1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1188 1189 // Update machine-CFG edge. 1190 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1191 1192 SDValue Chain = 1193 DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()); 1194 1195 // If this is not a fall-through branch or optimizations are switched off, 1196 // emit the branch. 1197 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1198 TM.getOptLevel() == CodeGenOpt::None) 1199 Chain = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 1200 DAG.getBasicBlock(NormalDestMBB)); 1201 DAG.setRoot(Chain); 1202 } 1203 1204 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1205 // Update machine-CFG edge. 1206 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1207 FuncInfo.MBB->addSuccessor(TargetMBB); 1208 1209 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1210 bool IsSEH = isAsynchronousEHPersonality(Pers); 1211 if (IsSEH) { 1212 // If this is not a fall-through branch or optimizations are switched off, 1213 // emit the branch. 1214 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1215 TM.getOptLevel() == CodeGenOpt::None) 1216 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1217 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1218 return; 1219 } 1220 1221 // Figure out the funclet membership for the catchret's successor. 1222 // This will be used by the FuncletLayout pass to determine how to order the 1223 // BB's. 1224 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1225 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1226 assert(SuccessorColor && "No parent funclet for catchret!"); 1227 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1228 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1229 1230 // Create the terminator node. 1231 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1232 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1233 DAG.getBasicBlock(SuccessorColorMBB)); 1234 DAG.setRoot(Ret); 1235 } 1236 1237 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1238 llvm_unreachable("should never codegen catchendpads"); 1239 } 1240 1241 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1242 // Don't emit any special code for the cleanuppad instruction. It just marks 1243 // the start of a funclet. 1244 FuncInfo.MBB->setIsEHFuncletEntry(); 1245 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1246 } 1247 1248 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1249 /// many places it could ultimately go. In the IR, we have a single unwind 1250 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1251 /// This function skips over imaginary basic blocks that hold catchpad, 1252 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1253 /// basic block destinations. As those destinations may not be successors of 1254 /// EHPadBB, here we also calculate the edge probability to those destinations. 1255 /// The passed-in Prob is the edge probability to EHPadBB. 1256 static void findUnwindDestinations( 1257 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1258 BranchProbability Prob, 1259 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1260 &UnwindDests) { 1261 EHPersonality Personality = 1262 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1263 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1264 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1265 1266 while (EHPadBB) { 1267 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1268 BasicBlock *NewEHPadBB = nullptr; 1269 if (isa<LandingPadInst>(Pad)) { 1270 // Stop on landingpads. They are not funclets. 1271 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1272 break; 1273 } else if (isa<CleanupPadInst>(Pad)) { 1274 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1275 // personalities. 1276 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 break; 1279 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1280 // Add the catchpad handler to the possible destinations. 1281 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1282 // In MSVC C++, catchblocks are funclets and need prologues. 1283 if (IsMSVCCXX || IsCoreCLR) 1284 UnwindDests.back().first->setIsEHFuncletEntry(); 1285 NewEHPadBB = CPI->getUnwindDest(); 1286 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1287 NewEHPadBB = CEPI->getUnwindDest(); 1288 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1289 NewEHPadBB = CEPI->getUnwindDest(); 1290 else 1291 continue; 1292 1293 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1294 if (BPI && NewEHPadBB) 1295 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1296 EHPadBB = NewEHPadBB; 1297 } 1298 } 1299 1300 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1301 // Update successor info. 1302 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1303 auto UnwindDest = I.getUnwindDest(); 1304 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1305 BranchProbability UnwindDestProb = 1306 (BPI && UnwindDest) 1307 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1308 : BranchProbability::getZero(); 1309 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1310 for (auto &UnwindDest : UnwindDests) { 1311 UnwindDest.first->setIsEHPad(); 1312 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1313 } 1314 FuncInfo.MBB->normalizeSuccProbs(); 1315 1316 // Create the terminator node. 1317 SDValue Ret = 1318 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1319 DAG.setRoot(Ret); 1320 } 1321 1322 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1323 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1324 } 1325 1326 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1327 report_fatal_error("visitTerminatePad not yet implemented!"); 1328 } 1329 1330 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1332 auto &DL = DAG.getDataLayout(); 1333 SDValue Chain = getControlRoot(); 1334 SmallVector<ISD::OutputArg, 8> Outs; 1335 SmallVector<SDValue, 8> OutVals; 1336 1337 if (!FuncInfo.CanLowerReturn) { 1338 unsigned DemoteReg = FuncInfo.DemoteRegister; 1339 const Function *F = I.getParent()->getParent(); 1340 1341 // Emit a store of the return value through the virtual register. 1342 // Leave Outs empty so that LowerReturn won't try to load return 1343 // registers the usual way. 1344 SmallVector<EVT, 1> PtrValueVTs; 1345 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1346 PtrValueVTs); 1347 1348 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1349 DemoteReg, PtrValueVTs[0]); 1350 SDValue RetOp = getValue(I.getOperand(0)); 1351 1352 SmallVector<EVT, 4> ValueVTs; 1353 SmallVector<uint64_t, 4> Offsets; 1354 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1355 unsigned NumValues = ValueVTs.size(); 1356 1357 SmallVector<SDValue, 4> Chains(NumValues); 1358 for (unsigned i = 0; i != NumValues; ++i) { 1359 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1360 RetPtr.getValueType(), RetPtr, 1361 DAG.getIntPtrConstant(Offsets[i], 1362 getCurSDLoc())); 1363 Chains[i] = 1364 DAG.getStore(Chain, getCurSDLoc(), 1365 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1366 // FIXME: better loc info would be nice. 1367 Add, MachinePointerInfo(), false, false, 0); 1368 } 1369 1370 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1371 MVT::Other, Chains); 1372 } else if (I.getNumOperands() != 0) { 1373 SmallVector<EVT, 4> ValueVTs; 1374 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1375 unsigned NumValues = ValueVTs.size(); 1376 if (NumValues) { 1377 SDValue RetOp = getValue(I.getOperand(0)); 1378 1379 const Function *F = I.getParent()->getParent(); 1380 1381 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1382 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1383 Attribute::SExt)) 1384 ExtendKind = ISD::SIGN_EXTEND; 1385 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1386 Attribute::ZExt)) 1387 ExtendKind = ISD::ZERO_EXTEND; 1388 1389 LLVMContext &Context = F->getContext(); 1390 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1391 Attribute::InReg); 1392 1393 for (unsigned j = 0; j != NumValues; ++j) { 1394 EVT VT = ValueVTs[j]; 1395 1396 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1397 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1398 1399 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1400 MVT PartVT = TLI.getRegisterType(Context, VT); 1401 SmallVector<SDValue, 4> Parts(NumParts); 1402 getCopyToParts(DAG, getCurSDLoc(), 1403 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1404 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1405 1406 // 'inreg' on function refers to return value 1407 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1408 if (RetInReg) 1409 Flags.setInReg(); 1410 1411 // Propagate extension type if any 1412 if (ExtendKind == ISD::SIGN_EXTEND) 1413 Flags.setSExt(); 1414 else if (ExtendKind == ISD::ZERO_EXTEND) 1415 Flags.setZExt(); 1416 1417 for (unsigned i = 0; i < NumParts; ++i) { 1418 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1419 VT, /*isfixed=*/true, 0, 0)); 1420 OutVals.push_back(Parts[i]); 1421 } 1422 } 1423 } 1424 } 1425 1426 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1427 CallingConv::ID CallConv = 1428 DAG.getMachineFunction().getFunction()->getCallingConv(); 1429 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1430 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1431 1432 // Verify that the target's LowerReturn behaved as expected. 1433 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1434 "LowerReturn didn't return a valid chain!"); 1435 1436 // Update the DAG with the new chain value resulting from return lowering. 1437 DAG.setRoot(Chain); 1438 } 1439 1440 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1441 /// created for it, emit nodes to copy the value into the virtual 1442 /// registers. 1443 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1444 // Skip empty types 1445 if (V->getType()->isEmptyTy()) 1446 return; 1447 1448 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1449 if (VMI != FuncInfo.ValueMap.end()) { 1450 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1451 CopyValueToVirtualRegister(V, VMI->second); 1452 } 1453 } 1454 1455 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1456 /// the current basic block, add it to ValueMap now so that we'll get a 1457 /// CopyTo/FromReg. 1458 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1459 // No need to export constants. 1460 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1461 1462 // Already exported? 1463 if (FuncInfo.isExportedInst(V)) return; 1464 1465 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1466 CopyValueToVirtualRegister(V, Reg); 1467 } 1468 1469 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1470 const BasicBlock *FromBB) { 1471 // The operands of the setcc have to be in this block. We don't know 1472 // how to export them from some other block. 1473 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1474 // Can export from current BB. 1475 if (VI->getParent() == FromBB) 1476 return true; 1477 1478 // Is already exported, noop. 1479 return FuncInfo.isExportedInst(V); 1480 } 1481 1482 // If this is an argument, we can export it if the BB is the entry block or 1483 // if it is already exported. 1484 if (isa<Argument>(V)) { 1485 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1486 return true; 1487 1488 // Otherwise, can only export this if it is already exported. 1489 return FuncInfo.isExportedInst(V); 1490 } 1491 1492 // Otherwise, constants can always be exported. 1493 return true; 1494 } 1495 1496 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1497 BranchProbability 1498 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1499 const MachineBasicBlock *Dst) const { 1500 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1501 const BasicBlock *SrcBB = Src->getBasicBlock(); 1502 const BasicBlock *DstBB = Dst->getBasicBlock(); 1503 if (!BPI) { 1504 // If BPI is not available, set the default probability as 1 / N, where N is 1505 // the number of successors. 1506 auto SuccSize = std::max<uint32_t>( 1507 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1508 return BranchProbability(1, SuccSize); 1509 } 1510 return BPI->getEdgeProbability(SrcBB, DstBB); 1511 } 1512 1513 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1514 MachineBasicBlock *Dst, 1515 BranchProbability Prob) { 1516 if (!FuncInfo.BPI) 1517 Src->addSuccessorWithoutProb(Dst); 1518 else { 1519 if (Prob.isUnknown()) 1520 Prob = getEdgeProbability(Src, Dst); 1521 Src->addSuccessor(Dst, Prob); 1522 } 1523 } 1524 1525 static bool InBlock(const Value *V, const BasicBlock *BB) { 1526 if (const Instruction *I = dyn_cast<Instruction>(V)) 1527 return I->getParent() == BB; 1528 return true; 1529 } 1530 1531 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1532 /// This function emits a branch and is used at the leaves of an OR or an 1533 /// AND operator tree. 1534 /// 1535 void 1536 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1537 MachineBasicBlock *TBB, 1538 MachineBasicBlock *FBB, 1539 MachineBasicBlock *CurBB, 1540 MachineBasicBlock *SwitchBB, 1541 BranchProbability TProb, 1542 BranchProbability FProb) { 1543 const BasicBlock *BB = CurBB->getBasicBlock(); 1544 1545 // If the leaf of the tree is a comparison, merge the condition into 1546 // the caseblock. 1547 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1548 // The operands of the cmp have to be in this block. We don't know 1549 // how to export them from some other block. If this is the first block 1550 // of the sequence, no exporting is needed. 1551 if (CurBB == SwitchBB || 1552 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1553 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1554 ISD::CondCode Condition; 1555 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1556 Condition = getICmpCondCode(IC->getPredicate()); 1557 } else { 1558 const FCmpInst *FC = cast<FCmpInst>(Cond); 1559 Condition = getFCmpCondCode(FC->getPredicate()); 1560 if (TM.Options.NoNaNsFPMath) 1561 Condition = getFCmpCodeWithoutNaN(Condition); 1562 } 1563 1564 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1565 TBB, FBB, CurBB, TProb, FProb); 1566 SwitchCases.push_back(CB); 1567 return; 1568 } 1569 } 1570 1571 // Create a CaseBlock record representing this branch. 1572 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1573 nullptr, TBB, FBB, CurBB, TProb, FProb); 1574 SwitchCases.push_back(CB); 1575 } 1576 1577 /// FindMergedConditions - If Cond is an expression like 1578 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1579 MachineBasicBlock *TBB, 1580 MachineBasicBlock *FBB, 1581 MachineBasicBlock *CurBB, 1582 MachineBasicBlock *SwitchBB, 1583 Instruction::BinaryOps Opc, 1584 BranchProbability TProb, 1585 BranchProbability FProb) { 1586 // If this node is not part of the or/and tree, emit it as a branch. 1587 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1588 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1589 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1590 BOp->getParent() != CurBB->getBasicBlock() || 1591 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1592 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1593 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1594 TProb, FProb); 1595 return; 1596 } 1597 1598 // Create TmpBB after CurBB. 1599 MachineFunction::iterator BBI(CurBB); 1600 MachineFunction &MF = DAG.getMachineFunction(); 1601 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1602 CurBB->getParent()->insert(++BBI, TmpBB); 1603 1604 if (Opc == Instruction::Or) { 1605 // Codegen X | Y as: 1606 // BB1: 1607 // jmp_if_X TBB 1608 // jmp TmpBB 1609 // TmpBB: 1610 // jmp_if_Y TBB 1611 // jmp FBB 1612 // 1613 1614 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1615 // The requirement is that 1616 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1617 // = TrueProb for original BB. 1618 // Assuming the original probabilities are A and B, one choice is to set 1619 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1620 // A/(1+B) and 2B/(1+B). This choice assumes that 1621 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1622 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1623 // TmpBB, but the math is more complicated. 1624 1625 auto NewTrueProb = TProb / 2; 1626 auto NewFalseProb = TProb / 2 + FProb; 1627 // Emit the LHS condition. 1628 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1629 NewTrueProb, NewFalseProb); 1630 1631 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1632 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1633 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1634 // Emit the RHS condition into TmpBB. 1635 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1636 Probs[0], Probs[1]); 1637 } else { 1638 assert(Opc == Instruction::And && "Unknown merge op!"); 1639 // Codegen X & Y as: 1640 // BB1: 1641 // jmp_if_X TmpBB 1642 // jmp FBB 1643 // TmpBB: 1644 // jmp_if_Y TBB 1645 // jmp FBB 1646 // 1647 // This requires creation of TmpBB after CurBB. 1648 1649 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1650 // The requirement is that 1651 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1652 // = FalseProb for original BB. 1653 // Assuming the original probabilities are A and B, one choice is to set 1654 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1655 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1656 // TrueProb for BB1 * FalseProb for TmpBB. 1657 1658 auto NewTrueProb = TProb + FProb / 2; 1659 auto NewFalseProb = FProb / 2; 1660 // Emit the LHS condition. 1661 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1662 NewTrueProb, NewFalseProb); 1663 1664 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1665 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1666 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1667 // Emit the RHS condition into TmpBB. 1668 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1669 Probs[0], Probs[1]); 1670 } 1671 } 1672 1673 /// If the set of cases should be emitted as a series of branches, return true. 1674 /// If we should emit this as a bunch of and/or'd together conditions, return 1675 /// false. 1676 bool 1677 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1678 if (Cases.size() != 2) return true; 1679 1680 // If this is two comparisons of the same values or'd or and'd together, they 1681 // will get folded into a single comparison, so don't emit two blocks. 1682 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1683 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1684 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1685 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1686 return false; 1687 } 1688 1689 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1690 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1691 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1692 Cases[0].CC == Cases[1].CC && 1693 isa<Constant>(Cases[0].CmpRHS) && 1694 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1695 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1696 return false; 1697 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1698 return false; 1699 } 1700 1701 return true; 1702 } 1703 1704 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1705 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1706 1707 // Update machine-CFG edges. 1708 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1709 1710 if (I.isUnconditional()) { 1711 // Update machine-CFG edges. 1712 BrMBB->addSuccessor(Succ0MBB); 1713 1714 // If this is not a fall-through branch or optimizations are switched off, 1715 // emit the branch. 1716 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1717 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1718 MVT::Other, getControlRoot(), 1719 DAG.getBasicBlock(Succ0MBB))); 1720 1721 return; 1722 } 1723 1724 // If this condition is one of the special cases we handle, do special stuff 1725 // now. 1726 const Value *CondVal = I.getCondition(); 1727 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1728 1729 // If this is a series of conditions that are or'd or and'd together, emit 1730 // this as a sequence of branches instead of setcc's with and/or operations. 1731 // As long as jumps are not expensive, this should improve performance. 1732 // For example, instead of something like: 1733 // cmp A, B 1734 // C = seteq 1735 // cmp D, E 1736 // F = setle 1737 // or C, F 1738 // jnz foo 1739 // Emit: 1740 // cmp A, B 1741 // je foo 1742 // cmp D, E 1743 // jle foo 1744 // 1745 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1746 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1747 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1748 !I.getMetadata(LLVMContext::MD_unpredictable) && 1749 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1750 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1751 Opcode, 1752 getEdgeProbability(BrMBB, Succ0MBB), 1753 getEdgeProbability(BrMBB, Succ1MBB)); 1754 // If the compares in later blocks need to use values not currently 1755 // exported from this block, export them now. This block should always 1756 // be the first entry. 1757 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1758 1759 // Allow some cases to be rejected. 1760 if (ShouldEmitAsBranches(SwitchCases)) { 1761 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1762 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1763 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1764 } 1765 1766 // Emit the branch for this block. 1767 visitSwitchCase(SwitchCases[0], BrMBB); 1768 SwitchCases.erase(SwitchCases.begin()); 1769 return; 1770 } 1771 1772 // Okay, we decided not to do this, remove any inserted MBB's and clear 1773 // SwitchCases. 1774 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1775 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1776 1777 SwitchCases.clear(); 1778 } 1779 } 1780 1781 // Create a CaseBlock record representing this branch. 1782 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1783 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1784 1785 // Use visitSwitchCase to actually insert the fast branch sequence for this 1786 // cond branch. 1787 visitSwitchCase(CB, BrMBB); 1788 } 1789 1790 /// visitSwitchCase - Emits the necessary code to represent a single node in 1791 /// the binary search tree resulting from lowering a switch instruction. 1792 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1793 MachineBasicBlock *SwitchBB) { 1794 SDValue Cond; 1795 SDValue CondLHS = getValue(CB.CmpLHS); 1796 SDLoc dl = getCurSDLoc(); 1797 1798 // Build the setcc now. 1799 if (!CB.CmpMHS) { 1800 // Fold "(X == true)" to X and "(X == false)" to !X to 1801 // handle common cases produced by branch lowering. 1802 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1803 CB.CC == ISD::SETEQ) 1804 Cond = CondLHS; 1805 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1806 CB.CC == ISD::SETEQ) { 1807 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1808 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1809 } else 1810 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1811 } else { 1812 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1813 1814 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1815 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1816 1817 SDValue CmpOp = getValue(CB.CmpMHS); 1818 EVT VT = CmpOp.getValueType(); 1819 1820 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1821 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1822 ISD::SETLE); 1823 } else { 1824 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1825 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1826 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1827 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1828 } 1829 } 1830 1831 // Update successor info 1832 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1833 // TrueBB and FalseBB are always different unless the incoming IR is 1834 // degenerate. This only happens when running llc on weird IR. 1835 if (CB.TrueBB != CB.FalseBB) 1836 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1837 SwitchBB->normalizeSuccProbs(); 1838 1839 // If the lhs block is the next block, invert the condition so that we can 1840 // fall through to the lhs instead of the rhs block. 1841 if (CB.TrueBB == NextBlock(SwitchBB)) { 1842 std::swap(CB.TrueBB, CB.FalseBB); 1843 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1844 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1845 } 1846 1847 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1848 MVT::Other, getControlRoot(), Cond, 1849 DAG.getBasicBlock(CB.TrueBB)); 1850 1851 // Insert the false branch. Do this even if it's a fall through branch, 1852 // this makes it easier to do DAG optimizations which require inverting 1853 // the branch condition. 1854 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1855 DAG.getBasicBlock(CB.FalseBB)); 1856 1857 DAG.setRoot(BrCond); 1858 } 1859 1860 /// visitJumpTable - Emit JumpTable node in the current MBB 1861 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1862 // Emit the code for the jump table 1863 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1864 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1865 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1866 JT.Reg, PTy); 1867 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1868 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1869 MVT::Other, Index.getValue(1), 1870 Table, Index); 1871 DAG.setRoot(BrJumpTable); 1872 } 1873 1874 /// visitJumpTableHeader - This function emits necessary code to produce index 1875 /// in the JumpTable from switch case. 1876 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1877 JumpTableHeader &JTH, 1878 MachineBasicBlock *SwitchBB) { 1879 SDLoc dl = getCurSDLoc(); 1880 1881 // Subtract the lowest switch case value from the value being switched on and 1882 // conditional branch to default mbb if the result is greater than the 1883 // difference between smallest and largest cases. 1884 SDValue SwitchOp = getValue(JTH.SValue); 1885 EVT VT = SwitchOp.getValueType(); 1886 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1887 DAG.getConstant(JTH.First, dl, VT)); 1888 1889 // The SDNode we just created, which holds the value being switched on minus 1890 // the smallest case value, needs to be copied to a virtual register so it 1891 // can be used as an index into the jump table in a subsequent basic block. 1892 // This value may be smaller or larger than the target's pointer type, and 1893 // therefore require extension or truncating. 1894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1895 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1896 1897 unsigned JumpTableReg = 1898 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1899 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1900 JumpTableReg, SwitchOp); 1901 JT.Reg = JumpTableReg; 1902 1903 // Emit the range check for the jump table, and branch to the default block 1904 // for the switch statement if the value being switched on exceeds the largest 1905 // case in the switch. 1906 SDValue CMP = DAG.getSetCC( 1907 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1908 Sub.getValueType()), 1909 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1910 1911 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1912 MVT::Other, CopyTo, CMP, 1913 DAG.getBasicBlock(JT.Default)); 1914 1915 // Avoid emitting unnecessary branches to the next block. 1916 if (JT.MBB != NextBlock(SwitchBB)) 1917 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1918 DAG.getBasicBlock(JT.MBB)); 1919 1920 DAG.setRoot(BrCond); 1921 } 1922 1923 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1924 /// tail spliced into a stack protector check success bb. 1925 /// 1926 /// For a high level explanation of how this fits into the stack protector 1927 /// generation see the comment on the declaration of class 1928 /// StackProtectorDescriptor. 1929 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1930 MachineBasicBlock *ParentBB) { 1931 1932 // First create the loads to the guard/stack slot for the comparison. 1933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1934 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1935 1936 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1937 int FI = MFI->getStackProtectorIndex(); 1938 1939 const Value *IRGuard = SPD.getGuard(); 1940 SDValue GuardPtr = getValue(IRGuard); 1941 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1942 1943 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1944 1945 SDValue Guard; 1946 SDLoc dl = getCurSDLoc(); 1947 1948 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1949 // guard value from the virtual register holding the value. Otherwise, emit a 1950 // volatile load to retrieve the stack guard value. 1951 unsigned GuardReg = SPD.getGuardReg(); 1952 1953 if (GuardReg && TLI.useLoadStackGuardNode()) 1954 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1955 PtrTy); 1956 else 1957 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1958 GuardPtr, MachinePointerInfo(IRGuard, 0), 1959 true, false, false, Align); 1960 1961 SDValue StackSlot = DAG.getLoad( 1962 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1963 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1964 false, false, Align); 1965 1966 // Perform the comparison via a subtract/getsetcc. 1967 EVT VT = Guard.getValueType(); 1968 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1969 1970 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1971 *DAG.getContext(), 1972 Sub.getValueType()), 1973 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1974 1975 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1976 // branch to failure MBB. 1977 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1978 MVT::Other, StackSlot.getOperand(0), 1979 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1980 // Otherwise branch to success MBB. 1981 SDValue Br = DAG.getNode(ISD::BR, dl, 1982 MVT::Other, BrCond, 1983 DAG.getBasicBlock(SPD.getSuccessMBB())); 1984 1985 DAG.setRoot(Br); 1986 } 1987 1988 /// Codegen the failure basic block for a stack protector check. 1989 /// 1990 /// A failure stack protector machine basic block consists simply of a call to 1991 /// __stack_chk_fail(). 1992 /// 1993 /// For a high level explanation of how this fits into the stack protector 1994 /// generation see the comment on the declaration of class 1995 /// StackProtectorDescriptor. 1996 void 1997 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1998 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1999 SDValue Chain = 2000 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2001 None, false, getCurSDLoc(), false, false).second; 2002 DAG.setRoot(Chain); 2003 } 2004 2005 /// visitBitTestHeader - This function emits necessary code to produce value 2006 /// suitable for "bit tests" 2007 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2008 MachineBasicBlock *SwitchBB) { 2009 SDLoc dl = getCurSDLoc(); 2010 2011 // Subtract the minimum value 2012 SDValue SwitchOp = getValue(B.SValue); 2013 EVT VT = SwitchOp.getValueType(); 2014 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2015 DAG.getConstant(B.First, dl, VT)); 2016 2017 // Check range 2018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2019 SDValue RangeCmp = DAG.getSetCC( 2020 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2021 Sub.getValueType()), 2022 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2023 2024 // Determine the type of the test operands. 2025 bool UsePtrType = false; 2026 if (!TLI.isTypeLegal(VT)) 2027 UsePtrType = true; 2028 else { 2029 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2030 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2031 // Switch table case range are encoded into series of masks. 2032 // Just use pointer type, it's guaranteed to fit. 2033 UsePtrType = true; 2034 break; 2035 } 2036 } 2037 if (UsePtrType) { 2038 VT = TLI.getPointerTy(DAG.getDataLayout()); 2039 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2040 } 2041 2042 B.RegVT = VT.getSimpleVT(); 2043 B.Reg = FuncInfo.CreateReg(B.RegVT); 2044 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2045 2046 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2047 2048 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2049 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2050 SwitchBB->normalizeSuccProbs(); 2051 2052 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2053 MVT::Other, CopyTo, RangeCmp, 2054 DAG.getBasicBlock(B.Default)); 2055 2056 // Avoid emitting unnecessary branches to the next block. 2057 if (MBB != NextBlock(SwitchBB)) 2058 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2059 DAG.getBasicBlock(MBB)); 2060 2061 DAG.setRoot(BrRange); 2062 } 2063 2064 /// visitBitTestCase - this function produces one "bit test" 2065 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2066 MachineBasicBlock* NextMBB, 2067 BranchProbability BranchProbToNext, 2068 unsigned Reg, 2069 BitTestCase &B, 2070 MachineBasicBlock *SwitchBB) { 2071 SDLoc dl = getCurSDLoc(); 2072 MVT VT = BB.RegVT; 2073 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2074 SDValue Cmp; 2075 unsigned PopCount = countPopulation(B.Mask); 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 if (PopCount == 1) { 2078 // Testing for a single bit; just compare the shift count with what it 2079 // would need to be to shift a 1 bit in that position. 2080 Cmp = DAG.getSetCC( 2081 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2082 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2083 ISD::SETEQ); 2084 } else if (PopCount == BB.Range) { 2085 // There is only one zero bit in the range, test for it directly. 2086 Cmp = DAG.getSetCC( 2087 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2088 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2089 ISD::SETNE); 2090 } else { 2091 // Make desired shift 2092 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2093 DAG.getConstant(1, dl, VT), ShiftOp); 2094 2095 // Emit bit tests and jumps 2096 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2097 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2098 Cmp = DAG.getSetCC( 2099 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2100 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2101 } 2102 2103 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2104 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2105 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2106 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2107 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2108 // one as they are relative probabilities (and thus work more like weights), 2109 // and hence we need to normalize them to let the sum of them become one. 2110 SwitchBB->normalizeSuccProbs(); 2111 2112 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2113 MVT::Other, getControlRoot(), 2114 Cmp, DAG.getBasicBlock(B.TargetBB)); 2115 2116 // Avoid emitting unnecessary branches to the next block. 2117 if (NextMBB != NextBlock(SwitchBB)) 2118 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2119 DAG.getBasicBlock(NextMBB)); 2120 2121 DAG.setRoot(BrAnd); 2122 } 2123 2124 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2125 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2126 2127 // Retrieve successors. Look through artificial IR level blocks like catchpads 2128 // and catchendpads for successors. 2129 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2130 const BasicBlock *EHPadBB = I.getSuccessor(1); 2131 2132 const Value *Callee(I.getCalledValue()); 2133 const Function *Fn = dyn_cast<Function>(Callee); 2134 if (isa<InlineAsm>(Callee)) 2135 visitInlineAsm(&I); 2136 else if (Fn && Fn->isIntrinsic()) { 2137 switch (Fn->getIntrinsicID()) { 2138 default: 2139 llvm_unreachable("Cannot invoke this intrinsic"); 2140 case Intrinsic::donothing: 2141 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2142 break; 2143 case Intrinsic::experimental_patchpoint_void: 2144 case Intrinsic::experimental_patchpoint_i64: 2145 visitPatchpoint(&I, EHPadBB); 2146 break; 2147 case Intrinsic::experimental_gc_statepoint: 2148 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2149 break; 2150 } 2151 } else 2152 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2153 2154 // If the value of the invoke is used outside of its defining block, make it 2155 // available as a virtual register. 2156 // We already took care of the exported value for the statepoint instruction 2157 // during call to the LowerStatepoint. 2158 if (!isStatepoint(I)) { 2159 CopyToExportRegsIfNeeded(&I); 2160 } 2161 2162 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2163 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2164 BranchProbability EHPadBBProb = 2165 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2166 : BranchProbability::getZero(); 2167 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2168 2169 // Update successor info. 2170 addSuccessorWithProb(InvokeMBB, Return); 2171 for (auto &UnwindDest : UnwindDests) { 2172 UnwindDest.first->setIsEHPad(); 2173 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2174 } 2175 InvokeMBB->normalizeSuccProbs(); 2176 2177 // Drop into normal successor. 2178 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2179 MVT::Other, getControlRoot(), 2180 DAG.getBasicBlock(Return))); 2181 } 2182 2183 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2184 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2185 } 2186 2187 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2188 assert(FuncInfo.MBB->isEHPad() && 2189 "Call to landingpad not in landing pad!"); 2190 2191 MachineBasicBlock *MBB = FuncInfo.MBB; 2192 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2193 AddLandingPadInfo(LP, MMI, MBB); 2194 2195 // If there aren't registers to copy the values into (e.g., during SjLj 2196 // exceptions), then don't bother to create these DAG nodes. 2197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2198 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2199 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2200 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2201 return; 2202 2203 SmallVector<EVT, 2> ValueVTs; 2204 SDLoc dl = getCurSDLoc(); 2205 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2206 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2207 2208 // Get the two live-in registers as SDValues. The physregs have already been 2209 // copied into virtual registers. 2210 SDValue Ops[2]; 2211 if (FuncInfo.ExceptionPointerVirtReg) { 2212 Ops[0] = DAG.getZExtOrTrunc( 2213 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2214 FuncInfo.ExceptionPointerVirtReg, 2215 TLI.getPointerTy(DAG.getDataLayout())), 2216 dl, ValueVTs[0]); 2217 } else { 2218 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2219 } 2220 Ops[1] = DAG.getZExtOrTrunc( 2221 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2222 FuncInfo.ExceptionSelectorVirtReg, 2223 TLI.getPointerTy(DAG.getDataLayout())), 2224 dl, ValueVTs[1]); 2225 2226 // Merge into one. 2227 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2228 DAG.getVTList(ValueVTs), Ops); 2229 setValue(&LP, Res); 2230 } 2231 2232 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2233 #ifndef NDEBUG 2234 for (const CaseCluster &CC : Clusters) 2235 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2236 #endif 2237 2238 std::sort(Clusters.begin(), Clusters.end(), 2239 [](const CaseCluster &a, const CaseCluster &b) { 2240 return a.Low->getValue().slt(b.Low->getValue()); 2241 }); 2242 2243 // Merge adjacent clusters with the same destination. 2244 const unsigned N = Clusters.size(); 2245 unsigned DstIndex = 0; 2246 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2247 CaseCluster &CC = Clusters[SrcIndex]; 2248 const ConstantInt *CaseVal = CC.Low; 2249 MachineBasicBlock *Succ = CC.MBB; 2250 2251 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2252 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2253 // If this case has the same successor and is a neighbour, merge it into 2254 // the previous cluster. 2255 Clusters[DstIndex - 1].High = CaseVal; 2256 Clusters[DstIndex - 1].Prob += CC.Prob; 2257 } else { 2258 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2259 sizeof(Clusters[SrcIndex])); 2260 } 2261 } 2262 Clusters.resize(DstIndex); 2263 } 2264 2265 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2266 MachineBasicBlock *Last) { 2267 // Update JTCases. 2268 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2269 if (JTCases[i].first.HeaderBB == First) 2270 JTCases[i].first.HeaderBB = Last; 2271 2272 // Update BitTestCases. 2273 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2274 if (BitTestCases[i].Parent == First) 2275 BitTestCases[i].Parent = Last; 2276 } 2277 2278 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2279 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2280 2281 // Update machine-CFG edges with unique successors. 2282 SmallSet<BasicBlock*, 32> Done; 2283 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2284 BasicBlock *BB = I.getSuccessor(i); 2285 bool Inserted = Done.insert(BB).second; 2286 if (!Inserted) 2287 continue; 2288 2289 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2290 addSuccessorWithProb(IndirectBrMBB, Succ); 2291 } 2292 2293 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2294 MVT::Other, getControlRoot(), 2295 getValue(I.getAddress()))); 2296 } 2297 2298 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2299 if (DAG.getTarget().Options.TrapUnreachable) 2300 DAG.setRoot( 2301 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2302 } 2303 2304 void SelectionDAGBuilder::visitFSub(const User &I) { 2305 // -0.0 - X --> fneg 2306 Type *Ty = I.getType(); 2307 if (isa<Constant>(I.getOperand(0)) && 2308 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2309 SDValue Op2 = getValue(I.getOperand(1)); 2310 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2311 Op2.getValueType(), Op2)); 2312 return; 2313 } 2314 2315 visitBinary(I, ISD::FSUB); 2316 } 2317 2318 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2319 SDValue Op1 = getValue(I.getOperand(0)); 2320 SDValue Op2 = getValue(I.getOperand(1)); 2321 2322 bool nuw = false; 2323 bool nsw = false; 2324 bool exact = false; 2325 FastMathFlags FMF; 2326 2327 if (const OverflowingBinaryOperator *OFBinOp = 2328 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2329 nuw = OFBinOp->hasNoUnsignedWrap(); 2330 nsw = OFBinOp->hasNoSignedWrap(); 2331 } 2332 if (const PossiblyExactOperator *ExactOp = 2333 dyn_cast<const PossiblyExactOperator>(&I)) 2334 exact = ExactOp->isExact(); 2335 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2336 FMF = FPOp->getFastMathFlags(); 2337 2338 SDNodeFlags Flags; 2339 Flags.setExact(exact); 2340 Flags.setNoSignedWrap(nsw); 2341 Flags.setNoUnsignedWrap(nuw); 2342 if (EnableFMFInDAG) { 2343 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2344 Flags.setNoInfs(FMF.noInfs()); 2345 Flags.setNoNaNs(FMF.noNaNs()); 2346 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2347 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2348 } 2349 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2350 Op1, Op2, &Flags); 2351 setValue(&I, BinNodeValue); 2352 } 2353 2354 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2355 SDValue Op1 = getValue(I.getOperand(0)); 2356 SDValue Op2 = getValue(I.getOperand(1)); 2357 2358 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2359 Op2.getValueType(), DAG.getDataLayout()); 2360 2361 // Coerce the shift amount to the right type if we can. 2362 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2363 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2364 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2365 SDLoc DL = getCurSDLoc(); 2366 2367 // If the operand is smaller than the shift count type, promote it. 2368 if (ShiftSize > Op2Size) 2369 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2370 2371 // If the operand is larger than the shift count type but the shift 2372 // count type has enough bits to represent any shift value, truncate 2373 // it now. This is a common case and it exposes the truncate to 2374 // optimization early. 2375 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2376 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2377 // Otherwise we'll need to temporarily settle for some other convenient 2378 // type. Type legalization will make adjustments once the shiftee is split. 2379 else 2380 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2381 } 2382 2383 bool nuw = false; 2384 bool nsw = false; 2385 bool exact = false; 2386 2387 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2388 2389 if (const OverflowingBinaryOperator *OFBinOp = 2390 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2391 nuw = OFBinOp->hasNoUnsignedWrap(); 2392 nsw = OFBinOp->hasNoSignedWrap(); 2393 } 2394 if (const PossiblyExactOperator *ExactOp = 2395 dyn_cast<const PossiblyExactOperator>(&I)) 2396 exact = ExactOp->isExact(); 2397 } 2398 SDNodeFlags Flags; 2399 Flags.setExact(exact); 2400 Flags.setNoSignedWrap(nsw); 2401 Flags.setNoUnsignedWrap(nuw); 2402 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2403 &Flags); 2404 setValue(&I, Res); 2405 } 2406 2407 void SelectionDAGBuilder::visitSDiv(const User &I) { 2408 SDValue Op1 = getValue(I.getOperand(0)); 2409 SDValue Op2 = getValue(I.getOperand(1)); 2410 2411 SDNodeFlags Flags; 2412 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2413 cast<PossiblyExactOperator>(&I)->isExact()); 2414 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2415 Op2, &Flags)); 2416 } 2417 2418 void SelectionDAGBuilder::visitICmp(const User &I) { 2419 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2420 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2421 predicate = IC->getPredicate(); 2422 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2423 predicate = ICmpInst::Predicate(IC->getPredicate()); 2424 SDValue Op1 = getValue(I.getOperand(0)); 2425 SDValue Op2 = getValue(I.getOperand(1)); 2426 ISD::CondCode Opcode = getICmpCondCode(predicate); 2427 2428 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2429 I.getType()); 2430 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2431 } 2432 2433 void SelectionDAGBuilder::visitFCmp(const User &I) { 2434 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2435 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2436 predicate = FC->getPredicate(); 2437 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2438 predicate = FCmpInst::Predicate(FC->getPredicate()); 2439 SDValue Op1 = getValue(I.getOperand(0)); 2440 SDValue Op2 = getValue(I.getOperand(1)); 2441 ISD::CondCode Condition = getFCmpCondCode(predicate); 2442 2443 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2444 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2445 // further optimization, but currently FMF is only applicable to binary nodes. 2446 if (TM.Options.NoNaNsFPMath) 2447 Condition = getFCmpCodeWithoutNaN(Condition); 2448 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2449 I.getType()); 2450 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2451 } 2452 2453 void SelectionDAGBuilder::visitSelect(const User &I) { 2454 SmallVector<EVT, 4> ValueVTs; 2455 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2456 ValueVTs); 2457 unsigned NumValues = ValueVTs.size(); 2458 if (NumValues == 0) return; 2459 2460 SmallVector<SDValue, 4> Values(NumValues); 2461 SDValue Cond = getValue(I.getOperand(0)); 2462 SDValue LHSVal = getValue(I.getOperand(1)); 2463 SDValue RHSVal = getValue(I.getOperand(2)); 2464 auto BaseOps = {Cond}; 2465 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2466 ISD::VSELECT : ISD::SELECT; 2467 2468 // Min/max matching is only viable if all output VTs are the same. 2469 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2470 EVT VT = ValueVTs[0]; 2471 LLVMContext &Ctx = *DAG.getContext(); 2472 auto &TLI = DAG.getTargetLoweringInfo(); 2473 2474 // We care about the legality of the operation after it has been type 2475 // legalized. 2476 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 2477 VT = TLI.getTypeToTransformTo(Ctx, VT); 2478 2479 // If the vselect is legal, assume we want to leave this as a vector setcc + 2480 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2481 // min/max is legal on the scalar type. 2482 bool UseScalarMinMax = VT.isVector() && 2483 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2484 2485 Value *LHS, *RHS; 2486 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2487 ISD::NodeType Opc = ISD::DELETED_NODE; 2488 switch (SPR.Flavor) { 2489 case SPF_UMAX: Opc = ISD::UMAX; break; 2490 case SPF_UMIN: Opc = ISD::UMIN; break; 2491 case SPF_SMAX: Opc = ISD::SMAX; break; 2492 case SPF_SMIN: Opc = ISD::SMIN; break; 2493 case SPF_FMINNUM: 2494 switch (SPR.NaNBehavior) { 2495 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2496 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2497 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2498 case SPNB_RETURNS_ANY: { 2499 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2500 Opc = ISD::FMINNUM; 2501 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2502 Opc = ISD::FMINNAN; 2503 else if (UseScalarMinMax) 2504 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2505 ISD::FMINNUM : ISD::FMINNAN; 2506 break; 2507 } 2508 } 2509 break; 2510 case SPF_FMAXNUM: 2511 switch (SPR.NaNBehavior) { 2512 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2513 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2514 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2515 case SPNB_RETURNS_ANY: 2516 2517 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2518 Opc = ISD::FMAXNUM; 2519 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2520 Opc = ISD::FMAXNAN; 2521 else if (UseScalarMinMax) 2522 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2523 ISD::FMAXNUM : ISD::FMAXNAN; 2524 break; 2525 } 2526 break; 2527 default: break; 2528 } 2529 2530 if (Opc != ISD::DELETED_NODE && 2531 (TLI.isOperationLegalOrCustom(Opc, VT) || 2532 (UseScalarMinMax && 2533 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2534 // If the underlying comparison instruction is used by any other 2535 // instruction, the consumed instructions won't be destroyed, so it is 2536 // not profitable to convert to a min/max. 2537 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2538 OpCode = Opc; 2539 LHSVal = getValue(LHS); 2540 RHSVal = getValue(RHS); 2541 BaseOps = {}; 2542 } 2543 } 2544 2545 for (unsigned i = 0; i != NumValues; ++i) { 2546 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2547 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2548 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2549 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2550 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2551 Ops); 2552 } 2553 2554 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2555 DAG.getVTList(ValueVTs), Values)); 2556 } 2557 2558 void SelectionDAGBuilder::visitTrunc(const User &I) { 2559 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2560 SDValue N = getValue(I.getOperand(0)); 2561 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2562 I.getType()); 2563 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2564 } 2565 2566 void SelectionDAGBuilder::visitZExt(const User &I) { 2567 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2568 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2569 SDValue N = getValue(I.getOperand(0)); 2570 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2571 I.getType()); 2572 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2573 } 2574 2575 void SelectionDAGBuilder::visitSExt(const User &I) { 2576 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2577 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2580 I.getType()); 2581 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2582 } 2583 2584 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2585 // FPTrunc is never a no-op cast, no need to check 2586 SDValue N = getValue(I.getOperand(0)); 2587 SDLoc dl = getCurSDLoc(); 2588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2589 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2590 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2591 DAG.getTargetConstant( 2592 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2593 } 2594 2595 void SelectionDAGBuilder::visitFPExt(const User &I) { 2596 // FPExt is never a no-op cast, no need to check 2597 SDValue N = getValue(I.getOperand(0)); 2598 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2599 I.getType()); 2600 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2601 } 2602 2603 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2604 // FPToUI is never a no-op cast, no need to check 2605 SDValue N = getValue(I.getOperand(0)); 2606 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2607 I.getType()); 2608 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2609 } 2610 2611 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2612 // FPToSI is never a no-op cast, no need to check 2613 SDValue N = getValue(I.getOperand(0)); 2614 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2615 I.getType()); 2616 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2617 } 2618 2619 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2620 // UIToFP is never a no-op cast, no need to check 2621 SDValue N = getValue(I.getOperand(0)); 2622 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2623 I.getType()); 2624 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2625 } 2626 2627 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2628 // SIToFP is never a no-op cast, no need to check 2629 SDValue N = getValue(I.getOperand(0)); 2630 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2631 I.getType()); 2632 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2633 } 2634 2635 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2636 // What to do depends on the size of the integer and the size of the pointer. 2637 // We can either truncate, zero extend, or no-op, accordingly. 2638 SDValue N = getValue(I.getOperand(0)); 2639 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2640 I.getType()); 2641 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2642 } 2643 2644 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2645 // What to do depends on the size of the integer and the size of the pointer. 2646 // We can either truncate, zero extend, or no-op, accordingly. 2647 SDValue N = getValue(I.getOperand(0)); 2648 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2649 I.getType()); 2650 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2651 } 2652 2653 void SelectionDAGBuilder::visitBitCast(const User &I) { 2654 SDValue N = getValue(I.getOperand(0)); 2655 SDLoc dl = getCurSDLoc(); 2656 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2657 I.getType()); 2658 2659 // BitCast assures us that source and destination are the same size so this is 2660 // either a BITCAST or a no-op. 2661 if (DestVT != N.getValueType()) 2662 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2663 DestVT, N)); // convert types. 2664 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2665 // might fold any kind of constant expression to an integer constant and that 2666 // is not what we are looking for. Only regcognize a bitcast of a genuine 2667 // constant integer as an opaque constant. 2668 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2669 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2670 /*isOpaque*/true)); 2671 else 2672 setValue(&I, N); // noop cast. 2673 } 2674 2675 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2677 const Value *SV = I.getOperand(0); 2678 SDValue N = getValue(SV); 2679 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2680 2681 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2682 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2683 2684 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2685 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2686 2687 setValue(&I, N); 2688 } 2689 2690 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2692 SDValue InVec = getValue(I.getOperand(0)); 2693 SDValue InVal = getValue(I.getOperand(1)); 2694 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2695 TLI.getVectorIdxTy(DAG.getDataLayout())); 2696 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2697 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2698 InVec, InVal, InIdx)); 2699 } 2700 2701 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2703 SDValue InVec = getValue(I.getOperand(0)); 2704 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2705 TLI.getVectorIdxTy(DAG.getDataLayout())); 2706 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2707 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2708 InVec, InIdx)); 2709 } 2710 2711 // Utility for visitShuffleVector - Return true if every element in Mask, 2712 // beginning from position Pos and ending in Pos+Size, falls within the 2713 // specified sequential range [L, L+Pos). or is undef. 2714 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2715 unsigned Pos, unsigned Size, int Low) { 2716 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2717 if (Mask[i] >= 0 && Mask[i] != Low) 2718 return false; 2719 return true; 2720 } 2721 2722 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2723 SDValue Src1 = getValue(I.getOperand(0)); 2724 SDValue Src2 = getValue(I.getOperand(1)); 2725 2726 SmallVector<int, 8> Mask; 2727 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2728 unsigned MaskNumElts = Mask.size(); 2729 2730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2731 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2732 EVT SrcVT = Src1.getValueType(); 2733 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2734 2735 if (SrcNumElts == MaskNumElts) { 2736 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2737 &Mask[0])); 2738 return; 2739 } 2740 2741 // Normalize the shuffle vector since mask and vector length don't match. 2742 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2743 // Mask is longer than the source vectors and is a multiple of the source 2744 // vectors. We can use concatenate vector to make the mask and vectors 2745 // lengths match. 2746 if (SrcNumElts*2 == MaskNumElts) { 2747 // First check for Src1 in low and Src2 in high 2748 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2749 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2750 // The shuffle is concatenating two vectors together. 2751 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2752 VT, Src1, Src2)); 2753 return; 2754 } 2755 // Then check for Src2 in low and Src1 in high 2756 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2757 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2758 // The shuffle is concatenating two vectors together. 2759 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2760 VT, Src2, Src1)); 2761 return; 2762 } 2763 } 2764 2765 // Pad both vectors with undefs to make them the same length as the mask. 2766 unsigned NumConcat = MaskNumElts / SrcNumElts; 2767 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2768 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2769 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2770 2771 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2772 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2773 MOps1[0] = Src1; 2774 MOps2[0] = Src2; 2775 2776 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2777 getCurSDLoc(), VT, MOps1); 2778 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2779 getCurSDLoc(), VT, MOps2); 2780 2781 // Readjust mask for new input vector length. 2782 SmallVector<int, 8> MappedOps; 2783 for (unsigned i = 0; i != MaskNumElts; ++i) { 2784 int Idx = Mask[i]; 2785 if (Idx >= (int)SrcNumElts) 2786 Idx -= SrcNumElts - MaskNumElts; 2787 MappedOps.push_back(Idx); 2788 } 2789 2790 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2791 &MappedOps[0])); 2792 return; 2793 } 2794 2795 if (SrcNumElts > MaskNumElts) { 2796 // Analyze the access pattern of the vector to see if we can extract 2797 // two subvectors and do the shuffle. The analysis is done by calculating 2798 // the range of elements the mask access on both vectors. 2799 int MinRange[2] = { static_cast<int>(SrcNumElts), 2800 static_cast<int>(SrcNumElts)}; 2801 int MaxRange[2] = {-1, -1}; 2802 2803 for (unsigned i = 0; i != MaskNumElts; ++i) { 2804 int Idx = Mask[i]; 2805 unsigned Input = 0; 2806 if (Idx < 0) 2807 continue; 2808 2809 if (Idx >= (int)SrcNumElts) { 2810 Input = 1; 2811 Idx -= SrcNumElts; 2812 } 2813 if (Idx > MaxRange[Input]) 2814 MaxRange[Input] = Idx; 2815 if (Idx < MinRange[Input]) 2816 MinRange[Input] = Idx; 2817 } 2818 2819 // Check if the access is smaller than the vector size and can we find 2820 // a reasonable extract index. 2821 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2822 // Extract. 2823 int StartIdx[2]; // StartIdx to extract from 2824 for (unsigned Input = 0; Input < 2; ++Input) { 2825 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2826 RangeUse[Input] = 0; // Unused 2827 StartIdx[Input] = 0; 2828 continue; 2829 } 2830 2831 // Find a good start index that is a multiple of the mask length. Then 2832 // see if the rest of the elements are in range. 2833 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2834 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2835 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2836 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2837 } 2838 2839 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2840 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2841 return; 2842 } 2843 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2844 // Extract appropriate subvector and generate a vector shuffle 2845 for (unsigned Input = 0; Input < 2; ++Input) { 2846 SDValue &Src = Input == 0 ? Src1 : Src2; 2847 if (RangeUse[Input] == 0) 2848 Src = DAG.getUNDEF(VT); 2849 else { 2850 SDLoc dl = getCurSDLoc(); 2851 Src = DAG.getNode( 2852 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2853 DAG.getConstant(StartIdx[Input], dl, 2854 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2855 } 2856 } 2857 2858 // Calculate new mask. 2859 SmallVector<int, 8> MappedOps; 2860 for (unsigned i = 0; i != MaskNumElts; ++i) { 2861 int Idx = Mask[i]; 2862 if (Idx >= 0) { 2863 if (Idx < (int)SrcNumElts) 2864 Idx -= StartIdx[0]; 2865 else 2866 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2867 } 2868 MappedOps.push_back(Idx); 2869 } 2870 2871 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2872 &MappedOps[0])); 2873 return; 2874 } 2875 } 2876 2877 // We can't use either concat vectors or extract subvectors so fall back to 2878 // replacing the shuffle with extract and build vector. 2879 // to insert and build vector. 2880 EVT EltVT = VT.getVectorElementType(); 2881 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2882 SDLoc dl = getCurSDLoc(); 2883 SmallVector<SDValue,8> Ops; 2884 for (unsigned i = 0; i != MaskNumElts; ++i) { 2885 int Idx = Mask[i]; 2886 SDValue Res; 2887 2888 if (Idx < 0) { 2889 Res = DAG.getUNDEF(EltVT); 2890 } else { 2891 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2892 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2893 2894 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2895 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2896 } 2897 2898 Ops.push_back(Res); 2899 } 2900 2901 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2902 } 2903 2904 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2905 const Value *Op0 = I.getOperand(0); 2906 const Value *Op1 = I.getOperand(1); 2907 Type *AggTy = I.getType(); 2908 Type *ValTy = Op1->getType(); 2909 bool IntoUndef = isa<UndefValue>(Op0); 2910 bool FromUndef = isa<UndefValue>(Op1); 2911 2912 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2913 2914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2915 SmallVector<EVT, 4> AggValueVTs; 2916 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2917 SmallVector<EVT, 4> ValValueVTs; 2918 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2919 2920 unsigned NumAggValues = AggValueVTs.size(); 2921 unsigned NumValValues = ValValueVTs.size(); 2922 SmallVector<SDValue, 4> Values(NumAggValues); 2923 2924 // Ignore an insertvalue that produces an empty object 2925 if (!NumAggValues) { 2926 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2927 return; 2928 } 2929 2930 SDValue Agg = getValue(Op0); 2931 unsigned i = 0; 2932 // Copy the beginning value(s) from the original aggregate. 2933 for (; i != LinearIndex; ++i) 2934 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2935 SDValue(Agg.getNode(), Agg.getResNo() + i); 2936 // Copy values from the inserted value(s). 2937 if (NumValValues) { 2938 SDValue Val = getValue(Op1); 2939 for (; i != LinearIndex + NumValValues; ++i) 2940 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2941 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2942 } 2943 // Copy remaining value(s) from the original aggregate. 2944 for (; i != NumAggValues; ++i) 2945 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2946 SDValue(Agg.getNode(), Agg.getResNo() + i); 2947 2948 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2949 DAG.getVTList(AggValueVTs), Values)); 2950 } 2951 2952 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2953 const Value *Op0 = I.getOperand(0); 2954 Type *AggTy = Op0->getType(); 2955 Type *ValTy = I.getType(); 2956 bool OutOfUndef = isa<UndefValue>(Op0); 2957 2958 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2959 2960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2961 SmallVector<EVT, 4> ValValueVTs; 2962 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2963 2964 unsigned NumValValues = ValValueVTs.size(); 2965 2966 // Ignore a extractvalue that produces an empty object 2967 if (!NumValValues) { 2968 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2969 return; 2970 } 2971 2972 SmallVector<SDValue, 4> Values(NumValValues); 2973 2974 SDValue Agg = getValue(Op0); 2975 // Copy out the selected value(s). 2976 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2977 Values[i - LinearIndex] = 2978 OutOfUndef ? 2979 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2980 SDValue(Agg.getNode(), Agg.getResNo() + i); 2981 2982 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2983 DAG.getVTList(ValValueVTs), Values)); 2984 } 2985 2986 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2987 Value *Op0 = I.getOperand(0); 2988 // Note that the pointer operand may be a vector of pointers. Take the scalar 2989 // element which holds a pointer. 2990 Type *Ty = Op0->getType()->getScalarType(); 2991 unsigned AS = Ty->getPointerAddressSpace(); 2992 SDValue N = getValue(Op0); 2993 SDLoc dl = getCurSDLoc(); 2994 2995 // Normalize Vector GEP - all scalar operands should be converted to the 2996 // splat vector. 2997 unsigned VectorWidth = I.getType()->isVectorTy() ? 2998 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2999 3000 if (VectorWidth && !N.getValueType().isVector()) { 3001 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3002 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3003 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3004 } 3005 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3006 OI != E; ++OI) { 3007 const Value *Idx = *OI; 3008 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3009 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3010 if (Field) { 3011 // N = N + Offset 3012 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3013 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3014 DAG.getConstant(Offset, dl, N.getValueType())); 3015 } 3016 3017 Ty = StTy->getElementType(Field); 3018 } else { 3019 Ty = cast<SequentialType>(Ty)->getElementType(); 3020 MVT PtrTy = 3021 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3022 unsigned PtrSize = PtrTy.getSizeInBits(); 3023 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3024 3025 // If this is a scalar constant or a splat vector of constants, 3026 // handle it quickly. 3027 const auto *CI = dyn_cast<ConstantInt>(Idx); 3028 if (!CI && isa<ConstantDataVector>(Idx) && 3029 cast<ConstantDataVector>(Idx)->getSplatValue()) 3030 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3031 3032 if (CI) { 3033 if (CI->isZero()) 3034 continue; 3035 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3036 SDValue OffsVal = VectorWidth ? 3037 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3038 DAG.getConstant(Offs, dl, PtrTy); 3039 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3040 continue; 3041 } 3042 3043 // N = N + Idx * ElementSize; 3044 SDValue IdxN = getValue(Idx); 3045 3046 if (!IdxN.getValueType().isVector() && VectorWidth) { 3047 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3048 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3049 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3050 } 3051 // If the index is smaller or larger than intptr_t, truncate or extend 3052 // it. 3053 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3054 3055 // If this is a multiply by a power of two, turn it into a shl 3056 // immediately. This is a very common case. 3057 if (ElementSize != 1) { 3058 if (ElementSize.isPowerOf2()) { 3059 unsigned Amt = ElementSize.logBase2(); 3060 IdxN = DAG.getNode(ISD::SHL, dl, 3061 N.getValueType(), IdxN, 3062 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3063 } else { 3064 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3065 IdxN = DAG.getNode(ISD::MUL, dl, 3066 N.getValueType(), IdxN, Scale); 3067 } 3068 } 3069 3070 N = DAG.getNode(ISD::ADD, dl, 3071 N.getValueType(), N, IdxN); 3072 } 3073 } 3074 3075 setValue(&I, N); 3076 } 3077 3078 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3079 // If this is a fixed sized alloca in the entry block of the function, 3080 // allocate it statically on the stack. 3081 if (FuncInfo.StaticAllocaMap.count(&I)) 3082 return; // getValue will auto-populate this. 3083 3084 SDLoc dl = getCurSDLoc(); 3085 Type *Ty = I.getAllocatedType(); 3086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3087 auto &DL = DAG.getDataLayout(); 3088 uint64_t TySize = DL.getTypeAllocSize(Ty); 3089 unsigned Align = 3090 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3091 3092 SDValue AllocSize = getValue(I.getArraySize()); 3093 3094 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3095 if (AllocSize.getValueType() != IntPtr) 3096 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3097 3098 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3099 AllocSize, 3100 DAG.getConstant(TySize, dl, IntPtr)); 3101 3102 // Handle alignment. If the requested alignment is less than or equal to 3103 // the stack alignment, ignore it. If the size is greater than or equal to 3104 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3105 unsigned StackAlign = 3106 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3107 if (Align <= StackAlign) 3108 Align = 0; 3109 3110 // Round the size of the allocation up to the stack alignment size 3111 // by add SA-1 to the size. 3112 AllocSize = DAG.getNode(ISD::ADD, dl, 3113 AllocSize.getValueType(), AllocSize, 3114 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3115 3116 // Mask out the low bits for alignment purposes. 3117 AllocSize = DAG.getNode(ISD::AND, dl, 3118 AllocSize.getValueType(), AllocSize, 3119 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3120 dl)); 3121 3122 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3123 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3124 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3125 setValue(&I, DSA); 3126 DAG.setRoot(DSA.getValue(1)); 3127 3128 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3129 } 3130 3131 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3132 if (I.isAtomic()) 3133 return visitAtomicLoad(I); 3134 3135 const Value *SV = I.getOperand(0); 3136 SDValue Ptr = getValue(SV); 3137 3138 Type *Ty = I.getType(); 3139 3140 bool isVolatile = I.isVolatile(); 3141 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3142 3143 // The IR notion of invariant_load only guarantees that all *non-faulting* 3144 // invariant loads result in the same value. The MI notion of invariant load 3145 // guarantees that the load can be legally moved to any location within its 3146 // containing function. The MI notion of invariant_load is stronger than the 3147 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3148 // with a guarantee that the location being loaded from is dereferenceable 3149 // throughout the function's lifetime. 3150 3151 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3152 isDereferenceablePointer(SV, DAG.getDataLayout()); 3153 unsigned Alignment = I.getAlignment(); 3154 3155 AAMDNodes AAInfo; 3156 I.getAAMetadata(AAInfo); 3157 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3158 3159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3160 SmallVector<EVT, 4> ValueVTs; 3161 SmallVector<uint64_t, 4> Offsets; 3162 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3163 unsigned NumValues = ValueVTs.size(); 3164 if (NumValues == 0) 3165 return; 3166 3167 SDValue Root; 3168 bool ConstantMemory = false; 3169 if (isVolatile || NumValues > MaxParallelChains) 3170 // Serialize volatile loads with other side effects. 3171 Root = getRoot(); 3172 else if (AA->pointsToConstantMemory(MemoryLocation( 3173 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3174 // Do not serialize (non-volatile) loads of constant memory with anything. 3175 Root = DAG.getEntryNode(); 3176 ConstantMemory = true; 3177 } else { 3178 // Do not serialize non-volatile loads against each other. 3179 Root = DAG.getRoot(); 3180 } 3181 3182 SDLoc dl = getCurSDLoc(); 3183 3184 if (isVolatile) 3185 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3186 3187 SmallVector<SDValue, 4> Values(NumValues); 3188 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3189 EVT PtrVT = Ptr.getValueType(); 3190 unsigned ChainI = 0; 3191 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3192 // Serializing loads here may result in excessive register pressure, and 3193 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3194 // could recover a bit by hoisting nodes upward in the chain by recognizing 3195 // they are side-effect free or do not alias. The optimizer should really 3196 // avoid this case by converting large object/array copies to llvm.memcpy 3197 // (MaxParallelChains should always remain as failsafe). 3198 if (ChainI == MaxParallelChains) { 3199 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3200 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3201 makeArrayRef(Chains.data(), ChainI)); 3202 Root = Chain; 3203 ChainI = 0; 3204 } 3205 SDValue A = DAG.getNode(ISD::ADD, dl, 3206 PtrVT, Ptr, 3207 DAG.getConstant(Offsets[i], dl, PtrVT)); 3208 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3209 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3210 isNonTemporal, isInvariant, Alignment, AAInfo, 3211 Ranges); 3212 3213 Values[i] = L; 3214 Chains[ChainI] = L.getValue(1); 3215 } 3216 3217 if (!ConstantMemory) { 3218 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3219 makeArrayRef(Chains.data(), ChainI)); 3220 if (isVolatile) 3221 DAG.setRoot(Chain); 3222 else 3223 PendingLoads.push_back(Chain); 3224 } 3225 3226 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3227 DAG.getVTList(ValueVTs), Values)); 3228 } 3229 3230 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3231 if (I.isAtomic()) 3232 return visitAtomicStore(I); 3233 3234 const Value *SrcV = I.getOperand(0); 3235 const Value *PtrV = I.getOperand(1); 3236 3237 SmallVector<EVT, 4> ValueVTs; 3238 SmallVector<uint64_t, 4> Offsets; 3239 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3240 SrcV->getType(), ValueVTs, &Offsets); 3241 unsigned NumValues = ValueVTs.size(); 3242 if (NumValues == 0) 3243 return; 3244 3245 // Get the lowered operands. Note that we do this after 3246 // checking if NumResults is zero, because with zero results 3247 // the operands won't have values in the map. 3248 SDValue Src = getValue(SrcV); 3249 SDValue Ptr = getValue(PtrV); 3250 3251 SDValue Root = getRoot(); 3252 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3253 EVT PtrVT = Ptr.getValueType(); 3254 bool isVolatile = I.isVolatile(); 3255 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3256 unsigned Alignment = I.getAlignment(); 3257 SDLoc dl = getCurSDLoc(); 3258 3259 AAMDNodes AAInfo; 3260 I.getAAMetadata(AAInfo); 3261 3262 unsigned ChainI = 0; 3263 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3264 // See visitLoad comments. 3265 if (ChainI == MaxParallelChains) { 3266 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3267 makeArrayRef(Chains.data(), ChainI)); 3268 Root = Chain; 3269 ChainI = 0; 3270 } 3271 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3272 DAG.getConstant(Offsets[i], dl, PtrVT)); 3273 SDValue St = DAG.getStore(Root, dl, 3274 SDValue(Src.getNode(), Src.getResNo() + i), 3275 Add, MachinePointerInfo(PtrV, Offsets[i]), 3276 isVolatile, isNonTemporal, Alignment, AAInfo); 3277 Chains[ChainI] = St; 3278 } 3279 3280 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3281 makeArrayRef(Chains.data(), ChainI)); 3282 DAG.setRoot(StoreNode); 3283 } 3284 3285 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3286 SDLoc sdl = getCurSDLoc(); 3287 3288 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3289 Value *PtrOperand = I.getArgOperand(1); 3290 SDValue Ptr = getValue(PtrOperand); 3291 SDValue Src0 = getValue(I.getArgOperand(0)); 3292 SDValue Mask = getValue(I.getArgOperand(3)); 3293 EVT VT = Src0.getValueType(); 3294 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3295 if (!Alignment) 3296 Alignment = DAG.getEVTAlignment(VT); 3297 3298 AAMDNodes AAInfo; 3299 I.getAAMetadata(AAInfo); 3300 3301 MachineMemOperand *MMO = 3302 DAG.getMachineFunction(). 3303 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3304 MachineMemOperand::MOStore, VT.getStoreSize(), 3305 Alignment, AAInfo); 3306 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3307 MMO, false); 3308 DAG.setRoot(StoreNode); 3309 setValue(&I, StoreNode); 3310 } 3311 3312 // Get a uniform base for the Gather/Scatter intrinsic. 3313 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3314 // We try to represent it as a base pointer + vector of indices. 3315 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3316 // The first operand of the GEP may be a single pointer or a vector of pointers 3317 // Example: 3318 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3319 // or 3320 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3321 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3322 // 3323 // When the first GEP operand is a single pointer - it is the uniform base we 3324 // are looking for. If first operand of the GEP is a splat vector - we 3325 // extract the spalt value and use it as a uniform base. 3326 // In all other cases the function returns 'false'. 3327 // 3328 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3329 SelectionDAGBuilder* SDB) { 3330 3331 SelectionDAG& DAG = SDB->DAG; 3332 LLVMContext &Context = *DAG.getContext(); 3333 3334 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3335 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3336 if (!GEP || GEP->getNumOperands() > 2) 3337 return false; 3338 3339 const Value *GEPPtr = GEP->getPointerOperand(); 3340 if (!GEPPtr->getType()->isVectorTy()) 3341 Ptr = GEPPtr; 3342 else if (!(Ptr = getSplatValue(GEPPtr))) 3343 return false; 3344 3345 Value *IndexVal = GEP->getOperand(1); 3346 3347 // The operands of the GEP may be defined in another basic block. 3348 // In this case we'll not find nodes for the operands. 3349 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3350 return false; 3351 3352 Base = SDB->getValue(Ptr); 3353 Index = SDB->getValue(IndexVal); 3354 3355 // Suppress sign extension. 3356 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3357 if (SDB->findValue(Sext->getOperand(0))) { 3358 IndexVal = Sext->getOperand(0); 3359 Index = SDB->getValue(IndexVal); 3360 } 3361 } 3362 if (!Index.getValueType().isVector()) { 3363 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3364 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3365 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3366 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3367 } 3368 return true; 3369 } 3370 3371 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3372 SDLoc sdl = getCurSDLoc(); 3373 3374 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3375 const Value *Ptr = I.getArgOperand(1); 3376 SDValue Src0 = getValue(I.getArgOperand(0)); 3377 SDValue Mask = getValue(I.getArgOperand(3)); 3378 EVT VT = Src0.getValueType(); 3379 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3380 if (!Alignment) 3381 Alignment = DAG.getEVTAlignment(VT); 3382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3383 3384 AAMDNodes AAInfo; 3385 I.getAAMetadata(AAInfo); 3386 3387 SDValue Base; 3388 SDValue Index; 3389 const Value *BasePtr = Ptr; 3390 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3391 3392 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3393 MachineMemOperand *MMO = DAG.getMachineFunction(). 3394 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3395 MachineMemOperand::MOStore, VT.getStoreSize(), 3396 Alignment, AAInfo); 3397 if (!UniformBase) { 3398 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3399 Index = getValue(Ptr); 3400 } 3401 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3402 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3403 Ops, MMO); 3404 DAG.setRoot(Scatter); 3405 setValue(&I, Scatter); 3406 } 3407 3408 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3409 SDLoc sdl = getCurSDLoc(); 3410 3411 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3412 Value *PtrOperand = I.getArgOperand(0); 3413 SDValue Ptr = getValue(PtrOperand); 3414 SDValue Src0 = getValue(I.getArgOperand(3)); 3415 SDValue Mask = getValue(I.getArgOperand(2)); 3416 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3419 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3420 if (!Alignment) 3421 Alignment = DAG.getEVTAlignment(VT); 3422 3423 AAMDNodes AAInfo; 3424 I.getAAMetadata(AAInfo); 3425 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3426 3427 SDValue InChain = DAG.getRoot(); 3428 if (AA->pointsToConstantMemory(MemoryLocation( 3429 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3430 AAInfo))) { 3431 // Do not serialize (non-volatile) loads of constant memory with anything. 3432 InChain = DAG.getEntryNode(); 3433 } 3434 3435 MachineMemOperand *MMO = 3436 DAG.getMachineFunction(). 3437 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3438 MachineMemOperand::MOLoad, VT.getStoreSize(), 3439 Alignment, AAInfo, Ranges); 3440 3441 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3442 ISD::NON_EXTLOAD); 3443 SDValue OutChain = Load.getValue(1); 3444 DAG.setRoot(OutChain); 3445 setValue(&I, Load); 3446 } 3447 3448 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3449 SDLoc sdl = getCurSDLoc(); 3450 3451 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3452 const Value *Ptr = I.getArgOperand(0); 3453 SDValue Src0 = getValue(I.getArgOperand(3)); 3454 SDValue Mask = getValue(I.getArgOperand(2)); 3455 3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3457 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3458 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3459 if (!Alignment) 3460 Alignment = DAG.getEVTAlignment(VT); 3461 3462 AAMDNodes AAInfo; 3463 I.getAAMetadata(AAInfo); 3464 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3465 3466 SDValue Root = DAG.getRoot(); 3467 SDValue Base; 3468 SDValue Index; 3469 const Value *BasePtr = Ptr; 3470 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3471 bool ConstantMemory = false; 3472 if (UniformBase && 3473 AA->pointsToConstantMemory(MemoryLocation( 3474 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3475 AAInfo))) { 3476 // Do not serialize (non-volatile) loads of constant memory with anything. 3477 Root = DAG.getEntryNode(); 3478 ConstantMemory = true; 3479 } 3480 3481 MachineMemOperand *MMO = 3482 DAG.getMachineFunction(). 3483 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3484 MachineMemOperand::MOLoad, VT.getStoreSize(), 3485 Alignment, AAInfo, Ranges); 3486 3487 if (!UniformBase) { 3488 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3489 Index = getValue(Ptr); 3490 } 3491 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3492 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3493 Ops, MMO); 3494 3495 SDValue OutChain = Gather.getValue(1); 3496 if (!ConstantMemory) 3497 PendingLoads.push_back(OutChain); 3498 setValue(&I, Gather); 3499 } 3500 3501 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3502 SDLoc dl = getCurSDLoc(); 3503 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3504 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3505 SynchronizationScope Scope = I.getSynchScope(); 3506 3507 SDValue InChain = getRoot(); 3508 3509 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3510 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3511 SDValue L = DAG.getAtomicCmpSwap( 3512 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3513 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3514 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3515 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3516 3517 SDValue OutChain = L.getValue(2); 3518 3519 setValue(&I, L); 3520 DAG.setRoot(OutChain); 3521 } 3522 3523 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3524 SDLoc dl = getCurSDLoc(); 3525 ISD::NodeType NT; 3526 switch (I.getOperation()) { 3527 default: llvm_unreachable("Unknown atomicrmw operation"); 3528 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3529 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3530 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3531 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3532 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3533 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3534 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3535 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3536 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3537 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3538 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3539 } 3540 AtomicOrdering Order = I.getOrdering(); 3541 SynchronizationScope Scope = I.getSynchScope(); 3542 3543 SDValue InChain = getRoot(); 3544 3545 SDValue L = 3546 DAG.getAtomic(NT, dl, 3547 getValue(I.getValOperand()).getSimpleValueType(), 3548 InChain, 3549 getValue(I.getPointerOperand()), 3550 getValue(I.getValOperand()), 3551 I.getPointerOperand(), 3552 /* Alignment=*/ 0, Order, Scope); 3553 3554 SDValue OutChain = L.getValue(1); 3555 3556 setValue(&I, L); 3557 DAG.setRoot(OutChain); 3558 } 3559 3560 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3561 SDLoc dl = getCurSDLoc(); 3562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3563 SDValue Ops[3]; 3564 Ops[0] = getRoot(); 3565 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3566 TLI.getPointerTy(DAG.getDataLayout())); 3567 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3568 TLI.getPointerTy(DAG.getDataLayout())); 3569 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3570 } 3571 3572 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3573 SDLoc dl = getCurSDLoc(); 3574 AtomicOrdering Order = I.getOrdering(); 3575 SynchronizationScope Scope = I.getSynchScope(); 3576 3577 SDValue InChain = getRoot(); 3578 3579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3580 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3581 3582 if (I.getAlignment() < VT.getSizeInBits() / 8) 3583 report_fatal_error("Cannot generate unaligned atomic load"); 3584 3585 MachineMemOperand *MMO = 3586 DAG.getMachineFunction(). 3587 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3588 MachineMemOperand::MOVolatile | 3589 MachineMemOperand::MOLoad, 3590 VT.getStoreSize(), 3591 I.getAlignment() ? I.getAlignment() : 3592 DAG.getEVTAlignment(VT)); 3593 3594 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3595 SDValue L = 3596 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3597 getValue(I.getPointerOperand()), MMO, 3598 Order, Scope); 3599 3600 SDValue OutChain = L.getValue(1); 3601 3602 setValue(&I, L); 3603 DAG.setRoot(OutChain); 3604 } 3605 3606 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3607 SDLoc dl = getCurSDLoc(); 3608 3609 AtomicOrdering Order = I.getOrdering(); 3610 SynchronizationScope Scope = I.getSynchScope(); 3611 3612 SDValue InChain = getRoot(); 3613 3614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3615 EVT VT = 3616 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3617 3618 if (I.getAlignment() < VT.getSizeInBits() / 8) 3619 report_fatal_error("Cannot generate unaligned atomic store"); 3620 3621 SDValue OutChain = 3622 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3623 InChain, 3624 getValue(I.getPointerOperand()), 3625 getValue(I.getValueOperand()), 3626 I.getPointerOperand(), I.getAlignment(), 3627 Order, Scope); 3628 3629 DAG.setRoot(OutChain); 3630 } 3631 3632 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3633 /// node. 3634 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3635 unsigned Intrinsic) { 3636 bool HasChain = !I.doesNotAccessMemory(); 3637 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3638 3639 // Build the operand list. 3640 SmallVector<SDValue, 8> Ops; 3641 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3642 if (OnlyLoad) { 3643 // We don't need to serialize loads against other loads. 3644 Ops.push_back(DAG.getRoot()); 3645 } else { 3646 Ops.push_back(getRoot()); 3647 } 3648 } 3649 3650 // Info is set by getTgtMemInstrinsic 3651 TargetLowering::IntrinsicInfo Info; 3652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3653 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3654 3655 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3656 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3657 Info.opc == ISD::INTRINSIC_W_CHAIN) 3658 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3659 TLI.getPointerTy(DAG.getDataLayout()))); 3660 3661 // Add all operands of the call to the operand list. 3662 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3663 SDValue Op = getValue(I.getArgOperand(i)); 3664 Ops.push_back(Op); 3665 } 3666 3667 SmallVector<EVT, 4> ValueVTs; 3668 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3669 3670 if (HasChain) 3671 ValueVTs.push_back(MVT::Other); 3672 3673 SDVTList VTs = DAG.getVTList(ValueVTs); 3674 3675 // Create the node. 3676 SDValue Result; 3677 if (IsTgtIntrinsic) { 3678 // This is target intrinsic that touches memory 3679 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3680 VTs, Ops, Info.memVT, 3681 MachinePointerInfo(Info.ptrVal, Info.offset), 3682 Info.align, Info.vol, 3683 Info.readMem, Info.writeMem, Info.size); 3684 } else if (!HasChain) { 3685 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3686 } else if (!I.getType()->isVoidTy()) { 3687 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3688 } else { 3689 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3690 } 3691 3692 if (HasChain) { 3693 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3694 if (OnlyLoad) 3695 PendingLoads.push_back(Chain); 3696 else 3697 DAG.setRoot(Chain); 3698 } 3699 3700 if (!I.getType()->isVoidTy()) { 3701 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3702 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3703 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3704 } 3705 3706 setValue(&I, Result); 3707 } 3708 } 3709 3710 /// GetSignificand - Get the significand and build it into a floating-point 3711 /// number with exponent of 1: 3712 /// 3713 /// Op = (Op & 0x007fffff) | 0x3f800000; 3714 /// 3715 /// where Op is the hexadecimal representation of floating point value. 3716 static SDValue 3717 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3718 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3719 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3720 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3721 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3722 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3723 } 3724 3725 /// GetExponent - Get the exponent: 3726 /// 3727 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3728 /// 3729 /// where Op is the hexadecimal representation of floating point value. 3730 static SDValue 3731 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3732 SDLoc dl) { 3733 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3734 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3735 SDValue t1 = DAG.getNode( 3736 ISD::SRL, dl, MVT::i32, t0, 3737 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3738 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3739 DAG.getConstant(127, dl, MVT::i32)); 3740 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3741 } 3742 3743 /// getF32Constant - Get 32-bit floating point constant. 3744 static SDValue 3745 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3746 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3747 MVT::f32); 3748 } 3749 3750 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3751 SelectionDAG &DAG) { 3752 // TODO: What fast-math-flags should be set on the floating-point nodes? 3753 3754 // IntegerPartOfX = ((int32_t)(t0); 3755 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3756 3757 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3758 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3759 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3760 3761 // IntegerPartOfX <<= 23; 3762 IntegerPartOfX = DAG.getNode( 3763 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3764 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3765 DAG.getDataLayout()))); 3766 3767 SDValue TwoToFractionalPartOfX; 3768 if (LimitFloatPrecision <= 6) { 3769 // For floating-point precision of 6: 3770 // 3771 // TwoToFractionalPartOfX = 3772 // 0.997535578f + 3773 // (0.735607626f + 0.252464424f * x) * x; 3774 // 3775 // error 0.0144103317, which is 6 bits 3776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3777 getF32Constant(DAG, 0x3e814304, dl)); 3778 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3779 getF32Constant(DAG, 0x3f3c50c8, dl)); 3780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3781 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3782 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3783 } else if (LimitFloatPrecision <= 12) { 3784 // For floating-point precision of 12: 3785 // 3786 // TwoToFractionalPartOfX = 3787 // 0.999892986f + 3788 // (0.696457318f + 3789 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3790 // 3791 // error 0.000107046256, which is 13 to 14 bits 3792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3793 getF32Constant(DAG, 0x3da235e3, dl)); 3794 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3795 getF32Constant(DAG, 0x3e65b8f3, dl)); 3796 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3797 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3798 getF32Constant(DAG, 0x3f324b07, dl)); 3799 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3800 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3801 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3802 } else { // LimitFloatPrecision <= 18 3803 // For floating-point precision of 18: 3804 // 3805 // TwoToFractionalPartOfX = 3806 // 0.999999982f + 3807 // (0.693148872f + 3808 // (0.240227044f + 3809 // (0.554906021e-1f + 3810 // (0.961591928e-2f + 3811 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3812 // error 2.47208000*10^(-7), which is better than 18 bits 3813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3814 getF32Constant(DAG, 0x3924b03e, dl)); 3815 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3816 getF32Constant(DAG, 0x3ab24b87, dl)); 3817 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3818 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3819 getF32Constant(DAG, 0x3c1d8c17, dl)); 3820 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3821 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3822 getF32Constant(DAG, 0x3d634a1d, dl)); 3823 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3824 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3825 getF32Constant(DAG, 0x3e75fe14, dl)); 3826 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3827 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3828 getF32Constant(DAG, 0x3f317234, dl)); 3829 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3830 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3831 getF32Constant(DAG, 0x3f800000, dl)); 3832 } 3833 3834 // Add the exponent into the result in integer domain. 3835 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3836 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3837 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3838 } 3839 3840 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3841 /// limited-precision mode. 3842 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3843 const TargetLowering &TLI) { 3844 if (Op.getValueType() == MVT::f32 && 3845 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3846 3847 // Put the exponent in the right bit position for later addition to the 3848 // final result: 3849 // 3850 // #define LOG2OFe 1.4426950f 3851 // t0 = Op * LOG2OFe 3852 3853 // TODO: What fast-math-flags should be set here? 3854 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3855 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3856 return getLimitedPrecisionExp2(t0, dl, DAG); 3857 } 3858 3859 // No special expansion. 3860 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3861 } 3862 3863 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3864 /// limited-precision mode. 3865 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3866 const TargetLowering &TLI) { 3867 3868 // TODO: What fast-math-flags should be set on the floating-point nodes? 3869 3870 if (Op.getValueType() == MVT::f32 && 3871 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3872 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3873 3874 // Scale the exponent by log(2) [0.69314718f]. 3875 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3876 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3877 getF32Constant(DAG, 0x3f317218, dl)); 3878 3879 // Get the significand and build it into a floating-point number with 3880 // exponent of 1. 3881 SDValue X = GetSignificand(DAG, Op1, dl); 3882 3883 SDValue LogOfMantissa; 3884 if (LimitFloatPrecision <= 6) { 3885 // For floating-point precision of 6: 3886 // 3887 // LogofMantissa = 3888 // -1.1609546f + 3889 // (1.4034025f - 0.23903021f * x) * x; 3890 // 3891 // error 0.0034276066, which is better than 8 bits 3892 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3893 getF32Constant(DAG, 0xbe74c456, dl)); 3894 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3895 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3896 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3897 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3898 getF32Constant(DAG, 0x3f949a29, dl)); 3899 } else if (LimitFloatPrecision <= 12) { 3900 // For floating-point precision of 12: 3901 // 3902 // LogOfMantissa = 3903 // -1.7417939f + 3904 // (2.8212026f + 3905 // (-1.4699568f + 3906 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3907 // 3908 // error 0.000061011436, which is 14 bits 3909 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3910 getF32Constant(DAG, 0xbd67b6d6, dl)); 3911 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3912 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3914 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3915 getF32Constant(DAG, 0x3fbc278b, dl)); 3916 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3917 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3918 getF32Constant(DAG, 0x40348e95, dl)); 3919 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3920 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3921 getF32Constant(DAG, 0x3fdef31a, dl)); 3922 } else { // LimitFloatPrecision <= 18 3923 // For floating-point precision of 18: 3924 // 3925 // LogOfMantissa = 3926 // -2.1072184f + 3927 // (4.2372794f + 3928 // (-3.7029485f + 3929 // (2.2781945f + 3930 // (-0.87823314f + 3931 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3932 // 3933 // error 0.0000023660568, which is better than 18 bits 3934 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3935 getF32Constant(DAG, 0xbc91e5ac, dl)); 3936 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3937 getF32Constant(DAG, 0x3e4350aa, dl)); 3938 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3939 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3940 getF32Constant(DAG, 0x3f60d3e3, dl)); 3941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3942 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3943 getF32Constant(DAG, 0x4011cdf0, dl)); 3944 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3945 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3946 getF32Constant(DAG, 0x406cfd1c, dl)); 3947 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3948 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3949 getF32Constant(DAG, 0x408797cb, dl)); 3950 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3951 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3952 getF32Constant(DAG, 0x4006dcab, dl)); 3953 } 3954 3955 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3956 } 3957 3958 // No special expansion. 3959 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3960 } 3961 3962 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3963 /// limited-precision mode. 3964 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3965 const TargetLowering &TLI) { 3966 3967 // TODO: What fast-math-flags should be set on the floating-point nodes? 3968 3969 if (Op.getValueType() == MVT::f32 && 3970 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3971 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3972 3973 // Get the exponent. 3974 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3975 3976 // Get the significand and build it into a floating-point number with 3977 // exponent of 1. 3978 SDValue X = GetSignificand(DAG, Op1, dl); 3979 3980 // Different possible minimax approximations of significand in 3981 // floating-point for various degrees of accuracy over [1,2]. 3982 SDValue Log2ofMantissa; 3983 if (LimitFloatPrecision <= 6) { 3984 // For floating-point precision of 6: 3985 // 3986 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3987 // 3988 // error 0.0049451742, which is more than 7 bits 3989 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3990 getF32Constant(DAG, 0xbeb08fe0, dl)); 3991 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3992 getF32Constant(DAG, 0x40019463, dl)); 3993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3994 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3995 getF32Constant(DAG, 0x3fd6633d, dl)); 3996 } else if (LimitFloatPrecision <= 12) { 3997 // For floating-point precision of 12: 3998 // 3999 // Log2ofMantissa = 4000 // -2.51285454f + 4001 // (4.07009056f + 4002 // (-2.12067489f + 4003 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4004 // 4005 // error 0.0000876136000, which is better than 13 bits 4006 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4007 getF32Constant(DAG, 0xbda7262e, dl)); 4008 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4009 getF32Constant(DAG, 0x3f25280b, dl)); 4010 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4011 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4012 getF32Constant(DAG, 0x4007b923, dl)); 4013 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4014 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4015 getF32Constant(DAG, 0x40823e2f, dl)); 4016 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4017 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4018 getF32Constant(DAG, 0x4020d29c, dl)); 4019 } else { // LimitFloatPrecision <= 18 4020 // For floating-point precision of 18: 4021 // 4022 // Log2ofMantissa = 4023 // -3.0400495f + 4024 // (6.1129976f + 4025 // (-5.3420409f + 4026 // (3.2865683f + 4027 // (-1.2669343f + 4028 // (0.27515199f - 4029 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4030 // 4031 // error 0.0000018516, which is better than 18 bits 4032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4033 getF32Constant(DAG, 0xbcd2769e, dl)); 4034 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4035 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4037 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4038 getF32Constant(DAG, 0x3fa22ae7, dl)); 4039 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4040 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4041 getF32Constant(DAG, 0x40525723, dl)); 4042 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4043 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4044 getF32Constant(DAG, 0x40aaf200, dl)); 4045 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4046 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4047 getF32Constant(DAG, 0x40c39dad, dl)); 4048 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4049 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4050 getF32Constant(DAG, 0x4042902c, dl)); 4051 } 4052 4053 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4054 } 4055 4056 // No special expansion. 4057 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4058 } 4059 4060 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4061 /// limited-precision mode. 4062 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4063 const TargetLowering &TLI) { 4064 4065 // TODO: What fast-math-flags should be set on the floating-point nodes? 4066 4067 if (Op.getValueType() == MVT::f32 && 4068 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4069 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4070 4071 // Scale the exponent by log10(2) [0.30102999f]. 4072 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4073 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4074 getF32Constant(DAG, 0x3e9a209a, dl)); 4075 4076 // Get the significand and build it into a floating-point number with 4077 // exponent of 1. 4078 SDValue X = GetSignificand(DAG, Op1, dl); 4079 4080 SDValue Log10ofMantissa; 4081 if (LimitFloatPrecision <= 6) { 4082 // For floating-point precision of 6: 4083 // 4084 // Log10ofMantissa = 4085 // -0.50419619f + 4086 // (0.60948995f - 0.10380950f * x) * x; 4087 // 4088 // error 0.0014886165, which is 6 bits 4089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4090 getF32Constant(DAG, 0xbdd49a13, dl)); 4091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4092 getF32Constant(DAG, 0x3f1c0789, dl)); 4093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4094 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4095 getF32Constant(DAG, 0x3f011300, dl)); 4096 } else if (LimitFloatPrecision <= 12) { 4097 // For floating-point precision of 12: 4098 // 4099 // Log10ofMantissa = 4100 // -0.64831180f + 4101 // (0.91751397f + 4102 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4103 // 4104 // error 0.00019228036, which is better than 12 bits 4105 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4106 getF32Constant(DAG, 0x3d431f31, dl)); 4107 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4108 getF32Constant(DAG, 0x3ea21fb2, dl)); 4109 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4110 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4111 getF32Constant(DAG, 0x3f6ae232, dl)); 4112 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4113 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4114 getF32Constant(DAG, 0x3f25f7c3, dl)); 4115 } else { // LimitFloatPrecision <= 18 4116 // For floating-point precision of 18: 4117 // 4118 // Log10ofMantissa = 4119 // -0.84299375f + 4120 // (1.5327582f + 4121 // (-1.0688956f + 4122 // (0.49102474f + 4123 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4124 // 4125 // error 0.0000037995730, which is better than 18 bits 4126 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4127 getF32Constant(DAG, 0x3c5d51ce, dl)); 4128 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4129 getF32Constant(DAG, 0x3e00685a, dl)); 4130 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4131 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4132 getF32Constant(DAG, 0x3efb6798, dl)); 4133 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4134 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4135 getF32Constant(DAG, 0x3f88d192, dl)); 4136 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4137 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4138 getF32Constant(DAG, 0x3fc4316c, dl)); 4139 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4140 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4141 getF32Constant(DAG, 0x3f57ce70, dl)); 4142 } 4143 4144 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4145 } 4146 4147 // No special expansion. 4148 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4149 } 4150 4151 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4152 /// limited-precision mode. 4153 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4154 const TargetLowering &TLI) { 4155 if (Op.getValueType() == MVT::f32 && 4156 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4157 return getLimitedPrecisionExp2(Op, dl, DAG); 4158 4159 // No special expansion. 4160 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4161 } 4162 4163 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4164 /// limited-precision mode with x == 10.0f. 4165 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4166 SelectionDAG &DAG, const TargetLowering &TLI) { 4167 bool IsExp10 = false; 4168 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4169 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4170 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4171 APFloat Ten(10.0f); 4172 IsExp10 = LHSC->isExactlyValue(Ten); 4173 } 4174 } 4175 4176 // TODO: What fast-math-flags should be set on the FMUL node? 4177 if (IsExp10) { 4178 // Put the exponent in the right bit position for later addition to the 4179 // final result: 4180 // 4181 // #define LOG2OF10 3.3219281f 4182 // t0 = Op * LOG2OF10; 4183 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4184 getF32Constant(DAG, 0x40549a78, dl)); 4185 return getLimitedPrecisionExp2(t0, dl, DAG); 4186 } 4187 4188 // No special expansion. 4189 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4190 } 4191 4192 4193 /// ExpandPowI - Expand a llvm.powi intrinsic. 4194 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4195 SelectionDAG &DAG) { 4196 // If RHS is a constant, we can expand this out to a multiplication tree, 4197 // otherwise we end up lowering to a call to __powidf2 (for example). When 4198 // optimizing for size, we only want to do this if the expansion would produce 4199 // a small number of multiplies, otherwise we do the full expansion. 4200 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4201 // Get the exponent as a positive value. 4202 unsigned Val = RHSC->getSExtValue(); 4203 if ((int)Val < 0) Val = -Val; 4204 4205 // powi(x, 0) -> 1.0 4206 if (Val == 0) 4207 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4208 4209 const Function *F = DAG.getMachineFunction().getFunction(); 4210 if (!F->optForSize() || 4211 // If optimizing for size, don't insert too many multiplies. 4212 // This inserts up to 5 multiplies. 4213 countPopulation(Val) + Log2_32(Val) < 7) { 4214 // We use the simple binary decomposition method to generate the multiply 4215 // sequence. There are more optimal ways to do this (for example, 4216 // powi(x,15) generates one more multiply than it should), but this has 4217 // the benefit of being both really simple and much better than a libcall. 4218 SDValue Res; // Logically starts equal to 1.0 4219 SDValue CurSquare = LHS; 4220 // TODO: Intrinsics should have fast-math-flags that propagate to these 4221 // nodes. 4222 while (Val) { 4223 if (Val & 1) { 4224 if (Res.getNode()) 4225 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4226 else 4227 Res = CurSquare; // 1.0*CurSquare. 4228 } 4229 4230 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4231 CurSquare, CurSquare); 4232 Val >>= 1; 4233 } 4234 4235 // If the original was negative, invert the result, producing 1/(x*x*x). 4236 if (RHSC->getSExtValue() < 0) 4237 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4238 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4239 return Res; 4240 } 4241 } 4242 4243 // Otherwise, expand to a libcall. 4244 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4245 } 4246 4247 // getUnderlyingArgReg - Find underlying register used for a truncated or 4248 // bitcasted argument. 4249 static unsigned getUnderlyingArgReg(const SDValue &N) { 4250 switch (N.getOpcode()) { 4251 case ISD::CopyFromReg: 4252 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4253 case ISD::BITCAST: 4254 case ISD::AssertZext: 4255 case ISD::AssertSext: 4256 case ISD::TRUNCATE: 4257 return getUnderlyingArgReg(N.getOperand(0)); 4258 default: 4259 return 0; 4260 } 4261 } 4262 4263 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4264 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4265 /// At the end of instruction selection, they will be inserted to the entry BB. 4266 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4267 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4268 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4269 const Argument *Arg = dyn_cast<Argument>(V); 4270 if (!Arg) 4271 return false; 4272 4273 MachineFunction &MF = DAG.getMachineFunction(); 4274 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4275 4276 // Ignore inlined function arguments here. 4277 // 4278 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4279 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4280 return false; 4281 4282 Optional<MachineOperand> Op; 4283 // Some arguments' frame index is recorded during argument lowering. 4284 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4285 Op = MachineOperand::CreateFI(FI); 4286 4287 if (!Op && N.getNode()) { 4288 unsigned Reg = getUnderlyingArgReg(N); 4289 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4290 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4291 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4292 if (PR) 4293 Reg = PR; 4294 } 4295 if (Reg) 4296 Op = MachineOperand::CreateReg(Reg, false); 4297 } 4298 4299 if (!Op) { 4300 // Check if ValueMap has reg number. 4301 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4302 if (VMI != FuncInfo.ValueMap.end()) 4303 Op = MachineOperand::CreateReg(VMI->second, false); 4304 } 4305 4306 if (!Op && N.getNode()) 4307 // Check if frame index is available. 4308 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4309 if (FrameIndexSDNode *FINode = 4310 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4311 Op = MachineOperand::CreateFI(FINode->getIndex()); 4312 4313 if (!Op) 4314 return false; 4315 4316 assert(Variable->isValidLocationForIntrinsic(DL) && 4317 "Expected inlined-at fields to agree"); 4318 if (Op->isReg()) 4319 FuncInfo.ArgDbgValues.push_back( 4320 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4321 Op->getReg(), Offset, Variable, Expr)); 4322 else 4323 FuncInfo.ArgDbgValues.push_back( 4324 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4325 .addOperand(*Op) 4326 .addImm(Offset) 4327 .addMetadata(Variable) 4328 .addMetadata(Expr)); 4329 4330 return true; 4331 } 4332 4333 // VisualStudio defines setjmp as _setjmp 4334 #if defined(_MSC_VER) && defined(setjmp) && \ 4335 !defined(setjmp_undefined_for_msvc) 4336 # pragma push_macro("setjmp") 4337 # undef setjmp 4338 # define setjmp_undefined_for_msvc 4339 #endif 4340 4341 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4342 /// we want to emit this as a call to a named external function, return the name 4343 /// otherwise lower it and return null. 4344 const char * 4345 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4347 SDLoc sdl = getCurSDLoc(); 4348 DebugLoc dl = getCurDebugLoc(); 4349 SDValue Res; 4350 4351 switch (Intrinsic) { 4352 default: 4353 // By default, turn this into a target intrinsic node. 4354 visitTargetIntrinsic(I, Intrinsic); 4355 return nullptr; 4356 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4357 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4358 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4359 case Intrinsic::returnaddress: 4360 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4361 TLI.getPointerTy(DAG.getDataLayout()), 4362 getValue(I.getArgOperand(0)))); 4363 return nullptr; 4364 case Intrinsic::frameaddress: 4365 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4366 TLI.getPointerTy(DAG.getDataLayout()), 4367 getValue(I.getArgOperand(0)))); 4368 return nullptr; 4369 case Intrinsic::read_register: { 4370 Value *Reg = I.getArgOperand(0); 4371 SDValue Chain = getRoot(); 4372 SDValue RegName = 4373 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4374 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4375 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4376 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4377 setValue(&I, Res); 4378 DAG.setRoot(Res.getValue(1)); 4379 return nullptr; 4380 } 4381 case Intrinsic::write_register: { 4382 Value *Reg = I.getArgOperand(0); 4383 Value *RegValue = I.getArgOperand(1); 4384 SDValue Chain = getRoot(); 4385 SDValue RegName = 4386 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4387 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4388 RegName, getValue(RegValue))); 4389 return nullptr; 4390 } 4391 case Intrinsic::setjmp: 4392 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4393 case Intrinsic::longjmp: 4394 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4395 case Intrinsic::memcpy: { 4396 // FIXME: this definition of "user defined address space" is x86-specific 4397 // Assert for address < 256 since we support only user defined address 4398 // spaces. 4399 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4400 < 256 && 4401 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4402 < 256 && 4403 "Unknown address space"); 4404 SDValue Op1 = getValue(I.getArgOperand(0)); 4405 SDValue Op2 = getValue(I.getArgOperand(1)); 4406 SDValue Op3 = getValue(I.getArgOperand(2)); 4407 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4408 if (!Align) 4409 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4410 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4411 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4412 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4413 false, isTC, 4414 MachinePointerInfo(I.getArgOperand(0)), 4415 MachinePointerInfo(I.getArgOperand(1))); 4416 updateDAGForMaybeTailCall(MC); 4417 return nullptr; 4418 } 4419 case Intrinsic::memset: { 4420 // FIXME: this definition of "user defined address space" is x86-specific 4421 // Assert for address < 256 since we support only user defined address 4422 // spaces. 4423 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4424 < 256 && 4425 "Unknown address space"); 4426 SDValue Op1 = getValue(I.getArgOperand(0)); 4427 SDValue Op2 = getValue(I.getArgOperand(1)); 4428 SDValue Op3 = getValue(I.getArgOperand(2)); 4429 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4430 if (!Align) 4431 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4432 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4433 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4434 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4435 isTC, MachinePointerInfo(I.getArgOperand(0))); 4436 updateDAGForMaybeTailCall(MS); 4437 return nullptr; 4438 } 4439 case Intrinsic::memmove: { 4440 // FIXME: this definition of "user defined address space" is x86-specific 4441 // Assert for address < 256 since we support only user defined address 4442 // spaces. 4443 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4444 < 256 && 4445 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4446 < 256 && 4447 "Unknown address space"); 4448 SDValue Op1 = getValue(I.getArgOperand(0)); 4449 SDValue Op2 = getValue(I.getArgOperand(1)); 4450 SDValue Op3 = getValue(I.getArgOperand(2)); 4451 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4452 if (!Align) 4453 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4454 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4455 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4456 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4457 isTC, MachinePointerInfo(I.getArgOperand(0)), 4458 MachinePointerInfo(I.getArgOperand(1))); 4459 updateDAGForMaybeTailCall(MM); 4460 return nullptr; 4461 } 4462 case Intrinsic::dbg_declare: { 4463 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4464 DILocalVariable *Variable = DI.getVariable(); 4465 DIExpression *Expression = DI.getExpression(); 4466 const Value *Address = DI.getAddress(); 4467 assert(Variable && "Missing variable"); 4468 if (!Address) { 4469 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4470 return nullptr; 4471 } 4472 4473 // Check if address has undef value. 4474 if (isa<UndefValue>(Address) || 4475 (Address->use_empty() && !isa<Argument>(Address))) { 4476 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4477 return nullptr; 4478 } 4479 4480 SDValue &N = NodeMap[Address]; 4481 if (!N.getNode() && isa<Argument>(Address)) 4482 // Check unused arguments map. 4483 N = UnusedArgNodeMap[Address]; 4484 SDDbgValue *SDV; 4485 if (N.getNode()) { 4486 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4487 Address = BCI->getOperand(0); 4488 // Parameters are handled specially. 4489 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4490 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4491 if (isParameter && FINode) { 4492 // Byval parameter. We have a frame index at this point. 4493 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4494 FINode->getIndex(), 0, dl, SDNodeOrder); 4495 } else if (isa<Argument>(Address)) { 4496 // Address is an argument, so try to emit its dbg value using 4497 // virtual register info from the FuncInfo.ValueMap. 4498 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4499 N); 4500 return nullptr; 4501 } else { 4502 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4503 true, 0, dl, SDNodeOrder); 4504 } 4505 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4506 } else { 4507 // If Address is an argument then try to emit its dbg value using 4508 // virtual register info from the FuncInfo.ValueMap. 4509 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4510 N)) { 4511 // If variable is pinned by a alloca in dominating bb then 4512 // use StaticAllocaMap. 4513 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4514 if (AI->getParent() != DI.getParent()) { 4515 DenseMap<const AllocaInst*, int>::iterator SI = 4516 FuncInfo.StaticAllocaMap.find(AI); 4517 if (SI != FuncInfo.StaticAllocaMap.end()) { 4518 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4519 0, dl, SDNodeOrder); 4520 DAG.AddDbgValue(SDV, nullptr, false); 4521 return nullptr; 4522 } 4523 } 4524 } 4525 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4526 } 4527 } 4528 return nullptr; 4529 } 4530 case Intrinsic::dbg_value: { 4531 const DbgValueInst &DI = cast<DbgValueInst>(I); 4532 assert(DI.getVariable() && "Missing variable"); 4533 4534 DILocalVariable *Variable = DI.getVariable(); 4535 DIExpression *Expression = DI.getExpression(); 4536 uint64_t Offset = DI.getOffset(); 4537 const Value *V = DI.getValue(); 4538 if (!V) 4539 return nullptr; 4540 4541 SDDbgValue *SDV; 4542 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4543 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4544 SDNodeOrder); 4545 DAG.AddDbgValue(SDV, nullptr, false); 4546 } else { 4547 // Do not use getValue() in here; we don't want to generate code at 4548 // this point if it hasn't been done yet. 4549 SDValue N = NodeMap[V]; 4550 if (!N.getNode() && isa<Argument>(V)) 4551 // Check unused arguments map. 4552 N = UnusedArgNodeMap[V]; 4553 if (N.getNode()) { 4554 // A dbg.value for an alloca is always indirect. 4555 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4556 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4557 IsIndirect, N)) { 4558 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4559 IsIndirect, Offset, dl, SDNodeOrder); 4560 DAG.AddDbgValue(SDV, N.getNode(), false); 4561 } 4562 } else if (!V->use_empty() ) { 4563 // Do not call getValue(V) yet, as we don't want to generate code. 4564 // Remember it for later. 4565 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4566 DanglingDebugInfoMap[V] = DDI; 4567 } else { 4568 // We may expand this to cover more cases. One case where we have no 4569 // data available is an unreferenced parameter. 4570 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4571 } 4572 } 4573 4574 // Build a debug info table entry. 4575 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4576 V = BCI->getOperand(0); 4577 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4578 // Don't handle byval struct arguments or VLAs, for example. 4579 if (!AI) { 4580 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4581 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4582 return nullptr; 4583 } 4584 DenseMap<const AllocaInst*, int>::iterator SI = 4585 FuncInfo.StaticAllocaMap.find(AI); 4586 if (SI == FuncInfo.StaticAllocaMap.end()) 4587 return nullptr; // VLAs. 4588 return nullptr; 4589 } 4590 4591 case Intrinsic::eh_typeid_for: { 4592 // Find the type id for the given typeinfo. 4593 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4594 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4595 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4596 setValue(&I, Res); 4597 return nullptr; 4598 } 4599 4600 case Intrinsic::eh_return_i32: 4601 case Intrinsic::eh_return_i64: 4602 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4603 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4604 MVT::Other, 4605 getControlRoot(), 4606 getValue(I.getArgOperand(0)), 4607 getValue(I.getArgOperand(1)))); 4608 return nullptr; 4609 case Intrinsic::eh_unwind_init: 4610 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4611 return nullptr; 4612 case Intrinsic::eh_dwarf_cfa: { 4613 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4614 TLI.getPointerTy(DAG.getDataLayout())); 4615 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4616 CfaArg.getValueType(), 4617 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4618 CfaArg.getValueType()), 4619 CfaArg); 4620 SDValue FA = DAG.getNode( 4621 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4622 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4623 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4624 FA, Offset)); 4625 return nullptr; 4626 } 4627 case Intrinsic::eh_sjlj_callsite: { 4628 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4629 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4630 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4631 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4632 4633 MMI.setCurrentCallSite(CI->getZExtValue()); 4634 return nullptr; 4635 } 4636 case Intrinsic::eh_sjlj_functioncontext: { 4637 // Get and store the index of the function context. 4638 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4639 AllocaInst *FnCtx = 4640 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4641 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4642 MFI->setFunctionContextIndex(FI); 4643 return nullptr; 4644 } 4645 case Intrinsic::eh_sjlj_setjmp: { 4646 SDValue Ops[2]; 4647 Ops[0] = getRoot(); 4648 Ops[1] = getValue(I.getArgOperand(0)); 4649 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4650 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4651 setValue(&I, Op.getValue(0)); 4652 DAG.setRoot(Op.getValue(1)); 4653 return nullptr; 4654 } 4655 case Intrinsic::eh_sjlj_longjmp: { 4656 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4657 getRoot(), getValue(I.getArgOperand(0)))); 4658 return nullptr; 4659 } 4660 case Intrinsic::eh_sjlj_setup_dispatch: { 4661 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4662 getRoot())); 4663 return nullptr; 4664 } 4665 4666 case Intrinsic::masked_gather: 4667 visitMaskedGather(I); 4668 return nullptr; 4669 case Intrinsic::masked_load: 4670 visitMaskedLoad(I); 4671 return nullptr; 4672 case Intrinsic::masked_scatter: 4673 visitMaskedScatter(I); 4674 return nullptr; 4675 case Intrinsic::masked_store: 4676 visitMaskedStore(I); 4677 return nullptr; 4678 case Intrinsic::x86_mmx_pslli_w: 4679 case Intrinsic::x86_mmx_pslli_d: 4680 case Intrinsic::x86_mmx_pslli_q: 4681 case Intrinsic::x86_mmx_psrli_w: 4682 case Intrinsic::x86_mmx_psrli_d: 4683 case Intrinsic::x86_mmx_psrli_q: 4684 case Intrinsic::x86_mmx_psrai_w: 4685 case Intrinsic::x86_mmx_psrai_d: { 4686 SDValue ShAmt = getValue(I.getArgOperand(1)); 4687 if (isa<ConstantSDNode>(ShAmt)) { 4688 visitTargetIntrinsic(I, Intrinsic); 4689 return nullptr; 4690 } 4691 unsigned NewIntrinsic = 0; 4692 EVT ShAmtVT = MVT::v2i32; 4693 switch (Intrinsic) { 4694 case Intrinsic::x86_mmx_pslli_w: 4695 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4696 break; 4697 case Intrinsic::x86_mmx_pslli_d: 4698 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4699 break; 4700 case Intrinsic::x86_mmx_pslli_q: 4701 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4702 break; 4703 case Intrinsic::x86_mmx_psrli_w: 4704 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4705 break; 4706 case Intrinsic::x86_mmx_psrli_d: 4707 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4708 break; 4709 case Intrinsic::x86_mmx_psrli_q: 4710 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4711 break; 4712 case Intrinsic::x86_mmx_psrai_w: 4713 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4714 break; 4715 case Intrinsic::x86_mmx_psrai_d: 4716 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4717 break; 4718 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4719 } 4720 4721 // The vector shift intrinsics with scalars uses 32b shift amounts but 4722 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4723 // to be zero. 4724 // We must do this early because v2i32 is not a legal type. 4725 SDValue ShOps[2]; 4726 ShOps[0] = ShAmt; 4727 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4728 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4729 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4730 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4731 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4732 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4733 getValue(I.getArgOperand(0)), ShAmt); 4734 setValue(&I, Res); 4735 return nullptr; 4736 } 4737 case Intrinsic::convertff: 4738 case Intrinsic::convertfsi: 4739 case Intrinsic::convertfui: 4740 case Intrinsic::convertsif: 4741 case Intrinsic::convertuif: 4742 case Intrinsic::convertss: 4743 case Intrinsic::convertsu: 4744 case Intrinsic::convertus: 4745 case Intrinsic::convertuu: { 4746 ISD::CvtCode Code = ISD::CVT_INVALID; 4747 switch (Intrinsic) { 4748 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4749 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4750 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4751 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4752 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4753 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4754 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4755 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4756 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4757 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4758 } 4759 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4760 const Value *Op1 = I.getArgOperand(0); 4761 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4762 DAG.getValueType(DestVT), 4763 DAG.getValueType(getValue(Op1).getValueType()), 4764 getValue(I.getArgOperand(1)), 4765 getValue(I.getArgOperand(2)), 4766 Code); 4767 setValue(&I, Res); 4768 return nullptr; 4769 } 4770 case Intrinsic::powi: 4771 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4772 getValue(I.getArgOperand(1)), DAG)); 4773 return nullptr; 4774 case Intrinsic::log: 4775 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4776 return nullptr; 4777 case Intrinsic::log2: 4778 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4779 return nullptr; 4780 case Intrinsic::log10: 4781 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4782 return nullptr; 4783 case Intrinsic::exp: 4784 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4785 return nullptr; 4786 case Intrinsic::exp2: 4787 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4788 return nullptr; 4789 case Intrinsic::pow: 4790 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4791 getValue(I.getArgOperand(1)), DAG, TLI)); 4792 return nullptr; 4793 case Intrinsic::sqrt: 4794 case Intrinsic::fabs: 4795 case Intrinsic::sin: 4796 case Intrinsic::cos: 4797 case Intrinsic::floor: 4798 case Intrinsic::ceil: 4799 case Intrinsic::trunc: 4800 case Intrinsic::rint: 4801 case Intrinsic::nearbyint: 4802 case Intrinsic::round: { 4803 unsigned Opcode; 4804 switch (Intrinsic) { 4805 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4806 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4807 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4808 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4809 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4810 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4811 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4812 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4813 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4814 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4815 case Intrinsic::round: Opcode = ISD::FROUND; break; 4816 } 4817 4818 setValue(&I, DAG.getNode(Opcode, sdl, 4819 getValue(I.getArgOperand(0)).getValueType(), 4820 getValue(I.getArgOperand(0)))); 4821 return nullptr; 4822 } 4823 case Intrinsic::minnum: 4824 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4825 getValue(I.getArgOperand(0)).getValueType(), 4826 getValue(I.getArgOperand(0)), 4827 getValue(I.getArgOperand(1)))); 4828 return nullptr; 4829 case Intrinsic::maxnum: 4830 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4831 getValue(I.getArgOperand(0)).getValueType(), 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1)))); 4834 return nullptr; 4835 case Intrinsic::copysign: 4836 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4837 getValue(I.getArgOperand(0)).getValueType(), 4838 getValue(I.getArgOperand(0)), 4839 getValue(I.getArgOperand(1)))); 4840 return nullptr; 4841 case Intrinsic::fma: 4842 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4843 getValue(I.getArgOperand(0)).getValueType(), 4844 getValue(I.getArgOperand(0)), 4845 getValue(I.getArgOperand(1)), 4846 getValue(I.getArgOperand(2)))); 4847 return nullptr; 4848 case Intrinsic::fmuladd: { 4849 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4850 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4851 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4852 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4853 getValue(I.getArgOperand(0)).getValueType(), 4854 getValue(I.getArgOperand(0)), 4855 getValue(I.getArgOperand(1)), 4856 getValue(I.getArgOperand(2)))); 4857 } else { 4858 // TODO: Intrinsic calls should have fast-math-flags. 4859 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4860 getValue(I.getArgOperand(0)).getValueType(), 4861 getValue(I.getArgOperand(0)), 4862 getValue(I.getArgOperand(1))); 4863 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4864 getValue(I.getArgOperand(0)).getValueType(), 4865 Mul, 4866 getValue(I.getArgOperand(2))); 4867 setValue(&I, Add); 4868 } 4869 return nullptr; 4870 } 4871 case Intrinsic::convert_to_fp16: 4872 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4873 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4874 getValue(I.getArgOperand(0)), 4875 DAG.getTargetConstant(0, sdl, 4876 MVT::i32)))); 4877 return nullptr; 4878 case Intrinsic::convert_from_fp16: 4879 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4880 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4881 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4882 getValue(I.getArgOperand(0))))); 4883 return nullptr; 4884 case Intrinsic::pcmarker: { 4885 SDValue Tmp = getValue(I.getArgOperand(0)); 4886 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4887 return nullptr; 4888 } 4889 case Intrinsic::readcyclecounter: { 4890 SDValue Op = getRoot(); 4891 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4892 DAG.getVTList(MVT::i64, MVT::Other), Op); 4893 setValue(&I, Res); 4894 DAG.setRoot(Res.getValue(1)); 4895 return nullptr; 4896 } 4897 case Intrinsic::bitreverse: 4898 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4899 getValue(I.getArgOperand(0)).getValueType(), 4900 getValue(I.getArgOperand(0)))); 4901 return nullptr; 4902 case Intrinsic::bswap: 4903 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4904 getValue(I.getArgOperand(0)).getValueType(), 4905 getValue(I.getArgOperand(0)))); 4906 return nullptr; 4907 case Intrinsic::cttz: { 4908 SDValue Arg = getValue(I.getArgOperand(0)); 4909 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4910 EVT Ty = Arg.getValueType(); 4911 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4912 sdl, Ty, Arg)); 4913 return nullptr; 4914 } 4915 case Intrinsic::ctlz: { 4916 SDValue Arg = getValue(I.getArgOperand(0)); 4917 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4918 EVT Ty = Arg.getValueType(); 4919 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4920 sdl, Ty, Arg)); 4921 return nullptr; 4922 } 4923 case Intrinsic::ctpop: { 4924 SDValue Arg = getValue(I.getArgOperand(0)); 4925 EVT Ty = Arg.getValueType(); 4926 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4927 return nullptr; 4928 } 4929 case Intrinsic::stacksave: { 4930 SDValue Op = getRoot(); 4931 Res = DAG.getNode( 4932 ISD::STACKSAVE, sdl, 4933 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4934 setValue(&I, Res); 4935 DAG.setRoot(Res.getValue(1)); 4936 return nullptr; 4937 } 4938 case Intrinsic::stackrestore: { 4939 Res = getValue(I.getArgOperand(0)); 4940 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4941 return nullptr; 4942 } 4943 case Intrinsic::get_dynamic_area_offset: { 4944 SDValue Op = getRoot(); 4945 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4946 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4947 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4948 // target. 4949 if (PtrTy != ResTy) 4950 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4951 " intrinsic!"); 4952 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4953 Op); 4954 DAG.setRoot(Op); 4955 setValue(&I, Res); 4956 return nullptr; 4957 } 4958 case Intrinsic::stackprotector: { 4959 // Emit code into the DAG to store the stack guard onto the stack. 4960 MachineFunction &MF = DAG.getMachineFunction(); 4961 MachineFrameInfo *MFI = MF.getFrameInfo(); 4962 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4963 SDValue Src, Chain = getRoot(); 4964 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4965 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4966 4967 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4968 // global variable __stack_chk_guard. 4969 if (!GV) 4970 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4971 if (BC->getOpcode() == Instruction::BitCast) 4972 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4973 4974 if (GV && TLI.useLoadStackGuardNode()) { 4975 // Emit a LOAD_STACK_GUARD node. 4976 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4977 sdl, PtrTy, Chain); 4978 MachinePointerInfo MPInfo(GV); 4979 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4980 unsigned Flags = MachineMemOperand::MOLoad | 4981 MachineMemOperand::MOInvariant; 4982 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4983 PtrTy.getSizeInBits() / 8, 4984 DAG.getEVTAlignment(PtrTy)); 4985 Node->setMemRefs(MemRefs, MemRefs + 1); 4986 4987 // Copy the guard value to a virtual register so that it can be 4988 // retrieved in the epilogue. 4989 Src = SDValue(Node, 0); 4990 const TargetRegisterClass *RC = 4991 TLI.getRegClassFor(Src.getSimpleValueType()); 4992 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4993 4994 SPDescriptor.setGuardReg(Reg); 4995 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4996 } else { 4997 Src = getValue(I.getArgOperand(0)); // The guard's value. 4998 } 4999 5000 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5001 5002 int FI = FuncInfo.StaticAllocaMap[Slot]; 5003 MFI->setStackProtectorIndex(FI); 5004 5005 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5006 5007 // Store the stack protector onto the stack. 5008 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5009 DAG.getMachineFunction(), FI), 5010 true, false, 0); 5011 setValue(&I, Res); 5012 DAG.setRoot(Res); 5013 return nullptr; 5014 } 5015 case Intrinsic::objectsize: { 5016 // If we don't know by now, we're never going to know. 5017 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5018 5019 assert(CI && "Non-constant type in __builtin_object_size?"); 5020 5021 SDValue Arg = getValue(I.getCalledValue()); 5022 EVT Ty = Arg.getValueType(); 5023 5024 if (CI->isZero()) 5025 Res = DAG.getConstant(-1ULL, sdl, Ty); 5026 else 5027 Res = DAG.getConstant(0, sdl, Ty); 5028 5029 setValue(&I, Res); 5030 return nullptr; 5031 } 5032 case Intrinsic::annotation: 5033 case Intrinsic::ptr_annotation: 5034 // Drop the intrinsic, but forward the value 5035 setValue(&I, getValue(I.getOperand(0))); 5036 return nullptr; 5037 case Intrinsic::assume: 5038 case Intrinsic::var_annotation: 5039 // Discard annotate attributes and assumptions 5040 return nullptr; 5041 5042 case Intrinsic::init_trampoline: { 5043 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5044 5045 SDValue Ops[6]; 5046 Ops[0] = getRoot(); 5047 Ops[1] = getValue(I.getArgOperand(0)); 5048 Ops[2] = getValue(I.getArgOperand(1)); 5049 Ops[3] = getValue(I.getArgOperand(2)); 5050 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5051 Ops[5] = DAG.getSrcValue(F); 5052 5053 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5054 5055 DAG.setRoot(Res); 5056 return nullptr; 5057 } 5058 case Intrinsic::adjust_trampoline: { 5059 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5060 TLI.getPointerTy(DAG.getDataLayout()), 5061 getValue(I.getArgOperand(0)))); 5062 return nullptr; 5063 } 5064 case Intrinsic::gcroot: 5065 if (GFI) { 5066 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5067 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5068 5069 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5070 GFI->addStackRoot(FI->getIndex(), TypeMap); 5071 } 5072 return nullptr; 5073 case Intrinsic::gcread: 5074 case Intrinsic::gcwrite: 5075 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5076 case Intrinsic::flt_rounds: 5077 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5078 return nullptr; 5079 5080 case Intrinsic::expect: { 5081 // Just replace __builtin_expect(exp, c) with EXP. 5082 setValue(&I, getValue(I.getArgOperand(0))); 5083 return nullptr; 5084 } 5085 5086 case Intrinsic::debugtrap: 5087 case Intrinsic::trap: { 5088 StringRef TrapFuncName = 5089 I.getAttributes() 5090 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5091 .getValueAsString(); 5092 if (TrapFuncName.empty()) { 5093 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5094 ISD::TRAP : ISD::DEBUGTRAP; 5095 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5096 return nullptr; 5097 } 5098 TargetLowering::ArgListTy Args; 5099 5100 TargetLowering::CallLoweringInfo CLI(DAG); 5101 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5102 CallingConv::C, I.getType(), 5103 DAG.getExternalSymbol(TrapFuncName.data(), 5104 TLI.getPointerTy(DAG.getDataLayout())), 5105 std::move(Args), 0); 5106 5107 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5108 DAG.setRoot(Result.second); 5109 return nullptr; 5110 } 5111 5112 case Intrinsic::uadd_with_overflow: 5113 case Intrinsic::sadd_with_overflow: 5114 case Intrinsic::usub_with_overflow: 5115 case Intrinsic::ssub_with_overflow: 5116 case Intrinsic::umul_with_overflow: 5117 case Intrinsic::smul_with_overflow: { 5118 ISD::NodeType Op; 5119 switch (Intrinsic) { 5120 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5121 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5122 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5123 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5124 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5125 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5126 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5127 } 5128 SDValue Op1 = getValue(I.getArgOperand(0)); 5129 SDValue Op2 = getValue(I.getArgOperand(1)); 5130 5131 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5132 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5133 return nullptr; 5134 } 5135 case Intrinsic::prefetch: { 5136 SDValue Ops[5]; 5137 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5138 Ops[0] = getRoot(); 5139 Ops[1] = getValue(I.getArgOperand(0)); 5140 Ops[2] = getValue(I.getArgOperand(1)); 5141 Ops[3] = getValue(I.getArgOperand(2)); 5142 Ops[4] = getValue(I.getArgOperand(3)); 5143 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5144 DAG.getVTList(MVT::Other), Ops, 5145 EVT::getIntegerVT(*Context, 8), 5146 MachinePointerInfo(I.getArgOperand(0)), 5147 0, /* align */ 5148 false, /* volatile */ 5149 rw==0, /* read */ 5150 rw==1)); /* write */ 5151 return nullptr; 5152 } 5153 case Intrinsic::lifetime_start: 5154 case Intrinsic::lifetime_end: { 5155 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5156 // Stack coloring is not enabled in O0, discard region information. 5157 if (TM.getOptLevel() == CodeGenOpt::None) 5158 return nullptr; 5159 5160 SmallVector<Value *, 4> Allocas; 5161 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5162 5163 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5164 E = Allocas.end(); Object != E; ++Object) { 5165 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5166 5167 // Could not find an Alloca. 5168 if (!LifetimeObject) 5169 continue; 5170 5171 // First check that the Alloca is static, otherwise it won't have a 5172 // valid frame index. 5173 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5174 if (SI == FuncInfo.StaticAllocaMap.end()) 5175 return nullptr; 5176 5177 int FI = SI->second; 5178 5179 SDValue Ops[2]; 5180 Ops[0] = getRoot(); 5181 Ops[1] = 5182 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5183 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5184 5185 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5186 DAG.setRoot(Res); 5187 } 5188 return nullptr; 5189 } 5190 case Intrinsic::invariant_start: 5191 // Discard region information. 5192 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5193 return nullptr; 5194 case Intrinsic::invariant_end: 5195 // Discard region information. 5196 return nullptr; 5197 case Intrinsic::stackprotectorcheck: { 5198 // Do not actually emit anything for this basic block. Instead we initialize 5199 // the stack protector descriptor and export the guard variable so we can 5200 // access it in FinishBasicBlock. 5201 const BasicBlock *BB = I.getParent(); 5202 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5203 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5204 5205 // Flush our exports since we are going to process a terminator. 5206 (void)getControlRoot(); 5207 return nullptr; 5208 } 5209 case Intrinsic::clear_cache: 5210 return TLI.getClearCacheBuiltinName(); 5211 case Intrinsic::donothing: 5212 // ignore 5213 return nullptr; 5214 case Intrinsic::experimental_stackmap: { 5215 visitStackmap(I); 5216 return nullptr; 5217 } 5218 case Intrinsic::experimental_patchpoint_void: 5219 case Intrinsic::experimental_patchpoint_i64: { 5220 visitPatchpoint(&I); 5221 return nullptr; 5222 } 5223 case Intrinsic::experimental_gc_statepoint: { 5224 visitStatepoint(I); 5225 return nullptr; 5226 } 5227 case Intrinsic::experimental_gc_result_int: 5228 case Intrinsic::experimental_gc_result_float: 5229 case Intrinsic::experimental_gc_result_ptr: 5230 case Intrinsic::experimental_gc_result: { 5231 visitGCResult(I); 5232 return nullptr; 5233 } 5234 case Intrinsic::experimental_gc_relocate: { 5235 visitGCRelocate(I); 5236 return nullptr; 5237 } 5238 case Intrinsic::instrprof_increment: 5239 llvm_unreachable("instrprof failed to lower an increment"); 5240 case Intrinsic::instrprof_value_profile: 5241 llvm_unreachable("instrprof failed to lower a value profiling call"); 5242 case Intrinsic::localescape: { 5243 MachineFunction &MF = DAG.getMachineFunction(); 5244 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5245 5246 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5247 // is the same on all targets. 5248 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5249 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5250 if (isa<ConstantPointerNull>(Arg)) 5251 continue; // Skip null pointers. They represent a hole in index space. 5252 AllocaInst *Slot = cast<AllocaInst>(Arg); 5253 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5254 "can only escape static allocas"); 5255 int FI = FuncInfo.StaticAllocaMap[Slot]; 5256 MCSymbol *FrameAllocSym = 5257 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5258 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5259 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5260 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5261 .addSym(FrameAllocSym) 5262 .addFrameIndex(FI); 5263 } 5264 5265 return nullptr; 5266 } 5267 5268 case Intrinsic::localrecover: { 5269 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5270 MachineFunction &MF = DAG.getMachineFunction(); 5271 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5272 5273 // Get the symbol that defines the frame offset. 5274 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5275 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5276 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5277 MCSymbol *FrameAllocSym = 5278 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5279 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5280 5281 // Create a MCSymbol for the label to avoid any target lowering 5282 // that would make this PC relative. 5283 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5284 SDValue OffsetVal = 5285 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5286 5287 // Add the offset to the FP. 5288 Value *FP = I.getArgOperand(1); 5289 SDValue FPVal = getValue(FP); 5290 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5291 setValue(&I, Add); 5292 5293 return nullptr; 5294 } 5295 5296 case Intrinsic::eh_exceptionpointer: 5297 case Intrinsic::eh_exceptioncode: { 5298 // Get the exception pointer vreg, copy from it, and resize it to fit. 5299 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5300 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5301 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5302 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5303 SDValue N = 5304 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5305 if (Intrinsic == Intrinsic::eh_exceptioncode) 5306 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5307 setValue(&I, N); 5308 return nullptr; 5309 } 5310 } 5311 } 5312 5313 std::pair<SDValue, SDValue> 5314 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5315 const BasicBlock *EHPadBB) { 5316 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5317 MCSymbol *BeginLabel = nullptr; 5318 5319 if (EHPadBB) { 5320 // Insert a label before the invoke call to mark the try range. This can be 5321 // used to detect deletion of the invoke via the MachineModuleInfo. 5322 BeginLabel = MMI.getContext().createTempSymbol(); 5323 5324 // For SjLj, keep track of which landing pads go with which invokes 5325 // so as to maintain the ordering of pads in the LSDA. 5326 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5327 if (CallSiteIndex) { 5328 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5329 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5330 5331 // Now that the call site is handled, stop tracking it. 5332 MMI.setCurrentCallSite(0); 5333 } 5334 5335 // Both PendingLoads and PendingExports must be flushed here; 5336 // this call might not return. 5337 (void)getRoot(); 5338 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5339 5340 CLI.setChain(getRoot()); 5341 } 5342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5343 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5344 5345 assert((CLI.IsTailCall || Result.second.getNode()) && 5346 "Non-null chain expected with non-tail call!"); 5347 assert((Result.second.getNode() || !Result.first.getNode()) && 5348 "Null value expected with tail call!"); 5349 5350 if (!Result.second.getNode()) { 5351 // As a special case, a null chain means that a tail call has been emitted 5352 // and the DAG root is already updated. 5353 HasTailCall = true; 5354 5355 // Since there's no actual continuation from this block, nothing can be 5356 // relying on us setting vregs for them. 5357 PendingExports.clear(); 5358 } else { 5359 DAG.setRoot(Result.second); 5360 } 5361 5362 if (EHPadBB) { 5363 // Insert a label at the end of the invoke call to mark the try range. This 5364 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5365 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5366 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5367 5368 // Inform MachineModuleInfo of range. 5369 if (MMI.hasEHFunclets()) { 5370 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5371 EHInfo->addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5372 } else { 5373 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5374 } 5375 } 5376 5377 return Result; 5378 } 5379 5380 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5381 bool isTailCall, 5382 const BasicBlock *EHPadBB) { 5383 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5384 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5385 Type *RetTy = FTy->getReturnType(); 5386 5387 TargetLowering::ArgListTy Args; 5388 TargetLowering::ArgListEntry Entry; 5389 Args.reserve(CS.arg_size()); 5390 5391 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5392 i != e; ++i) { 5393 const Value *V = *i; 5394 5395 // Skip empty types 5396 if (V->getType()->isEmptyTy()) 5397 continue; 5398 5399 SDValue ArgNode = getValue(V); 5400 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5401 5402 // Skip the first return-type Attribute to get to params. 5403 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5404 Args.push_back(Entry); 5405 5406 // If we have an explicit sret argument that is an Instruction, (i.e., it 5407 // might point to function-local memory), we can't meaningfully tail-call. 5408 if (Entry.isSRet && isa<Instruction>(V)) 5409 isTailCall = false; 5410 } 5411 5412 // Check if target-independent constraints permit a tail call here. 5413 // Target-dependent constraints are checked within TLI->LowerCallTo. 5414 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5415 isTailCall = false; 5416 5417 TargetLowering::CallLoweringInfo CLI(DAG); 5418 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5419 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5420 .setTailCall(isTailCall); 5421 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5422 5423 if (Result.first.getNode()) 5424 setValue(CS.getInstruction(), Result.first); 5425 } 5426 5427 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5428 /// value is equal or not-equal to zero. 5429 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5430 for (const User *U : V->users()) { 5431 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5432 if (IC->isEquality()) 5433 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5434 if (C->isNullValue()) 5435 continue; 5436 // Unknown instruction. 5437 return false; 5438 } 5439 return true; 5440 } 5441 5442 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5443 Type *LoadTy, 5444 SelectionDAGBuilder &Builder) { 5445 5446 // Check to see if this load can be trivially constant folded, e.g. if the 5447 // input is from a string literal. 5448 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5449 // Cast pointer to the type we really want to load. 5450 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5451 PointerType::getUnqual(LoadTy)); 5452 5453 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5454 const_cast<Constant *>(LoadInput), *Builder.DL)) 5455 return Builder.getValue(LoadCst); 5456 } 5457 5458 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5459 // still constant memory, the input chain can be the entry node. 5460 SDValue Root; 5461 bool ConstantMemory = false; 5462 5463 // Do not serialize (non-volatile) loads of constant memory with anything. 5464 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5465 Root = Builder.DAG.getEntryNode(); 5466 ConstantMemory = true; 5467 } else { 5468 // Do not serialize non-volatile loads against each other. 5469 Root = Builder.DAG.getRoot(); 5470 } 5471 5472 SDValue Ptr = Builder.getValue(PtrVal); 5473 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5474 Ptr, MachinePointerInfo(PtrVal), 5475 false /*volatile*/, 5476 false /*nontemporal*/, 5477 false /*isinvariant*/, 1 /* align=1 */); 5478 5479 if (!ConstantMemory) 5480 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5481 return LoadVal; 5482 } 5483 5484 /// processIntegerCallValue - Record the value for an instruction that 5485 /// produces an integer result, converting the type where necessary. 5486 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5487 SDValue Value, 5488 bool IsSigned) { 5489 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5490 I.getType(), true); 5491 if (IsSigned) 5492 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5493 else 5494 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5495 setValue(&I, Value); 5496 } 5497 5498 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5499 /// If so, return true and lower it, otherwise return false and it will be 5500 /// lowered like a normal call. 5501 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5502 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5503 if (I.getNumArgOperands() != 3) 5504 return false; 5505 5506 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5507 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5508 !I.getArgOperand(2)->getType()->isIntegerTy() || 5509 !I.getType()->isIntegerTy()) 5510 return false; 5511 5512 const Value *Size = I.getArgOperand(2); 5513 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5514 if (CSize && CSize->getZExtValue() == 0) { 5515 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5516 I.getType(), true); 5517 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5518 return true; 5519 } 5520 5521 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5522 std::pair<SDValue, SDValue> Res = 5523 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5524 getValue(LHS), getValue(RHS), getValue(Size), 5525 MachinePointerInfo(LHS), 5526 MachinePointerInfo(RHS)); 5527 if (Res.first.getNode()) { 5528 processIntegerCallValue(I, Res.first, true); 5529 PendingLoads.push_back(Res.second); 5530 return true; 5531 } 5532 5533 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5534 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5535 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5536 bool ActuallyDoIt = true; 5537 MVT LoadVT; 5538 Type *LoadTy; 5539 switch (CSize->getZExtValue()) { 5540 default: 5541 LoadVT = MVT::Other; 5542 LoadTy = nullptr; 5543 ActuallyDoIt = false; 5544 break; 5545 case 2: 5546 LoadVT = MVT::i16; 5547 LoadTy = Type::getInt16Ty(CSize->getContext()); 5548 break; 5549 case 4: 5550 LoadVT = MVT::i32; 5551 LoadTy = Type::getInt32Ty(CSize->getContext()); 5552 break; 5553 case 8: 5554 LoadVT = MVT::i64; 5555 LoadTy = Type::getInt64Ty(CSize->getContext()); 5556 break; 5557 /* 5558 case 16: 5559 LoadVT = MVT::v4i32; 5560 LoadTy = Type::getInt32Ty(CSize->getContext()); 5561 LoadTy = VectorType::get(LoadTy, 4); 5562 break; 5563 */ 5564 } 5565 5566 // This turns into unaligned loads. We only do this if the target natively 5567 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5568 // we'll only produce a small number of byte loads. 5569 5570 // Require that we can find a legal MVT, and only do this if the target 5571 // supports unaligned loads of that type. Expanding into byte loads would 5572 // bloat the code. 5573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5574 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5575 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5576 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5577 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5578 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5579 // TODO: Check alignment of src and dest ptrs. 5580 if (!TLI.isTypeLegal(LoadVT) || 5581 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5582 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5583 ActuallyDoIt = false; 5584 } 5585 5586 if (ActuallyDoIt) { 5587 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5588 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5589 5590 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5591 ISD::SETNE); 5592 processIntegerCallValue(I, Res, false); 5593 return true; 5594 } 5595 } 5596 5597 5598 return false; 5599 } 5600 5601 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5602 /// form. If so, return true and lower it, otherwise return false and it 5603 /// will be lowered like a normal call. 5604 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5605 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5606 if (I.getNumArgOperands() != 3) 5607 return false; 5608 5609 const Value *Src = I.getArgOperand(0); 5610 const Value *Char = I.getArgOperand(1); 5611 const Value *Length = I.getArgOperand(2); 5612 if (!Src->getType()->isPointerTy() || 5613 !Char->getType()->isIntegerTy() || 5614 !Length->getType()->isIntegerTy() || 5615 !I.getType()->isPointerTy()) 5616 return false; 5617 5618 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5619 std::pair<SDValue, SDValue> Res = 5620 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5621 getValue(Src), getValue(Char), getValue(Length), 5622 MachinePointerInfo(Src)); 5623 if (Res.first.getNode()) { 5624 setValue(&I, Res.first); 5625 PendingLoads.push_back(Res.second); 5626 return true; 5627 } 5628 5629 return false; 5630 } 5631 5632 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5633 /// optimized form. If so, return true and lower it, otherwise return false 5634 /// and it will be lowered like a normal call. 5635 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5636 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5637 if (I.getNumArgOperands() != 2) 5638 return false; 5639 5640 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5641 if (!Arg0->getType()->isPointerTy() || 5642 !Arg1->getType()->isPointerTy() || 5643 !I.getType()->isPointerTy()) 5644 return false; 5645 5646 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5647 std::pair<SDValue, SDValue> Res = 5648 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5649 getValue(Arg0), getValue(Arg1), 5650 MachinePointerInfo(Arg0), 5651 MachinePointerInfo(Arg1), isStpcpy); 5652 if (Res.first.getNode()) { 5653 setValue(&I, Res.first); 5654 DAG.setRoot(Res.second); 5655 return true; 5656 } 5657 5658 return false; 5659 } 5660 5661 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5662 /// If so, return true and lower it, otherwise return false and it will be 5663 /// lowered like a normal call. 5664 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5665 // Verify that the prototype makes sense. int strcmp(void*,void*) 5666 if (I.getNumArgOperands() != 2) 5667 return false; 5668 5669 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5670 if (!Arg0->getType()->isPointerTy() || 5671 !Arg1->getType()->isPointerTy() || 5672 !I.getType()->isIntegerTy()) 5673 return false; 5674 5675 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5676 std::pair<SDValue, SDValue> Res = 5677 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5678 getValue(Arg0), getValue(Arg1), 5679 MachinePointerInfo(Arg0), 5680 MachinePointerInfo(Arg1)); 5681 if (Res.first.getNode()) { 5682 processIntegerCallValue(I, Res.first, true); 5683 PendingLoads.push_back(Res.second); 5684 return true; 5685 } 5686 5687 return false; 5688 } 5689 5690 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5691 /// form. If so, return true and lower it, otherwise return false and it 5692 /// will be lowered like a normal call. 5693 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5694 // Verify that the prototype makes sense. size_t strlen(char *) 5695 if (I.getNumArgOperands() != 1) 5696 return false; 5697 5698 const Value *Arg0 = I.getArgOperand(0); 5699 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5700 return false; 5701 5702 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5703 std::pair<SDValue, SDValue> Res = 5704 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5705 getValue(Arg0), MachinePointerInfo(Arg0)); 5706 if (Res.first.getNode()) { 5707 processIntegerCallValue(I, Res.first, false); 5708 PendingLoads.push_back(Res.second); 5709 return true; 5710 } 5711 5712 return false; 5713 } 5714 5715 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5716 /// form. If so, return true and lower it, otherwise return false and it 5717 /// will be lowered like a normal call. 5718 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5719 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5720 if (I.getNumArgOperands() != 2) 5721 return false; 5722 5723 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5724 if (!Arg0->getType()->isPointerTy() || 5725 !Arg1->getType()->isIntegerTy() || 5726 !I.getType()->isIntegerTy()) 5727 return false; 5728 5729 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5730 std::pair<SDValue, SDValue> Res = 5731 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5732 getValue(Arg0), getValue(Arg1), 5733 MachinePointerInfo(Arg0)); 5734 if (Res.first.getNode()) { 5735 processIntegerCallValue(I, Res.first, false); 5736 PendingLoads.push_back(Res.second); 5737 return true; 5738 } 5739 5740 return false; 5741 } 5742 5743 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5744 /// operation (as expected), translate it to an SDNode with the specified opcode 5745 /// and return true. 5746 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5747 unsigned Opcode) { 5748 // Sanity check that it really is a unary floating-point call. 5749 if (I.getNumArgOperands() != 1 || 5750 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5751 I.getType() != I.getArgOperand(0)->getType() || 5752 !I.onlyReadsMemory()) 5753 return false; 5754 5755 SDValue Tmp = getValue(I.getArgOperand(0)); 5756 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5757 return true; 5758 } 5759 5760 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5761 /// operation (as expected), translate it to an SDNode with the specified opcode 5762 /// and return true. 5763 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5764 unsigned Opcode) { 5765 // Sanity check that it really is a binary floating-point call. 5766 if (I.getNumArgOperands() != 2 || 5767 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5768 I.getType() != I.getArgOperand(0)->getType() || 5769 I.getType() != I.getArgOperand(1)->getType() || 5770 !I.onlyReadsMemory()) 5771 return false; 5772 5773 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5774 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5775 EVT VT = Tmp0.getValueType(); 5776 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5777 return true; 5778 } 5779 5780 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5781 // Handle inline assembly differently. 5782 if (isa<InlineAsm>(I.getCalledValue())) { 5783 visitInlineAsm(&I); 5784 return; 5785 } 5786 5787 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5788 ComputeUsesVAFloatArgument(I, &MMI); 5789 5790 const char *RenameFn = nullptr; 5791 if (Function *F = I.getCalledFunction()) { 5792 if (F->isDeclaration()) { 5793 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5794 if (unsigned IID = II->getIntrinsicID(F)) { 5795 RenameFn = visitIntrinsicCall(I, IID); 5796 if (!RenameFn) 5797 return; 5798 } 5799 } 5800 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5801 RenameFn = visitIntrinsicCall(I, IID); 5802 if (!RenameFn) 5803 return; 5804 } 5805 } 5806 5807 // Check for well-known libc/libm calls. If the function is internal, it 5808 // can't be a library call. 5809 LibFunc::Func Func; 5810 if (!F->hasLocalLinkage() && F->hasName() && 5811 LibInfo->getLibFunc(F->getName(), Func) && 5812 LibInfo->hasOptimizedCodeGen(Func)) { 5813 switch (Func) { 5814 default: break; 5815 case LibFunc::copysign: 5816 case LibFunc::copysignf: 5817 case LibFunc::copysignl: 5818 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5819 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5820 I.getType() == I.getArgOperand(0)->getType() && 5821 I.getType() == I.getArgOperand(1)->getType() && 5822 I.onlyReadsMemory()) { 5823 SDValue LHS = getValue(I.getArgOperand(0)); 5824 SDValue RHS = getValue(I.getArgOperand(1)); 5825 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5826 LHS.getValueType(), LHS, RHS)); 5827 return; 5828 } 5829 break; 5830 case LibFunc::fabs: 5831 case LibFunc::fabsf: 5832 case LibFunc::fabsl: 5833 if (visitUnaryFloatCall(I, ISD::FABS)) 5834 return; 5835 break; 5836 case LibFunc::fmin: 5837 case LibFunc::fminf: 5838 case LibFunc::fminl: 5839 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5840 return; 5841 break; 5842 case LibFunc::fmax: 5843 case LibFunc::fmaxf: 5844 case LibFunc::fmaxl: 5845 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5846 return; 5847 break; 5848 case LibFunc::sin: 5849 case LibFunc::sinf: 5850 case LibFunc::sinl: 5851 if (visitUnaryFloatCall(I, ISD::FSIN)) 5852 return; 5853 break; 5854 case LibFunc::cos: 5855 case LibFunc::cosf: 5856 case LibFunc::cosl: 5857 if (visitUnaryFloatCall(I, ISD::FCOS)) 5858 return; 5859 break; 5860 case LibFunc::sqrt: 5861 case LibFunc::sqrtf: 5862 case LibFunc::sqrtl: 5863 case LibFunc::sqrt_finite: 5864 case LibFunc::sqrtf_finite: 5865 case LibFunc::sqrtl_finite: 5866 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5867 return; 5868 break; 5869 case LibFunc::floor: 5870 case LibFunc::floorf: 5871 case LibFunc::floorl: 5872 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5873 return; 5874 break; 5875 case LibFunc::nearbyint: 5876 case LibFunc::nearbyintf: 5877 case LibFunc::nearbyintl: 5878 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5879 return; 5880 break; 5881 case LibFunc::ceil: 5882 case LibFunc::ceilf: 5883 case LibFunc::ceill: 5884 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5885 return; 5886 break; 5887 case LibFunc::rint: 5888 case LibFunc::rintf: 5889 case LibFunc::rintl: 5890 if (visitUnaryFloatCall(I, ISD::FRINT)) 5891 return; 5892 break; 5893 case LibFunc::round: 5894 case LibFunc::roundf: 5895 case LibFunc::roundl: 5896 if (visitUnaryFloatCall(I, ISD::FROUND)) 5897 return; 5898 break; 5899 case LibFunc::trunc: 5900 case LibFunc::truncf: 5901 case LibFunc::truncl: 5902 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5903 return; 5904 break; 5905 case LibFunc::log2: 5906 case LibFunc::log2f: 5907 case LibFunc::log2l: 5908 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5909 return; 5910 break; 5911 case LibFunc::exp2: 5912 case LibFunc::exp2f: 5913 case LibFunc::exp2l: 5914 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5915 return; 5916 break; 5917 case LibFunc::memcmp: 5918 if (visitMemCmpCall(I)) 5919 return; 5920 break; 5921 case LibFunc::memchr: 5922 if (visitMemChrCall(I)) 5923 return; 5924 break; 5925 case LibFunc::strcpy: 5926 if (visitStrCpyCall(I, false)) 5927 return; 5928 break; 5929 case LibFunc::stpcpy: 5930 if (visitStrCpyCall(I, true)) 5931 return; 5932 break; 5933 case LibFunc::strcmp: 5934 if (visitStrCmpCall(I)) 5935 return; 5936 break; 5937 case LibFunc::strlen: 5938 if (visitStrLenCall(I)) 5939 return; 5940 break; 5941 case LibFunc::strnlen: 5942 if (visitStrNLenCall(I)) 5943 return; 5944 break; 5945 } 5946 } 5947 } 5948 5949 SDValue Callee; 5950 if (!RenameFn) 5951 Callee = getValue(I.getCalledValue()); 5952 else 5953 Callee = DAG.getExternalSymbol( 5954 RenameFn, 5955 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5956 5957 // Check if we can potentially perform a tail call. More detailed checking is 5958 // be done within LowerCallTo, after more information about the call is known. 5959 LowerCallTo(&I, Callee, I.isTailCall()); 5960 } 5961 5962 namespace { 5963 5964 /// AsmOperandInfo - This contains information for each constraint that we are 5965 /// lowering. 5966 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5967 public: 5968 /// CallOperand - If this is the result output operand or a clobber 5969 /// this is null, otherwise it is the incoming operand to the CallInst. 5970 /// This gets modified as the asm is processed. 5971 SDValue CallOperand; 5972 5973 /// AssignedRegs - If this is a register or register class operand, this 5974 /// contains the set of register corresponding to the operand. 5975 RegsForValue AssignedRegs; 5976 5977 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5978 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5979 } 5980 5981 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5982 /// corresponds to. If there is no Value* for this operand, it returns 5983 /// MVT::Other. 5984 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5985 const DataLayout &DL) const { 5986 if (!CallOperandVal) return MVT::Other; 5987 5988 if (isa<BasicBlock>(CallOperandVal)) 5989 return TLI.getPointerTy(DL); 5990 5991 llvm::Type *OpTy = CallOperandVal->getType(); 5992 5993 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5994 // If this is an indirect operand, the operand is a pointer to the 5995 // accessed type. 5996 if (isIndirect) { 5997 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5998 if (!PtrTy) 5999 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6000 OpTy = PtrTy->getElementType(); 6001 } 6002 6003 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6004 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6005 if (STy->getNumElements() == 1) 6006 OpTy = STy->getElementType(0); 6007 6008 // If OpTy is not a single value, it may be a struct/union that we 6009 // can tile with integers. 6010 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6011 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6012 switch (BitSize) { 6013 default: break; 6014 case 1: 6015 case 8: 6016 case 16: 6017 case 32: 6018 case 64: 6019 case 128: 6020 OpTy = IntegerType::get(Context, BitSize); 6021 break; 6022 } 6023 } 6024 6025 return TLI.getValueType(DL, OpTy, true); 6026 } 6027 }; 6028 6029 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6030 6031 } // end anonymous namespace 6032 6033 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6034 /// specified operand. We prefer to assign virtual registers, to allow the 6035 /// register allocator to handle the assignment process. However, if the asm 6036 /// uses features that we can't model on machineinstrs, we have SDISel do the 6037 /// allocation. This produces generally horrible, but correct, code. 6038 /// 6039 /// OpInfo describes the operand. 6040 /// 6041 static void GetRegistersForValue(SelectionDAG &DAG, 6042 const TargetLowering &TLI, 6043 SDLoc DL, 6044 SDISelAsmOperandInfo &OpInfo) { 6045 LLVMContext &Context = *DAG.getContext(); 6046 6047 MachineFunction &MF = DAG.getMachineFunction(); 6048 SmallVector<unsigned, 4> Regs; 6049 6050 // If this is a constraint for a single physreg, or a constraint for a 6051 // register class, find it. 6052 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6053 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6054 OpInfo.ConstraintCode, 6055 OpInfo.ConstraintVT); 6056 6057 unsigned NumRegs = 1; 6058 if (OpInfo.ConstraintVT != MVT::Other) { 6059 // If this is a FP input in an integer register (or visa versa) insert a bit 6060 // cast of the input value. More generally, handle any case where the input 6061 // value disagrees with the register class we plan to stick this in. 6062 if (OpInfo.Type == InlineAsm::isInput && 6063 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6064 // Try to convert to the first EVT that the reg class contains. If the 6065 // types are identical size, use a bitcast to convert (e.g. two differing 6066 // vector types). 6067 MVT RegVT = *PhysReg.second->vt_begin(); 6068 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6069 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6070 RegVT, OpInfo.CallOperand); 6071 OpInfo.ConstraintVT = RegVT; 6072 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6073 // If the input is a FP value and we want it in FP registers, do a 6074 // bitcast to the corresponding integer type. This turns an f64 value 6075 // into i64, which can be passed with two i32 values on a 32-bit 6076 // machine. 6077 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6078 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6079 RegVT, OpInfo.CallOperand); 6080 OpInfo.ConstraintVT = RegVT; 6081 } 6082 } 6083 6084 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6085 } 6086 6087 MVT RegVT; 6088 EVT ValueVT = OpInfo.ConstraintVT; 6089 6090 // If this is a constraint for a specific physical register, like {r17}, 6091 // assign it now. 6092 if (unsigned AssignedReg = PhysReg.first) { 6093 const TargetRegisterClass *RC = PhysReg.second; 6094 if (OpInfo.ConstraintVT == MVT::Other) 6095 ValueVT = *RC->vt_begin(); 6096 6097 // Get the actual register value type. This is important, because the user 6098 // may have asked for (e.g.) the AX register in i32 type. We need to 6099 // remember that AX is actually i16 to get the right extension. 6100 RegVT = *RC->vt_begin(); 6101 6102 // This is a explicit reference to a physical register. 6103 Regs.push_back(AssignedReg); 6104 6105 // If this is an expanded reference, add the rest of the regs to Regs. 6106 if (NumRegs != 1) { 6107 TargetRegisterClass::iterator I = RC->begin(); 6108 for (; *I != AssignedReg; ++I) 6109 assert(I != RC->end() && "Didn't find reg!"); 6110 6111 // Already added the first reg. 6112 --NumRegs; ++I; 6113 for (; NumRegs; --NumRegs, ++I) { 6114 assert(I != RC->end() && "Ran out of registers to allocate!"); 6115 Regs.push_back(*I); 6116 } 6117 } 6118 6119 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6120 return; 6121 } 6122 6123 // Otherwise, if this was a reference to an LLVM register class, create vregs 6124 // for this reference. 6125 if (const TargetRegisterClass *RC = PhysReg.second) { 6126 RegVT = *RC->vt_begin(); 6127 if (OpInfo.ConstraintVT == MVT::Other) 6128 ValueVT = RegVT; 6129 6130 // Create the appropriate number of virtual registers. 6131 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6132 for (; NumRegs; --NumRegs) 6133 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6134 6135 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6136 return; 6137 } 6138 6139 // Otherwise, we couldn't allocate enough registers for this. 6140 } 6141 6142 /// visitInlineAsm - Handle a call to an InlineAsm object. 6143 /// 6144 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6145 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6146 6147 /// ConstraintOperands - Information about all of the constraints. 6148 SDISelAsmOperandInfoVector ConstraintOperands; 6149 6150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6151 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6152 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6153 6154 bool hasMemory = false; 6155 6156 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6157 unsigned ResNo = 0; // ResNo - The result number of the next output. 6158 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6159 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6160 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6161 6162 MVT OpVT = MVT::Other; 6163 6164 // Compute the value type for each operand. 6165 switch (OpInfo.Type) { 6166 case InlineAsm::isOutput: 6167 // Indirect outputs just consume an argument. 6168 if (OpInfo.isIndirect) { 6169 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6170 break; 6171 } 6172 6173 // The return value of the call is this value. As such, there is no 6174 // corresponding argument. 6175 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6176 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6177 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6178 STy->getElementType(ResNo)); 6179 } else { 6180 assert(ResNo == 0 && "Asm only has one result!"); 6181 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6182 } 6183 ++ResNo; 6184 break; 6185 case InlineAsm::isInput: 6186 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6187 break; 6188 case InlineAsm::isClobber: 6189 // Nothing to do. 6190 break; 6191 } 6192 6193 // If this is an input or an indirect output, process the call argument. 6194 // BasicBlocks are labels, currently appearing only in asm's. 6195 if (OpInfo.CallOperandVal) { 6196 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6197 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6198 } else { 6199 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6200 } 6201 6202 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6203 DAG.getDataLayout()).getSimpleVT(); 6204 } 6205 6206 OpInfo.ConstraintVT = OpVT; 6207 6208 // Indirect operand accesses access memory. 6209 if (OpInfo.isIndirect) 6210 hasMemory = true; 6211 else { 6212 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6213 TargetLowering::ConstraintType 6214 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6215 if (CType == TargetLowering::C_Memory) { 6216 hasMemory = true; 6217 break; 6218 } 6219 } 6220 } 6221 } 6222 6223 SDValue Chain, Flag; 6224 6225 // We won't need to flush pending loads if this asm doesn't touch 6226 // memory and is nonvolatile. 6227 if (hasMemory || IA->hasSideEffects()) 6228 Chain = getRoot(); 6229 else 6230 Chain = DAG.getRoot(); 6231 6232 // Second pass over the constraints: compute which constraint option to use 6233 // and assign registers to constraints that want a specific physreg. 6234 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6235 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6236 6237 // If this is an output operand with a matching input operand, look up the 6238 // matching input. If their types mismatch, e.g. one is an integer, the 6239 // other is floating point, or their sizes are different, flag it as an 6240 // error. 6241 if (OpInfo.hasMatchingInput()) { 6242 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6243 6244 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6245 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6246 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6247 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6248 OpInfo.ConstraintVT); 6249 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6250 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6251 Input.ConstraintVT); 6252 if ((OpInfo.ConstraintVT.isInteger() != 6253 Input.ConstraintVT.isInteger()) || 6254 (MatchRC.second != InputRC.second)) { 6255 report_fatal_error("Unsupported asm: input constraint" 6256 " with a matching output constraint of" 6257 " incompatible type!"); 6258 } 6259 Input.ConstraintVT = OpInfo.ConstraintVT; 6260 } 6261 } 6262 6263 // Compute the constraint code and ConstraintType to use. 6264 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6265 6266 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6267 OpInfo.Type == InlineAsm::isClobber) 6268 continue; 6269 6270 // If this is a memory input, and if the operand is not indirect, do what we 6271 // need to to provide an address for the memory input. 6272 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6273 !OpInfo.isIndirect) { 6274 assert((OpInfo.isMultipleAlternative || 6275 (OpInfo.Type == InlineAsm::isInput)) && 6276 "Can only indirectify direct input operands!"); 6277 6278 // Memory operands really want the address of the value. If we don't have 6279 // an indirect input, put it in the constpool if we can, otherwise spill 6280 // it to a stack slot. 6281 // TODO: This isn't quite right. We need to handle these according to 6282 // the addressing mode that the constraint wants. Also, this may take 6283 // an additional register for the computation and we don't want that 6284 // either. 6285 6286 // If the operand is a float, integer, or vector constant, spill to a 6287 // constant pool entry to get its address. 6288 const Value *OpVal = OpInfo.CallOperandVal; 6289 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6290 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6291 OpInfo.CallOperand = DAG.getConstantPool( 6292 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6293 } else { 6294 // Otherwise, create a stack slot and emit a store to it before the 6295 // asm. 6296 Type *Ty = OpVal->getType(); 6297 auto &DL = DAG.getDataLayout(); 6298 uint64_t TySize = DL.getTypeAllocSize(Ty); 6299 unsigned Align = DL.getPrefTypeAlignment(Ty); 6300 MachineFunction &MF = DAG.getMachineFunction(); 6301 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6302 SDValue StackSlot = 6303 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6304 Chain = DAG.getStore( 6305 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6306 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6307 false, false, 0); 6308 OpInfo.CallOperand = StackSlot; 6309 } 6310 6311 // There is no longer a Value* corresponding to this operand. 6312 OpInfo.CallOperandVal = nullptr; 6313 6314 // It is now an indirect operand. 6315 OpInfo.isIndirect = true; 6316 } 6317 6318 // If this constraint is for a specific register, allocate it before 6319 // anything else. 6320 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6321 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6322 } 6323 6324 // Second pass - Loop over all of the operands, assigning virtual or physregs 6325 // to register class operands. 6326 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6327 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6328 6329 // C_Register operands have already been allocated, Other/Memory don't need 6330 // to be. 6331 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6332 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6333 } 6334 6335 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6336 std::vector<SDValue> AsmNodeOperands; 6337 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6338 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6339 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6340 6341 // If we have a !srcloc metadata node associated with it, we want to attach 6342 // this to the ultimately generated inline asm machineinstr. To do this, we 6343 // pass in the third operand as this (potentially null) inline asm MDNode. 6344 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6345 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6346 6347 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6348 // bits as operand 3. 6349 unsigned ExtraInfo = 0; 6350 if (IA->hasSideEffects()) 6351 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6352 if (IA->isAlignStack()) 6353 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6354 // Set the asm dialect. 6355 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6356 6357 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6358 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6359 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6360 6361 // Compute the constraint code and ConstraintType to use. 6362 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6363 6364 // Ideally, we would only check against memory constraints. However, the 6365 // meaning of an other constraint can be target-specific and we can't easily 6366 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6367 // for other constriants as well. 6368 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6369 OpInfo.ConstraintType == TargetLowering::C_Other) { 6370 if (OpInfo.Type == InlineAsm::isInput) 6371 ExtraInfo |= InlineAsm::Extra_MayLoad; 6372 else if (OpInfo.Type == InlineAsm::isOutput) 6373 ExtraInfo |= InlineAsm::Extra_MayStore; 6374 else if (OpInfo.Type == InlineAsm::isClobber) 6375 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6376 } 6377 } 6378 6379 AsmNodeOperands.push_back(DAG.getTargetConstant( 6380 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6381 6382 // Loop over all of the inputs, copying the operand values into the 6383 // appropriate registers and processing the output regs. 6384 RegsForValue RetValRegs; 6385 6386 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6387 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6388 6389 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6390 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6391 6392 switch (OpInfo.Type) { 6393 case InlineAsm::isOutput: { 6394 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6395 OpInfo.ConstraintType != TargetLowering::C_Register) { 6396 // Memory output, or 'other' output (e.g. 'X' constraint). 6397 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6398 6399 unsigned ConstraintID = 6400 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6401 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6402 "Failed to convert memory constraint code to constraint id."); 6403 6404 // Add information to the INLINEASM node to know about this output. 6405 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6406 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6407 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6408 MVT::i32)); 6409 AsmNodeOperands.push_back(OpInfo.CallOperand); 6410 break; 6411 } 6412 6413 // Otherwise, this is a register or register class output. 6414 6415 // Copy the output from the appropriate register. Find a register that 6416 // we can use. 6417 if (OpInfo.AssignedRegs.Regs.empty()) { 6418 LLVMContext &Ctx = *DAG.getContext(); 6419 Ctx.emitError(CS.getInstruction(), 6420 "couldn't allocate output register for constraint '" + 6421 Twine(OpInfo.ConstraintCode) + "'"); 6422 return; 6423 } 6424 6425 // If this is an indirect operand, store through the pointer after the 6426 // asm. 6427 if (OpInfo.isIndirect) { 6428 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6429 OpInfo.CallOperandVal)); 6430 } else { 6431 // This is the result value of the call. 6432 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6433 // Concatenate this output onto the outputs list. 6434 RetValRegs.append(OpInfo.AssignedRegs); 6435 } 6436 6437 // Add information to the INLINEASM node to know that this register is 6438 // set. 6439 OpInfo.AssignedRegs 6440 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6441 ? InlineAsm::Kind_RegDefEarlyClobber 6442 : InlineAsm::Kind_RegDef, 6443 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6444 break; 6445 } 6446 case InlineAsm::isInput: { 6447 SDValue InOperandVal = OpInfo.CallOperand; 6448 6449 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6450 // If this is required to match an output register we have already set, 6451 // just use its register. 6452 unsigned OperandNo = OpInfo.getMatchedOperand(); 6453 6454 // Scan until we find the definition we already emitted of this operand. 6455 // When we find it, create a RegsForValue operand. 6456 unsigned CurOp = InlineAsm::Op_FirstOperand; 6457 for (; OperandNo; --OperandNo) { 6458 // Advance to the next operand. 6459 unsigned OpFlag = 6460 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6461 assert((InlineAsm::isRegDefKind(OpFlag) || 6462 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6463 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6464 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6465 } 6466 6467 unsigned OpFlag = 6468 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6469 if (InlineAsm::isRegDefKind(OpFlag) || 6470 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6471 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6472 if (OpInfo.isIndirect) { 6473 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6474 LLVMContext &Ctx = *DAG.getContext(); 6475 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6476 " don't know how to handle tied " 6477 "indirect register inputs"); 6478 return; 6479 } 6480 6481 RegsForValue MatchedRegs; 6482 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6483 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6484 MatchedRegs.RegVTs.push_back(RegVT); 6485 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6486 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6487 i != e; ++i) { 6488 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6489 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6490 else { 6491 LLVMContext &Ctx = *DAG.getContext(); 6492 Ctx.emitError(CS.getInstruction(), 6493 "inline asm error: This value" 6494 " type register class is not natively supported!"); 6495 return; 6496 } 6497 } 6498 SDLoc dl = getCurSDLoc(); 6499 // Use the produced MatchedRegs object to 6500 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6501 Chain, &Flag, CS.getInstruction()); 6502 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6503 true, OpInfo.getMatchedOperand(), dl, 6504 DAG, AsmNodeOperands); 6505 break; 6506 } 6507 6508 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6509 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6510 "Unexpected number of operands"); 6511 // Add information to the INLINEASM node to know about this input. 6512 // See InlineAsm.h isUseOperandTiedToDef. 6513 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6514 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6515 OpInfo.getMatchedOperand()); 6516 AsmNodeOperands.push_back(DAG.getTargetConstant( 6517 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6518 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6519 break; 6520 } 6521 6522 // Treat indirect 'X' constraint as memory. 6523 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6524 OpInfo.isIndirect) 6525 OpInfo.ConstraintType = TargetLowering::C_Memory; 6526 6527 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6528 std::vector<SDValue> Ops; 6529 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6530 Ops, DAG); 6531 if (Ops.empty()) { 6532 LLVMContext &Ctx = *DAG.getContext(); 6533 Ctx.emitError(CS.getInstruction(), 6534 "invalid operand for inline asm constraint '" + 6535 Twine(OpInfo.ConstraintCode) + "'"); 6536 return; 6537 } 6538 6539 // Add information to the INLINEASM node to know about this input. 6540 unsigned ResOpType = 6541 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6542 AsmNodeOperands.push_back(DAG.getTargetConstant( 6543 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6544 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6545 break; 6546 } 6547 6548 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6549 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6550 assert(InOperandVal.getValueType() == 6551 TLI.getPointerTy(DAG.getDataLayout()) && 6552 "Memory operands expect pointer values"); 6553 6554 unsigned ConstraintID = 6555 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6556 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6557 "Failed to convert memory constraint code to constraint id."); 6558 6559 // Add information to the INLINEASM node to know about this input. 6560 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6561 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6562 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6563 getCurSDLoc(), 6564 MVT::i32)); 6565 AsmNodeOperands.push_back(InOperandVal); 6566 break; 6567 } 6568 6569 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6570 OpInfo.ConstraintType == TargetLowering::C_Register) && 6571 "Unknown constraint type!"); 6572 6573 // TODO: Support this. 6574 if (OpInfo.isIndirect) { 6575 LLVMContext &Ctx = *DAG.getContext(); 6576 Ctx.emitError(CS.getInstruction(), 6577 "Don't know how to handle indirect register inputs yet " 6578 "for constraint '" + 6579 Twine(OpInfo.ConstraintCode) + "'"); 6580 return; 6581 } 6582 6583 // Copy the input into the appropriate registers. 6584 if (OpInfo.AssignedRegs.Regs.empty()) { 6585 LLVMContext &Ctx = *DAG.getContext(); 6586 Ctx.emitError(CS.getInstruction(), 6587 "couldn't allocate input reg for constraint '" + 6588 Twine(OpInfo.ConstraintCode) + "'"); 6589 return; 6590 } 6591 6592 SDLoc dl = getCurSDLoc(); 6593 6594 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6595 Chain, &Flag, CS.getInstruction()); 6596 6597 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6598 dl, DAG, AsmNodeOperands); 6599 break; 6600 } 6601 case InlineAsm::isClobber: { 6602 // Add the clobbered value to the operand list, so that the register 6603 // allocator is aware that the physreg got clobbered. 6604 if (!OpInfo.AssignedRegs.Regs.empty()) 6605 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6606 false, 0, getCurSDLoc(), DAG, 6607 AsmNodeOperands); 6608 break; 6609 } 6610 } 6611 } 6612 6613 // Finish up input operands. Set the input chain and add the flag last. 6614 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6615 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6616 6617 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6618 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6619 Flag = Chain.getValue(1); 6620 6621 // If this asm returns a register value, copy the result from that register 6622 // and set it as the value of the call. 6623 if (!RetValRegs.Regs.empty()) { 6624 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6625 Chain, &Flag, CS.getInstruction()); 6626 6627 // FIXME: Why don't we do this for inline asms with MRVs? 6628 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6629 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6630 6631 // If any of the results of the inline asm is a vector, it may have the 6632 // wrong width/num elts. This can happen for register classes that can 6633 // contain multiple different value types. The preg or vreg allocated may 6634 // not have the same VT as was expected. Convert it to the right type 6635 // with bit_convert. 6636 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6637 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6638 ResultType, Val); 6639 6640 } else if (ResultType != Val.getValueType() && 6641 ResultType.isInteger() && Val.getValueType().isInteger()) { 6642 // If a result value was tied to an input value, the computed result may 6643 // have a wider width than the expected result. Extract the relevant 6644 // portion. 6645 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6646 } 6647 6648 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6649 } 6650 6651 setValue(CS.getInstruction(), Val); 6652 // Don't need to use this as a chain in this case. 6653 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6654 return; 6655 } 6656 6657 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6658 6659 // Process indirect outputs, first output all of the flagged copies out of 6660 // physregs. 6661 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6662 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6663 const Value *Ptr = IndirectStoresToEmit[i].second; 6664 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6665 Chain, &Flag, IA); 6666 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6667 } 6668 6669 // Emit the non-flagged stores from the physregs. 6670 SmallVector<SDValue, 8> OutChains; 6671 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6672 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6673 StoresToEmit[i].first, 6674 getValue(StoresToEmit[i].second), 6675 MachinePointerInfo(StoresToEmit[i].second), 6676 false, false, 0); 6677 OutChains.push_back(Val); 6678 } 6679 6680 if (!OutChains.empty()) 6681 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6682 6683 DAG.setRoot(Chain); 6684 } 6685 6686 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6687 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6688 MVT::Other, getRoot(), 6689 getValue(I.getArgOperand(0)), 6690 DAG.getSrcValue(I.getArgOperand(0)))); 6691 } 6692 6693 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6695 const DataLayout &DL = DAG.getDataLayout(); 6696 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6697 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6698 DAG.getSrcValue(I.getOperand(0)), 6699 DL.getABITypeAlignment(I.getType())); 6700 setValue(&I, V); 6701 DAG.setRoot(V.getValue(1)); 6702 } 6703 6704 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6705 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6706 MVT::Other, getRoot(), 6707 getValue(I.getArgOperand(0)), 6708 DAG.getSrcValue(I.getArgOperand(0)))); 6709 } 6710 6711 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6712 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6713 MVT::Other, getRoot(), 6714 getValue(I.getArgOperand(0)), 6715 getValue(I.getArgOperand(1)), 6716 DAG.getSrcValue(I.getArgOperand(0)), 6717 DAG.getSrcValue(I.getArgOperand(1)))); 6718 } 6719 6720 /// \brief Lower an argument list according to the target calling convention. 6721 /// 6722 /// \return A tuple of <return-value, token-chain> 6723 /// 6724 /// This is a helper for lowering intrinsics that follow a target calling 6725 /// convention or require stack pointer adjustment. Only a subset of the 6726 /// intrinsic's operands need to participate in the calling convention. 6727 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6728 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6729 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6730 TargetLowering::ArgListTy Args; 6731 Args.reserve(NumArgs); 6732 6733 // Populate the argument list. 6734 // Attributes for args start at offset 1, after the return attribute. 6735 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6736 ArgI != ArgE; ++ArgI) { 6737 const Value *V = CS->getOperand(ArgI); 6738 6739 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6740 6741 TargetLowering::ArgListEntry Entry; 6742 Entry.Node = getValue(V); 6743 Entry.Ty = V->getType(); 6744 Entry.setAttributes(&CS, AttrI); 6745 Args.push_back(Entry); 6746 } 6747 6748 TargetLowering::CallLoweringInfo CLI(DAG); 6749 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6750 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6751 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6752 6753 return lowerInvokable(CLI, EHPadBB); 6754 } 6755 6756 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6757 /// or patchpoint target node's operand list. 6758 /// 6759 /// Constants are converted to TargetConstants purely as an optimization to 6760 /// avoid constant materialization and register allocation. 6761 /// 6762 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6763 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6764 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6765 /// address materialization and register allocation, but may also be required 6766 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6767 /// alloca in the entry block, then the runtime may assume that the alloca's 6768 /// StackMap location can be read immediately after compilation and that the 6769 /// location is valid at any point during execution (this is similar to the 6770 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6771 /// only available in a register, then the runtime would need to trap when 6772 /// execution reaches the StackMap in order to read the alloca's location. 6773 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6774 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6775 SelectionDAGBuilder &Builder) { 6776 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6777 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6778 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6779 Ops.push_back( 6780 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6781 Ops.push_back( 6782 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6783 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6784 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6785 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6786 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6787 } else 6788 Ops.push_back(OpVal); 6789 } 6790 } 6791 6792 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6793 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6794 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6795 // [live variables...]) 6796 6797 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6798 6799 SDValue Chain, InFlag, Callee, NullPtr; 6800 SmallVector<SDValue, 32> Ops; 6801 6802 SDLoc DL = getCurSDLoc(); 6803 Callee = getValue(CI.getCalledValue()); 6804 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6805 6806 // The stackmap intrinsic only records the live variables (the arguemnts 6807 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6808 // intrinsic, this won't be lowered to a function call. This means we don't 6809 // have to worry about calling conventions and target specific lowering code. 6810 // Instead we perform the call lowering right here. 6811 // 6812 // chain, flag = CALLSEQ_START(chain, 0) 6813 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6814 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6815 // 6816 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6817 InFlag = Chain.getValue(1); 6818 6819 // Add the <id> and <numBytes> constants. 6820 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6821 Ops.push_back(DAG.getTargetConstant( 6822 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6823 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6824 Ops.push_back(DAG.getTargetConstant( 6825 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6826 MVT::i32)); 6827 6828 // Push live variables for the stack map. 6829 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6830 6831 // We are not pushing any register mask info here on the operands list, 6832 // because the stackmap doesn't clobber anything. 6833 6834 // Push the chain and the glue flag. 6835 Ops.push_back(Chain); 6836 Ops.push_back(InFlag); 6837 6838 // Create the STACKMAP node. 6839 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6840 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6841 Chain = SDValue(SM, 0); 6842 InFlag = Chain.getValue(1); 6843 6844 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6845 6846 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6847 6848 // Set the root to the target-lowered call chain. 6849 DAG.setRoot(Chain); 6850 6851 // Inform the Frame Information that we have a stackmap in this function. 6852 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6853 } 6854 6855 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6856 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6857 const BasicBlock *EHPadBB) { 6858 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6859 // i32 <numBytes>, 6860 // i8* <target>, 6861 // i32 <numArgs>, 6862 // [Args...], 6863 // [live variables...]) 6864 6865 CallingConv::ID CC = CS.getCallingConv(); 6866 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6867 bool HasDef = !CS->getType()->isVoidTy(); 6868 SDLoc dl = getCurSDLoc(); 6869 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6870 6871 // Handle immediate and symbolic callees. 6872 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6873 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6874 /*isTarget=*/true); 6875 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6876 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6877 SDLoc(SymbolicCallee), 6878 SymbolicCallee->getValueType(0)); 6879 6880 // Get the real number of arguments participating in the call <numArgs> 6881 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6882 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6883 6884 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6885 // Intrinsics include all meta-operands up to but not including CC. 6886 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6887 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6888 "Not enough arguments provided to the patchpoint intrinsic"); 6889 6890 // For AnyRegCC the arguments are lowered later on manually. 6891 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6892 Type *ReturnTy = 6893 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6894 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6895 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6896 6897 SDNode *CallEnd = Result.second.getNode(); 6898 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6899 CallEnd = CallEnd->getOperand(0).getNode(); 6900 6901 /// Get a call instruction from the call sequence chain. 6902 /// Tail calls are not allowed. 6903 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6904 "Expected a callseq node."); 6905 SDNode *Call = CallEnd->getOperand(0).getNode(); 6906 bool HasGlue = Call->getGluedNode(); 6907 6908 // Replace the target specific call node with the patchable intrinsic. 6909 SmallVector<SDValue, 8> Ops; 6910 6911 // Add the <id> and <numBytes> constants. 6912 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6913 Ops.push_back(DAG.getTargetConstant( 6914 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6915 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6916 Ops.push_back(DAG.getTargetConstant( 6917 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6918 MVT::i32)); 6919 6920 // Add the callee. 6921 Ops.push_back(Callee); 6922 6923 // Adjust <numArgs> to account for any arguments that have been passed on the 6924 // stack instead. 6925 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6926 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6927 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6928 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6929 6930 // Add the calling convention 6931 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6932 6933 // Add the arguments we omitted previously. The register allocator should 6934 // place these in any free register. 6935 if (IsAnyRegCC) 6936 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6937 Ops.push_back(getValue(CS.getArgument(i))); 6938 6939 // Push the arguments from the call instruction up to the register mask. 6940 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6941 Ops.append(Call->op_begin() + 2, e); 6942 6943 // Push live variables for the stack map. 6944 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6945 6946 // Push the register mask info. 6947 if (HasGlue) 6948 Ops.push_back(*(Call->op_end()-2)); 6949 else 6950 Ops.push_back(*(Call->op_end()-1)); 6951 6952 // Push the chain (this is originally the first operand of the call, but 6953 // becomes now the last or second to last operand). 6954 Ops.push_back(*(Call->op_begin())); 6955 6956 // Push the glue flag (last operand). 6957 if (HasGlue) 6958 Ops.push_back(*(Call->op_end()-1)); 6959 6960 SDVTList NodeTys; 6961 if (IsAnyRegCC && HasDef) { 6962 // Create the return types based on the intrinsic definition 6963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6964 SmallVector<EVT, 3> ValueVTs; 6965 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6966 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6967 6968 // There is always a chain and a glue type at the end 6969 ValueVTs.push_back(MVT::Other); 6970 ValueVTs.push_back(MVT::Glue); 6971 NodeTys = DAG.getVTList(ValueVTs); 6972 } else 6973 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6974 6975 // Replace the target specific call node with a PATCHPOINT node. 6976 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6977 dl, NodeTys, Ops); 6978 6979 // Update the NodeMap. 6980 if (HasDef) { 6981 if (IsAnyRegCC) 6982 setValue(CS.getInstruction(), SDValue(MN, 0)); 6983 else 6984 setValue(CS.getInstruction(), Result.first); 6985 } 6986 6987 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6988 // call sequence. Furthermore the location of the chain and glue can change 6989 // when the AnyReg calling convention is used and the intrinsic returns a 6990 // value. 6991 if (IsAnyRegCC && HasDef) { 6992 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6993 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6994 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6995 } else 6996 DAG.ReplaceAllUsesWith(Call, MN); 6997 DAG.DeleteNode(Call); 6998 6999 // Inform the Frame Information that we have a patchpoint in this function. 7000 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7001 } 7002 7003 /// Returns an AttributeSet representing the attributes applied to the return 7004 /// value of the given call. 7005 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7006 SmallVector<Attribute::AttrKind, 2> Attrs; 7007 if (CLI.RetSExt) 7008 Attrs.push_back(Attribute::SExt); 7009 if (CLI.RetZExt) 7010 Attrs.push_back(Attribute::ZExt); 7011 if (CLI.IsInReg) 7012 Attrs.push_back(Attribute::InReg); 7013 7014 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7015 Attrs); 7016 } 7017 7018 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7019 /// implementation, which just calls LowerCall. 7020 /// FIXME: When all targets are 7021 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7022 std::pair<SDValue, SDValue> 7023 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7024 // Handle the incoming return values from the call. 7025 CLI.Ins.clear(); 7026 Type *OrigRetTy = CLI.RetTy; 7027 SmallVector<EVT, 4> RetTys; 7028 SmallVector<uint64_t, 4> Offsets; 7029 auto &DL = CLI.DAG.getDataLayout(); 7030 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7031 7032 SmallVector<ISD::OutputArg, 4> Outs; 7033 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7034 7035 bool CanLowerReturn = 7036 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7037 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7038 7039 SDValue DemoteStackSlot; 7040 int DemoteStackIdx = -100; 7041 if (!CanLowerReturn) { 7042 // FIXME: equivalent assert? 7043 // assert(!CS.hasInAllocaArgument() && 7044 // "sret demotion is incompatible with inalloca"); 7045 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7046 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7047 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7048 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7049 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7050 7051 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7052 ArgListEntry Entry; 7053 Entry.Node = DemoteStackSlot; 7054 Entry.Ty = StackSlotPtrType; 7055 Entry.isSExt = false; 7056 Entry.isZExt = false; 7057 Entry.isInReg = false; 7058 Entry.isSRet = true; 7059 Entry.isNest = false; 7060 Entry.isByVal = false; 7061 Entry.isReturned = false; 7062 Entry.Alignment = Align; 7063 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7064 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7065 7066 // sret demotion isn't compatible with tail-calls, since the sret argument 7067 // points into the callers stack frame. 7068 CLI.IsTailCall = false; 7069 } else { 7070 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7071 EVT VT = RetTys[I]; 7072 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7073 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7074 for (unsigned i = 0; i != NumRegs; ++i) { 7075 ISD::InputArg MyFlags; 7076 MyFlags.VT = RegisterVT; 7077 MyFlags.ArgVT = VT; 7078 MyFlags.Used = CLI.IsReturnValueUsed; 7079 if (CLI.RetSExt) 7080 MyFlags.Flags.setSExt(); 7081 if (CLI.RetZExt) 7082 MyFlags.Flags.setZExt(); 7083 if (CLI.IsInReg) 7084 MyFlags.Flags.setInReg(); 7085 CLI.Ins.push_back(MyFlags); 7086 } 7087 } 7088 } 7089 7090 // Handle all of the outgoing arguments. 7091 CLI.Outs.clear(); 7092 CLI.OutVals.clear(); 7093 ArgListTy &Args = CLI.getArgs(); 7094 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7095 SmallVector<EVT, 4> ValueVTs; 7096 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7097 Type *FinalType = Args[i].Ty; 7098 if (Args[i].isByVal) 7099 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7100 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7101 FinalType, CLI.CallConv, CLI.IsVarArg); 7102 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7103 ++Value) { 7104 EVT VT = ValueVTs[Value]; 7105 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7106 SDValue Op = SDValue(Args[i].Node.getNode(), 7107 Args[i].Node.getResNo() + Value); 7108 ISD::ArgFlagsTy Flags; 7109 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7110 7111 if (Args[i].isZExt) 7112 Flags.setZExt(); 7113 if (Args[i].isSExt) 7114 Flags.setSExt(); 7115 if (Args[i].isInReg) 7116 Flags.setInReg(); 7117 if (Args[i].isSRet) 7118 Flags.setSRet(); 7119 if (Args[i].isByVal) 7120 Flags.setByVal(); 7121 if (Args[i].isInAlloca) { 7122 Flags.setInAlloca(); 7123 // Set the byval flag for CCAssignFn callbacks that don't know about 7124 // inalloca. This way we can know how many bytes we should've allocated 7125 // and how many bytes a callee cleanup function will pop. If we port 7126 // inalloca to more targets, we'll have to add custom inalloca handling 7127 // in the various CC lowering callbacks. 7128 Flags.setByVal(); 7129 } 7130 if (Args[i].isByVal || Args[i].isInAlloca) { 7131 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7132 Type *ElementTy = Ty->getElementType(); 7133 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7134 // For ByVal, alignment should come from FE. BE will guess if this 7135 // info is not there but there are cases it cannot get right. 7136 unsigned FrameAlign; 7137 if (Args[i].Alignment) 7138 FrameAlign = Args[i].Alignment; 7139 else 7140 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7141 Flags.setByValAlign(FrameAlign); 7142 } 7143 if (Args[i].isNest) 7144 Flags.setNest(); 7145 if (NeedsRegBlock) 7146 Flags.setInConsecutiveRegs(); 7147 Flags.setOrigAlign(OriginalAlignment); 7148 7149 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7150 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7151 SmallVector<SDValue, 4> Parts(NumParts); 7152 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7153 7154 if (Args[i].isSExt) 7155 ExtendKind = ISD::SIGN_EXTEND; 7156 else if (Args[i].isZExt) 7157 ExtendKind = ISD::ZERO_EXTEND; 7158 7159 // Conservatively only handle 'returned' on non-vectors for now 7160 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7161 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7162 "unexpected use of 'returned'"); 7163 // Before passing 'returned' to the target lowering code, ensure that 7164 // either the register MVT and the actual EVT are the same size or that 7165 // the return value and argument are extended in the same way; in these 7166 // cases it's safe to pass the argument register value unchanged as the 7167 // return register value (although it's at the target's option whether 7168 // to do so) 7169 // TODO: allow code generation to take advantage of partially preserved 7170 // registers rather than clobbering the entire register when the 7171 // parameter extension method is not compatible with the return 7172 // extension method 7173 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7174 (ExtendKind != ISD::ANY_EXTEND && 7175 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7176 Flags.setReturned(); 7177 } 7178 7179 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7180 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7181 7182 for (unsigned j = 0; j != NumParts; ++j) { 7183 // if it isn't first piece, alignment must be 1 7184 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7185 i < CLI.NumFixedArgs, 7186 i, j*Parts[j].getValueType().getStoreSize()); 7187 if (NumParts > 1 && j == 0) 7188 MyFlags.Flags.setSplit(); 7189 else if (j != 0) 7190 MyFlags.Flags.setOrigAlign(1); 7191 7192 CLI.Outs.push_back(MyFlags); 7193 CLI.OutVals.push_back(Parts[j]); 7194 } 7195 7196 if (NeedsRegBlock && Value == NumValues - 1) 7197 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7198 } 7199 } 7200 7201 SmallVector<SDValue, 4> InVals; 7202 CLI.Chain = LowerCall(CLI, InVals); 7203 7204 // Verify that the target's LowerCall behaved as expected. 7205 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7206 "LowerCall didn't return a valid chain!"); 7207 assert((!CLI.IsTailCall || InVals.empty()) && 7208 "LowerCall emitted a return value for a tail call!"); 7209 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7210 "LowerCall didn't emit the correct number of values!"); 7211 7212 // For a tail call, the return value is merely live-out and there aren't 7213 // any nodes in the DAG representing it. Return a special value to 7214 // indicate that a tail call has been emitted and no more Instructions 7215 // should be processed in the current block. 7216 if (CLI.IsTailCall) { 7217 CLI.DAG.setRoot(CLI.Chain); 7218 return std::make_pair(SDValue(), SDValue()); 7219 } 7220 7221 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7222 assert(InVals[i].getNode() && 7223 "LowerCall emitted a null value!"); 7224 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7225 "LowerCall emitted a value with the wrong type!"); 7226 }); 7227 7228 SmallVector<SDValue, 4> ReturnValues; 7229 if (!CanLowerReturn) { 7230 // The instruction result is the result of loading from the 7231 // hidden sret parameter. 7232 SmallVector<EVT, 1> PVTs; 7233 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7234 7235 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7236 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7237 EVT PtrVT = PVTs[0]; 7238 7239 unsigned NumValues = RetTys.size(); 7240 ReturnValues.resize(NumValues); 7241 SmallVector<SDValue, 4> Chains(NumValues); 7242 7243 for (unsigned i = 0; i < NumValues; ++i) { 7244 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7245 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7246 PtrVT)); 7247 SDValue L = CLI.DAG.getLoad( 7248 RetTys[i], CLI.DL, CLI.Chain, Add, 7249 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7250 DemoteStackIdx, Offsets[i]), 7251 false, false, false, 1); 7252 ReturnValues[i] = L; 7253 Chains[i] = L.getValue(1); 7254 } 7255 7256 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7257 } else { 7258 // Collect the legal value parts into potentially illegal values 7259 // that correspond to the original function's return values. 7260 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7261 if (CLI.RetSExt) 7262 AssertOp = ISD::AssertSext; 7263 else if (CLI.RetZExt) 7264 AssertOp = ISD::AssertZext; 7265 unsigned CurReg = 0; 7266 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7267 EVT VT = RetTys[I]; 7268 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7269 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7270 7271 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7272 NumRegs, RegisterVT, VT, nullptr, 7273 AssertOp)); 7274 CurReg += NumRegs; 7275 } 7276 7277 // For a function returning void, there is no return value. We can't create 7278 // such a node, so we just return a null return value in that case. In 7279 // that case, nothing will actually look at the value. 7280 if (ReturnValues.empty()) 7281 return std::make_pair(SDValue(), CLI.Chain); 7282 } 7283 7284 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7285 CLI.DAG.getVTList(RetTys), ReturnValues); 7286 return std::make_pair(Res, CLI.Chain); 7287 } 7288 7289 void TargetLowering::LowerOperationWrapper(SDNode *N, 7290 SmallVectorImpl<SDValue> &Results, 7291 SelectionDAG &DAG) const { 7292 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7293 if (Res.getNode()) 7294 Results.push_back(Res); 7295 } 7296 7297 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7298 llvm_unreachable("LowerOperation not implemented for this target!"); 7299 } 7300 7301 void 7302 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7303 SDValue Op = getNonRegisterValue(V); 7304 assert((Op.getOpcode() != ISD::CopyFromReg || 7305 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7306 "Copy from a reg to the same reg!"); 7307 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7308 7309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7310 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7311 V->getType()); 7312 SDValue Chain = DAG.getEntryNode(); 7313 7314 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7315 FuncInfo.PreferredExtendType.end()) 7316 ? ISD::ANY_EXTEND 7317 : FuncInfo.PreferredExtendType[V]; 7318 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7319 PendingExports.push_back(Chain); 7320 } 7321 7322 #include "llvm/CodeGen/SelectionDAGISel.h" 7323 7324 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7325 /// entry block, return true. This includes arguments used by switches, since 7326 /// the switch may expand into multiple basic blocks. 7327 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7328 // With FastISel active, we may be splitting blocks, so force creation 7329 // of virtual registers for all non-dead arguments. 7330 if (FastISel) 7331 return A->use_empty(); 7332 7333 const BasicBlock &Entry = A->getParent()->front(); 7334 for (const User *U : A->users()) 7335 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7336 return false; // Use not in entry block. 7337 7338 return true; 7339 } 7340 7341 void SelectionDAGISel::LowerArguments(const Function &F) { 7342 SelectionDAG &DAG = SDB->DAG; 7343 SDLoc dl = SDB->getCurSDLoc(); 7344 const DataLayout &DL = DAG.getDataLayout(); 7345 SmallVector<ISD::InputArg, 16> Ins; 7346 7347 if (!FuncInfo->CanLowerReturn) { 7348 // Put in an sret pointer parameter before all the other parameters. 7349 SmallVector<EVT, 1> ValueVTs; 7350 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7351 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7352 7353 // NOTE: Assuming that a pointer will never break down to more than one VT 7354 // or one register. 7355 ISD::ArgFlagsTy Flags; 7356 Flags.setSRet(); 7357 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7358 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7359 ISD::InputArg::NoArgIndex, 0); 7360 Ins.push_back(RetArg); 7361 } 7362 7363 // Set up the incoming argument description vector. 7364 unsigned Idx = 1; 7365 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7366 I != E; ++I, ++Idx) { 7367 SmallVector<EVT, 4> ValueVTs; 7368 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7369 bool isArgValueUsed = !I->use_empty(); 7370 unsigned PartBase = 0; 7371 Type *FinalType = I->getType(); 7372 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7373 FinalType = cast<PointerType>(FinalType)->getElementType(); 7374 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7375 FinalType, F.getCallingConv(), F.isVarArg()); 7376 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7377 Value != NumValues; ++Value) { 7378 EVT VT = ValueVTs[Value]; 7379 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7380 ISD::ArgFlagsTy Flags; 7381 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7382 7383 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7384 Flags.setZExt(); 7385 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7386 Flags.setSExt(); 7387 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7388 Flags.setInReg(); 7389 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7390 Flags.setSRet(); 7391 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7392 Flags.setByVal(); 7393 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7394 Flags.setInAlloca(); 7395 // Set the byval flag for CCAssignFn callbacks that don't know about 7396 // inalloca. This way we can know how many bytes we should've allocated 7397 // and how many bytes a callee cleanup function will pop. If we port 7398 // inalloca to more targets, we'll have to add custom inalloca handling 7399 // in the various CC lowering callbacks. 7400 Flags.setByVal(); 7401 } 7402 if (Flags.isByVal() || Flags.isInAlloca()) { 7403 PointerType *Ty = cast<PointerType>(I->getType()); 7404 Type *ElementTy = Ty->getElementType(); 7405 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7406 // For ByVal, alignment should be passed from FE. BE will guess if 7407 // this info is not there but there are cases it cannot get right. 7408 unsigned FrameAlign; 7409 if (F.getParamAlignment(Idx)) 7410 FrameAlign = F.getParamAlignment(Idx); 7411 else 7412 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7413 Flags.setByValAlign(FrameAlign); 7414 } 7415 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7416 Flags.setNest(); 7417 if (NeedsRegBlock) 7418 Flags.setInConsecutiveRegs(); 7419 Flags.setOrigAlign(OriginalAlignment); 7420 7421 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7422 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7423 for (unsigned i = 0; i != NumRegs; ++i) { 7424 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7425 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7426 if (NumRegs > 1 && i == 0) 7427 MyFlags.Flags.setSplit(); 7428 // if it isn't first piece, alignment must be 1 7429 else if (i > 0) 7430 MyFlags.Flags.setOrigAlign(1); 7431 Ins.push_back(MyFlags); 7432 } 7433 if (NeedsRegBlock && Value == NumValues - 1) 7434 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7435 PartBase += VT.getStoreSize(); 7436 } 7437 } 7438 7439 // Call the target to set up the argument values. 7440 SmallVector<SDValue, 8> InVals; 7441 SDValue NewRoot = TLI->LowerFormalArguments( 7442 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7443 7444 // Verify that the target's LowerFormalArguments behaved as expected. 7445 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7446 "LowerFormalArguments didn't return a valid chain!"); 7447 assert(InVals.size() == Ins.size() && 7448 "LowerFormalArguments didn't emit the correct number of values!"); 7449 DEBUG({ 7450 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7451 assert(InVals[i].getNode() && 7452 "LowerFormalArguments emitted a null value!"); 7453 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7454 "LowerFormalArguments emitted a value with the wrong type!"); 7455 } 7456 }); 7457 7458 // Update the DAG with the new chain value resulting from argument lowering. 7459 DAG.setRoot(NewRoot); 7460 7461 // Set up the argument values. 7462 unsigned i = 0; 7463 Idx = 1; 7464 if (!FuncInfo->CanLowerReturn) { 7465 // Create a virtual register for the sret pointer, and put in a copy 7466 // from the sret argument into it. 7467 SmallVector<EVT, 1> ValueVTs; 7468 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7469 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7470 MVT VT = ValueVTs[0].getSimpleVT(); 7471 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7472 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7473 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7474 RegVT, VT, nullptr, AssertOp); 7475 7476 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7477 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7478 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7479 FuncInfo->DemoteRegister = SRetReg; 7480 NewRoot = 7481 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7482 DAG.setRoot(NewRoot); 7483 7484 // i indexes lowered arguments. Bump it past the hidden sret argument. 7485 // Idx indexes LLVM arguments. Don't touch it. 7486 ++i; 7487 } 7488 7489 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7490 ++I, ++Idx) { 7491 SmallVector<SDValue, 4> ArgValues; 7492 SmallVector<EVT, 4> ValueVTs; 7493 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7494 unsigned NumValues = ValueVTs.size(); 7495 7496 // If this argument is unused then remember its value. It is used to generate 7497 // debugging information. 7498 if (I->use_empty() && NumValues) { 7499 SDB->setUnusedArgValue(&*I, InVals[i]); 7500 7501 // Also remember any frame index for use in FastISel. 7502 if (FrameIndexSDNode *FI = 7503 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7504 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7505 } 7506 7507 for (unsigned Val = 0; Val != NumValues; ++Val) { 7508 EVT VT = ValueVTs[Val]; 7509 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7510 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7511 7512 if (!I->use_empty()) { 7513 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7514 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7515 AssertOp = ISD::AssertSext; 7516 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7517 AssertOp = ISD::AssertZext; 7518 7519 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7520 NumParts, PartVT, VT, 7521 nullptr, AssertOp)); 7522 } 7523 7524 i += NumParts; 7525 } 7526 7527 // We don't need to do anything else for unused arguments. 7528 if (ArgValues.empty()) 7529 continue; 7530 7531 // Note down frame index. 7532 if (FrameIndexSDNode *FI = 7533 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7534 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7535 7536 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7537 SDB->getCurSDLoc()); 7538 7539 SDB->setValue(&*I, Res); 7540 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7541 if (LoadSDNode *LNode = 7542 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7543 if (FrameIndexSDNode *FI = 7544 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7545 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7546 } 7547 7548 // If this argument is live outside of the entry block, insert a copy from 7549 // wherever we got it to the vreg that other BB's will reference it as. 7550 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7551 // If we can, though, try to skip creating an unnecessary vreg. 7552 // FIXME: This isn't very clean... it would be nice to make this more 7553 // general. It's also subtly incompatible with the hacks FastISel 7554 // uses with vregs. 7555 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7556 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7557 FuncInfo->ValueMap[&*I] = Reg; 7558 continue; 7559 } 7560 } 7561 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7562 FuncInfo->InitializeRegForValue(&*I); 7563 SDB->CopyToExportRegsIfNeeded(&*I); 7564 } 7565 } 7566 7567 assert(i == InVals.size() && "Argument register count mismatch!"); 7568 7569 // Finally, if the target has anything special to do, allow it to do so. 7570 EmitFunctionEntryCode(); 7571 } 7572 7573 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7574 /// ensure constants are generated when needed. Remember the virtual registers 7575 /// that need to be added to the Machine PHI nodes as input. We cannot just 7576 /// directly add them, because expansion might result in multiple MBB's for one 7577 /// BB. As such, the start of the BB might correspond to a different MBB than 7578 /// the end. 7579 /// 7580 void 7581 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7582 const TerminatorInst *TI = LLVMBB->getTerminator(); 7583 7584 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7585 7586 // Check PHI nodes in successors that expect a value to be available from this 7587 // block. 7588 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7589 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7590 if (!isa<PHINode>(SuccBB->begin())) continue; 7591 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7592 7593 // If this terminator has multiple identical successors (common for 7594 // switches), only handle each succ once. 7595 if (!SuccsHandled.insert(SuccMBB).second) 7596 continue; 7597 7598 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7599 7600 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7601 // nodes and Machine PHI nodes, but the incoming operands have not been 7602 // emitted yet. 7603 for (BasicBlock::const_iterator I = SuccBB->begin(); 7604 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7605 // Ignore dead phi's. 7606 if (PN->use_empty()) continue; 7607 7608 // Skip empty types 7609 if (PN->getType()->isEmptyTy()) 7610 continue; 7611 7612 unsigned Reg; 7613 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7614 7615 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7616 unsigned &RegOut = ConstantsOut[C]; 7617 if (RegOut == 0) { 7618 RegOut = FuncInfo.CreateRegs(C->getType()); 7619 CopyValueToVirtualRegister(C, RegOut); 7620 } 7621 Reg = RegOut; 7622 } else { 7623 DenseMap<const Value *, unsigned>::iterator I = 7624 FuncInfo.ValueMap.find(PHIOp); 7625 if (I != FuncInfo.ValueMap.end()) 7626 Reg = I->second; 7627 else { 7628 assert(isa<AllocaInst>(PHIOp) && 7629 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7630 "Didn't codegen value into a register!??"); 7631 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7632 CopyValueToVirtualRegister(PHIOp, Reg); 7633 } 7634 } 7635 7636 // Remember that this register needs to added to the machine PHI node as 7637 // the input for this MBB. 7638 SmallVector<EVT, 4> ValueVTs; 7639 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7640 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7641 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7642 EVT VT = ValueVTs[vti]; 7643 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7644 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7645 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7646 Reg += NumRegisters; 7647 } 7648 } 7649 } 7650 7651 ConstantsOut.clear(); 7652 } 7653 7654 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7655 /// is 0. 7656 MachineBasicBlock * 7657 SelectionDAGBuilder::StackProtectorDescriptor:: 7658 AddSuccessorMBB(const BasicBlock *BB, 7659 MachineBasicBlock *ParentMBB, 7660 bool IsLikely, 7661 MachineBasicBlock *SuccMBB) { 7662 // If SuccBB has not been created yet, create it. 7663 if (!SuccMBB) { 7664 MachineFunction *MF = ParentMBB->getParent(); 7665 MachineFunction::iterator BBI(ParentMBB); 7666 SuccMBB = MF->CreateMachineBasicBlock(BB); 7667 MF->insert(++BBI, SuccMBB); 7668 } 7669 // Add it as a successor of ParentMBB. 7670 ParentMBB->addSuccessor( 7671 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7672 return SuccMBB; 7673 } 7674 7675 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7676 MachineFunction::iterator I(MBB); 7677 if (++I == FuncInfo.MF->end()) 7678 return nullptr; 7679 return &*I; 7680 } 7681 7682 /// During lowering new call nodes can be created (such as memset, etc.). 7683 /// Those will become new roots of the current DAG, but complications arise 7684 /// when they are tail calls. In such cases, the call lowering will update 7685 /// the root, but the builder still needs to know that a tail call has been 7686 /// lowered in order to avoid generating an additional return. 7687 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7688 // If the node is null, we do have a tail call. 7689 if (MaybeTC.getNode() != nullptr) 7690 DAG.setRoot(MaybeTC); 7691 else 7692 HasTailCall = true; 7693 } 7694 7695 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7696 unsigned *TotalCases, unsigned First, 7697 unsigned Last) { 7698 assert(Last >= First); 7699 assert(TotalCases[Last] >= TotalCases[First]); 7700 7701 APInt LowCase = Clusters[First].Low->getValue(); 7702 APInt HighCase = Clusters[Last].High->getValue(); 7703 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7704 7705 // FIXME: A range of consecutive cases has 100% density, but only requires one 7706 // comparison to lower. We should discriminate against such consecutive ranges 7707 // in jump tables. 7708 7709 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7710 uint64_t Range = Diff + 1; 7711 7712 uint64_t NumCases = 7713 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7714 7715 assert(NumCases < UINT64_MAX / 100); 7716 assert(Range >= NumCases); 7717 7718 return NumCases * 100 >= Range * MinJumpTableDensity; 7719 } 7720 7721 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7722 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7723 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7724 } 7725 7726 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7727 unsigned First, unsigned Last, 7728 const SwitchInst *SI, 7729 MachineBasicBlock *DefaultMBB, 7730 CaseCluster &JTCluster) { 7731 assert(First <= Last); 7732 7733 auto Prob = BranchProbability::getZero(); 7734 unsigned NumCmps = 0; 7735 std::vector<MachineBasicBlock*> Table; 7736 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7737 7738 // Initialize probabilities in JTProbs. 7739 for (unsigned I = First; I <= Last; ++I) 7740 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7741 7742 for (unsigned I = First; I <= Last; ++I) { 7743 assert(Clusters[I].Kind == CC_Range); 7744 Prob += Clusters[I].Prob; 7745 APInt Low = Clusters[I].Low->getValue(); 7746 APInt High = Clusters[I].High->getValue(); 7747 NumCmps += (Low == High) ? 1 : 2; 7748 if (I != First) { 7749 // Fill the gap between this and the previous cluster. 7750 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7751 assert(PreviousHigh.slt(Low)); 7752 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7753 for (uint64_t J = 0; J < Gap; J++) 7754 Table.push_back(DefaultMBB); 7755 } 7756 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7757 for (uint64_t J = 0; J < ClusterSize; ++J) 7758 Table.push_back(Clusters[I].MBB); 7759 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7760 } 7761 7762 unsigned NumDests = JTProbs.size(); 7763 if (isSuitableForBitTests(NumDests, NumCmps, 7764 Clusters[First].Low->getValue(), 7765 Clusters[Last].High->getValue())) { 7766 // Clusters[First..Last] should be lowered as bit tests instead. 7767 return false; 7768 } 7769 7770 // Create the MBB that will load from and jump through the table. 7771 // Note: We create it here, but it's not inserted into the function yet. 7772 MachineFunction *CurMF = FuncInfo.MF; 7773 MachineBasicBlock *JumpTableMBB = 7774 CurMF->CreateMachineBasicBlock(SI->getParent()); 7775 7776 // Add successors. Note: use table order for determinism. 7777 SmallPtrSet<MachineBasicBlock *, 8> Done; 7778 for (MachineBasicBlock *Succ : Table) { 7779 if (Done.count(Succ)) 7780 continue; 7781 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7782 Done.insert(Succ); 7783 } 7784 JumpTableMBB->normalizeSuccProbs(); 7785 7786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7787 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7788 ->createJumpTableIndex(Table); 7789 7790 // Set up the jump table info. 7791 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7792 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7793 Clusters[Last].High->getValue(), SI->getCondition(), 7794 nullptr, false); 7795 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7796 7797 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7798 JTCases.size() - 1, Prob); 7799 return true; 7800 } 7801 7802 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7803 const SwitchInst *SI, 7804 MachineBasicBlock *DefaultMBB) { 7805 #ifndef NDEBUG 7806 // Clusters must be non-empty, sorted, and only contain Range clusters. 7807 assert(!Clusters.empty()); 7808 for (CaseCluster &C : Clusters) 7809 assert(C.Kind == CC_Range); 7810 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7811 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7812 #endif 7813 7814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7815 if (!areJTsAllowed(TLI)) 7816 return; 7817 7818 const int64_t N = Clusters.size(); 7819 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7820 7821 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7822 SmallVector<unsigned, 8> TotalCases(N); 7823 7824 for (unsigned i = 0; i < N; ++i) { 7825 APInt Hi = Clusters[i].High->getValue(); 7826 APInt Lo = Clusters[i].Low->getValue(); 7827 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7828 if (i != 0) 7829 TotalCases[i] += TotalCases[i - 1]; 7830 } 7831 7832 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7833 // Cheap case: the whole range might be suitable for jump table. 7834 CaseCluster JTCluster; 7835 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7836 Clusters[0] = JTCluster; 7837 Clusters.resize(1); 7838 return; 7839 } 7840 } 7841 7842 // The algorithm below is not suitable for -O0. 7843 if (TM.getOptLevel() == CodeGenOpt::None) 7844 return; 7845 7846 // Split Clusters into minimum number of dense partitions. The algorithm uses 7847 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7848 // for the Case Statement'" (1994), but builds the MinPartitions array in 7849 // reverse order to make it easier to reconstruct the partitions in ascending 7850 // order. In the choice between two optimal partitionings, it picks the one 7851 // which yields more jump tables. 7852 7853 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7854 SmallVector<unsigned, 8> MinPartitions(N); 7855 // LastElement[i] is the last element of the partition starting at i. 7856 SmallVector<unsigned, 8> LastElement(N); 7857 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7858 SmallVector<unsigned, 8> NumTables(N); 7859 7860 // Base case: There is only one way to partition Clusters[N-1]. 7861 MinPartitions[N - 1] = 1; 7862 LastElement[N - 1] = N - 1; 7863 assert(MinJumpTableSize > 1); 7864 NumTables[N - 1] = 0; 7865 7866 // Note: loop indexes are signed to avoid underflow. 7867 for (int64_t i = N - 2; i >= 0; i--) { 7868 // Find optimal partitioning of Clusters[i..N-1]. 7869 // Baseline: Put Clusters[i] into a partition on its own. 7870 MinPartitions[i] = MinPartitions[i + 1] + 1; 7871 LastElement[i] = i; 7872 NumTables[i] = NumTables[i + 1]; 7873 7874 // Search for a solution that results in fewer partitions. 7875 for (int64_t j = N - 1; j > i; j--) { 7876 // Try building a partition from Clusters[i..j]. 7877 if (isDense(Clusters, &TotalCases[0], i, j)) { 7878 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7879 bool IsTable = j - i + 1 >= MinJumpTableSize; 7880 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7881 7882 // If this j leads to fewer partitions, or same number of partitions 7883 // with more lookup tables, it is a better partitioning. 7884 if (NumPartitions < MinPartitions[i] || 7885 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7886 MinPartitions[i] = NumPartitions; 7887 LastElement[i] = j; 7888 NumTables[i] = Tables; 7889 } 7890 } 7891 } 7892 } 7893 7894 // Iterate over the partitions, replacing some with jump tables in-place. 7895 unsigned DstIndex = 0; 7896 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7897 Last = LastElement[First]; 7898 assert(Last >= First); 7899 assert(DstIndex <= First); 7900 unsigned NumClusters = Last - First + 1; 7901 7902 CaseCluster JTCluster; 7903 if (NumClusters >= MinJumpTableSize && 7904 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7905 Clusters[DstIndex++] = JTCluster; 7906 } else { 7907 for (unsigned I = First; I <= Last; ++I) 7908 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7909 } 7910 } 7911 Clusters.resize(DstIndex); 7912 } 7913 7914 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7915 // FIXME: Using the pointer type doesn't seem ideal. 7916 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7917 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7918 return Range <= BW; 7919 } 7920 7921 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7922 unsigned NumCmps, 7923 const APInt &Low, 7924 const APInt &High) { 7925 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7926 // range of cases both require only one branch to lower. Just looking at the 7927 // number of clusters and destinations should be enough to decide whether to 7928 // build bit tests. 7929 7930 // To lower a range with bit tests, the range must fit the bitwidth of a 7931 // machine word. 7932 if (!rangeFitsInWord(Low, High)) 7933 return false; 7934 7935 // Decide whether it's profitable to lower this range with bit tests. Each 7936 // destination requires a bit test and branch, and there is an overall range 7937 // check branch. For a small number of clusters, separate comparisons might be 7938 // cheaper, and for many destinations, splitting the range might be better. 7939 return (NumDests == 1 && NumCmps >= 3) || 7940 (NumDests == 2 && NumCmps >= 5) || 7941 (NumDests == 3 && NumCmps >= 6); 7942 } 7943 7944 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7945 unsigned First, unsigned Last, 7946 const SwitchInst *SI, 7947 CaseCluster &BTCluster) { 7948 assert(First <= Last); 7949 if (First == Last) 7950 return false; 7951 7952 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7953 unsigned NumCmps = 0; 7954 for (int64_t I = First; I <= Last; ++I) { 7955 assert(Clusters[I].Kind == CC_Range); 7956 Dests.set(Clusters[I].MBB->getNumber()); 7957 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7958 } 7959 unsigned NumDests = Dests.count(); 7960 7961 APInt Low = Clusters[First].Low->getValue(); 7962 APInt High = Clusters[Last].High->getValue(); 7963 assert(Low.slt(High)); 7964 7965 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7966 return false; 7967 7968 APInt LowBound; 7969 APInt CmpRange; 7970 7971 const int BitWidth = DAG.getTargetLoweringInfo() 7972 .getPointerTy(DAG.getDataLayout()) 7973 .getSizeInBits(); 7974 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7975 7976 // Check if the clusters cover a contiguous range such that no value in the 7977 // range will jump to the default statement. 7978 bool ContiguousRange = true; 7979 for (int64_t I = First + 1; I <= Last; ++I) { 7980 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7981 ContiguousRange = false; 7982 break; 7983 } 7984 } 7985 7986 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7987 // Optimize the case where all the case values fit in a word without having 7988 // to subtract minValue. In this case, we can optimize away the subtraction. 7989 LowBound = APInt::getNullValue(Low.getBitWidth()); 7990 CmpRange = High; 7991 ContiguousRange = false; 7992 } else { 7993 LowBound = Low; 7994 CmpRange = High - Low; 7995 } 7996 7997 CaseBitsVector CBV; 7998 auto TotalProb = BranchProbability::getZero(); 7999 for (unsigned i = First; i <= Last; ++i) { 8000 // Find the CaseBits for this destination. 8001 unsigned j; 8002 for (j = 0; j < CBV.size(); ++j) 8003 if (CBV[j].BB == Clusters[i].MBB) 8004 break; 8005 if (j == CBV.size()) 8006 CBV.push_back( 8007 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8008 CaseBits *CB = &CBV[j]; 8009 8010 // Update Mask, Bits and ExtraProb. 8011 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8012 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8013 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8014 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8015 CB->Bits += Hi - Lo + 1; 8016 CB->ExtraProb += Clusters[i].Prob; 8017 TotalProb += Clusters[i].Prob; 8018 } 8019 8020 BitTestInfo BTI; 8021 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8022 // Sort by probability first, number of bits second. 8023 if (a.ExtraProb != b.ExtraProb) 8024 return a.ExtraProb > b.ExtraProb; 8025 return a.Bits > b.Bits; 8026 }); 8027 8028 for (auto &CB : CBV) { 8029 MachineBasicBlock *BitTestBB = 8030 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8031 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8032 } 8033 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8034 SI->getCondition(), -1U, MVT::Other, false, 8035 ContiguousRange, nullptr, nullptr, std::move(BTI), 8036 TotalProb); 8037 8038 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8039 BitTestCases.size() - 1, TotalProb); 8040 return true; 8041 } 8042 8043 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8044 const SwitchInst *SI) { 8045 // Partition Clusters into as few subsets as possible, where each subset has a 8046 // range that fits in a machine word and has <= 3 unique destinations. 8047 8048 #ifndef NDEBUG 8049 // Clusters must be sorted and contain Range or JumpTable clusters. 8050 assert(!Clusters.empty()); 8051 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8052 for (const CaseCluster &C : Clusters) 8053 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8054 for (unsigned i = 1; i < Clusters.size(); ++i) 8055 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8056 #endif 8057 8058 // The algorithm below is not suitable for -O0. 8059 if (TM.getOptLevel() == CodeGenOpt::None) 8060 return; 8061 8062 // If target does not have legal shift left, do not emit bit tests at all. 8063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8064 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8065 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8066 return; 8067 8068 int BitWidth = PTy.getSizeInBits(); 8069 const int64_t N = Clusters.size(); 8070 8071 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8072 SmallVector<unsigned, 8> MinPartitions(N); 8073 // LastElement[i] is the last element of the partition starting at i. 8074 SmallVector<unsigned, 8> LastElement(N); 8075 8076 // FIXME: This might not be the best algorithm for finding bit test clusters. 8077 8078 // Base case: There is only one way to partition Clusters[N-1]. 8079 MinPartitions[N - 1] = 1; 8080 LastElement[N - 1] = N - 1; 8081 8082 // Note: loop indexes are signed to avoid underflow. 8083 for (int64_t i = N - 2; i >= 0; --i) { 8084 // Find optimal partitioning of Clusters[i..N-1]. 8085 // Baseline: Put Clusters[i] into a partition on its own. 8086 MinPartitions[i] = MinPartitions[i + 1] + 1; 8087 LastElement[i] = i; 8088 8089 // Search for a solution that results in fewer partitions. 8090 // Note: the search is limited by BitWidth, reducing time complexity. 8091 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8092 // Try building a partition from Clusters[i..j]. 8093 8094 // Check the range. 8095 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8096 Clusters[j].High->getValue())) 8097 continue; 8098 8099 // Check nbr of destinations and cluster types. 8100 // FIXME: This works, but doesn't seem very efficient. 8101 bool RangesOnly = true; 8102 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8103 for (int64_t k = i; k <= j; k++) { 8104 if (Clusters[k].Kind != CC_Range) { 8105 RangesOnly = false; 8106 break; 8107 } 8108 Dests.set(Clusters[k].MBB->getNumber()); 8109 } 8110 if (!RangesOnly || Dests.count() > 3) 8111 break; 8112 8113 // Check if it's a better partition. 8114 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8115 if (NumPartitions < MinPartitions[i]) { 8116 // Found a better partition. 8117 MinPartitions[i] = NumPartitions; 8118 LastElement[i] = j; 8119 } 8120 } 8121 } 8122 8123 // Iterate over the partitions, replacing with bit-test clusters in-place. 8124 unsigned DstIndex = 0; 8125 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8126 Last = LastElement[First]; 8127 assert(First <= Last); 8128 assert(DstIndex <= First); 8129 8130 CaseCluster BitTestCluster; 8131 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8132 Clusters[DstIndex++] = BitTestCluster; 8133 } else { 8134 size_t NumClusters = Last - First + 1; 8135 std::memmove(&Clusters[DstIndex], &Clusters[First], 8136 sizeof(Clusters[0]) * NumClusters); 8137 DstIndex += NumClusters; 8138 } 8139 } 8140 Clusters.resize(DstIndex); 8141 } 8142 8143 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8144 MachineBasicBlock *SwitchMBB, 8145 MachineBasicBlock *DefaultMBB) { 8146 MachineFunction *CurMF = FuncInfo.MF; 8147 MachineBasicBlock *NextMBB = nullptr; 8148 MachineFunction::iterator BBI(W.MBB); 8149 if (++BBI != FuncInfo.MF->end()) 8150 NextMBB = &*BBI; 8151 8152 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8153 8154 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8155 8156 if (Size == 2 && W.MBB == SwitchMBB) { 8157 // If any two of the cases has the same destination, and if one value 8158 // is the same as the other, but has one bit unset that the other has set, 8159 // use bit manipulation to do two compares at once. For example: 8160 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8161 // TODO: This could be extended to merge any 2 cases in switches with 3 8162 // cases. 8163 // TODO: Handle cases where W.CaseBB != SwitchBB. 8164 CaseCluster &Small = *W.FirstCluster; 8165 CaseCluster &Big = *W.LastCluster; 8166 8167 if (Small.Low == Small.High && Big.Low == Big.High && 8168 Small.MBB == Big.MBB) { 8169 const APInt &SmallValue = Small.Low->getValue(); 8170 const APInt &BigValue = Big.Low->getValue(); 8171 8172 // Check that there is only one bit different. 8173 APInt CommonBit = BigValue ^ SmallValue; 8174 if (CommonBit.isPowerOf2()) { 8175 SDValue CondLHS = getValue(Cond); 8176 EVT VT = CondLHS.getValueType(); 8177 SDLoc DL = getCurSDLoc(); 8178 8179 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8180 DAG.getConstant(CommonBit, DL, VT)); 8181 SDValue Cond = DAG.getSetCC( 8182 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8183 ISD::SETEQ); 8184 8185 // Update successor info. 8186 // Both Small and Big will jump to Small.BB, so we sum up the 8187 // probabilities. 8188 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8189 if (BPI) 8190 addSuccessorWithProb( 8191 SwitchMBB, DefaultMBB, 8192 // The default destination is the first successor in IR. 8193 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8194 else 8195 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8196 8197 // Insert the true branch. 8198 SDValue BrCond = 8199 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8200 DAG.getBasicBlock(Small.MBB)); 8201 // Insert the false branch. 8202 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8203 DAG.getBasicBlock(DefaultMBB)); 8204 8205 DAG.setRoot(BrCond); 8206 return; 8207 } 8208 } 8209 } 8210 8211 if (TM.getOptLevel() != CodeGenOpt::None) { 8212 // Order cases by probability so the most likely case will be checked first. 8213 std::sort(W.FirstCluster, W.LastCluster + 1, 8214 [](const CaseCluster &a, const CaseCluster &b) { 8215 return a.Prob > b.Prob; 8216 }); 8217 8218 // Rearrange the case blocks so that the last one falls through if possible 8219 // without without changing the order of probabilities. 8220 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8221 --I; 8222 if (I->Prob > W.LastCluster->Prob) 8223 break; 8224 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8225 std::swap(*I, *W.LastCluster); 8226 break; 8227 } 8228 } 8229 } 8230 8231 // Compute total probability. 8232 BranchProbability DefaultProb = W.DefaultProb; 8233 BranchProbability UnhandledProbs = DefaultProb; 8234 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8235 UnhandledProbs += I->Prob; 8236 8237 MachineBasicBlock *CurMBB = W.MBB; 8238 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8239 MachineBasicBlock *Fallthrough; 8240 if (I == W.LastCluster) { 8241 // For the last cluster, fall through to the default destination. 8242 Fallthrough = DefaultMBB; 8243 } else { 8244 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8245 CurMF->insert(BBI, Fallthrough); 8246 // Put Cond in a virtual register to make it available from the new blocks. 8247 ExportFromCurrentBlock(Cond); 8248 } 8249 UnhandledProbs -= I->Prob; 8250 8251 switch (I->Kind) { 8252 case CC_JumpTable: { 8253 // FIXME: Optimize away range check based on pivot comparisons. 8254 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8255 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8256 8257 // The jump block hasn't been inserted yet; insert it here. 8258 MachineBasicBlock *JumpMBB = JT->MBB; 8259 CurMF->insert(BBI, JumpMBB); 8260 8261 auto JumpProb = I->Prob; 8262 auto FallthroughProb = UnhandledProbs; 8263 8264 // If the default statement is a target of the jump table, we evenly 8265 // distribute the default probability to successors of CurMBB. Also 8266 // update the probability on the edge from JumpMBB to Fallthrough. 8267 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8268 SE = JumpMBB->succ_end(); 8269 SI != SE; ++SI) { 8270 if (*SI == DefaultMBB) { 8271 JumpProb += DefaultProb / 2; 8272 FallthroughProb -= DefaultProb / 2; 8273 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8274 JumpMBB->normalizeSuccProbs(); 8275 break; 8276 } 8277 } 8278 8279 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8280 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8281 CurMBB->normalizeSuccProbs(); 8282 8283 // The jump table header will be inserted in our current block, do the 8284 // range check, and fall through to our fallthrough block. 8285 JTH->HeaderBB = CurMBB; 8286 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8287 8288 // If we're in the right place, emit the jump table header right now. 8289 if (CurMBB == SwitchMBB) { 8290 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8291 JTH->Emitted = true; 8292 } 8293 break; 8294 } 8295 case CC_BitTests: { 8296 // FIXME: Optimize away range check based on pivot comparisons. 8297 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8298 8299 // The bit test blocks haven't been inserted yet; insert them here. 8300 for (BitTestCase &BTC : BTB->Cases) 8301 CurMF->insert(BBI, BTC.ThisBB); 8302 8303 // Fill in fields of the BitTestBlock. 8304 BTB->Parent = CurMBB; 8305 BTB->Default = Fallthrough; 8306 8307 BTB->DefaultProb = UnhandledProbs; 8308 // If the cases in bit test don't form a contiguous range, we evenly 8309 // distribute the probability on the edge to Fallthrough to two 8310 // successors of CurMBB. 8311 if (!BTB->ContiguousRange) { 8312 BTB->Prob += DefaultProb / 2; 8313 BTB->DefaultProb -= DefaultProb / 2; 8314 } 8315 8316 // If we're in the right place, emit the bit test header right now. 8317 if (CurMBB == SwitchMBB) { 8318 visitBitTestHeader(*BTB, SwitchMBB); 8319 BTB->Emitted = true; 8320 } 8321 break; 8322 } 8323 case CC_Range: { 8324 const Value *RHS, *LHS, *MHS; 8325 ISD::CondCode CC; 8326 if (I->Low == I->High) { 8327 // Check Cond == I->Low. 8328 CC = ISD::SETEQ; 8329 LHS = Cond; 8330 RHS=I->Low; 8331 MHS = nullptr; 8332 } else { 8333 // Check I->Low <= Cond <= I->High. 8334 CC = ISD::SETLE; 8335 LHS = I->Low; 8336 MHS = Cond; 8337 RHS = I->High; 8338 } 8339 8340 // The false probability is the sum of all unhandled cases. 8341 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8342 UnhandledProbs); 8343 8344 if (CurMBB == SwitchMBB) 8345 visitSwitchCase(CB, SwitchMBB); 8346 else 8347 SwitchCases.push_back(CB); 8348 8349 break; 8350 } 8351 } 8352 CurMBB = Fallthrough; 8353 } 8354 } 8355 8356 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8357 CaseClusterIt First, 8358 CaseClusterIt Last) { 8359 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8360 if (X.Prob != CC.Prob) 8361 return X.Prob > CC.Prob; 8362 8363 // Ties are broken by comparing the case value. 8364 return X.Low->getValue().slt(CC.Low->getValue()); 8365 }); 8366 } 8367 8368 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8369 const SwitchWorkListItem &W, 8370 Value *Cond, 8371 MachineBasicBlock *SwitchMBB) { 8372 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8373 "Clusters not sorted?"); 8374 8375 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8376 8377 // Balance the tree based on branch probabilities to create a near-optimal (in 8378 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8379 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8380 CaseClusterIt LastLeft = W.FirstCluster; 8381 CaseClusterIt FirstRight = W.LastCluster; 8382 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8383 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8384 8385 // Move LastLeft and FirstRight towards each other from opposite directions to 8386 // find a partitioning of the clusters which balances the probability on both 8387 // sides. If LeftProb and RightProb are equal, alternate which side is 8388 // taken to ensure 0-probability nodes are distributed evenly. 8389 unsigned I = 0; 8390 while (LastLeft + 1 < FirstRight) { 8391 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8392 LeftProb += (++LastLeft)->Prob; 8393 else 8394 RightProb += (--FirstRight)->Prob; 8395 I++; 8396 } 8397 8398 for (;;) { 8399 // Our binary search tree differs from a typical BST in that ours can have up 8400 // to three values in each leaf. The pivot selection above doesn't take that 8401 // into account, which means the tree might require more nodes and be less 8402 // efficient. We compensate for this here. 8403 8404 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8405 unsigned NumRight = W.LastCluster - FirstRight + 1; 8406 8407 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8408 // If one side has less than 3 clusters, and the other has more than 3, 8409 // consider taking a cluster from the other side. 8410 8411 if (NumLeft < NumRight) { 8412 // Consider moving the first cluster on the right to the left side. 8413 CaseCluster &CC = *FirstRight; 8414 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8415 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8416 if (LeftSideRank <= RightSideRank) { 8417 // Moving the cluster to the left does not demote it. 8418 ++LastLeft; 8419 ++FirstRight; 8420 continue; 8421 } 8422 } else { 8423 assert(NumRight < NumLeft); 8424 // Consider moving the last element on the left to the right side. 8425 CaseCluster &CC = *LastLeft; 8426 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8427 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8428 if (RightSideRank <= LeftSideRank) { 8429 // Moving the cluster to the right does not demot it. 8430 --LastLeft; 8431 --FirstRight; 8432 continue; 8433 } 8434 } 8435 } 8436 break; 8437 } 8438 8439 assert(LastLeft + 1 == FirstRight); 8440 assert(LastLeft >= W.FirstCluster); 8441 assert(FirstRight <= W.LastCluster); 8442 8443 // Use the first element on the right as pivot since we will make less-than 8444 // comparisons against it. 8445 CaseClusterIt PivotCluster = FirstRight; 8446 assert(PivotCluster > W.FirstCluster); 8447 assert(PivotCluster <= W.LastCluster); 8448 8449 CaseClusterIt FirstLeft = W.FirstCluster; 8450 CaseClusterIt LastRight = W.LastCluster; 8451 8452 const ConstantInt *Pivot = PivotCluster->Low; 8453 8454 // New blocks will be inserted immediately after the current one. 8455 MachineFunction::iterator BBI(W.MBB); 8456 ++BBI; 8457 8458 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8459 // we can branch to its destination directly if it's squeezed exactly in 8460 // between the known lower bound and Pivot - 1. 8461 MachineBasicBlock *LeftMBB; 8462 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8463 FirstLeft->Low == W.GE && 8464 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8465 LeftMBB = FirstLeft->MBB; 8466 } else { 8467 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8468 FuncInfo.MF->insert(BBI, LeftMBB); 8469 WorkList.push_back( 8470 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8471 // Put Cond in a virtual register to make it available from the new blocks. 8472 ExportFromCurrentBlock(Cond); 8473 } 8474 8475 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8476 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8477 // directly if RHS.High equals the current upper bound. 8478 MachineBasicBlock *RightMBB; 8479 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8480 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8481 RightMBB = FirstRight->MBB; 8482 } else { 8483 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8484 FuncInfo.MF->insert(BBI, RightMBB); 8485 WorkList.push_back( 8486 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8487 // Put Cond in a virtual register to make it available from the new blocks. 8488 ExportFromCurrentBlock(Cond); 8489 } 8490 8491 // Create the CaseBlock record that will be used to lower the branch. 8492 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8493 LeftProb, RightProb); 8494 8495 if (W.MBB == SwitchMBB) 8496 visitSwitchCase(CB, SwitchMBB); 8497 else 8498 SwitchCases.push_back(CB); 8499 } 8500 8501 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8502 // Extract cases from the switch. 8503 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8504 CaseClusterVector Clusters; 8505 Clusters.reserve(SI.getNumCases()); 8506 for (auto I : SI.cases()) { 8507 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8508 const ConstantInt *CaseVal = I.getCaseValue(); 8509 BranchProbability Prob = 8510 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8511 : BranchProbability(1, SI.getNumCases() + 1); 8512 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8513 } 8514 8515 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8516 8517 // Cluster adjacent cases with the same destination. We do this at all 8518 // optimization levels because it's cheap to do and will make codegen faster 8519 // if there are many clusters. 8520 sortAndRangeify(Clusters); 8521 8522 if (TM.getOptLevel() != CodeGenOpt::None) { 8523 // Replace an unreachable default with the most popular destination. 8524 // FIXME: Exploit unreachable default more aggressively. 8525 bool UnreachableDefault = 8526 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8527 if (UnreachableDefault && !Clusters.empty()) { 8528 DenseMap<const BasicBlock *, unsigned> Popularity; 8529 unsigned MaxPop = 0; 8530 const BasicBlock *MaxBB = nullptr; 8531 for (auto I : SI.cases()) { 8532 const BasicBlock *BB = I.getCaseSuccessor(); 8533 if (++Popularity[BB] > MaxPop) { 8534 MaxPop = Popularity[BB]; 8535 MaxBB = BB; 8536 } 8537 } 8538 // Set new default. 8539 assert(MaxPop > 0 && MaxBB); 8540 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8541 8542 // Remove cases that were pointing to the destination that is now the 8543 // default. 8544 CaseClusterVector New; 8545 New.reserve(Clusters.size()); 8546 for (CaseCluster &CC : Clusters) { 8547 if (CC.MBB != DefaultMBB) 8548 New.push_back(CC); 8549 } 8550 Clusters = std::move(New); 8551 } 8552 } 8553 8554 // If there is only the default destination, jump there directly. 8555 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8556 if (Clusters.empty()) { 8557 SwitchMBB->addSuccessor(DefaultMBB); 8558 if (DefaultMBB != NextBlock(SwitchMBB)) { 8559 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8560 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8561 } 8562 return; 8563 } 8564 8565 findJumpTables(Clusters, &SI, DefaultMBB); 8566 findBitTestClusters(Clusters, &SI); 8567 8568 DEBUG({ 8569 dbgs() << "Case clusters: "; 8570 for (const CaseCluster &C : Clusters) { 8571 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8572 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8573 8574 C.Low->getValue().print(dbgs(), true); 8575 if (C.Low != C.High) { 8576 dbgs() << '-'; 8577 C.High->getValue().print(dbgs(), true); 8578 } 8579 dbgs() << ' '; 8580 } 8581 dbgs() << '\n'; 8582 }); 8583 8584 assert(!Clusters.empty()); 8585 SwitchWorkList WorkList; 8586 CaseClusterIt First = Clusters.begin(); 8587 CaseClusterIt Last = Clusters.end() - 1; 8588 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8589 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8590 8591 while (!WorkList.empty()) { 8592 SwitchWorkListItem W = WorkList.back(); 8593 WorkList.pop_back(); 8594 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8595 8596 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8597 // For optimized builds, lower large range as a balanced binary tree. 8598 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8599 continue; 8600 } 8601 8602 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8603 } 8604 } 8605