6060 case Intrinsic::eh_sjlj_setup_dispatch: 6061 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6062 getRoot())); 6063 return; 6064 case Intrinsic::masked_gather: 6065 visitMaskedGather(I); 6066 return; 6067 case Intrinsic::masked_load: 6068 visitMaskedLoad(I); 6069 return; 6070 case Intrinsic::masked_scatter: 6071 visitMaskedScatter(I); 6072 return; 6073 case Intrinsic::masked_store: 6074 visitMaskedStore(I); 6075 return; 6076 case Intrinsic::masked_expandload: 6077 visitMaskedLoad(I, true /* IsExpanding */); 6078 return; 6079 case Intrinsic::masked_compressstore: 6080 visitMaskedStore(I, true /* IsCompressing */); 6081 return; 6082 case Intrinsic::powi: 6083 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6084 getValue(I.getArgOperand(1)), DAG)); 6085 return; 6086 case Intrinsic::log: 6087 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6088 return; 6089 case Intrinsic::log2: 6090 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6091 return; 6092 case Intrinsic::log10: 6093 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6094 return; 6095 case Intrinsic::exp: 6096 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6097 return; 6098 case Intrinsic::exp2: 6099 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6100 return; 6101 case Intrinsic::pow: 6102 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6103 getValue(I.getArgOperand(1)), DAG, TLI)); 6104 return; 6105 case Intrinsic::sqrt: 6106 case Intrinsic::fabs: 6107 case Intrinsic::sin: 6108 case Intrinsic::cos: 6109 case Intrinsic::floor: 6110 case Intrinsic::ceil: 6111 case Intrinsic::trunc: 6112 case Intrinsic::rint: 6113 case Intrinsic::nearbyint: 6114 case Intrinsic::round: 6115 case Intrinsic::canonicalize: { 6116 unsigned Opcode; 6117 switch (Intrinsic) { 6118 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6119 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6120 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6121 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6122 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6123 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6124 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6125 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6126 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6127 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6128 case Intrinsic::round: Opcode = ISD::FROUND; break; 6129 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6130 } 6131 6132 setValue(&I, DAG.getNode(Opcode, sdl, 6133 getValue(I.getArgOperand(0)).getValueType(), 6134 getValue(I.getArgOperand(0)))); 6135 return; 6136 } 6137 case Intrinsic::lround: 6138 case Intrinsic::llround: 6139 case Intrinsic::lrint: 6140 case Intrinsic::llrint: { 6141 unsigned Opcode; 6142 switch (Intrinsic) { 6143 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6144 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6145 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6146 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6147 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6148 } 6149 6150 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6151 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6152 getValue(I.getArgOperand(0)))); 6153 return; 6154 } 6155 case Intrinsic::minnum: 6156 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6157 getValue(I.getArgOperand(0)).getValueType(), 6158 getValue(I.getArgOperand(0)), 6159 getValue(I.getArgOperand(1)))); 6160 return; 6161 case Intrinsic::maxnum: 6162 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6163 getValue(I.getArgOperand(0)).getValueType(), 6164 getValue(I.getArgOperand(0)), 6165 getValue(I.getArgOperand(1)))); 6166 return; 6167 case Intrinsic::minimum: 6168 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6169 getValue(I.getArgOperand(0)).getValueType(), 6170 getValue(I.getArgOperand(0)), 6171 getValue(I.getArgOperand(1)))); 6172 return; 6173 case Intrinsic::maximum: 6174 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6175 getValue(I.getArgOperand(0)).getValueType(), 6176 getValue(I.getArgOperand(0)), 6177 getValue(I.getArgOperand(1)))); 6178 return; 6179 case Intrinsic::copysign: 6180 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6181 getValue(I.getArgOperand(0)).getValueType(), 6182 getValue(I.getArgOperand(0)), 6183 getValue(I.getArgOperand(1)))); 6184 return; 6185 case Intrinsic::fma: 6186 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6187 getValue(I.getArgOperand(0)).getValueType(), 6188 getValue(I.getArgOperand(0)), 6189 getValue(I.getArgOperand(1)), 6190 getValue(I.getArgOperand(2)))); 6191 return; 6192 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6193 case Intrinsic::INTRINSIC: 6194 #include "llvm/IR/ConstrainedOps.def" 6195 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6196 return; 6197 case Intrinsic::fmuladd: { 6198 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6199 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6200 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6201 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6202 getValue(I.getArgOperand(0)).getValueType(), 6203 getValue(I.getArgOperand(0)), 6204 getValue(I.getArgOperand(1)), 6205 getValue(I.getArgOperand(2)))); 6206 } else { 6207 // TODO: Intrinsic calls should have fast-math-flags. 6208 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6209 getValue(I.getArgOperand(0)).getValueType(), 6210 getValue(I.getArgOperand(0)), 6211 getValue(I.getArgOperand(1))); 6212 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6213 getValue(I.getArgOperand(0)).getValueType(), 6214 Mul, 6215 getValue(I.getArgOperand(2))); 6216 setValue(&I, Add); 6217 } 6218 return; 6219 } 6220 case Intrinsic::convert_to_fp16: 6221 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6222 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6223 getValue(I.getArgOperand(0)), 6224 DAG.getTargetConstant(0, sdl, 6225 MVT::i32)))); 6226 return; 6227 case Intrinsic::convert_from_fp16: 6228 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6229 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6230 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6231 getValue(I.getArgOperand(0))))); 6232 return; 6233 case Intrinsic::pcmarker: { 6234 SDValue Tmp = getValue(I.getArgOperand(0)); 6235 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6236 return; 6237 } 6238 case Intrinsic::readcyclecounter: { 6239 SDValue Op = getRoot(); 6240 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6241 DAG.getVTList(MVT::i64, MVT::Other), Op); 6242 setValue(&I, Res); 6243 DAG.setRoot(Res.getValue(1)); 6244 return; 6245 } 6246 case Intrinsic::bitreverse: 6247 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6248 getValue(I.getArgOperand(0)).getValueType(), 6249 getValue(I.getArgOperand(0)))); 6250 return; 6251 case Intrinsic::bswap: 6252 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6253 getValue(I.getArgOperand(0)).getValueType(), 6254 getValue(I.getArgOperand(0)))); 6255 return; 6256 case Intrinsic::cttz: { 6257 SDValue Arg = getValue(I.getArgOperand(0)); 6258 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6259 EVT Ty = Arg.getValueType(); 6260 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6261 sdl, Ty, Arg)); 6262 return; 6263 } 6264 case Intrinsic::ctlz: { 6265 SDValue Arg = getValue(I.getArgOperand(0)); 6266 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6267 EVT Ty = Arg.getValueType(); 6268 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6269 sdl, Ty, Arg)); 6270 return; 6271 } 6272 case Intrinsic::ctpop: { 6273 SDValue Arg = getValue(I.getArgOperand(0)); 6274 EVT Ty = Arg.getValueType(); 6275 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6276 return; 6277 } 6278 case Intrinsic::fshl: 6279 case Intrinsic::fshr: { 6280 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6281 SDValue X = getValue(I.getArgOperand(0)); 6282 SDValue Y = getValue(I.getArgOperand(1)); 6283 SDValue Z = getValue(I.getArgOperand(2)); 6284 EVT VT = X.getValueType(); 6285 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6286 SDValue Zero = DAG.getConstant(0, sdl, VT); 6287 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6288 6289 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6290 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6291 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6292 return; 6293 } 6294 6295 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6296 // avoid the select that is necessary in the general case to filter out 6297 // the 0-shift possibility that leads to UB. 6298 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6299 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6300 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6301 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6302 return; 6303 } 6304 6305 // Some targets only rotate one way. Try the opposite direction. 6306 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6307 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6308 // Negate the shift amount because it is safe to ignore the high bits. 6309 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6310 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6311 return; 6312 } 6313 6314 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6315 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6316 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6317 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6318 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6319 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6320 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6321 return; 6322 } 6323 6324 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6325 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6326 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6327 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6328 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6329 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6330 6331 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6332 // and that is undefined. We must compare and select to avoid UB. 6333 EVT CCVT = MVT::i1; 6334 if (VT.isVector()) 6335 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6336 6337 // For fshl, 0-shift returns the 1st arg (X). 6338 // For fshr, 0-shift returns the 2nd arg (Y). 6339 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6340 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6341 return; 6342 } 6343 case Intrinsic::sadd_sat: { 6344 SDValue Op1 = getValue(I.getArgOperand(0)); 6345 SDValue Op2 = getValue(I.getArgOperand(1)); 6346 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6347 return; 6348 } 6349 case Intrinsic::uadd_sat: { 6350 SDValue Op1 = getValue(I.getArgOperand(0)); 6351 SDValue Op2 = getValue(I.getArgOperand(1)); 6352 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6353 return; 6354 } 6355 case Intrinsic::ssub_sat: { 6356 SDValue Op1 = getValue(I.getArgOperand(0)); 6357 SDValue Op2 = getValue(I.getArgOperand(1)); 6358 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6359 return; 6360 } 6361 case Intrinsic::usub_sat: { 6362 SDValue Op1 = getValue(I.getArgOperand(0)); 6363 SDValue Op2 = getValue(I.getArgOperand(1)); 6364 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6365 return; 6366 } 6367 case Intrinsic::smul_fix: 6368 case Intrinsic::umul_fix: { 6369 SDValue Op1 = getValue(I.getArgOperand(0)); 6370 SDValue Op2 = getValue(I.getArgOperand(1)); 6371 SDValue Op3 = getValue(I.getArgOperand(2)); 6372 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6373 Op1.getValueType(), Op1, Op2, Op3)); 6374 return; 6375 } 6376 case Intrinsic::smul_fix_sat: { 6377 SDValue Op1 = getValue(I.getArgOperand(0)); 6378 SDValue Op2 = getValue(I.getArgOperand(1)); 6379 SDValue Op3 = getValue(I.getArgOperand(2)); 6380 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6381 Op3)); 6382 return; 6383 } 6384 case Intrinsic::umul_fix_sat: { 6385 SDValue Op1 = getValue(I.getArgOperand(0)); 6386 SDValue Op2 = getValue(I.getArgOperand(1)); 6387 SDValue Op3 = getValue(I.getArgOperand(2)); 6388 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6389 Op3)); 6390 return; 6391 } 6392 case Intrinsic::stacksave: { 6393 SDValue Op = getRoot(); 6394 Res = DAG.getNode( 6395 ISD::STACKSAVE, sdl, 6396 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6397 setValue(&I, Res); 6398 DAG.setRoot(Res.getValue(1)); 6399 return; 6400 } 6401 case Intrinsic::stackrestore: 6402 Res = getValue(I.getArgOperand(0)); 6403 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6404 return; 6405 case Intrinsic::get_dynamic_area_offset: { 6406 SDValue Op = getRoot(); 6407 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6408 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6409 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6410 // target. 6411 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6412 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6413 " intrinsic!"); 6414 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6415 Op); 6416 DAG.setRoot(Op); 6417 setValue(&I, Res); 6418 return; 6419 } 6420 case Intrinsic::stackguard: { 6421 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6422 MachineFunction &MF = DAG.getMachineFunction(); 6423 const Module &M = *MF.getFunction().getParent(); 6424 SDValue Chain = getRoot(); 6425 if (TLI.useLoadStackGuardNode()) { 6426 Res = getLoadStackGuard(DAG, sdl, Chain); 6427 } else { 6428 const Value *Global = TLI.getSDagStackGuard(M); 6429 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6430 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6431 MachinePointerInfo(Global, 0), Align, 6432 MachineMemOperand::MOVolatile); 6433 } 6434 if (TLI.useStackGuardXorFP()) 6435 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6436 DAG.setRoot(Chain); 6437 setValue(&I, Res); 6438 return; 6439 } 6440 case Intrinsic::stackprotector: { 6441 // Emit code into the DAG to store the stack guard onto the stack. 6442 MachineFunction &MF = DAG.getMachineFunction(); 6443 MachineFrameInfo &MFI = MF.getFrameInfo(); 6444 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6445 SDValue Src, Chain = getRoot(); 6446 6447 if (TLI.useLoadStackGuardNode()) 6448 Src = getLoadStackGuard(DAG, sdl, Chain); 6449 else 6450 Src = getValue(I.getArgOperand(0)); // The guard's value. 6451 6452 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6453 6454 int FI = FuncInfo.StaticAllocaMap[Slot]; 6455 MFI.setStackProtectorIndex(FI); 6456 6457 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6458 6459 // Store the stack protector onto the stack. 6460 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6461 DAG.getMachineFunction(), FI), 6462 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6463 setValue(&I, Res); 6464 DAG.setRoot(Res); 6465 return; 6466 } 6467 case Intrinsic::objectsize: 6468 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6469 6470 case Intrinsic::is_constant: 6471 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6472 6473 case Intrinsic::annotation: 6474 case Intrinsic::ptr_annotation: 6475 case Intrinsic::launder_invariant_group: 6476 case Intrinsic::strip_invariant_group: 6477 // Drop the intrinsic, but forward the value 6478 setValue(&I, getValue(I.getOperand(0))); 6479 return; 6480 case Intrinsic::assume: 6481 case Intrinsic::var_annotation: 6482 case Intrinsic::sideeffect: 6483 // Discard annotate attributes, assumptions, and artificial side-effects. 6484 return; 6485 6486 case Intrinsic::codeview_annotation: { 6487 // Emit a label associated with this metadata. 6488 MachineFunction &MF = DAG.getMachineFunction(); 6489 MCSymbol *Label = 6490 MF.getMMI().getContext().createTempSymbol("annotation", true); 6491 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6492 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6493 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6494 DAG.setRoot(Res); 6495 return; 6496 } 6497 6498 case Intrinsic::init_trampoline: { 6499 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6500 6501 SDValue Ops[6]; 6502 Ops[0] = getRoot(); 6503 Ops[1] = getValue(I.getArgOperand(0)); 6504 Ops[2] = getValue(I.getArgOperand(1)); 6505 Ops[3] = getValue(I.getArgOperand(2)); 6506 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6507 Ops[5] = DAG.getSrcValue(F); 6508 6509 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6510 6511 DAG.setRoot(Res); 6512 return; 6513 } 6514 case Intrinsic::adjust_trampoline: 6515 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6516 TLI.getPointerTy(DAG.getDataLayout()), 6517 getValue(I.getArgOperand(0)))); 6518 return; 6519 case Intrinsic::gcroot: { 6520 assert(DAG.getMachineFunction().getFunction().hasGC() && 6521 "only valid in functions with gc specified, enforced by Verifier"); 6522 assert(GFI && "implied by previous"); 6523 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6524 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6525 6526 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6527 GFI->addStackRoot(FI->getIndex(), TypeMap); 6528 return; 6529 } 6530 case Intrinsic::gcread: 6531 case Intrinsic::gcwrite: 6532 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6533 case Intrinsic::flt_rounds: 6534 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6535 return; 6536 6537 case Intrinsic::expect: 6538 // Just replace __builtin_expect(exp, c) with EXP. 6539 setValue(&I, getValue(I.getArgOperand(0))); 6540 return; 6541 6542 case Intrinsic::debugtrap: 6543 case Intrinsic::trap: { 6544 StringRef TrapFuncName = 6545 I.getAttributes() 6546 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6547 .getValueAsString(); 6548 if (TrapFuncName.empty()) { 6549 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6550 ISD::TRAP : ISD::DEBUGTRAP; 6551 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6552 return; 6553 } 6554 TargetLowering::ArgListTy Args; 6555 6556 TargetLowering::CallLoweringInfo CLI(DAG); 6557 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6558 CallingConv::C, I.getType(), 6559 DAG.getExternalSymbol(TrapFuncName.data(), 6560 TLI.getPointerTy(DAG.getDataLayout())), 6561 std::move(Args)); 6562 6563 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6564 DAG.setRoot(Result.second); 6565 return; 6566 } 6567 6568 case Intrinsic::uadd_with_overflow: 6569 case Intrinsic::sadd_with_overflow: 6570 case Intrinsic::usub_with_overflow: 6571 case Intrinsic::ssub_with_overflow: 6572 case Intrinsic::umul_with_overflow: 6573 case Intrinsic::smul_with_overflow: { 6574 ISD::NodeType Op; 6575 switch (Intrinsic) { 6576 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6577 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6578 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6579 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6580 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6581 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6582 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6583 } 6584 SDValue Op1 = getValue(I.getArgOperand(0)); 6585 SDValue Op2 = getValue(I.getArgOperand(1)); 6586 6587 EVT ResultVT = Op1.getValueType(); 6588 EVT OverflowVT = MVT::i1; 6589 if (ResultVT.isVector()) 6590 OverflowVT = EVT::getVectorVT( 6591 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6592 6593 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6594 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6595 return; 6596 } 6597 case Intrinsic::prefetch: { 6598 SDValue Ops[5]; 6599 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6600 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6601 Ops[0] = DAG.getRoot(); 6602 Ops[1] = getValue(I.getArgOperand(0)); 6603 Ops[2] = getValue(I.getArgOperand(1)); 6604 Ops[3] = getValue(I.getArgOperand(2)); 6605 Ops[4] = getValue(I.getArgOperand(3)); 6606 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6607 DAG.getVTList(MVT::Other), Ops, 6608 EVT::getIntegerVT(*Context, 8), 6609 MachinePointerInfo(I.getArgOperand(0)), 6610 0, /* align */ 6611 Flags); 6612 6613 // Chain the prefetch in parallell with any pending loads, to stay out of 6614 // the way of later optimizations. 6615 PendingLoads.push_back(Result); 6616 Result = getRoot(); 6617 DAG.setRoot(Result); 6618 return; 6619 } 6620 case Intrinsic::lifetime_start: 6621 case Intrinsic::lifetime_end: { 6622 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6623 // Stack coloring is not enabled in O0, discard region information. 6624 if (TM.getOptLevel() == CodeGenOpt::None) 6625 return; 6626 6627 const int64_t ObjectSize = 6628 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6629 Value *const ObjectPtr = I.getArgOperand(1); 6630 SmallVector<const Value *, 4> Allocas; 6631 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6632 6633 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6634 E = Allocas.end(); Object != E; ++Object) { 6635 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6636 6637 // Could not find an Alloca. 6638 if (!LifetimeObject) 6639 continue; 6640 6641 // First check that the Alloca is static, otherwise it won't have a 6642 // valid frame index. 6643 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6644 if (SI == FuncInfo.StaticAllocaMap.end()) 6645 return; 6646 6647 const int FrameIndex = SI->second; 6648 int64_t Offset; 6649 if (GetPointerBaseWithConstantOffset( 6650 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6651 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6652 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6653 Offset); 6654 DAG.setRoot(Res); 6655 } 6656 return; 6657 } 6658 case Intrinsic::invariant_start: 6659 // Discard region information. 6660 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6661 return; 6662 case Intrinsic::invariant_end: 6663 // Discard region information. 6664 return; 6665 case Intrinsic::clear_cache: 6666 /// FunctionName may be null. 6667 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6668 lowerCallToExternalSymbol(I, FunctionName); 6669 return; 6670 case Intrinsic::donothing: 6671 // ignore 6672 return; 6673 case Intrinsic::experimental_stackmap: 6674 visitStackmap(I); 6675 return; 6676 case Intrinsic::experimental_patchpoint_void: 6677 case Intrinsic::experimental_patchpoint_i64: 6678 visitPatchpoint(&I); 6679 return; 6680 case Intrinsic::experimental_gc_statepoint: 6681 LowerStatepoint(ImmutableStatepoint(&I)); 6682 return; 6683 case Intrinsic::experimental_gc_result: 6684 visitGCResult(cast<GCResultInst>(I)); 6685 return; 6686 case Intrinsic::experimental_gc_relocate: 6687 visitGCRelocate(cast<GCRelocateInst>(I)); 6688 return; 6689 case Intrinsic::instrprof_increment: 6690 llvm_unreachable("instrprof failed to lower an increment"); 6691 case Intrinsic::instrprof_value_profile: 6692 llvm_unreachable("instrprof failed to lower a value profiling call"); 6693 case Intrinsic::localescape: { 6694 MachineFunction &MF = DAG.getMachineFunction(); 6695 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6696 6697 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6698 // is the same on all targets. 6699 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6700 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6701 if (isa<ConstantPointerNull>(Arg)) 6702 continue; // Skip null pointers. They represent a hole in index space. 6703 AllocaInst *Slot = cast<AllocaInst>(Arg); 6704 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6705 "can only escape static allocas"); 6706 int FI = FuncInfo.StaticAllocaMap[Slot]; 6707 MCSymbol *FrameAllocSym = 6708 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6709 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6711 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6712 .addSym(FrameAllocSym) 6713 .addFrameIndex(FI); 6714 } 6715 6716 return; 6717 } 6718 6719 case Intrinsic::localrecover: { 6720 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6721 MachineFunction &MF = DAG.getMachineFunction(); 6722 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6723 6724 // Get the symbol that defines the frame offset. 6725 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6726 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6727 unsigned IdxVal = 6728 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6729 MCSymbol *FrameAllocSym = 6730 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6731 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6732 6733 // Create a MCSymbol for the label to avoid any target lowering 6734 // that would make this PC relative. 6735 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6736 SDValue OffsetVal = 6737 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6738 6739 // Add the offset to the FP. 6740 Value *FP = I.getArgOperand(1); 6741 SDValue FPVal = getValue(FP); 6742 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6743 setValue(&I, Add); 6744 6745 return; 6746 } 6747 6748 case Intrinsic::eh_exceptionpointer: 6749 case Intrinsic::eh_exceptioncode: { 6750 // Get the exception pointer vreg, copy from it, and resize it to fit. 6751 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6752 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6753 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6754 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6755 SDValue N = 6756 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6757 if (Intrinsic == Intrinsic::eh_exceptioncode) 6758 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6759 setValue(&I, N); 6760 return; 6761 } 6762 case Intrinsic::xray_customevent: { 6763 // Here we want to make sure that the intrinsic behaves as if it has a 6764 // specific calling convention, and only for x86_64. 6765 // FIXME: Support other platforms later. 6766 const auto &Triple = DAG.getTarget().getTargetTriple(); 6767 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6768 return; 6769 6770 SDLoc DL = getCurSDLoc(); 6771 SmallVector<SDValue, 8> Ops; 6772 6773 // We want to say that we always want the arguments in registers. 6774 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6775 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6776 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6777 SDValue Chain = getRoot(); 6778 Ops.push_back(LogEntryVal); 6779 Ops.push_back(StrSizeVal); 6780 Ops.push_back(Chain); 6781 6782 // We need to enforce the calling convention for the callsite, so that 6783 // argument ordering is enforced correctly, and that register allocation can 6784 // see that some registers may be assumed clobbered and have to preserve 6785 // them across calls to the intrinsic. 6786 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6787 DL, NodeTys, Ops); 6788 SDValue patchableNode = SDValue(MN, 0); 6789 DAG.setRoot(patchableNode); 6790 setValue(&I, patchableNode); 6791 return; 6792 } 6793 case Intrinsic::xray_typedevent: { 6794 // Here we want to make sure that the intrinsic behaves as if it has a 6795 // specific calling convention, and only for x86_64. 6796 // FIXME: Support other platforms later. 6797 const auto &Triple = DAG.getTarget().getTargetTriple(); 6798 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6799 return; 6800 6801 SDLoc DL = getCurSDLoc(); 6802 SmallVector<SDValue, 8> Ops; 6803 6804 // We want to say that we always want the arguments in registers. 6805 // It's unclear to me how manipulating the selection DAG here forces callers 6806 // to provide arguments in registers instead of on the stack. 6807 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6808 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6809 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6810 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6811 SDValue Chain = getRoot(); 6812 Ops.push_back(LogTypeId); 6813 Ops.push_back(LogEntryVal); 6814 Ops.push_back(StrSizeVal); 6815 Ops.push_back(Chain); 6816 6817 // We need to enforce the calling convention for the callsite, so that 6818 // argument ordering is enforced correctly, and that register allocation can 6819 // see that some registers may be assumed clobbered and have to preserve 6820 // them across calls to the intrinsic. 6821 MachineSDNode *MN = DAG.getMachineNode( 6822 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6823 SDValue patchableNode = SDValue(MN, 0); 6824 DAG.setRoot(patchableNode); 6825 setValue(&I, patchableNode); 6826 return; 6827 } 6828 case Intrinsic::experimental_deoptimize: 6829 LowerDeoptimizeCall(&I); 6830 return; 6831 6832 case Intrinsic::experimental_vector_reduce_v2_fadd: 6833 case Intrinsic::experimental_vector_reduce_v2_fmul: 6834 case Intrinsic::experimental_vector_reduce_add: 6835 case Intrinsic::experimental_vector_reduce_mul: 6836 case Intrinsic::experimental_vector_reduce_and: 6837 case Intrinsic::experimental_vector_reduce_or: 6838 case Intrinsic::experimental_vector_reduce_xor: 6839 case Intrinsic::experimental_vector_reduce_smax: 6840 case Intrinsic::experimental_vector_reduce_smin: 6841 case Intrinsic::experimental_vector_reduce_umax: 6842 case Intrinsic::experimental_vector_reduce_umin: 6843 case Intrinsic::experimental_vector_reduce_fmax: 6844 case Intrinsic::experimental_vector_reduce_fmin: 6845 visitVectorReduce(I, Intrinsic); 6846 return; 6847 6848 case Intrinsic::icall_branch_funnel: { 6849 SmallVector<SDValue, 16> Ops; 6850 Ops.push_back(getValue(I.getArgOperand(0))); 6851 6852 int64_t Offset; 6853 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6854 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6855 if (!Base) 6856 report_fatal_error( 6857 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6858 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6859 6860 struct BranchFunnelTarget { 6861 int64_t Offset; 6862 SDValue Target; 6863 }; 6864 SmallVector<BranchFunnelTarget, 8> Targets; 6865 6866 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6867 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6868 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6869 if (ElemBase != Base) 6870 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6871 "to the same GlobalValue"); 6872 6873 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6874 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6875 if (!GA) 6876 report_fatal_error( 6877 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6878 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6879 GA->getGlobal(), getCurSDLoc(), 6880 Val.getValueType(), GA->getOffset())}); 6881 } 6882 llvm::sort(Targets, 6883 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6884 return T1.Offset < T2.Offset; 6885 }); 6886 6887 for (auto &T : Targets) { 6888 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6889 Ops.push_back(T.Target); 6890 } 6891 6892 Ops.push_back(DAG.getRoot()); // Chain 6893 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6894 getCurSDLoc(), MVT::Other, Ops), 6895 0); 6896 DAG.setRoot(N); 6897 setValue(&I, N); 6898 HasTailCall = true; 6899 return; 6900 } 6901 6902 case Intrinsic::wasm_landingpad_index: 6903 // Information this intrinsic contained has been transferred to 6904 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6905 // delete it now. 6906 return; 6907 6908 case Intrinsic::aarch64_settag: 6909 case Intrinsic::aarch64_settag_zero: { 6910 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6911 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6912 SDValue Val = TSI.EmitTargetCodeForSetTag( 6913 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6914 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6915 ZeroMemory); 6916 DAG.setRoot(Val); 6917 setValue(&I, Val); 6918 return; 6919 } 6920 case Intrinsic::ptrmask: { 6921 SDValue Ptr = getValue(I.getOperand(0)); 6922 SDValue Const = getValue(I.getOperand(1)); 6923 6924 EVT DestVT = 6925 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6926 6927 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6928 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6929 return; 6930 } 6931 } 6932 } 6933 6934 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6935 const ConstrainedFPIntrinsic &FPI) { 6936 SDLoc sdl = getCurSDLoc(); 6937 6938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6939 SmallVector<EVT, 4> ValueVTs; 6940 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6941 ValueVTs.push_back(MVT::Other); // Out chain 6942 6943 // We do not need to serialize constrained FP intrinsics against 6944 // each other or against (nonvolatile) loads, so they can be 6945 // chained like loads. 6946 SDValue Chain = DAG.getRoot(); 6947 SmallVector<SDValue, 4> Opers; 6948 Opers.push_back(Chain); 6949 if (FPI.isUnaryOp()) { 6950 Opers.push_back(getValue(FPI.getArgOperand(0))); 6951 } else if (FPI.isTernaryOp()) { 6952 Opers.push_back(getValue(FPI.getArgOperand(0))); 6953 Opers.push_back(getValue(FPI.getArgOperand(1))); 6954 Opers.push_back(getValue(FPI.getArgOperand(2))); 6955 } else { 6956 Opers.push_back(getValue(FPI.getArgOperand(0))); 6957 Opers.push_back(getValue(FPI.getArgOperand(1))); 6958 } 6959 6960 unsigned Opcode; 6961 switch (FPI.getIntrinsicID()) { 6962 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6963 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6964 case Intrinsic::INTRINSIC: \ 6965 Opcode = ISD::STRICT_##DAGN; \ 6966 break; 6967 #include "llvm/IR/ConstrainedOps.def" 6968 } 6969 6970 // A few strict DAG nodes carry additional operands that are not 6971 // set up by the default code above. 6972 switch (Opcode) { 6973 default: break; 6974 case ISD::STRICT_FP_ROUND: 6975 Opers.push_back( 6976 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6977 break; 6978 case ISD::STRICT_FSETCC: 6979 case ISD::STRICT_FSETCCS: { 6980 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6981 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6982 break; 6983 } 6984 } 6985 6986 SDVTList VTs = DAG.getVTList(ValueVTs); 6987 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 6988 6989 if (FPI.getExceptionBehavior() != fp::ExceptionBehavior::ebIgnore) { 6990 SDNodeFlags Flags; 6991 Flags.setFPExcept(true); 6992 Result->setFlags(Flags); 6993 } 6994 6995 assert(Result.getNode()->getNumValues() == 2); 6996 // See above -- chain is handled like for loads here. 6997 SDValue OutChain = Result.getValue(1); 6998 PendingLoads.push_back(OutChain); 6999 SDValue FPResult = Result.getValue(0); 7000 setValue(&FPI, FPResult); 7001 } 7002 7003 std::pair<SDValue, SDValue> 7004 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7005 const BasicBlock *EHPadBB) { 7006 MachineFunction &MF = DAG.getMachineFunction(); 7007 MachineModuleInfo &MMI = MF.getMMI(); 7008 MCSymbol *BeginLabel = nullptr; 7009 7010 if (EHPadBB) { 7011 // Insert a label before the invoke call to mark the try range. This can be 7012 // used to detect deletion of the invoke via the MachineModuleInfo. 7013 BeginLabel = MMI.getContext().createTempSymbol(); 7014 7015 // For SjLj, keep track of which landing pads go with which invokes 7016 // so as to maintain the ordering of pads in the LSDA. 7017 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7018 if (CallSiteIndex) { 7019 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7020 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7021 7022 // Now that the call site is handled, stop tracking it. 7023 MMI.setCurrentCallSite(0); 7024 } 7025 7026 // Both PendingLoads and PendingExports must be flushed here; 7027 // this call might not return. 7028 (void)getRoot(); 7029 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7030 7031 CLI.setChain(getRoot()); 7032 } 7033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7034 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7035 7036 assert((CLI.IsTailCall || Result.second.getNode()) && 7037 "Non-null chain expected with non-tail call!"); 7038 assert((Result.second.getNode() || !Result.first.getNode()) && 7039 "Null value expected with tail call!"); 7040 7041 if (!Result.second.getNode()) { 7042 // As a special case, a null chain means that a tail call has been emitted 7043 // and the DAG root is already updated. 7044 HasTailCall = true; 7045 7046 // Since there's no actual continuation from this block, nothing can be 7047 // relying on us setting vregs for them. 7048 PendingExports.clear(); 7049 } else { 7050 DAG.setRoot(Result.second); 7051 } 7052 7053 if (EHPadBB) { 7054 // Insert a label at the end of the invoke call to mark the try range. This 7055 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7056 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7057 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7058 7059 // Inform MachineModuleInfo of range. 7060 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7061 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7062 // actually use outlined funclets and their LSDA info style. 7063 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7064 assert(CLI.CS); 7065 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7066 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7067 BeginLabel, EndLabel); 7068 } else if (!isScopedEHPersonality(Pers)) { 7069 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7070 } 7071 } 7072 7073 return Result; 7074 } 7075 7076 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7077 bool isTailCall, 7078 const BasicBlock *EHPadBB) { 7079 auto &DL = DAG.getDataLayout(); 7080 FunctionType *FTy = CS.getFunctionType(); 7081 Type *RetTy = CS.getType(); 7082 7083 TargetLowering::ArgListTy Args; 7084 Args.reserve(CS.arg_size()); 7085 7086 const Value *SwiftErrorVal = nullptr; 7087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7088 7089 // We can't tail call inside a function with a swifterror argument. Lowering 7090 // does not support this yet. It would have to move into the swifterror 7091 // register before the call. 7092 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7093 if (TLI.supportSwiftError() && 7094 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7095 isTailCall = false; 7096 7097 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7098 i != e; ++i) { 7099 TargetLowering::ArgListEntry Entry; 7100 const Value *V = *i; 7101 7102 // Skip empty types 7103 if (V->getType()->isEmptyTy()) 7104 continue; 7105 7106 SDValue ArgNode = getValue(V); 7107 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7108 7109 Entry.setAttributes(&CS, i - CS.arg_begin()); 7110 7111 // Use swifterror virtual register as input to the call. 7112 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7113 SwiftErrorVal = V; 7114 // We find the virtual register for the actual swifterror argument. 7115 // Instead of using the Value, we use the virtual register instead. 7116 Entry.Node = DAG.getRegister( 7117 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7118 EVT(TLI.getPointerTy(DL))); 7119 } 7120 7121 Args.push_back(Entry); 7122 7123 // If we have an explicit sret argument that is an Instruction, (i.e., it 7124 // might point to function-local memory), we can't meaningfully tail-call. 7125 if (Entry.IsSRet && isa<Instruction>(V)) 7126 isTailCall = false; 7127 } 7128 7129 // If call site has a cfguardtarget operand bundle, create and add an 7130 // additional ArgListEntry. 7131 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7132 TargetLowering::ArgListEntry Entry; 7133 Value *V = Bundle->Inputs[0]; 7134 SDValue ArgNode = getValue(V); 7135 Entry.Node = ArgNode; 7136 Entry.Ty = V->getType(); 7137 Entry.IsCFGuardTarget = true; 7138 Args.push_back(Entry); 7139 } 7140 7141 // Check if target-independent constraints permit a tail call here. 7142 // Target-dependent constraints are checked within TLI->LowerCallTo. 7143 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7144 isTailCall = false; 7145 7146 // Disable tail calls if there is an swifterror argument. Targets have not 7147 // been updated to support tail calls. 7148 if (TLI.supportSwiftError() && SwiftErrorVal) 7149 isTailCall = false; 7150 7151 TargetLowering::CallLoweringInfo CLI(DAG); 7152 CLI.setDebugLoc(getCurSDLoc()) 7153 .setChain(getRoot()) 7154 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7155 .setTailCall(isTailCall) 7156 .setConvergent(CS.isConvergent()); 7157 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7158 7159 if (Result.first.getNode()) { 7160 const Instruction *Inst = CS.getInstruction(); 7161 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7162 setValue(Inst, Result.first); 7163 } 7164 7165 // The last element of CLI.InVals has the SDValue for swifterror return. 7166 // Here we copy it to a virtual register and update SwiftErrorMap for 7167 // book-keeping. 7168 if (SwiftErrorVal && TLI.supportSwiftError()) { 7169 // Get the last element of InVals. 7170 SDValue Src = CLI.InVals.back(); 7171 Register VReg = SwiftError.getOrCreateVRegDefAt( 7172 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7173 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7174 DAG.setRoot(CopyNode); 7175 } 7176 } 7177 7178 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7179 SelectionDAGBuilder &Builder) { 7180 // Check to see if this load can be trivially constant folded, e.g. if the 7181 // input is from a string literal. 7182 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7183 // Cast pointer to the type we really want to load. 7184 Type *LoadTy = 7185 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7186 if (LoadVT.isVector()) 7187 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7188 7189 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7190 PointerType::getUnqual(LoadTy)); 7191 7192 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7193 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7194 return Builder.getValue(LoadCst); 7195 } 7196 7197 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7198 // still constant memory, the input chain can be the entry node. 7199 SDValue Root; 7200 bool ConstantMemory = false; 7201 7202 // Do not serialize (non-volatile) loads of constant memory with anything. 7203 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7204 Root = Builder.DAG.getEntryNode(); 7205 ConstantMemory = true; 7206 } else { 7207 // Do not serialize non-volatile loads against each other. 7208 Root = Builder.DAG.getRoot(); 7209 } 7210 7211 SDValue Ptr = Builder.getValue(PtrVal); 7212 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7213 Ptr, MachinePointerInfo(PtrVal), 7214 /* Alignment = */ 1); 7215 7216 if (!ConstantMemory) 7217 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7218 return LoadVal; 7219 } 7220 7221 /// Record the value for an instruction that produces an integer result, 7222 /// converting the type where necessary. 7223 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7224 SDValue Value, 7225 bool IsSigned) { 7226 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7227 I.getType(), true); 7228 if (IsSigned) 7229 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7230 else 7231 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7232 setValue(&I, Value); 7233 } 7234 7235 /// See if we can lower a memcmp call into an optimized form. If so, return 7236 /// true and lower it. Otherwise return false, and it will be lowered like a 7237 /// normal call. 7238 /// The caller already checked that \p I calls the appropriate LibFunc with a 7239 /// correct prototype. 7240 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7241 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7242 const Value *Size = I.getArgOperand(2); 7243 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7244 if (CSize && CSize->getZExtValue() == 0) { 7245 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7246 I.getType(), true); 7247 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7248 return true; 7249 } 7250 7251 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7252 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7253 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7254 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7255 if (Res.first.getNode()) { 7256 processIntegerCallValue(I, Res.first, true); 7257 PendingLoads.push_back(Res.second); 7258 return true; 7259 } 7260 7261 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7262 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7263 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7264 return false; 7265 7266 // If the target has a fast compare for the given size, it will return a 7267 // preferred load type for that size. Require that the load VT is legal and 7268 // that the target supports unaligned loads of that type. Otherwise, return 7269 // INVALID. 7270 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7272 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7273 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7274 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7275 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7276 // TODO: Check alignment of src and dest ptrs. 7277 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7278 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7279 if (!TLI.isTypeLegal(LVT) || 7280 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7281 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7282 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7283 } 7284 7285 return LVT; 7286 }; 7287 7288 // This turns into unaligned loads. We only do this if the target natively 7289 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7290 // we'll only produce a small number of byte loads. 7291 MVT LoadVT; 7292 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7293 switch (NumBitsToCompare) { 7294 default: 7295 return false; 7296 case 16: 7297 LoadVT = MVT::i16; 7298 break; 7299 case 32: 7300 LoadVT = MVT::i32; 7301 break; 7302 case 64: 7303 case 128: 7304 case 256: 7305 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7306 break; 7307 } 7308 7309 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7310 return false; 7311 7312 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7313 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7314 7315 // Bitcast to a wide integer type if the loads are vectors. 7316 if (LoadVT.isVector()) { 7317 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7318 LoadL = DAG.getBitcast(CmpVT, LoadL); 7319 LoadR = DAG.getBitcast(CmpVT, LoadR); 7320 } 7321 7322 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7323 processIntegerCallValue(I, Cmp, false); 7324 return true; 7325 } 7326 7327 /// See if we can lower a memchr call into an optimized form. If so, return 7328 /// true and lower it. Otherwise return false, and it will be lowered like a 7329 /// normal call. 7330 /// The caller already checked that \p I calls the appropriate LibFunc with a 7331 /// correct prototype. 7332 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7333 const Value *Src = I.getArgOperand(0); 7334 const Value *Char = I.getArgOperand(1); 7335 const Value *Length = I.getArgOperand(2); 7336 7337 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7338 std::pair<SDValue, SDValue> Res = 7339 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7340 getValue(Src), getValue(Char), getValue(Length), 7341 MachinePointerInfo(Src)); 7342 if (Res.first.getNode()) { 7343 setValue(&I, Res.first); 7344 PendingLoads.push_back(Res.second); 7345 return true; 7346 } 7347 7348 return false; 7349 } 7350 7351 /// See if we can lower a mempcpy call into an optimized form. If so, return 7352 /// true and lower it. Otherwise return false, and it will be lowered like a 7353 /// normal call. 7354 /// The caller already checked that \p I calls the appropriate LibFunc with a 7355 /// correct prototype. 7356 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7357 SDValue Dst = getValue(I.getArgOperand(0)); 7358 SDValue Src = getValue(I.getArgOperand(1)); 7359 SDValue Size = getValue(I.getArgOperand(2)); 7360 7361 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7362 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7363 unsigned Align = std::min(DstAlign, SrcAlign); 7364 if (Align == 0) // Alignment of one or both could not be inferred. 7365 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7366 7367 bool isVol = false; 7368 SDLoc sdl = getCurSDLoc(); 7369 7370 // In the mempcpy context we need to pass in a false value for isTailCall 7371 // because the return pointer needs to be adjusted by the size of 7372 // the copied memory. 7373 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7374 false, /*isTailCall=*/false, 7375 MachinePointerInfo(I.getArgOperand(0)), 7376 MachinePointerInfo(I.getArgOperand(1))); 7377 assert(MC.getNode() != nullptr && 7378 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7379 DAG.setRoot(MC); 7380 7381 // Check if Size needs to be truncated or extended. 7382 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7383 7384 // Adjust return pointer to point just past the last dst byte. 7385 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7386 Dst, Size); 7387 setValue(&I, DstPlusSize); 7388 return true; 7389 } 7390 7391 /// See if we can lower a strcpy call into an optimized form. If so, return 7392 /// true and lower it, otherwise return false and it will be lowered like a 7393 /// normal call. 7394 /// The caller already checked that \p I calls the appropriate LibFunc with a 7395 /// correct prototype. 7396 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7397 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7398 7399 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7400 std::pair<SDValue, SDValue> Res = 7401 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7402 getValue(Arg0), getValue(Arg1), 7403 MachinePointerInfo(Arg0), 7404 MachinePointerInfo(Arg1), isStpcpy); 7405 if (Res.first.getNode()) { 7406 setValue(&I, Res.first); 7407 DAG.setRoot(Res.second); 7408 return true; 7409 } 7410 7411 return false; 7412 } 7413 7414 /// See if we can lower a strcmp call into an optimized form. If so, return 7415 /// true and lower it, otherwise return false and it will be lowered like a 7416 /// normal call. 7417 /// The caller already checked that \p I calls the appropriate LibFunc with a 7418 /// correct prototype. 7419 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7420 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7421 7422 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7423 std::pair<SDValue, SDValue> Res = 7424 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7425 getValue(Arg0), getValue(Arg1), 7426 MachinePointerInfo(Arg0), 7427 MachinePointerInfo(Arg1)); 7428 if (Res.first.getNode()) { 7429 processIntegerCallValue(I, Res.first, true); 7430 PendingLoads.push_back(Res.second); 7431 return true; 7432 } 7433 7434 return false; 7435 } 7436 7437 /// See if we can lower a strlen call into an optimized form. If so, return 7438 /// true and lower it, otherwise return false and it will be lowered like a 7439 /// normal call. 7440 /// The caller already checked that \p I calls the appropriate LibFunc with a 7441 /// correct prototype. 7442 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7443 const Value *Arg0 = I.getArgOperand(0); 7444 7445 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7446 std::pair<SDValue, SDValue> Res = 7447 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7448 getValue(Arg0), MachinePointerInfo(Arg0)); 7449 if (Res.first.getNode()) { 7450 processIntegerCallValue(I, Res.first, false); 7451 PendingLoads.push_back(Res.second); 7452 return true; 7453 } 7454 7455 return false; 7456 } 7457 7458 /// See if we can lower a strnlen call into an optimized form. If so, return 7459 /// true and lower it, otherwise return false and it will be lowered like a 7460 /// normal call. 7461 /// The caller already checked that \p I calls the appropriate LibFunc with a 7462 /// correct prototype. 7463 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7464 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7465 7466 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7467 std::pair<SDValue, SDValue> Res = 7468 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7469 getValue(Arg0), getValue(Arg1), 7470 MachinePointerInfo(Arg0)); 7471 if (Res.first.getNode()) { 7472 processIntegerCallValue(I, Res.first, false); 7473 PendingLoads.push_back(Res.second); 7474 return true; 7475 } 7476 7477 return false; 7478 } 7479 7480 /// See if we can lower a unary floating-point operation into an SDNode with 7481 /// the specified Opcode. If so, return true and lower it, otherwise return 7482 /// false and it will be lowered like a normal call. 7483 /// The caller already checked that \p I calls the appropriate LibFunc with a 7484 /// correct prototype. 7485 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7486 unsigned Opcode) { 7487 // We already checked this call's prototype; verify it doesn't modify errno. 7488 if (!I.onlyReadsMemory()) 7489 return false; 7490 7491 SDValue Tmp = getValue(I.getArgOperand(0)); 7492 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7493 return true; 7494 } 7495 7496 /// See if we can lower a binary floating-point operation into an SDNode with 7497 /// the specified Opcode. If so, return true and lower it. Otherwise return 7498 /// false, and it will be lowered like a normal call. 7499 /// The caller already checked that \p I calls the appropriate LibFunc with a 7500 /// correct prototype. 7501 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7502 unsigned Opcode) { 7503 // We already checked this call's prototype; verify it doesn't modify errno. 7504 if (!I.onlyReadsMemory()) 7505 return false; 7506 7507 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7508 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7509 EVT VT = Tmp0.getValueType(); 7510 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7511 return true; 7512 } 7513 7514 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7515 // Handle inline assembly differently. 7516 if (isa<InlineAsm>(I.getCalledValue())) { 7517 visitInlineAsm(&I); 7518 return; 7519 } 7520 7521 if (Function *F = I.getCalledFunction()) { 7522 if (F->isDeclaration()) { 7523 // Is this an LLVM intrinsic or a target-specific intrinsic? 7524 unsigned IID = F->getIntrinsicID(); 7525 if (!IID) 7526 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7527 IID = II->getIntrinsicID(F); 7528 7529 if (IID) { 7530 visitIntrinsicCall(I, IID); 7531 return; 7532 } 7533 } 7534 7535 // Check for well-known libc/libm calls. If the function is internal, it 7536 // can't be a library call. Don't do the check if marked as nobuiltin for 7537 // some reason or the call site requires strict floating point semantics. 7538 LibFunc Func; 7539 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7540 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7541 LibInfo->hasOptimizedCodeGen(Func)) { 7542 switch (Func) { 7543 default: break; 7544 case LibFunc_copysign: 7545 case LibFunc_copysignf: 7546 case LibFunc_copysignl: 7547 // We already checked this call's prototype; verify it doesn't modify 7548 // errno. 7549 if (I.onlyReadsMemory()) { 7550 SDValue LHS = getValue(I.getArgOperand(0)); 7551 SDValue RHS = getValue(I.getArgOperand(1)); 7552 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7553 LHS.getValueType(), LHS, RHS)); 7554 return; 7555 } 7556 break; 7557 case LibFunc_fabs: 7558 case LibFunc_fabsf: 7559 case LibFunc_fabsl: 7560 if (visitUnaryFloatCall(I, ISD::FABS)) 7561 return; 7562 break; 7563 case LibFunc_fmin: 7564 case LibFunc_fminf: 7565 case LibFunc_fminl: 7566 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7567 return; 7568 break; 7569 case LibFunc_fmax: 7570 case LibFunc_fmaxf: 7571 case LibFunc_fmaxl: 7572 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7573 return; 7574 break; 7575 case LibFunc_sin: 7576 case LibFunc_sinf: 7577 case LibFunc_sinl: 7578 if (visitUnaryFloatCall(I, ISD::FSIN)) 7579 return; 7580 break; 7581 case LibFunc_cos: 7582 case LibFunc_cosf: 7583 case LibFunc_cosl: 7584 if (visitUnaryFloatCall(I, ISD::FCOS)) 7585 return; 7586 break; 7587 case LibFunc_sqrt: 7588 case LibFunc_sqrtf: 7589 case LibFunc_sqrtl: 7590 case LibFunc_sqrt_finite: 7591 case LibFunc_sqrtf_finite: 7592 case LibFunc_sqrtl_finite: 7593 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7594 return; 7595 break; 7596 case LibFunc_floor: 7597 case LibFunc_floorf: 7598 case LibFunc_floorl: 7599 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7600 return; 7601 break; 7602 case LibFunc_nearbyint: 7603 case LibFunc_nearbyintf: 7604 case LibFunc_nearbyintl: 7605 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7606 return; 7607 break; 7608 case LibFunc_ceil: 7609 case LibFunc_ceilf: 7610 case LibFunc_ceill: 7611 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7612 return; 7613 break; 7614 case LibFunc_rint: 7615 case LibFunc_rintf: 7616 case LibFunc_rintl: 7617 if (visitUnaryFloatCall(I, ISD::FRINT)) 7618 return; 7619 break; 7620 case LibFunc_round: 7621 case LibFunc_roundf: 7622 case LibFunc_roundl: 7623 if (visitUnaryFloatCall(I, ISD::FROUND)) 7624 return; 7625 break; 7626 case LibFunc_trunc: 7627 case LibFunc_truncf: 7628 case LibFunc_truncl: 7629 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7630 return; 7631 break; 7632 case LibFunc_log2: 7633 case LibFunc_log2f: 7634 case LibFunc_log2l: 7635 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7636 return; 7637 break; 7638 case LibFunc_exp2: 7639 case LibFunc_exp2f: 7640 case LibFunc_exp2l: 7641 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7642 return; 7643 break; 7644 case LibFunc_memcmp: 7645 if (visitMemCmpCall(I)) 7646 return; 7647 break; 7648 case LibFunc_mempcpy: 7649 if (visitMemPCpyCall(I)) 7650 return; 7651 break; 7652 case LibFunc_memchr: 7653 if (visitMemChrCall(I)) 7654 return; 7655 break; 7656 case LibFunc_strcpy: 7657 if (visitStrCpyCall(I, false)) 7658 return; 7659 break; 7660 case LibFunc_stpcpy: 7661 if (visitStrCpyCall(I, true)) 7662 return; 7663 break; 7664 case LibFunc_strcmp: 7665 if (visitStrCmpCall(I)) 7666 return; 7667 break; 7668 case LibFunc_strlen: 7669 if (visitStrLenCall(I)) 7670 return; 7671 break; 7672 case LibFunc_strnlen: 7673 if (visitStrNLenCall(I)) 7674 return; 7675 break; 7676 } 7677 } 7678 } 7679 7680 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7681 // have to do anything here to lower funclet bundles. 7682 // CFGuardTarget bundles are lowered in LowerCallTo. 7683 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7684 LLVMContext::OB_funclet, 7685 LLVMContext::OB_cfguardtarget}) && 7686 "Cannot lower calls with arbitrary operand bundles!"); 7687 7688 SDValue Callee = getValue(I.getCalledValue()); 7689 7690 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7691 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7692 else 7693 // Check if we can potentially perform a tail call. More detailed checking 7694 // is be done within LowerCallTo, after more information about the call is 7695 // known. 7696 LowerCallTo(&I, Callee, I.isTailCall()); 7697 } 7698 7699 namespace { 7700 7701 /// AsmOperandInfo - This contains information for each constraint that we are 7702 /// lowering. 7703 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7704 public: 7705 /// CallOperand - If this is the result output operand or a clobber 7706 /// this is null, otherwise it is the incoming operand to the CallInst. 7707 /// This gets modified as the asm is processed. 7708 SDValue CallOperand; 7709 7710 /// AssignedRegs - If this is a register or register class operand, this 7711 /// contains the set of register corresponding to the operand. 7712 RegsForValue AssignedRegs; 7713 7714 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7715 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7716 } 7717 7718 /// Whether or not this operand accesses memory 7719 bool hasMemory(const TargetLowering &TLI) const { 7720 // Indirect operand accesses access memory. 7721 if (isIndirect) 7722 return true; 7723 7724 for (const auto &Code : Codes) 7725 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7726 return true; 7727 7728 return false; 7729 } 7730 7731 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7732 /// corresponds to. If there is no Value* for this operand, it returns 7733 /// MVT::Other. 7734 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7735 const DataLayout &DL) const { 7736 if (!CallOperandVal) return MVT::Other; 7737 7738 if (isa<BasicBlock>(CallOperandVal)) 7739 return TLI.getPointerTy(DL); 7740 7741 llvm::Type *OpTy = CallOperandVal->getType(); 7742 7743 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7744 // If this is an indirect operand, the operand is a pointer to the 7745 // accessed type. 7746 if (isIndirect) { 7747 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7748 if (!PtrTy) 7749 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7750 OpTy = PtrTy->getElementType(); 7751 } 7752 7753 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7754 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7755 if (STy->getNumElements() == 1) 7756 OpTy = STy->getElementType(0); 7757 7758 // If OpTy is not a single value, it may be a struct/union that we 7759 // can tile with integers. 7760 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7761 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7762 switch (BitSize) { 7763 default: break; 7764 case 1: 7765 case 8: 7766 case 16: 7767 case 32: 7768 case 64: 7769 case 128: 7770 OpTy = IntegerType::get(Context, BitSize); 7771 break; 7772 } 7773 } 7774 7775 return TLI.getValueType(DL, OpTy, true); 7776 } 7777 }; 7778 7779 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7780 7781 } // end anonymous namespace 7782 7783 /// Make sure that the output operand \p OpInfo and its corresponding input 7784 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7785 /// out). 7786 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7787 SDISelAsmOperandInfo &MatchingOpInfo, 7788 SelectionDAG &DAG) { 7789 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7790 return; 7791 7792 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7793 const auto &TLI = DAG.getTargetLoweringInfo(); 7794 7795 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7796 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7797 OpInfo.ConstraintVT); 7798 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7799 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7800 MatchingOpInfo.ConstraintVT); 7801 if ((OpInfo.ConstraintVT.isInteger() != 7802 MatchingOpInfo.ConstraintVT.isInteger()) || 7803 (MatchRC.second != InputRC.second)) { 7804 // FIXME: error out in a more elegant fashion 7805 report_fatal_error("Unsupported asm: input constraint" 7806 " with a matching output constraint of" 7807 " incompatible type!"); 7808 } 7809 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7810 } 7811 7812 /// Get a direct memory input to behave well as an indirect operand. 7813 /// This may introduce stores, hence the need for a \p Chain. 7814 /// \return The (possibly updated) chain. 7815 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7816 SDISelAsmOperandInfo &OpInfo, 7817 SelectionDAG &DAG) { 7818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7819 7820 // If we don't have an indirect input, put it in the constpool if we can, 7821 // otherwise spill it to a stack slot. 7822 // TODO: This isn't quite right. We need to handle these according to 7823 // the addressing mode that the constraint wants. Also, this may take 7824 // an additional register for the computation and we don't want that 7825 // either. 7826 7827 // If the operand is a float, integer, or vector constant, spill to a 7828 // constant pool entry to get its address. 7829 const Value *OpVal = OpInfo.CallOperandVal; 7830 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7831 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7832 OpInfo.CallOperand = DAG.getConstantPool( 7833 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7834 return Chain; 7835 } 7836 7837 // Otherwise, create a stack slot and emit a store to it before the asm. 7838 Type *Ty = OpVal->getType(); 7839 auto &DL = DAG.getDataLayout(); 7840 uint64_t TySize = DL.getTypeAllocSize(Ty); 7841 unsigned Align = DL.getPrefTypeAlignment(Ty); 7842 MachineFunction &MF = DAG.getMachineFunction(); 7843 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7844 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7845 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7846 MachinePointerInfo::getFixedStack(MF, SSFI), 7847 TLI.getMemValueType(DL, Ty)); 7848 OpInfo.CallOperand = StackSlot; 7849 7850 return Chain; 7851 } 7852 7853 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7854 /// specified operand. We prefer to assign virtual registers, to allow the 7855 /// register allocator to handle the assignment process. However, if the asm 7856 /// uses features that we can't model on machineinstrs, we have SDISel do the 7857 /// allocation. This produces generally horrible, but correct, code. 7858 /// 7859 /// OpInfo describes the operand 7860 /// RefOpInfo describes the matching operand if any, the operand otherwise 7861 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7862 SDISelAsmOperandInfo &OpInfo, 7863 SDISelAsmOperandInfo &RefOpInfo) { 7864 LLVMContext &Context = *DAG.getContext(); 7865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7866 7867 MachineFunction &MF = DAG.getMachineFunction(); 7868 SmallVector<unsigned, 4> Regs; 7869 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7870 7871 // No work to do for memory operations. 7872 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7873 return; 7874 7875 // If this is a constraint for a single physreg, or a constraint for a 7876 // register class, find it. 7877 unsigned AssignedReg; 7878 const TargetRegisterClass *RC; 7879 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7880 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7881 // RC is unset only on failure. Return immediately. 7882 if (!RC) 7883 return; 7884 7885 // Get the actual register value type. This is important, because the user 7886 // may have asked for (e.g.) the AX register in i32 type. We need to 7887 // remember that AX is actually i16 to get the right extension. 7888 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7889 7890 if (OpInfo.ConstraintVT != MVT::Other) { 7891 // If this is an FP operand in an integer register (or visa versa), or more 7892 // generally if the operand value disagrees with the register class we plan 7893 // to stick it in, fix the operand type. 7894 // 7895 // If this is an input value, the bitcast to the new type is done now. 7896 // Bitcast for output value is done at the end of visitInlineAsm(). 7897 if ((OpInfo.Type == InlineAsm::isOutput || 7898 OpInfo.Type == InlineAsm::isInput) && 7899 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7900 // Try to convert to the first EVT that the reg class contains. If the 7901 // types are identical size, use a bitcast to convert (e.g. two differing 7902 // vector types). Note: output bitcast is done at the end of 7903 // visitInlineAsm(). 7904 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7905 // Exclude indirect inputs while they are unsupported because the code 7906 // to perform the load is missing and thus OpInfo.CallOperand still 7907 // refers to the input address rather than the pointed-to value. 7908 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7909 OpInfo.CallOperand = 7910 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7911 OpInfo.ConstraintVT = RegVT; 7912 // If the operand is an FP value and we want it in integer registers, 7913 // use the corresponding integer type. This turns an f64 value into 7914 // i64, which can be passed with two i32 values on a 32-bit machine. 7915 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7916 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7917 if (OpInfo.Type == InlineAsm::isInput) 7918 OpInfo.CallOperand = 7919 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7920 OpInfo.ConstraintVT = VT; 7921 } 7922 } 7923 } 7924 7925 // No need to allocate a matching input constraint since the constraint it's 7926 // matching to has already been allocated. 7927 if (OpInfo.isMatchingInputConstraint()) 7928 return; 7929 7930 EVT ValueVT = OpInfo.ConstraintVT; 7931 if (OpInfo.ConstraintVT == MVT::Other) 7932 ValueVT = RegVT; 7933 7934 // Initialize NumRegs. 7935 unsigned NumRegs = 1; 7936 if (OpInfo.ConstraintVT != MVT::Other) 7937 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7938 7939 // If this is a constraint for a specific physical register, like {r17}, 7940 // assign it now. 7941 7942 // If this associated to a specific register, initialize iterator to correct 7943 // place. If virtual, make sure we have enough registers 7944 7945 // Initialize iterator if necessary 7946 TargetRegisterClass::iterator I = RC->begin(); 7947 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7948 7949 // Do not check for single registers. 7950 if (AssignedReg) { 7951 for (; *I != AssignedReg; ++I) 7952 assert(I != RC->end() && "AssignedReg should be member of RC"); 7953 } 7954 7955 for (; NumRegs; --NumRegs, ++I) { 7956 assert(I != RC->end() && "Ran out of registers to allocate!"); 7957 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7958 Regs.push_back(R); 7959 } 7960 7961 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7962 } 7963 7964 static unsigned 7965 findMatchingInlineAsmOperand(unsigned OperandNo, 7966 const std::vector<SDValue> &AsmNodeOperands) { 7967 // Scan until we find the definition we already emitted of this operand. 7968 unsigned CurOp = InlineAsm::Op_FirstOperand; 7969 for (; OperandNo; --OperandNo) { 7970 // Advance to the next operand. 7971 unsigned OpFlag = 7972 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7973 assert((InlineAsm::isRegDefKind(OpFlag) || 7974 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7975 InlineAsm::isMemKind(OpFlag)) && 7976 "Skipped past definitions?"); 7977 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7978 } 7979 return CurOp; 7980 } 7981 7982 namespace { 7983 7984 class ExtraFlags { 7985 unsigned Flags = 0; 7986 7987 public: 7988 explicit ExtraFlags(ImmutableCallSite CS) { 7989 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7990 if (IA->hasSideEffects()) 7991 Flags |= InlineAsm::Extra_HasSideEffects; 7992 if (IA->isAlignStack()) 7993 Flags |= InlineAsm::Extra_IsAlignStack; 7994 if (CS.isConvergent()) 7995 Flags |= InlineAsm::Extra_IsConvergent; 7996 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7997 } 7998 7999 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8000 // Ideally, we would only check against memory constraints. However, the 8001 // meaning of an Other constraint can be target-specific and we can't easily 8002 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8003 // for Other constraints as well. 8004 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8005 OpInfo.ConstraintType == TargetLowering::C_Other) { 8006 if (OpInfo.Type == InlineAsm::isInput) 8007 Flags |= InlineAsm::Extra_MayLoad; 8008 else if (OpInfo.Type == InlineAsm::isOutput) 8009 Flags |= InlineAsm::Extra_MayStore; 8010 else if (OpInfo.Type == InlineAsm::isClobber) 8011 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8012 } 8013 } 8014 8015 unsigned get() const { return Flags; } 8016 }; 8017 8018 } // end anonymous namespace 8019 8020 /// visitInlineAsm - Handle a call to an InlineAsm object. 8021 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8022 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8023 8024 /// ConstraintOperands - Information about all of the constraints. 8025 SDISelAsmOperandInfoVector ConstraintOperands; 8026 8027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8028 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8029 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8030 8031 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8032 // AsmDialect, MayLoad, MayStore). 8033 bool HasSideEffect = IA->hasSideEffects(); 8034 ExtraFlags ExtraInfo(CS); 8035 8036 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8037 unsigned ResNo = 0; // ResNo - The result number of the next output. 8038 for (auto &T : TargetConstraints) { 8039 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8040 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8041 8042 // Compute the value type for each operand. 8043 if (OpInfo.Type == InlineAsm::isInput || 8044 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8045 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8046 8047 // Process the call argument. BasicBlocks are labels, currently appearing 8048 // only in asm's. 8049 const Instruction *I = CS.getInstruction(); 8050 if (isa<CallBrInst>(I) && 8051 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8052 cast<CallBrInst>(I)->getNumIndirectDests())) { 8053 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8054 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8055 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8056 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8057 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8058 } else { 8059 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8060 } 8061 8062 OpInfo.ConstraintVT = 8063 OpInfo 8064 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8065 .getSimpleVT(); 8066 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8067 // The return value of the call is this value. As such, there is no 8068 // corresponding argument. 8069 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8070 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8071 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8072 DAG.getDataLayout(), STy->getElementType(ResNo)); 8073 } else { 8074 assert(ResNo == 0 && "Asm only has one result!"); 8075 OpInfo.ConstraintVT = 8076 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8077 } 8078 ++ResNo; 8079 } else { 8080 OpInfo.ConstraintVT = MVT::Other; 8081 } 8082 8083 if (!HasSideEffect) 8084 HasSideEffect = OpInfo.hasMemory(TLI); 8085 8086 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8087 // FIXME: Could we compute this on OpInfo rather than T? 8088 8089 // Compute the constraint code and ConstraintType to use. 8090 TLI.ComputeConstraintToUse(T, SDValue()); 8091 8092 if (T.ConstraintType == TargetLowering::C_Immediate && 8093 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8094 // We've delayed emitting a diagnostic like the "n" constraint because 8095 // inlining could cause an integer showing up. 8096 return emitInlineAsmError( 8097 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8098 "integer constant expression"); 8099 8100 ExtraInfo.update(T); 8101 } 8102 8103 8104 // We won't need to flush pending loads if this asm doesn't touch 8105 // memory and is nonvolatile. 8106 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8107 8108 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8109 if (IsCallBr) { 8110 // If this is a callbr we need to flush pending exports since inlineasm_br 8111 // is a terminator. We need to do this before nodes are glued to 8112 // the inlineasm_br node. 8113 Chain = getControlRoot(); 8114 } 8115 8116 // Second pass over the constraints: compute which constraint option to use. 8117 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8118 // If this is an output operand with a matching input operand, look up the 8119 // matching input. If their types mismatch, e.g. one is an integer, the 8120 // other is floating point, or their sizes are different, flag it as an 8121 // error. 8122 if (OpInfo.hasMatchingInput()) { 8123 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8124 patchMatchingInput(OpInfo, Input, DAG); 8125 } 8126 8127 // Compute the constraint code and ConstraintType to use. 8128 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8129 8130 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8131 OpInfo.Type == InlineAsm::isClobber) 8132 continue; 8133 8134 // If this is a memory input, and if the operand is not indirect, do what we 8135 // need to provide an address for the memory input. 8136 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8137 !OpInfo.isIndirect) { 8138 assert((OpInfo.isMultipleAlternative || 8139 (OpInfo.Type == InlineAsm::isInput)) && 8140 "Can only indirectify direct input operands!"); 8141 8142 // Memory operands really want the address of the value. 8143 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8144 8145 // There is no longer a Value* corresponding to this operand. 8146 OpInfo.CallOperandVal = nullptr; 8147 8148 // It is now an indirect operand. 8149 OpInfo.isIndirect = true; 8150 } 8151 8152 } 8153 8154 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8155 std::vector<SDValue> AsmNodeOperands; 8156 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8157 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8158 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8159 8160 // If we have a !srcloc metadata node associated with it, we want to attach 8161 // this to the ultimately generated inline asm machineinstr. To do this, we 8162 // pass in the third operand as this (potentially null) inline asm MDNode. 8163 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8164 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8165 8166 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8167 // bits as operand 3. 8168 AsmNodeOperands.push_back(DAG.getTargetConstant( 8169 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8170 8171 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8172 // this, assign virtual and physical registers for inputs and otput. 8173 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8174 // Assign Registers. 8175 SDISelAsmOperandInfo &RefOpInfo = 8176 OpInfo.isMatchingInputConstraint() 8177 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8178 : OpInfo; 8179 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8180 8181 switch (OpInfo.Type) { 8182 case InlineAsm::isOutput: 8183 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8184 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8185 OpInfo.ConstraintType == TargetLowering::C_Other) && 8186 OpInfo.isIndirect)) { 8187 unsigned ConstraintID = 8188 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8189 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8190 "Failed to convert memory constraint code to constraint id."); 8191 8192 // Add information to the INLINEASM node to know about this output. 8193 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8194 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8195 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8196 MVT::i32)); 8197 AsmNodeOperands.push_back(OpInfo.CallOperand); 8198 break; 8199 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8200 OpInfo.ConstraintType == TargetLowering::C_Other) && 8201 !OpInfo.isIndirect) || 8202 OpInfo.ConstraintType == TargetLowering::C_Register || 8203 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8204 // Otherwise, this outputs to a register (directly for C_Register / 8205 // C_RegisterClass, and a target-defined fashion for 8206 // C_Immediate/C_Other). Find a register that we can use. 8207 if (OpInfo.AssignedRegs.Regs.empty()) { 8208 emitInlineAsmError( 8209 CS, "couldn't allocate output register for constraint '" + 8210 Twine(OpInfo.ConstraintCode) + "'"); 8211 return; 8212 } 8213 8214 // Add information to the INLINEASM node to know that this register is 8215 // set. 8216 OpInfo.AssignedRegs.AddInlineAsmOperands( 8217 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8218 : InlineAsm::Kind_RegDef, 8219 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8220 } 8221 break; 8222 8223 case InlineAsm::isInput: { 8224 SDValue InOperandVal = OpInfo.CallOperand; 8225 8226 if (OpInfo.isMatchingInputConstraint()) { 8227 // If this is required to match an output register we have already set, 8228 // just use its register. 8229 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8230 AsmNodeOperands); 8231 unsigned OpFlag = 8232 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8233 if (InlineAsm::isRegDefKind(OpFlag) || 8234 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8235 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8236 if (OpInfo.isIndirect) { 8237 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8238 emitInlineAsmError(CS, "inline asm not supported yet:" 8239 " don't know how to handle tied " 8240 "indirect register inputs"); 8241 return; 8242 } 8243 8244 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8245 SmallVector<unsigned, 4> Regs; 8246 8247 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8248 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8249 MachineRegisterInfo &RegInfo = 8250 DAG.getMachineFunction().getRegInfo(); 8251 for (unsigned i = 0; i != NumRegs; ++i) 8252 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8253 } else { 8254 emitInlineAsmError(CS, "inline asm error: This value type register " 8255 "class is not natively supported!"); 8256 return; 8257 } 8258 8259 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8260 8261 SDLoc dl = getCurSDLoc(); 8262 // Use the produced MatchedRegs object to 8263 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8264 CS.getInstruction()); 8265 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8266 true, OpInfo.getMatchedOperand(), dl, 8267 DAG, AsmNodeOperands); 8268 break; 8269 } 8270 8271 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8272 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8273 "Unexpected number of operands"); 8274 // Add information to the INLINEASM node to know about this input. 8275 // See InlineAsm.h isUseOperandTiedToDef. 8276 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8277 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8278 OpInfo.getMatchedOperand()); 8279 AsmNodeOperands.push_back(DAG.getTargetConstant( 8280 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8281 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8282 break; 8283 } 8284 8285 // Treat indirect 'X' constraint as memory. 8286 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8287 OpInfo.ConstraintType == TargetLowering::C_Other) && 8288 OpInfo.isIndirect) 8289 OpInfo.ConstraintType = TargetLowering::C_Memory; 8290 8291 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8292 OpInfo.ConstraintType == TargetLowering::C_Other) { 8293 std::vector<SDValue> Ops; 8294 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8295 Ops, DAG); 8296 if (Ops.empty()) { 8297 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8298 if (isa<ConstantSDNode>(InOperandVal)) { 8299 emitInlineAsmError(CS, "value out of range for constraint '" + 8300 Twine(OpInfo.ConstraintCode) + "'"); 8301 return; 8302 } 8303 8304 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8305 Twine(OpInfo.ConstraintCode) + "'"); 8306 return; 8307 } 8308 8309 // Add information to the INLINEASM node to know about this input. 8310 unsigned ResOpType = 8311 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8312 AsmNodeOperands.push_back(DAG.getTargetConstant( 8313 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8314 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8315 break; 8316 } 8317 8318 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8319 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8320 assert(InOperandVal.getValueType() == 8321 TLI.getPointerTy(DAG.getDataLayout()) && 8322 "Memory operands expect pointer values"); 8323 8324 unsigned ConstraintID = 8325 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8326 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8327 "Failed to convert memory constraint code to constraint id."); 8328 8329 // Add information to the INLINEASM node to know about this input. 8330 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8331 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8332 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8333 getCurSDLoc(), 8334 MVT::i32)); 8335 AsmNodeOperands.push_back(InOperandVal); 8336 break; 8337 } 8338 8339 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8340 OpInfo.ConstraintType == TargetLowering::C_Register || 8341 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8342 "Unknown constraint type!"); 8343 8344 // TODO: Support this. 8345 if (OpInfo.isIndirect) { 8346 emitInlineAsmError( 8347 CS, "Don't know how to handle indirect register inputs yet " 8348 "for constraint '" + 8349 Twine(OpInfo.ConstraintCode) + "'"); 8350 return; 8351 } 8352 8353 // Copy the input into the appropriate registers. 8354 if (OpInfo.AssignedRegs.Regs.empty()) { 8355 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8356 Twine(OpInfo.ConstraintCode) + "'"); 8357 return; 8358 } 8359 8360 SDLoc dl = getCurSDLoc(); 8361 8362 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8363 Chain, &Flag, CS.getInstruction()); 8364 8365 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8366 dl, DAG, AsmNodeOperands); 8367 break; 8368 } 8369 case InlineAsm::isClobber: 8370 // Add the clobbered value to the operand list, so that the register 8371 // allocator is aware that the physreg got clobbered. 8372 if (!OpInfo.AssignedRegs.Regs.empty()) 8373 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8374 false, 0, getCurSDLoc(), DAG, 8375 AsmNodeOperands); 8376 break; 8377 } 8378 } 8379 8380 // Finish up input operands. Set the input chain and add the flag last. 8381 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8382 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8383 8384 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8385 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8386 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8387 Flag = Chain.getValue(1); 8388 8389 // Do additional work to generate outputs. 8390 8391 SmallVector<EVT, 1> ResultVTs; 8392 SmallVector<SDValue, 1> ResultValues; 8393 SmallVector<SDValue, 8> OutChains; 8394 8395 llvm::Type *CSResultType = CS.getType(); 8396 ArrayRef<Type *> ResultTypes; 8397 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8398 ResultTypes = StructResult->elements(); 8399 else if (!CSResultType->isVoidTy()) 8400 ResultTypes = makeArrayRef(CSResultType); 8401 8402 auto CurResultType = ResultTypes.begin(); 8403 auto handleRegAssign = [&](SDValue V) { 8404 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8405 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8406 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8407 ++CurResultType; 8408 // If the type of the inline asm call site return value is different but has 8409 // same size as the type of the asm output bitcast it. One example of this 8410 // is for vectors with different width / number of elements. This can 8411 // happen for register classes that can contain multiple different value 8412 // types. The preg or vreg allocated may not have the same VT as was 8413 // expected. 8414 // 8415 // This can also happen for a return value that disagrees with the register 8416 // class it is put in, eg. a double in a general-purpose register on a 8417 // 32-bit machine. 8418 if (ResultVT != V.getValueType() && 8419 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8420 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8421 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8422 V.getValueType().isInteger()) { 8423 // If a result value was tied to an input value, the computed result 8424 // may have a wider width than the expected result. Extract the 8425 // relevant portion. 8426 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8427 } 8428 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8429 ResultVTs.push_back(ResultVT); 8430 ResultValues.push_back(V); 8431 }; 8432 8433 // Deal with output operands. 8434 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8435 if (OpInfo.Type == InlineAsm::isOutput) { 8436 SDValue Val; 8437 // Skip trivial output operands. 8438 if (OpInfo.AssignedRegs.Regs.empty()) 8439 continue; 8440 8441 switch (OpInfo.ConstraintType) { 8442 case TargetLowering::C_Register: 8443 case TargetLowering::C_RegisterClass: 8444 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8445 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8446 break; 8447 case TargetLowering::C_Immediate: 8448 case TargetLowering::C_Other: 8449 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8450 OpInfo, DAG); 8451 break; 8452 case TargetLowering::C_Memory: 8453 break; // Already handled. 8454 case TargetLowering::C_Unknown: 8455 assert(false && "Unexpected unknown constraint"); 8456 } 8457 8458 // Indirect output manifest as stores. Record output chains. 8459 if (OpInfo.isIndirect) { 8460 const Value *Ptr = OpInfo.CallOperandVal; 8461 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8462 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8463 MachinePointerInfo(Ptr)); 8464 OutChains.push_back(Store); 8465 } else { 8466 // generate CopyFromRegs to associated registers. 8467 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8468 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8469 for (const SDValue &V : Val->op_values()) 8470 handleRegAssign(V); 8471 } else 8472 handleRegAssign(Val); 8473 } 8474 } 8475 } 8476 8477 // Set results. 8478 if (!ResultValues.empty()) { 8479 assert(CurResultType == ResultTypes.end() && 8480 "Mismatch in number of ResultTypes"); 8481 assert(ResultValues.size() == ResultTypes.size() && 8482 "Mismatch in number of output operands in asm result"); 8483 8484 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8485 DAG.getVTList(ResultVTs), ResultValues); 8486 setValue(CS.getInstruction(), V); 8487 } 8488 8489 // Collect store chains. 8490 if (!OutChains.empty()) 8491 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8492 8493 // Only Update Root if inline assembly has a memory effect. 8494 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8495 DAG.setRoot(Chain); 8496 } 8497 8498 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8499 const Twine &Message) { 8500 LLVMContext &Ctx = *DAG.getContext(); 8501 Ctx.emitError(CS.getInstruction(), Message); 8502 8503 // Make sure we leave the DAG in a valid state 8504 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8505 SmallVector<EVT, 1> ValueVTs; 8506 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8507 8508 if (ValueVTs.empty()) 8509 return; 8510 8511 SmallVector<SDValue, 1> Ops; 8512 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8513 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8514 8515 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8516 } 8517 8518 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8519 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8520 MVT::Other, getRoot(), 8521 getValue(I.getArgOperand(0)), 8522 DAG.getSrcValue(I.getArgOperand(0)))); 8523 } 8524 8525 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8527 const DataLayout &DL = DAG.getDataLayout(); 8528 SDValue V = DAG.getVAArg( 8529 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8530 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8531 DL.getABITypeAlignment(I.getType())); 8532 DAG.setRoot(V.getValue(1)); 8533 8534 if (I.getType()->isPointerTy()) 8535 V = DAG.getPtrExtOrTrunc( 8536 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8537 setValue(&I, V); 8538 } 8539 8540 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8541 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8542 MVT::Other, getRoot(), 8543 getValue(I.getArgOperand(0)), 8544 DAG.getSrcValue(I.getArgOperand(0)))); 8545 } 8546 8547 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8548 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8549 MVT::Other, getRoot(), 8550 getValue(I.getArgOperand(0)), 8551 getValue(I.getArgOperand(1)), 8552 DAG.getSrcValue(I.getArgOperand(0)), 8553 DAG.getSrcValue(I.getArgOperand(1)))); 8554 } 8555 8556 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8557 const Instruction &I, 8558 SDValue Op) { 8559 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8560 if (!Range) 8561 return Op; 8562 8563 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8564 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8565 return Op; 8566 8567 APInt Lo = CR.getUnsignedMin(); 8568 if (!Lo.isMinValue()) 8569 return Op; 8570 8571 APInt Hi = CR.getUnsignedMax(); 8572 unsigned Bits = std::max(Hi.getActiveBits(), 8573 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8574 8575 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8576 8577 SDLoc SL = getCurSDLoc(); 8578 8579 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8580 DAG.getValueType(SmallVT)); 8581 unsigned NumVals = Op.getNode()->getNumValues(); 8582 if (NumVals == 1) 8583 return ZExt; 8584 8585 SmallVector<SDValue, 4> Ops; 8586 8587 Ops.push_back(ZExt); 8588 for (unsigned I = 1; I != NumVals; ++I) 8589 Ops.push_back(Op.getValue(I)); 8590 8591 return DAG.getMergeValues(Ops, SL); 8592 } 8593 8594 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8595 /// the call being lowered. 8596 /// 8597 /// This is a helper for lowering intrinsics that follow a target calling 8598 /// convention or require stack pointer adjustment. Only a subset of the 8599 /// intrinsic's operands need to participate in the calling convention. 8600 void SelectionDAGBuilder::populateCallLoweringInfo( 8601 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8602 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8603 bool IsPatchPoint) { 8604 TargetLowering::ArgListTy Args; 8605 Args.reserve(NumArgs); 8606 8607 // Populate the argument list. 8608 // Attributes for args start at offset 1, after the return attribute. 8609 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8610 ArgI != ArgE; ++ArgI) { 8611 const Value *V = Call->getOperand(ArgI); 8612 8613 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8614 8615 TargetLowering::ArgListEntry Entry; 8616 Entry.Node = getValue(V); 8617 Entry.Ty = V->getType(); 8618 Entry.setAttributes(Call, ArgI); 8619 Args.push_back(Entry); 8620 } 8621 8622 CLI.setDebugLoc(getCurSDLoc()) 8623 .setChain(getRoot()) 8624 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8625 .setDiscardResult(Call->use_empty()) 8626 .setIsPatchPoint(IsPatchPoint); 8627 } 8628 8629 /// Add a stack map intrinsic call's live variable operands to a stackmap 8630 /// or patchpoint target node's operand list. 8631 /// 8632 /// Constants are converted to TargetConstants purely as an optimization to 8633 /// avoid constant materialization and register allocation. 8634 /// 8635 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8636 /// generate addess computation nodes, and so FinalizeISel can convert the 8637 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8638 /// address materialization and register allocation, but may also be required 8639 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8640 /// alloca in the entry block, then the runtime may assume that the alloca's 8641 /// StackMap location can be read immediately after compilation and that the 8642 /// location is valid at any point during execution (this is similar to the 8643 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8644 /// only available in a register, then the runtime would need to trap when 8645 /// execution reaches the StackMap in order to read the alloca's location. 8646 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8647 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8648 SelectionDAGBuilder &Builder) { 8649 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8650 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8651 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8652 Ops.push_back( 8653 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8654 Ops.push_back( 8655 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8656 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8657 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8658 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8659 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8660 } else 8661 Ops.push_back(OpVal); 8662 } 8663 } 8664 8665 /// Lower llvm.experimental.stackmap directly to its target opcode. 8666 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8667 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8668 // [live variables...]) 8669 8670 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8671 8672 SDValue Chain, InFlag, Callee, NullPtr; 8673 SmallVector<SDValue, 32> Ops; 8674 8675 SDLoc DL = getCurSDLoc(); 8676 Callee = getValue(CI.getCalledValue()); 8677 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8678 8679 // The stackmap intrinsic only records the live variables (the arguments 8680 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8681 // intrinsic, this won't be lowered to a function call. This means we don't 8682 // have to worry about calling conventions and target specific lowering code. 8683 // Instead we perform the call lowering right here. 8684 // 8685 // chain, flag = CALLSEQ_START(chain, 0, 0) 8686 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8687 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8688 // 8689 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8690 InFlag = Chain.getValue(1); 8691 8692 // Add the <id> and <numBytes> constants. 8693 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8694 Ops.push_back(DAG.getTargetConstant( 8695 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8696 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8697 Ops.push_back(DAG.getTargetConstant( 8698 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8699 MVT::i32)); 8700 8701 // Push live variables for the stack map. 8702 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8703 8704 // We are not pushing any register mask info here on the operands list, 8705 // because the stackmap doesn't clobber anything. 8706 8707 // Push the chain and the glue flag. 8708 Ops.push_back(Chain); 8709 Ops.push_back(InFlag); 8710 8711 // Create the STACKMAP node. 8712 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8713 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8714 Chain = SDValue(SM, 0); 8715 InFlag = Chain.getValue(1); 8716 8717 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8718 8719 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8720 8721 // Set the root to the target-lowered call chain. 8722 DAG.setRoot(Chain); 8723 8724 // Inform the Frame Information that we have a stackmap in this function. 8725 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8726 } 8727 8728 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8729 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8730 const BasicBlock *EHPadBB) { 8731 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8732 // i32 <numBytes>, 8733 // i8* <target>, 8734 // i32 <numArgs>, 8735 // [Args...], 8736 // [live variables...]) 8737 8738 CallingConv::ID CC = CS.getCallingConv(); 8739 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8740 bool HasDef = !CS->getType()->isVoidTy(); 8741 SDLoc dl = getCurSDLoc(); 8742 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8743 8744 // Handle immediate and symbolic callees. 8745 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8746 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8747 /*isTarget=*/true); 8748 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8749 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8750 SDLoc(SymbolicCallee), 8751 SymbolicCallee->getValueType(0)); 8752 8753 // Get the real number of arguments participating in the call <numArgs> 8754 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8755 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8756 8757 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8758 // Intrinsics include all meta-operands up to but not including CC. 8759 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8760 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8761 "Not enough arguments provided to the patchpoint intrinsic"); 8762 8763 // For AnyRegCC the arguments are lowered later on manually. 8764 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8765 Type *ReturnTy = 8766 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8767 8768 TargetLowering::CallLoweringInfo CLI(DAG); 8769 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8770 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8771 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8772 8773 SDNode *CallEnd = Result.second.getNode(); 8774 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8775 CallEnd = CallEnd->getOperand(0).getNode(); 8776 8777 /// Get a call instruction from the call sequence chain. 8778 /// Tail calls are not allowed. 8779 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8780 "Expected a callseq node."); 8781 SDNode *Call = CallEnd->getOperand(0).getNode(); 8782 bool HasGlue = Call->getGluedNode(); 8783 8784 // Replace the target specific call node with the patchable intrinsic. 8785 SmallVector<SDValue, 8> Ops; 8786 8787 // Add the <id> and <numBytes> constants. 8788 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8789 Ops.push_back(DAG.getTargetConstant( 8790 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8791 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8792 Ops.push_back(DAG.getTargetConstant( 8793 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8794 MVT::i32)); 8795 8796 // Add the callee. 8797 Ops.push_back(Callee); 8798 8799 // Adjust <numArgs> to account for any arguments that have been passed on the 8800 // stack instead. 8801 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8802 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8803 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8804 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8805 8806 // Add the calling convention 8807 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8808 8809 // Add the arguments we omitted previously. The register allocator should 8810 // place these in any free register. 8811 if (IsAnyRegCC) 8812 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8813 Ops.push_back(getValue(CS.getArgument(i))); 8814 8815 // Push the arguments from the call instruction up to the register mask. 8816 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8817 Ops.append(Call->op_begin() + 2, e); 8818 8819 // Push live variables for the stack map. 8820 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8821 8822 // Push the register mask info. 8823 if (HasGlue) 8824 Ops.push_back(*(Call->op_end()-2)); 8825 else 8826 Ops.push_back(*(Call->op_end()-1)); 8827 8828 // Push the chain (this is originally the first operand of the call, but 8829 // becomes now the last or second to last operand). 8830 Ops.push_back(*(Call->op_begin())); 8831 8832 // Push the glue flag (last operand). 8833 if (HasGlue) 8834 Ops.push_back(*(Call->op_end()-1)); 8835 8836 SDVTList NodeTys; 8837 if (IsAnyRegCC && HasDef) { 8838 // Create the return types based on the intrinsic definition 8839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8840 SmallVector<EVT, 3> ValueVTs; 8841 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8842 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8843 8844 // There is always a chain and a glue type at the end 8845 ValueVTs.push_back(MVT::Other); 8846 ValueVTs.push_back(MVT::Glue); 8847 NodeTys = DAG.getVTList(ValueVTs); 8848 } else 8849 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8850 8851 // Replace the target specific call node with a PATCHPOINT node. 8852 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8853 dl, NodeTys, Ops); 8854 8855 // Update the NodeMap. 8856 if (HasDef) { 8857 if (IsAnyRegCC) 8858 setValue(CS.getInstruction(), SDValue(MN, 0)); 8859 else 8860 setValue(CS.getInstruction(), Result.first); 8861 } 8862 8863 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8864 // call sequence. Furthermore the location of the chain and glue can change 8865 // when the AnyReg calling convention is used and the intrinsic returns a 8866 // value. 8867 if (IsAnyRegCC && HasDef) { 8868 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8869 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8870 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8871 } else 8872 DAG.ReplaceAllUsesWith(Call, MN); 8873 DAG.DeleteNode(Call); 8874 8875 // Inform the Frame Information that we have a patchpoint in this function. 8876 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8877 } 8878 8879 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8880 unsigned Intrinsic) { 8881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8882 SDValue Op1 = getValue(I.getArgOperand(0)); 8883 SDValue Op2; 8884 if (I.getNumArgOperands() > 1) 8885 Op2 = getValue(I.getArgOperand(1)); 8886 SDLoc dl = getCurSDLoc(); 8887 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8888 SDValue Res; 8889 FastMathFlags FMF; 8890 if (isa<FPMathOperator>(I)) 8891 FMF = I.getFastMathFlags(); 8892 8893 switch (Intrinsic) { 8894 case Intrinsic::experimental_vector_reduce_v2_fadd: 8895 if (FMF.allowReassoc()) 8896 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8897 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8898 else 8899 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8900 break; 8901 case Intrinsic::experimental_vector_reduce_v2_fmul: 8902 if (FMF.allowReassoc()) 8903 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8904 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8905 else 8906 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8907 break; 8908 case Intrinsic::experimental_vector_reduce_add: 8909 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8910 break; 8911 case Intrinsic::experimental_vector_reduce_mul: 8912 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8913 break; 8914 case Intrinsic::experimental_vector_reduce_and: 8915 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8916 break; 8917 case Intrinsic::experimental_vector_reduce_or: 8918 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8919 break; 8920 case Intrinsic::experimental_vector_reduce_xor: 8921 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8922 break; 8923 case Intrinsic::experimental_vector_reduce_smax: 8924 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8925 break; 8926 case Intrinsic::experimental_vector_reduce_smin: 8927 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8928 break; 8929 case Intrinsic::experimental_vector_reduce_umax: 8930 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8931 break; 8932 case Intrinsic::experimental_vector_reduce_umin: 8933 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8934 break; 8935 case Intrinsic::experimental_vector_reduce_fmax: 8936 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8937 break; 8938 case Intrinsic::experimental_vector_reduce_fmin: 8939 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8940 break; 8941 default: 8942 llvm_unreachable("Unhandled vector reduce intrinsic"); 8943 } 8944 setValue(&I, Res); 8945 } 8946 8947 /// Returns an AttributeList representing the attributes applied to the return 8948 /// value of the given call. 8949 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8950 SmallVector<Attribute::AttrKind, 2> Attrs; 8951 if (CLI.RetSExt) 8952 Attrs.push_back(Attribute::SExt); 8953 if (CLI.RetZExt) 8954 Attrs.push_back(Attribute::ZExt); 8955 if (CLI.IsInReg) 8956 Attrs.push_back(Attribute::InReg); 8957 8958 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8959 Attrs); 8960 } 8961 8962 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8963 /// implementation, which just calls LowerCall. 8964 /// FIXME: When all targets are 8965 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8966 std::pair<SDValue, SDValue> 8967 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8968 // Handle the incoming return values from the call. 8969 CLI.Ins.clear(); 8970 Type *OrigRetTy = CLI.RetTy; 8971 SmallVector<EVT, 4> RetTys; 8972 SmallVector<uint64_t, 4> Offsets; 8973 auto &DL = CLI.DAG.getDataLayout(); 8974 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8975 8976 if (CLI.IsPostTypeLegalization) { 8977 // If we are lowering a libcall after legalization, split the return type. 8978 SmallVector<EVT, 4> OldRetTys; 8979 SmallVector<uint64_t, 4> OldOffsets; 8980 RetTys.swap(OldRetTys); 8981 Offsets.swap(OldOffsets); 8982 8983 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8984 EVT RetVT = OldRetTys[i]; 8985 uint64_t Offset = OldOffsets[i]; 8986 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8987 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8988 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8989 RetTys.append(NumRegs, RegisterVT); 8990 for (unsigned j = 0; j != NumRegs; ++j) 8991 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8992 } 8993 } 8994 8995 SmallVector<ISD::OutputArg, 4> Outs; 8996 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8997 8998 bool CanLowerReturn = 8999 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9000 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9001 9002 SDValue DemoteStackSlot; 9003 int DemoteStackIdx = -100; 9004 if (!CanLowerReturn) { 9005 // FIXME: equivalent assert? 9006 // assert(!CS.hasInAllocaArgument() && 9007 // "sret demotion is incompatible with inalloca"); 9008 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9009 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9010 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9011 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9012 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9013 DL.getAllocaAddrSpace()); 9014 9015 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9016 ArgListEntry Entry; 9017 Entry.Node = DemoteStackSlot; 9018 Entry.Ty = StackSlotPtrType; 9019 Entry.IsSExt = false; 9020 Entry.IsZExt = false; 9021 Entry.IsInReg = false; 9022 Entry.IsSRet = true; 9023 Entry.IsNest = false; 9024 Entry.IsByVal = false; 9025 Entry.IsReturned = false; 9026 Entry.IsSwiftSelf = false; 9027 Entry.IsSwiftError = false; 9028 Entry.IsCFGuardTarget = false; 9029 Entry.Alignment = Align; 9030 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9031 CLI.NumFixedArgs += 1; 9032 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9033 9034 // sret demotion isn't compatible with tail-calls, since the sret argument 9035 // points into the callers stack frame. 9036 CLI.IsTailCall = false; 9037 } else { 9038 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9039 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9040 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9041 ISD::ArgFlagsTy Flags; 9042 if (NeedsRegBlock) { 9043 Flags.setInConsecutiveRegs(); 9044 if (I == RetTys.size() - 1) 9045 Flags.setInConsecutiveRegsLast(); 9046 } 9047 EVT VT = RetTys[I]; 9048 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9049 CLI.CallConv, VT); 9050 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9051 CLI.CallConv, VT); 9052 for (unsigned i = 0; i != NumRegs; ++i) { 9053 ISD::InputArg MyFlags; 9054 MyFlags.Flags = Flags; 9055 MyFlags.VT = RegisterVT; 9056 MyFlags.ArgVT = VT; 9057 MyFlags.Used = CLI.IsReturnValueUsed; 9058 if (CLI.RetTy->isPointerTy()) { 9059 MyFlags.Flags.setPointer(); 9060 MyFlags.Flags.setPointerAddrSpace( 9061 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9062 } 9063 if (CLI.RetSExt) 9064 MyFlags.Flags.setSExt(); 9065 if (CLI.RetZExt) 9066 MyFlags.Flags.setZExt(); 9067 if (CLI.IsInReg) 9068 MyFlags.Flags.setInReg(); 9069 CLI.Ins.push_back(MyFlags); 9070 } 9071 } 9072 } 9073 9074 // We push in swifterror return as the last element of CLI.Ins. 9075 ArgListTy &Args = CLI.getArgs(); 9076 if (supportSwiftError()) { 9077 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9078 if (Args[i].IsSwiftError) { 9079 ISD::InputArg MyFlags; 9080 MyFlags.VT = getPointerTy(DL); 9081 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9082 MyFlags.Flags.setSwiftError(); 9083 CLI.Ins.push_back(MyFlags); 9084 } 9085 } 9086 } 9087 9088 // Handle all of the outgoing arguments. 9089 CLI.Outs.clear(); 9090 CLI.OutVals.clear(); 9091 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9092 SmallVector<EVT, 4> ValueVTs; 9093 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9094 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9095 Type *FinalType = Args[i].Ty; 9096 if (Args[i].IsByVal) 9097 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9098 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9099 FinalType, CLI.CallConv, CLI.IsVarArg); 9100 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9101 ++Value) { 9102 EVT VT = ValueVTs[Value]; 9103 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9104 SDValue Op = SDValue(Args[i].Node.getNode(), 9105 Args[i].Node.getResNo() + Value); 9106 ISD::ArgFlagsTy Flags; 9107 9108 // Certain targets (such as MIPS), may have a different ABI alignment 9109 // for a type depending on the context. Give the target a chance to 9110 // specify the alignment it wants. 9111 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9112 9113 if (Args[i].Ty->isPointerTy()) { 9114 Flags.setPointer(); 9115 Flags.setPointerAddrSpace( 9116 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9117 } 9118 if (Args[i].IsZExt) 9119 Flags.setZExt(); 9120 if (Args[i].IsSExt) 9121 Flags.setSExt(); 9122 if (Args[i].IsInReg) { 9123 // If we are using vectorcall calling convention, a structure that is 9124 // passed InReg - is surely an HVA 9125 if (CLI.CallConv == CallingConv::X86_VectorCall && 9126 isa<StructType>(FinalType)) { 9127 // The first value of a structure is marked 9128 if (0 == Value) 9129 Flags.setHvaStart(); 9130 Flags.setHva(); 9131 } 9132 // Set InReg Flag 9133 Flags.setInReg(); 9134 } 9135 if (Args[i].IsSRet) 9136 Flags.setSRet(); 9137 if (Args[i].IsSwiftSelf) 9138 Flags.setSwiftSelf(); 9139 if (Args[i].IsSwiftError) 9140 Flags.setSwiftError(); 9141 if (Args[i].IsCFGuardTarget) 9142 Flags.setCFGuardTarget(); 9143 if (Args[i].IsByVal) 9144 Flags.setByVal(); 9145 if (Args[i].IsInAlloca) { 9146 Flags.setInAlloca(); 9147 // Set the byval flag for CCAssignFn callbacks that don't know about 9148 // inalloca. This way we can know how many bytes we should've allocated 9149 // and how many bytes a callee cleanup function will pop. If we port 9150 // inalloca to more targets, we'll have to add custom inalloca handling 9151 // in the various CC lowering callbacks. 9152 Flags.setByVal(); 9153 } 9154 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9155 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9156 Type *ElementTy = Ty->getElementType(); 9157 9158 unsigned FrameSize = DL.getTypeAllocSize( 9159 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9160 Flags.setByValSize(FrameSize); 9161 9162 // info is not there but there are cases it cannot get right. 9163 unsigned FrameAlign; 9164 if (Args[i].Alignment) 9165 FrameAlign = Args[i].Alignment; 9166 else 9167 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9168 Flags.setByValAlign(Align(FrameAlign)); 9169 } 9170 if (Args[i].IsNest) 9171 Flags.setNest(); 9172 if (NeedsRegBlock) 9173 Flags.setInConsecutiveRegs(); 9174 Flags.setOrigAlign(OriginalAlignment); 9175 9176 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9177 CLI.CallConv, VT); 9178 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9179 CLI.CallConv, VT); 9180 SmallVector<SDValue, 4> Parts(NumParts); 9181 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9182 9183 if (Args[i].IsSExt) 9184 ExtendKind = ISD::SIGN_EXTEND; 9185 else if (Args[i].IsZExt) 9186 ExtendKind = ISD::ZERO_EXTEND; 9187 9188 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9189 // for now. 9190 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9191 CanLowerReturn) { 9192 assert((CLI.RetTy == Args[i].Ty || 9193 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9194 CLI.RetTy->getPointerAddressSpace() == 9195 Args[i].Ty->getPointerAddressSpace())) && 9196 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9197 // Before passing 'returned' to the target lowering code, ensure that 9198 // either the register MVT and the actual EVT are the same size or that 9199 // the return value and argument are extended in the same way; in these 9200 // cases it's safe to pass the argument register value unchanged as the 9201 // return register value (although it's at the target's option whether 9202 // to do so) 9203 // TODO: allow code generation to take advantage of partially preserved 9204 // registers rather than clobbering the entire register when the 9205 // parameter extension method is not compatible with the return 9206 // extension method 9207 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9208 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9209 CLI.RetZExt == Args[i].IsZExt)) 9210 Flags.setReturned(); 9211 } 9212 9213 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9214 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9215 9216 for (unsigned j = 0; j != NumParts; ++j) { 9217 // if it isn't first piece, alignment must be 1 9218 // For scalable vectors the scalable part is currently handled 9219 // by individual targets, so we just use the known minimum size here. 9220 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9221 i < CLI.NumFixedArgs, i, 9222 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9223 if (NumParts > 1 && j == 0) 9224 MyFlags.Flags.setSplit(); 9225 else if (j != 0) { 9226 MyFlags.Flags.setOrigAlign(Align::None()); 9227 if (j == NumParts - 1) 9228 MyFlags.Flags.setSplitEnd(); 9229 } 9230 9231 CLI.Outs.push_back(MyFlags); 9232 CLI.OutVals.push_back(Parts[j]); 9233 } 9234 9235 if (NeedsRegBlock && Value == NumValues - 1) 9236 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9237 } 9238 } 9239 9240 SmallVector<SDValue, 4> InVals; 9241 CLI.Chain = LowerCall(CLI, InVals); 9242 9243 // Update CLI.InVals to use outside of this function. 9244 CLI.InVals = InVals; 9245 9246 // Verify that the target's LowerCall behaved as expected. 9247 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9248 "LowerCall didn't return a valid chain!"); 9249 assert((!CLI.IsTailCall || InVals.empty()) && 9250 "LowerCall emitted a return value for a tail call!"); 9251 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9252 "LowerCall didn't emit the correct number of values!"); 9253 9254 // For a tail call, the return value is merely live-out and there aren't 9255 // any nodes in the DAG representing it. Return a special value to 9256 // indicate that a tail call has been emitted and no more Instructions 9257 // should be processed in the current block. 9258 if (CLI.IsTailCall) { 9259 CLI.DAG.setRoot(CLI.Chain); 9260 return std::make_pair(SDValue(), SDValue()); 9261 } 9262 9263 #ifndef NDEBUG 9264 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9265 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9266 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9267 "LowerCall emitted a value with the wrong type!"); 9268 } 9269 #endif 9270 9271 SmallVector<SDValue, 4> ReturnValues; 9272 if (!CanLowerReturn) { 9273 // The instruction result is the result of loading from the 9274 // hidden sret parameter. 9275 SmallVector<EVT, 1> PVTs; 9276 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9277 9278 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9279 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9280 EVT PtrVT = PVTs[0]; 9281 9282 unsigned NumValues = RetTys.size(); 9283 ReturnValues.resize(NumValues); 9284 SmallVector<SDValue, 4> Chains(NumValues); 9285 9286 // An aggregate return value cannot wrap around the address space, so 9287 // offsets to its parts don't wrap either. 9288 SDNodeFlags Flags; 9289 Flags.setNoUnsignedWrap(true); 9290 9291 for (unsigned i = 0; i < NumValues; ++i) { 9292 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9293 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9294 PtrVT), Flags); 9295 SDValue L = CLI.DAG.getLoad( 9296 RetTys[i], CLI.DL, CLI.Chain, Add, 9297 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9298 DemoteStackIdx, Offsets[i]), 9299 /* Alignment = */ 1); 9300 ReturnValues[i] = L; 9301 Chains[i] = L.getValue(1); 9302 } 9303 9304 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9305 } else { 9306 // Collect the legal value parts into potentially illegal values 9307 // that correspond to the original function's return values. 9308 Optional<ISD::NodeType> AssertOp; 9309 if (CLI.RetSExt) 9310 AssertOp = ISD::AssertSext; 9311 else if (CLI.RetZExt) 9312 AssertOp = ISD::AssertZext; 9313 unsigned CurReg = 0; 9314 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9315 EVT VT = RetTys[I]; 9316 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9317 CLI.CallConv, VT); 9318 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9319 CLI.CallConv, VT); 9320 9321 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9322 NumRegs, RegisterVT, VT, nullptr, 9323 CLI.CallConv, AssertOp)); 9324 CurReg += NumRegs; 9325 } 9326 9327 // For a function returning void, there is no return value. We can't create 9328 // such a node, so we just return a null return value in that case. In 9329 // that case, nothing will actually look at the value. 9330 if (ReturnValues.empty()) 9331 return std::make_pair(SDValue(), CLI.Chain); 9332 } 9333 9334 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9335 CLI.DAG.getVTList(RetTys), ReturnValues); 9336 return std::make_pair(Res, CLI.Chain); 9337 } 9338 9339 void TargetLowering::LowerOperationWrapper(SDNode *N, 9340 SmallVectorImpl<SDValue> &Results, 9341 SelectionDAG &DAG) const { 9342 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9343 Results.push_back(Res); 9344 } 9345 9346 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9347 llvm_unreachable("LowerOperation not implemented for this target!"); 9348 } 9349 9350 void 9351 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9352 SDValue Op = getNonRegisterValue(V); 9353 assert((Op.getOpcode() != ISD::CopyFromReg || 9354 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9355 "Copy from a reg to the same reg!"); 9356 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9357 9358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9359 // If this is an InlineAsm we have to match the registers required, not the 9360 // notional registers required by the type. 9361 9362 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9363 None); // This is not an ABI copy. 9364 SDValue Chain = DAG.getEntryNode(); 9365 9366 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9367 FuncInfo.PreferredExtendType.end()) 9368 ? ISD::ANY_EXTEND 9369 : FuncInfo.PreferredExtendType[V]; 9370 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9371 PendingExports.push_back(Chain); 9372 } 9373 9374 #include "llvm/CodeGen/SelectionDAGISel.h" 9375 9376 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9377 /// entry block, return true. This includes arguments used by switches, since 9378 /// the switch may expand into multiple basic blocks. 9379 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9380 // With FastISel active, we may be splitting blocks, so force creation 9381 // of virtual registers for all non-dead arguments. 9382 if (FastISel) 9383 return A->use_empty(); 9384 9385 const BasicBlock &Entry = A->getParent()->front(); 9386 for (const User *U : A->users()) 9387 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9388 return false; // Use not in entry block. 9389 9390 return true; 9391 } 9392 9393 using ArgCopyElisionMapTy = 9394 DenseMap<const Argument *, 9395 std::pair<const AllocaInst *, const StoreInst *>>; 9396 9397 /// Scan the entry block of the function in FuncInfo for arguments that look 9398 /// like copies into a local alloca. Record any copied arguments in 9399 /// ArgCopyElisionCandidates. 9400 static void 9401 findArgumentCopyElisionCandidates(const DataLayout &DL, 9402 FunctionLoweringInfo *FuncInfo, 9403 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9404 // Record the state of every static alloca used in the entry block. Argument 9405 // allocas are all used in the entry block, so we need approximately as many 9406 // entries as we have arguments. 9407 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9408 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9409 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9410 StaticAllocas.reserve(NumArgs * 2); 9411 9412 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9413 if (!V) 9414 return nullptr; 9415 V = V->stripPointerCasts(); 9416 const auto *AI = dyn_cast<AllocaInst>(V); 9417 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9418 return nullptr; 9419 auto Iter = StaticAllocas.insert({AI, Unknown}); 9420 return &Iter.first->second; 9421 }; 9422 9423 // Look for stores of arguments to static allocas. Look through bitcasts and 9424 // GEPs to handle type coercions, as long as the alloca is fully initialized 9425 // by the store. Any non-store use of an alloca escapes it and any subsequent 9426 // unanalyzed store might write it. 9427 // FIXME: Handle structs initialized with multiple stores. 9428 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9429 // Look for stores, and handle non-store uses conservatively. 9430 const auto *SI = dyn_cast<StoreInst>(&I); 9431 if (!SI) { 9432 // We will look through cast uses, so ignore them completely. 9433 if (I.isCast()) 9434 continue; 9435 // Ignore debug info intrinsics, they don't escape or store to allocas. 9436 if (isa<DbgInfoIntrinsic>(I)) 9437 continue; 9438 // This is an unknown instruction. Assume it escapes or writes to all 9439 // static alloca operands. 9440 for (const Use &U : I.operands()) { 9441 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9442 *Info = StaticAllocaInfo::Clobbered; 9443 } 9444 continue; 9445 } 9446 9447 // If the stored value is a static alloca, mark it as escaped. 9448 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9449 *Info = StaticAllocaInfo::Clobbered; 9450 9451 // Check if the destination is a static alloca. 9452 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9453 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9454 if (!Info) 9455 continue; 9456 const AllocaInst *AI = cast<AllocaInst>(Dst); 9457 9458 // Skip allocas that have been initialized or clobbered. 9459 if (*Info != StaticAllocaInfo::Unknown) 9460 continue; 9461 9462 // Check if the stored value is an argument, and that this store fully 9463 // initializes the alloca. Don't elide copies from the same argument twice. 9464 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9465 const auto *Arg = dyn_cast<Argument>(Val); 9466 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9467 Arg->getType()->isEmptyTy() || 9468 DL.getTypeStoreSize(Arg->getType()) != 9469 DL.getTypeAllocSize(AI->getAllocatedType()) || 9470 ArgCopyElisionCandidates.count(Arg)) { 9471 *Info = StaticAllocaInfo::Clobbered; 9472 continue; 9473 } 9474 9475 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9476 << '\n'); 9477 9478 // Mark this alloca and store for argument copy elision. 9479 *Info = StaticAllocaInfo::Elidable; 9480 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9481 9482 // Stop scanning if we've seen all arguments. This will happen early in -O0 9483 // builds, which is useful, because -O0 builds have large entry blocks and 9484 // many allocas. 9485 if (ArgCopyElisionCandidates.size() == NumArgs) 9486 break; 9487 } 9488 } 9489 9490 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9491 /// ArgVal is a load from a suitable fixed stack object. 9492 static void tryToElideArgumentCopy( 9493 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9494 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9495 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9496 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9497 SDValue ArgVal, bool &ArgHasUses) { 9498 // Check if this is a load from a fixed stack object. 9499 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9500 if (!LNode) 9501 return; 9502 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9503 if (!FINode) 9504 return; 9505 9506 // Check that the fixed stack object is the right size and alignment. 9507 // Look at the alignment that the user wrote on the alloca instead of looking 9508 // at the stack object. 9509 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9510 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9511 const AllocaInst *AI = ArgCopyIter->second.first; 9512 int FixedIndex = FINode->getIndex(); 9513 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9514 int OldIndex = AllocaIndex; 9515 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9516 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9517 LLVM_DEBUG( 9518 dbgs() << " argument copy elision failed due to bad fixed stack " 9519 "object size\n"); 9520 return; 9521 } 9522 unsigned RequiredAlignment = AI->getAlignment(); 9523 if (!RequiredAlignment) { 9524 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9525 AI->getAllocatedType()); 9526 } 9527 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9528 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9529 "greater than stack argument alignment (" 9530 << RequiredAlignment << " vs " 9531 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9532 return; 9533 } 9534 9535 // Perform the elision. Delete the old stack object and replace its only use 9536 // in the variable info map. Mark the stack object as mutable. 9537 LLVM_DEBUG({ 9538 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9539 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9540 << '\n'; 9541 }); 9542 MFI.RemoveStackObject(OldIndex); 9543 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9544 AllocaIndex = FixedIndex; 9545 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9546 Chains.push_back(ArgVal.getValue(1)); 9547 9548 // Avoid emitting code for the store implementing the copy. 9549 const StoreInst *SI = ArgCopyIter->second.second; 9550 ElidedArgCopyInstrs.insert(SI); 9551 9552 // Check for uses of the argument again so that we can avoid exporting ArgVal 9553 // if it is't used by anything other than the store. 9554 for (const Value *U : Arg.users()) { 9555 if (U != SI) { 9556 ArgHasUses = true; 9557 break; 9558 } 9559 } 9560 } 9561 9562 void SelectionDAGISel::LowerArguments(const Function &F) { 9563 SelectionDAG &DAG = SDB->DAG; 9564 SDLoc dl = SDB->getCurSDLoc(); 9565 const DataLayout &DL = DAG.getDataLayout(); 9566 SmallVector<ISD::InputArg, 16> Ins; 9567 9568 if (!FuncInfo->CanLowerReturn) { 9569 // Put in an sret pointer parameter before all the other parameters. 9570 SmallVector<EVT, 1> ValueVTs; 9571 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9572 F.getReturnType()->getPointerTo( 9573 DAG.getDataLayout().getAllocaAddrSpace()), 9574 ValueVTs); 9575 9576 // NOTE: Assuming that a pointer will never break down to more than one VT 9577 // or one register. 9578 ISD::ArgFlagsTy Flags; 9579 Flags.setSRet(); 9580 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9581 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9582 ISD::InputArg::NoArgIndex, 0); 9583 Ins.push_back(RetArg); 9584 } 9585 9586 // Look for stores of arguments to static allocas. Mark such arguments with a 9587 // flag to ask the target to give us the memory location of that argument if 9588 // available. 9589 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9590 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9591 9592 // Set up the incoming argument description vector. 9593 for (const Argument &Arg : F.args()) { 9594 unsigned ArgNo = Arg.getArgNo(); 9595 SmallVector<EVT, 4> ValueVTs; 9596 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9597 bool isArgValueUsed = !Arg.use_empty(); 9598 unsigned PartBase = 0; 9599 Type *FinalType = Arg.getType(); 9600 if (Arg.hasAttribute(Attribute::ByVal)) 9601 FinalType = Arg.getParamByValType(); 9602 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9603 FinalType, F.getCallingConv(), F.isVarArg()); 9604 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9605 Value != NumValues; ++Value) { 9606 EVT VT = ValueVTs[Value]; 9607 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9608 ISD::ArgFlagsTy Flags; 9609 9610 // Certain targets (such as MIPS), may have a different ABI alignment 9611 // for a type depending on the context. Give the target a chance to 9612 // specify the alignment it wants. 9613 const Align OriginalAlignment( 9614 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9615 9616 if (Arg.getType()->isPointerTy()) { 9617 Flags.setPointer(); 9618 Flags.setPointerAddrSpace( 9619 cast<PointerType>(Arg.getType())->getAddressSpace()); 9620 } 9621 if (Arg.hasAttribute(Attribute::ZExt)) 9622 Flags.setZExt(); 9623 if (Arg.hasAttribute(Attribute::SExt)) 9624 Flags.setSExt(); 9625 if (Arg.hasAttribute(Attribute::InReg)) { 9626 // If we are using vectorcall calling convention, a structure that is 9627 // passed InReg - is surely an HVA 9628 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9629 isa<StructType>(Arg.getType())) { 9630 // The first value of a structure is marked 9631 if (0 == Value) 9632 Flags.setHvaStart(); 9633 Flags.setHva(); 9634 } 9635 // Set InReg Flag 9636 Flags.setInReg(); 9637 } 9638 if (Arg.hasAttribute(Attribute::StructRet)) 9639 Flags.setSRet(); 9640 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9641 Flags.setSwiftSelf(); 9642 if (Arg.hasAttribute(Attribute::SwiftError)) 9643 Flags.setSwiftError(); 9644 if (Arg.hasAttribute(Attribute::ByVal)) 9645 Flags.setByVal(); 9646 if (Arg.hasAttribute(Attribute::InAlloca)) { 9647 Flags.setInAlloca(); 9648 // Set the byval flag for CCAssignFn callbacks that don't know about 9649 // inalloca. This way we can know how many bytes we should've allocated 9650 // and how many bytes a callee cleanup function will pop. If we port 9651 // inalloca to more targets, we'll have to add custom inalloca handling 9652 // in the various CC lowering callbacks. 9653 Flags.setByVal(); 9654 } 9655 if (F.getCallingConv() == CallingConv::X86_INTR) { 9656 // IA Interrupt passes frame (1st parameter) by value in the stack. 9657 if (ArgNo == 0) 9658 Flags.setByVal(); 9659 } 9660 if (Flags.isByVal() || Flags.isInAlloca()) { 9661 Type *ElementTy = Arg.getParamByValType(); 9662 9663 // For ByVal, size and alignment should be passed from FE. BE will 9664 // guess if this info is not there but there are cases it cannot get 9665 // right. 9666 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9667 Flags.setByValSize(FrameSize); 9668 9669 unsigned FrameAlign; 9670 if (Arg.getParamAlignment()) 9671 FrameAlign = Arg.getParamAlignment(); 9672 else 9673 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9674 Flags.setByValAlign(Align(FrameAlign)); 9675 } 9676 if (Arg.hasAttribute(Attribute::Nest)) 9677 Flags.setNest(); 9678 if (NeedsRegBlock) 9679 Flags.setInConsecutiveRegs(); 9680 Flags.setOrigAlign(OriginalAlignment); 9681 if (ArgCopyElisionCandidates.count(&Arg)) 9682 Flags.setCopyElisionCandidate(); 9683 if (Arg.hasAttribute(Attribute::Returned)) 9684 Flags.setReturned(); 9685 9686 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9687 *CurDAG->getContext(), F.getCallingConv(), VT); 9688 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9689 *CurDAG->getContext(), F.getCallingConv(), VT); 9690 for (unsigned i = 0; i != NumRegs; ++i) { 9691 // For scalable vectors, use the minimum size; individual targets 9692 // are responsible for handling scalable vector arguments and 9693 // return values. 9694 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9695 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9696 if (NumRegs > 1 && i == 0) 9697 MyFlags.Flags.setSplit(); 9698 // if it isn't first piece, alignment must be 1 9699 else if (i > 0) { 9700 MyFlags.Flags.setOrigAlign(Align::None()); 9701 if (i == NumRegs - 1) 9702 MyFlags.Flags.setSplitEnd(); 9703 } 9704 Ins.push_back(MyFlags); 9705 } 9706 if (NeedsRegBlock && Value == NumValues - 1) 9707 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9708 PartBase += VT.getStoreSize().getKnownMinSize(); 9709 } 9710 } 9711 9712 // Call the target to set up the argument values. 9713 SmallVector<SDValue, 8> InVals; 9714 SDValue NewRoot = TLI->LowerFormalArguments( 9715 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9716 9717 // Verify that the target's LowerFormalArguments behaved as expected. 9718 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9719 "LowerFormalArguments didn't return a valid chain!"); 9720 assert(InVals.size() == Ins.size() && 9721 "LowerFormalArguments didn't emit the correct number of values!"); 9722 LLVM_DEBUG({ 9723 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9724 assert(InVals[i].getNode() && 9725 "LowerFormalArguments emitted a null value!"); 9726 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9727 "LowerFormalArguments emitted a value with the wrong type!"); 9728 } 9729 }); 9730 9731 // Update the DAG with the new chain value resulting from argument lowering. 9732 DAG.setRoot(NewRoot); 9733 9734 // Set up the argument values. 9735 unsigned i = 0; 9736 if (!FuncInfo->CanLowerReturn) { 9737 // Create a virtual register for the sret pointer, and put in a copy 9738 // from the sret argument into it. 9739 SmallVector<EVT, 1> ValueVTs; 9740 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9741 F.getReturnType()->getPointerTo( 9742 DAG.getDataLayout().getAllocaAddrSpace()), 9743 ValueVTs); 9744 MVT VT = ValueVTs[0].getSimpleVT(); 9745 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9746 Optional<ISD::NodeType> AssertOp = None; 9747 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9748 nullptr, F.getCallingConv(), AssertOp); 9749 9750 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9751 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9752 Register SRetReg = 9753 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9754 FuncInfo->DemoteRegister = SRetReg; 9755 NewRoot = 9756 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9757 DAG.setRoot(NewRoot); 9758 9759 // i indexes lowered arguments. Bump it past the hidden sret argument. 9760 ++i; 9761 } 9762 9763 SmallVector<SDValue, 4> Chains; 9764 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9765 for (const Argument &Arg : F.args()) { 9766 SmallVector<SDValue, 4> ArgValues; 9767 SmallVector<EVT, 4> ValueVTs; 9768 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9769 unsigned NumValues = ValueVTs.size(); 9770 if (NumValues == 0) 9771 continue; 9772 9773 bool ArgHasUses = !Arg.use_empty(); 9774 9775 // Elide the copying store if the target loaded this argument from a 9776 // suitable fixed stack object. 9777 if (Ins[i].Flags.isCopyElisionCandidate()) { 9778 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9779 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9780 InVals[i], ArgHasUses); 9781 } 9782 9783 // If this argument is unused then remember its value. It is used to generate 9784 // debugging information. 9785 bool isSwiftErrorArg = 9786 TLI->supportSwiftError() && 9787 Arg.hasAttribute(Attribute::SwiftError); 9788 if (!ArgHasUses && !isSwiftErrorArg) { 9789 SDB->setUnusedArgValue(&Arg, InVals[i]); 9790 9791 // Also remember any frame index for use in FastISel. 9792 if (FrameIndexSDNode *FI = 9793 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9794 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9795 } 9796 9797 for (unsigned Val = 0; Val != NumValues; ++Val) { 9798 EVT VT = ValueVTs[Val]; 9799 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9800 F.getCallingConv(), VT); 9801 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9802 *CurDAG->getContext(), F.getCallingConv(), VT); 9803 9804 // Even an apparent 'unused' swifterror argument needs to be returned. So 9805 // we do generate a copy for it that can be used on return from the 9806 // function. 9807 if (ArgHasUses || isSwiftErrorArg) { 9808 Optional<ISD::NodeType> AssertOp; 9809 if (Arg.hasAttribute(Attribute::SExt)) 9810 AssertOp = ISD::AssertSext; 9811 else if (Arg.hasAttribute(Attribute::ZExt)) 9812 AssertOp = ISD::AssertZext; 9813 9814 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9815 PartVT, VT, nullptr, 9816 F.getCallingConv(), AssertOp)); 9817 } 9818 9819 i += NumParts; 9820 } 9821 9822 // We don't need to do anything else for unused arguments. 9823 if (ArgValues.empty()) 9824 continue; 9825 9826 // Note down frame index. 9827 if (FrameIndexSDNode *FI = 9828 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9829 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9830 9831 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9832 SDB->getCurSDLoc()); 9833 9834 SDB->setValue(&Arg, Res); 9835 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9836 // We want to associate the argument with the frame index, among 9837 // involved operands, that correspond to the lowest address. The 9838 // getCopyFromParts function, called earlier, is swapping the order of 9839 // the operands to BUILD_PAIR depending on endianness. The result of 9840 // that swapping is that the least significant bits of the argument will 9841 // be in the first operand of the BUILD_PAIR node, and the most 9842 // significant bits will be in the second operand. 9843 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9844 if (LoadSDNode *LNode = 9845 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9846 if (FrameIndexSDNode *FI = 9847 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9848 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9849 } 9850 9851 // Analyses past this point are naive and don't expect an assertion. 9852 if (Res.getOpcode() == ISD::AssertZext) 9853 Res = Res.getOperand(0); 9854 9855 // Update the SwiftErrorVRegDefMap. 9856 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9857 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9858 if (Register::isVirtualRegister(Reg)) 9859 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9860 Reg); 9861 } 9862 9863 // If this argument is live outside of the entry block, insert a copy from 9864 // wherever we got it to the vreg that other BB's will reference it as. 9865 if (Res.getOpcode() == ISD::CopyFromReg) { 9866 // If we can, though, try to skip creating an unnecessary vreg. 9867 // FIXME: This isn't very clean... it would be nice to make this more 9868 // general. 9869 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9870 if (Register::isVirtualRegister(Reg)) { 9871 FuncInfo->ValueMap[&Arg] = Reg; 9872 continue; 9873 } 9874 } 9875 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9876 FuncInfo->InitializeRegForValue(&Arg); 9877 SDB->CopyToExportRegsIfNeeded(&Arg); 9878 } 9879 } 9880 9881 if (!Chains.empty()) { 9882 Chains.push_back(NewRoot); 9883 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9884 } 9885 9886 DAG.setRoot(NewRoot); 9887 9888 assert(i == InVals.size() && "Argument register count mismatch!"); 9889 9890 // If any argument copy elisions occurred and we have debug info, update the 9891 // stale frame indices used in the dbg.declare variable info table. 9892 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9893 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9894 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9895 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9896 if (I != ArgCopyElisionFrameIndexMap.end()) 9897 VI.Slot = I->second; 9898 } 9899 } 9900 9901 // Finally, if the target has anything special to do, allow it to do so. 9902 EmitFunctionEntryCode(); 9903 } 9904 9905 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9906 /// ensure constants are generated when needed. Remember the virtual registers 9907 /// that need to be added to the Machine PHI nodes as input. We cannot just 9908 /// directly add them, because expansion might result in multiple MBB's for one 9909 /// BB. As such, the start of the BB might correspond to a different MBB than 9910 /// the end. 9911 void 9912 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9913 const Instruction *TI = LLVMBB->getTerminator(); 9914 9915 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9916 9917 // Check PHI nodes in successors that expect a value to be available from this 9918 // block. 9919 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9920 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9921 if (!isa<PHINode>(SuccBB->begin())) continue; 9922 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9923 9924 // If this terminator has multiple identical successors (common for 9925 // switches), only handle each succ once. 9926 if (!SuccsHandled.insert(SuccMBB).second) 9927 continue; 9928 9929 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9930 9931 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9932 // nodes and Machine PHI nodes, but the incoming operands have not been 9933 // emitted yet. 9934 for (const PHINode &PN : SuccBB->phis()) { 9935 // Ignore dead phi's. 9936 if (PN.use_empty()) 9937 continue; 9938 9939 // Skip empty types 9940 if (PN.getType()->isEmptyTy()) 9941 continue; 9942 9943 unsigned Reg; 9944 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9945 9946 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9947 unsigned &RegOut = ConstantsOut[C]; 9948 if (RegOut == 0) { 9949 RegOut = FuncInfo.CreateRegs(C); 9950 CopyValueToVirtualRegister(C, RegOut); 9951 } 9952 Reg = RegOut; 9953 } else { 9954 DenseMap<const Value *, unsigned>::iterator I = 9955 FuncInfo.ValueMap.find(PHIOp); 9956 if (I != FuncInfo.ValueMap.end()) 9957 Reg = I->second; 9958 else { 9959 assert(isa<AllocaInst>(PHIOp) && 9960 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9961 "Didn't codegen value into a register!??"); 9962 Reg = FuncInfo.CreateRegs(PHIOp); 9963 CopyValueToVirtualRegister(PHIOp, Reg); 9964 } 9965 } 9966 9967 // Remember that this register needs to added to the machine PHI node as 9968 // the input for this MBB. 9969 SmallVector<EVT, 4> ValueVTs; 9970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9971 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9972 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9973 EVT VT = ValueVTs[vti]; 9974 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9975 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9976 FuncInfo.PHINodesToUpdate.push_back( 9977 std::make_pair(&*MBBI++, Reg + i)); 9978 Reg += NumRegisters; 9979 } 9980 } 9981 } 9982 9983 ConstantsOut.clear(); 9984 } 9985 9986 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9987 /// is 0. 9988 MachineBasicBlock * 9989 SelectionDAGBuilder::StackProtectorDescriptor:: 9990 AddSuccessorMBB(const BasicBlock *BB, 9991 MachineBasicBlock *ParentMBB, 9992 bool IsLikely, 9993 MachineBasicBlock *SuccMBB) { 9994 // If SuccBB has not been created yet, create it. 9995 if (!SuccMBB) { 9996 MachineFunction *MF = ParentMBB->getParent(); 9997 MachineFunction::iterator BBI(ParentMBB); 9998 SuccMBB = MF->CreateMachineBasicBlock(BB); 9999 MF->insert(++BBI, SuccMBB); 10000 } 10001 // Add it as a successor of ParentMBB. 10002 ParentMBB->addSuccessor( 10003 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10004 return SuccMBB; 10005 } 10006 10007 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10008 MachineFunction::iterator I(MBB); 10009 if (++I == FuncInfo.MF->end()) 10010 return nullptr; 10011 return &*I; 10012 } 10013 10014 /// During lowering new call nodes can be created (such as memset, etc.). 10015 /// Those will become new roots of the current DAG, but complications arise 10016 /// when they are tail calls. In such cases, the call lowering will update 10017 /// the root, but the builder still needs to know that a tail call has been 10018 /// lowered in order to avoid generating an additional return. 10019 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10020 // If the node is null, we do have a tail call. 10021 if (MaybeTC.getNode() != nullptr) 10022 DAG.setRoot(MaybeTC); 10023 else 10024 HasTailCall = true; 10025 } 10026 10027 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10028 MachineBasicBlock *SwitchMBB, 10029 MachineBasicBlock *DefaultMBB) { 10030 MachineFunction *CurMF = FuncInfo.MF; 10031 MachineBasicBlock *NextMBB = nullptr; 10032 MachineFunction::iterator BBI(W.MBB); 10033 if (++BBI != FuncInfo.MF->end()) 10034 NextMBB = &*BBI; 10035 10036 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10037 10038 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10039 10040 if (Size == 2 && W.MBB == SwitchMBB) { 10041 // If any two of the cases has the same destination, and if one value 10042 // is the same as the other, but has one bit unset that the other has set, 10043 // use bit manipulation to do two compares at once. For example: 10044 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10045 // TODO: This could be extended to merge any 2 cases in switches with 3 10046 // cases. 10047 // TODO: Handle cases where W.CaseBB != SwitchBB. 10048 CaseCluster &Small = *W.FirstCluster; 10049 CaseCluster &Big = *W.LastCluster; 10050 10051 if (Small.Low == Small.High && Big.Low == Big.High && 10052 Small.MBB == Big.MBB) { 10053 const APInt &SmallValue = Small.Low->getValue(); 10054 const APInt &BigValue = Big.Low->getValue(); 10055 10056 // Check that there is only one bit different. 10057 APInt CommonBit = BigValue ^ SmallValue; 10058 if (CommonBit.isPowerOf2()) { 10059 SDValue CondLHS = getValue(Cond); 10060 EVT VT = CondLHS.getValueType(); 10061 SDLoc DL = getCurSDLoc(); 10062 10063 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10064 DAG.getConstant(CommonBit, DL, VT)); 10065 SDValue Cond = DAG.getSetCC( 10066 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10067 ISD::SETEQ); 10068 10069 // Update successor info. 10070 // Both Small and Big will jump to Small.BB, so we sum up the 10071 // probabilities. 10072 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10073 if (BPI) 10074 addSuccessorWithProb( 10075 SwitchMBB, DefaultMBB, 10076 // The default destination is the first successor in IR. 10077 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10078 else 10079 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10080 10081 // Insert the true branch. 10082 SDValue BrCond = 10083 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10084 DAG.getBasicBlock(Small.MBB)); 10085 // Insert the false branch. 10086 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10087 DAG.getBasicBlock(DefaultMBB)); 10088 10089 DAG.setRoot(BrCond); 10090 return; 10091 } 10092 } 10093 } 10094 10095 if (TM.getOptLevel() != CodeGenOpt::None) { 10096 // Here, we order cases by probability so the most likely case will be 10097 // checked first. However, two clusters can have the same probability in 10098 // which case their relative ordering is non-deterministic. So we use Low 10099 // as a tie-breaker as clusters are guaranteed to never overlap. 10100 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10101 [](const CaseCluster &a, const CaseCluster &b) { 10102 return a.Prob != b.Prob ? 10103 a.Prob > b.Prob : 10104 a.Low->getValue().slt(b.Low->getValue()); 10105 }); 10106 10107 // Rearrange the case blocks so that the last one falls through if possible 10108 // without changing the order of probabilities. 10109 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10110 --I; 10111 if (I->Prob > W.LastCluster->Prob) 10112 break; 10113 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10114 std::swap(*I, *W.LastCluster); 10115 break; 10116 } 10117 } 10118 } 10119 10120 // Compute total probability. 10121 BranchProbability DefaultProb = W.DefaultProb; 10122 BranchProbability UnhandledProbs = DefaultProb; 10123 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10124 UnhandledProbs += I->Prob; 10125 10126 MachineBasicBlock *CurMBB = W.MBB; 10127 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10128 bool FallthroughUnreachable = false; 10129 MachineBasicBlock *Fallthrough; 10130 if (I == W.LastCluster) { 10131 // For the last cluster, fall through to the default destination. 10132 Fallthrough = DefaultMBB; 10133 FallthroughUnreachable = isa<UnreachableInst>( 10134 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10135 } else { 10136 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10137 CurMF->insert(BBI, Fallthrough); 10138 // Put Cond in a virtual register to make it available from the new blocks. 10139 ExportFromCurrentBlock(Cond); 10140 } 10141 UnhandledProbs -= I->Prob; 10142 10143 switch (I->Kind) { 10144 case CC_JumpTable: { 10145 // FIXME: Optimize away range check based on pivot comparisons. 10146 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10147 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10148 10149 // The jump block hasn't been inserted yet; insert it here. 10150 MachineBasicBlock *JumpMBB = JT->MBB; 10151 CurMF->insert(BBI, JumpMBB); 10152 10153 auto JumpProb = I->Prob; 10154 auto FallthroughProb = UnhandledProbs; 10155 10156 // If the default statement is a target of the jump table, we evenly 10157 // distribute the default probability to successors of CurMBB. Also 10158 // update the probability on the edge from JumpMBB to Fallthrough. 10159 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10160 SE = JumpMBB->succ_end(); 10161 SI != SE; ++SI) { 10162 if (*SI == DefaultMBB) { 10163 JumpProb += DefaultProb / 2; 10164 FallthroughProb -= DefaultProb / 2; 10165 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10166 JumpMBB->normalizeSuccProbs(); 10167 break; 10168 } 10169 } 10170 10171 if (FallthroughUnreachable) { 10172 // Skip the range check if the fallthrough block is unreachable. 10173 JTH->OmitRangeCheck = true; 10174 } 10175 10176 if (!JTH->OmitRangeCheck) 10177 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10178 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10179 CurMBB->normalizeSuccProbs(); 10180 10181 // The jump table header will be inserted in our current block, do the 10182 // range check, and fall through to our fallthrough block. 10183 JTH->HeaderBB = CurMBB; 10184 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10185 10186 // If we're in the right place, emit the jump table header right now. 10187 if (CurMBB == SwitchMBB) { 10188 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10189 JTH->Emitted = true; 10190 } 10191 break; 10192 } 10193 case CC_BitTests: { 10194 // FIXME: Optimize away range check based on pivot comparisons. 10195 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10196 10197 // The bit test blocks haven't been inserted yet; insert them here. 10198 for (BitTestCase &BTC : BTB->Cases) 10199 CurMF->insert(BBI, BTC.ThisBB); 10200 10201 // Fill in fields of the BitTestBlock. 10202 BTB->Parent = CurMBB; 10203 BTB->Default = Fallthrough; 10204 10205 BTB->DefaultProb = UnhandledProbs; 10206 // If the cases in bit test don't form a contiguous range, we evenly 10207 // distribute the probability on the edge to Fallthrough to two 10208 // successors of CurMBB. 10209 if (!BTB->ContiguousRange) { 10210 BTB->Prob += DefaultProb / 2; 10211 BTB->DefaultProb -= DefaultProb / 2; 10212 } 10213 10214 if (FallthroughUnreachable) { 10215 // Skip the range check if the fallthrough block is unreachable. 10216 BTB->OmitRangeCheck = true; 10217 } 10218 10219 // If we're in the right place, emit the bit test header right now. 10220 if (CurMBB == SwitchMBB) { 10221 visitBitTestHeader(*BTB, SwitchMBB); 10222 BTB->Emitted = true; 10223 } 10224 break; 10225 } 10226 case CC_Range: { 10227 const Value *RHS, *LHS, *MHS; 10228 ISD::CondCode CC; 10229 if (I->Low == I->High) { 10230 // Check Cond == I->Low. 10231 CC = ISD::SETEQ; 10232 LHS = Cond; 10233 RHS=I->Low; 10234 MHS = nullptr; 10235 } else { 10236 // Check I->Low <= Cond <= I->High. 10237 CC = ISD::SETLE; 10238 LHS = I->Low; 10239 MHS = Cond; 10240 RHS = I->High; 10241 } 10242 10243 // If Fallthrough is unreachable, fold away the comparison. 10244 if (FallthroughUnreachable) 10245 CC = ISD::SETTRUE; 10246 10247 // The false probability is the sum of all unhandled cases. 10248 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10249 getCurSDLoc(), I->Prob, UnhandledProbs); 10250 10251 if (CurMBB == SwitchMBB) 10252 visitSwitchCase(CB, SwitchMBB); 10253 else 10254 SL->SwitchCases.push_back(CB); 10255 10256 break; 10257 } 10258 } 10259 CurMBB = Fallthrough; 10260 } 10261 } 10262 10263 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10264 CaseClusterIt First, 10265 CaseClusterIt Last) { 10266 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10267 if (X.Prob != CC.Prob) 10268 return X.Prob > CC.Prob; 10269 10270 // Ties are broken by comparing the case value. 10271 return X.Low->getValue().slt(CC.Low->getValue()); 10272 }); 10273 } 10274 10275 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10276 const SwitchWorkListItem &W, 10277 Value *Cond, 10278 MachineBasicBlock *SwitchMBB) { 10279 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10280 "Clusters not sorted?"); 10281 10282 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10283 10284 // Balance the tree based on branch probabilities to create a near-optimal (in 10285 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10286 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10287 CaseClusterIt LastLeft = W.FirstCluster; 10288 CaseClusterIt FirstRight = W.LastCluster; 10289 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10290 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10291 10292 // Move LastLeft and FirstRight towards each other from opposite directions to 10293 // find a partitioning of the clusters which balances the probability on both 10294 // sides. If LeftProb and RightProb are equal, alternate which side is 10295 // taken to ensure 0-probability nodes are distributed evenly. 10296 unsigned I = 0; 10297 while (LastLeft + 1 < FirstRight) { 10298 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10299 LeftProb += (++LastLeft)->Prob; 10300 else 10301 RightProb += (--FirstRight)->Prob; 10302 I++; 10303 } 10304 10305 while (true) { 10306 // Our binary search tree differs from a typical BST in that ours can have up 10307 // to three values in each leaf. The pivot selection above doesn't take that 10308 // into account, which means the tree might require more nodes and be less 10309 // efficient. We compensate for this here. 10310 10311 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10312 unsigned NumRight = W.LastCluster - FirstRight + 1; 10313 10314 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10315 // If one side has less than 3 clusters, and the other has more than 3, 10316 // consider taking a cluster from the other side. 10317 10318 if (NumLeft < NumRight) { 10319 // Consider moving the first cluster on the right to the left side. 10320 CaseCluster &CC = *FirstRight; 10321 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10322 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10323 if (LeftSideRank <= RightSideRank) { 10324 // Moving the cluster to the left does not demote it. 10325 ++LastLeft; 10326 ++FirstRight; 10327 continue; 10328 } 10329 } else { 10330 assert(NumRight < NumLeft); 10331 // Consider moving the last element on the left to the right side. 10332 CaseCluster &CC = *LastLeft; 10333 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10334 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10335 if (RightSideRank <= LeftSideRank) { 10336 // Moving the cluster to the right does not demot it. 10337 --LastLeft; 10338 --FirstRight; 10339 continue; 10340 } 10341 } 10342 } 10343 break; 10344 } 10345 10346 assert(LastLeft + 1 == FirstRight); 10347 assert(LastLeft >= W.FirstCluster); 10348 assert(FirstRight <= W.LastCluster); 10349 10350 // Use the first element on the right as pivot since we will make less-than 10351 // comparisons against it. 10352 CaseClusterIt PivotCluster = FirstRight; 10353 assert(PivotCluster > W.FirstCluster); 10354 assert(PivotCluster <= W.LastCluster); 10355 10356 CaseClusterIt FirstLeft = W.FirstCluster; 10357 CaseClusterIt LastRight = W.LastCluster; 10358 10359 const ConstantInt *Pivot = PivotCluster->Low; 10360 10361 // New blocks will be inserted immediately after the current one. 10362 MachineFunction::iterator BBI(W.MBB); 10363 ++BBI; 10364 10365 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10366 // we can branch to its destination directly if it's squeezed exactly in 10367 // between the known lower bound and Pivot - 1. 10368 MachineBasicBlock *LeftMBB; 10369 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10370 FirstLeft->Low == W.GE && 10371 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10372 LeftMBB = FirstLeft->MBB; 10373 } else { 10374 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10375 FuncInfo.MF->insert(BBI, LeftMBB); 10376 WorkList.push_back( 10377 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10378 // Put Cond in a virtual register to make it available from the new blocks. 10379 ExportFromCurrentBlock(Cond); 10380 } 10381 10382 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10383 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10384 // directly if RHS.High equals the current upper bound. 10385 MachineBasicBlock *RightMBB; 10386 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10387 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10388 RightMBB = FirstRight->MBB; 10389 } else { 10390 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10391 FuncInfo.MF->insert(BBI, RightMBB); 10392 WorkList.push_back( 10393 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10394 // Put Cond in a virtual register to make it available from the new blocks. 10395 ExportFromCurrentBlock(Cond); 10396 } 10397 10398 // Create the CaseBlock record that will be used to lower the branch. 10399 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10400 getCurSDLoc(), LeftProb, RightProb); 10401 10402 if (W.MBB == SwitchMBB) 10403 visitSwitchCase(CB, SwitchMBB); 10404 else 10405 SL->SwitchCases.push_back(CB); 10406 } 10407 10408 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10409 // from the swith statement. 10410 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10411 BranchProbability PeeledCaseProb) { 10412 if (PeeledCaseProb == BranchProbability::getOne()) 10413 return BranchProbability::getZero(); 10414 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10415 10416 uint32_t Numerator = CaseProb.getNumerator(); 10417 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10418 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10419 } 10420 10421 // Try to peel the top probability case if it exceeds the threshold. 10422 // Return current MachineBasicBlock for the switch statement if the peeling 10423 // does not occur. 10424 // If the peeling is performed, return the newly created MachineBasicBlock 10425 // for the peeled switch statement. Also update Clusters to remove the peeled 10426 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10427 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10428 const SwitchInst &SI, CaseClusterVector &Clusters, 10429 BranchProbability &PeeledCaseProb) { 10430 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10431 // Don't perform if there is only one cluster or optimizing for size. 10432 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10433 TM.getOptLevel() == CodeGenOpt::None || 10434 SwitchMBB->getParent()->getFunction().hasMinSize()) 10435 return SwitchMBB; 10436 10437 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10438 unsigned PeeledCaseIndex = 0; 10439 bool SwitchPeeled = false; 10440 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10441 CaseCluster &CC = Clusters[Index]; 10442 if (CC.Prob < TopCaseProb) 10443 continue; 10444 TopCaseProb = CC.Prob; 10445 PeeledCaseIndex = Index; 10446 SwitchPeeled = true; 10447 } 10448 if (!SwitchPeeled) 10449 return SwitchMBB; 10450 10451 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10452 << TopCaseProb << "\n"); 10453 10454 // Record the MBB for the peeled switch statement. 10455 MachineFunction::iterator BBI(SwitchMBB); 10456 ++BBI; 10457 MachineBasicBlock *PeeledSwitchMBB = 10458 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10459 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10460 10461 ExportFromCurrentBlock(SI.getCondition()); 10462 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10463 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10464 nullptr, nullptr, TopCaseProb.getCompl()}; 10465 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10466 10467 Clusters.erase(PeeledCaseIt); 10468 for (CaseCluster &CC : Clusters) { 10469 LLVM_DEBUG( 10470 dbgs() << "Scale the probablity for one cluster, before scaling: " 10471 << CC.Prob << "\n"); 10472 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10473 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10474 } 10475 PeeledCaseProb = TopCaseProb; 10476 return PeeledSwitchMBB; 10477 } 10478 10479 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10480 // Extract cases from the switch. 10481 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10482 CaseClusterVector Clusters; 10483 Clusters.reserve(SI.getNumCases()); 10484 for (auto I : SI.cases()) { 10485 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10486 const ConstantInt *CaseVal = I.getCaseValue(); 10487 BranchProbability Prob = 10488 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10489 : BranchProbability(1, SI.getNumCases() + 1); 10490 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10491 } 10492 10493 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10494 10495 // Cluster adjacent cases with the same destination. We do this at all 10496 // optimization levels because it's cheap to do and will make codegen faster 10497 // if there are many clusters. 10498 sortAndRangeify(Clusters); 10499 10500 // The branch probablity of the peeled case. 10501 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10502 MachineBasicBlock *PeeledSwitchMBB = 10503 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10504 10505 // If there is only the default destination, jump there directly. 10506 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10507 if (Clusters.empty()) { 10508 assert(PeeledSwitchMBB == SwitchMBB); 10509 SwitchMBB->addSuccessor(DefaultMBB); 10510 if (DefaultMBB != NextBlock(SwitchMBB)) { 10511 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10512 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10513 } 10514 return; 10515 } 10516 10517 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10518 SL->findBitTestClusters(Clusters, &SI); 10519 10520 LLVM_DEBUG({ 10521 dbgs() << "Case clusters: "; 10522 for (const CaseCluster &C : Clusters) { 10523 if (C.Kind == CC_JumpTable) 10524 dbgs() << "JT:"; 10525 if (C.Kind == CC_BitTests) 10526 dbgs() << "BT:"; 10527 10528 C.Low->getValue().print(dbgs(), true); 10529 if (C.Low != C.High) { 10530 dbgs() << '-'; 10531 C.High->getValue().print(dbgs(), true); 10532 } 10533 dbgs() << ' '; 10534 } 10535 dbgs() << '\n'; 10536 }); 10537 10538 assert(!Clusters.empty()); 10539 SwitchWorkList WorkList; 10540 CaseClusterIt First = Clusters.begin(); 10541 CaseClusterIt Last = Clusters.end() - 1; 10542 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10543 // Scale the branchprobability for DefaultMBB if the peel occurs and 10544 // DefaultMBB is not replaced. 10545 if (PeeledCaseProb != BranchProbability::getZero() && 10546 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10547 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10548 WorkList.push_back( 10549 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10550 10551 while (!WorkList.empty()) { 10552 SwitchWorkListItem W = WorkList.back(); 10553 WorkList.pop_back(); 10554 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10555 10556 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10557 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10558 // For optimized builds, lower large range as a balanced binary tree. 10559 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10560 continue; 10561 } 10562 10563 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10564 } 10565 } 10566 10567 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10568 SDValue N = getValue(I.getOperand(0)); 10569 setValue(&I, N); 10570 } 10571