1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getTarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getCopyFromRegs - If there was virtual register allocated for the value V 1020 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1021 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1022 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1023 SDValue res; 1024 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 Ty); 1029 SDValue Chain = DAG.getEntryNode(); 1030 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, res); 1032 } 1033 1034 return res; 1035 } 1036 1037 /// getValue - Return an SDValue for the given Value. 1038 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. It's important 1040 // to do this first, so that we don't create a CopyFromReg if we already 1041 // have a regular SDValue. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // If there's a virtual register allocated and initialized for this 1046 // value, use it. 1047 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1048 if (copyFromReg.getNode()) { 1049 return copyFromReg; 1050 } 1051 1052 // Otherwise create a new SDValue and remember it. 1053 SDValue Val = getValueImpl(V); 1054 NodeMap[V] = Val; 1055 resolveDanglingDebugInfo(V, Val); 1056 return Val; 1057 } 1058 1059 /// getNonRegisterValue - Return an SDValue for the given Value, but 1060 /// don't look in FuncInfo.ValueMap for a virtual register. 1061 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1062 // If we already have an SDValue for this value, use it. 1063 SDValue &N = NodeMap[V]; 1064 if (N.getNode()) return N; 1065 1066 // Otherwise create a new SDValue and remember it. 1067 SDValue Val = getValueImpl(V); 1068 NodeMap[V] = Val; 1069 resolveDanglingDebugInfo(V, Val); 1070 return Val; 1071 } 1072 1073 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1074 /// Create an SDValue for the given value. 1075 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1077 1078 if (const Constant *C = dyn_cast<Constant>(V)) { 1079 EVT VT = TLI.getValueType(V->getType(), true); 1080 1081 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1082 return DAG.getConstant(*CI, VT); 1083 1084 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1085 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1086 1087 if (isa<ConstantPointerNull>(C)) { 1088 unsigned AS = V->getType()->getPointerAddressSpace(); 1089 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1090 } 1091 1092 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1093 return DAG.getConstantFP(*CFP, VT); 1094 1095 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1096 return DAG.getUNDEF(VT); 1097 1098 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1099 visit(CE->getOpcode(), *CE); 1100 SDValue N1 = NodeMap[V]; 1101 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1102 return N1; 1103 } 1104 1105 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1106 SmallVector<SDValue, 4> Constants; 1107 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1108 OI != OE; ++OI) { 1109 SDNode *Val = getValue(*OI).getNode(); 1110 // If the operand is an empty aggregate, there are no values. 1111 if (!Val) continue; 1112 // Add each leaf value from the operand to the Constants list 1113 // to form a flattened list of all the values. 1114 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1115 Constants.push_back(SDValue(Val, i)); 1116 } 1117 1118 return DAG.getMergeValues(Constants, getCurSDLoc()); 1119 } 1120 1121 if (const ConstantDataSequential *CDS = 1122 dyn_cast<ConstantDataSequential>(C)) { 1123 SmallVector<SDValue, 4> Ops; 1124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1125 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1126 // Add each leaf value from the operand to the Constants list 1127 // to form a flattened list of all the values. 1128 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1129 Ops.push_back(SDValue(Val, i)); 1130 } 1131 1132 if (isa<ArrayType>(CDS->getType())) 1133 return DAG.getMergeValues(Ops, getCurSDLoc()); 1134 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1135 VT, Ops); 1136 } 1137 1138 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1139 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1140 "Unknown struct or array constant!"); 1141 1142 SmallVector<EVT, 4> ValueVTs; 1143 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1144 unsigned NumElts = ValueVTs.size(); 1145 if (NumElts == 0) 1146 return SDValue(); // empty struct 1147 SmallVector<SDValue, 4> Constants(NumElts); 1148 for (unsigned i = 0; i != NumElts; ++i) { 1149 EVT EltVT = ValueVTs[i]; 1150 if (isa<UndefValue>(C)) 1151 Constants[i] = DAG.getUNDEF(EltVT); 1152 else if (EltVT.isFloatingPoint()) 1153 Constants[i] = DAG.getConstantFP(0, EltVT); 1154 else 1155 Constants[i] = DAG.getConstant(0, EltVT); 1156 } 1157 1158 return DAG.getMergeValues(Constants, getCurSDLoc()); 1159 } 1160 1161 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1162 return DAG.getBlockAddress(BA, VT); 1163 1164 VectorType *VecTy = cast<VectorType>(V->getType()); 1165 unsigned NumElements = VecTy->getNumElements(); 1166 1167 // Now that we know the number and type of the elements, get that number of 1168 // elements into the Ops array based on what kind of constant it is. 1169 SmallVector<SDValue, 16> Ops; 1170 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1171 for (unsigned i = 0; i != NumElements; ++i) 1172 Ops.push_back(getValue(CV->getOperand(i))); 1173 } else { 1174 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1175 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1176 1177 SDValue Op; 1178 if (EltVT.isFloatingPoint()) 1179 Op = DAG.getConstantFP(0, EltVT); 1180 else 1181 Op = DAG.getConstant(0, EltVT); 1182 Ops.assign(NumElements, Op); 1183 } 1184 1185 // Create a BUILD_VECTOR node. 1186 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1187 } 1188 1189 // If this is a static alloca, generate it as the frameindex instead of 1190 // computation. 1191 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1192 DenseMap<const AllocaInst*, int>::iterator SI = 1193 FuncInfo.StaticAllocaMap.find(AI); 1194 if (SI != FuncInfo.StaticAllocaMap.end()) 1195 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1196 } 1197 1198 // If this is an instruction which fast-isel has deferred, select it now. 1199 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1200 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1201 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1202 SDValue Chain = DAG.getEntryNode(); 1203 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1204 } 1205 1206 llvm_unreachable("Can't get register for value!"); 1207 } 1208 1209 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1211 SDValue Chain = getControlRoot(); 1212 SmallVector<ISD::OutputArg, 8> Outs; 1213 SmallVector<SDValue, 8> OutVals; 1214 1215 if (!FuncInfo.CanLowerReturn) { 1216 unsigned DemoteReg = FuncInfo.DemoteRegister; 1217 const Function *F = I.getParent()->getParent(); 1218 1219 // Emit a store of the return value through the virtual register. 1220 // Leave Outs empty so that LowerReturn won't try to load return 1221 // registers the usual way. 1222 SmallVector<EVT, 1> PtrValueVTs; 1223 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1224 PtrValueVTs); 1225 1226 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1227 SDValue RetOp = getValue(I.getOperand(0)); 1228 1229 SmallVector<EVT, 4> ValueVTs; 1230 SmallVector<uint64_t, 4> Offsets; 1231 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1232 unsigned NumValues = ValueVTs.size(); 1233 1234 SmallVector<SDValue, 4> Chains(NumValues); 1235 for (unsigned i = 0; i != NumValues; ++i) { 1236 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1237 RetPtr.getValueType(), RetPtr, 1238 DAG.getIntPtrConstant(Offsets[i])); 1239 Chains[i] = 1240 DAG.getStore(Chain, getCurSDLoc(), 1241 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1242 // FIXME: better loc info would be nice. 1243 Add, MachinePointerInfo(), false, false, 0); 1244 } 1245 1246 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1247 MVT::Other, Chains); 1248 } else if (I.getNumOperands() != 0) { 1249 SmallVector<EVT, 4> ValueVTs; 1250 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1251 unsigned NumValues = ValueVTs.size(); 1252 if (NumValues) { 1253 SDValue RetOp = getValue(I.getOperand(0)); 1254 1255 const Function *F = I.getParent()->getParent(); 1256 1257 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::SExt)) 1260 ExtendKind = ISD::SIGN_EXTEND; 1261 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::ZExt)) 1263 ExtendKind = ISD::ZERO_EXTEND; 1264 1265 LLVMContext &Context = F->getContext(); 1266 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1267 Attribute::InReg); 1268 1269 for (unsigned j = 0; j != NumValues; ++j) { 1270 EVT VT = ValueVTs[j]; 1271 1272 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1273 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1274 1275 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1276 MVT PartVT = TLI.getRegisterType(Context, VT); 1277 SmallVector<SDValue, 4> Parts(NumParts); 1278 getCopyToParts(DAG, getCurSDLoc(), 1279 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1280 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1281 1282 // 'inreg' on function refers to return value 1283 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1284 if (RetInReg) 1285 Flags.setInReg(); 1286 1287 // Propagate extension type if any 1288 if (ExtendKind == ISD::SIGN_EXTEND) 1289 Flags.setSExt(); 1290 else if (ExtendKind == ISD::ZERO_EXTEND) 1291 Flags.setZExt(); 1292 1293 for (unsigned i = 0; i < NumParts; ++i) { 1294 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1295 VT, /*isfixed=*/true, 0, 0)); 1296 OutVals.push_back(Parts[i]); 1297 } 1298 } 1299 } 1300 } 1301 1302 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1303 CallingConv::ID CallConv = 1304 DAG.getMachineFunction().getFunction()->getCallingConv(); 1305 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1306 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1307 1308 // Verify that the target's LowerReturn behaved as expected. 1309 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1310 "LowerReturn didn't return a valid chain!"); 1311 1312 // Update the DAG with the new chain value resulting from return lowering. 1313 DAG.setRoot(Chain); 1314 } 1315 1316 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1317 /// created for it, emit nodes to copy the value into the virtual 1318 /// registers. 1319 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1320 // Skip empty types 1321 if (V->getType()->isEmptyTy()) 1322 return; 1323 1324 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1325 if (VMI != FuncInfo.ValueMap.end()) { 1326 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1327 CopyValueToVirtualRegister(V, VMI->second); 1328 } 1329 } 1330 1331 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1332 /// the current basic block, add it to ValueMap now so that we'll get a 1333 /// CopyTo/FromReg. 1334 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1335 // No need to export constants. 1336 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1337 1338 // Already exported? 1339 if (FuncInfo.isExportedInst(V)) return; 1340 1341 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1342 CopyValueToVirtualRegister(V, Reg); 1343 } 1344 1345 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1346 const BasicBlock *FromBB) { 1347 // The operands of the setcc have to be in this block. We don't know 1348 // how to export them from some other block. 1349 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1350 // Can export from current BB. 1351 if (VI->getParent() == FromBB) 1352 return true; 1353 1354 // Is already exported, noop. 1355 return FuncInfo.isExportedInst(V); 1356 } 1357 1358 // If this is an argument, we can export it if the BB is the entry block or 1359 // if it is already exported. 1360 if (isa<Argument>(V)) { 1361 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1362 return true; 1363 1364 // Otherwise, can only export this if it is already exported. 1365 return FuncInfo.isExportedInst(V); 1366 } 1367 1368 // Otherwise, constants can always be exported. 1369 return true; 1370 } 1371 1372 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1373 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1374 const MachineBasicBlock *Dst) const { 1375 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1376 if (!BPI) 1377 return 0; 1378 const BasicBlock *SrcBB = Src->getBasicBlock(); 1379 const BasicBlock *DstBB = Dst->getBasicBlock(); 1380 return BPI->getEdgeWeight(SrcBB, DstBB); 1381 } 1382 1383 void SelectionDAGBuilder:: 1384 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1385 uint32_t Weight /* = 0 */) { 1386 if (!Weight) 1387 Weight = getEdgeWeight(Src, Dst); 1388 Src->addSuccessor(Dst, Weight); 1389 } 1390 1391 1392 static bool InBlock(const Value *V, const BasicBlock *BB) { 1393 if (const Instruction *I = dyn_cast<Instruction>(V)) 1394 return I->getParent() == BB; 1395 return true; 1396 } 1397 1398 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1399 /// This function emits a branch and is used at the leaves of an OR or an 1400 /// AND operator tree. 1401 /// 1402 void 1403 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1404 MachineBasicBlock *TBB, 1405 MachineBasicBlock *FBB, 1406 MachineBasicBlock *CurBB, 1407 MachineBasicBlock *SwitchBB, 1408 uint32_t TWeight, 1409 uint32_t FWeight) { 1410 const BasicBlock *BB = CurBB->getBasicBlock(); 1411 1412 // If the leaf of the tree is a comparison, merge the condition into 1413 // the caseblock. 1414 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1415 // The operands of the cmp have to be in this block. We don't know 1416 // how to export them from some other block. If this is the first block 1417 // of the sequence, no exporting is needed. 1418 if (CurBB == SwitchBB || 1419 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1420 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1421 ISD::CondCode Condition; 1422 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1423 Condition = getICmpCondCode(IC->getPredicate()); 1424 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1425 Condition = getFCmpCondCode(FC->getPredicate()); 1426 if (TM.Options.NoNaNsFPMath) 1427 Condition = getFCmpCodeWithoutNaN(Condition); 1428 } else { 1429 (void)Condition; // silence warning. 1430 llvm_unreachable("Unknown compare instruction"); 1431 } 1432 1433 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1434 TBB, FBB, CurBB, TWeight, FWeight); 1435 SwitchCases.push_back(CB); 1436 return; 1437 } 1438 } 1439 1440 // Create a CaseBlock record representing this branch. 1441 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1442 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1443 SwitchCases.push_back(CB); 1444 } 1445 1446 /// Scale down both weights to fit into uint32_t. 1447 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1448 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1449 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1450 NewTrue = NewTrue / Scale; 1451 NewFalse = NewFalse / Scale; 1452 } 1453 1454 /// FindMergedConditions - If Cond is an expression like 1455 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1456 MachineBasicBlock *TBB, 1457 MachineBasicBlock *FBB, 1458 MachineBasicBlock *CurBB, 1459 MachineBasicBlock *SwitchBB, 1460 unsigned Opc, uint32_t TWeight, 1461 uint32_t FWeight) { 1462 // If this node is not part of the or/and tree, emit it as a branch. 1463 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1464 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1465 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1466 BOp->getParent() != CurBB->getBasicBlock() || 1467 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1468 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1469 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1470 TWeight, FWeight); 1471 return; 1472 } 1473 1474 // Create TmpBB after CurBB. 1475 MachineFunction::iterator BBI = CurBB; 1476 MachineFunction &MF = DAG.getMachineFunction(); 1477 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1478 CurBB->getParent()->insert(++BBI, TmpBB); 1479 1480 if (Opc == Instruction::Or) { 1481 // Codegen X | Y as: 1482 // BB1: 1483 // jmp_if_X TBB 1484 // jmp TmpBB 1485 // TmpBB: 1486 // jmp_if_Y TBB 1487 // jmp FBB 1488 // 1489 1490 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1491 // The requirement is that 1492 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1493 // = TrueProb for orignal BB. 1494 // Assuming the orignal weights are A and B, one choice is to set BB1's 1495 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1496 // assumes that 1497 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1498 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1499 // TmpBB, but the math is more complicated. 1500 1501 uint64_t NewTrueWeight = TWeight; 1502 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1503 ScaleWeights(NewTrueWeight, NewFalseWeight); 1504 // Emit the LHS condition. 1505 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1506 NewTrueWeight, NewFalseWeight); 1507 1508 NewTrueWeight = TWeight; 1509 NewFalseWeight = 2 * (uint64_t)FWeight; 1510 ScaleWeights(NewTrueWeight, NewFalseWeight); 1511 // Emit the RHS condition into TmpBB. 1512 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1513 NewTrueWeight, NewFalseWeight); 1514 } else { 1515 assert(Opc == Instruction::And && "Unknown merge op!"); 1516 // Codegen X & Y as: 1517 // BB1: 1518 // jmp_if_X TmpBB 1519 // jmp FBB 1520 // TmpBB: 1521 // jmp_if_Y TBB 1522 // jmp FBB 1523 // 1524 // This requires creation of TmpBB after CurBB. 1525 1526 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1527 // The requirement is that 1528 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1529 // = FalseProb for orignal BB. 1530 // Assuming the orignal weights are A and B, one choice is to set BB1's 1531 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1532 // assumes that 1533 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1534 1535 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1536 uint64_t NewFalseWeight = FWeight; 1537 ScaleWeights(NewTrueWeight, NewFalseWeight); 1538 // Emit the LHS condition. 1539 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1540 NewTrueWeight, NewFalseWeight); 1541 1542 NewTrueWeight = 2 * (uint64_t)TWeight; 1543 NewFalseWeight = FWeight; 1544 ScaleWeights(NewTrueWeight, NewFalseWeight); 1545 // Emit the RHS condition into TmpBB. 1546 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1547 NewTrueWeight, NewFalseWeight); 1548 } 1549 } 1550 1551 /// If the set of cases should be emitted as a series of branches, return true. 1552 /// If we should emit this as a bunch of and/or'd together conditions, return 1553 /// false. 1554 bool 1555 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1556 if (Cases.size() != 2) return true; 1557 1558 // If this is two comparisons of the same values or'd or and'd together, they 1559 // will get folded into a single comparison, so don't emit two blocks. 1560 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1561 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1562 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1563 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1564 return false; 1565 } 1566 1567 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1568 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1569 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1570 Cases[0].CC == Cases[1].CC && 1571 isa<Constant>(Cases[0].CmpRHS) && 1572 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1573 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1574 return false; 1575 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1576 return false; 1577 } 1578 1579 return true; 1580 } 1581 1582 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1583 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1584 1585 // Update machine-CFG edges. 1586 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1587 1588 if (I.isUnconditional()) { 1589 // Update machine-CFG edges. 1590 BrMBB->addSuccessor(Succ0MBB); 1591 1592 // If this is not a fall-through branch or optimizations are switched off, 1593 // emit the branch. 1594 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1595 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1596 MVT::Other, getControlRoot(), 1597 DAG.getBasicBlock(Succ0MBB))); 1598 1599 return; 1600 } 1601 1602 // If this condition is one of the special cases we handle, do special stuff 1603 // now. 1604 const Value *CondVal = I.getCondition(); 1605 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1606 1607 // If this is a series of conditions that are or'd or and'd together, emit 1608 // this as a sequence of branches instead of setcc's with and/or operations. 1609 // As long as jumps are not expensive, this should improve performance. 1610 // For example, instead of something like: 1611 // cmp A, B 1612 // C = seteq 1613 // cmp D, E 1614 // F = setle 1615 // or C, F 1616 // jnz foo 1617 // Emit: 1618 // cmp A, B 1619 // je foo 1620 // cmp D, E 1621 // jle foo 1622 // 1623 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1624 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1625 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1626 BOp->getOpcode() == Instruction::Or)) { 1627 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1628 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1629 getEdgeWeight(BrMBB, Succ1MBB)); 1630 // If the compares in later blocks need to use values not currently 1631 // exported from this block, export them now. This block should always 1632 // be the first entry. 1633 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1634 1635 // Allow some cases to be rejected. 1636 if (ShouldEmitAsBranches(SwitchCases)) { 1637 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1638 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1639 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1640 } 1641 1642 // Emit the branch for this block. 1643 visitSwitchCase(SwitchCases[0], BrMBB); 1644 SwitchCases.erase(SwitchCases.begin()); 1645 return; 1646 } 1647 1648 // Okay, we decided not to do this, remove any inserted MBB's and clear 1649 // SwitchCases. 1650 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1651 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1652 1653 SwitchCases.clear(); 1654 } 1655 } 1656 1657 // Create a CaseBlock record representing this branch. 1658 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1659 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1660 1661 // Use visitSwitchCase to actually insert the fast branch sequence for this 1662 // cond branch. 1663 visitSwitchCase(CB, BrMBB); 1664 } 1665 1666 /// visitSwitchCase - Emits the necessary code to represent a single node in 1667 /// the binary search tree resulting from lowering a switch instruction. 1668 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1669 MachineBasicBlock *SwitchBB) { 1670 SDValue Cond; 1671 SDValue CondLHS = getValue(CB.CmpLHS); 1672 SDLoc dl = getCurSDLoc(); 1673 1674 // Build the setcc now. 1675 if (!CB.CmpMHS) { 1676 // Fold "(X == true)" to X and "(X == false)" to !X to 1677 // handle common cases produced by branch lowering. 1678 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1679 CB.CC == ISD::SETEQ) 1680 Cond = CondLHS; 1681 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1682 CB.CC == ISD::SETEQ) { 1683 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1684 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1685 } else 1686 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1687 } else { 1688 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1689 1690 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1691 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1692 1693 SDValue CmpOp = getValue(CB.CmpMHS); 1694 EVT VT = CmpOp.getValueType(); 1695 1696 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1697 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1698 ISD::SETLE); 1699 } else { 1700 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1701 VT, CmpOp, DAG.getConstant(Low, VT)); 1702 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1703 DAG.getConstant(High-Low, VT), ISD::SETULE); 1704 } 1705 } 1706 1707 // Update successor info 1708 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1709 // TrueBB and FalseBB are always different unless the incoming IR is 1710 // degenerate. This only happens when running llc on weird IR. 1711 if (CB.TrueBB != CB.FalseBB) 1712 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1713 1714 // If the lhs block is the next block, invert the condition so that we can 1715 // fall through to the lhs instead of the rhs block. 1716 if (CB.TrueBB == NextBlock(SwitchBB)) { 1717 std::swap(CB.TrueBB, CB.FalseBB); 1718 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1719 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1720 } 1721 1722 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1723 MVT::Other, getControlRoot(), Cond, 1724 DAG.getBasicBlock(CB.TrueBB)); 1725 1726 // Insert the false branch. Do this even if it's a fall through branch, 1727 // this makes it easier to do DAG optimizations which require inverting 1728 // the branch condition. 1729 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1730 DAG.getBasicBlock(CB.FalseBB)); 1731 1732 DAG.setRoot(BrCond); 1733 } 1734 1735 /// visitJumpTable - Emit JumpTable node in the current MBB 1736 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1737 // Emit the code for the jump table 1738 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1739 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1740 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1741 JT.Reg, PTy); 1742 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1743 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1744 MVT::Other, Index.getValue(1), 1745 Table, Index); 1746 DAG.setRoot(BrJumpTable); 1747 } 1748 1749 /// visitJumpTableHeader - This function emits necessary code to produce index 1750 /// in the JumpTable from switch case. 1751 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1752 JumpTableHeader &JTH, 1753 MachineBasicBlock *SwitchBB) { 1754 // Subtract the lowest switch case value from the value being switched on and 1755 // conditional branch to default mbb if the result is greater than the 1756 // difference between smallest and largest cases. 1757 SDValue SwitchOp = getValue(JTH.SValue); 1758 EVT VT = SwitchOp.getValueType(); 1759 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1760 DAG.getConstant(JTH.First, VT)); 1761 1762 // The SDNode we just created, which holds the value being switched on minus 1763 // the smallest case value, needs to be copied to a virtual register so it 1764 // can be used as an index into the jump table in a subsequent basic block. 1765 // This value may be smaller or larger than the target's pointer type, and 1766 // therefore require extension or truncating. 1767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1768 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1769 1770 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1771 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1772 JumpTableReg, SwitchOp); 1773 JT.Reg = JumpTableReg; 1774 1775 // Emit the range check for the jump table, and branch to the default block 1776 // for the switch statement if the value being switched on exceeds the largest 1777 // case in the switch. 1778 SDValue CMP = 1779 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1780 Sub.getValueType()), 1781 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 // Avoid emitting unnecessary branches to the next block. 1788 if (JT.MBB != NextBlock(SwitchBB)) 1789 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1790 DAG.getBasicBlock(JT.MBB)); 1791 1792 DAG.setRoot(BrCond); 1793 } 1794 1795 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1796 /// tail spliced into a stack protector check success bb. 1797 /// 1798 /// For a high level explanation of how this fits into the stack protector 1799 /// generation see the comment on the declaration of class 1800 /// StackProtectorDescriptor. 1801 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1802 MachineBasicBlock *ParentBB) { 1803 1804 // First create the loads to the guard/stack slot for the comparison. 1805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1806 EVT PtrTy = TLI.getPointerTy(); 1807 1808 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1809 int FI = MFI->getStackProtectorIndex(); 1810 1811 const Value *IRGuard = SPD.getGuard(); 1812 SDValue GuardPtr = getValue(IRGuard); 1813 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1814 1815 unsigned Align = 1816 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1817 1818 SDValue Guard; 1819 1820 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1821 // guard value from the virtual register holding the value. Otherwise, emit a 1822 // volatile load to retrieve the stack guard value. 1823 unsigned GuardReg = SPD.getGuardReg(); 1824 1825 if (GuardReg && TLI.useLoadStackGuardNode()) 1826 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1827 PtrTy); 1828 else 1829 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1830 GuardPtr, MachinePointerInfo(IRGuard, 0), 1831 true, false, false, Align); 1832 1833 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1834 StackSlotPtr, 1835 MachinePointerInfo::getFixedStack(FI), 1836 true, false, false, Align); 1837 1838 // Perform the comparison via a subtract/getsetcc. 1839 EVT VT = Guard.getValueType(); 1840 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1841 1842 SDValue Cmp = 1843 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1844 Sub.getValueType()), 1845 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1846 1847 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1848 // branch to failure MBB. 1849 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1850 MVT::Other, StackSlot.getOperand(0), 1851 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1852 // Otherwise branch to success MBB. 1853 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1854 MVT::Other, BrCond, 1855 DAG.getBasicBlock(SPD.getSuccessMBB())); 1856 1857 DAG.setRoot(Br); 1858 } 1859 1860 /// Codegen the failure basic block for a stack protector check. 1861 /// 1862 /// A failure stack protector machine basic block consists simply of a call to 1863 /// __stack_chk_fail(). 1864 /// 1865 /// For a high level explanation of how this fits into the stack protector 1866 /// generation see the comment on the declaration of class 1867 /// StackProtectorDescriptor. 1868 void 1869 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue Chain = 1872 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1873 nullptr, 0, false, getCurSDLoc(), false, false).second; 1874 DAG.setRoot(Chain); 1875 } 1876 1877 /// visitBitTestHeader - This function emits necessary code to produce value 1878 /// suitable for "bit tests" 1879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1880 MachineBasicBlock *SwitchBB) { 1881 // Subtract the minimum value 1882 SDValue SwitchOp = getValue(B.SValue); 1883 EVT VT = SwitchOp.getValueType(); 1884 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1885 DAG.getConstant(B.First, VT)); 1886 1887 // Check range 1888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1889 SDValue RangeCmp = 1890 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1893 1894 // Determine the type of the test operands. 1895 bool UsePtrType = false; 1896 if (!TLI.isTypeLegal(VT)) 1897 UsePtrType = true; 1898 else { 1899 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1900 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1901 // Switch table case range are encoded into series of masks. 1902 // Just use pointer type, it's guaranteed to fit. 1903 UsePtrType = true; 1904 break; 1905 } 1906 } 1907 if (UsePtrType) { 1908 VT = TLI.getPointerTy(); 1909 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1910 } 1911 1912 B.RegVT = VT.getSimpleVT(); 1913 B.Reg = FuncInfo.CreateReg(B.RegVT); 1914 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1915 B.Reg, Sub); 1916 1917 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1918 1919 addSuccessorWithWeight(SwitchBB, B.Default); 1920 addSuccessorWithWeight(SwitchBB, MBB); 1921 1922 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1923 MVT::Other, CopyTo, RangeCmp, 1924 DAG.getBasicBlock(B.Default)); 1925 1926 // Avoid emitting unnecessary branches to the next block. 1927 if (MBB != NextBlock(SwitchBB)) 1928 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1929 DAG.getBasicBlock(MBB)); 1930 1931 DAG.setRoot(BrRange); 1932 } 1933 1934 /// visitBitTestCase - this function produces one "bit test" 1935 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1936 MachineBasicBlock* NextMBB, 1937 uint32_t BranchWeightToNext, 1938 unsigned Reg, 1939 BitTestCase &B, 1940 MachineBasicBlock *SwitchBB) { 1941 MVT VT = BB.RegVT; 1942 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1943 Reg, VT); 1944 SDValue Cmp; 1945 unsigned PopCount = countPopulation(B.Mask); 1946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1947 if (PopCount == 1) { 1948 // Testing for a single bit; just compare the shift count with what it 1949 // would need to be to shift a 1 bit in that position. 1950 Cmp = DAG.getSetCC( 1951 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1952 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1953 } else if (PopCount == BB.Range) { 1954 // There is only one zero bit in the range, test for it directly. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1958 } else { 1959 // Make desired shift 1960 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1961 DAG.getConstant(1, VT), ShiftOp); 1962 1963 // Emit bit tests and jumps 1964 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1965 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1966 Cmp = DAG.getSetCC(getCurSDLoc(), 1967 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1968 DAG.getConstant(0, VT), ISD::SETNE); 1969 } 1970 1971 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1972 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1973 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1974 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1975 1976 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1977 MVT::Other, getControlRoot(), 1978 Cmp, DAG.getBasicBlock(B.TargetBB)); 1979 1980 // Avoid emitting unnecessary branches to the next block. 1981 if (NextMBB != NextBlock(SwitchBB)) 1982 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1983 DAG.getBasicBlock(NextMBB)); 1984 1985 DAG.setRoot(BrAnd); 1986 } 1987 1988 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1989 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1990 1991 // Retrieve successors. 1992 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1993 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1994 1995 const Value *Callee(I.getCalledValue()); 1996 const Function *Fn = dyn_cast<Function>(Callee); 1997 if (isa<InlineAsm>(Callee)) 1998 visitInlineAsm(&I); 1999 else if (Fn && Fn->isIntrinsic()) { 2000 switch (Fn->getIntrinsicID()) { 2001 default: 2002 llvm_unreachable("Cannot invoke this intrinsic"); 2003 case Intrinsic::donothing: 2004 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2005 break; 2006 case Intrinsic::experimental_patchpoint_void: 2007 case Intrinsic::experimental_patchpoint_i64: 2008 visitPatchpoint(&I, LandingPad); 2009 break; 2010 case Intrinsic::experimental_gc_statepoint: 2011 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2012 break; 2013 } 2014 } else 2015 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2016 2017 // If the value of the invoke is used outside of its defining block, make it 2018 // available as a virtual register. 2019 // We already took care of the exported value for the statepoint instruction 2020 // during call to the LowerStatepoint. 2021 if (!isStatepoint(I)) { 2022 CopyToExportRegsIfNeeded(&I); 2023 } 2024 2025 // Update successor info 2026 addSuccessorWithWeight(InvokeMBB, Return); 2027 addSuccessorWithWeight(InvokeMBB, LandingPad); 2028 2029 // Drop into normal successor. 2030 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2031 MVT::Other, getControlRoot(), 2032 DAG.getBasicBlock(Return))); 2033 } 2034 2035 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2036 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2037 } 2038 2039 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2040 assert(FuncInfo.MBB->isLandingPad() && 2041 "Call to landingpad not in landing pad!"); 2042 2043 MachineBasicBlock *MBB = FuncInfo.MBB; 2044 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2045 AddLandingPadInfo(LP, MMI, MBB); 2046 2047 // If there aren't registers to copy the values into (e.g., during SjLj 2048 // exceptions), then don't bother to create these DAG nodes. 2049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2050 if (TLI.getExceptionPointerRegister() == 0 && 2051 TLI.getExceptionSelectorRegister() == 0) 2052 return; 2053 2054 SmallVector<EVT, 2> ValueVTs; 2055 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2056 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2057 2058 // Get the two live-in registers as SDValues. The physregs have already been 2059 // copied into virtual registers. 2060 SDValue Ops[2]; 2061 if (FuncInfo.ExceptionPointerVirtReg) { 2062 Ops[0] = DAG.getZExtOrTrunc( 2063 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2064 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2065 getCurSDLoc(), ValueVTs[0]); 2066 } else { 2067 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2068 } 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 unsigned 2081 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2082 MachineBasicBlock *LPadBB) { 2083 SDValue Chain = getControlRoot(); 2084 2085 // Get the typeid that we will dispatch on later. 2086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2087 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2088 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2089 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2090 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2091 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2092 2093 // Branch to the main landing pad block. 2094 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2095 ClauseMBB->addSuccessor(LPadBB); 2096 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2097 DAG.getBasicBlock(LPadBB))); 2098 return VReg; 2099 } 2100 2101 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2102 /// small case ranges). 2103 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2104 CaseRecVector& WorkList, 2105 const Value* SV, 2106 MachineBasicBlock *Default, 2107 MachineBasicBlock *SwitchBB) { 2108 // Size is the number of Cases represented by this range. 2109 size_t Size = CR.Range.second - CR.Range.first; 2110 if (Size > 3) 2111 return false; 2112 2113 // Get the MachineFunction which holds the current MBB. This is used when 2114 // inserting any additional MBBs necessary to represent the switch. 2115 MachineFunction *CurMF = FuncInfo.MF; 2116 2117 // Figure out which block is immediately after the current one. 2118 MachineBasicBlock *NextMBB = nullptr; 2119 MachineFunction::iterator BBI = CR.CaseBB; 2120 if (++BBI != FuncInfo.MF->end()) 2121 NextMBB = BBI; 2122 2123 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2124 // If any two of the cases has the same destination, and if one value 2125 // is the same as the other, but has one bit unset that the other has set, 2126 // use bit manipulation to do two compares at once. For example: 2127 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2128 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2129 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2130 if (Size == 2 && CR.CaseBB == SwitchBB) { 2131 Case &Small = *CR.Range.first; 2132 Case &Big = *(CR.Range.second-1); 2133 2134 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2135 const APInt& SmallValue = Small.Low->getValue(); 2136 const APInt& BigValue = Big.Low->getValue(); 2137 2138 // Check that there is only one bit different. 2139 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2140 (SmallValue | BigValue) == BigValue) { 2141 // Isolate the common bit. 2142 APInt CommonBit = BigValue & ~SmallValue; 2143 assert((SmallValue | CommonBit) == BigValue && 2144 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2145 2146 SDValue CondLHS = getValue(SV); 2147 EVT VT = CondLHS.getValueType(); 2148 SDLoc DL = getCurSDLoc(); 2149 2150 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2151 DAG.getConstant(CommonBit, VT)); 2152 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2153 Or, DAG.getConstant(BigValue, VT), 2154 ISD::SETEQ); 2155 2156 // Update successor info. 2157 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2158 addSuccessorWithWeight(SwitchBB, Small.BB, 2159 Small.ExtraWeight + Big.ExtraWeight); 2160 addSuccessorWithWeight(SwitchBB, Default, 2161 // The default destination is the first successor in IR. 2162 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2163 2164 // Insert the true branch. 2165 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2166 getControlRoot(), Cond, 2167 DAG.getBasicBlock(Small.BB)); 2168 2169 // Insert the false branch. 2170 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2171 DAG.getBasicBlock(Default)); 2172 2173 DAG.setRoot(BrCond); 2174 return true; 2175 } 2176 } 2177 } 2178 2179 // Order cases by weight so the most likely case will be checked first. 2180 uint32_t UnhandledWeights = 0; 2181 if (BPI) { 2182 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2183 uint32_t IWeight = I->ExtraWeight; 2184 UnhandledWeights += IWeight; 2185 for (CaseItr J = CR.Range.first; J < I; ++J) { 2186 uint32_t JWeight = J->ExtraWeight; 2187 if (IWeight > JWeight) 2188 std::swap(*I, *J); 2189 } 2190 } 2191 } 2192 // Rearrange the case blocks so that the last one falls through if possible. 2193 Case &BackCase = *(CR.Range.second-1); 2194 if (Size > 1 && NextMBB && Default != NextMBB && BackCase.BB != NextMBB) { 2195 // The last case block won't fall through into 'NextMBB' if we emit the 2196 // branches in this order. See if rearranging a case value would help. 2197 // We start at the bottom as it's the case with the least weight. 2198 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2199 if (I->BB == NextMBB) { 2200 std::swap(*I, BackCase); 2201 break; 2202 } 2203 } 2204 2205 // Create a CaseBlock record representing a conditional branch to 2206 // the Case's target mbb if the value being switched on SV is equal 2207 // to C. 2208 MachineBasicBlock *CurBlock = CR.CaseBB; 2209 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2210 MachineBasicBlock *FallThrough; 2211 if (I != E-1) { 2212 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2213 CurMF->insert(BBI, FallThrough); 2214 2215 // Put SV in a virtual register to make it available from the new blocks. 2216 ExportFromCurrentBlock(SV); 2217 } else { 2218 // If the last case doesn't match, go to the default block. 2219 FallThrough = Default; 2220 } 2221 2222 const Value *RHS, *LHS, *MHS; 2223 ISD::CondCode CC; 2224 if (I->High == I->Low) { 2225 // This is just small small case range :) containing exactly 1 case 2226 CC = ISD::SETEQ; 2227 LHS = SV; RHS = I->High; MHS = nullptr; 2228 } else { 2229 CC = ISD::SETLE; 2230 LHS = I->Low; MHS = SV; RHS = I->High; 2231 } 2232 2233 // The false weight should be sum of all un-handled cases. 2234 UnhandledWeights -= I->ExtraWeight; 2235 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2236 /* me */ CurBlock, 2237 /* trueweight */ I->ExtraWeight, 2238 /* falseweight */ UnhandledWeights); 2239 2240 // If emitting the first comparison, just call visitSwitchCase to emit the 2241 // code into the current block. Otherwise, push the CaseBlock onto the 2242 // vector to be later processed by SDISel, and insert the node's MBB 2243 // before the next MBB. 2244 if (CurBlock == SwitchBB) 2245 visitSwitchCase(CB, SwitchBB); 2246 else 2247 SwitchCases.push_back(CB); 2248 2249 CurBlock = FallThrough; 2250 } 2251 2252 return true; 2253 } 2254 2255 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2256 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2257 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2258 } 2259 2260 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2261 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2262 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2263 return (LastExt - FirstExt + 1ULL); 2264 } 2265 2266 /// handleJTSwitchCase - Emit jumptable for current switch case range 2267 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2268 CaseRecVector &WorkList, 2269 const Value *SV, 2270 MachineBasicBlock *Default, 2271 MachineBasicBlock *SwitchBB) { 2272 Case& FrontCase = *CR.Range.first; 2273 Case& BackCase = *(CR.Range.second-1); 2274 2275 const APInt &First = FrontCase.Low->getValue(); 2276 const APInt &Last = BackCase.High->getValue(); 2277 2278 APInt TSize(First.getBitWidth(), 0); 2279 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2280 TSize += I->size(); 2281 2282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2283 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2284 return false; 2285 2286 APInt Range = ComputeRange(First, Last); 2287 // The density is TSize / Range. Require at least 40%. 2288 // It should not be possible for IntTSize to saturate for sane code, but make 2289 // sure we handle Range saturation correctly. 2290 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2291 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2292 if (IntTSize * 10 < IntRange * 4) 2293 return false; 2294 2295 DEBUG(dbgs() << "Lowering jump table\n" 2296 << "First entry: " << First << ". Last entry: " << Last << '\n' 2297 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2298 2299 // Get the MachineFunction which holds the current MBB. This is used when 2300 // inserting any additional MBBs necessary to represent the switch. 2301 MachineFunction *CurMF = FuncInfo.MF; 2302 2303 // Figure out which block is immediately after the current one. 2304 MachineFunction::iterator BBI = CR.CaseBB; 2305 ++BBI; 2306 2307 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2308 2309 // Create a new basic block to hold the code for loading the address 2310 // of the jump table, and jumping to it. Update successor information; 2311 // we will either branch to the default case for the switch, or the jump 2312 // table. 2313 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2314 CurMF->insert(BBI, JumpTableBB); 2315 2316 addSuccessorWithWeight(CR.CaseBB, Default); 2317 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2318 2319 // Build a vector of destination BBs, corresponding to each target 2320 // of the jump table. If the value of the jump table slot corresponds to 2321 // a case statement, push the case's BB onto the vector, otherwise, push 2322 // the default BB. 2323 std::vector<MachineBasicBlock*> DestBBs; 2324 APInt TEI = First; 2325 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2326 const APInt &Low = I->Low->getValue(); 2327 const APInt &High = I->High->getValue(); 2328 2329 if (Low.sle(TEI) && TEI.sle(High)) { 2330 DestBBs.push_back(I->BB); 2331 if (TEI==High) 2332 ++I; 2333 } else { 2334 DestBBs.push_back(Default); 2335 } 2336 } 2337 2338 // Calculate weight for each unique destination in CR. 2339 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2340 if (FuncInfo.BPI) { 2341 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2342 DestWeights[I->BB] += I->ExtraWeight; 2343 } 2344 2345 // Update successor info. Add one edge to each unique successor. 2346 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2347 for (MachineBasicBlock *DestBB : DestBBs) { 2348 if (!SuccsHandled[DestBB->getNumber()]) { 2349 SuccsHandled[DestBB->getNumber()] = true; 2350 auto I = DestWeights.find(DestBB); 2351 addSuccessorWithWeight(JumpTableBB, DestBB, 2352 I != DestWeights.end() ? I->second : 0); 2353 } 2354 } 2355 2356 // Create a jump table index for this jump table. 2357 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2358 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2359 ->createJumpTableIndex(DestBBs); 2360 2361 // Set the jump table information so that we can codegen it as a second 2362 // MachineBasicBlock 2363 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2364 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2365 if (CR.CaseBB == SwitchBB) 2366 visitJumpTableHeader(JT, JTH, SwitchBB); 2367 2368 JTCases.push_back(JumpTableBlock(JTH, JT)); 2369 return true; 2370 } 2371 2372 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2373 /// 2 subtrees. 2374 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2375 CaseRecVector& WorkList, 2376 const Value* SV, 2377 MachineBasicBlock* SwitchBB) { 2378 Case& FrontCase = *CR.Range.first; 2379 Case& BackCase = *(CR.Range.second-1); 2380 2381 // Size is the number of Cases represented by this range. 2382 unsigned Size = CR.Range.second - CR.Range.first; 2383 2384 const APInt &First = FrontCase.Low->getValue(); 2385 const APInt &Last = BackCase.High->getValue(); 2386 double FMetric = 0; 2387 CaseItr Pivot = CR.Range.first + Size/2; 2388 2389 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2390 // (heuristically) allow us to emit JumpTable's later. 2391 APInt TSize(First.getBitWidth(), 0); 2392 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2393 I!=E; ++I) 2394 TSize += I->size(); 2395 2396 APInt LSize = FrontCase.size(); 2397 APInt RSize = TSize-LSize; 2398 DEBUG(dbgs() << "Selecting best pivot: \n" 2399 << "First: " << First << ", Last: " << Last <<'\n' 2400 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2402 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2403 J!=E; ++I, ++J) { 2404 const APInt &LEnd = I->High->getValue(); 2405 const APInt &RBegin = J->Low->getValue(); 2406 APInt Range = ComputeRange(LEnd, RBegin); 2407 assert((Range - 2ULL).isNonNegative() && 2408 "Invalid case distance"); 2409 // Use volatile double here to avoid excess precision issues on some hosts, 2410 // e.g. that use 80-bit X87 registers. 2411 // Only consider the density of sub-ranges that actually have sufficient 2412 // entries to be lowered as a jump table. 2413 volatile double LDensity = 2414 LSize.ult(TLI.getMinimumJumpTableEntries()) 2415 ? 0.0 2416 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2417 volatile double RDensity = 2418 RSize.ult(TLI.getMinimumJumpTableEntries()) 2419 ? 0.0 2420 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2421 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2422 // Should always split in some non-trivial place 2423 DEBUG(dbgs() <<"=>Step\n" 2424 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2425 << "LDensity: " << LDensity 2426 << ", RDensity: " << RDensity << '\n' 2427 << "Metric: " << Metric << '\n'); 2428 if (FMetric < Metric) { 2429 Pivot = J; 2430 FMetric = Metric; 2431 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2432 } 2433 2434 LSize += J->size(); 2435 RSize -= J->size(); 2436 } 2437 2438 if (FMetric == 0 || !areJTsAllowed(TLI)) 2439 Pivot = CR.Range.first + Size/2; 2440 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2441 return true; 2442 } 2443 2444 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2445 CaseRecVector &WorkList, 2446 const Value *SV, 2447 MachineBasicBlock *SwitchBB) { 2448 // Get the MachineFunction which holds the current MBB. This is used when 2449 // inserting any additional MBBs necessary to represent the switch. 2450 MachineFunction *CurMF = FuncInfo.MF; 2451 2452 // Figure out which block is immediately after the current one. 2453 MachineFunction::iterator BBI = CR.CaseBB; 2454 ++BBI; 2455 2456 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2457 2458 CaseRange LHSR(CR.Range.first, Pivot); 2459 CaseRange RHSR(Pivot, CR.Range.second); 2460 const ConstantInt *C = Pivot->Low; 2461 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2462 2463 // We know that we branch to the LHS if the Value being switched on is 2464 // less than the Pivot value, C. We use this to optimize our binary 2465 // tree a bit, by recognizing that if SV is greater than or equal to the 2466 // LHS's Case Value, and that Case Value is exactly one less than the 2467 // Pivot's Value, then we can branch directly to the LHS's Target, 2468 // rather than creating a leaf node for it. 2469 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2470 C->getValue() == (CR.GE->getValue() + 1LL)) { 2471 TrueBB = LHSR.first->BB; 2472 } else { 2473 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2474 CurMF->insert(BBI, TrueBB); 2475 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2476 2477 // Put SV in a virtual register to make it available from the new blocks. 2478 ExportFromCurrentBlock(SV); 2479 } 2480 2481 // Similar to the optimization above, if the Value being switched on is 2482 // known to be less than the Constant CR.LT, and the current Case Value 2483 // is CR.LT - 1, then we can branch directly to the target block for 2484 // the current Case Value, rather than emitting a RHS leaf node for it. 2485 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2486 RHSR.first->Low->getValue() == (CR.LT->getValue() - 1LL)) { 2487 FalseBB = RHSR.first->BB; 2488 } else { 2489 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2490 CurMF->insert(BBI, FalseBB); 2491 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2492 2493 // Put SV in a virtual register to make it available from the new blocks. 2494 ExportFromCurrentBlock(SV); 2495 } 2496 2497 // Create a CaseBlock record representing a conditional branch to 2498 // the LHS node if the value being switched on SV is less than C. 2499 // Otherwise, branch to LHS. 2500 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2501 2502 if (CR.CaseBB == SwitchBB) 2503 visitSwitchCase(CB, SwitchBB); 2504 else 2505 SwitchCases.push_back(CB); 2506 } 2507 2508 /// handleBitTestsSwitchCase - if current case range has few destination and 2509 /// range span less, than machine word bitwidth, encode case range into series 2510 /// of masks and emit bit tests with these masks. 2511 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2512 CaseRecVector& WorkList, 2513 const Value* SV, 2514 MachineBasicBlock* Default, 2515 MachineBasicBlock* SwitchBB) { 2516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2517 EVT PTy = TLI.getPointerTy(); 2518 unsigned IntPtrBits = PTy.getSizeInBits(); 2519 2520 Case& FrontCase = *CR.Range.first; 2521 Case& BackCase = *(CR.Range.second-1); 2522 2523 // Get the MachineFunction which holds the current MBB. This is used when 2524 // inserting any additional MBBs necessary to represent the switch. 2525 MachineFunction *CurMF = FuncInfo.MF; 2526 2527 // If target does not have legal shift left, do not emit bit tests at all. 2528 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2529 return false; 2530 2531 size_t numCmps = 0; 2532 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2533 // Single case counts one, case range - two. 2534 numCmps += (I->Low == I->High ? 1 : 2); 2535 } 2536 2537 // Count unique destinations 2538 SmallSet<MachineBasicBlock*, 4> Dests; 2539 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2540 Dests.insert(I->BB); 2541 if (Dests.size() > 3) 2542 // Don't bother the code below, if there are too much unique destinations 2543 return false; 2544 } 2545 DEBUG(dbgs() << "Total number of unique destinations: " 2546 << Dests.size() << '\n' 2547 << "Total number of comparisons: " << numCmps << '\n'); 2548 2549 // Compute span of values. 2550 const APInt& minValue = FrontCase.Low->getValue(); 2551 const APInt& maxValue = BackCase.High->getValue(); 2552 APInt cmpRange = maxValue - minValue; 2553 2554 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2555 << "Low bound: " << minValue << '\n' 2556 << "High bound: " << maxValue << '\n'); 2557 2558 if (cmpRange.uge(IntPtrBits) || 2559 (!(Dests.size() == 1 && numCmps >= 3) && 2560 !(Dests.size() == 2 && numCmps >= 5) && 2561 !(Dests.size() >= 3 && numCmps >= 6))) 2562 return false; 2563 2564 DEBUG(dbgs() << "Emitting bit tests\n"); 2565 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2566 2567 // Optimize the case where all the case values fit in a 2568 // word without having to subtract minValue. In this case, 2569 // we can optimize away the subtraction. 2570 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2571 cmpRange = maxValue; 2572 } else { 2573 lowBound = minValue; 2574 } 2575 2576 CaseBitsVector CasesBits; 2577 unsigned i, count = 0; 2578 2579 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2580 MachineBasicBlock* Dest = I->BB; 2581 for (i = 0; i < count; ++i) 2582 if (Dest == CasesBits[i].BB) 2583 break; 2584 2585 if (i == count) { 2586 assert((count < 3) && "Too much destinations to test!"); 2587 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2588 count++; 2589 } 2590 2591 const APInt& lowValue = I->Low->getValue(); 2592 const APInt& highValue = I->High->getValue(); 2593 2594 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2595 uint64_t hi = (highValue - lowBound).getZExtValue(); 2596 CasesBits[i].ExtraWeight += I->ExtraWeight; 2597 2598 for (uint64_t j = lo; j <= hi; j++) { 2599 CasesBits[i].Mask |= 1ULL << j; 2600 CasesBits[i].Bits++; 2601 } 2602 2603 } 2604 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2605 2606 BitTestInfo BTC; 2607 2608 // Figure out which block is immediately after the current one. 2609 MachineFunction::iterator BBI = CR.CaseBB; 2610 ++BBI; 2611 2612 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2613 2614 DEBUG(dbgs() << "Cases:\n"); 2615 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2616 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2617 << ", Bits: " << CasesBits[i].Bits 2618 << ", BB: " << CasesBits[i].BB << '\n'); 2619 2620 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2621 CurMF->insert(BBI, CaseBB); 2622 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2623 CaseBB, 2624 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2625 2626 // Put SV in a virtual register to make it available from the new blocks. 2627 ExportFromCurrentBlock(SV); 2628 } 2629 2630 BitTestBlock BTB(lowBound, cmpRange, SV, 2631 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2632 CR.CaseBB, Default, std::move(BTC)); 2633 2634 if (CR.CaseBB == SwitchBB) 2635 visitBitTestHeader(BTB, SwitchBB); 2636 2637 BitTestCases.push_back(std::move(BTB)); 2638 2639 return true; 2640 } 2641 2642 void SelectionDAGBuilder::Clusterify(CaseVector &Cases, const SwitchInst *SI) { 2643 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2644 2645 // Extract cases from the switch and sort them. 2646 typedef std::pair<const ConstantInt*, unsigned> CasePair; 2647 std::vector<CasePair> Sorted; 2648 Sorted.reserve(SI->getNumCases()); 2649 for (auto I : SI->cases()) 2650 Sorted.push_back(std::make_pair(I.getCaseValue(), I.getSuccessorIndex())); 2651 std::sort(Sorted.begin(), Sorted.end(), [](CasePair a, CasePair b) { 2652 return a.first->getValue().slt(b.first->getValue()); 2653 }); 2654 2655 // Merge adjacent cases with the same destination, build Cases vector. 2656 assert(Cases.empty() && "Cases should be empty before Clusterify;"); 2657 Cases.reserve(SI->getNumCases()); 2658 MachineBasicBlock *PreviousSucc = nullptr; 2659 for (CasePair &CP : Sorted) { 2660 const ConstantInt *CaseVal = CP.first; 2661 unsigned SuccIndex = CP.second; 2662 MachineBasicBlock *Succ = FuncInfo.MBBMap[SI->getSuccessor(SuccIndex)]; 2663 uint32_t Weight = BPI ? BPI->getEdgeWeight(SI->getParent(), SuccIndex) : 0; 2664 2665 if (PreviousSucc == Succ && 2666 (CaseVal->getValue() - Cases.back().High->getValue()) == 1) { 2667 // If this case has the same successor and is a neighbour, merge it into 2668 // the previous cluster. 2669 Cases.back().High = CaseVal; 2670 Cases.back().ExtraWeight += Weight; 2671 } else { 2672 Cases.push_back(Case(CaseVal, CaseVal, Succ, Weight)); 2673 } 2674 2675 PreviousSucc = Succ; 2676 } 2677 2678 DEBUG({ 2679 size_t numCmps = 0; 2680 for (auto &I : Cases) 2681 // A range counts double, since it requires two compares. 2682 numCmps += I.Low != I.High ? 2 : 1; 2683 2684 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2685 << ". Total compares: " << numCmps << '\n'; 2686 }); 2687 } 2688 2689 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2690 MachineBasicBlock *Last) { 2691 // Update JTCases. 2692 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2693 if (JTCases[i].first.HeaderBB == First) 2694 JTCases[i].first.HeaderBB = Last; 2695 2696 // Update BitTestCases. 2697 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2698 if (BitTestCases[i].Parent == First) 2699 BitTestCases[i].Parent = Last; 2700 } 2701 2702 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2703 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2704 2705 // Create a vector of Cases, sorted so that we can efficiently create a binary 2706 // search tree from them. 2707 CaseVector Cases; 2708 Clusterify(Cases, &SI); 2709 2710 // Get the default destination MBB. 2711 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2712 2713 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2714 !Cases.empty()) { 2715 // Replace an unreachable default destination with the most popular case 2716 // destination. 2717 DenseMap<const BasicBlock *, unsigned> Popularity; 2718 unsigned MaxPop = 0; 2719 const BasicBlock *MaxBB = nullptr; 2720 for (auto I : SI.cases()) { 2721 const BasicBlock *BB = I.getCaseSuccessor(); 2722 if (++Popularity[BB] > MaxPop) { 2723 MaxPop = Popularity[BB]; 2724 MaxBB = BB; 2725 } 2726 } 2727 2728 // Set new default. 2729 assert(MaxPop > 0); 2730 assert(MaxBB); 2731 Default = FuncInfo.MBBMap[MaxBB]; 2732 2733 // Remove cases that were pointing to the destination that is now the default. 2734 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2735 [&](const Case &C) { return C.BB == Default; }), 2736 Cases.end()); 2737 } 2738 2739 // If there is only the default destination, go there directly. 2740 if (Cases.empty()) { 2741 // Update machine-CFG edges. 2742 SwitchMBB->addSuccessor(Default); 2743 2744 // If this is not a fall-through branch, emit the branch. 2745 if (Default != NextBlock(SwitchMBB)) { 2746 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2747 getControlRoot(), DAG.getBasicBlock(Default))); 2748 } 2749 return; 2750 } 2751 2752 // Get the Value to be switched on. 2753 const Value *SV = SI.getCondition(); 2754 2755 // Push the initial CaseRec onto the worklist 2756 CaseRecVector WorkList; 2757 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2758 CaseRange(Cases.begin(),Cases.end()))); 2759 2760 while (!WorkList.empty()) { 2761 // Grab a record representing a case range to process off the worklist 2762 CaseRec CR = WorkList.back(); 2763 WorkList.pop_back(); 2764 2765 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2766 continue; 2767 2768 // If the range has few cases (two or less) emit a series of specific 2769 // tests. 2770 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2771 continue; 2772 2773 // If the switch has more than N blocks, and is at least 40% dense, and the 2774 // target supports indirect branches, then emit a jump table rather than 2775 // lowering the switch to a binary tree of conditional branches. 2776 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2777 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2778 continue; 2779 2780 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2781 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2782 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2783 } 2784 } 2785 2786 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2787 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2788 2789 // Update machine-CFG edges with unique successors. 2790 SmallSet<BasicBlock*, 32> Done; 2791 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2792 BasicBlock *BB = I.getSuccessor(i); 2793 bool Inserted = Done.insert(BB).second; 2794 if (!Inserted) 2795 continue; 2796 2797 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2798 addSuccessorWithWeight(IndirectBrMBB, Succ); 2799 } 2800 2801 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2802 MVT::Other, getControlRoot(), 2803 getValue(I.getAddress()))); 2804 } 2805 2806 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2807 if (DAG.getTarget().Options.TrapUnreachable) 2808 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2809 } 2810 2811 void SelectionDAGBuilder::visitFSub(const User &I) { 2812 // -0.0 - X --> fneg 2813 Type *Ty = I.getType(); 2814 if (isa<Constant>(I.getOperand(0)) && 2815 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2816 SDValue Op2 = getValue(I.getOperand(1)); 2817 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2818 Op2.getValueType(), Op2)); 2819 return; 2820 } 2821 2822 visitBinary(I, ISD::FSUB); 2823 } 2824 2825 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2826 SDValue Op1 = getValue(I.getOperand(0)); 2827 SDValue Op2 = getValue(I.getOperand(1)); 2828 2829 bool nuw = false; 2830 bool nsw = false; 2831 bool exact = false; 2832 if (const OverflowingBinaryOperator *OFBinOp = 2833 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2834 nuw = OFBinOp->hasNoUnsignedWrap(); 2835 nsw = OFBinOp->hasNoSignedWrap(); 2836 } 2837 if (const PossiblyExactOperator *ExactOp = 2838 dyn_cast<const PossiblyExactOperator>(&I)) 2839 exact = ExactOp->isExact(); 2840 2841 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2842 Op1, Op2, nuw, nsw, exact); 2843 setValue(&I, BinNodeValue); 2844 } 2845 2846 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2847 SDValue Op1 = getValue(I.getOperand(0)); 2848 SDValue Op2 = getValue(I.getOperand(1)); 2849 2850 EVT ShiftTy = 2851 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2852 2853 // Coerce the shift amount to the right type if we can. 2854 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2855 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2856 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2857 SDLoc DL = getCurSDLoc(); 2858 2859 // If the operand is smaller than the shift count type, promote it. 2860 if (ShiftSize > Op2Size) 2861 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2862 2863 // If the operand is larger than the shift count type but the shift 2864 // count type has enough bits to represent any shift value, truncate 2865 // it now. This is a common case and it exposes the truncate to 2866 // optimization early. 2867 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2868 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2869 // Otherwise we'll need to temporarily settle for some other convenient 2870 // type. Type legalization will make adjustments once the shiftee is split. 2871 else 2872 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2873 } 2874 2875 bool nuw = false; 2876 bool nsw = false; 2877 bool exact = false; 2878 2879 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2880 2881 if (const OverflowingBinaryOperator *OFBinOp = 2882 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2883 nuw = OFBinOp->hasNoUnsignedWrap(); 2884 nsw = OFBinOp->hasNoSignedWrap(); 2885 } 2886 if (const PossiblyExactOperator *ExactOp = 2887 dyn_cast<const PossiblyExactOperator>(&I)) 2888 exact = ExactOp->isExact(); 2889 } 2890 2891 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2892 nuw, nsw, exact); 2893 setValue(&I, Res); 2894 } 2895 2896 void SelectionDAGBuilder::visitSDiv(const User &I) { 2897 SDValue Op1 = getValue(I.getOperand(0)); 2898 SDValue Op2 = getValue(I.getOperand(1)); 2899 2900 // Turn exact SDivs into multiplications. 2901 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2902 // exact bit. 2903 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2904 !isa<ConstantSDNode>(Op1) && 2905 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2906 setValue(&I, DAG.getTargetLoweringInfo() 2907 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2908 else 2909 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2910 Op1, Op2)); 2911 } 2912 2913 void SelectionDAGBuilder::visitICmp(const User &I) { 2914 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2915 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2916 predicate = IC->getPredicate(); 2917 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2918 predicate = ICmpInst::Predicate(IC->getPredicate()); 2919 SDValue Op1 = getValue(I.getOperand(0)); 2920 SDValue Op2 = getValue(I.getOperand(1)); 2921 ISD::CondCode Opcode = getICmpCondCode(predicate); 2922 2923 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2924 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2925 } 2926 2927 void SelectionDAGBuilder::visitFCmp(const User &I) { 2928 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2929 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2930 predicate = FC->getPredicate(); 2931 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2932 predicate = FCmpInst::Predicate(FC->getPredicate()); 2933 SDValue Op1 = getValue(I.getOperand(0)); 2934 SDValue Op2 = getValue(I.getOperand(1)); 2935 ISD::CondCode Condition = getFCmpCondCode(predicate); 2936 if (TM.Options.NoNaNsFPMath) 2937 Condition = getFCmpCodeWithoutNaN(Condition); 2938 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2939 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2940 } 2941 2942 void SelectionDAGBuilder::visitSelect(const User &I) { 2943 SmallVector<EVT, 4> ValueVTs; 2944 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2945 unsigned NumValues = ValueVTs.size(); 2946 if (NumValues == 0) return; 2947 2948 SmallVector<SDValue, 4> Values(NumValues); 2949 SDValue Cond = getValue(I.getOperand(0)); 2950 SDValue TrueVal = getValue(I.getOperand(1)); 2951 SDValue FalseVal = getValue(I.getOperand(2)); 2952 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2953 ISD::VSELECT : ISD::SELECT; 2954 2955 for (unsigned i = 0; i != NumValues; ++i) 2956 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2957 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2958 Cond, 2959 SDValue(TrueVal.getNode(), 2960 TrueVal.getResNo() + i), 2961 SDValue(FalseVal.getNode(), 2962 FalseVal.getResNo() + i)); 2963 2964 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2965 DAG.getVTList(ValueVTs), Values)); 2966 } 2967 2968 void SelectionDAGBuilder::visitTrunc(const User &I) { 2969 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2970 SDValue N = getValue(I.getOperand(0)); 2971 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2972 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2973 } 2974 2975 void SelectionDAGBuilder::visitZExt(const User &I) { 2976 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2977 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2978 SDValue N = getValue(I.getOperand(0)); 2979 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2980 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2981 } 2982 2983 void SelectionDAGBuilder::visitSExt(const User &I) { 2984 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2985 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2986 SDValue N = getValue(I.getOperand(0)); 2987 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2988 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2989 } 2990 2991 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2992 // FPTrunc is never a no-op cast, no need to check 2993 SDValue N = getValue(I.getOperand(0)); 2994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2995 EVT DestVT = TLI.getValueType(I.getType()); 2996 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2997 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2998 } 2999 3000 void SelectionDAGBuilder::visitFPExt(const User &I) { 3001 // FPExt is never a no-op cast, no need to check 3002 SDValue N = getValue(I.getOperand(0)); 3003 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3004 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3005 } 3006 3007 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3008 // FPToUI is never a no-op cast, no need to check 3009 SDValue N = getValue(I.getOperand(0)); 3010 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3011 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3012 } 3013 3014 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3015 // FPToSI is never a no-op cast, no need to check 3016 SDValue N = getValue(I.getOperand(0)); 3017 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3018 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3019 } 3020 3021 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3022 // UIToFP is never a no-op cast, no need to check 3023 SDValue N = getValue(I.getOperand(0)); 3024 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3025 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3026 } 3027 3028 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3029 // SIToFP is never a no-op cast, no need to check 3030 SDValue N = getValue(I.getOperand(0)); 3031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3032 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3033 } 3034 3035 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3036 // What to do depends on the size of the integer and the size of the pointer. 3037 // We can either truncate, zero extend, or no-op, accordingly. 3038 SDValue N = getValue(I.getOperand(0)); 3039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3040 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3041 } 3042 3043 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3044 // What to do depends on the size of the integer and the size of the pointer. 3045 // We can either truncate, zero extend, or no-op, accordingly. 3046 SDValue N = getValue(I.getOperand(0)); 3047 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3048 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3049 } 3050 3051 void SelectionDAGBuilder::visitBitCast(const User &I) { 3052 SDValue N = getValue(I.getOperand(0)); 3053 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3054 3055 // BitCast assures us that source and destination are the same size so this is 3056 // either a BITCAST or a no-op. 3057 if (DestVT != N.getValueType()) 3058 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3059 DestVT, N)); // convert types. 3060 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3061 // might fold any kind of constant expression to an integer constant and that 3062 // is not what we are looking for. Only regcognize a bitcast of a genuine 3063 // constant integer as an opaque constant. 3064 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3065 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3066 /*isOpaque*/true)); 3067 else 3068 setValue(&I, N); // noop cast. 3069 } 3070 3071 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3073 const Value *SV = I.getOperand(0); 3074 SDValue N = getValue(SV); 3075 EVT DestVT = TLI.getValueType(I.getType()); 3076 3077 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3078 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3079 3080 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3081 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3082 3083 setValue(&I, N); 3084 } 3085 3086 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3088 SDValue InVec = getValue(I.getOperand(0)); 3089 SDValue InVal = getValue(I.getOperand(1)); 3090 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3091 getCurSDLoc(), TLI.getVectorIdxTy()); 3092 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3093 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3094 } 3095 3096 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3098 SDValue InVec = getValue(I.getOperand(0)); 3099 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3100 getCurSDLoc(), TLI.getVectorIdxTy()); 3101 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3102 TLI.getValueType(I.getType()), InVec, InIdx)); 3103 } 3104 3105 // Utility for visitShuffleVector - Return true if every element in Mask, 3106 // beginning from position Pos and ending in Pos+Size, falls within the 3107 // specified sequential range [L, L+Pos). or is undef. 3108 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3109 unsigned Pos, unsigned Size, int Low) { 3110 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3111 if (Mask[i] >= 0 && Mask[i] != Low) 3112 return false; 3113 return true; 3114 } 3115 3116 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3117 SDValue Src1 = getValue(I.getOperand(0)); 3118 SDValue Src2 = getValue(I.getOperand(1)); 3119 3120 SmallVector<int, 8> Mask; 3121 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3122 unsigned MaskNumElts = Mask.size(); 3123 3124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3125 EVT VT = TLI.getValueType(I.getType()); 3126 EVT SrcVT = Src1.getValueType(); 3127 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3128 3129 if (SrcNumElts == MaskNumElts) { 3130 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3131 &Mask[0])); 3132 return; 3133 } 3134 3135 // Normalize the shuffle vector since mask and vector length don't match. 3136 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3137 // Mask is longer than the source vectors and is a multiple of the source 3138 // vectors. We can use concatenate vector to make the mask and vectors 3139 // lengths match. 3140 if (SrcNumElts*2 == MaskNumElts) { 3141 // First check for Src1 in low and Src2 in high 3142 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3143 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3144 // The shuffle is concatenating two vectors together. 3145 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3146 VT, Src1, Src2)); 3147 return; 3148 } 3149 // Then check for Src2 in low and Src1 in high 3150 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3151 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3152 // The shuffle is concatenating two vectors together. 3153 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3154 VT, Src2, Src1)); 3155 return; 3156 } 3157 } 3158 3159 // Pad both vectors with undefs to make them the same length as the mask. 3160 unsigned NumConcat = MaskNumElts / SrcNumElts; 3161 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3162 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3163 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3164 3165 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3166 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3167 MOps1[0] = Src1; 3168 MOps2[0] = Src2; 3169 3170 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3171 getCurSDLoc(), VT, MOps1); 3172 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3173 getCurSDLoc(), VT, MOps2); 3174 3175 // Readjust mask for new input vector length. 3176 SmallVector<int, 8> MappedOps; 3177 for (unsigned i = 0; i != MaskNumElts; ++i) { 3178 int Idx = Mask[i]; 3179 if (Idx >= (int)SrcNumElts) 3180 Idx -= SrcNumElts - MaskNumElts; 3181 MappedOps.push_back(Idx); 3182 } 3183 3184 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3185 &MappedOps[0])); 3186 return; 3187 } 3188 3189 if (SrcNumElts > MaskNumElts) { 3190 // Analyze the access pattern of the vector to see if we can extract 3191 // two subvectors and do the shuffle. The analysis is done by calculating 3192 // the range of elements the mask access on both vectors. 3193 int MinRange[2] = { static_cast<int>(SrcNumElts), 3194 static_cast<int>(SrcNumElts)}; 3195 int MaxRange[2] = {-1, -1}; 3196 3197 for (unsigned i = 0; i != MaskNumElts; ++i) { 3198 int Idx = Mask[i]; 3199 unsigned Input = 0; 3200 if (Idx < 0) 3201 continue; 3202 3203 if (Idx >= (int)SrcNumElts) { 3204 Input = 1; 3205 Idx -= SrcNumElts; 3206 } 3207 if (Idx > MaxRange[Input]) 3208 MaxRange[Input] = Idx; 3209 if (Idx < MinRange[Input]) 3210 MinRange[Input] = Idx; 3211 } 3212 3213 // Check if the access is smaller than the vector size and can we find 3214 // a reasonable extract index. 3215 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3216 // Extract. 3217 int StartIdx[2]; // StartIdx to extract from 3218 for (unsigned Input = 0; Input < 2; ++Input) { 3219 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3220 RangeUse[Input] = 0; // Unused 3221 StartIdx[Input] = 0; 3222 continue; 3223 } 3224 3225 // Find a good start index that is a multiple of the mask length. Then 3226 // see if the rest of the elements are in range. 3227 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3228 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3229 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3230 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3231 } 3232 3233 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3234 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3235 return; 3236 } 3237 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3238 // Extract appropriate subvector and generate a vector shuffle 3239 for (unsigned Input = 0; Input < 2; ++Input) { 3240 SDValue &Src = Input == 0 ? Src1 : Src2; 3241 if (RangeUse[Input] == 0) 3242 Src = DAG.getUNDEF(VT); 3243 else 3244 Src = DAG.getNode( 3245 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3246 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3247 } 3248 3249 // Calculate new mask. 3250 SmallVector<int, 8> MappedOps; 3251 for (unsigned i = 0; i != MaskNumElts; ++i) { 3252 int Idx = Mask[i]; 3253 if (Idx >= 0) { 3254 if (Idx < (int)SrcNumElts) 3255 Idx -= StartIdx[0]; 3256 else 3257 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3258 } 3259 MappedOps.push_back(Idx); 3260 } 3261 3262 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3263 &MappedOps[0])); 3264 return; 3265 } 3266 } 3267 3268 // We can't use either concat vectors or extract subvectors so fall back to 3269 // replacing the shuffle with extract and build vector. 3270 // to insert and build vector. 3271 EVT EltVT = VT.getVectorElementType(); 3272 EVT IdxVT = TLI.getVectorIdxTy(); 3273 SmallVector<SDValue,8> Ops; 3274 for (unsigned i = 0; i != MaskNumElts; ++i) { 3275 int Idx = Mask[i]; 3276 SDValue Res; 3277 3278 if (Idx < 0) { 3279 Res = DAG.getUNDEF(EltVT); 3280 } else { 3281 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3282 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3283 3284 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3285 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3286 } 3287 3288 Ops.push_back(Res); 3289 } 3290 3291 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3292 } 3293 3294 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3295 const Value *Op0 = I.getOperand(0); 3296 const Value *Op1 = I.getOperand(1); 3297 Type *AggTy = I.getType(); 3298 Type *ValTy = Op1->getType(); 3299 bool IntoUndef = isa<UndefValue>(Op0); 3300 bool FromUndef = isa<UndefValue>(Op1); 3301 3302 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3303 3304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3305 SmallVector<EVT, 4> AggValueVTs; 3306 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3307 SmallVector<EVT, 4> ValValueVTs; 3308 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3309 3310 unsigned NumAggValues = AggValueVTs.size(); 3311 unsigned NumValValues = ValValueVTs.size(); 3312 SmallVector<SDValue, 4> Values(NumAggValues); 3313 3314 // Ignore an insertvalue that produces an empty object 3315 if (!NumAggValues) { 3316 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3317 return; 3318 } 3319 3320 SDValue Agg = getValue(Op0); 3321 unsigned i = 0; 3322 // Copy the beginning value(s) from the original aggregate. 3323 for (; i != LinearIndex; ++i) 3324 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3325 SDValue(Agg.getNode(), Agg.getResNo() + i); 3326 // Copy values from the inserted value(s). 3327 if (NumValValues) { 3328 SDValue Val = getValue(Op1); 3329 for (; i != LinearIndex + NumValValues; ++i) 3330 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3331 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3332 } 3333 // Copy remaining value(s) from the original aggregate. 3334 for (; i != NumAggValues; ++i) 3335 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3336 SDValue(Agg.getNode(), Agg.getResNo() + i); 3337 3338 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3339 DAG.getVTList(AggValueVTs), Values)); 3340 } 3341 3342 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3343 const Value *Op0 = I.getOperand(0); 3344 Type *AggTy = Op0->getType(); 3345 Type *ValTy = I.getType(); 3346 bool OutOfUndef = isa<UndefValue>(Op0); 3347 3348 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3349 3350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3351 SmallVector<EVT, 4> ValValueVTs; 3352 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3353 3354 unsigned NumValValues = ValValueVTs.size(); 3355 3356 // Ignore a extractvalue that produces an empty object 3357 if (!NumValValues) { 3358 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3359 return; 3360 } 3361 3362 SmallVector<SDValue, 4> Values(NumValValues); 3363 3364 SDValue Agg = getValue(Op0); 3365 // Copy out the selected value(s). 3366 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3367 Values[i - LinearIndex] = 3368 OutOfUndef ? 3369 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3370 SDValue(Agg.getNode(), Agg.getResNo() + i); 3371 3372 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3373 DAG.getVTList(ValValueVTs), Values)); 3374 } 3375 3376 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3377 Value *Op0 = I.getOperand(0); 3378 // Note that the pointer operand may be a vector of pointers. Take the scalar 3379 // element which holds a pointer. 3380 Type *Ty = Op0->getType()->getScalarType(); 3381 unsigned AS = Ty->getPointerAddressSpace(); 3382 SDValue N = getValue(Op0); 3383 3384 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3385 OI != E; ++OI) { 3386 const Value *Idx = *OI; 3387 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3388 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3389 if (Field) { 3390 // N = N + Offset 3391 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3392 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3393 DAG.getConstant(Offset, N.getValueType())); 3394 } 3395 3396 Ty = StTy->getElementType(Field); 3397 } else { 3398 Ty = cast<SequentialType>(Ty)->getElementType(); 3399 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 3400 unsigned PtrSize = PtrTy.getSizeInBits(); 3401 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3402 3403 // If this is a constant subscript, handle it quickly. 3404 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 3405 if (CI->isZero()) 3406 continue; 3407 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3408 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 3409 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 3410 continue; 3411 } 3412 3413 // N = N + Idx * ElementSize; 3414 SDValue IdxN = getValue(Idx); 3415 3416 // If the index is smaller or larger than intptr_t, truncate or extend 3417 // it. 3418 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3419 3420 // If this is a multiply by a power of two, turn it into a shl 3421 // immediately. This is a very common case. 3422 if (ElementSize != 1) { 3423 if (ElementSize.isPowerOf2()) { 3424 unsigned Amt = ElementSize.logBase2(); 3425 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3426 N.getValueType(), IdxN, 3427 DAG.getConstant(Amt, IdxN.getValueType())); 3428 } else { 3429 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3430 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3431 N.getValueType(), IdxN, Scale); 3432 } 3433 } 3434 3435 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3436 N.getValueType(), N, IdxN); 3437 } 3438 } 3439 3440 setValue(&I, N); 3441 } 3442 3443 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3444 // If this is a fixed sized alloca in the entry block of the function, 3445 // allocate it statically on the stack. 3446 if (FuncInfo.StaticAllocaMap.count(&I)) 3447 return; // getValue will auto-populate this. 3448 3449 Type *Ty = I.getAllocatedType(); 3450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3451 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3452 unsigned Align = 3453 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3454 I.getAlignment()); 3455 3456 SDValue AllocSize = getValue(I.getArraySize()); 3457 3458 EVT IntPtr = TLI.getPointerTy(); 3459 if (AllocSize.getValueType() != IntPtr) 3460 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3461 3462 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3463 AllocSize, 3464 DAG.getConstant(TySize, IntPtr)); 3465 3466 // Handle alignment. If the requested alignment is less than or equal to 3467 // the stack alignment, ignore it. If the size is greater than or equal to 3468 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3469 unsigned StackAlign = 3470 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3471 if (Align <= StackAlign) 3472 Align = 0; 3473 3474 // Round the size of the allocation up to the stack alignment size 3475 // by add SA-1 to the size. 3476 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3477 AllocSize.getValueType(), AllocSize, 3478 DAG.getIntPtrConstant(StackAlign-1)); 3479 3480 // Mask out the low bits for alignment purposes. 3481 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3482 AllocSize.getValueType(), AllocSize, 3483 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3484 3485 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3486 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3487 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3488 setValue(&I, DSA); 3489 DAG.setRoot(DSA.getValue(1)); 3490 3491 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3492 } 3493 3494 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3495 if (I.isAtomic()) 3496 return visitAtomicLoad(I); 3497 3498 const Value *SV = I.getOperand(0); 3499 SDValue Ptr = getValue(SV); 3500 3501 Type *Ty = I.getType(); 3502 3503 bool isVolatile = I.isVolatile(); 3504 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3505 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3506 unsigned Alignment = I.getAlignment(); 3507 3508 AAMDNodes AAInfo; 3509 I.getAAMetadata(AAInfo); 3510 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3511 3512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3513 SmallVector<EVT, 4> ValueVTs; 3514 SmallVector<uint64_t, 4> Offsets; 3515 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3516 unsigned NumValues = ValueVTs.size(); 3517 if (NumValues == 0) 3518 return; 3519 3520 SDValue Root; 3521 bool ConstantMemory = false; 3522 if (isVolatile || NumValues > MaxParallelChains) 3523 // Serialize volatile loads with other side effects. 3524 Root = getRoot(); 3525 else if (AA->pointsToConstantMemory( 3526 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3527 // Do not serialize (non-volatile) loads of constant memory with anything. 3528 Root = DAG.getEntryNode(); 3529 ConstantMemory = true; 3530 } else { 3531 // Do not serialize non-volatile loads against each other. 3532 Root = DAG.getRoot(); 3533 } 3534 3535 if (isVolatile) 3536 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3537 3538 SmallVector<SDValue, 4> Values(NumValues); 3539 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3540 NumValues)); 3541 EVT PtrVT = Ptr.getValueType(); 3542 unsigned ChainI = 0; 3543 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3544 // Serializing loads here may result in excessive register pressure, and 3545 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3546 // could recover a bit by hoisting nodes upward in the chain by recognizing 3547 // they are side-effect free or do not alias. The optimizer should really 3548 // avoid this case by converting large object/array copies to llvm.memcpy 3549 // (MaxParallelChains should always remain as failsafe). 3550 if (ChainI == MaxParallelChains) { 3551 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3552 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3553 makeArrayRef(Chains.data(), ChainI)); 3554 Root = Chain; 3555 ChainI = 0; 3556 } 3557 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3558 PtrVT, Ptr, 3559 DAG.getConstant(Offsets[i], PtrVT)); 3560 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3561 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3562 isNonTemporal, isInvariant, Alignment, AAInfo, 3563 Ranges); 3564 3565 Values[i] = L; 3566 Chains[ChainI] = L.getValue(1); 3567 } 3568 3569 if (!ConstantMemory) { 3570 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3571 makeArrayRef(Chains.data(), ChainI)); 3572 if (isVolatile) 3573 DAG.setRoot(Chain); 3574 else 3575 PendingLoads.push_back(Chain); 3576 } 3577 3578 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3579 DAG.getVTList(ValueVTs), Values)); 3580 } 3581 3582 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3583 if (I.isAtomic()) 3584 return visitAtomicStore(I); 3585 3586 const Value *SrcV = I.getOperand(0); 3587 const Value *PtrV = I.getOperand(1); 3588 3589 SmallVector<EVT, 4> ValueVTs; 3590 SmallVector<uint64_t, 4> Offsets; 3591 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3592 ValueVTs, &Offsets); 3593 unsigned NumValues = ValueVTs.size(); 3594 if (NumValues == 0) 3595 return; 3596 3597 // Get the lowered operands. Note that we do this after 3598 // checking if NumResults is zero, because with zero results 3599 // the operands won't have values in the map. 3600 SDValue Src = getValue(SrcV); 3601 SDValue Ptr = getValue(PtrV); 3602 3603 SDValue Root = getRoot(); 3604 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3605 NumValues)); 3606 EVT PtrVT = Ptr.getValueType(); 3607 bool isVolatile = I.isVolatile(); 3608 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3609 unsigned Alignment = I.getAlignment(); 3610 3611 AAMDNodes AAInfo; 3612 I.getAAMetadata(AAInfo); 3613 3614 unsigned ChainI = 0; 3615 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3616 // See visitLoad comments. 3617 if (ChainI == MaxParallelChains) { 3618 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3619 makeArrayRef(Chains.data(), ChainI)); 3620 Root = Chain; 3621 ChainI = 0; 3622 } 3623 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3624 DAG.getConstant(Offsets[i], PtrVT)); 3625 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3626 SDValue(Src.getNode(), Src.getResNo() + i), 3627 Add, MachinePointerInfo(PtrV, Offsets[i]), 3628 isVolatile, isNonTemporal, Alignment, AAInfo); 3629 Chains[ChainI] = St; 3630 } 3631 3632 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3633 makeArrayRef(Chains.data(), ChainI)); 3634 DAG.setRoot(StoreNode); 3635 } 3636 3637 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3638 SDLoc sdl = getCurSDLoc(); 3639 3640 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3641 Value *PtrOperand = I.getArgOperand(1); 3642 SDValue Ptr = getValue(PtrOperand); 3643 SDValue Src0 = getValue(I.getArgOperand(0)); 3644 SDValue Mask = getValue(I.getArgOperand(3)); 3645 EVT VT = Src0.getValueType(); 3646 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3647 if (!Alignment) 3648 Alignment = DAG.getEVTAlignment(VT); 3649 3650 AAMDNodes AAInfo; 3651 I.getAAMetadata(AAInfo); 3652 3653 MachineMemOperand *MMO = 3654 DAG.getMachineFunction(). 3655 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3656 MachineMemOperand::MOStore, VT.getStoreSize(), 3657 Alignment, AAInfo); 3658 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3659 MMO, false); 3660 DAG.setRoot(StoreNode); 3661 setValue(&I, StoreNode); 3662 } 3663 3664 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3665 SDLoc sdl = getCurSDLoc(); 3666 3667 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3668 Value *PtrOperand = I.getArgOperand(0); 3669 SDValue Ptr = getValue(PtrOperand); 3670 SDValue Src0 = getValue(I.getArgOperand(3)); 3671 SDValue Mask = getValue(I.getArgOperand(2)); 3672 3673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3674 EVT VT = TLI.getValueType(I.getType()); 3675 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3676 if (!Alignment) 3677 Alignment = DAG.getEVTAlignment(VT); 3678 3679 AAMDNodes AAInfo; 3680 I.getAAMetadata(AAInfo); 3681 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3682 3683 SDValue InChain = DAG.getRoot(); 3684 if (AA->pointsToConstantMemory( 3685 AliasAnalysis::Location(PtrOperand, 3686 AA->getTypeStoreSize(I.getType()), 3687 AAInfo))) { 3688 // Do not serialize (non-volatile) loads of constant memory with anything. 3689 InChain = DAG.getEntryNode(); 3690 } 3691 3692 MachineMemOperand *MMO = 3693 DAG.getMachineFunction(). 3694 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3695 MachineMemOperand::MOLoad, VT.getStoreSize(), 3696 Alignment, AAInfo, Ranges); 3697 3698 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3699 ISD::NON_EXTLOAD); 3700 SDValue OutChain = Load.getValue(1); 3701 DAG.setRoot(OutChain); 3702 setValue(&I, Load); 3703 } 3704 3705 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3706 SDLoc dl = getCurSDLoc(); 3707 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3708 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3709 SynchronizationScope Scope = I.getSynchScope(); 3710 3711 SDValue InChain = getRoot(); 3712 3713 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3714 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3715 SDValue L = DAG.getAtomicCmpSwap( 3716 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3717 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3718 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3719 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3720 3721 SDValue OutChain = L.getValue(2); 3722 3723 setValue(&I, L); 3724 DAG.setRoot(OutChain); 3725 } 3726 3727 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3728 SDLoc dl = getCurSDLoc(); 3729 ISD::NodeType NT; 3730 switch (I.getOperation()) { 3731 default: llvm_unreachable("Unknown atomicrmw operation"); 3732 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3733 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3734 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3735 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3736 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3737 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3738 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3739 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3740 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3741 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3742 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3743 } 3744 AtomicOrdering Order = I.getOrdering(); 3745 SynchronizationScope Scope = I.getSynchScope(); 3746 3747 SDValue InChain = getRoot(); 3748 3749 SDValue L = 3750 DAG.getAtomic(NT, dl, 3751 getValue(I.getValOperand()).getSimpleValueType(), 3752 InChain, 3753 getValue(I.getPointerOperand()), 3754 getValue(I.getValOperand()), 3755 I.getPointerOperand(), 3756 /* Alignment=*/ 0, Order, Scope); 3757 3758 SDValue OutChain = L.getValue(1); 3759 3760 setValue(&I, L); 3761 DAG.setRoot(OutChain); 3762 } 3763 3764 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3765 SDLoc dl = getCurSDLoc(); 3766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3767 SDValue Ops[3]; 3768 Ops[0] = getRoot(); 3769 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3770 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3771 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3772 } 3773 3774 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3775 SDLoc dl = getCurSDLoc(); 3776 AtomicOrdering Order = I.getOrdering(); 3777 SynchronizationScope Scope = I.getSynchScope(); 3778 3779 SDValue InChain = getRoot(); 3780 3781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3782 EVT VT = TLI.getValueType(I.getType()); 3783 3784 if (I.getAlignment() < VT.getSizeInBits() / 8) 3785 report_fatal_error("Cannot generate unaligned atomic load"); 3786 3787 MachineMemOperand *MMO = 3788 DAG.getMachineFunction(). 3789 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3790 MachineMemOperand::MOVolatile | 3791 MachineMemOperand::MOLoad, 3792 VT.getStoreSize(), 3793 I.getAlignment() ? I.getAlignment() : 3794 DAG.getEVTAlignment(VT)); 3795 3796 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3797 SDValue L = 3798 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3799 getValue(I.getPointerOperand()), MMO, 3800 Order, Scope); 3801 3802 SDValue OutChain = L.getValue(1); 3803 3804 setValue(&I, L); 3805 DAG.setRoot(OutChain); 3806 } 3807 3808 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3809 SDLoc dl = getCurSDLoc(); 3810 3811 AtomicOrdering Order = I.getOrdering(); 3812 SynchronizationScope Scope = I.getSynchScope(); 3813 3814 SDValue InChain = getRoot(); 3815 3816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3817 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3818 3819 if (I.getAlignment() < VT.getSizeInBits() / 8) 3820 report_fatal_error("Cannot generate unaligned atomic store"); 3821 3822 SDValue OutChain = 3823 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3824 InChain, 3825 getValue(I.getPointerOperand()), 3826 getValue(I.getValueOperand()), 3827 I.getPointerOperand(), I.getAlignment(), 3828 Order, Scope); 3829 3830 DAG.setRoot(OutChain); 3831 } 3832 3833 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3834 /// node. 3835 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3836 unsigned Intrinsic) { 3837 bool HasChain = !I.doesNotAccessMemory(); 3838 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3839 3840 // Build the operand list. 3841 SmallVector<SDValue, 8> Ops; 3842 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3843 if (OnlyLoad) { 3844 // We don't need to serialize loads against other loads. 3845 Ops.push_back(DAG.getRoot()); 3846 } else { 3847 Ops.push_back(getRoot()); 3848 } 3849 } 3850 3851 // Info is set by getTgtMemInstrinsic 3852 TargetLowering::IntrinsicInfo Info; 3853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3854 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3855 3856 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3857 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3858 Info.opc == ISD::INTRINSIC_W_CHAIN) 3859 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3860 3861 // Add all operands of the call to the operand list. 3862 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3863 SDValue Op = getValue(I.getArgOperand(i)); 3864 Ops.push_back(Op); 3865 } 3866 3867 SmallVector<EVT, 4> ValueVTs; 3868 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3869 3870 if (HasChain) 3871 ValueVTs.push_back(MVT::Other); 3872 3873 SDVTList VTs = DAG.getVTList(ValueVTs); 3874 3875 // Create the node. 3876 SDValue Result; 3877 if (IsTgtIntrinsic) { 3878 // This is target intrinsic that touches memory 3879 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3880 VTs, Ops, Info.memVT, 3881 MachinePointerInfo(Info.ptrVal, Info.offset), 3882 Info.align, Info.vol, 3883 Info.readMem, Info.writeMem, Info.size); 3884 } else if (!HasChain) { 3885 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3886 } else if (!I.getType()->isVoidTy()) { 3887 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3888 } else { 3889 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3890 } 3891 3892 if (HasChain) { 3893 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3894 if (OnlyLoad) 3895 PendingLoads.push_back(Chain); 3896 else 3897 DAG.setRoot(Chain); 3898 } 3899 3900 if (!I.getType()->isVoidTy()) { 3901 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3902 EVT VT = TLI.getValueType(PTy); 3903 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3904 } 3905 3906 setValue(&I, Result); 3907 } 3908 } 3909 3910 /// GetSignificand - Get the significand and build it into a floating-point 3911 /// number with exponent of 1: 3912 /// 3913 /// Op = (Op & 0x007fffff) | 0x3f800000; 3914 /// 3915 /// where Op is the hexadecimal representation of floating point value. 3916 static SDValue 3917 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3918 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3919 DAG.getConstant(0x007fffff, MVT::i32)); 3920 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3921 DAG.getConstant(0x3f800000, MVT::i32)); 3922 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3923 } 3924 3925 /// GetExponent - Get the exponent: 3926 /// 3927 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3928 /// 3929 /// where Op is the hexadecimal representation of floating point value. 3930 static SDValue 3931 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3932 SDLoc dl) { 3933 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3934 DAG.getConstant(0x7f800000, MVT::i32)); 3935 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3936 DAG.getConstant(23, TLI.getPointerTy())); 3937 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3938 DAG.getConstant(127, MVT::i32)); 3939 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3940 } 3941 3942 /// getF32Constant - Get 32-bit floating point constant. 3943 static SDValue 3944 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3945 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3946 MVT::f32); 3947 } 3948 3949 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3950 SelectionDAG &DAG) { 3951 // IntegerPartOfX = ((int32_t)(t0); 3952 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3953 3954 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3955 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3956 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3957 3958 // IntegerPartOfX <<= 23; 3959 IntegerPartOfX = DAG.getNode( 3960 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3961 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3962 3963 SDValue TwoToFractionalPartOfX; 3964 if (LimitFloatPrecision <= 6) { 3965 // For floating-point precision of 6: 3966 // 3967 // TwoToFractionalPartOfX = 3968 // 0.997535578f + 3969 // (0.735607626f + 0.252464424f * x) * x; 3970 // 3971 // error 0.0144103317, which is 6 bits 3972 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3973 getF32Constant(DAG, 0x3e814304)); 3974 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3975 getF32Constant(DAG, 0x3f3c50c8)); 3976 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3977 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3978 getF32Constant(DAG, 0x3f7f5e7e)); 3979 } else if (LimitFloatPrecision <= 12) { 3980 // For floating-point precision of 12: 3981 // 3982 // TwoToFractionalPartOfX = 3983 // 0.999892986f + 3984 // (0.696457318f + 3985 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3986 // 3987 // error 0.000107046256, which is 13 to 14 bits 3988 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3989 getF32Constant(DAG, 0x3da235e3)); 3990 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3991 getF32Constant(DAG, 0x3e65b8f3)); 3992 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3993 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3994 getF32Constant(DAG, 0x3f324b07)); 3995 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3996 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3997 getF32Constant(DAG, 0x3f7ff8fd)); 3998 } else { // LimitFloatPrecision <= 18 3999 // For floating-point precision of 18: 4000 // 4001 // TwoToFractionalPartOfX = 4002 // 0.999999982f + 4003 // (0.693148872f + 4004 // (0.240227044f + 4005 // (0.554906021e-1f + 4006 // (0.961591928e-2f + 4007 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4008 // error 2.47208000*10^(-7), which is better than 18 bits 4009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4010 getF32Constant(DAG, 0x3924b03e)); 4011 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4012 getF32Constant(DAG, 0x3ab24b87)); 4013 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4014 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4015 getF32Constant(DAG, 0x3c1d8c17)); 4016 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4017 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4018 getF32Constant(DAG, 0x3d634a1d)); 4019 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4020 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4021 getF32Constant(DAG, 0x3e75fe14)); 4022 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4023 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4024 getF32Constant(DAG, 0x3f317234)); 4025 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4026 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4027 getF32Constant(DAG, 0x3f800000)); 4028 } 4029 4030 // Add the exponent into the result in integer domain. 4031 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4032 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4033 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4034 } 4035 4036 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4037 /// limited-precision mode. 4038 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4039 const TargetLowering &TLI) { 4040 if (Op.getValueType() == MVT::f32 && 4041 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4042 4043 // Put the exponent in the right bit position for later addition to the 4044 // final result: 4045 // 4046 // #define LOG2OFe 1.4426950f 4047 // t0 = Op * LOG2OFe 4048 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4049 getF32Constant(DAG, 0x3fb8aa3b)); 4050 return getLimitedPrecisionExp2(t0, dl, DAG); 4051 } 4052 4053 // No special expansion. 4054 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4055 } 4056 4057 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4058 /// limited-precision mode. 4059 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4060 const TargetLowering &TLI) { 4061 if (Op.getValueType() == MVT::f32 && 4062 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4063 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4064 4065 // Scale the exponent by log(2) [0.69314718f]. 4066 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4067 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4068 getF32Constant(DAG, 0x3f317218)); 4069 4070 // Get the significand and build it into a floating-point number with 4071 // exponent of 1. 4072 SDValue X = GetSignificand(DAG, Op1, dl); 4073 4074 SDValue LogOfMantissa; 4075 if (LimitFloatPrecision <= 6) { 4076 // For floating-point precision of 6: 4077 // 4078 // LogofMantissa = 4079 // -1.1609546f + 4080 // (1.4034025f - 0.23903021f * x) * x; 4081 // 4082 // error 0.0034276066, which is better than 8 bits 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0xbe74c456)); 4085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4086 getF32Constant(DAG, 0x3fb3a2b1)); 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4088 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3f949a29)); 4090 } else if (LimitFloatPrecision <= 12) { 4091 // For floating-point precision of 12: 4092 // 4093 // LogOfMantissa = 4094 // -1.7417939f + 4095 // (2.8212026f + 4096 // (-1.4699568f + 4097 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4098 // 4099 // error 0.000061011436, which is 14 bits 4100 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4101 getF32Constant(DAG, 0xbd67b6d6)); 4102 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4103 getF32Constant(DAG, 0x3ee4f4b8)); 4104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4105 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4106 getF32Constant(DAG, 0x3fbc278b)); 4107 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4108 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4109 getF32Constant(DAG, 0x40348e95)); 4110 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4111 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4112 getF32Constant(DAG, 0x3fdef31a)); 4113 } else { // LimitFloatPrecision <= 18 4114 // For floating-point precision of 18: 4115 // 4116 // LogOfMantissa = 4117 // -2.1072184f + 4118 // (4.2372794f + 4119 // (-3.7029485f + 4120 // (2.2781945f + 4121 // (-0.87823314f + 4122 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4123 // 4124 // error 0.0000023660568, which is better than 18 bits 4125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4126 getF32Constant(DAG, 0xbc91e5ac)); 4127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4128 getF32Constant(DAG, 0x3e4350aa)); 4129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4130 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4131 getF32Constant(DAG, 0x3f60d3e3)); 4132 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4133 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4134 getF32Constant(DAG, 0x4011cdf0)); 4135 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4136 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4137 getF32Constant(DAG, 0x406cfd1c)); 4138 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4139 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4140 getF32Constant(DAG, 0x408797cb)); 4141 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4142 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4143 getF32Constant(DAG, 0x4006dcab)); 4144 } 4145 4146 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4147 } 4148 4149 // No special expansion. 4150 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4151 } 4152 4153 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4154 /// limited-precision mode. 4155 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4156 const TargetLowering &TLI) { 4157 if (Op.getValueType() == MVT::f32 && 4158 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4159 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4160 4161 // Get the exponent. 4162 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4163 4164 // Get the significand and build it into a floating-point number with 4165 // exponent of 1. 4166 SDValue X = GetSignificand(DAG, Op1, dl); 4167 4168 // Different possible minimax approximations of significand in 4169 // floating-point for various degrees of accuracy over [1,2]. 4170 SDValue Log2ofMantissa; 4171 if (LimitFloatPrecision <= 6) { 4172 // For floating-point precision of 6: 4173 // 4174 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4175 // 4176 // error 0.0049451742, which is more than 7 bits 4177 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4178 getF32Constant(DAG, 0xbeb08fe0)); 4179 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4180 getF32Constant(DAG, 0x40019463)); 4181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4182 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4183 getF32Constant(DAG, 0x3fd6633d)); 4184 } else if (LimitFloatPrecision <= 12) { 4185 // For floating-point precision of 12: 4186 // 4187 // Log2ofMantissa = 4188 // -2.51285454f + 4189 // (4.07009056f + 4190 // (-2.12067489f + 4191 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4192 // 4193 // error 0.0000876136000, which is better than 13 bits 4194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4195 getF32Constant(DAG, 0xbda7262e)); 4196 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4197 getF32Constant(DAG, 0x3f25280b)); 4198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4199 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4200 getF32Constant(DAG, 0x4007b923)); 4201 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4202 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4203 getF32Constant(DAG, 0x40823e2f)); 4204 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4205 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4206 getF32Constant(DAG, 0x4020d29c)); 4207 } else { // LimitFloatPrecision <= 18 4208 // For floating-point precision of 18: 4209 // 4210 // Log2ofMantissa = 4211 // -3.0400495f + 4212 // (6.1129976f + 4213 // (-5.3420409f + 4214 // (3.2865683f + 4215 // (-1.2669343f + 4216 // (0.27515199f - 4217 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4218 // 4219 // error 0.0000018516, which is better than 18 bits 4220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4221 getF32Constant(DAG, 0xbcd2769e)); 4222 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4223 getF32Constant(DAG, 0x3e8ce0b9)); 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4225 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4226 getF32Constant(DAG, 0x3fa22ae7)); 4227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4228 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4229 getF32Constant(DAG, 0x40525723)); 4230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4231 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4232 getF32Constant(DAG, 0x40aaf200)); 4233 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4234 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4235 getF32Constant(DAG, 0x40c39dad)); 4236 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4237 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4238 getF32Constant(DAG, 0x4042902c)); 4239 } 4240 4241 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4242 } 4243 4244 // No special expansion. 4245 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4246 } 4247 4248 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4249 /// limited-precision mode. 4250 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4251 const TargetLowering &TLI) { 4252 if (Op.getValueType() == MVT::f32 && 4253 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4254 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4255 4256 // Scale the exponent by log10(2) [0.30102999f]. 4257 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4258 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4259 getF32Constant(DAG, 0x3e9a209a)); 4260 4261 // Get the significand and build it into a floating-point number with 4262 // exponent of 1. 4263 SDValue X = GetSignificand(DAG, Op1, dl); 4264 4265 SDValue Log10ofMantissa; 4266 if (LimitFloatPrecision <= 6) { 4267 // For floating-point precision of 6: 4268 // 4269 // Log10ofMantissa = 4270 // -0.50419619f + 4271 // (0.60948995f - 0.10380950f * x) * x; 4272 // 4273 // error 0.0014886165, which is 6 bits 4274 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4275 getF32Constant(DAG, 0xbdd49a13)); 4276 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4277 getF32Constant(DAG, 0x3f1c0789)); 4278 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4279 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4280 getF32Constant(DAG, 0x3f011300)); 4281 } else if (LimitFloatPrecision <= 12) { 4282 // For floating-point precision of 12: 4283 // 4284 // Log10ofMantissa = 4285 // -0.64831180f + 4286 // (0.91751397f + 4287 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4288 // 4289 // error 0.00019228036, which is better than 12 bits 4290 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4291 getF32Constant(DAG, 0x3d431f31)); 4292 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4293 getF32Constant(DAG, 0x3ea21fb2)); 4294 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4295 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4296 getF32Constant(DAG, 0x3f6ae232)); 4297 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4298 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4299 getF32Constant(DAG, 0x3f25f7c3)); 4300 } else { // LimitFloatPrecision <= 18 4301 // For floating-point precision of 18: 4302 // 4303 // Log10ofMantissa = 4304 // -0.84299375f + 4305 // (1.5327582f + 4306 // (-1.0688956f + 4307 // (0.49102474f + 4308 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4309 // 4310 // error 0.0000037995730, which is better than 18 bits 4311 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4312 getF32Constant(DAG, 0x3c5d51ce)); 4313 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4314 getF32Constant(DAG, 0x3e00685a)); 4315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4316 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4317 getF32Constant(DAG, 0x3efb6798)); 4318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4319 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4320 getF32Constant(DAG, 0x3f88d192)); 4321 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4322 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4323 getF32Constant(DAG, 0x3fc4316c)); 4324 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4325 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4326 getF32Constant(DAG, 0x3f57ce70)); 4327 } 4328 4329 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4330 } 4331 4332 // No special expansion. 4333 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4334 } 4335 4336 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4337 /// limited-precision mode. 4338 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4339 const TargetLowering &TLI) { 4340 if (Op.getValueType() == MVT::f32 && 4341 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4342 return getLimitedPrecisionExp2(Op, dl, DAG); 4343 4344 // No special expansion. 4345 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4346 } 4347 4348 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4349 /// limited-precision mode with x == 10.0f. 4350 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4351 SelectionDAG &DAG, const TargetLowering &TLI) { 4352 bool IsExp10 = false; 4353 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4354 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4355 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4356 APFloat Ten(10.0f); 4357 IsExp10 = LHSC->isExactlyValue(Ten); 4358 } 4359 } 4360 4361 if (IsExp10) { 4362 // Put the exponent in the right bit position for later addition to the 4363 // final result: 4364 // 4365 // #define LOG2OF10 3.3219281f 4366 // t0 = Op * LOG2OF10; 4367 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4368 getF32Constant(DAG, 0x40549a78)); 4369 return getLimitedPrecisionExp2(t0, dl, DAG); 4370 } 4371 4372 // No special expansion. 4373 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4374 } 4375 4376 4377 /// ExpandPowI - Expand a llvm.powi intrinsic. 4378 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4379 SelectionDAG &DAG) { 4380 // If RHS is a constant, we can expand this out to a multiplication tree, 4381 // otherwise we end up lowering to a call to __powidf2 (for example). When 4382 // optimizing for size, we only want to do this if the expansion would produce 4383 // a small number of multiplies, otherwise we do the full expansion. 4384 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4385 // Get the exponent as a positive value. 4386 unsigned Val = RHSC->getSExtValue(); 4387 if ((int)Val < 0) Val = -Val; 4388 4389 // powi(x, 0) -> 1.0 4390 if (Val == 0) 4391 return DAG.getConstantFP(1.0, LHS.getValueType()); 4392 4393 const Function *F = DAG.getMachineFunction().getFunction(); 4394 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 4395 // If optimizing for size, don't insert too many multiplies. This 4396 // inserts up to 5 multiplies. 4397 countPopulation(Val) + Log2_32(Val) < 7) { 4398 // We use the simple binary decomposition method to generate the multiply 4399 // sequence. There are more optimal ways to do this (for example, 4400 // powi(x,15) generates one more multiply than it should), but this has 4401 // the benefit of being both really simple and much better than a libcall. 4402 SDValue Res; // Logically starts equal to 1.0 4403 SDValue CurSquare = LHS; 4404 while (Val) { 4405 if (Val & 1) { 4406 if (Res.getNode()) 4407 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4408 else 4409 Res = CurSquare; // 1.0*CurSquare. 4410 } 4411 4412 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4413 CurSquare, CurSquare); 4414 Val >>= 1; 4415 } 4416 4417 // If the original was negative, invert the result, producing 1/(x*x*x). 4418 if (RHSC->getSExtValue() < 0) 4419 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4420 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4421 return Res; 4422 } 4423 } 4424 4425 // Otherwise, expand to a libcall. 4426 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4427 } 4428 4429 // getTruncatedArgReg - Find underlying register used for an truncated 4430 // argument. 4431 static unsigned getTruncatedArgReg(const SDValue &N) { 4432 if (N.getOpcode() != ISD::TRUNCATE) 4433 return 0; 4434 4435 const SDValue &Ext = N.getOperand(0); 4436 if (Ext.getOpcode() == ISD::AssertZext || 4437 Ext.getOpcode() == ISD::AssertSext) { 4438 const SDValue &CFR = Ext.getOperand(0); 4439 if (CFR.getOpcode() == ISD::CopyFromReg) 4440 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4441 if (CFR.getOpcode() == ISD::TRUNCATE) 4442 return getTruncatedArgReg(CFR); 4443 } 4444 return 0; 4445 } 4446 4447 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4448 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4449 /// At the end of instruction selection, they will be inserted to the entry BB. 4450 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4451 MDNode *Variable, 4452 MDNode *Expr, int64_t Offset, 4453 bool IsIndirect, 4454 const SDValue &N) { 4455 const Argument *Arg = dyn_cast<Argument>(V); 4456 if (!Arg) 4457 return false; 4458 4459 MachineFunction &MF = DAG.getMachineFunction(); 4460 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4461 4462 // Ignore inlined function arguments here. 4463 DIVariable DV(Variable); 4464 if (DV.isInlinedFnArgument(MF.getFunction())) 4465 return false; 4466 4467 Optional<MachineOperand> Op; 4468 // Some arguments' frame index is recorded during argument lowering. 4469 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4470 Op = MachineOperand::CreateFI(FI); 4471 4472 if (!Op && N.getNode()) { 4473 unsigned Reg; 4474 if (N.getOpcode() == ISD::CopyFromReg) 4475 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4476 else 4477 Reg = getTruncatedArgReg(N); 4478 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4479 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4480 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4481 if (PR) 4482 Reg = PR; 4483 } 4484 if (Reg) 4485 Op = MachineOperand::CreateReg(Reg, false); 4486 } 4487 4488 if (!Op) { 4489 // Check if ValueMap has reg number. 4490 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4491 if (VMI != FuncInfo.ValueMap.end()) 4492 Op = MachineOperand::CreateReg(VMI->second, false); 4493 } 4494 4495 if (!Op && N.getNode()) 4496 // Check if frame index is available. 4497 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4498 if (FrameIndexSDNode *FINode = 4499 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4500 Op = MachineOperand::CreateFI(FINode->getIndex()); 4501 4502 if (!Op) 4503 return false; 4504 4505 if (Op->isReg()) 4506 FuncInfo.ArgDbgValues.push_back( 4507 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4508 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4509 else 4510 FuncInfo.ArgDbgValues.push_back( 4511 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4512 .addOperand(*Op) 4513 .addImm(Offset) 4514 .addMetadata(Variable) 4515 .addMetadata(Expr)); 4516 4517 return true; 4518 } 4519 4520 // VisualStudio defines setjmp as _setjmp 4521 #if defined(_MSC_VER) && defined(setjmp) && \ 4522 !defined(setjmp_undefined_for_msvc) 4523 # pragma push_macro("setjmp") 4524 # undef setjmp 4525 # define setjmp_undefined_for_msvc 4526 #endif 4527 4528 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4529 /// we want to emit this as a call to a named external function, return the name 4530 /// otherwise lower it and return null. 4531 const char * 4532 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4534 SDLoc sdl = getCurSDLoc(); 4535 DebugLoc dl = getCurDebugLoc(); 4536 SDValue Res; 4537 4538 switch (Intrinsic) { 4539 default: 4540 // By default, turn this into a target intrinsic node. 4541 visitTargetIntrinsic(I, Intrinsic); 4542 return nullptr; 4543 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4544 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4545 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4546 case Intrinsic::returnaddress: 4547 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4548 getValue(I.getArgOperand(0)))); 4549 return nullptr; 4550 case Intrinsic::frameaddress: 4551 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4552 getValue(I.getArgOperand(0)))); 4553 return nullptr; 4554 case Intrinsic::read_register: { 4555 Value *Reg = I.getArgOperand(0); 4556 SDValue RegName = 4557 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4558 EVT VT = TLI.getValueType(I.getType()); 4559 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4560 return nullptr; 4561 } 4562 case Intrinsic::write_register: { 4563 Value *Reg = I.getArgOperand(0); 4564 Value *RegValue = I.getArgOperand(1); 4565 SDValue Chain = getValue(RegValue).getOperand(0); 4566 SDValue RegName = 4567 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4568 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4569 RegName, getValue(RegValue))); 4570 return nullptr; 4571 } 4572 case Intrinsic::setjmp: 4573 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4574 case Intrinsic::longjmp: 4575 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4576 case Intrinsic::memcpy: { 4577 // FIXME: this definition of "user defined address space" is x86-specific 4578 // Assert for address < 256 since we support only user defined address 4579 // spaces. 4580 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4581 < 256 && 4582 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4583 < 256 && 4584 "Unknown address space"); 4585 SDValue Op1 = getValue(I.getArgOperand(0)); 4586 SDValue Op2 = getValue(I.getArgOperand(1)); 4587 SDValue Op3 = getValue(I.getArgOperand(2)); 4588 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4589 if (!Align) 4590 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4591 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4592 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4593 MachinePointerInfo(I.getArgOperand(0)), 4594 MachinePointerInfo(I.getArgOperand(1)))); 4595 return nullptr; 4596 } 4597 case Intrinsic::memset: { 4598 // FIXME: this definition of "user defined address space" is x86-specific 4599 // Assert for address < 256 since we support only user defined address 4600 // spaces. 4601 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4602 < 256 && 4603 "Unknown address space"); 4604 SDValue Op1 = getValue(I.getArgOperand(0)); 4605 SDValue Op2 = getValue(I.getArgOperand(1)); 4606 SDValue Op3 = getValue(I.getArgOperand(2)); 4607 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4608 if (!Align) 4609 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4610 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4611 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4612 MachinePointerInfo(I.getArgOperand(0)))); 4613 return nullptr; 4614 } 4615 case Intrinsic::memmove: { 4616 // FIXME: this definition of "user defined address space" is x86-specific 4617 // Assert for address < 256 since we support only user defined address 4618 // spaces. 4619 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4620 < 256 && 4621 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4622 < 256 && 4623 "Unknown address space"); 4624 SDValue Op1 = getValue(I.getArgOperand(0)); 4625 SDValue Op2 = getValue(I.getArgOperand(1)); 4626 SDValue Op3 = getValue(I.getArgOperand(2)); 4627 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4628 if (!Align) 4629 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4630 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4631 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4632 MachinePointerInfo(I.getArgOperand(0)), 4633 MachinePointerInfo(I.getArgOperand(1)))); 4634 return nullptr; 4635 } 4636 case Intrinsic::dbg_declare: { 4637 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4638 MDNode *Variable = DI.getVariable(); 4639 MDNode *Expression = DI.getExpression(); 4640 const Value *Address = DI.getAddress(); 4641 DIVariable DIVar(Variable); 4642 assert((!DIVar || DIVar.isVariable()) && 4643 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4644 if (!Address || !DIVar) { 4645 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4646 return nullptr; 4647 } 4648 4649 // Check if address has undef value. 4650 if (isa<UndefValue>(Address) || 4651 (Address->use_empty() && !isa<Argument>(Address))) { 4652 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4653 return nullptr; 4654 } 4655 4656 SDValue &N = NodeMap[Address]; 4657 if (!N.getNode() && isa<Argument>(Address)) 4658 // Check unused arguments map. 4659 N = UnusedArgNodeMap[Address]; 4660 SDDbgValue *SDV; 4661 if (N.getNode()) { 4662 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4663 Address = BCI->getOperand(0); 4664 // Parameters are handled specially. 4665 bool isParameter = 4666 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4667 isa<Argument>(Address)); 4668 4669 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4670 4671 if (isParameter && !AI) { 4672 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4673 if (FINode) 4674 // Byval parameter. We have a frame index at this point. 4675 SDV = DAG.getFrameIndexDbgValue( 4676 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4677 else { 4678 // Address is an argument, so try to emit its dbg value using 4679 // virtual register info from the FuncInfo.ValueMap. 4680 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4681 return nullptr; 4682 } 4683 } else if (AI) 4684 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4685 true, 0, dl, SDNodeOrder); 4686 else { 4687 // Can't do anything with other non-AI cases yet. 4688 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4689 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4690 DEBUG(Address->dump()); 4691 return nullptr; 4692 } 4693 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4694 } else { 4695 // If Address is an argument then try to emit its dbg value using 4696 // virtual register info from the FuncInfo.ValueMap. 4697 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4698 N)) { 4699 // If variable is pinned by a alloca in dominating bb then 4700 // use StaticAllocaMap. 4701 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4702 if (AI->getParent() != DI.getParent()) { 4703 DenseMap<const AllocaInst*, int>::iterator SI = 4704 FuncInfo.StaticAllocaMap.find(AI); 4705 if (SI != FuncInfo.StaticAllocaMap.end()) { 4706 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4707 0, dl, SDNodeOrder); 4708 DAG.AddDbgValue(SDV, nullptr, false); 4709 return nullptr; 4710 } 4711 } 4712 } 4713 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4714 } 4715 } 4716 return nullptr; 4717 } 4718 case Intrinsic::dbg_value: { 4719 const DbgValueInst &DI = cast<DbgValueInst>(I); 4720 DIVariable DIVar(DI.getVariable()); 4721 assert((!DIVar || DIVar.isVariable()) && 4722 "Variable in DbgValueInst should be either null or a DIVariable."); 4723 if (!DIVar) 4724 return nullptr; 4725 4726 MDNode *Variable = DI.getVariable(); 4727 MDNode *Expression = DI.getExpression(); 4728 uint64_t Offset = DI.getOffset(); 4729 const Value *V = DI.getValue(); 4730 if (!V) 4731 return nullptr; 4732 4733 SDDbgValue *SDV; 4734 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4735 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4736 SDNodeOrder); 4737 DAG.AddDbgValue(SDV, nullptr, false); 4738 } else { 4739 // Do not use getValue() in here; we don't want to generate code at 4740 // this point if it hasn't been done yet. 4741 SDValue N = NodeMap[V]; 4742 if (!N.getNode() && isa<Argument>(V)) 4743 // Check unused arguments map. 4744 N = UnusedArgNodeMap[V]; 4745 if (N.getNode()) { 4746 // A dbg.value for an alloca is always indirect. 4747 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4748 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4749 IsIndirect, N)) { 4750 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4751 IsIndirect, Offset, dl, SDNodeOrder); 4752 DAG.AddDbgValue(SDV, N.getNode(), false); 4753 } 4754 } else if (!V->use_empty() ) { 4755 // Do not call getValue(V) yet, as we don't want to generate code. 4756 // Remember it for later. 4757 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4758 DanglingDebugInfoMap[V] = DDI; 4759 } else { 4760 // We may expand this to cover more cases. One case where we have no 4761 // data available is an unreferenced parameter. 4762 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4763 } 4764 } 4765 4766 // Build a debug info table entry. 4767 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4768 V = BCI->getOperand(0); 4769 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4770 // Don't handle byval struct arguments or VLAs, for example. 4771 if (!AI) { 4772 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4773 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4774 return nullptr; 4775 } 4776 DenseMap<const AllocaInst*, int>::iterator SI = 4777 FuncInfo.StaticAllocaMap.find(AI); 4778 if (SI == FuncInfo.StaticAllocaMap.end()) 4779 return nullptr; // VLAs. 4780 return nullptr; 4781 } 4782 4783 case Intrinsic::eh_typeid_for: { 4784 // Find the type id for the given typeinfo. 4785 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4786 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4787 Res = DAG.getConstant(TypeID, MVT::i32); 4788 setValue(&I, Res); 4789 return nullptr; 4790 } 4791 4792 case Intrinsic::eh_return_i32: 4793 case Intrinsic::eh_return_i64: 4794 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4795 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4796 MVT::Other, 4797 getControlRoot(), 4798 getValue(I.getArgOperand(0)), 4799 getValue(I.getArgOperand(1)))); 4800 return nullptr; 4801 case Intrinsic::eh_unwind_init: 4802 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4803 return nullptr; 4804 case Intrinsic::eh_dwarf_cfa: { 4805 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4806 TLI.getPointerTy()); 4807 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4808 CfaArg.getValueType(), 4809 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4810 CfaArg.getValueType()), 4811 CfaArg); 4812 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4813 DAG.getConstant(0, TLI.getPointerTy())); 4814 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4815 FA, Offset)); 4816 return nullptr; 4817 } 4818 case Intrinsic::eh_sjlj_callsite: { 4819 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4820 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4821 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4822 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4823 4824 MMI.setCurrentCallSite(CI->getZExtValue()); 4825 return nullptr; 4826 } 4827 case Intrinsic::eh_sjlj_functioncontext: { 4828 // Get and store the index of the function context. 4829 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4830 AllocaInst *FnCtx = 4831 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4832 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4833 MFI->setFunctionContextIndex(FI); 4834 return nullptr; 4835 } 4836 case Intrinsic::eh_sjlj_setjmp: { 4837 SDValue Ops[2]; 4838 Ops[0] = getRoot(); 4839 Ops[1] = getValue(I.getArgOperand(0)); 4840 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4841 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4842 setValue(&I, Op.getValue(0)); 4843 DAG.setRoot(Op.getValue(1)); 4844 return nullptr; 4845 } 4846 case Intrinsic::eh_sjlj_longjmp: { 4847 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4848 getRoot(), getValue(I.getArgOperand(0)))); 4849 return nullptr; 4850 } 4851 4852 case Intrinsic::masked_load: 4853 visitMaskedLoad(I); 4854 return nullptr; 4855 case Intrinsic::masked_store: 4856 visitMaskedStore(I); 4857 return nullptr; 4858 case Intrinsic::x86_mmx_pslli_w: 4859 case Intrinsic::x86_mmx_pslli_d: 4860 case Intrinsic::x86_mmx_pslli_q: 4861 case Intrinsic::x86_mmx_psrli_w: 4862 case Intrinsic::x86_mmx_psrli_d: 4863 case Intrinsic::x86_mmx_psrli_q: 4864 case Intrinsic::x86_mmx_psrai_w: 4865 case Intrinsic::x86_mmx_psrai_d: { 4866 SDValue ShAmt = getValue(I.getArgOperand(1)); 4867 if (isa<ConstantSDNode>(ShAmt)) { 4868 visitTargetIntrinsic(I, Intrinsic); 4869 return nullptr; 4870 } 4871 unsigned NewIntrinsic = 0; 4872 EVT ShAmtVT = MVT::v2i32; 4873 switch (Intrinsic) { 4874 case Intrinsic::x86_mmx_pslli_w: 4875 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4876 break; 4877 case Intrinsic::x86_mmx_pslli_d: 4878 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4879 break; 4880 case Intrinsic::x86_mmx_pslli_q: 4881 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4882 break; 4883 case Intrinsic::x86_mmx_psrli_w: 4884 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4885 break; 4886 case Intrinsic::x86_mmx_psrli_d: 4887 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4888 break; 4889 case Intrinsic::x86_mmx_psrli_q: 4890 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4891 break; 4892 case Intrinsic::x86_mmx_psrai_w: 4893 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4894 break; 4895 case Intrinsic::x86_mmx_psrai_d: 4896 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4897 break; 4898 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4899 } 4900 4901 // The vector shift intrinsics with scalars uses 32b shift amounts but 4902 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4903 // to be zero. 4904 // We must do this early because v2i32 is not a legal type. 4905 SDValue ShOps[2]; 4906 ShOps[0] = ShAmt; 4907 ShOps[1] = DAG.getConstant(0, MVT::i32); 4908 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4909 EVT DestVT = TLI.getValueType(I.getType()); 4910 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4911 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4912 DAG.getConstant(NewIntrinsic, MVT::i32), 4913 getValue(I.getArgOperand(0)), ShAmt); 4914 setValue(&I, Res); 4915 return nullptr; 4916 } 4917 case Intrinsic::convertff: 4918 case Intrinsic::convertfsi: 4919 case Intrinsic::convertfui: 4920 case Intrinsic::convertsif: 4921 case Intrinsic::convertuif: 4922 case Intrinsic::convertss: 4923 case Intrinsic::convertsu: 4924 case Intrinsic::convertus: 4925 case Intrinsic::convertuu: { 4926 ISD::CvtCode Code = ISD::CVT_INVALID; 4927 switch (Intrinsic) { 4928 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4929 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4930 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4931 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4932 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4933 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4934 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4935 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4936 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4937 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4938 } 4939 EVT DestVT = TLI.getValueType(I.getType()); 4940 const Value *Op1 = I.getArgOperand(0); 4941 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4942 DAG.getValueType(DestVT), 4943 DAG.getValueType(getValue(Op1).getValueType()), 4944 getValue(I.getArgOperand(1)), 4945 getValue(I.getArgOperand(2)), 4946 Code); 4947 setValue(&I, Res); 4948 return nullptr; 4949 } 4950 case Intrinsic::powi: 4951 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4952 getValue(I.getArgOperand(1)), DAG)); 4953 return nullptr; 4954 case Intrinsic::log: 4955 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4956 return nullptr; 4957 case Intrinsic::log2: 4958 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4959 return nullptr; 4960 case Intrinsic::log10: 4961 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4962 return nullptr; 4963 case Intrinsic::exp: 4964 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4965 return nullptr; 4966 case Intrinsic::exp2: 4967 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4968 return nullptr; 4969 case Intrinsic::pow: 4970 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4971 getValue(I.getArgOperand(1)), DAG, TLI)); 4972 return nullptr; 4973 case Intrinsic::sqrt: 4974 case Intrinsic::fabs: 4975 case Intrinsic::sin: 4976 case Intrinsic::cos: 4977 case Intrinsic::floor: 4978 case Intrinsic::ceil: 4979 case Intrinsic::trunc: 4980 case Intrinsic::rint: 4981 case Intrinsic::nearbyint: 4982 case Intrinsic::round: { 4983 unsigned Opcode; 4984 switch (Intrinsic) { 4985 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4986 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4987 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4988 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4989 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4990 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4991 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4992 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4993 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4994 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4995 case Intrinsic::round: Opcode = ISD::FROUND; break; 4996 } 4997 4998 setValue(&I, DAG.getNode(Opcode, sdl, 4999 getValue(I.getArgOperand(0)).getValueType(), 5000 getValue(I.getArgOperand(0)))); 5001 return nullptr; 5002 } 5003 case Intrinsic::minnum: 5004 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5005 getValue(I.getArgOperand(0)).getValueType(), 5006 getValue(I.getArgOperand(0)), 5007 getValue(I.getArgOperand(1)))); 5008 return nullptr; 5009 case Intrinsic::maxnum: 5010 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5011 getValue(I.getArgOperand(0)).getValueType(), 5012 getValue(I.getArgOperand(0)), 5013 getValue(I.getArgOperand(1)))); 5014 return nullptr; 5015 case Intrinsic::copysign: 5016 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5017 getValue(I.getArgOperand(0)).getValueType(), 5018 getValue(I.getArgOperand(0)), 5019 getValue(I.getArgOperand(1)))); 5020 return nullptr; 5021 case Intrinsic::fma: 5022 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5023 getValue(I.getArgOperand(0)).getValueType(), 5024 getValue(I.getArgOperand(0)), 5025 getValue(I.getArgOperand(1)), 5026 getValue(I.getArgOperand(2)))); 5027 return nullptr; 5028 case Intrinsic::fmuladd: { 5029 EVT VT = TLI.getValueType(I.getType()); 5030 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5031 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5032 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5033 getValue(I.getArgOperand(0)).getValueType(), 5034 getValue(I.getArgOperand(0)), 5035 getValue(I.getArgOperand(1)), 5036 getValue(I.getArgOperand(2)))); 5037 } else { 5038 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5039 getValue(I.getArgOperand(0)).getValueType(), 5040 getValue(I.getArgOperand(0)), 5041 getValue(I.getArgOperand(1))); 5042 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5043 getValue(I.getArgOperand(0)).getValueType(), 5044 Mul, 5045 getValue(I.getArgOperand(2))); 5046 setValue(&I, Add); 5047 } 5048 return nullptr; 5049 } 5050 case Intrinsic::convert_to_fp16: 5051 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5052 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5053 getValue(I.getArgOperand(0)), 5054 DAG.getTargetConstant(0, MVT::i32)))); 5055 return nullptr; 5056 case Intrinsic::convert_from_fp16: 5057 setValue(&I, 5058 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5059 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5060 getValue(I.getArgOperand(0))))); 5061 return nullptr; 5062 case Intrinsic::pcmarker: { 5063 SDValue Tmp = getValue(I.getArgOperand(0)); 5064 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5065 return nullptr; 5066 } 5067 case Intrinsic::readcyclecounter: { 5068 SDValue Op = getRoot(); 5069 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5070 DAG.getVTList(MVT::i64, MVT::Other), Op); 5071 setValue(&I, Res); 5072 DAG.setRoot(Res.getValue(1)); 5073 return nullptr; 5074 } 5075 case Intrinsic::bswap: 5076 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5077 getValue(I.getArgOperand(0)).getValueType(), 5078 getValue(I.getArgOperand(0)))); 5079 return nullptr; 5080 case Intrinsic::cttz: { 5081 SDValue Arg = getValue(I.getArgOperand(0)); 5082 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5083 EVT Ty = Arg.getValueType(); 5084 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5085 sdl, Ty, Arg)); 5086 return nullptr; 5087 } 5088 case Intrinsic::ctlz: { 5089 SDValue Arg = getValue(I.getArgOperand(0)); 5090 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5091 EVT Ty = Arg.getValueType(); 5092 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5093 sdl, Ty, Arg)); 5094 return nullptr; 5095 } 5096 case Intrinsic::ctpop: { 5097 SDValue Arg = getValue(I.getArgOperand(0)); 5098 EVT Ty = Arg.getValueType(); 5099 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5100 return nullptr; 5101 } 5102 case Intrinsic::stacksave: { 5103 SDValue Op = getRoot(); 5104 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5105 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5106 setValue(&I, Res); 5107 DAG.setRoot(Res.getValue(1)); 5108 return nullptr; 5109 } 5110 case Intrinsic::stackrestore: { 5111 Res = getValue(I.getArgOperand(0)); 5112 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5113 return nullptr; 5114 } 5115 case Intrinsic::stackprotector: { 5116 // Emit code into the DAG to store the stack guard onto the stack. 5117 MachineFunction &MF = DAG.getMachineFunction(); 5118 MachineFrameInfo *MFI = MF.getFrameInfo(); 5119 EVT PtrTy = TLI.getPointerTy(); 5120 SDValue Src, Chain = getRoot(); 5121 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5122 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5123 5124 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5125 // global variable __stack_chk_guard. 5126 if (!GV) 5127 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5128 if (BC->getOpcode() == Instruction::BitCast) 5129 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5130 5131 if (GV && TLI.useLoadStackGuardNode()) { 5132 // Emit a LOAD_STACK_GUARD node. 5133 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5134 sdl, PtrTy, Chain); 5135 MachinePointerInfo MPInfo(GV); 5136 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5137 unsigned Flags = MachineMemOperand::MOLoad | 5138 MachineMemOperand::MOInvariant; 5139 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5140 PtrTy.getSizeInBits() / 8, 5141 DAG.getEVTAlignment(PtrTy)); 5142 Node->setMemRefs(MemRefs, MemRefs + 1); 5143 5144 // Copy the guard value to a virtual register so that it can be 5145 // retrieved in the epilogue. 5146 Src = SDValue(Node, 0); 5147 const TargetRegisterClass *RC = 5148 TLI.getRegClassFor(Src.getSimpleValueType()); 5149 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5150 5151 SPDescriptor.setGuardReg(Reg); 5152 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5153 } else { 5154 Src = getValue(I.getArgOperand(0)); // The guard's value. 5155 } 5156 5157 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5158 5159 int FI = FuncInfo.StaticAllocaMap[Slot]; 5160 MFI->setStackProtectorIndex(FI); 5161 5162 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5163 5164 // Store the stack protector onto the stack. 5165 Res = DAG.getStore(Chain, sdl, Src, FIN, 5166 MachinePointerInfo::getFixedStack(FI), 5167 true, false, 0); 5168 setValue(&I, Res); 5169 DAG.setRoot(Res); 5170 return nullptr; 5171 } 5172 case Intrinsic::objectsize: { 5173 // If we don't know by now, we're never going to know. 5174 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5175 5176 assert(CI && "Non-constant type in __builtin_object_size?"); 5177 5178 SDValue Arg = getValue(I.getCalledValue()); 5179 EVT Ty = Arg.getValueType(); 5180 5181 if (CI->isZero()) 5182 Res = DAG.getConstant(-1ULL, Ty); 5183 else 5184 Res = DAG.getConstant(0, Ty); 5185 5186 setValue(&I, Res); 5187 return nullptr; 5188 } 5189 case Intrinsic::annotation: 5190 case Intrinsic::ptr_annotation: 5191 // Drop the intrinsic, but forward the value 5192 setValue(&I, getValue(I.getOperand(0))); 5193 return nullptr; 5194 case Intrinsic::assume: 5195 case Intrinsic::var_annotation: 5196 // Discard annotate attributes and assumptions 5197 return nullptr; 5198 5199 case Intrinsic::init_trampoline: { 5200 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5201 5202 SDValue Ops[6]; 5203 Ops[0] = getRoot(); 5204 Ops[1] = getValue(I.getArgOperand(0)); 5205 Ops[2] = getValue(I.getArgOperand(1)); 5206 Ops[3] = getValue(I.getArgOperand(2)); 5207 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5208 Ops[5] = DAG.getSrcValue(F); 5209 5210 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5211 5212 DAG.setRoot(Res); 5213 return nullptr; 5214 } 5215 case Intrinsic::adjust_trampoline: { 5216 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5217 TLI.getPointerTy(), 5218 getValue(I.getArgOperand(0)))); 5219 return nullptr; 5220 } 5221 case Intrinsic::gcroot: 5222 if (GFI) { 5223 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5224 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5225 5226 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5227 GFI->addStackRoot(FI->getIndex(), TypeMap); 5228 } 5229 return nullptr; 5230 case Intrinsic::gcread: 5231 case Intrinsic::gcwrite: 5232 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5233 case Intrinsic::flt_rounds: 5234 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5235 return nullptr; 5236 5237 case Intrinsic::expect: { 5238 // Just replace __builtin_expect(exp, c) with EXP. 5239 setValue(&I, getValue(I.getArgOperand(0))); 5240 return nullptr; 5241 } 5242 5243 case Intrinsic::debugtrap: 5244 case Intrinsic::trap: { 5245 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5246 if (TrapFuncName.empty()) { 5247 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5248 ISD::TRAP : ISD::DEBUGTRAP; 5249 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5250 return nullptr; 5251 } 5252 TargetLowering::ArgListTy Args; 5253 5254 TargetLowering::CallLoweringInfo CLI(DAG); 5255 CLI.setDebugLoc(sdl).setChain(getRoot()) 5256 .setCallee(CallingConv::C, I.getType(), 5257 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5258 std::move(Args), 0); 5259 5260 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5261 DAG.setRoot(Result.second); 5262 return nullptr; 5263 } 5264 5265 case Intrinsic::uadd_with_overflow: 5266 case Intrinsic::sadd_with_overflow: 5267 case Intrinsic::usub_with_overflow: 5268 case Intrinsic::ssub_with_overflow: 5269 case Intrinsic::umul_with_overflow: 5270 case Intrinsic::smul_with_overflow: { 5271 ISD::NodeType Op; 5272 switch (Intrinsic) { 5273 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5274 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5275 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5276 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5277 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5278 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5279 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5280 } 5281 SDValue Op1 = getValue(I.getArgOperand(0)); 5282 SDValue Op2 = getValue(I.getArgOperand(1)); 5283 5284 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5285 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5286 return nullptr; 5287 } 5288 case Intrinsic::prefetch: { 5289 SDValue Ops[5]; 5290 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5291 Ops[0] = getRoot(); 5292 Ops[1] = getValue(I.getArgOperand(0)); 5293 Ops[2] = getValue(I.getArgOperand(1)); 5294 Ops[3] = getValue(I.getArgOperand(2)); 5295 Ops[4] = getValue(I.getArgOperand(3)); 5296 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5297 DAG.getVTList(MVT::Other), Ops, 5298 EVT::getIntegerVT(*Context, 8), 5299 MachinePointerInfo(I.getArgOperand(0)), 5300 0, /* align */ 5301 false, /* volatile */ 5302 rw==0, /* read */ 5303 rw==1)); /* write */ 5304 return nullptr; 5305 } 5306 case Intrinsic::lifetime_start: 5307 case Intrinsic::lifetime_end: { 5308 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5309 // Stack coloring is not enabled in O0, discard region information. 5310 if (TM.getOptLevel() == CodeGenOpt::None) 5311 return nullptr; 5312 5313 SmallVector<Value *, 4> Allocas; 5314 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5315 5316 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5317 E = Allocas.end(); Object != E; ++Object) { 5318 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5319 5320 // Could not find an Alloca. 5321 if (!LifetimeObject) 5322 continue; 5323 5324 // First check that the Alloca is static, otherwise it won't have a 5325 // valid frame index. 5326 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5327 if (SI == FuncInfo.StaticAllocaMap.end()) 5328 return nullptr; 5329 5330 int FI = SI->second; 5331 5332 SDValue Ops[2]; 5333 Ops[0] = getRoot(); 5334 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5335 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5336 5337 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5338 DAG.setRoot(Res); 5339 } 5340 return nullptr; 5341 } 5342 case Intrinsic::invariant_start: 5343 // Discard region information. 5344 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5345 return nullptr; 5346 case Intrinsic::invariant_end: 5347 // Discard region information. 5348 return nullptr; 5349 case Intrinsic::stackprotectorcheck: { 5350 // Do not actually emit anything for this basic block. Instead we initialize 5351 // the stack protector descriptor and export the guard variable so we can 5352 // access it in FinishBasicBlock. 5353 const BasicBlock *BB = I.getParent(); 5354 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5355 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5356 5357 // Flush our exports since we are going to process a terminator. 5358 (void)getControlRoot(); 5359 return nullptr; 5360 } 5361 case Intrinsic::clear_cache: 5362 return TLI.getClearCacheBuiltinName(); 5363 case Intrinsic::donothing: 5364 // ignore 5365 return nullptr; 5366 case Intrinsic::experimental_stackmap: { 5367 visitStackmap(I); 5368 return nullptr; 5369 } 5370 case Intrinsic::experimental_patchpoint_void: 5371 case Intrinsic::experimental_patchpoint_i64: { 5372 visitPatchpoint(&I); 5373 return nullptr; 5374 } 5375 case Intrinsic::experimental_gc_statepoint: { 5376 visitStatepoint(I); 5377 return nullptr; 5378 } 5379 case Intrinsic::experimental_gc_result_int: 5380 case Intrinsic::experimental_gc_result_float: 5381 case Intrinsic::experimental_gc_result_ptr: 5382 case Intrinsic::experimental_gc_result: { 5383 visitGCResult(I); 5384 return nullptr; 5385 } 5386 case Intrinsic::experimental_gc_relocate: { 5387 visitGCRelocate(I); 5388 return nullptr; 5389 } 5390 case Intrinsic::instrprof_increment: 5391 llvm_unreachable("instrprof failed to lower an increment"); 5392 5393 case Intrinsic::frameescape: { 5394 MachineFunction &MF = DAG.getMachineFunction(); 5395 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5396 5397 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 5398 // is the same on all targets. 5399 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5400 AllocaInst *Slot = 5401 cast<AllocaInst>(I.getArgOperand(Idx)->stripPointerCasts()); 5402 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5403 "can only escape static allocas"); 5404 int FI = FuncInfo.StaticAllocaMap[Slot]; 5405 MCSymbol *FrameAllocSym = 5406 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName(), 5407 Idx); 5408 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5409 TII->get(TargetOpcode::FRAME_ALLOC)) 5410 .addSym(FrameAllocSym) 5411 .addFrameIndex(FI); 5412 } 5413 5414 return nullptr; 5415 } 5416 5417 case Intrinsic::framerecover: { 5418 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 5419 MachineFunction &MF = DAG.getMachineFunction(); 5420 MVT PtrVT = TLI.getPointerTy(0); 5421 5422 // Get the symbol that defines the frame offset. 5423 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5424 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5425 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5426 MCSymbol *FrameAllocSym = 5427 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName(), 5428 IdxVal); 5429 5430 // Create a TargetExternalSymbol for the label to avoid any target lowering 5431 // that would make this PC relative. 5432 StringRef Name = FrameAllocSym->getName(); 5433 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 5434 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5435 SDValue OffsetVal = 5436 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5437 5438 // Add the offset to the FP. 5439 Value *FP = I.getArgOperand(1); 5440 SDValue FPVal = getValue(FP); 5441 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5442 setValue(&I, Add); 5443 5444 return nullptr; 5445 } 5446 case Intrinsic::eh_begincatch: 5447 case Intrinsic::eh_endcatch: 5448 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5449 case Intrinsic::eh_parentframe: { 5450 AllocaInst *Slot = 5451 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5452 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5453 "can only use static allocas with llvm.eh.parentframe"); 5454 int FI = FuncInfo.StaticAllocaMap[Slot]; 5455 // TODO: Save this in the not-yet-existent WinEHFuncInfo struct. 5456 (void)FI; 5457 return nullptr; 5458 } 5459 case Intrinsic::eh_unwindhelp: { 5460 AllocaInst *Slot = 5461 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5462 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5463 "can only use static allocas with llvm.eh.unwindhelp"); 5464 int FI = FuncInfo.StaticAllocaMap[Slot]; 5465 // TODO: Save this in the not-yet-existent WinEHFuncInfo struct. 5466 (void)FI; 5467 return nullptr; 5468 } 5469 } 5470 } 5471 5472 std::pair<SDValue, SDValue> 5473 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5474 MachineBasicBlock *LandingPad) { 5475 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5476 MCSymbol *BeginLabel = nullptr; 5477 5478 if (LandingPad) { 5479 // Insert a label before the invoke call to mark the try range. This can be 5480 // used to detect deletion of the invoke via the MachineModuleInfo. 5481 BeginLabel = MMI.getContext().CreateTempSymbol(); 5482 5483 // For SjLj, keep track of which landing pads go with which invokes 5484 // so as to maintain the ordering of pads in the LSDA. 5485 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5486 if (CallSiteIndex) { 5487 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5488 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5489 5490 // Now that the call site is handled, stop tracking it. 5491 MMI.setCurrentCallSite(0); 5492 } 5493 5494 // Both PendingLoads and PendingExports must be flushed here; 5495 // this call might not return. 5496 (void)getRoot(); 5497 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5498 5499 CLI.setChain(getRoot()); 5500 } 5501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5502 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5503 5504 assert((CLI.IsTailCall || Result.second.getNode()) && 5505 "Non-null chain expected with non-tail call!"); 5506 assert((Result.second.getNode() || !Result.first.getNode()) && 5507 "Null value expected with tail call!"); 5508 5509 if (!Result.second.getNode()) { 5510 // As a special case, a null chain means that a tail call has been emitted 5511 // and the DAG root is already updated. 5512 HasTailCall = true; 5513 5514 // Since there's no actual continuation from this block, nothing can be 5515 // relying on us setting vregs for them. 5516 PendingExports.clear(); 5517 } else { 5518 DAG.setRoot(Result.second); 5519 } 5520 5521 if (LandingPad) { 5522 // Insert a label at the end of the invoke call to mark the try range. This 5523 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5524 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5525 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5526 5527 // Inform MachineModuleInfo of range. 5528 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5529 } 5530 5531 return Result; 5532 } 5533 5534 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5535 bool isTailCall, 5536 MachineBasicBlock *LandingPad) { 5537 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5538 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5539 Type *RetTy = FTy->getReturnType(); 5540 5541 TargetLowering::ArgListTy Args; 5542 TargetLowering::ArgListEntry Entry; 5543 Args.reserve(CS.arg_size()); 5544 5545 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5546 i != e; ++i) { 5547 const Value *V = *i; 5548 5549 // Skip empty types 5550 if (V->getType()->isEmptyTy()) 5551 continue; 5552 5553 SDValue ArgNode = getValue(V); 5554 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5555 5556 // Skip the first return-type Attribute to get to params. 5557 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5558 Args.push_back(Entry); 5559 5560 // If we have an explicit sret argument that is an Instruction, (i.e., it 5561 // might point to function-local memory), we can't meaningfully tail-call. 5562 if (Entry.isSRet && isa<Instruction>(V)) 5563 isTailCall = false; 5564 } 5565 5566 // Check if target-independent constraints permit a tail call here. 5567 // Target-dependent constraints are checked within TLI->LowerCallTo. 5568 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5569 isTailCall = false; 5570 5571 TargetLowering::CallLoweringInfo CLI(DAG); 5572 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5573 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5574 .setTailCall(isTailCall); 5575 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5576 5577 if (Result.first.getNode()) 5578 setValue(CS.getInstruction(), Result.first); 5579 } 5580 5581 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5582 /// value is equal or not-equal to zero. 5583 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5584 for (const User *U : V->users()) { 5585 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5586 if (IC->isEquality()) 5587 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5588 if (C->isNullValue()) 5589 continue; 5590 // Unknown instruction. 5591 return false; 5592 } 5593 return true; 5594 } 5595 5596 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5597 Type *LoadTy, 5598 SelectionDAGBuilder &Builder) { 5599 5600 // Check to see if this load can be trivially constant folded, e.g. if the 5601 // input is from a string literal. 5602 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5603 // Cast pointer to the type we really want to load. 5604 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5605 PointerType::getUnqual(LoadTy)); 5606 5607 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5608 const_cast<Constant *>(LoadInput), *Builder.DL)) 5609 return Builder.getValue(LoadCst); 5610 } 5611 5612 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5613 // still constant memory, the input chain can be the entry node. 5614 SDValue Root; 5615 bool ConstantMemory = false; 5616 5617 // Do not serialize (non-volatile) loads of constant memory with anything. 5618 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5619 Root = Builder.DAG.getEntryNode(); 5620 ConstantMemory = true; 5621 } else { 5622 // Do not serialize non-volatile loads against each other. 5623 Root = Builder.DAG.getRoot(); 5624 } 5625 5626 SDValue Ptr = Builder.getValue(PtrVal); 5627 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5628 Ptr, MachinePointerInfo(PtrVal), 5629 false /*volatile*/, 5630 false /*nontemporal*/, 5631 false /*isinvariant*/, 1 /* align=1 */); 5632 5633 if (!ConstantMemory) 5634 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5635 return LoadVal; 5636 } 5637 5638 /// processIntegerCallValue - Record the value for an instruction that 5639 /// produces an integer result, converting the type where necessary. 5640 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5641 SDValue Value, 5642 bool IsSigned) { 5643 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5644 if (IsSigned) 5645 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5646 else 5647 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5648 setValue(&I, Value); 5649 } 5650 5651 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5652 /// If so, return true and lower it, otherwise return false and it will be 5653 /// lowered like a normal call. 5654 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5655 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5656 if (I.getNumArgOperands() != 3) 5657 return false; 5658 5659 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5660 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5661 !I.getArgOperand(2)->getType()->isIntegerTy() || 5662 !I.getType()->isIntegerTy()) 5663 return false; 5664 5665 const Value *Size = I.getArgOperand(2); 5666 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5667 if (CSize && CSize->getZExtValue() == 0) { 5668 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5669 setValue(&I, DAG.getConstant(0, CallVT)); 5670 return true; 5671 } 5672 5673 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5674 std::pair<SDValue, SDValue> Res = 5675 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5676 getValue(LHS), getValue(RHS), getValue(Size), 5677 MachinePointerInfo(LHS), 5678 MachinePointerInfo(RHS)); 5679 if (Res.first.getNode()) { 5680 processIntegerCallValue(I, Res.first, true); 5681 PendingLoads.push_back(Res.second); 5682 return true; 5683 } 5684 5685 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5686 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5687 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5688 bool ActuallyDoIt = true; 5689 MVT LoadVT; 5690 Type *LoadTy; 5691 switch (CSize->getZExtValue()) { 5692 default: 5693 LoadVT = MVT::Other; 5694 LoadTy = nullptr; 5695 ActuallyDoIt = false; 5696 break; 5697 case 2: 5698 LoadVT = MVT::i16; 5699 LoadTy = Type::getInt16Ty(CSize->getContext()); 5700 break; 5701 case 4: 5702 LoadVT = MVT::i32; 5703 LoadTy = Type::getInt32Ty(CSize->getContext()); 5704 break; 5705 case 8: 5706 LoadVT = MVT::i64; 5707 LoadTy = Type::getInt64Ty(CSize->getContext()); 5708 break; 5709 /* 5710 case 16: 5711 LoadVT = MVT::v4i32; 5712 LoadTy = Type::getInt32Ty(CSize->getContext()); 5713 LoadTy = VectorType::get(LoadTy, 4); 5714 break; 5715 */ 5716 } 5717 5718 // This turns into unaligned loads. We only do this if the target natively 5719 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5720 // we'll only produce a small number of byte loads. 5721 5722 // Require that we can find a legal MVT, and only do this if the target 5723 // supports unaligned loads of that type. Expanding into byte loads would 5724 // bloat the code. 5725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5726 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5727 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5728 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5729 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5730 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5731 // TODO: Check alignment of src and dest ptrs. 5732 if (!TLI.isTypeLegal(LoadVT) || 5733 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5734 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5735 ActuallyDoIt = false; 5736 } 5737 5738 if (ActuallyDoIt) { 5739 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5740 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5741 5742 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5743 ISD::SETNE); 5744 processIntegerCallValue(I, Res, false); 5745 return true; 5746 } 5747 } 5748 5749 5750 return false; 5751 } 5752 5753 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5754 /// form. If so, return true and lower it, otherwise return false and it 5755 /// will be lowered like a normal call. 5756 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5757 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5758 if (I.getNumArgOperands() != 3) 5759 return false; 5760 5761 const Value *Src = I.getArgOperand(0); 5762 const Value *Char = I.getArgOperand(1); 5763 const Value *Length = I.getArgOperand(2); 5764 if (!Src->getType()->isPointerTy() || 5765 !Char->getType()->isIntegerTy() || 5766 !Length->getType()->isIntegerTy() || 5767 !I.getType()->isPointerTy()) 5768 return false; 5769 5770 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5771 std::pair<SDValue, SDValue> Res = 5772 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5773 getValue(Src), getValue(Char), getValue(Length), 5774 MachinePointerInfo(Src)); 5775 if (Res.first.getNode()) { 5776 setValue(&I, Res.first); 5777 PendingLoads.push_back(Res.second); 5778 return true; 5779 } 5780 5781 return false; 5782 } 5783 5784 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5785 /// optimized form. If so, return true and lower it, otherwise return false 5786 /// and it will be lowered like a normal call. 5787 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5788 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5789 if (I.getNumArgOperands() != 2) 5790 return false; 5791 5792 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5793 if (!Arg0->getType()->isPointerTy() || 5794 !Arg1->getType()->isPointerTy() || 5795 !I.getType()->isPointerTy()) 5796 return false; 5797 5798 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5799 std::pair<SDValue, SDValue> Res = 5800 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5801 getValue(Arg0), getValue(Arg1), 5802 MachinePointerInfo(Arg0), 5803 MachinePointerInfo(Arg1), isStpcpy); 5804 if (Res.first.getNode()) { 5805 setValue(&I, Res.first); 5806 DAG.setRoot(Res.second); 5807 return true; 5808 } 5809 5810 return false; 5811 } 5812 5813 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5814 /// If so, return true and lower it, otherwise return false and it will be 5815 /// lowered like a normal call. 5816 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5817 // Verify that the prototype makes sense. int strcmp(void*,void*) 5818 if (I.getNumArgOperands() != 2) 5819 return false; 5820 5821 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5822 if (!Arg0->getType()->isPointerTy() || 5823 !Arg1->getType()->isPointerTy() || 5824 !I.getType()->isIntegerTy()) 5825 return false; 5826 5827 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5828 std::pair<SDValue, SDValue> Res = 5829 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5830 getValue(Arg0), getValue(Arg1), 5831 MachinePointerInfo(Arg0), 5832 MachinePointerInfo(Arg1)); 5833 if (Res.first.getNode()) { 5834 processIntegerCallValue(I, Res.first, true); 5835 PendingLoads.push_back(Res.second); 5836 return true; 5837 } 5838 5839 return false; 5840 } 5841 5842 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5843 /// form. If so, return true and lower it, otherwise return false and it 5844 /// will be lowered like a normal call. 5845 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5846 // Verify that the prototype makes sense. size_t strlen(char *) 5847 if (I.getNumArgOperands() != 1) 5848 return false; 5849 5850 const Value *Arg0 = I.getArgOperand(0); 5851 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5852 return false; 5853 5854 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5855 std::pair<SDValue, SDValue> Res = 5856 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5857 getValue(Arg0), MachinePointerInfo(Arg0)); 5858 if (Res.first.getNode()) { 5859 processIntegerCallValue(I, Res.first, false); 5860 PendingLoads.push_back(Res.second); 5861 return true; 5862 } 5863 5864 return false; 5865 } 5866 5867 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5868 /// form. If so, return true and lower it, otherwise return false and it 5869 /// will be lowered like a normal call. 5870 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5871 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5872 if (I.getNumArgOperands() != 2) 5873 return false; 5874 5875 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5876 if (!Arg0->getType()->isPointerTy() || 5877 !Arg1->getType()->isIntegerTy() || 5878 !I.getType()->isIntegerTy()) 5879 return false; 5880 5881 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5882 std::pair<SDValue, SDValue> Res = 5883 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5884 getValue(Arg0), getValue(Arg1), 5885 MachinePointerInfo(Arg0)); 5886 if (Res.first.getNode()) { 5887 processIntegerCallValue(I, Res.first, false); 5888 PendingLoads.push_back(Res.second); 5889 return true; 5890 } 5891 5892 return false; 5893 } 5894 5895 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5896 /// operation (as expected), translate it to an SDNode with the specified opcode 5897 /// and return true. 5898 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5899 unsigned Opcode) { 5900 // Sanity check that it really is a unary floating-point call. 5901 if (I.getNumArgOperands() != 1 || 5902 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5903 I.getType() != I.getArgOperand(0)->getType() || 5904 !I.onlyReadsMemory()) 5905 return false; 5906 5907 SDValue Tmp = getValue(I.getArgOperand(0)); 5908 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5909 return true; 5910 } 5911 5912 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5913 /// operation (as expected), translate it to an SDNode with the specified opcode 5914 /// and return true. 5915 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5916 unsigned Opcode) { 5917 // Sanity check that it really is a binary floating-point call. 5918 if (I.getNumArgOperands() != 2 || 5919 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5920 I.getType() != I.getArgOperand(0)->getType() || 5921 I.getType() != I.getArgOperand(1)->getType() || 5922 !I.onlyReadsMemory()) 5923 return false; 5924 5925 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5926 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5927 EVT VT = Tmp0.getValueType(); 5928 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5929 return true; 5930 } 5931 5932 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5933 // Handle inline assembly differently. 5934 if (isa<InlineAsm>(I.getCalledValue())) { 5935 visitInlineAsm(&I); 5936 return; 5937 } 5938 5939 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5940 ComputeUsesVAFloatArgument(I, &MMI); 5941 5942 const char *RenameFn = nullptr; 5943 if (Function *F = I.getCalledFunction()) { 5944 if (F->isDeclaration()) { 5945 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5946 if (unsigned IID = II->getIntrinsicID(F)) { 5947 RenameFn = visitIntrinsicCall(I, IID); 5948 if (!RenameFn) 5949 return; 5950 } 5951 } 5952 if (unsigned IID = F->getIntrinsicID()) { 5953 RenameFn = visitIntrinsicCall(I, IID); 5954 if (!RenameFn) 5955 return; 5956 } 5957 } 5958 5959 // Check for well-known libc/libm calls. If the function is internal, it 5960 // can't be a library call. 5961 LibFunc::Func Func; 5962 if (!F->hasLocalLinkage() && F->hasName() && 5963 LibInfo->getLibFunc(F->getName(), Func) && 5964 LibInfo->hasOptimizedCodeGen(Func)) { 5965 switch (Func) { 5966 default: break; 5967 case LibFunc::copysign: 5968 case LibFunc::copysignf: 5969 case LibFunc::copysignl: 5970 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5971 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5972 I.getType() == I.getArgOperand(0)->getType() && 5973 I.getType() == I.getArgOperand(1)->getType() && 5974 I.onlyReadsMemory()) { 5975 SDValue LHS = getValue(I.getArgOperand(0)); 5976 SDValue RHS = getValue(I.getArgOperand(1)); 5977 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5978 LHS.getValueType(), LHS, RHS)); 5979 return; 5980 } 5981 break; 5982 case LibFunc::fabs: 5983 case LibFunc::fabsf: 5984 case LibFunc::fabsl: 5985 if (visitUnaryFloatCall(I, ISD::FABS)) 5986 return; 5987 break; 5988 case LibFunc::fmin: 5989 case LibFunc::fminf: 5990 case LibFunc::fminl: 5991 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5992 return; 5993 break; 5994 case LibFunc::fmax: 5995 case LibFunc::fmaxf: 5996 case LibFunc::fmaxl: 5997 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5998 return; 5999 break; 6000 case LibFunc::sin: 6001 case LibFunc::sinf: 6002 case LibFunc::sinl: 6003 if (visitUnaryFloatCall(I, ISD::FSIN)) 6004 return; 6005 break; 6006 case LibFunc::cos: 6007 case LibFunc::cosf: 6008 case LibFunc::cosl: 6009 if (visitUnaryFloatCall(I, ISD::FCOS)) 6010 return; 6011 break; 6012 case LibFunc::sqrt: 6013 case LibFunc::sqrtf: 6014 case LibFunc::sqrtl: 6015 case LibFunc::sqrt_finite: 6016 case LibFunc::sqrtf_finite: 6017 case LibFunc::sqrtl_finite: 6018 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6019 return; 6020 break; 6021 case LibFunc::floor: 6022 case LibFunc::floorf: 6023 case LibFunc::floorl: 6024 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6025 return; 6026 break; 6027 case LibFunc::nearbyint: 6028 case LibFunc::nearbyintf: 6029 case LibFunc::nearbyintl: 6030 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6031 return; 6032 break; 6033 case LibFunc::ceil: 6034 case LibFunc::ceilf: 6035 case LibFunc::ceill: 6036 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6037 return; 6038 break; 6039 case LibFunc::rint: 6040 case LibFunc::rintf: 6041 case LibFunc::rintl: 6042 if (visitUnaryFloatCall(I, ISD::FRINT)) 6043 return; 6044 break; 6045 case LibFunc::round: 6046 case LibFunc::roundf: 6047 case LibFunc::roundl: 6048 if (visitUnaryFloatCall(I, ISD::FROUND)) 6049 return; 6050 break; 6051 case LibFunc::trunc: 6052 case LibFunc::truncf: 6053 case LibFunc::truncl: 6054 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6055 return; 6056 break; 6057 case LibFunc::log2: 6058 case LibFunc::log2f: 6059 case LibFunc::log2l: 6060 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6061 return; 6062 break; 6063 case LibFunc::exp2: 6064 case LibFunc::exp2f: 6065 case LibFunc::exp2l: 6066 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6067 return; 6068 break; 6069 case LibFunc::memcmp: 6070 if (visitMemCmpCall(I)) 6071 return; 6072 break; 6073 case LibFunc::memchr: 6074 if (visitMemChrCall(I)) 6075 return; 6076 break; 6077 case LibFunc::strcpy: 6078 if (visitStrCpyCall(I, false)) 6079 return; 6080 break; 6081 case LibFunc::stpcpy: 6082 if (visitStrCpyCall(I, true)) 6083 return; 6084 break; 6085 case LibFunc::strcmp: 6086 if (visitStrCmpCall(I)) 6087 return; 6088 break; 6089 case LibFunc::strlen: 6090 if (visitStrLenCall(I)) 6091 return; 6092 break; 6093 case LibFunc::strnlen: 6094 if (visitStrNLenCall(I)) 6095 return; 6096 break; 6097 } 6098 } 6099 } 6100 6101 SDValue Callee; 6102 if (!RenameFn) 6103 Callee = getValue(I.getCalledValue()); 6104 else 6105 Callee = DAG.getExternalSymbol(RenameFn, 6106 DAG.getTargetLoweringInfo().getPointerTy()); 6107 6108 // Check if we can potentially perform a tail call. More detailed checking is 6109 // be done within LowerCallTo, after more information about the call is known. 6110 LowerCallTo(&I, Callee, I.isTailCall()); 6111 } 6112 6113 namespace { 6114 6115 /// AsmOperandInfo - This contains information for each constraint that we are 6116 /// lowering. 6117 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6118 public: 6119 /// CallOperand - If this is the result output operand or a clobber 6120 /// this is null, otherwise it is the incoming operand to the CallInst. 6121 /// This gets modified as the asm is processed. 6122 SDValue CallOperand; 6123 6124 /// AssignedRegs - If this is a register or register class operand, this 6125 /// contains the set of register corresponding to the operand. 6126 RegsForValue AssignedRegs; 6127 6128 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6129 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6130 } 6131 6132 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6133 /// corresponds to. If there is no Value* for this operand, it returns 6134 /// MVT::Other. 6135 EVT getCallOperandValEVT(LLVMContext &Context, 6136 const TargetLowering &TLI, 6137 const DataLayout *DL) const { 6138 if (!CallOperandVal) return MVT::Other; 6139 6140 if (isa<BasicBlock>(CallOperandVal)) 6141 return TLI.getPointerTy(); 6142 6143 llvm::Type *OpTy = CallOperandVal->getType(); 6144 6145 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6146 // If this is an indirect operand, the operand is a pointer to the 6147 // accessed type. 6148 if (isIndirect) { 6149 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6150 if (!PtrTy) 6151 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6152 OpTy = PtrTy->getElementType(); 6153 } 6154 6155 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6156 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6157 if (STy->getNumElements() == 1) 6158 OpTy = STy->getElementType(0); 6159 6160 // If OpTy is not a single value, it may be a struct/union that we 6161 // can tile with integers. 6162 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6163 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6164 switch (BitSize) { 6165 default: break; 6166 case 1: 6167 case 8: 6168 case 16: 6169 case 32: 6170 case 64: 6171 case 128: 6172 OpTy = IntegerType::get(Context, BitSize); 6173 break; 6174 } 6175 } 6176 6177 return TLI.getValueType(OpTy, true); 6178 } 6179 }; 6180 6181 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6182 6183 } // end anonymous namespace 6184 6185 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6186 /// specified operand. We prefer to assign virtual registers, to allow the 6187 /// register allocator to handle the assignment process. However, if the asm 6188 /// uses features that we can't model on machineinstrs, we have SDISel do the 6189 /// allocation. This produces generally horrible, but correct, code. 6190 /// 6191 /// OpInfo describes the operand. 6192 /// 6193 static void GetRegistersForValue(SelectionDAG &DAG, 6194 const TargetLowering &TLI, 6195 SDLoc DL, 6196 SDISelAsmOperandInfo &OpInfo) { 6197 LLVMContext &Context = *DAG.getContext(); 6198 6199 MachineFunction &MF = DAG.getMachineFunction(); 6200 SmallVector<unsigned, 4> Regs; 6201 6202 // If this is a constraint for a single physreg, or a constraint for a 6203 // register class, find it. 6204 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6205 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6206 OpInfo.ConstraintCode, 6207 OpInfo.ConstraintVT); 6208 6209 unsigned NumRegs = 1; 6210 if (OpInfo.ConstraintVT != MVT::Other) { 6211 // If this is a FP input in an integer register (or visa versa) insert a bit 6212 // cast of the input value. More generally, handle any case where the input 6213 // value disagrees with the register class we plan to stick this in. 6214 if (OpInfo.Type == InlineAsm::isInput && 6215 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6216 // Try to convert to the first EVT that the reg class contains. If the 6217 // types are identical size, use a bitcast to convert (e.g. two differing 6218 // vector types). 6219 MVT RegVT = *PhysReg.second->vt_begin(); 6220 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6221 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6222 RegVT, OpInfo.CallOperand); 6223 OpInfo.ConstraintVT = RegVT; 6224 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6225 // If the input is a FP value and we want it in FP registers, do a 6226 // bitcast to the corresponding integer type. This turns an f64 value 6227 // into i64, which can be passed with two i32 values on a 32-bit 6228 // machine. 6229 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6230 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6231 RegVT, OpInfo.CallOperand); 6232 OpInfo.ConstraintVT = RegVT; 6233 } 6234 } 6235 6236 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6237 } 6238 6239 MVT RegVT; 6240 EVT ValueVT = OpInfo.ConstraintVT; 6241 6242 // If this is a constraint for a specific physical register, like {r17}, 6243 // assign it now. 6244 if (unsigned AssignedReg = PhysReg.first) { 6245 const TargetRegisterClass *RC = PhysReg.second; 6246 if (OpInfo.ConstraintVT == MVT::Other) 6247 ValueVT = *RC->vt_begin(); 6248 6249 // Get the actual register value type. This is important, because the user 6250 // may have asked for (e.g.) the AX register in i32 type. We need to 6251 // remember that AX is actually i16 to get the right extension. 6252 RegVT = *RC->vt_begin(); 6253 6254 // This is a explicit reference to a physical register. 6255 Regs.push_back(AssignedReg); 6256 6257 // If this is an expanded reference, add the rest of the regs to Regs. 6258 if (NumRegs != 1) { 6259 TargetRegisterClass::iterator I = RC->begin(); 6260 for (; *I != AssignedReg; ++I) 6261 assert(I != RC->end() && "Didn't find reg!"); 6262 6263 // Already added the first reg. 6264 --NumRegs; ++I; 6265 for (; NumRegs; --NumRegs, ++I) { 6266 assert(I != RC->end() && "Ran out of registers to allocate!"); 6267 Regs.push_back(*I); 6268 } 6269 } 6270 6271 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6272 return; 6273 } 6274 6275 // Otherwise, if this was a reference to an LLVM register class, create vregs 6276 // for this reference. 6277 if (const TargetRegisterClass *RC = PhysReg.second) { 6278 RegVT = *RC->vt_begin(); 6279 if (OpInfo.ConstraintVT == MVT::Other) 6280 ValueVT = RegVT; 6281 6282 // Create the appropriate number of virtual registers. 6283 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6284 for (; NumRegs; --NumRegs) 6285 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6286 6287 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6288 return; 6289 } 6290 6291 // Otherwise, we couldn't allocate enough registers for this. 6292 } 6293 6294 /// visitInlineAsm - Handle a call to an InlineAsm object. 6295 /// 6296 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6297 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6298 6299 /// ConstraintOperands - Information about all of the constraints. 6300 SDISelAsmOperandInfoVector ConstraintOperands; 6301 6302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6303 TargetLowering::AsmOperandInfoVector TargetConstraints = 6304 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 6305 6306 bool hasMemory = false; 6307 6308 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6309 unsigned ResNo = 0; // ResNo - The result number of the next output. 6310 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6311 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6312 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6313 6314 MVT OpVT = MVT::Other; 6315 6316 // Compute the value type for each operand. 6317 switch (OpInfo.Type) { 6318 case InlineAsm::isOutput: 6319 // Indirect outputs just consume an argument. 6320 if (OpInfo.isIndirect) { 6321 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6322 break; 6323 } 6324 6325 // The return value of the call is this value. As such, there is no 6326 // corresponding argument. 6327 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6328 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6329 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6330 } else { 6331 assert(ResNo == 0 && "Asm only has one result!"); 6332 OpVT = TLI.getSimpleValueType(CS.getType()); 6333 } 6334 ++ResNo; 6335 break; 6336 case InlineAsm::isInput: 6337 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6338 break; 6339 case InlineAsm::isClobber: 6340 // Nothing to do. 6341 break; 6342 } 6343 6344 // If this is an input or an indirect output, process the call argument. 6345 // BasicBlocks are labels, currently appearing only in asm's. 6346 if (OpInfo.CallOperandVal) { 6347 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6348 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6349 } else { 6350 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6351 } 6352 6353 OpVT = 6354 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6355 } 6356 6357 OpInfo.ConstraintVT = OpVT; 6358 6359 // Indirect operand accesses access memory. 6360 if (OpInfo.isIndirect) 6361 hasMemory = true; 6362 else { 6363 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6364 TargetLowering::ConstraintType 6365 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6366 if (CType == TargetLowering::C_Memory) { 6367 hasMemory = true; 6368 break; 6369 } 6370 } 6371 } 6372 } 6373 6374 SDValue Chain, Flag; 6375 6376 // We won't need to flush pending loads if this asm doesn't touch 6377 // memory and is nonvolatile. 6378 if (hasMemory || IA->hasSideEffects()) 6379 Chain = getRoot(); 6380 else 6381 Chain = DAG.getRoot(); 6382 6383 // Second pass over the constraints: compute which constraint option to use 6384 // and assign registers to constraints that want a specific physreg. 6385 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6386 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6387 6388 // If this is an output operand with a matching input operand, look up the 6389 // matching input. If their types mismatch, e.g. one is an integer, the 6390 // other is floating point, or their sizes are different, flag it as an 6391 // error. 6392 if (OpInfo.hasMatchingInput()) { 6393 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6394 6395 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6396 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6397 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6398 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6399 OpInfo.ConstraintVT); 6400 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6401 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6402 Input.ConstraintVT); 6403 if ((OpInfo.ConstraintVT.isInteger() != 6404 Input.ConstraintVT.isInteger()) || 6405 (MatchRC.second != InputRC.second)) { 6406 report_fatal_error("Unsupported asm: input constraint" 6407 " with a matching output constraint of" 6408 " incompatible type!"); 6409 } 6410 Input.ConstraintVT = OpInfo.ConstraintVT; 6411 } 6412 } 6413 6414 // Compute the constraint code and ConstraintType to use. 6415 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6416 6417 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6418 OpInfo.Type == InlineAsm::isClobber) 6419 continue; 6420 6421 // If this is a memory input, and if the operand is not indirect, do what we 6422 // need to to provide an address for the memory input. 6423 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6424 !OpInfo.isIndirect) { 6425 assert((OpInfo.isMultipleAlternative || 6426 (OpInfo.Type == InlineAsm::isInput)) && 6427 "Can only indirectify direct input operands!"); 6428 6429 // Memory operands really want the address of the value. If we don't have 6430 // an indirect input, put it in the constpool if we can, otherwise spill 6431 // it to a stack slot. 6432 // TODO: This isn't quite right. We need to handle these according to 6433 // the addressing mode that the constraint wants. Also, this may take 6434 // an additional register for the computation and we don't want that 6435 // either. 6436 6437 // If the operand is a float, integer, or vector constant, spill to a 6438 // constant pool entry to get its address. 6439 const Value *OpVal = OpInfo.CallOperandVal; 6440 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6441 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6442 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6443 TLI.getPointerTy()); 6444 } else { 6445 // Otherwise, create a stack slot and emit a store to it before the 6446 // asm. 6447 Type *Ty = OpVal->getType(); 6448 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6449 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6450 MachineFunction &MF = DAG.getMachineFunction(); 6451 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6452 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6453 Chain = DAG.getStore(Chain, getCurSDLoc(), 6454 OpInfo.CallOperand, StackSlot, 6455 MachinePointerInfo::getFixedStack(SSFI), 6456 false, false, 0); 6457 OpInfo.CallOperand = StackSlot; 6458 } 6459 6460 // There is no longer a Value* corresponding to this operand. 6461 OpInfo.CallOperandVal = nullptr; 6462 6463 // It is now an indirect operand. 6464 OpInfo.isIndirect = true; 6465 } 6466 6467 // If this constraint is for a specific register, allocate it before 6468 // anything else. 6469 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6470 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6471 } 6472 6473 // Second pass - Loop over all of the operands, assigning virtual or physregs 6474 // to register class operands. 6475 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6476 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6477 6478 // C_Register operands have already been allocated, Other/Memory don't need 6479 // to be. 6480 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6481 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6482 } 6483 6484 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6485 std::vector<SDValue> AsmNodeOperands; 6486 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6487 AsmNodeOperands.push_back( 6488 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6489 TLI.getPointerTy())); 6490 6491 // If we have a !srcloc metadata node associated with it, we want to attach 6492 // this to the ultimately generated inline asm machineinstr. To do this, we 6493 // pass in the third operand as this (potentially null) inline asm MDNode. 6494 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6495 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6496 6497 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6498 // bits as operand 3. 6499 unsigned ExtraInfo = 0; 6500 if (IA->hasSideEffects()) 6501 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6502 if (IA->isAlignStack()) 6503 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6504 // Set the asm dialect. 6505 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6506 6507 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6508 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6509 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6510 6511 // Compute the constraint code and ConstraintType to use. 6512 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6513 6514 // Ideally, we would only check against memory constraints. However, the 6515 // meaning of an other constraint can be target-specific and we can't easily 6516 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6517 // for other constriants as well. 6518 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6519 OpInfo.ConstraintType == TargetLowering::C_Other) { 6520 if (OpInfo.Type == InlineAsm::isInput) 6521 ExtraInfo |= InlineAsm::Extra_MayLoad; 6522 else if (OpInfo.Type == InlineAsm::isOutput) 6523 ExtraInfo |= InlineAsm::Extra_MayStore; 6524 else if (OpInfo.Type == InlineAsm::isClobber) 6525 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6526 } 6527 } 6528 6529 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6530 TLI.getPointerTy())); 6531 6532 // Loop over all of the inputs, copying the operand values into the 6533 // appropriate registers and processing the output regs. 6534 RegsForValue RetValRegs; 6535 6536 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6537 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6538 6539 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6540 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6541 6542 switch (OpInfo.Type) { 6543 case InlineAsm::isOutput: { 6544 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6545 OpInfo.ConstraintType != TargetLowering::C_Register) { 6546 // Memory output, or 'other' output (e.g. 'X' constraint). 6547 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6548 6549 unsigned ConstraintID = 6550 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6551 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6552 "Failed to convert memory constraint code to constraint id."); 6553 6554 // Add information to the INLINEASM node to know about this output. 6555 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6556 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6557 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 6558 AsmNodeOperands.push_back(OpInfo.CallOperand); 6559 break; 6560 } 6561 6562 // Otherwise, this is a register or register class output. 6563 6564 // Copy the output from the appropriate register. Find a register that 6565 // we can use. 6566 if (OpInfo.AssignedRegs.Regs.empty()) { 6567 LLVMContext &Ctx = *DAG.getContext(); 6568 Ctx.emitError(CS.getInstruction(), 6569 "couldn't allocate output register for constraint '" + 6570 Twine(OpInfo.ConstraintCode) + "'"); 6571 return; 6572 } 6573 6574 // If this is an indirect operand, store through the pointer after the 6575 // asm. 6576 if (OpInfo.isIndirect) { 6577 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6578 OpInfo.CallOperandVal)); 6579 } else { 6580 // This is the result value of the call. 6581 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6582 // Concatenate this output onto the outputs list. 6583 RetValRegs.append(OpInfo.AssignedRegs); 6584 } 6585 6586 // Add information to the INLINEASM node to know that this register is 6587 // set. 6588 OpInfo.AssignedRegs 6589 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6590 ? InlineAsm::Kind_RegDefEarlyClobber 6591 : InlineAsm::Kind_RegDef, 6592 false, 0, DAG, AsmNodeOperands); 6593 break; 6594 } 6595 case InlineAsm::isInput: { 6596 SDValue InOperandVal = OpInfo.CallOperand; 6597 6598 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6599 // If this is required to match an output register we have already set, 6600 // just use its register. 6601 unsigned OperandNo = OpInfo.getMatchedOperand(); 6602 6603 // Scan until we find the definition we already emitted of this operand. 6604 // When we find it, create a RegsForValue operand. 6605 unsigned CurOp = InlineAsm::Op_FirstOperand; 6606 for (; OperandNo; --OperandNo) { 6607 // Advance to the next operand. 6608 unsigned OpFlag = 6609 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6610 assert((InlineAsm::isRegDefKind(OpFlag) || 6611 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6612 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6613 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6614 } 6615 6616 unsigned OpFlag = 6617 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6618 if (InlineAsm::isRegDefKind(OpFlag) || 6619 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6620 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6621 if (OpInfo.isIndirect) { 6622 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6623 LLVMContext &Ctx = *DAG.getContext(); 6624 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6625 " don't know how to handle tied " 6626 "indirect register inputs"); 6627 return; 6628 } 6629 6630 RegsForValue MatchedRegs; 6631 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6632 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6633 MatchedRegs.RegVTs.push_back(RegVT); 6634 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6635 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6636 i != e; ++i) { 6637 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6638 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6639 else { 6640 LLVMContext &Ctx = *DAG.getContext(); 6641 Ctx.emitError(CS.getInstruction(), 6642 "inline asm error: This value" 6643 " type register class is not natively supported!"); 6644 return; 6645 } 6646 } 6647 // Use the produced MatchedRegs object to 6648 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6649 Chain, &Flag, CS.getInstruction()); 6650 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6651 true, OpInfo.getMatchedOperand(), 6652 DAG, AsmNodeOperands); 6653 break; 6654 } 6655 6656 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6657 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6658 "Unexpected number of operands"); 6659 // Add information to the INLINEASM node to know about this input. 6660 // See InlineAsm.h isUseOperandTiedToDef. 6661 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6662 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6663 OpInfo.getMatchedOperand()); 6664 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6665 TLI.getPointerTy())); 6666 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6667 break; 6668 } 6669 6670 // Treat indirect 'X' constraint as memory. 6671 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6672 OpInfo.isIndirect) 6673 OpInfo.ConstraintType = TargetLowering::C_Memory; 6674 6675 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6676 std::vector<SDValue> Ops; 6677 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6678 Ops, DAG); 6679 if (Ops.empty()) { 6680 LLVMContext &Ctx = *DAG.getContext(); 6681 Ctx.emitError(CS.getInstruction(), 6682 "invalid operand for inline asm constraint '" + 6683 Twine(OpInfo.ConstraintCode) + "'"); 6684 return; 6685 } 6686 6687 // Add information to the INLINEASM node to know about this input. 6688 unsigned ResOpType = 6689 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6690 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6691 TLI.getPointerTy())); 6692 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6693 break; 6694 } 6695 6696 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6697 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6698 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6699 "Memory operands expect pointer values"); 6700 6701 unsigned ConstraintID = 6702 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6703 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6704 "Failed to convert memory constraint code to constraint id."); 6705 6706 // Add information to the INLINEASM node to know about this input. 6707 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6708 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6709 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6710 AsmNodeOperands.push_back(InOperandVal); 6711 break; 6712 } 6713 6714 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6715 OpInfo.ConstraintType == TargetLowering::C_Register) && 6716 "Unknown constraint type!"); 6717 6718 // TODO: Support this. 6719 if (OpInfo.isIndirect) { 6720 LLVMContext &Ctx = *DAG.getContext(); 6721 Ctx.emitError(CS.getInstruction(), 6722 "Don't know how to handle indirect register inputs yet " 6723 "for constraint '" + 6724 Twine(OpInfo.ConstraintCode) + "'"); 6725 return; 6726 } 6727 6728 // Copy the input into the appropriate registers. 6729 if (OpInfo.AssignedRegs.Regs.empty()) { 6730 LLVMContext &Ctx = *DAG.getContext(); 6731 Ctx.emitError(CS.getInstruction(), 6732 "couldn't allocate input reg for constraint '" + 6733 Twine(OpInfo.ConstraintCode) + "'"); 6734 return; 6735 } 6736 6737 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6738 Chain, &Flag, CS.getInstruction()); 6739 6740 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6741 DAG, AsmNodeOperands); 6742 break; 6743 } 6744 case InlineAsm::isClobber: { 6745 // Add the clobbered value to the operand list, so that the register 6746 // allocator is aware that the physreg got clobbered. 6747 if (!OpInfo.AssignedRegs.Regs.empty()) 6748 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6749 false, 0, DAG, 6750 AsmNodeOperands); 6751 break; 6752 } 6753 } 6754 } 6755 6756 // Finish up input operands. Set the input chain and add the flag last. 6757 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6758 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6759 6760 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6761 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6762 Flag = Chain.getValue(1); 6763 6764 // If this asm returns a register value, copy the result from that register 6765 // and set it as the value of the call. 6766 if (!RetValRegs.Regs.empty()) { 6767 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6768 Chain, &Flag, CS.getInstruction()); 6769 6770 // FIXME: Why don't we do this for inline asms with MRVs? 6771 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6772 EVT ResultType = TLI.getValueType(CS.getType()); 6773 6774 // If any of the results of the inline asm is a vector, it may have the 6775 // wrong width/num elts. This can happen for register classes that can 6776 // contain multiple different value types. The preg or vreg allocated may 6777 // not have the same VT as was expected. Convert it to the right type 6778 // with bit_convert. 6779 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6780 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6781 ResultType, Val); 6782 6783 } else if (ResultType != Val.getValueType() && 6784 ResultType.isInteger() && Val.getValueType().isInteger()) { 6785 // If a result value was tied to an input value, the computed result may 6786 // have a wider width than the expected result. Extract the relevant 6787 // portion. 6788 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6789 } 6790 6791 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6792 } 6793 6794 setValue(CS.getInstruction(), Val); 6795 // Don't need to use this as a chain in this case. 6796 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6797 return; 6798 } 6799 6800 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6801 6802 // Process indirect outputs, first output all of the flagged copies out of 6803 // physregs. 6804 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6805 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6806 const Value *Ptr = IndirectStoresToEmit[i].second; 6807 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6808 Chain, &Flag, IA); 6809 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6810 } 6811 6812 // Emit the non-flagged stores from the physregs. 6813 SmallVector<SDValue, 8> OutChains; 6814 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6815 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6816 StoresToEmit[i].first, 6817 getValue(StoresToEmit[i].second), 6818 MachinePointerInfo(StoresToEmit[i].second), 6819 false, false, 0); 6820 OutChains.push_back(Val); 6821 } 6822 6823 if (!OutChains.empty()) 6824 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6825 6826 DAG.setRoot(Chain); 6827 } 6828 6829 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6830 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6831 MVT::Other, getRoot(), 6832 getValue(I.getArgOperand(0)), 6833 DAG.getSrcValue(I.getArgOperand(0)))); 6834 } 6835 6836 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6838 const DataLayout &DL = *TLI.getDataLayout(); 6839 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6840 getRoot(), getValue(I.getOperand(0)), 6841 DAG.getSrcValue(I.getOperand(0)), 6842 DL.getABITypeAlignment(I.getType())); 6843 setValue(&I, V); 6844 DAG.setRoot(V.getValue(1)); 6845 } 6846 6847 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6848 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6849 MVT::Other, getRoot(), 6850 getValue(I.getArgOperand(0)), 6851 DAG.getSrcValue(I.getArgOperand(0)))); 6852 } 6853 6854 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6855 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6856 MVT::Other, getRoot(), 6857 getValue(I.getArgOperand(0)), 6858 getValue(I.getArgOperand(1)), 6859 DAG.getSrcValue(I.getArgOperand(0)), 6860 DAG.getSrcValue(I.getArgOperand(1)))); 6861 } 6862 6863 /// \brief Lower an argument list according to the target calling convention. 6864 /// 6865 /// \return A tuple of <return-value, token-chain> 6866 /// 6867 /// This is a helper for lowering intrinsics that follow a target calling 6868 /// convention or require stack pointer adjustment. Only a subset of the 6869 /// intrinsic's operands need to participate in the calling convention. 6870 std::pair<SDValue, SDValue> 6871 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6872 unsigned NumArgs, SDValue Callee, 6873 bool UseVoidTy, 6874 MachineBasicBlock *LandingPad, 6875 bool IsPatchPoint) { 6876 TargetLowering::ArgListTy Args; 6877 Args.reserve(NumArgs); 6878 6879 // Populate the argument list. 6880 // Attributes for args start at offset 1, after the return attribute. 6881 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6882 ArgI != ArgE; ++ArgI) { 6883 const Value *V = CS->getOperand(ArgI); 6884 6885 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6886 6887 TargetLowering::ArgListEntry Entry; 6888 Entry.Node = getValue(V); 6889 Entry.Ty = V->getType(); 6890 Entry.setAttributes(&CS, AttrI); 6891 Args.push_back(Entry); 6892 } 6893 6894 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6895 TargetLowering::CallLoweringInfo CLI(DAG); 6896 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6897 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6898 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6899 6900 return lowerInvokable(CLI, LandingPad); 6901 } 6902 6903 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6904 /// or patchpoint target node's operand list. 6905 /// 6906 /// Constants are converted to TargetConstants purely as an optimization to 6907 /// avoid constant materialization and register allocation. 6908 /// 6909 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6910 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6911 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6912 /// address materialization and register allocation, but may also be required 6913 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6914 /// alloca in the entry block, then the runtime may assume that the alloca's 6915 /// StackMap location can be read immediately after compilation and that the 6916 /// location is valid at any point during execution (this is similar to the 6917 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6918 /// only available in a register, then the runtime would need to trap when 6919 /// execution reaches the StackMap in order to read the alloca's location. 6920 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6921 SmallVectorImpl<SDValue> &Ops, 6922 SelectionDAGBuilder &Builder) { 6923 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6924 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6925 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6926 Ops.push_back( 6927 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6928 Ops.push_back( 6929 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6930 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6931 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6932 Ops.push_back( 6933 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6934 } else 6935 Ops.push_back(OpVal); 6936 } 6937 } 6938 6939 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6940 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6941 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6942 // [live variables...]) 6943 6944 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6945 6946 SDValue Chain, InFlag, Callee, NullPtr; 6947 SmallVector<SDValue, 32> Ops; 6948 6949 SDLoc DL = getCurSDLoc(); 6950 Callee = getValue(CI.getCalledValue()); 6951 NullPtr = DAG.getIntPtrConstant(0, true); 6952 6953 // The stackmap intrinsic only records the live variables (the arguemnts 6954 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6955 // intrinsic, this won't be lowered to a function call. This means we don't 6956 // have to worry about calling conventions and target specific lowering code. 6957 // Instead we perform the call lowering right here. 6958 // 6959 // chain, flag = CALLSEQ_START(chain, 0) 6960 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6961 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6962 // 6963 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6964 InFlag = Chain.getValue(1); 6965 6966 // Add the <id> and <numBytes> constants. 6967 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6968 Ops.push_back(DAG.getTargetConstant( 6969 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6970 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6971 Ops.push_back(DAG.getTargetConstant( 6972 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6973 6974 // Push live variables for the stack map. 6975 addStackMapLiveVars(&CI, 2, Ops, *this); 6976 6977 // We are not pushing any register mask info here on the operands list, 6978 // because the stackmap doesn't clobber anything. 6979 6980 // Push the chain and the glue flag. 6981 Ops.push_back(Chain); 6982 Ops.push_back(InFlag); 6983 6984 // Create the STACKMAP node. 6985 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6986 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6987 Chain = SDValue(SM, 0); 6988 InFlag = Chain.getValue(1); 6989 6990 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6991 6992 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6993 6994 // Set the root to the target-lowered call chain. 6995 DAG.setRoot(Chain); 6996 6997 // Inform the Frame Information that we have a stackmap in this function. 6998 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6999 } 7000 7001 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7002 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7003 MachineBasicBlock *LandingPad) { 7004 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7005 // i32 <numBytes>, 7006 // i8* <target>, 7007 // i32 <numArgs>, 7008 // [Args...], 7009 // [live variables...]) 7010 7011 CallingConv::ID CC = CS.getCallingConv(); 7012 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7013 bool HasDef = !CS->getType()->isVoidTy(); 7014 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7015 7016 // Get the real number of arguments participating in the call <numArgs> 7017 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7018 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7019 7020 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7021 // Intrinsics include all meta-operands up to but not including CC. 7022 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7023 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7024 "Not enough arguments provided to the patchpoint intrinsic"); 7025 7026 // For AnyRegCC the arguments are lowered later on manually. 7027 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7028 std::pair<SDValue, SDValue> Result = 7029 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7030 LandingPad, true); 7031 7032 SDNode *CallEnd = Result.second.getNode(); 7033 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7034 CallEnd = CallEnd->getOperand(0).getNode(); 7035 7036 /// Get a call instruction from the call sequence chain. 7037 /// Tail calls are not allowed. 7038 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7039 "Expected a callseq node."); 7040 SDNode *Call = CallEnd->getOperand(0).getNode(); 7041 bool HasGlue = Call->getGluedNode(); 7042 7043 // Replace the target specific call node with the patchable intrinsic. 7044 SmallVector<SDValue, 8> Ops; 7045 7046 // Add the <id> and <numBytes> constants. 7047 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7048 Ops.push_back(DAG.getTargetConstant( 7049 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7050 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7051 Ops.push_back(DAG.getTargetConstant( 7052 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7053 7054 // Assume that the Callee is a constant address. 7055 // FIXME: handle function symbols in the future. 7056 Ops.push_back( 7057 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7058 /*isTarget=*/true)); 7059 7060 // Adjust <numArgs> to account for any arguments that have been passed on the 7061 // stack instead. 7062 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7063 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7064 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7065 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7066 7067 // Add the calling convention 7068 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7069 7070 // Add the arguments we omitted previously. The register allocator should 7071 // place these in any free register. 7072 if (IsAnyRegCC) 7073 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7074 Ops.push_back(getValue(CS.getArgument(i))); 7075 7076 // Push the arguments from the call instruction up to the register mask. 7077 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7078 Ops.append(Call->op_begin() + 2, e); 7079 7080 // Push live variables for the stack map. 7081 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7082 7083 // Push the register mask info. 7084 if (HasGlue) 7085 Ops.push_back(*(Call->op_end()-2)); 7086 else 7087 Ops.push_back(*(Call->op_end()-1)); 7088 7089 // Push the chain (this is originally the first operand of the call, but 7090 // becomes now the last or second to last operand). 7091 Ops.push_back(*(Call->op_begin())); 7092 7093 // Push the glue flag (last operand). 7094 if (HasGlue) 7095 Ops.push_back(*(Call->op_end()-1)); 7096 7097 SDVTList NodeTys; 7098 if (IsAnyRegCC && HasDef) { 7099 // Create the return types based on the intrinsic definition 7100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7101 SmallVector<EVT, 3> ValueVTs; 7102 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7103 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7104 7105 // There is always a chain and a glue type at the end 7106 ValueVTs.push_back(MVT::Other); 7107 ValueVTs.push_back(MVT::Glue); 7108 NodeTys = DAG.getVTList(ValueVTs); 7109 } else 7110 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7111 7112 // Replace the target specific call node with a PATCHPOINT node. 7113 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7114 getCurSDLoc(), NodeTys, Ops); 7115 7116 // Update the NodeMap. 7117 if (HasDef) { 7118 if (IsAnyRegCC) 7119 setValue(CS.getInstruction(), SDValue(MN, 0)); 7120 else 7121 setValue(CS.getInstruction(), Result.first); 7122 } 7123 7124 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7125 // call sequence. Furthermore the location of the chain and glue can change 7126 // when the AnyReg calling convention is used and the intrinsic returns a 7127 // value. 7128 if (IsAnyRegCC && HasDef) { 7129 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7130 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7131 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7132 } else 7133 DAG.ReplaceAllUsesWith(Call, MN); 7134 DAG.DeleteNode(Call); 7135 7136 // Inform the Frame Information that we have a patchpoint in this function. 7137 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7138 } 7139 7140 /// Returns an AttributeSet representing the attributes applied to the return 7141 /// value of the given call. 7142 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7143 SmallVector<Attribute::AttrKind, 2> Attrs; 7144 if (CLI.RetSExt) 7145 Attrs.push_back(Attribute::SExt); 7146 if (CLI.RetZExt) 7147 Attrs.push_back(Attribute::ZExt); 7148 if (CLI.IsInReg) 7149 Attrs.push_back(Attribute::InReg); 7150 7151 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7152 Attrs); 7153 } 7154 7155 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7156 /// implementation, which just calls LowerCall. 7157 /// FIXME: When all targets are 7158 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7159 std::pair<SDValue, SDValue> 7160 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7161 // Handle the incoming return values from the call. 7162 CLI.Ins.clear(); 7163 Type *OrigRetTy = CLI.RetTy; 7164 SmallVector<EVT, 4> RetTys; 7165 SmallVector<uint64_t, 4> Offsets; 7166 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7167 7168 SmallVector<ISD::OutputArg, 4> Outs; 7169 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7170 7171 bool CanLowerReturn = 7172 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7173 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7174 7175 SDValue DemoteStackSlot; 7176 int DemoteStackIdx = -100; 7177 if (!CanLowerReturn) { 7178 // FIXME: equivalent assert? 7179 // assert(!CS.hasInAllocaArgument() && 7180 // "sret demotion is incompatible with inalloca"); 7181 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7182 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7183 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7184 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7185 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7186 7187 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7188 ArgListEntry Entry; 7189 Entry.Node = DemoteStackSlot; 7190 Entry.Ty = StackSlotPtrType; 7191 Entry.isSExt = false; 7192 Entry.isZExt = false; 7193 Entry.isInReg = false; 7194 Entry.isSRet = true; 7195 Entry.isNest = false; 7196 Entry.isByVal = false; 7197 Entry.isReturned = false; 7198 Entry.Alignment = Align; 7199 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7200 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7201 7202 // sret demotion isn't compatible with tail-calls, since the sret argument 7203 // points into the callers stack frame. 7204 CLI.IsTailCall = false; 7205 } else { 7206 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7207 EVT VT = RetTys[I]; 7208 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7209 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7210 for (unsigned i = 0; i != NumRegs; ++i) { 7211 ISD::InputArg MyFlags; 7212 MyFlags.VT = RegisterVT; 7213 MyFlags.ArgVT = VT; 7214 MyFlags.Used = CLI.IsReturnValueUsed; 7215 if (CLI.RetSExt) 7216 MyFlags.Flags.setSExt(); 7217 if (CLI.RetZExt) 7218 MyFlags.Flags.setZExt(); 7219 if (CLI.IsInReg) 7220 MyFlags.Flags.setInReg(); 7221 CLI.Ins.push_back(MyFlags); 7222 } 7223 } 7224 } 7225 7226 // Handle all of the outgoing arguments. 7227 CLI.Outs.clear(); 7228 CLI.OutVals.clear(); 7229 ArgListTy &Args = CLI.getArgs(); 7230 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7231 SmallVector<EVT, 4> ValueVTs; 7232 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7233 Type *FinalType = Args[i].Ty; 7234 if (Args[i].isByVal) 7235 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7236 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7237 FinalType, CLI.CallConv, CLI.IsVarArg); 7238 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7239 ++Value) { 7240 EVT VT = ValueVTs[Value]; 7241 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7242 SDValue Op = SDValue(Args[i].Node.getNode(), 7243 Args[i].Node.getResNo() + Value); 7244 ISD::ArgFlagsTy Flags; 7245 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7246 7247 if (Args[i].isZExt) 7248 Flags.setZExt(); 7249 if (Args[i].isSExt) 7250 Flags.setSExt(); 7251 if (Args[i].isInReg) 7252 Flags.setInReg(); 7253 if (Args[i].isSRet) 7254 Flags.setSRet(); 7255 if (Args[i].isByVal) 7256 Flags.setByVal(); 7257 if (Args[i].isInAlloca) { 7258 Flags.setInAlloca(); 7259 // Set the byval flag for CCAssignFn callbacks that don't know about 7260 // inalloca. This way we can know how many bytes we should've allocated 7261 // and how many bytes a callee cleanup function will pop. If we port 7262 // inalloca to more targets, we'll have to add custom inalloca handling 7263 // in the various CC lowering callbacks. 7264 Flags.setByVal(); 7265 } 7266 if (Args[i].isByVal || Args[i].isInAlloca) { 7267 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7268 Type *ElementTy = Ty->getElementType(); 7269 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7270 // For ByVal, alignment should come from FE. BE will guess if this 7271 // info is not there but there are cases it cannot get right. 7272 unsigned FrameAlign; 7273 if (Args[i].Alignment) 7274 FrameAlign = Args[i].Alignment; 7275 else 7276 FrameAlign = getByValTypeAlignment(ElementTy); 7277 Flags.setByValAlign(FrameAlign); 7278 } 7279 if (Args[i].isNest) 7280 Flags.setNest(); 7281 if (NeedsRegBlock) 7282 Flags.setInConsecutiveRegs(); 7283 Flags.setOrigAlign(OriginalAlignment); 7284 7285 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7286 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7287 SmallVector<SDValue, 4> Parts(NumParts); 7288 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7289 7290 if (Args[i].isSExt) 7291 ExtendKind = ISD::SIGN_EXTEND; 7292 else if (Args[i].isZExt) 7293 ExtendKind = ISD::ZERO_EXTEND; 7294 7295 // Conservatively only handle 'returned' on non-vectors for now 7296 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7297 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7298 "unexpected use of 'returned'"); 7299 // Before passing 'returned' to the target lowering code, ensure that 7300 // either the register MVT and the actual EVT are the same size or that 7301 // the return value and argument are extended in the same way; in these 7302 // cases it's safe to pass the argument register value unchanged as the 7303 // return register value (although it's at the target's option whether 7304 // to do so) 7305 // TODO: allow code generation to take advantage of partially preserved 7306 // registers rather than clobbering the entire register when the 7307 // parameter extension method is not compatible with the return 7308 // extension method 7309 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7310 (ExtendKind != ISD::ANY_EXTEND && 7311 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7312 Flags.setReturned(); 7313 } 7314 7315 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7316 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7317 7318 for (unsigned j = 0; j != NumParts; ++j) { 7319 // if it isn't first piece, alignment must be 1 7320 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7321 i < CLI.NumFixedArgs, 7322 i, j*Parts[j].getValueType().getStoreSize()); 7323 if (NumParts > 1 && j == 0) 7324 MyFlags.Flags.setSplit(); 7325 else if (j != 0) 7326 MyFlags.Flags.setOrigAlign(1); 7327 7328 CLI.Outs.push_back(MyFlags); 7329 CLI.OutVals.push_back(Parts[j]); 7330 } 7331 7332 if (NeedsRegBlock && Value == NumValues - 1) 7333 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7334 } 7335 } 7336 7337 SmallVector<SDValue, 4> InVals; 7338 CLI.Chain = LowerCall(CLI, InVals); 7339 7340 // Verify that the target's LowerCall behaved as expected. 7341 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7342 "LowerCall didn't return a valid chain!"); 7343 assert((!CLI.IsTailCall || InVals.empty()) && 7344 "LowerCall emitted a return value for a tail call!"); 7345 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7346 "LowerCall didn't emit the correct number of values!"); 7347 7348 // For a tail call, the return value is merely live-out and there aren't 7349 // any nodes in the DAG representing it. Return a special value to 7350 // indicate that a tail call has been emitted and no more Instructions 7351 // should be processed in the current block. 7352 if (CLI.IsTailCall) { 7353 CLI.DAG.setRoot(CLI.Chain); 7354 return std::make_pair(SDValue(), SDValue()); 7355 } 7356 7357 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7358 assert(InVals[i].getNode() && 7359 "LowerCall emitted a null value!"); 7360 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7361 "LowerCall emitted a value with the wrong type!"); 7362 }); 7363 7364 SmallVector<SDValue, 4> ReturnValues; 7365 if (!CanLowerReturn) { 7366 // The instruction result is the result of loading from the 7367 // hidden sret parameter. 7368 SmallVector<EVT, 1> PVTs; 7369 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7370 7371 ComputeValueVTs(*this, PtrRetTy, PVTs); 7372 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7373 EVT PtrVT = PVTs[0]; 7374 7375 unsigned NumValues = RetTys.size(); 7376 ReturnValues.resize(NumValues); 7377 SmallVector<SDValue, 4> Chains(NumValues); 7378 7379 for (unsigned i = 0; i < NumValues; ++i) { 7380 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7381 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7382 SDValue L = CLI.DAG.getLoad( 7383 RetTys[i], CLI.DL, CLI.Chain, Add, 7384 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7385 false, false, 1); 7386 ReturnValues[i] = L; 7387 Chains[i] = L.getValue(1); 7388 } 7389 7390 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7391 } else { 7392 // Collect the legal value parts into potentially illegal values 7393 // that correspond to the original function's return values. 7394 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7395 if (CLI.RetSExt) 7396 AssertOp = ISD::AssertSext; 7397 else if (CLI.RetZExt) 7398 AssertOp = ISD::AssertZext; 7399 unsigned CurReg = 0; 7400 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7401 EVT VT = RetTys[I]; 7402 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7403 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7404 7405 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7406 NumRegs, RegisterVT, VT, nullptr, 7407 AssertOp)); 7408 CurReg += NumRegs; 7409 } 7410 7411 // For a function returning void, there is no return value. We can't create 7412 // such a node, so we just return a null return value in that case. In 7413 // that case, nothing will actually look at the value. 7414 if (ReturnValues.empty()) 7415 return std::make_pair(SDValue(), CLI.Chain); 7416 } 7417 7418 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7419 CLI.DAG.getVTList(RetTys), ReturnValues); 7420 return std::make_pair(Res, CLI.Chain); 7421 } 7422 7423 void TargetLowering::LowerOperationWrapper(SDNode *N, 7424 SmallVectorImpl<SDValue> &Results, 7425 SelectionDAG &DAG) const { 7426 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7427 if (Res.getNode()) 7428 Results.push_back(Res); 7429 } 7430 7431 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7432 llvm_unreachable("LowerOperation not implemented for this target!"); 7433 } 7434 7435 void 7436 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7437 SDValue Op = getNonRegisterValue(V); 7438 assert((Op.getOpcode() != ISD::CopyFromReg || 7439 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7440 "Copy from a reg to the same reg!"); 7441 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7442 7443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7444 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7445 SDValue Chain = DAG.getEntryNode(); 7446 7447 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7448 FuncInfo.PreferredExtendType.end()) 7449 ? ISD::ANY_EXTEND 7450 : FuncInfo.PreferredExtendType[V]; 7451 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7452 PendingExports.push_back(Chain); 7453 } 7454 7455 #include "llvm/CodeGen/SelectionDAGISel.h" 7456 7457 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7458 /// entry block, return true. This includes arguments used by switches, since 7459 /// the switch may expand into multiple basic blocks. 7460 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7461 // With FastISel active, we may be splitting blocks, so force creation 7462 // of virtual registers for all non-dead arguments. 7463 if (FastISel) 7464 return A->use_empty(); 7465 7466 const BasicBlock *Entry = A->getParent()->begin(); 7467 for (const User *U : A->users()) 7468 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7469 return false; // Use not in entry block. 7470 7471 return true; 7472 } 7473 7474 void SelectionDAGISel::LowerArguments(const Function &F) { 7475 SelectionDAG &DAG = SDB->DAG; 7476 SDLoc dl = SDB->getCurSDLoc(); 7477 const DataLayout *DL = TLI->getDataLayout(); 7478 SmallVector<ISD::InputArg, 16> Ins; 7479 7480 if (!FuncInfo->CanLowerReturn) { 7481 // Put in an sret pointer parameter before all the other parameters. 7482 SmallVector<EVT, 1> ValueVTs; 7483 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7484 7485 // NOTE: Assuming that a pointer will never break down to more than one VT 7486 // or one register. 7487 ISD::ArgFlagsTy Flags; 7488 Flags.setSRet(); 7489 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7490 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7491 ISD::InputArg::NoArgIndex, 0); 7492 Ins.push_back(RetArg); 7493 } 7494 7495 // Set up the incoming argument description vector. 7496 unsigned Idx = 1; 7497 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7498 I != E; ++I, ++Idx) { 7499 SmallVector<EVT, 4> ValueVTs; 7500 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7501 bool isArgValueUsed = !I->use_empty(); 7502 unsigned PartBase = 0; 7503 Type *FinalType = I->getType(); 7504 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7505 FinalType = cast<PointerType>(FinalType)->getElementType(); 7506 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7507 FinalType, F.getCallingConv(), F.isVarArg()); 7508 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7509 Value != NumValues; ++Value) { 7510 EVT VT = ValueVTs[Value]; 7511 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7512 ISD::ArgFlagsTy Flags; 7513 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7514 7515 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7516 Flags.setZExt(); 7517 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7518 Flags.setSExt(); 7519 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7520 Flags.setInReg(); 7521 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7522 Flags.setSRet(); 7523 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7524 Flags.setByVal(); 7525 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7526 Flags.setInAlloca(); 7527 // Set the byval flag for CCAssignFn callbacks that don't know about 7528 // inalloca. This way we can know how many bytes we should've allocated 7529 // and how many bytes a callee cleanup function will pop. If we port 7530 // inalloca to more targets, we'll have to add custom inalloca handling 7531 // in the various CC lowering callbacks. 7532 Flags.setByVal(); 7533 } 7534 if (Flags.isByVal() || Flags.isInAlloca()) { 7535 PointerType *Ty = cast<PointerType>(I->getType()); 7536 Type *ElementTy = Ty->getElementType(); 7537 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7538 // For ByVal, alignment should be passed from FE. BE will guess if 7539 // this info is not there but there are cases it cannot get right. 7540 unsigned FrameAlign; 7541 if (F.getParamAlignment(Idx)) 7542 FrameAlign = F.getParamAlignment(Idx); 7543 else 7544 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7545 Flags.setByValAlign(FrameAlign); 7546 } 7547 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7548 Flags.setNest(); 7549 if (NeedsRegBlock) 7550 Flags.setInConsecutiveRegs(); 7551 Flags.setOrigAlign(OriginalAlignment); 7552 7553 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7554 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7555 for (unsigned i = 0; i != NumRegs; ++i) { 7556 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7557 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7558 if (NumRegs > 1 && i == 0) 7559 MyFlags.Flags.setSplit(); 7560 // if it isn't first piece, alignment must be 1 7561 else if (i > 0) 7562 MyFlags.Flags.setOrigAlign(1); 7563 Ins.push_back(MyFlags); 7564 } 7565 if (NeedsRegBlock && Value == NumValues - 1) 7566 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7567 PartBase += VT.getStoreSize(); 7568 } 7569 } 7570 7571 // Call the target to set up the argument values. 7572 SmallVector<SDValue, 8> InVals; 7573 SDValue NewRoot = TLI->LowerFormalArguments( 7574 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7575 7576 // Verify that the target's LowerFormalArguments behaved as expected. 7577 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7578 "LowerFormalArguments didn't return a valid chain!"); 7579 assert(InVals.size() == Ins.size() && 7580 "LowerFormalArguments didn't emit the correct number of values!"); 7581 DEBUG({ 7582 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7583 assert(InVals[i].getNode() && 7584 "LowerFormalArguments emitted a null value!"); 7585 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7586 "LowerFormalArguments emitted a value with the wrong type!"); 7587 } 7588 }); 7589 7590 // Update the DAG with the new chain value resulting from argument lowering. 7591 DAG.setRoot(NewRoot); 7592 7593 // Set up the argument values. 7594 unsigned i = 0; 7595 Idx = 1; 7596 if (!FuncInfo->CanLowerReturn) { 7597 // Create a virtual register for the sret pointer, and put in a copy 7598 // from the sret argument into it. 7599 SmallVector<EVT, 1> ValueVTs; 7600 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7601 MVT VT = ValueVTs[0].getSimpleVT(); 7602 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7603 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7604 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7605 RegVT, VT, nullptr, AssertOp); 7606 7607 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7608 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7609 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7610 FuncInfo->DemoteRegister = SRetReg; 7611 NewRoot = 7612 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7613 DAG.setRoot(NewRoot); 7614 7615 // i indexes lowered arguments. Bump it past the hidden sret argument. 7616 // Idx indexes LLVM arguments. Don't touch it. 7617 ++i; 7618 } 7619 7620 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7621 ++I, ++Idx) { 7622 SmallVector<SDValue, 4> ArgValues; 7623 SmallVector<EVT, 4> ValueVTs; 7624 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7625 unsigned NumValues = ValueVTs.size(); 7626 7627 // If this argument is unused then remember its value. It is used to generate 7628 // debugging information. 7629 if (I->use_empty() && NumValues) { 7630 SDB->setUnusedArgValue(I, InVals[i]); 7631 7632 // Also remember any frame index for use in FastISel. 7633 if (FrameIndexSDNode *FI = 7634 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7635 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7636 } 7637 7638 for (unsigned Val = 0; Val != NumValues; ++Val) { 7639 EVT VT = ValueVTs[Val]; 7640 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7641 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7642 7643 if (!I->use_empty()) { 7644 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7645 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7646 AssertOp = ISD::AssertSext; 7647 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7648 AssertOp = ISD::AssertZext; 7649 7650 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7651 NumParts, PartVT, VT, 7652 nullptr, AssertOp)); 7653 } 7654 7655 i += NumParts; 7656 } 7657 7658 // We don't need to do anything else for unused arguments. 7659 if (ArgValues.empty()) 7660 continue; 7661 7662 // Note down frame index. 7663 if (FrameIndexSDNode *FI = 7664 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7665 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7666 7667 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7668 SDB->getCurSDLoc()); 7669 7670 SDB->setValue(I, Res); 7671 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7672 if (LoadSDNode *LNode = 7673 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7674 if (FrameIndexSDNode *FI = 7675 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7676 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7677 } 7678 7679 // If this argument is live outside of the entry block, insert a copy from 7680 // wherever we got it to the vreg that other BB's will reference it as. 7681 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7682 // If we can, though, try to skip creating an unnecessary vreg. 7683 // FIXME: This isn't very clean... it would be nice to make this more 7684 // general. It's also subtly incompatible with the hacks FastISel 7685 // uses with vregs. 7686 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7687 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7688 FuncInfo->ValueMap[I] = Reg; 7689 continue; 7690 } 7691 } 7692 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7693 FuncInfo->InitializeRegForValue(I); 7694 SDB->CopyToExportRegsIfNeeded(I); 7695 } 7696 } 7697 7698 assert(i == InVals.size() && "Argument register count mismatch!"); 7699 7700 // Finally, if the target has anything special to do, allow it to do so. 7701 EmitFunctionEntryCode(); 7702 } 7703 7704 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7705 /// ensure constants are generated when needed. Remember the virtual registers 7706 /// that need to be added to the Machine PHI nodes as input. We cannot just 7707 /// directly add them, because expansion might result in multiple MBB's for one 7708 /// BB. As such, the start of the BB might correspond to a different MBB than 7709 /// the end. 7710 /// 7711 void 7712 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7713 const TerminatorInst *TI = LLVMBB->getTerminator(); 7714 7715 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7716 7717 // Check PHI nodes in successors that expect a value to be available from this 7718 // block. 7719 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7720 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7721 if (!isa<PHINode>(SuccBB->begin())) continue; 7722 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7723 7724 // If this terminator has multiple identical successors (common for 7725 // switches), only handle each succ once. 7726 if (!SuccsHandled.insert(SuccMBB).second) 7727 continue; 7728 7729 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7730 7731 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7732 // nodes and Machine PHI nodes, but the incoming operands have not been 7733 // emitted yet. 7734 for (BasicBlock::const_iterator I = SuccBB->begin(); 7735 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7736 // Ignore dead phi's. 7737 if (PN->use_empty()) continue; 7738 7739 // Skip empty types 7740 if (PN->getType()->isEmptyTy()) 7741 continue; 7742 7743 unsigned Reg; 7744 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7745 7746 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7747 unsigned &RegOut = ConstantsOut[C]; 7748 if (RegOut == 0) { 7749 RegOut = FuncInfo.CreateRegs(C->getType()); 7750 CopyValueToVirtualRegister(C, RegOut); 7751 } 7752 Reg = RegOut; 7753 } else { 7754 DenseMap<const Value *, unsigned>::iterator I = 7755 FuncInfo.ValueMap.find(PHIOp); 7756 if (I != FuncInfo.ValueMap.end()) 7757 Reg = I->second; 7758 else { 7759 assert(isa<AllocaInst>(PHIOp) && 7760 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7761 "Didn't codegen value into a register!??"); 7762 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7763 CopyValueToVirtualRegister(PHIOp, Reg); 7764 } 7765 } 7766 7767 // Remember that this register needs to added to the machine PHI node as 7768 // the input for this MBB. 7769 SmallVector<EVT, 4> ValueVTs; 7770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7771 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7772 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7773 EVT VT = ValueVTs[vti]; 7774 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7775 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7776 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7777 Reg += NumRegisters; 7778 } 7779 } 7780 } 7781 7782 ConstantsOut.clear(); 7783 } 7784 7785 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7786 /// is 0. 7787 MachineBasicBlock * 7788 SelectionDAGBuilder::StackProtectorDescriptor:: 7789 AddSuccessorMBB(const BasicBlock *BB, 7790 MachineBasicBlock *ParentMBB, 7791 bool IsLikely, 7792 MachineBasicBlock *SuccMBB) { 7793 // If SuccBB has not been created yet, create it. 7794 if (!SuccMBB) { 7795 MachineFunction *MF = ParentMBB->getParent(); 7796 MachineFunction::iterator BBI = ParentMBB; 7797 SuccMBB = MF->CreateMachineBasicBlock(BB); 7798 MF->insert(++BBI, SuccMBB); 7799 } 7800 // Add it as a successor of ParentMBB. 7801 ParentMBB->addSuccessor( 7802 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7803 return SuccMBB; 7804 } 7805 7806 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7807 MachineFunction::iterator I = MBB; 7808 if (++I == FuncInfo.MF->end()) 7809 return nullptr; 7810 return I; 7811 } 7812