xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision fa57bd0ced39eddf1eb31283b7ad9e67e166b1cf)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/MachineValueType.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/ValueTypes.h"
59 #include "llvm/CodeGen/WinEHFuncInfo.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/CallSite.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DebugLoc.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/InlineAsm.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/Statepoint.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/MC/MCSymbol.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/BranchProbability.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CodeGen.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetFrameLowering.h"
102 #include "llvm/Target/TargetInstrInfo.h"
103 #include "llvm/Target/TargetIntrinsicInfo.h"
104 #include "llvm/Target/TargetLowering.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOpcodes.h"
107 #include "llvm/Target/TargetOptions.h"
108 #include "llvm/Target/TargetRegisterInfo.h"
109 #include "llvm/Target/TargetSubtargetInfo.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstring>
115 #include <iterator>
116 #include <limits>
117 #include <numeric>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "isel"
125 
126 /// LimitFloatPrecision - Generate low-precision inline sequences for
127 /// some float libcalls (6, 8 or 12 bits).
128 static unsigned LimitFloatPrecision;
129 
130 static cl::opt<unsigned, true>
131 LimitFPPrecision("limit-float-precision",
132                  cl::desc("Generate low-precision inline sequences "
133                           "for some float libcalls"),
134                  cl::location(LimitFloatPrecision),
135                  cl::init(0));
136 
137 // Limit the width of DAG chains. This is important in general to prevent
138 // DAG-based analysis from blowing up. For example, alias analysis and
139 // load clustering may not complete in reasonable time. It is difficult to
140 // recognize and avoid this situation within each individual analysis, and
141 // future analyses are likely to have the same behavior. Limiting DAG width is
142 // the safe approach and will be especially important with global DAGs.
143 //
144 // MaxParallelChains default is arbitrarily high to avoid affecting
145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146 // sequence over this should have been converted to llvm.memcpy by the
147 // frontend. It is easy to induce this behavior with .ll code such as:
148 // %buffer = alloca [4096 x i8]
149 // %data = load [4096 x i8]* %argPtr
150 // store [4096 x i8] %data, [4096 x i8]* %buffer
151 static const unsigned MaxParallelChains = 64;
152 
153 // True if the Value passed requires ABI mangling as it is a parameter to a
154 // function or a return value from a function which is not an intrinsic.
155 static bool isABIRegCopy(const Value *V) {
156   const bool IsRetInst = V && isa<ReturnInst>(V);
157   const bool IsCallInst = V && isa<CallInst>(V);
158   const bool IsInLineAsm =
159       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
160   const bool IsIndirectFunctionCall =
161       IsCallInst && !IsInLineAsm &&
162       !static_cast<const CallInst *>(V)->getCalledFunction();
163   // It is possible that the call instruction is an inline asm statement or an
164   // indirect function call in which case the return value of
165   // getCalledFunction() would be nullptr.
166   const bool IsInstrinsicCall =
167       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
168       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
169           Intrinsic::not_intrinsic;
170 
171   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
172 }
173 
174 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
175                                       const SDValue *Parts, unsigned NumParts,
176                                       MVT PartVT, EVT ValueVT, const Value *V,
177                                       bool IsABIRegCopy);
178 
179 /// getCopyFromParts - Create a value that contains the specified legal parts
180 /// combined into the value they represent.  If the parts combine to a type
181 /// larger than ValueVT then AssertOp can be used to specify whether the extra
182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183 /// (ISD::AssertSext).
184 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
185                                 const SDValue *Parts, unsigned NumParts,
186                                 MVT PartVT, EVT ValueVT, const Value *V,
187                                 Optional<ISD::NodeType> AssertOp = None,
188                                 bool IsABIRegCopy = false) {
189   if (ValueVT.isVector())
190     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
191                                   PartVT, ValueVT, V, IsABIRegCopy);
192 
193   assert(NumParts > 0 && "No parts to assemble!");
194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
195   SDValue Val = Parts[0];
196 
197   if (NumParts > 1) {
198     // Assemble the value from multiple parts.
199     if (ValueVT.isInteger()) {
200       unsigned PartBits = PartVT.getSizeInBits();
201       unsigned ValueBits = ValueVT.getSizeInBits();
202 
203       // Assemble the power of 2 part.
204       unsigned RoundParts = NumParts & (NumParts - 1) ?
205         1 << Log2_32(NumParts) : NumParts;
206       unsigned RoundBits = PartBits * RoundParts;
207       EVT RoundVT = RoundBits == ValueBits ?
208         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
209       SDValue Lo, Hi;
210 
211       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
212 
213       if (RoundParts > 2) {
214         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
215                               PartVT, HalfVT, V);
216         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
217                               RoundParts / 2, PartVT, HalfVT, V);
218       } else {
219         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
220         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
221       }
222 
223       if (DAG.getDataLayout().isBigEndian())
224         std::swap(Lo, Hi);
225 
226       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
227 
228       if (RoundParts < NumParts) {
229         // Assemble the trailing non-power-of-2 part.
230         unsigned OddParts = NumParts - RoundParts;
231         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
232         Hi = getCopyFromParts(DAG, DL,
233                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
234 
235         // Combine the round and odd parts.
236         Lo = Val;
237         if (DAG.getDataLayout().isBigEndian())
238           std::swap(Lo, Hi);
239         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
240         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
241         Hi =
242             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
243                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
244                                         TLI.getPointerTy(DAG.getDataLayout())));
245         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
246         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
247       }
248     } else if (PartVT.isFloatingPoint()) {
249       // FP split into multiple FP parts (for ppcf128)
250       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
251              "Unexpected split");
252       SDValue Lo, Hi;
253       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
254       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
255       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
256         std::swap(Lo, Hi);
257       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
258     } else {
259       // FP split into integer parts (soft fp)
260       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
261              !PartVT.isVector() && "Unexpected split");
262       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
263       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
264     }
265   }
266 
267   // There is now one part, held in Val.  Correct it to match ValueVT.
268   // PartEVT is the type of the register class that holds the value.
269   // ValueVT is the type of the inline asm operation.
270   EVT PartEVT = Val.getValueType();
271 
272   if (PartEVT == ValueVT)
273     return Val;
274 
275   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
276       ValueVT.bitsLT(PartEVT)) {
277     // For an FP value in an integer part, we need to truncate to the right
278     // width first.
279     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
280     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
281   }
282 
283   // Handle types that have the same size.
284   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
285     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
286 
287   // Handle types with different sizes.
288   if (PartEVT.isInteger() && ValueVT.isInteger()) {
289     if (ValueVT.bitsLT(PartEVT)) {
290       // For a truncate, see if we have any information to
291       // indicate whether the truncated bits will always be
292       // zero or sign-extension.
293       if (AssertOp.hasValue())
294         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
295                           DAG.getValueType(ValueVT));
296       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297     }
298     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
299   }
300 
301   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
302     // FP_ROUND's are always exact here.
303     if (ValueVT.bitsLT(Val.getValueType()))
304       return DAG.getNode(
305           ISD::FP_ROUND, DL, ValueVT, Val,
306           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
307 
308     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309   }
310 
311   llvm_unreachable("Unknown mismatch!");
312 }
313 
314 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
315                                               const Twine &ErrMsg) {
316   const Instruction *I = dyn_cast_or_null<Instruction>(V);
317   if (!V)
318     return Ctx.emitError(ErrMsg);
319 
320   const char *AsmError = ", possible invalid constraint for vector type";
321   if (const CallInst *CI = dyn_cast<CallInst>(I))
322     if (isa<InlineAsm>(CI->getCalledValue()))
323       return Ctx.emitError(I, ErrMsg + AsmError);
324 
325   return Ctx.emitError(I, ErrMsg);
326 }
327 
328 /// getCopyFromPartsVector - Create a value that contains the specified legal
329 /// parts combined into the value they represent.  If the parts combine to a
330 /// type larger than ValueVT then AssertOp can be used to specify whether the
331 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
332 /// ValueVT (ISD::AssertSext).
333 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
334                                       const SDValue *Parts, unsigned NumParts,
335                                       MVT PartVT, EVT ValueVT, const Value *V,
336                                       bool IsABIRegCopy) {
337   assert(ValueVT.isVector() && "Not a vector value");
338   assert(NumParts > 0 && "No parts to assemble!");
339   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
340   SDValue Val = Parts[0];
341 
342   // Handle a multi-element vector.
343   if (NumParts > 1) {
344     EVT IntermediateVT;
345     MVT RegisterVT;
346     unsigned NumIntermediates;
347     unsigned NumRegs;
348 
349     if (IsABIRegCopy) {
350       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
351           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
352           RegisterVT);
353     } else {
354       NumRegs =
355           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
356                                      NumIntermediates, RegisterVT);
357     }
358 
359     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
360     NumParts = NumRegs; // Silence a compiler warning.
361     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
362     assert(RegisterVT.getSizeInBits() ==
363            Parts[0].getSimpleValueType().getSizeInBits() &&
364            "Part type sizes don't match!");
365 
366     // Assemble the parts into intermediate operands.
367     SmallVector<SDValue, 8> Ops(NumIntermediates);
368     if (NumIntermediates == NumParts) {
369       // If the register was not expanded, truncate or copy the value,
370       // as appropriate.
371       for (unsigned i = 0; i != NumParts; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
373                                   PartVT, IntermediateVT, V);
374     } else if (NumParts > 0) {
375       // If the intermediate type was expanded, build the intermediate
376       // operands from the parts.
377       assert(NumParts % NumIntermediates == 0 &&
378              "Must expand into a divisible number of parts!");
379       unsigned Factor = NumParts / NumIntermediates;
380       for (unsigned i = 0; i != NumIntermediates; ++i)
381         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
382                                   PartVT, IntermediateVT, V);
383     }
384 
385     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
386     // intermediate operands.
387     EVT BuiltVectorTy =
388         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
389                          (IntermediateVT.isVector()
390                               ? IntermediateVT.getVectorNumElements() * NumParts
391                               : NumIntermediates));
392     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
393                                                 : ISD::BUILD_VECTOR,
394                       DL, BuiltVectorTy, Ops);
395   }
396 
397   // There is now one part, held in Val.  Correct it to match ValueVT.
398   EVT PartEVT = Val.getValueType();
399 
400   if (PartEVT == ValueVT)
401     return Val;
402 
403   if (PartEVT.isVector()) {
404     // If the element type of the source/dest vectors are the same, but the
405     // parts vector has more elements than the value vector, then we have a
406     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
407     // elements we want.
408     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
409       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
410              "Cannot narrow, it would be a lossy transformation");
411       return DAG.getNode(
412           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(
446            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
447            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
458     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
459                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
460 
461   return DAG.getBuildVector(ValueVT, DL, Val);
462 }
463 
464 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
465                                  SDValue Val, SDValue *Parts, unsigned NumParts,
466                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
467 
468 /// getCopyToParts - Create a series of nodes that contain the specified value
469 /// split into legal parts.  If the parts contain more bits than Val, then, for
470 /// integers, ExtendKind can be used to specify how to generate the extra bits.
471 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
472                            SDValue *Parts, unsigned NumParts, MVT PartVT,
473                            const Value *V,
474                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
475                            bool IsABIRegCopy = false) {
476   EVT ValueVT = Val.getValueType();
477 
478   // Handle the vector case separately.
479   if (ValueVT.isVector())
480     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
481                                 IsABIRegCopy);
482 
483   unsigned PartBits = PartVT.getSizeInBits();
484   unsigned OrigNumParts = NumParts;
485   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
486          "Copying to an illegal type!");
487 
488   if (NumParts == 0)
489     return;
490 
491   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
492   EVT PartEVT = PartVT;
493   if (PartEVT == ValueVT) {
494     assert(NumParts == 1 && "No-op copy with multiple parts!");
495     Parts[0] = Val;
496     return;
497   }
498 
499   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
500     // If the parts cover more bits than the value has, promote the value.
501     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
502       assert(NumParts == 1 && "Do not know what to promote to!");
503       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
504     } else {
505       if (ValueVT.isFloatingPoint()) {
506         // FP values need to be bitcast, then extended if they are being put
507         // into a larger container.
508         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
509         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
510       }
511       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
512              ValueVT.isInteger() &&
513              "Unknown mismatch!");
514       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
515       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
516       if (PartVT == MVT::x86mmx)
517         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
518     }
519   } else if (PartBits == ValueVT.getSizeInBits()) {
520     // Different types of the same size.
521     assert(NumParts == 1 && PartEVT != ValueVT);
522     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
523   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
524     // If the parts cover less bits than value has, truncate the value.
525     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
526            ValueVT.isInteger() &&
527            "Unknown mismatch!");
528     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
529     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
530     if (PartVT == MVT::x86mmx)
531       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
532   }
533 
534   // The value may have changed - recompute ValueVT.
535   ValueVT = Val.getValueType();
536   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
537          "Failed to tile the value with PartVT!");
538 
539   if (NumParts == 1) {
540     if (PartEVT != ValueVT) {
541       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
542                                         "scalar-to-vector conversion failed");
543       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544     }
545 
546     Parts[0] = Val;
547     return;
548   }
549 
550   // Expand the value into multiple parts.
551   if (NumParts & (NumParts - 1)) {
552     // The number of parts is not a power of 2.  Split off and copy the tail.
553     assert(PartVT.isInteger() && ValueVT.isInteger() &&
554            "Do not know what to expand to!");
555     unsigned RoundParts = 1 << Log2_32(NumParts);
556     unsigned RoundBits = RoundParts * PartBits;
557     unsigned OddParts = NumParts - RoundParts;
558     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
559                                  DAG.getIntPtrConstant(RoundBits, DL));
560     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
561 
562     if (DAG.getDataLayout().isBigEndian())
563       // The odd parts were reversed by getCopyToParts - unreverse them.
564       std::reverse(Parts + RoundParts, Parts + NumParts);
565 
566     NumParts = RoundParts;
567     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
568     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
569   }
570 
571   // The number of parts is a power of 2.  Repeatedly bisect the value using
572   // EXTRACT_ELEMENT.
573   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
574                          EVT::getIntegerVT(*DAG.getContext(),
575                                            ValueVT.getSizeInBits()),
576                          Val);
577 
578   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
579     for (unsigned i = 0; i < NumParts; i += StepSize) {
580       unsigned ThisBits = StepSize * PartBits / 2;
581       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
582       SDValue &Part0 = Parts[i];
583       SDValue &Part1 = Parts[i+StepSize/2];
584 
585       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
586                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
587       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
588                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
589 
590       if (ThisBits == PartBits && ThisVT != PartVT) {
591         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
592         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
593       }
594     }
595   }
596 
597   if (DAG.getDataLayout().isBigEndian())
598     std::reverse(Parts, Parts + OrigNumParts);
599 }
600 
601 
602 /// getCopyToPartsVector - Create a series of nodes that contain the specified
603 /// value split into legal parts.
604 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
605                                  SDValue Val, SDValue *Parts, unsigned NumParts,
606                                  MVT PartVT, const Value *V,
607                                  bool IsABIRegCopy) {
608   EVT ValueVT = Val.getValueType();
609   assert(ValueVT.isVector() && "Not a vector");
610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
611 
612   if (NumParts == 1) {
613     EVT PartEVT = PartVT;
614     if (PartEVT == ValueVT) {
615       // Nothing to do.
616     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
617       // Bitconvert vector->vector case.
618       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
619     } else if (PartVT.isVector() &&
620                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
621                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
622       EVT ElementVT = PartVT.getVectorElementType();
623       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
624       // undef elements.
625       SmallVector<SDValue, 16> Ops;
626       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
627         Ops.push_back(DAG.getNode(
628             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
629             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
630 
631       for (unsigned i = ValueVT.getVectorNumElements(),
632            e = PartVT.getVectorNumElements(); i != e; ++i)
633         Ops.push_back(DAG.getUNDEF(ElementVT));
634 
635       Val = DAG.getBuildVector(PartVT, DL, Ops);
636 
637       // FIXME: Use CONCAT for 2x -> 4x.
638 
639       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
640       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
641     } else if (PartVT.isVector() &&
642                PartEVT.getVectorElementType().bitsGE(
643                  ValueVT.getVectorElementType()) &&
644                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
645 
646       // Promoted vector extract
647       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
648     } else {
649       if (ValueVT.getVectorNumElements() == 1) {
650         Val = DAG.getNode(
651             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
652             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
653       } else {
654         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
655                "lossy conversion of vector to scalar type");
656         EVT IntermediateType =
657             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
658         Val = DAG.getBitcast(IntermediateType, Val);
659         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
660       }
661     }
662 
663     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
664     Parts[0] = Val;
665     return;
666   }
667 
668   // Handle a multi-element vector.
669   EVT IntermediateVT;
670   MVT RegisterVT;
671   unsigned NumIntermediates;
672   unsigned NumRegs;
673   if (IsABIRegCopy) {
674     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
675         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
676         RegisterVT);
677   } else {
678     NumRegs =
679         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
680                                    NumIntermediates, RegisterVT);
681   }
682   unsigned NumElements = ValueVT.getVectorNumElements();
683 
684   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
685   NumParts = NumRegs; // Silence a compiler warning.
686   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
687 
688   // Convert the vector to the appropiate type if necessary.
689   unsigned DestVectorNoElts =
690       NumIntermediates *
691       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
692   EVT BuiltVectorTy = EVT::getVectorVT(
693       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
694   if (Val.getValueType() != BuiltVectorTy)
695     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
696 
697   // Split the vector into intermediate operands.
698   SmallVector<SDValue, 8> Ops(NumIntermediates);
699   for (unsigned i = 0; i != NumIntermediates; ++i) {
700     if (IntermediateVT.isVector())
701       Ops[i] =
702           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
703                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
704                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
705     else
706       Ops[i] = DAG.getNode(
707           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
708           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
709   }
710 
711   // Split the intermediate operands into legal parts.
712   if (NumParts == NumIntermediates) {
713     // If the register was not expanded, promote or copy the value,
714     // as appropriate.
715     for (unsigned i = 0; i != NumParts; ++i)
716       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
717   } else if (NumParts > 0) {
718     // If the intermediate type was expanded, split each the value into
719     // legal parts.
720     assert(NumIntermediates != 0 && "division by zero");
721     assert(NumParts % NumIntermediates == 0 &&
722            "Must expand into a divisible number of parts!");
723     unsigned Factor = NumParts / NumIntermediates;
724     for (unsigned i = 0; i != NumIntermediates; ++i)
725       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
726   }
727 }
728 
729 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
730                            EVT valuevt, bool IsABIMangledValue)
731     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
732       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
733 
734 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
735                            const DataLayout &DL, unsigned Reg, Type *Ty,
736                            bool IsABIMangledValue) {
737   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
738 
739   IsABIMangled = IsABIMangledValue;
740 
741   for (EVT ValueVT : ValueVTs) {
742     unsigned NumRegs = IsABIMangledValue
743                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
744                            : TLI.getNumRegisters(Context, ValueVT);
745     MVT RegisterVT = IsABIMangledValue
746                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
747                          : TLI.getRegisterType(Context, ValueVT);
748     for (unsigned i = 0; i != NumRegs; ++i)
749       Regs.push_back(Reg + i);
750     RegVTs.push_back(RegisterVT);
751     RegCount.push_back(NumRegs);
752     Reg += NumRegs;
753   }
754 }
755 
756 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
757                                       FunctionLoweringInfo &FuncInfo,
758                                       const SDLoc &dl, SDValue &Chain,
759                                       SDValue *Flag, const Value *V) const {
760   // A Value with type {} or [0 x %t] needs no registers.
761   if (ValueVTs.empty())
762     return SDValue();
763 
764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
765 
766   // Assemble the legal parts into the final values.
767   SmallVector<SDValue, 4> Values(ValueVTs.size());
768   SmallVector<SDValue, 8> Parts;
769   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
770     // Copy the legal parts from the registers.
771     EVT ValueVT = ValueVTs[Value];
772     unsigned NumRegs = RegCount[Value];
773     MVT RegisterVT = IsABIMangled
774                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
775                          : RegVTs[Value];
776 
777     Parts.resize(NumRegs);
778     for (unsigned i = 0; i != NumRegs; ++i) {
779       SDValue P;
780       if (!Flag) {
781         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
782       } else {
783         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
784         *Flag = P.getValue(2);
785       }
786 
787       Chain = P.getValue(1);
788       Parts[i] = P;
789 
790       // If the source register was virtual and if we know something about it,
791       // add an assert node.
792       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
793           !RegisterVT.isInteger() || RegisterVT.isVector())
794         continue;
795 
796       const FunctionLoweringInfo::LiveOutInfo *LOI =
797         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
798       if (!LOI)
799         continue;
800 
801       unsigned RegSize = RegisterVT.getSizeInBits();
802       unsigned NumSignBits = LOI->NumSignBits;
803       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
804 
805       if (NumZeroBits == RegSize) {
806         // The current value is a zero.
807         // Explicitly express that as it would be easier for
808         // optimizations to kick in.
809         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
810         continue;
811       }
812 
813       // FIXME: We capture more information than the dag can represent.  For
814       // now, just use the tightest assertzext/assertsext possible.
815       bool isSExt = true;
816       EVT FromVT(MVT::Other);
817       if (NumSignBits == RegSize) {
818         isSExt = true;   // ASSERT SEXT 1
819         FromVT = MVT::i1;
820       } else if (NumZeroBits >= RegSize - 1) {
821         isSExt = false;  // ASSERT ZEXT 1
822         FromVT = MVT::i1;
823       } else if (NumSignBits > RegSize - 8) {
824         isSExt = true;   // ASSERT SEXT 8
825         FromVT = MVT::i8;
826       } else if (NumZeroBits >= RegSize - 8) {
827         isSExt = false;  // ASSERT ZEXT 8
828         FromVT = MVT::i8;
829       } else if (NumSignBits > RegSize - 16) {
830         isSExt = true;   // ASSERT SEXT 16
831         FromVT = MVT::i16;
832       } else if (NumZeroBits >= RegSize - 16) {
833         isSExt = false;  // ASSERT ZEXT 16
834         FromVT = MVT::i16;
835       } else if (NumSignBits > RegSize - 32) {
836         isSExt = true;   // ASSERT SEXT 32
837         FromVT = MVT::i32;
838       } else if (NumZeroBits >= RegSize - 32) {
839         isSExt = false;  // ASSERT ZEXT 32
840         FromVT = MVT::i32;
841       } else {
842         continue;
843       }
844       // Add an assertion node.
845       assert(FromVT != MVT::Other);
846       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
847                              RegisterVT, P, DAG.getValueType(FromVT));
848     }
849 
850     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
851                                      NumRegs, RegisterVT, ValueVT, V);
852     Part += NumRegs;
853     Parts.clear();
854   }
855 
856   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
857 }
858 
859 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
860                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
861                                  const Value *V,
862                                  ISD::NodeType PreferredExtendType) const {
863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
864   ISD::NodeType ExtendKind = PreferredExtendType;
865 
866   // Get the list of the values's legal parts.
867   unsigned NumRegs = Regs.size();
868   SmallVector<SDValue, 8> Parts(NumRegs);
869   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
870     unsigned NumParts = RegCount[Value];
871 
872     MVT RegisterVT = IsABIMangled
873                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
874                          : RegVTs[Value];
875 
876     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
877       ExtendKind = ISD::ZERO_EXTEND;
878 
879     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
880                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
881     Part += NumParts;
882   }
883 
884   // Copy the parts into the registers.
885   SmallVector<SDValue, 8> Chains(NumRegs);
886   for (unsigned i = 0; i != NumRegs; ++i) {
887     SDValue Part;
888     if (!Flag) {
889       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
890     } else {
891       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
892       *Flag = Part.getValue(1);
893     }
894 
895     Chains[i] = Part.getValue(0);
896   }
897 
898   if (NumRegs == 1 || Flag)
899     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
900     // flagged to it. That is the CopyToReg nodes and the user are considered
901     // a single scheduling unit. If we create a TokenFactor and return it as
902     // chain, then the TokenFactor is both a predecessor (operand) of the
903     // user as well as a successor (the TF operands are flagged to the user).
904     // c1, f1 = CopyToReg
905     // c2, f2 = CopyToReg
906     // c3     = TokenFactor c1, c2
907     // ...
908     //        = op c3, ..., f2
909     Chain = Chains[NumRegs-1];
910   else
911     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
912 }
913 
914 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
915                                         unsigned MatchingIdx, const SDLoc &dl,
916                                         SelectionDAG &DAG,
917                                         std::vector<SDValue> &Ops) const {
918   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
919 
920   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
921   if (HasMatching)
922     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
923   else if (!Regs.empty() &&
924            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
925     // Put the register class of the virtual registers in the flag word.  That
926     // way, later passes can recompute register class constraints for inline
927     // assembly as well as normal instructions.
928     // Don't do this for tied operands that can use the regclass information
929     // from the def.
930     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
931     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
932     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
933   }
934 
935   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
936   Ops.push_back(Res);
937 
938   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
939   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
940     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
941     MVT RegisterVT = RegVTs[Value];
942     for (unsigned i = 0; i != NumRegs; ++i) {
943       assert(Reg < Regs.size() && "Mismatch in # registers expected");
944       unsigned TheReg = Regs[Reg++];
945       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
946 
947       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
948         // If we clobbered the stack pointer, MFI should know about it.
949         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
950       }
951     }
952   }
953 }
954 
955 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
956                                const TargetLibraryInfo *li) {
957   AA = aa;
958   GFI = gfi;
959   LibInfo = li;
960   DL = &DAG.getDataLayout();
961   Context = DAG.getContext();
962   LPadToCallSiteMap.clear();
963 }
964 
965 void SelectionDAGBuilder::clear() {
966   NodeMap.clear();
967   UnusedArgNodeMap.clear();
968   PendingLoads.clear();
969   PendingExports.clear();
970   CurInst = nullptr;
971   HasTailCall = false;
972   SDNodeOrder = LowestSDNodeOrder;
973   StatepointLowering.clear();
974 }
975 
976 void SelectionDAGBuilder::clearDanglingDebugInfo() {
977   DanglingDebugInfoMap.clear();
978 }
979 
980 SDValue SelectionDAGBuilder::getRoot() {
981   if (PendingLoads.empty())
982     return DAG.getRoot();
983 
984   if (PendingLoads.size() == 1) {
985     SDValue Root = PendingLoads[0];
986     DAG.setRoot(Root);
987     PendingLoads.clear();
988     return Root;
989   }
990 
991   // Otherwise, we have to make a token factor node.
992   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
993                              PendingLoads);
994   PendingLoads.clear();
995   DAG.setRoot(Root);
996   return Root;
997 }
998 
999 SDValue SelectionDAGBuilder::getControlRoot() {
1000   SDValue Root = DAG.getRoot();
1001 
1002   if (PendingExports.empty())
1003     return Root;
1004 
1005   // Turn all of the CopyToReg chains into one factored node.
1006   if (Root.getOpcode() != ISD::EntryToken) {
1007     unsigned i = 0, e = PendingExports.size();
1008     for (; i != e; ++i) {
1009       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1010       if (PendingExports[i].getNode()->getOperand(0) == Root)
1011         break;  // Don't add the root if we already indirectly depend on it.
1012     }
1013 
1014     if (i == e)
1015       PendingExports.push_back(Root);
1016   }
1017 
1018   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1019                      PendingExports);
1020   PendingExports.clear();
1021   DAG.setRoot(Root);
1022   return Root;
1023 }
1024 
1025 void SelectionDAGBuilder::visit(const Instruction &I) {
1026   // Set up outgoing PHI node register values before emitting the terminator.
1027   if (isa<TerminatorInst>(&I)) {
1028     HandlePHINodesInSuccessorBlocks(I.getParent());
1029   }
1030 
1031   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1032   if (!isa<DbgInfoIntrinsic>(I))
1033     ++SDNodeOrder;
1034 
1035   CurInst = &I;
1036 
1037   visit(I.getOpcode(), I);
1038 
1039   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1040       !isStatepoint(&I)) // statepoints handle their exports internally
1041     CopyToExportRegsIfNeeded(&I);
1042 
1043   CurInst = nullptr;
1044 }
1045 
1046 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1047   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1048 }
1049 
1050 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1051   // Note: this doesn't use InstVisitor, because it has to work with
1052   // ConstantExpr's in addition to instructions.
1053   switch (Opcode) {
1054   default: llvm_unreachable("Unknown instruction type encountered!");
1055     // Build the switch statement using the Instruction.def file.
1056 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1057     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1058 #include "llvm/IR/Instruction.def"
1059   }
1060 }
1061 
1062 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1063 // generate the debug data structures now that we've seen its definition.
1064 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1065                                                    SDValue Val) {
1066   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1067   if (DDI.getDI()) {
1068     const DbgValueInst *DI = DDI.getDI();
1069     DebugLoc dl = DDI.getdl();
1070     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1071     DILocalVariable *Variable = DI->getVariable();
1072     DIExpression *Expr = DI->getExpression();
1073     assert(Variable->isValidLocationForIntrinsic(dl) &&
1074            "Expected inlined-at fields to agree");
1075     SDDbgValue *SDV;
1076     if (Val.getNode()) {
1077       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1078         SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder);
1079         DAG.AddDbgValue(SDV, Val.getNode(), false);
1080       }
1081     } else
1082       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1083     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1084   }
1085 }
1086 
1087 /// getCopyFromRegs - If there was virtual register allocated for the value V
1088 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1089 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1090   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1091   SDValue Result;
1092 
1093   if (It != FuncInfo.ValueMap.end()) {
1094     unsigned InReg = It->second;
1095 
1096     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1097                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1098     SDValue Chain = DAG.getEntryNode();
1099     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1100                                  V);
1101     resolveDanglingDebugInfo(V, Result);
1102   }
1103 
1104   return Result;
1105 }
1106 
1107 /// getValue - Return an SDValue for the given Value.
1108 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1109   // If we already have an SDValue for this value, use it. It's important
1110   // to do this first, so that we don't create a CopyFromReg if we already
1111   // have a regular SDValue.
1112   SDValue &N = NodeMap[V];
1113   if (N.getNode()) return N;
1114 
1115   // If there's a virtual register allocated and initialized for this
1116   // value, use it.
1117   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1118     return copyFromReg;
1119 
1120   // Otherwise create a new SDValue and remember it.
1121   SDValue Val = getValueImpl(V);
1122   NodeMap[V] = Val;
1123   resolveDanglingDebugInfo(V, Val);
1124   return Val;
1125 }
1126 
1127 // Return true if SDValue exists for the given Value
1128 bool SelectionDAGBuilder::findValue(const Value *V) const {
1129   return (NodeMap.find(V) != NodeMap.end()) ||
1130     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1131 }
1132 
1133 /// getNonRegisterValue - Return an SDValue for the given Value, but
1134 /// don't look in FuncInfo.ValueMap for a virtual register.
1135 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1136   // If we already have an SDValue for this value, use it.
1137   SDValue &N = NodeMap[V];
1138   if (N.getNode()) {
1139     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1140       // Remove the debug location from the node as the node is about to be used
1141       // in a location which may differ from the original debug location.  This
1142       // is relevant to Constant and ConstantFP nodes because they can appear
1143       // as constant expressions inside PHI nodes.
1144       N->setDebugLoc(DebugLoc());
1145     }
1146     return N;
1147   }
1148 
1149   // Otherwise create a new SDValue and remember it.
1150   SDValue Val = getValueImpl(V);
1151   NodeMap[V] = Val;
1152   resolveDanglingDebugInfo(V, Val);
1153   return Val;
1154 }
1155 
1156 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1157 /// Create an SDValue for the given value.
1158 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1159   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1160 
1161   if (const Constant *C = dyn_cast<Constant>(V)) {
1162     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1163 
1164     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1165       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1166 
1167     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1168       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1169 
1170     if (isa<ConstantPointerNull>(C)) {
1171       unsigned AS = V->getType()->getPointerAddressSpace();
1172       return DAG.getConstant(0, getCurSDLoc(),
1173                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1174     }
1175 
1176     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1177       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1178 
1179     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1180       return DAG.getUNDEF(VT);
1181 
1182     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1183       visit(CE->getOpcode(), *CE);
1184       SDValue N1 = NodeMap[V];
1185       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1186       return N1;
1187     }
1188 
1189     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1190       SmallVector<SDValue, 4> Constants;
1191       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1192            OI != OE; ++OI) {
1193         SDNode *Val = getValue(*OI).getNode();
1194         // If the operand is an empty aggregate, there are no values.
1195         if (!Val) continue;
1196         // Add each leaf value from the operand to the Constants list
1197         // to form a flattened list of all the values.
1198         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1199           Constants.push_back(SDValue(Val, i));
1200       }
1201 
1202       return DAG.getMergeValues(Constants, getCurSDLoc());
1203     }
1204 
1205     if (const ConstantDataSequential *CDS =
1206           dyn_cast<ConstantDataSequential>(C)) {
1207       SmallVector<SDValue, 4> Ops;
1208       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1209         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1210         // Add each leaf value from the operand to the Constants list
1211         // to form a flattened list of all the values.
1212         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1213           Ops.push_back(SDValue(Val, i));
1214       }
1215 
1216       if (isa<ArrayType>(CDS->getType()))
1217         return DAG.getMergeValues(Ops, getCurSDLoc());
1218       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1219     }
1220 
1221     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1222       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1223              "Unknown struct or array constant!");
1224 
1225       SmallVector<EVT, 4> ValueVTs;
1226       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1227       unsigned NumElts = ValueVTs.size();
1228       if (NumElts == 0)
1229         return SDValue(); // empty struct
1230       SmallVector<SDValue, 4> Constants(NumElts);
1231       for (unsigned i = 0; i != NumElts; ++i) {
1232         EVT EltVT = ValueVTs[i];
1233         if (isa<UndefValue>(C))
1234           Constants[i] = DAG.getUNDEF(EltVT);
1235         else if (EltVT.isFloatingPoint())
1236           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1237         else
1238           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1239       }
1240 
1241       return DAG.getMergeValues(Constants, getCurSDLoc());
1242     }
1243 
1244     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1245       return DAG.getBlockAddress(BA, VT);
1246 
1247     VectorType *VecTy = cast<VectorType>(V->getType());
1248     unsigned NumElements = VecTy->getNumElements();
1249 
1250     // Now that we know the number and type of the elements, get that number of
1251     // elements into the Ops array based on what kind of constant it is.
1252     SmallVector<SDValue, 16> Ops;
1253     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1254       for (unsigned i = 0; i != NumElements; ++i)
1255         Ops.push_back(getValue(CV->getOperand(i)));
1256     } else {
1257       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1258       EVT EltVT =
1259           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1260 
1261       SDValue Op;
1262       if (EltVT.isFloatingPoint())
1263         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1264       else
1265         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1266       Ops.assign(NumElements, Op);
1267     }
1268 
1269     // Create a BUILD_VECTOR node.
1270     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1271   }
1272 
1273   // If this is a static alloca, generate it as the frameindex instead of
1274   // computation.
1275   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1276     DenseMap<const AllocaInst*, int>::iterator SI =
1277       FuncInfo.StaticAllocaMap.find(AI);
1278     if (SI != FuncInfo.StaticAllocaMap.end())
1279       return DAG.getFrameIndex(SI->second,
1280                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1281   }
1282 
1283   // If this is an instruction which fast-isel has deferred, select it now.
1284   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1285     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1286 
1287     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1288                      Inst->getType(), isABIRegCopy(V));
1289     SDValue Chain = DAG.getEntryNode();
1290     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1291   }
1292 
1293   llvm_unreachable("Can't get register for value!");
1294 }
1295 
1296 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1297   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1298   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1299   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1300   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1301   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1302   if (IsMSVCCXX || IsCoreCLR)
1303     CatchPadMBB->setIsEHFuncletEntry();
1304 
1305   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1306 }
1307 
1308 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1309   // Update machine-CFG edge.
1310   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1311   FuncInfo.MBB->addSuccessor(TargetMBB);
1312 
1313   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1314   bool IsSEH = isAsynchronousEHPersonality(Pers);
1315   if (IsSEH) {
1316     // If this is not a fall-through branch or optimizations are switched off,
1317     // emit the branch.
1318     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1319         TM.getOptLevel() == CodeGenOpt::None)
1320       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1321                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1322     return;
1323   }
1324 
1325   // Figure out the funclet membership for the catchret's successor.
1326   // This will be used by the FuncletLayout pass to determine how to order the
1327   // BB's.
1328   // A 'catchret' returns to the outer scope's color.
1329   Value *ParentPad = I.getCatchSwitchParentPad();
1330   const BasicBlock *SuccessorColor;
1331   if (isa<ConstantTokenNone>(ParentPad))
1332     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1333   else
1334     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1335   assert(SuccessorColor && "No parent funclet for catchret!");
1336   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1337   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1338 
1339   // Create the terminator node.
1340   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1341                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1342                             DAG.getBasicBlock(SuccessorColorMBB));
1343   DAG.setRoot(Ret);
1344 }
1345 
1346 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1347   // Don't emit any special code for the cleanuppad instruction. It just marks
1348   // the start of a funclet.
1349   FuncInfo.MBB->setIsEHFuncletEntry();
1350   FuncInfo.MBB->setIsCleanupFuncletEntry();
1351 }
1352 
1353 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1354 /// many places it could ultimately go. In the IR, we have a single unwind
1355 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1356 /// This function skips over imaginary basic blocks that hold catchswitch
1357 /// instructions, and finds all the "real" machine
1358 /// basic block destinations. As those destinations may not be successors of
1359 /// EHPadBB, here we also calculate the edge probability to those destinations.
1360 /// The passed-in Prob is the edge probability to EHPadBB.
1361 static void findUnwindDestinations(
1362     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1363     BranchProbability Prob,
1364     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1365         &UnwindDests) {
1366   EHPersonality Personality =
1367     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1368   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1369   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1370 
1371   while (EHPadBB) {
1372     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1373     BasicBlock *NewEHPadBB = nullptr;
1374     if (isa<LandingPadInst>(Pad)) {
1375       // Stop on landingpads. They are not funclets.
1376       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1377       break;
1378     } else if (isa<CleanupPadInst>(Pad)) {
1379       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1380       // personalities.
1381       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1382       UnwindDests.back().first->setIsEHFuncletEntry();
1383       break;
1384     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1385       // Add the catchpad handlers to the possible destinations.
1386       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1387         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1388         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1389         if (IsMSVCCXX || IsCoreCLR)
1390           UnwindDests.back().first->setIsEHFuncletEntry();
1391       }
1392       NewEHPadBB = CatchSwitch->getUnwindDest();
1393     } else {
1394       continue;
1395     }
1396 
1397     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1398     if (BPI && NewEHPadBB)
1399       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1400     EHPadBB = NewEHPadBB;
1401   }
1402 }
1403 
1404 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1405   // Update successor info.
1406   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1407   auto UnwindDest = I.getUnwindDest();
1408   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1409   BranchProbability UnwindDestProb =
1410       (BPI && UnwindDest)
1411           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1412           : BranchProbability::getZero();
1413   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1414   for (auto &UnwindDest : UnwindDests) {
1415     UnwindDest.first->setIsEHPad();
1416     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1417   }
1418   FuncInfo.MBB->normalizeSuccProbs();
1419 
1420   // Create the terminator node.
1421   SDValue Ret =
1422       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1423   DAG.setRoot(Ret);
1424 }
1425 
1426 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1427   report_fatal_error("visitCatchSwitch not yet implemented!");
1428 }
1429 
1430 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432   auto &DL = DAG.getDataLayout();
1433   SDValue Chain = getControlRoot();
1434   SmallVector<ISD::OutputArg, 8> Outs;
1435   SmallVector<SDValue, 8> OutVals;
1436 
1437   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1438   // lower
1439   //
1440   //   %val = call <ty> @llvm.experimental.deoptimize()
1441   //   ret <ty> %val
1442   //
1443   // differently.
1444   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1445     LowerDeoptimizingReturn();
1446     return;
1447   }
1448 
1449   if (!FuncInfo.CanLowerReturn) {
1450     unsigned DemoteReg = FuncInfo.DemoteRegister;
1451     const Function *F = I.getParent()->getParent();
1452 
1453     // Emit a store of the return value through the virtual register.
1454     // Leave Outs empty so that LowerReturn won't try to load return
1455     // registers the usual way.
1456     SmallVector<EVT, 1> PtrValueVTs;
1457     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1458                     PtrValueVTs);
1459 
1460     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1461                                         DemoteReg, PtrValueVTs[0]);
1462     SDValue RetOp = getValue(I.getOperand(0));
1463 
1464     SmallVector<EVT, 4> ValueVTs;
1465     SmallVector<uint64_t, 4> Offsets;
1466     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1467     unsigned NumValues = ValueVTs.size();
1468 
1469     // An aggregate return value cannot wrap around the address space, so
1470     // offsets to its parts don't wrap either.
1471     SDNodeFlags Flags;
1472     Flags.setNoUnsignedWrap(true);
1473 
1474     SmallVector<SDValue, 4> Chains(NumValues);
1475     for (unsigned i = 0; i != NumValues; ++i) {
1476       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1477                                 RetPtr.getValueType(), RetPtr,
1478                                 DAG.getIntPtrConstant(Offsets[i],
1479                                                       getCurSDLoc()),
1480                                 Flags);
1481       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1482                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1483                                // FIXME: better loc info would be nice.
1484                                Add, MachinePointerInfo());
1485     }
1486 
1487     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1488                         MVT::Other, Chains);
1489   } else if (I.getNumOperands() != 0) {
1490     SmallVector<EVT, 4> ValueVTs;
1491     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1492     unsigned NumValues = ValueVTs.size();
1493     if (NumValues) {
1494       SDValue RetOp = getValue(I.getOperand(0));
1495 
1496       const Function *F = I.getParent()->getParent();
1497 
1498       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1499       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1500                                           Attribute::SExt))
1501         ExtendKind = ISD::SIGN_EXTEND;
1502       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1503                                                Attribute::ZExt))
1504         ExtendKind = ISD::ZERO_EXTEND;
1505 
1506       LLVMContext &Context = F->getContext();
1507       bool RetInReg = F->getAttributes().hasAttribute(
1508           AttributeList::ReturnIndex, Attribute::InReg);
1509 
1510       for (unsigned j = 0; j != NumValues; ++j) {
1511         EVT VT = ValueVTs[j];
1512 
1513         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1514           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1515 
1516         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1517         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1518         SmallVector<SDValue, 4> Parts(NumParts);
1519         getCopyToParts(DAG, getCurSDLoc(),
1520                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1521                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1522 
1523         // 'inreg' on function refers to return value
1524         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1525         if (RetInReg)
1526           Flags.setInReg();
1527 
1528         // Propagate extension type if any
1529         if (ExtendKind == ISD::SIGN_EXTEND)
1530           Flags.setSExt();
1531         else if (ExtendKind == ISD::ZERO_EXTEND)
1532           Flags.setZExt();
1533 
1534         for (unsigned i = 0; i < NumParts; ++i) {
1535           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1536                                         VT, /*isfixed=*/true, 0, 0));
1537           OutVals.push_back(Parts[i]);
1538         }
1539       }
1540     }
1541   }
1542 
1543   // Push in swifterror virtual register as the last element of Outs. This makes
1544   // sure swifterror virtual register will be returned in the swifterror
1545   // physical register.
1546   const Function *F = I.getParent()->getParent();
1547   if (TLI.supportSwiftError() &&
1548       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1549     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1550     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1551     Flags.setSwiftError();
1552     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1553                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1554                                   true /*isfixed*/, 1 /*origidx*/,
1555                                   0 /*partOffs*/));
1556     // Create SDNode for the swifterror virtual register.
1557     OutVals.push_back(
1558         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1559                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1560                         EVT(TLI.getPointerTy(DL))));
1561   }
1562 
1563   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1564   CallingConv::ID CallConv =
1565     DAG.getMachineFunction().getFunction()->getCallingConv();
1566   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1567       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1568 
1569   // Verify that the target's LowerReturn behaved as expected.
1570   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1571          "LowerReturn didn't return a valid chain!");
1572 
1573   // Update the DAG with the new chain value resulting from return lowering.
1574   DAG.setRoot(Chain);
1575 }
1576 
1577 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1578 /// created for it, emit nodes to copy the value into the virtual
1579 /// registers.
1580 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1581   // Skip empty types
1582   if (V->getType()->isEmptyTy())
1583     return;
1584 
1585   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1586   if (VMI != FuncInfo.ValueMap.end()) {
1587     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1588     CopyValueToVirtualRegister(V, VMI->second);
1589   }
1590 }
1591 
1592 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1593 /// the current basic block, add it to ValueMap now so that we'll get a
1594 /// CopyTo/FromReg.
1595 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1596   // No need to export constants.
1597   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1598 
1599   // Already exported?
1600   if (FuncInfo.isExportedInst(V)) return;
1601 
1602   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1603   CopyValueToVirtualRegister(V, Reg);
1604 }
1605 
1606 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1607                                                      const BasicBlock *FromBB) {
1608   // The operands of the setcc have to be in this block.  We don't know
1609   // how to export them from some other block.
1610   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1611     // Can export from current BB.
1612     if (VI->getParent() == FromBB)
1613       return true;
1614 
1615     // Is already exported, noop.
1616     return FuncInfo.isExportedInst(V);
1617   }
1618 
1619   // If this is an argument, we can export it if the BB is the entry block or
1620   // if it is already exported.
1621   if (isa<Argument>(V)) {
1622     if (FromBB == &FromBB->getParent()->getEntryBlock())
1623       return true;
1624 
1625     // Otherwise, can only export this if it is already exported.
1626     return FuncInfo.isExportedInst(V);
1627   }
1628 
1629   // Otherwise, constants can always be exported.
1630   return true;
1631 }
1632 
1633 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1634 BranchProbability
1635 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1636                                         const MachineBasicBlock *Dst) const {
1637   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1638   const BasicBlock *SrcBB = Src->getBasicBlock();
1639   const BasicBlock *DstBB = Dst->getBasicBlock();
1640   if (!BPI) {
1641     // If BPI is not available, set the default probability as 1 / N, where N is
1642     // the number of successors.
1643     auto SuccSize = std::max<uint32_t>(
1644         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1645     return BranchProbability(1, SuccSize);
1646   }
1647   return BPI->getEdgeProbability(SrcBB, DstBB);
1648 }
1649 
1650 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1651                                                MachineBasicBlock *Dst,
1652                                                BranchProbability Prob) {
1653   if (!FuncInfo.BPI)
1654     Src->addSuccessorWithoutProb(Dst);
1655   else {
1656     if (Prob.isUnknown())
1657       Prob = getEdgeProbability(Src, Dst);
1658     Src->addSuccessor(Dst, Prob);
1659   }
1660 }
1661 
1662 static bool InBlock(const Value *V, const BasicBlock *BB) {
1663   if (const Instruction *I = dyn_cast<Instruction>(V))
1664     return I->getParent() == BB;
1665   return true;
1666 }
1667 
1668 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1669 /// This function emits a branch and is used at the leaves of an OR or an
1670 /// AND operator tree.
1671 void
1672 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1673                                                   MachineBasicBlock *TBB,
1674                                                   MachineBasicBlock *FBB,
1675                                                   MachineBasicBlock *CurBB,
1676                                                   MachineBasicBlock *SwitchBB,
1677                                                   BranchProbability TProb,
1678                                                   BranchProbability FProb,
1679                                                   bool InvertCond) {
1680   const BasicBlock *BB = CurBB->getBasicBlock();
1681 
1682   // If the leaf of the tree is a comparison, merge the condition into
1683   // the caseblock.
1684   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1685     // The operands of the cmp have to be in this block.  We don't know
1686     // how to export them from some other block.  If this is the first block
1687     // of the sequence, no exporting is needed.
1688     if (CurBB == SwitchBB ||
1689         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1690          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1691       ISD::CondCode Condition;
1692       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1693         ICmpInst::Predicate Pred =
1694             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1695         Condition = getICmpCondCode(Pred);
1696       } else {
1697         const FCmpInst *FC = cast<FCmpInst>(Cond);
1698         FCmpInst::Predicate Pred =
1699             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1700         Condition = getFCmpCondCode(Pred);
1701         if (TM.Options.NoNaNsFPMath)
1702           Condition = getFCmpCodeWithoutNaN(Condition);
1703       }
1704 
1705       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1706                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1707       SwitchCases.push_back(CB);
1708       return;
1709     }
1710   }
1711 
1712   // Create a CaseBlock record representing this branch.
1713   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1714   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1715                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1716   SwitchCases.push_back(CB);
1717 }
1718 
1719 /// FindMergedConditions - If Cond is an expression like
1720 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1721                                                MachineBasicBlock *TBB,
1722                                                MachineBasicBlock *FBB,
1723                                                MachineBasicBlock *CurBB,
1724                                                MachineBasicBlock *SwitchBB,
1725                                                Instruction::BinaryOps Opc,
1726                                                BranchProbability TProb,
1727                                                BranchProbability FProb,
1728                                                bool InvertCond) {
1729   // Skip over not part of the tree and remember to invert op and operands at
1730   // next level.
1731   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1732     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1733     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1734       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1735                            !InvertCond);
1736       return;
1737     }
1738   }
1739 
1740   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1741   // Compute the effective opcode for Cond, taking into account whether it needs
1742   // to be inverted, e.g.
1743   //   and (not (or A, B)), C
1744   // gets lowered as
1745   //   and (and (not A, not B), C)
1746   unsigned BOpc = 0;
1747   if (BOp) {
1748     BOpc = BOp->getOpcode();
1749     if (InvertCond) {
1750       if (BOpc == Instruction::And)
1751         BOpc = Instruction::Or;
1752       else if (BOpc == Instruction::Or)
1753         BOpc = Instruction::And;
1754     }
1755   }
1756 
1757   // If this node is not part of the or/and tree, emit it as a branch.
1758   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1759       BOpc != Opc || !BOp->hasOneUse() ||
1760       BOp->getParent() != CurBB->getBasicBlock() ||
1761       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1762       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1763     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1764                                  TProb, FProb, InvertCond);
1765     return;
1766   }
1767 
1768   //  Create TmpBB after CurBB.
1769   MachineFunction::iterator BBI(CurBB);
1770   MachineFunction &MF = DAG.getMachineFunction();
1771   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1772   CurBB->getParent()->insert(++BBI, TmpBB);
1773 
1774   if (Opc == Instruction::Or) {
1775     // Codegen X | Y as:
1776     // BB1:
1777     //   jmp_if_X TBB
1778     //   jmp TmpBB
1779     // TmpBB:
1780     //   jmp_if_Y TBB
1781     //   jmp FBB
1782     //
1783 
1784     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1785     // The requirement is that
1786     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1787     //     = TrueProb for original BB.
1788     // Assuming the original probabilities are A and B, one choice is to set
1789     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1790     // A/(1+B) and 2B/(1+B). This choice assumes that
1791     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1792     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1793     // TmpBB, but the math is more complicated.
1794 
1795     auto NewTrueProb = TProb / 2;
1796     auto NewFalseProb = TProb / 2 + FProb;
1797     // Emit the LHS condition.
1798     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1799                          NewTrueProb, NewFalseProb, InvertCond);
1800 
1801     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1802     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1803     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1804     // Emit the RHS condition into TmpBB.
1805     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1806                          Probs[0], Probs[1], InvertCond);
1807   } else {
1808     assert(Opc == Instruction::And && "Unknown merge op!");
1809     // Codegen X & Y as:
1810     // BB1:
1811     //   jmp_if_X TmpBB
1812     //   jmp FBB
1813     // TmpBB:
1814     //   jmp_if_Y TBB
1815     //   jmp FBB
1816     //
1817     //  This requires creation of TmpBB after CurBB.
1818 
1819     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1820     // The requirement is that
1821     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1822     //     = FalseProb for original BB.
1823     // Assuming the original probabilities are A and B, one choice is to set
1824     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1825     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1826     // TrueProb for BB1 * FalseProb for TmpBB.
1827 
1828     auto NewTrueProb = TProb + FProb / 2;
1829     auto NewFalseProb = FProb / 2;
1830     // Emit the LHS condition.
1831     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1832                          NewTrueProb, NewFalseProb, InvertCond);
1833 
1834     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1835     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1836     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1837     // Emit the RHS condition into TmpBB.
1838     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1839                          Probs[0], Probs[1], InvertCond);
1840   }
1841 }
1842 
1843 /// If the set of cases should be emitted as a series of branches, return true.
1844 /// If we should emit this as a bunch of and/or'd together conditions, return
1845 /// false.
1846 bool
1847 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1848   if (Cases.size() != 2) return true;
1849 
1850   // If this is two comparisons of the same values or'd or and'd together, they
1851   // will get folded into a single comparison, so don't emit two blocks.
1852   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1853        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1854       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1855        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1856     return false;
1857   }
1858 
1859   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1860   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1861   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1862       Cases[0].CC == Cases[1].CC &&
1863       isa<Constant>(Cases[0].CmpRHS) &&
1864       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1865     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1866       return false;
1867     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1868       return false;
1869   }
1870 
1871   return true;
1872 }
1873 
1874 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1875   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1876 
1877   // Update machine-CFG edges.
1878   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1879 
1880   if (I.isUnconditional()) {
1881     // Update machine-CFG edges.
1882     BrMBB->addSuccessor(Succ0MBB);
1883 
1884     // If this is not a fall-through branch or optimizations are switched off,
1885     // emit the branch.
1886     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1887       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1888                               MVT::Other, getControlRoot(),
1889                               DAG.getBasicBlock(Succ0MBB)));
1890 
1891     return;
1892   }
1893 
1894   // If this condition is one of the special cases we handle, do special stuff
1895   // now.
1896   const Value *CondVal = I.getCondition();
1897   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1898 
1899   // If this is a series of conditions that are or'd or and'd together, emit
1900   // this as a sequence of branches instead of setcc's with and/or operations.
1901   // As long as jumps are not expensive, this should improve performance.
1902   // For example, instead of something like:
1903   //     cmp A, B
1904   //     C = seteq
1905   //     cmp D, E
1906   //     F = setle
1907   //     or C, F
1908   //     jnz foo
1909   // Emit:
1910   //     cmp A, B
1911   //     je foo
1912   //     cmp D, E
1913   //     jle foo
1914   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1915     Instruction::BinaryOps Opcode = BOp->getOpcode();
1916     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1917         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1918         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1919       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1920                            Opcode,
1921                            getEdgeProbability(BrMBB, Succ0MBB),
1922                            getEdgeProbability(BrMBB, Succ1MBB),
1923                            /*InvertCond=*/false);
1924       // If the compares in later blocks need to use values not currently
1925       // exported from this block, export them now.  This block should always
1926       // be the first entry.
1927       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1928 
1929       // Allow some cases to be rejected.
1930       if (ShouldEmitAsBranches(SwitchCases)) {
1931         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1932           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1933           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1934         }
1935 
1936         // Emit the branch for this block.
1937         visitSwitchCase(SwitchCases[0], BrMBB);
1938         SwitchCases.erase(SwitchCases.begin());
1939         return;
1940       }
1941 
1942       // Okay, we decided not to do this, remove any inserted MBB's and clear
1943       // SwitchCases.
1944       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1945         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1946 
1947       SwitchCases.clear();
1948     }
1949   }
1950 
1951   // Create a CaseBlock record representing this branch.
1952   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1953                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
1954 
1955   // Use visitSwitchCase to actually insert the fast branch sequence for this
1956   // cond branch.
1957   visitSwitchCase(CB, BrMBB);
1958 }
1959 
1960 /// visitSwitchCase - Emits the necessary code to represent a single node in
1961 /// the binary search tree resulting from lowering a switch instruction.
1962 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1963                                           MachineBasicBlock *SwitchBB) {
1964   SDValue Cond;
1965   SDValue CondLHS = getValue(CB.CmpLHS);
1966   SDLoc dl = CB.DL;
1967 
1968   // Build the setcc now.
1969   if (!CB.CmpMHS) {
1970     // Fold "(X == true)" to X and "(X == false)" to !X to
1971     // handle common cases produced by branch lowering.
1972     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1973         CB.CC == ISD::SETEQ)
1974       Cond = CondLHS;
1975     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1976              CB.CC == ISD::SETEQ) {
1977       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1978       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1979     } else
1980       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1981   } else {
1982     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1983 
1984     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1985     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1986 
1987     SDValue CmpOp = getValue(CB.CmpMHS);
1988     EVT VT = CmpOp.getValueType();
1989 
1990     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1991       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1992                           ISD::SETLE);
1993     } else {
1994       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1995                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1996       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1997                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1998     }
1999   }
2000 
2001   // Update successor info
2002   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2003   // TrueBB and FalseBB are always different unless the incoming IR is
2004   // degenerate. This only happens when running llc on weird IR.
2005   if (CB.TrueBB != CB.FalseBB)
2006     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2007   SwitchBB->normalizeSuccProbs();
2008 
2009   // If the lhs block is the next block, invert the condition so that we can
2010   // fall through to the lhs instead of the rhs block.
2011   if (CB.TrueBB == NextBlock(SwitchBB)) {
2012     std::swap(CB.TrueBB, CB.FalseBB);
2013     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2014     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2015   }
2016 
2017   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2018                                MVT::Other, getControlRoot(), Cond,
2019                                DAG.getBasicBlock(CB.TrueBB));
2020 
2021   // Insert the false branch. Do this even if it's a fall through branch,
2022   // this makes it easier to do DAG optimizations which require inverting
2023   // the branch condition.
2024   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2025                        DAG.getBasicBlock(CB.FalseBB));
2026 
2027   DAG.setRoot(BrCond);
2028 }
2029 
2030 /// visitJumpTable - Emit JumpTable node in the current MBB
2031 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2032   // Emit the code for the jump table
2033   assert(JT.Reg != -1U && "Should lower JT Header first!");
2034   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2035   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2036                                      JT.Reg, PTy);
2037   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2038   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2039                                     MVT::Other, Index.getValue(1),
2040                                     Table, Index);
2041   DAG.setRoot(BrJumpTable);
2042 }
2043 
2044 /// visitJumpTableHeader - This function emits necessary code to produce index
2045 /// in the JumpTable from switch case.
2046 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2047                                                JumpTableHeader &JTH,
2048                                                MachineBasicBlock *SwitchBB) {
2049   SDLoc dl = getCurSDLoc();
2050 
2051   // Subtract the lowest switch case value from the value being switched on and
2052   // conditional branch to default mbb if the result is greater than the
2053   // difference between smallest and largest cases.
2054   SDValue SwitchOp = getValue(JTH.SValue);
2055   EVT VT = SwitchOp.getValueType();
2056   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2057                             DAG.getConstant(JTH.First, dl, VT));
2058 
2059   // The SDNode we just created, which holds the value being switched on minus
2060   // the smallest case value, needs to be copied to a virtual register so it
2061   // can be used as an index into the jump table in a subsequent basic block.
2062   // This value may be smaller or larger than the target's pointer type, and
2063   // therefore require extension or truncating.
2064   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2065   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2066 
2067   unsigned JumpTableReg =
2068       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2069   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2070                                     JumpTableReg, SwitchOp);
2071   JT.Reg = JumpTableReg;
2072 
2073   // Emit the range check for the jump table, and branch to the default block
2074   // for the switch statement if the value being switched on exceeds the largest
2075   // case in the switch.
2076   SDValue CMP = DAG.getSetCC(
2077       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2078                                  Sub.getValueType()),
2079       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2080 
2081   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2082                                MVT::Other, CopyTo, CMP,
2083                                DAG.getBasicBlock(JT.Default));
2084 
2085   // Avoid emitting unnecessary branches to the next block.
2086   if (JT.MBB != NextBlock(SwitchBB))
2087     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2088                          DAG.getBasicBlock(JT.MBB));
2089 
2090   DAG.setRoot(BrCond);
2091 }
2092 
2093 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2094 /// variable if there exists one.
2095 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2096                                  SDValue &Chain) {
2097   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2098   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2099   MachineFunction &MF = DAG.getMachineFunction();
2100   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2101   MachineSDNode *Node =
2102       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2103   if (Global) {
2104     MachinePointerInfo MPInfo(Global);
2105     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2106     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2107                  MachineMemOperand::MODereferenceable;
2108     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2109                                        DAG.getEVTAlignment(PtrTy));
2110     Node->setMemRefs(MemRefs, MemRefs + 1);
2111   }
2112   return SDValue(Node, 0);
2113 }
2114 
2115 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2116 /// tail spliced into a stack protector check success bb.
2117 ///
2118 /// For a high level explanation of how this fits into the stack protector
2119 /// generation see the comment on the declaration of class
2120 /// StackProtectorDescriptor.
2121 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2122                                                   MachineBasicBlock *ParentBB) {
2123 
2124   // First create the loads to the guard/stack slot for the comparison.
2125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2126   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2127 
2128   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2129   int FI = MFI.getStackProtectorIndex();
2130 
2131   SDValue Guard;
2132   SDLoc dl = getCurSDLoc();
2133   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2134   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2135   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2136 
2137   // Generate code to load the content of the guard slot.
2138   SDValue StackSlot = DAG.getLoad(
2139       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2140       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2141       MachineMemOperand::MOVolatile);
2142 
2143   // Retrieve guard check function, nullptr if instrumentation is inlined.
2144   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2145     // The target provides a guard check function to validate the guard value.
2146     // Generate a call to that function with the content of the guard slot as
2147     // argument.
2148     auto *Fn = cast<Function>(GuardCheck);
2149     FunctionType *FnTy = Fn->getFunctionType();
2150     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2151 
2152     TargetLowering::ArgListTy Args;
2153     TargetLowering::ArgListEntry Entry;
2154     Entry.Node = StackSlot;
2155     Entry.Ty = FnTy->getParamType(0);
2156     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2157       Entry.IsInReg = true;
2158     Args.push_back(Entry);
2159 
2160     TargetLowering::CallLoweringInfo CLI(DAG);
2161     CLI.setDebugLoc(getCurSDLoc())
2162       .setChain(DAG.getEntryNode())
2163       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2164                  getValue(GuardCheck), std::move(Args));
2165 
2166     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2167     DAG.setRoot(Result.second);
2168     return;
2169   }
2170 
2171   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2172   // Otherwise, emit a volatile load to retrieve the stack guard value.
2173   SDValue Chain = DAG.getEntryNode();
2174   if (TLI.useLoadStackGuardNode()) {
2175     Guard = getLoadStackGuard(DAG, dl, Chain);
2176   } else {
2177     const Value *IRGuard = TLI.getSDagStackGuard(M);
2178     SDValue GuardPtr = getValue(IRGuard);
2179 
2180     Guard =
2181         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2182                     Align, MachineMemOperand::MOVolatile);
2183   }
2184 
2185   // Perform the comparison via a subtract/getsetcc.
2186   EVT VT = Guard.getValueType();
2187   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2188 
2189   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2190                                                         *DAG.getContext(),
2191                                                         Sub.getValueType()),
2192                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2193 
2194   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2195   // branch to failure MBB.
2196   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2197                                MVT::Other, StackSlot.getOperand(0),
2198                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2199   // Otherwise branch to success MBB.
2200   SDValue Br = DAG.getNode(ISD::BR, dl,
2201                            MVT::Other, BrCond,
2202                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2203 
2204   DAG.setRoot(Br);
2205 }
2206 
2207 /// Codegen the failure basic block for a stack protector check.
2208 ///
2209 /// A failure stack protector machine basic block consists simply of a call to
2210 /// __stack_chk_fail().
2211 ///
2212 /// For a high level explanation of how this fits into the stack protector
2213 /// generation see the comment on the declaration of class
2214 /// StackProtectorDescriptor.
2215 void
2216 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2217   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2218   SDValue Chain =
2219       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2220                       None, false, getCurSDLoc(), false, false).second;
2221   DAG.setRoot(Chain);
2222 }
2223 
2224 /// visitBitTestHeader - This function emits necessary code to produce value
2225 /// suitable for "bit tests"
2226 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2227                                              MachineBasicBlock *SwitchBB) {
2228   SDLoc dl = getCurSDLoc();
2229 
2230   // Subtract the minimum value
2231   SDValue SwitchOp = getValue(B.SValue);
2232   EVT VT = SwitchOp.getValueType();
2233   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2234                             DAG.getConstant(B.First, dl, VT));
2235 
2236   // Check range
2237   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2238   SDValue RangeCmp = DAG.getSetCC(
2239       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2240                                  Sub.getValueType()),
2241       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2242 
2243   // Determine the type of the test operands.
2244   bool UsePtrType = false;
2245   if (!TLI.isTypeLegal(VT))
2246     UsePtrType = true;
2247   else {
2248     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2249       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2250         // Switch table case range are encoded into series of masks.
2251         // Just use pointer type, it's guaranteed to fit.
2252         UsePtrType = true;
2253         break;
2254       }
2255   }
2256   if (UsePtrType) {
2257     VT = TLI.getPointerTy(DAG.getDataLayout());
2258     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2259   }
2260 
2261   B.RegVT = VT.getSimpleVT();
2262   B.Reg = FuncInfo.CreateReg(B.RegVT);
2263   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2264 
2265   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2266 
2267   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2268   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2269   SwitchBB->normalizeSuccProbs();
2270 
2271   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2272                                 MVT::Other, CopyTo, RangeCmp,
2273                                 DAG.getBasicBlock(B.Default));
2274 
2275   // Avoid emitting unnecessary branches to the next block.
2276   if (MBB != NextBlock(SwitchBB))
2277     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2278                           DAG.getBasicBlock(MBB));
2279 
2280   DAG.setRoot(BrRange);
2281 }
2282 
2283 /// visitBitTestCase - this function produces one "bit test"
2284 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2285                                            MachineBasicBlock* NextMBB,
2286                                            BranchProbability BranchProbToNext,
2287                                            unsigned Reg,
2288                                            BitTestCase &B,
2289                                            MachineBasicBlock *SwitchBB) {
2290   SDLoc dl = getCurSDLoc();
2291   MVT VT = BB.RegVT;
2292   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2293   SDValue Cmp;
2294   unsigned PopCount = countPopulation(B.Mask);
2295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2296   if (PopCount == 1) {
2297     // Testing for a single bit; just compare the shift count with what it
2298     // would need to be to shift a 1 bit in that position.
2299     Cmp = DAG.getSetCC(
2300         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2301         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2302         ISD::SETEQ);
2303   } else if (PopCount == BB.Range) {
2304     // There is only one zero bit in the range, test for it directly.
2305     Cmp = DAG.getSetCC(
2306         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2307         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2308         ISD::SETNE);
2309   } else {
2310     // Make desired shift
2311     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2312                                     DAG.getConstant(1, dl, VT), ShiftOp);
2313 
2314     // Emit bit tests and jumps
2315     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2316                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2317     Cmp = DAG.getSetCC(
2318         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2319         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2320   }
2321 
2322   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2323   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2324   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2325   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2326   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2327   // one as they are relative probabilities (and thus work more like weights),
2328   // and hence we need to normalize them to let the sum of them become one.
2329   SwitchBB->normalizeSuccProbs();
2330 
2331   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2332                               MVT::Other, getControlRoot(),
2333                               Cmp, DAG.getBasicBlock(B.TargetBB));
2334 
2335   // Avoid emitting unnecessary branches to the next block.
2336   if (NextMBB != NextBlock(SwitchBB))
2337     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2338                         DAG.getBasicBlock(NextMBB));
2339 
2340   DAG.setRoot(BrAnd);
2341 }
2342 
2343 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2344   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2345 
2346   // Retrieve successors. Look through artificial IR level blocks like
2347   // catchswitch for successors.
2348   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2349   const BasicBlock *EHPadBB = I.getSuccessor(1);
2350 
2351   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2352   // have to do anything here to lower funclet bundles.
2353   assert(!I.hasOperandBundlesOtherThan(
2354              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2355          "Cannot lower invokes with arbitrary operand bundles yet!");
2356 
2357   const Value *Callee(I.getCalledValue());
2358   const Function *Fn = dyn_cast<Function>(Callee);
2359   if (isa<InlineAsm>(Callee))
2360     visitInlineAsm(&I);
2361   else if (Fn && Fn->isIntrinsic()) {
2362     switch (Fn->getIntrinsicID()) {
2363     default:
2364       llvm_unreachable("Cannot invoke this intrinsic");
2365     case Intrinsic::donothing:
2366       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2367       break;
2368     case Intrinsic::experimental_patchpoint_void:
2369     case Intrinsic::experimental_patchpoint_i64:
2370       visitPatchpoint(&I, EHPadBB);
2371       break;
2372     case Intrinsic::experimental_gc_statepoint:
2373       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2374       break;
2375     }
2376   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2377     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2378     // Eventually we will support lowering the @llvm.experimental.deoptimize
2379     // intrinsic, and right now there are no plans to support other intrinsics
2380     // with deopt state.
2381     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2382   } else {
2383     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2384   }
2385 
2386   // If the value of the invoke is used outside of its defining block, make it
2387   // available as a virtual register.
2388   // We already took care of the exported value for the statepoint instruction
2389   // during call to the LowerStatepoint.
2390   if (!isStatepoint(I)) {
2391     CopyToExportRegsIfNeeded(&I);
2392   }
2393 
2394   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2395   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2396   BranchProbability EHPadBBProb =
2397       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2398           : BranchProbability::getZero();
2399   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2400 
2401   // Update successor info.
2402   addSuccessorWithProb(InvokeMBB, Return);
2403   for (auto &UnwindDest : UnwindDests) {
2404     UnwindDest.first->setIsEHPad();
2405     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2406   }
2407   InvokeMBB->normalizeSuccProbs();
2408 
2409   // Drop into normal successor.
2410   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2411                           MVT::Other, getControlRoot(),
2412                           DAG.getBasicBlock(Return)));
2413 }
2414 
2415 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2416   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2417 }
2418 
2419 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2420   assert(FuncInfo.MBB->isEHPad() &&
2421          "Call to landingpad not in landing pad!");
2422 
2423   MachineBasicBlock *MBB = FuncInfo.MBB;
2424   addLandingPadInfo(LP, *MBB);
2425 
2426   // If there aren't registers to copy the values into (e.g., during SjLj
2427   // exceptions), then don't bother to create these DAG nodes.
2428   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2429   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2430   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2431       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2432     return;
2433 
2434   // If landingpad's return type is token type, we don't create DAG nodes
2435   // for its exception pointer and selector value. The extraction of exception
2436   // pointer or selector value from token type landingpads is not currently
2437   // supported.
2438   if (LP.getType()->isTokenTy())
2439     return;
2440 
2441   SmallVector<EVT, 2> ValueVTs;
2442   SDLoc dl = getCurSDLoc();
2443   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2444   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2445 
2446   // Get the two live-in registers as SDValues. The physregs have already been
2447   // copied into virtual registers.
2448   SDValue Ops[2];
2449   if (FuncInfo.ExceptionPointerVirtReg) {
2450     Ops[0] = DAG.getZExtOrTrunc(
2451         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2452                            FuncInfo.ExceptionPointerVirtReg,
2453                            TLI.getPointerTy(DAG.getDataLayout())),
2454         dl, ValueVTs[0]);
2455   } else {
2456     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2457   }
2458   Ops[1] = DAG.getZExtOrTrunc(
2459       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2460                          FuncInfo.ExceptionSelectorVirtReg,
2461                          TLI.getPointerTy(DAG.getDataLayout())),
2462       dl, ValueVTs[1]);
2463 
2464   // Merge into one.
2465   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2466                             DAG.getVTList(ValueVTs), Ops);
2467   setValue(&LP, Res);
2468 }
2469 
2470 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2471 #ifndef NDEBUG
2472   for (const CaseCluster &CC : Clusters)
2473     assert(CC.Low == CC.High && "Input clusters must be single-case");
2474 #endif
2475 
2476   std::sort(Clusters.begin(), Clusters.end(),
2477             [](const CaseCluster &a, const CaseCluster &b) {
2478     return a.Low->getValue().slt(b.Low->getValue());
2479   });
2480 
2481   // Merge adjacent clusters with the same destination.
2482   const unsigned N = Clusters.size();
2483   unsigned DstIndex = 0;
2484   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2485     CaseCluster &CC = Clusters[SrcIndex];
2486     const ConstantInt *CaseVal = CC.Low;
2487     MachineBasicBlock *Succ = CC.MBB;
2488 
2489     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2490         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2491       // If this case has the same successor and is a neighbour, merge it into
2492       // the previous cluster.
2493       Clusters[DstIndex - 1].High = CaseVal;
2494       Clusters[DstIndex - 1].Prob += CC.Prob;
2495     } else {
2496       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2497                    sizeof(Clusters[SrcIndex]));
2498     }
2499   }
2500   Clusters.resize(DstIndex);
2501 }
2502 
2503 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2504                                            MachineBasicBlock *Last) {
2505   // Update JTCases.
2506   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2507     if (JTCases[i].first.HeaderBB == First)
2508       JTCases[i].first.HeaderBB = Last;
2509 
2510   // Update BitTestCases.
2511   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2512     if (BitTestCases[i].Parent == First)
2513       BitTestCases[i].Parent = Last;
2514 }
2515 
2516 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2517   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2518 
2519   // Update machine-CFG edges with unique successors.
2520   SmallSet<BasicBlock*, 32> Done;
2521   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2522     BasicBlock *BB = I.getSuccessor(i);
2523     bool Inserted = Done.insert(BB).second;
2524     if (!Inserted)
2525         continue;
2526 
2527     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2528     addSuccessorWithProb(IndirectBrMBB, Succ);
2529   }
2530   IndirectBrMBB->normalizeSuccProbs();
2531 
2532   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2533                           MVT::Other, getControlRoot(),
2534                           getValue(I.getAddress())));
2535 }
2536 
2537 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2538   if (DAG.getTarget().Options.TrapUnreachable)
2539     DAG.setRoot(
2540         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2541 }
2542 
2543 void SelectionDAGBuilder::visitFSub(const User &I) {
2544   // -0.0 - X --> fneg
2545   Type *Ty = I.getType();
2546   if (isa<Constant>(I.getOperand(0)) &&
2547       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2548     SDValue Op2 = getValue(I.getOperand(1));
2549     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2550                              Op2.getValueType(), Op2));
2551     return;
2552   }
2553 
2554   visitBinary(I, ISD::FSUB);
2555 }
2556 
2557 /// Checks if the given instruction performs a vector reduction, in which case
2558 /// we have the freedom to alter the elements in the result as long as the
2559 /// reduction of them stays unchanged.
2560 static bool isVectorReductionOp(const User *I) {
2561   const Instruction *Inst = dyn_cast<Instruction>(I);
2562   if (!Inst || !Inst->getType()->isVectorTy())
2563     return false;
2564 
2565   auto OpCode = Inst->getOpcode();
2566   switch (OpCode) {
2567   case Instruction::Add:
2568   case Instruction::Mul:
2569   case Instruction::And:
2570   case Instruction::Or:
2571   case Instruction::Xor:
2572     break;
2573   case Instruction::FAdd:
2574   case Instruction::FMul:
2575     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2576       if (FPOp->getFastMathFlags().unsafeAlgebra())
2577         break;
2578     LLVM_FALLTHROUGH;
2579   default:
2580     return false;
2581   }
2582 
2583   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2584   unsigned ElemNumToReduce = ElemNum;
2585 
2586   // Do DFS search on the def-use chain from the given instruction. We only
2587   // allow four kinds of operations during the search until we reach the
2588   // instruction that extracts the first element from the vector:
2589   //
2590   //   1. The reduction operation of the same opcode as the given instruction.
2591   //
2592   //   2. PHI node.
2593   //
2594   //   3. ShuffleVector instruction together with a reduction operation that
2595   //      does a partial reduction.
2596   //
2597   //   4. ExtractElement that extracts the first element from the vector, and we
2598   //      stop searching the def-use chain here.
2599   //
2600   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2601   // from 1-3 to the stack to continue the DFS. The given instruction is not
2602   // a reduction operation if we meet any other instructions other than those
2603   // listed above.
2604 
2605   SmallVector<const User *, 16> UsersToVisit{Inst};
2606   SmallPtrSet<const User *, 16> Visited;
2607   bool ReduxExtracted = false;
2608 
2609   while (!UsersToVisit.empty()) {
2610     auto User = UsersToVisit.back();
2611     UsersToVisit.pop_back();
2612     if (!Visited.insert(User).second)
2613       continue;
2614 
2615     for (const auto &U : User->users()) {
2616       auto Inst = dyn_cast<Instruction>(U);
2617       if (!Inst)
2618         return false;
2619 
2620       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2621         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2622           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2623             return false;
2624         UsersToVisit.push_back(U);
2625       } else if (const ShuffleVectorInst *ShufInst =
2626                      dyn_cast<ShuffleVectorInst>(U)) {
2627         // Detect the following pattern: A ShuffleVector instruction together
2628         // with a reduction that do partial reduction on the first and second
2629         // ElemNumToReduce / 2 elements, and store the result in
2630         // ElemNumToReduce / 2 elements in another vector.
2631 
2632         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2633         if (ResultElements < ElemNum)
2634           return false;
2635 
2636         if (ElemNumToReduce == 1)
2637           return false;
2638         if (!isa<UndefValue>(U->getOperand(1)))
2639           return false;
2640         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2641           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2642             return false;
2643         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2644           if (ShufInst->getMaskValue(i) != -1)
2645             return false;
2646 
2647         // There is only one user of this ShuffleVector instruction, which
2648         // must be a reduction operation.
2649         if (!U->hasOneUse())
2650           return false;
2651 
2652         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2653         if (!U2 || U2->getOpcode() != OpCode)
2654           return false;
2655 
2656         // Check operands of the reduction operation.
2657         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2658             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2659           UsersToVisit.push_back(U2);
2660           ElemNumToReduce /= 2;
2661         } else
2662           return false;
2663       } else if (isa<ExtractElementInst>(U)) {
2664         // At this moment we should have reduced all elements in the vector.
2665         if (ElemNumToReduce != 1)
2666           return false;
2667 
2668         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2669         if (!Val || Val->getZExtValue() != 0)
2670           return false;
2671 
2672         ReduxExtracted = true;
2673       } else
2674         return false;
2675     }
2676   }
2677   return ReduxExtracted;
2678 }
2679 
2680 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2681   SDValue Op1 = getValue(I.getOperand(0));
2682   SDValue Op2 = getValue(I.getOperand(1));
2683 
2684   bool nuw = false;
2685   bool nsw = false;
2686   bool exact = false;
2687   bool vec_redux = false;
2688   FastMathFlags FMF;
2689 
2690   if (const OverflowingBinaryOperator *OFBinOp =
2691           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2692     nuw = OFBinOp->hasNoUnsignedWrap();
2693     nsw = OFBinOp->hasNoSignedWrap();
2694   }
2695   if (const PossiblyExactOperator *ExactOp =
2696           dyn_cast<const PossiblyExactOperator>(&I))
2697     exact = ExactOp->isExact();
2698   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2699     FMF = FPOp->getFastMathFlags();
2700 
2701   if (isVectorReductionOp(&I)) {
2702     vec_redux = true;
2703     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2704   }
2705 
2706   SDNodeFlags Flags;
2707   Flags.setExact(exact);
2708   Flags.setNoSignedWrap(nsw);
2709   Flags.setNoUnsignedWrap(nuw);
2710   Flags.setVectorReduction(vec_redux);
2711   Flags.setAllowReciprocal(FMF.allowReciprocal());
2712   Flags.setAllowContract(FMF.allowContract());
2713   Flags.setNoInfs(FMF.noInfs());
2714   Flags.setNoNaNs(FMF.noNaNs());
2715   Flags.setNoSignedZeros(FMF.noSignedZeros());
2716   Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2717 
2718   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2719                                      Op1, Op2, Flags);
2720   setValue(&I, BinNodeValue);
2721 }
2722 
2723 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2724   SDValue Op1 = getValue(I.getOperand(0));
2725   SDValue Op2 = getValue(I.getOperand(1));
2726 
2727   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2728       Op2.getValueType(), DAG.getDataLayout());
2729 
2730   // Coerce the shift amount to the right type if we can.
2731   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2732     unsigned ShiftSize = ShiftTy.getSizeInBits();
2733     unsigned Op2Size = Op2.getValueSizeInBits();
2734     SDLoc DL = getCurSDLoc();
2735 
2736     // If the operand is smaller than the shift count type, promote it.
2737     if (ShiftSize > Op2Size)
2738       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2739 
2740     // If the operand is larger than the shift count type but the shift
2741     // count type has enough bits to represent any shift value, truncate
2742     // it now. This is a common case and it exposes the truncate to
2743     // optimization early.
2744     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2745       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2746     // Otherwise we'll need to temporarily settle for some other convenient
2747     // type.  Type legalization will make adjustments once the shiftee is split.
2748     else
2749       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2750   }
2751 
2752   bool nuw = false;
2753   bool nsw = false;
2754   bool exact = false;
2755 
2756   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2757 
2758     if (const OverflowingBinaryOperator *OFBinOp =
2759             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2760       nuw = OFBinOp->hasNoUnsignedWrap();
2761       nsw = OFBinOp->hasNoSignedWrap();
2762     }
2763     if (const PossiblyExactOperator *ExactOp =
2764             dyn_cast<const PossiblyExactOperator>(&I))
2765       exact = ExactOp->isExact();
2766   }
2767   SDNodeFlags Flags;
2768   Flags.setExact(exact);
2769   Flags.setNoSignedWrap(nsw);
2770   Flags.setNoUnsignedWrap(nuw);
2771   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2772                             Flags);
2773   setValue(&I, Res);
2774 }
2775 
2776 void SelectionDAGBuilder::visitSDiv(const User &I) {
2777   SDValue Op1 = getValue(I.getOperand(0));
2778   SDValue Op2 = getValue(I.getOperand(1));
2779 
2780   SDNodeFlags Flags;
2781   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2782                  cast<PossiblyExactOperator>(&I)->isExact());
2783   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2784                            Op2, Flags));
2785 }
2786 
2787 void SelectionDAGBuilder::visitICmp(const User &I) {
2788   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2789   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2790     predicate = IC->getPredicate();
2791   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2792     predicate = ICmpInst::Predicate(IC->getPredicate());
2793   SDValue Op1 = getValue(I.getOperand(0));
2794   SDValue Op2 = getValue(I.getOperand(1));
2795   ISD::CondCode Opcode = getICmpCondCode(predicate);
2796 
2797   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2798                                                         I.getType());
2799   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2800 }
2801 
2802 void SelectionDAGBuilder::visitFCmp(const User &I) {
2803   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2804   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2805     predicate = FC->getPredicate();
2806   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2807     predicate = FCmpInst::Predicate(FC->getPredicate());
2808   SDValue Op1 = getValue(I.getOperand(0));
2809   SDValue Op2 = getValue(I.getOperand(1));
2810   ISD::CondCode Condition = getFCmpCondCode(predicate);
2811 
2812   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2813   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2814   // further optimization, but currently FMF is only applicable to binary nodes.
2815   if (TM.Options.NoNaNsFPMath)
2816     Condition = getFCmpCodeWithoutNaN(Condition);
2817   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2818                                                         I.getType());
2819   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2820 }
2821 
2822 // Check if the condition of the select has one use or two users that are both
2823 // selects with the same condition.
2824 static bool hasOnlySelectUsers(const Value *Cond) {
2825   return llvm::all_of(Cond->users(), [](const Value *V) {
2826     return isa<SelectInst>(V);
2827   });
2828 }
2829 
2830 void SelectionDAGBuilder::visitSelect(const User &I) {
2831   SmallVector<EVT, 4> ValueVTs;
2832   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2833                   ValueVTs);
2834   unsigned NumValues = ValueVTs.size();
2835   if (NumValues == 0) return;
2836 
2837   SmallVector<SDValue, 4> Values(NumValues);
2838   SDValue Cond     = getValue(I.getOperand(0));
2839   SDValue LHSVal   = getValue(I.getOperand(1));
2840   SDValue RHSVal   = getValue(I.getOperand(2));
2841   auto BaseOps = {Cond};
2842   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2843     ISD::VSELECT : ISD::SELECT;
2844 
2845   // Min/max matching is only viable if all output VTs are the same.
2846   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2847     EVT VT = ValueVTs[0];
2848     LLVMContext &Ctx = *DAG.getContext();
2849     auto &TLI = DAG.getTargetLoweringInfo();
2850 
2851     // We care about the legality of the operation after it has been type
2852     // legalized.
2853     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2854            VT != TLI.getTypeToTransformTo(Ctx, VT))
2855       VT = TLI.getTypeToTransformTo(Ctx, VT);
2856 
2857     // If the vselect is legal, assume we want to leave this as a vector setcc +
2858     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2859     // min/max is legal on the scalar type.
2860     bool UseScalarMinMax = VT.isVector() &&
2861       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2862 
2863     Value *LHS, *RHS;
2864     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2865     ISD::NodeType Opc = ISD::DELETED_NODE;
2866     switch (SPR.Flavor) {
2867     case SPF_UMAX:    Opc = ISD::UMAX; break;
2868     case SPF_UMIN:    Opc = ISD::UMIN; break;
2869     case SPF_SMAX:    Opc = ISD::SMAX; break;
2870     case SPF_SMIN:    Opc = ISD::SMIN; break;
2871     case SPF_FMINNUM:
2872       switch (SPR.NaNBehavior) {
2873       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2874       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2875       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2876       case SPNB_RETURNS_ANY: {
2877         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2878           Opc = ISD::FMINNUM;
2879         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2880           Opc = ISD::FMINNAN;
2881         else if (UseScalarMinMax)
2882           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2883             ISD::FMINNUM : ISD::FMINNAN;
2884         break;
2885       }
2886       }
2887       break;
2888     case SPF_FMAXNUM:
2889       switch (SPR.NaNBehavior) {
2890       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2891       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2892       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2893       case SPNB_RETURNS_ANY:
2894 
2895         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2896           Opc = ISD::FMAXNUM;
2897         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2898           Opc = ISD::FMAXNAN;
2899         else if (UseScalarMinMax)
2900           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2901             ISD::FMAXNUM : ISD::FMAXNAN;
2902         break;
2903       }
2904       break;
2905     default: break;
2906     }
2907 
2908     if (Opc != ISD::DELETED_NODE &&
2909         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2910          (UseScalarMinMax &&
2911           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2912         // If the underlying comparison instruction is used by any other
2913         // instruction, the consumed instructions won't be destroyed, so it is
2914         // not profitable to convert to a min/max.
2915         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2916       OpCode = Opc;
2917       LHSVal = getValue(LHS);
2918       RHSVal = getValue(RHS);
2919       BaseOps = {};
2920     }
2921   }
2922 
2923   for (unsigned i = 0; i != NumValues; ++i) {
2924     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2925     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2926     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2927     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2928                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2929                             Ops);
2930   }
2931 
2932   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2933                            DAG.getVTList(ValueVTs), Values));
2934 }
2935 
2936 void SelectionDAGBuilder::visitTrunc(const User &I) {
2937   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2938   SDValue N = getValue(I.getOperand(0));
2939   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2940                                                         I.getType());
2941   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2942 }
2943 
2944 void SelectionDAGBuilder::visitZExt(const User &I) {
2945   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2946   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2947   SDValue N = getValue(I.getOperand(0));
2948   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2949                                                         I.getType());
2950   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2951 }
2952 
2953 void SelectionDAGBuilder::visitSExt(const User &I) {
2954   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2955   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2956   SDValue N = getValue(I.getOperand(0));
2957   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2958                                                         I.getType());
2959   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2960 }
2961 
2962 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2963   // FPTrunc is never a no-op cast, no need to check
2964   SDValue N = getValue(I.getOperand(0));
2965   SDLoc dl = getCurSDLoc();
2966   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2967   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2968   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2969                            DAG.getTargetConstant(
2970                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2971 }
2972 
2973 void SelectionDAGBuilder::visitFPExt(const User &I) {
2974   // FPExt is never a no-op cast, no need to check
2975   SDValue N = getValue(I.getOperand(0));
2976   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2977                                                         I.getType());
2978   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2979 }
2980 
2981 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2982   // FPToUI is never a no-op cast, no need to check
2983   SDValue N = getValue(I.getOperand(0));
2984   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2985                                                         I.getType());
2986   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2987 }
2988 
2989 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2990   // FPToSI is never a no-op cast, no need to check
2991   SDValue N = getValue(I.getOperand(0));
2992   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2993                                                         I.getType());
2994   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2995 }
2996 
2997 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2998   // UIToFP is never a no-op cast, no need to check
2999   SDValue N = getValue(I.getOperand(0));
3000   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3001                                                         I.getType());
3002   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3003 }
3004 
3005 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3006   // SIToFP is never a no-op cast, no need to check
3007   SDValue N = getValue(I.getOperand(0));
3008   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3009                                                         I.getType());
3010   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3011 }
3012 
3013 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3014   // What to do depends on the size of the integer and the size of the pointer.
3015   // We can either truncate, zero extend, or no-op, accordingly.
3016   SDValue N = getValue(I.getOperand(0));
3017   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3018                                                         I.getType());
3019   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3020 }
3021 
3022 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3023   // What to do depends on the size of the integer and the size of the pointer.
3024   // We can either truncate, zero extend, or no-op, accordingly.
3025   SDValue N = getValue(I.getOperand(0));
3026   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3027                                                         I.getType());
3028   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3029 }
3030 
3031 void SelectionDAGBuilder::visitBitCast(const User &I) {
3032   SDValue N = getValue(I.getOperand(0));
3033   SDLoc dl = getCurSDLoc();
3034   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3035                                                         I.getType());
3036 
3037   // BitCast assures us that source and destination are the same size so this is
3038   // either a BITCAST or a no-op.
3039   if (DestVT != N.getValueType())
3040     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3041                              DestVT, N)); // convert types.
3042   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3043   // might fold any kind of constant expression to an integer constant and that
3044   // is not what we are looking for. Only recognize a bitcast of a genuine
3045   // constant integer as an opaque constant.
3046   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3047     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3048                                  /*isOpaque*/true));
3049   else
3050     setValue(&I, N);            // noop cast.
3051 }
3052 
3053 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3054   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3055   const Value *SV = I.getOperand(0);
3056   SDValue N = getValue(SV);
3057   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3058 
3059   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3060   unsigned DestAS = I.getType()->getPointerAddressSpace();
3061 
3062   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3063     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3064 
3065   setValue(&I, N);
3066 }
3067 
3068 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3070   SDValue InVec = getValue(I.getOperand(0));
3071   SDValue InVal = getValue(I.getOperand(1));
3072   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3073                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3074   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3075                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3076                            InVec, InVal, InIdx));
3077 }
3078 
3079 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081   SDValue InVec = getValue(I.getOperand(0));
3082   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3083                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3084   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3085                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3086                            InVec, InIdx));
3087 }
3088 
3089 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3090   SDValue Src1 = getValue(I.getOperand(0));
3091   SDValue Src2 = getValue(I.getOperand(1));
3092   SDLoc DL = getCurSDLoc();
3093 
3094   SmallVector<int, 8> Mask;
3095   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3096   unsigned MaskNumElts = Mask.size();
3097 
3098   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3099   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3100   EVT SrcVT = Src1.getValueType();
3101   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3102 
3103   if (SrcNumElts == MaskNumElts) {
3104     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3105     return;
3106   }
3107 
3108   // Normalize the shuffle vector since mask and vector length don't match.
3109   if (SrcNumElts < MaskNumElts) {
3110     // Mask is longer than the source vectors. We can use concatenate vector to
3111     // make the mask and vectors lengths match.
3112 
3113     if (MaskNumElts % SrcNumElts == 0) {
3114       // Mask length is a multiple of the source vector length.
3115       // Check if the shuffle is some kind of concatenation of the input
3116       // vectors.
3117       unsigned NumConcat = MaskNumElts / SrcNumElts;
3118       bool IsConcat = true;
3119       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3120       for (unsigned i = 0; i != MaskNumElts; ++i) {
3121         int Idx = Mask[i];
3122         if (Idx < 0)
3123           continue;
3124         // Ensure the indices in each SrcVT sized piece are sequential and that
3125         // the same source is used for the whole piece.
3126         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3127             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3128              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3129           IsConcat = false;
3130           break;
3131         }
3132         // Remember which source this index came from.
3133         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3134       }
3135 
3136       // The shuffle is concatenating multiple vectors together. Just emit
3137       // a CONCAT_VECTORS operation.
3138       if (IsConcat) {
3139         SmallVector<SDValue, 8> ConcatOps;
3140         for (auto Src : ConcatSrcs) {
3141           if (Src < 0)
3142             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3143           else if (Src == 0)
3144             ConcatOps.push_back(Src1);
3145           else
3146             ConcatOps.push_back(Src2);
3147         }
3148         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3149         return;
3150       }
3151     }
3152 
3153     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3154     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3155     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3156                                     PaddedMaskNumElts);
3157 
3158     // Pad both vectors with undefs to make them the same length as the mask.
3159     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3160 
3161     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3162     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3163     MOps1[0] = Src1;
3164     MOps2[0] = Src2;
3165 
3166     Src1 = Src1.isUndef()
3167                ? DAG.getUNDEF(PaddedVT)
3168                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3169     Src2 = Src2.isUndef()
3170                ? DAG.getUNDEF(PaddedVT)
3171                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3172 
3173     // Readjust mask for new input vector length.
3174     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3175     for (unsigned i = 0; i != MaskNumElts; ++i) {
3176       int Idx = Mask[i];
3177       if (Idx >= (int)SrcNumElts)
3178         Idx -= SrcNumElts - PaddedMaskNumElts;
3179       MappedOps[i] = Idx;
3180     }
3181 
3182     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3183 
3184     // If the concatenated vector was padded, extract a subvector with the
3185     // correct number of elements.
3186     if (MaskNumElts != PaddedMaskNumElts)
3187       Result = DAG.getNode(
3188           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3189           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3190 
3191     setValue(&I, Result);
3192     return;
3193   }
3194 
3195   if (SrcNumElts > MaskNumElts) {
3196     // Analyze the access pattern of the vector to see if we can extract
3197     // two subvectors and do the shuffle.
3198     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3199     bool CanExtract = true;
3200     for (int Idx : Mask) {
3201       unsigned Input = 0;
3202       if (Idx < 0)
3203         continue;
3204 
3205       if (Idx >= (int)SrcNumElts) {
3206         Input = 1;
3207         Idx -= SrcNumElts;
3208       }
3209 
3210       // If all the indices come from the same MaskNumElts sized portion of
3211       // the sources we can use extract. Also make sure the extract wouldn't
3212       // extract past the end of the source.
3213       int NewStartIdx = alignDown(Idx, MaskNumElts);
3214       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3215           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3216         CanExtract = false;
3217       // Make sure we always update StartIdx as we use it to track if all
3218       // elements are undef.
3219       StartIdx[Input] = NewStartIdx;
3220     }
3221 
3222     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3223       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3224       return;
3225     }
3226     if (CanExtract) {
3227       // Extract appropriate subvector and generate a vector shuffle
3228       for (unsigned Input = 0; Input < 2; ++Input) {
3229         SDValue &Src = Input == 0 ? Src1 : Src2;
3230         if (StartIdx[Input] < 0)
3231           Src = DAG.getUNDEF(VT);
3232         else {
3233           Src = DAG.getNode(
3234               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3235               DAG.getConstant(StartIdx[Input], DL,
3236                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3237         }
3238       }
3239 
3240       // Calculate new mask.
3241       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3242       for (int &Idx : MappedOps) {
3243         if (Idx >= (int)SrcNumElts)
3244           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3245         else if (Idx >= 0)
3246           Idx -= StartIdx[0];
3247       }
3248 
3249       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3250       return;
3251     }
3252   }
3253 
3254   // We can't use either concat vectors or extract subvectors so fall back to
3255   // replacing the shuffle with extract and build vector.
3256   // to insert and build vector.
3257   EVT EltVT = VT.getVectorElementType();
3258   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3259   SmallVector<SDValue,8> Ops;
3260   for (int Idx : Mask) {
3261     SDValue Res;
3262 
3263     if (Idx < 0) {
3264       Res = DAG.getUNDEF(EltVT);
3265     } else {
3266       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3267       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3268 
3269       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3270                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3271     }
3272 
3273     Ops.push_back(Res);
3274   }
3275 
3276   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3277 }
3278 
3279 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3280   ArrayRef<unsigned> Indices;
3281   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3282     Indices = IV->getIndices();
3283   else
3284     Indices = cast<ConstantExpr>(&I)->getIndices();
3285 
3286   const Value *Op0 = I.getOperand(0);
3287   const Value *Op1 = I.getOperand(1);
3288   Type *AggTy = I.getType();
3289   Type *ValTy = Op1->getType();
3290   bool IntoUndef = isa<UndefValue>(Op0);
3291   bool FromUndef = isa<UndefValue>(Op1);
3292 
3293   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3294 
3295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3296   SmallVector<EVT, 4> AggValueVTs;
3297   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3298   SmallVector<EVT, 4> ValValueVTs;
3299   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3300 
3301   unsigned NumAggValues = AggValueVTs.size();
3302   unsigned NumValValues = ValValueVTs.size();
3303   SmallVector<SDValue, 4> Values(NumAggValues);
3304 
3305   // Ignore an insertvalue that produces an empty object
3306   if (!NumAggValues) {
3307     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3308     return;
3309   }
3310 
3311   SDValue Agg = getValue(Op0);
3312   unsigned i = 0;
3313   // Copy the beginning value(s) from the original aggregate.
3314   for (; i != LinearIndex; ++i)
3315     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3316                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3317   // Copy values from the inserted value(s).
3318   if (NumValValues) {
3319     SDValue Val = getValue(Op1);
3320     for (; i != LinearIndex + NumValValues; ++i)
3321       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3322                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3323   }
3324   // Copy remaining value(s) from the original aggregate.
3325   for (; i != NumAggValues; ++i)
3326     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3327                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3328 
3329   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3330                            DAG.getVTList(AggValueVTs), Values));
3331 }
3332 
3333 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3334   ArrayRef<unsigned> Indices;
3335   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3336     Indices = EV->getIndices();
3337   else
3338     Indices = cast<ConstantExpr>(&I)->getIndices();
3339 
3340   const Value *Op0 = I.getOperand(0);
3341   Type *AggTy = Op0->getType();
3342   Type *ValTy = I.getType();
3343   bool OutOfUndef = isa<UndefValue>(Op0);
3344 
3345   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3346 
3347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3348   SmallVector<EVT, 4> ValValueVTs;
3349   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3350 
3351   unsigned NumValValues = ValValueVTs.size();
3352 
3353   // Ignore a extractvalue that produces an empty object
3354   if (!NumValValues) {
3355     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3356     return;
3357   }
3358 
3359   SmallVector<SDValue, 4> Values(NumValValues);
3360 
3361   SDValue Agg = getValue(Op0);
3362   // Copy out the selected value(s).
3363   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3364     Values[i - LinearIndex] =
3365       OutOfUndef ?
3366         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3367         SDValue(Agg.getNode(), Agg.getResNo() + i);
3368 
3369   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3370                            DAG.getVTList(ValValueVTs), Values));
3371 }
3372 
3373 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3374   Value *Op0 = I.getOperand(0);
3375   // Note that the pointer operand may be a vector of pointers. Take the scalar
3376   // element which holds a pointer.
3377   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3378   SDValue N = getValue(Op0);
3379   SDLoc dl = getCurSDLoc();
3380 
3381   // Normalize Vector GEP - all scalar operands should be converted to the
3382   // splat vector.
3383   unsigned VectorWidth = I.getType()->isVectorTy() ?
3384     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3385 
3386   if (VectorWidth && !N.getValueType().isVector()) {
3387     LLVMContext &Context = *DAG.getContext();
3388     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3389     N = DAG.getSplatBuildVector(VT, dl, N);
3390   }
3391 
3392   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3393        GTI != E; ++GTI) {
3394     const Value *Idx = GTI.getOperand();
3395     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3396       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3397       if (Field) {
3398         // N = N + Offset
3399         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3400 
3401         // In an inbounds GEP with an offset that is nonnegative even when
3402         // interpreted as signed, assume there is no unsigned overflow.
3403         SDNodeFlags Flags;
3404         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3405           Flags.setNoUnsignedWrap(true);
3406 
3407         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3408                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3409       }
3410     } else {
3411       MVT PtrTy =
3412           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3413       unsigned PtrSize = PtrTy.getSizeInBits();
3414       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3415 
3416       // If this is a scalar constant or a splat vector of constants,
3417       // handle it quickly.
3418       const auto *CI = dyn_cast<ConstantInt>(Idx);
3419       if (!CI && isa<ConstantDataVector>(Idx) &&
3420           cast<ConstantDataVector>(Idx)->getSplatValue())
3421         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3422 
3423       if (CI) {
3424         if (CI->isZero())
3425           continue;
3426         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3427         LLVMContext &Context = *DAG.getContext();
3428         SDValue OffsVal = VectorWidth ?
3429           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3430           DAG.getConstant(Offs, dl, PtrTy);
3431 
3432         // In an inbouds GEP with an offset that is nonnegative even when
3433         // interpreted as signed, assume there is no unsigned overflow.
3434         SDNodeFlags Flags;
3435         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3436           Flags.setNoUnsignedWrap(true);
3437 
3438         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3439         continue;
3440       }
3441 
3442       // N = N + Idx * ElementSize;
3443       SDValue IdxN = getValue(Idx);
3444 
3445       if (!IdxN.getValueType().isVector() && VectorWidth) {
3446         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3447         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3448       }
3449 
3450       // If the index is smaller or larger than intptr_t, truncate or extend
3451       // it.
3452       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3453 
3454       // If this is a multiply by a power of two, turn it into a shl
3455       // immediately.  This is a very common case.
3456       if (ElementSize != 1) {
3457         if (ElementSize.isPowerOf2()) {
3458           unsigned Amt = ElementSize.logBase2();
3459           IdxN = DAG.getNode(ISD::SHL, dl,
3460                              N.getValueType(), IdxN,
3461                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3462         } else {
3463           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3464           IdxN = DAG.getNode(ISD::MUL, dl,
3465                              N.getValueType(), IdxN, Scale);
3466         }
3467       }
3468 
3469       N = DAG.getNode(ISD::ADD, dl,
3470                       N.getValueType(), N, IdxN);
3471     }
3472   }
3473 
3474   setValue(&I, N);
3475 }
3476 
3477 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3478   // If this is a fixed sized alloca in the entry block of the function,
3479   // allocate it statically on the stack.
3480   if (FuncInfo.StaticAllocaMap.count(&I))
3481     return;   // getValue will auto-populate this.
3482 
3483   SDLoc dl = getCurSDLoc();
3484   Type *Ty = I.getAllocatedType();
3485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3486   auto &DL = DAG.getDataLayout();
3487   uint64_t TySize = DL.getTypeAllocSize(Ty);
3488   unsigned Align =
3489       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3490 
3491   SDValue AllocSize = getValue(I.getArraySize());
3492 
3493   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3494   if (AllocSize.getValueType() != IntPtr)
3495     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3496 
3497   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3498                           AllocSize,
3499                           DAG.getConstant(TySize, dl, IntPtr));
3500 
3501   // Handle alignment.  If the requested alignment is less than or equal to
3502   // the stack alignment, ignore it.  If the size is greater than or equal to
3503   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3504   unsigned StackAlign =
3505       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3506   if (Align <= StackAlign)
3507     Align = 0;
3508 
3509   // Round the size of the allocation up to the stack alignment size
3510   // by add SA-1 to the size. This doesn't overflow because we're computing
3511   // an address inside an alloca.
3512   SDNodeFlags Flags;
3513   Flags.setNoUnsignedWrap(true);
3514   AllocSize = DAG.getNode(ISD::ADD, dl,
3515                           AllocSize.getValueType(), AllocSize,
3516                           DAG.getIntPtrConstant(StackAlign - 1, dl), Flags);
3517 
3518   // Mask out the low bits for alignment purposes.
3519   AllocSize = DAG.getNode(ISD::AND, dl,
3520                           AllocSize.getValueType(), AllocSize,
3521                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3522                                                 dl));
3523 
3524   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3525   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3526   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3527   setValue(&I, DSA);
3528   DAG.setRoot(DSA.getValue(1));
3529 
3530   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3531 }
3532 
3533 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3534   if (I.isAtomic())
3535     return visitAtomicLoad(I);
3536 
3537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3538   const Value *SV = I.getOperand(0);
3539   if (TLI.supportSwiftError()) {
3540     // Swifterror values can come from either a function parameter with
3541     // swifterror attribute or an alloca with swifterror attribute.
3542     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3543       if (Arg->hasSwiftErrorAttr())
3544         return visitLoadFromSwiftError(I);
3545     }
3546 
3547     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3548       if (Alloca->isSwiftError())
3549         return visitLoadFromSwiftError(I);
3550     }
3551   }
3552 
3553   SDValue Ptr = getValue(SV);
3554 
3555   Type *Ty = I.getType();
3556 
3557   bool isVolatile = I.isVolatile();
3558   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3559   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3560   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3561   unsigned Alignment = I.getAlignment();
3562 
3563   AAMDNodes AAInfo;
3564   I.getAAMetadata(AAInfo);
3565   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3566 
3567   SmallVector<EVT, 4> ValueVTs;
3568   SmallVector<uint64_t, 4> Offsets;
3569   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3570   unsigned NumValues = ValueVTs.size();
3571   if (NumValues == 0)
3572     return;
3573 
3574   SDValue Root;
3575   bool ConstantMemory = false;
3576   if (isVolatile || NumValues > MaxParallelChains)
3577     // Serialize volatile loads with other side effects.
3578     Root = getRoot();
3579   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3580                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3581     // Do not serialize (non-volatile) loads of constant memory with anything.
3582     Root = DAG.getEntryNode();
3583     ConstantMemory = true;
3584   } else {
3585     // Do not serialize non-volatile loads against each other.
3586     Root = DAG.getRoot();
3587   }
3588 
3589   SDLoc dl = getCurSDLoc();
3590 
3591   if (isVolatile)
3592     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3593 
3594   // An aggregate load cannot wrap around the address space, so offsets to its
3595   // parts don't wrap either.
3596   SDNodeFlags Flags;
3597   Flags.setNoUnsignedWrap(true);
3598 
3599   SmallVector<SDValue, 4> Values(NumValues);
3600   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3601   EVT PtrVT = Ptr.getValueType();
3602   unsigned ChainI = 0;
3603   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3604     // Serializing loads here may result in excessive register pressure, and
3605     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3606     // could recover a bit by hoisting nodes upward in the chain by recognizing
3607     // they are side-effect free or do not alias. The optimizer should really
3608     // avoid this case by converting large object/array copies to llvm.memcpy
3609     // (MaxParallelChains should always remain as failsafe).
3610     if (ChainI == MaxParallelChains) {
3611       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3612       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3613                                   makeArrayRef(Chains.data(), ChainI));
3614       Root = Chain;
3615       ChainI = 0;
3616     }
3617     SDValue A = DAG.getNode(ISD::ADD, dl,
3618                             PtrVT, Ptr,
3619                             DAG.getConstant(Offsets[i], dl, PtrVT),
3620                             Flags);
3621     auto MMOFlags = MachineMemOperand::MONone;
3622     if (isVolatile)
3623       MMOFlags |= MachineMemOperand::MOVolatile;
3624     if (isNonTemporal)
3625       MMOFlags |= MachineMemOperand::MONonTemporal;
3626     if (isInvariant)
3627       MMOFlags |= MachineMemOperand::MOInvariant;
3628     if (isDereferenceable)
3629       MMOFlags |= MachineMemOperand::MODereferenceable;
3630     MMOFlags |= TLI.getMMOFlags(I);
3631 
3632     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3633                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3634                             MMOFlags, AAInfo, Ranges);
3635 
3636     Values[i] = L;
3637     Chains[ChainI] = L.getValue(1);
3638   }
3639 
3640   if (!ConstantMemory) {
3641     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3642                                 makeArrayRef(Chains.data(), ChainI));
3643     if (isVolatile)
3644       DAG.setRoot(Chain);
3645     else
3646       PendingLoads.push_back(Chain);
3647   }
3648 
3649   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3650                            DAG.getVTList(ValueVTs), Values));
3651 }
3652 
3653 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3654   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3655          "call visitStoreToSwiftError when backend supports swifterror");
3656 
3657   SmallVector<EVT, 4> ValueVTs;
3658   SmallVector<uint64_t, 4> Offsets;
3659   const Value *SrcV = I.getOperand(0);
3660   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3661                   SrcV->getType(), ValueVTs, &Offsets);
3662   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3663          "expect a single EVT for swifterror");
3664 
3665   SDValue Src = getValue(SrcV);
3666   // Create a virtual register, then update the virtual register.
3667   unsigned VReg; bool CreatedVReg;
3668   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3669   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3670   // Chain can be getRoot or getControlRoot.
3671   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3672                                       SDValue(Src.getNode(), Src.getResNo()));
3673   DAG.setRoot(CopyNode);
3674   if (CreatedVReg)
3675     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3676 }
3677 
3678 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3679   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3680          "call visitLoadFromSwiftError when backend supports swifterror");
3681 
3682   assert(!I.isVolatile() &&
3683          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3684          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3685          "Support volatile, non temporal, invariant for load_from_swift_error");
3686 
3687   const Value *SV = I.getOperand(0);
3688   Type *Ty = I.getType();
3689   AAMDNodes AAInfo;
3690   I.getAAMetadata(AAInfo);
3691   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3692              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3693          "load_from_swift_error should not be constant memory");
3694 
3695   SmallVector<EVT, 4> ValueVTs;
3696   SmallVector<uint64_t, 4> Offsets;
3697   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3698                   ValueVTs, &Offsets);
3699   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3700          "expect a single EVT for swifterror");
3701 
3702   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3703   SDValue L = DAG.getCopyFromReg(
3704       getRoot(), getCurSDLoc(),
3705       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3706       ValueVTs[0]);
3707 
3708   setValue(&I, L);
3709 }
3710 
3711 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3712   if (I.isAtomic())
3713     return visitAtomicStore(I);
3714 
3715   const Value *SrcV = I.getOperand(0);
3716   const Value *PtrV = I.getOperand(1);
3717 
3718   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3719   if (TLI.supportSwiftError()) {
3720     // Swifterror values can come from either a function parameter with
3721     // swifterror attribute or an alloca with swifterror attribute.
3722     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3723       if (Arg->hasSwiftErrorAttr())
3724         return visitStoreToSwiftError(I);
3725     }
3726 
3727     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3728       if (Alloca->isSwiftError())
3729         return visitStoreToSwiftError(I);
3730     }
3731   }
3732 
3733   SmallVector<EVT, 4> ValueVTs;
3734   SmallVector<uint64_t, 4> Offsets;
3735   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3736                   SrcV->getType(), ValueVTs, &Offsets);
3737   unsigned NumValues = ValueVTs.size();
3738   if (NumValues == 0)
3739     return;
3740 
3741   // Get the lowered operands. Note that we do this after
3742   // checking if NumResults is zero, because with zero results
3743   // the operands won't have values in the map.
3744   SDValue Src = getValue(SrcV);
3745   SDValue Ptr = getValue(PtrV);
3746 
3747   SDValue Root = getRoot();
3748   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3749   SDLoc dl = getCurSDLoc();
3750   EVT PtrVT = Ptr.getValueType();
3751   unsigned Alignment = I.getAlignment();
3752   AAMDNodes AAInfo;
3753   I.getAAMetadata(AAInfo);
3754 
3755   auto MMOFlags = MachineMemOperand::MONone;
3756   if (I.isVolatile())
3757     MMOFlags |= MachineMemOperand::MOVolatile;
3758   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3759     MMOFlags |= MachineMemOperand::MONonTemporal;
3760   MMOFlags |= TLI.getMMOFlags(I);
3761 
3762   // An aggregate load cannot wrap around the address space, so offsets to its
3763   // parts don't wrap either.
3764   SDNodeFlags Flags;
3765   Flags.setNoUnsignedWrap(true);
3766 
3767   unsigned ChainI = 0;
3768   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3769     // See visitLoad comments.
3770     if (ChainI == MaxParallelChains) {
3771       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3772                                   makeArrayRef(Chains.data(), ChainI));
3773       Root = Chain;
3774       ChainI = 0;
3775     }
3776     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3777                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3778     SDValue St = DAG.getStore(
3779         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3780         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3781     Chains[ChainI] = St;
3782   }
3783 
3784   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3785                                   makeArrayRef(Chains.data(), ChainI));
3786   DAG.setRoot(StoreNode);
3787 }
3788 
3789 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3790                                            bool IsCompressing) {
3791   SDLoc sdl = getCurSDLoc();
3792 
3793   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3794                            unsigned& Alignment) {
3795     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3796     Src0 = I.getArgOperand(0);
3797     Ptr = I.getArgOperand(1);
3798     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3799     Mask = I.getArgOperand(3);
3800   };
3801   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3802                            unsigned& Alignment) {
3803     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3804     Src0 = I.getArgOperand(0);
3805     Ptr = I.getArgOperand(1);
3806     Mask = I.getArgOperand(2);
3807     Alignment = 0;
3808   };
3809 
3810   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3811   unsigned Alignment;
3812   if (IsCompressing)
3813     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3814   else
3815     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3816 
3817   SDValue Ptr = getValue(PtrOperand);
3818   SDValue Src0 = getValue(Src0Operand);
3819   SDValue Mask = getValue(MaskOperand);
3820 
3821   EVT VT = Src0.getValueType();
3822   if (!Alignment)
3823     Alignment = DAG.getEVTAlignment(VT);
3824 
3825   AAMDNodes AAInfo;
3826   I.getAAMetadata(AAInfo);
3827 
3828   MachineMemOperand *MMO =
3829     DAG.getMachineFunction().
3830     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3831                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3832                           Alignment, AAInfo);
3833   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3834                                          MMO, false /* Truncating */,
3835                                          IsCompressing);
3836   DAG.setRoot(StoreNode);
3837   setValue(&I, StoreNode);
3838 }
3839 
3840 // Get a uniform base for the Gather/Scatter intrinsic.
3841 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3842 // We try to represent it as a base pointer + vector of indices.
3843 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3844 // The first operand of the GEP may be a single pointer or a vector of pointers
3845 // Example:
3846 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3847 //  or
3848 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3849 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3850 //
3851 // When the first GEP operand is a single pointer - it is the uniform base we
3852 // are looking for. If first operand of the GEP is a splat vector - we
3853 // extract the spalt value and use it as a uniform base.
3854 // In all other cases the function returns 'false'.
3855 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3856                            SelectionDAGBuilder* SDB) {
3857   SelectionDAG& DAG = SDB->DAG;
3858   LLVMContext &Context = *DAG.getContext();
3859 
3860   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3861   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3862   if (!GEP || GEP->getNumOperands() > 2)
3863     return false;
3864 
3865   const Value *GEPPtr = GEP->getPointerOperand();
3866   if (!GEPPtr->getType()->isVectorTy())
3867     Ptr = GEPPtr;
3868   else if (!(Ptr = getSplatValue(GEPPtr)))
3869     return false;
3870 
3871   Value *IndexVal = GEP->getOperand(1);
3872 
3873   // The operands of the GEP may be defined in another basic block.
3874   // In this case we'll not find nodes for the operands.
3875   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3876     return false;
3877 
3878   Base = SDB->getValue(Ptr);
3879   Index = SDB->getValue(IndexVal);
3880 
3881   // Suppress sign extension.
3882   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3883     if (SDB->findValue(Sext->getOperand(0))) {
3884       IndexVal = Sext->getOperand(0);
3885       Index = SDB->getValue(IndexVal);
3886     }
3887   }
3888   if (!Index.getValueType().isVector()) {
3889     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3890     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3891     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3892   }
3893   return true;
3894 }
3895 
3896 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3897   SDLoc sdl = getCurSDLoc();
3898 
3899   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3900   const Value *Ptr = I.getArgOperand(1);
3901   SDValue Src0 = getValue(I.getArgOperand(0));
3902   SDValue Mask = getValue(I.getArgOperand(3));
3903   EVT VT = Src0.getValueType();
3904   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3905   if (!Alignment)
3906     Alignment = DAG.getEVTAlignment(VT);
3907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3908 
3909   AAMDNodes AAInfo;
3910   I.getAAMetadata(AAInfo);
3911 
3912   SDValue Base;
3913   SDValue Index;
3914   const Value *BasePtr = Ptr;
3915   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3916 
3917   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3918   MachineMemOperand *MMO = DAG.getMachineFunction().
3919     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3920                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3921                          Alignment, AAInfo);
3922   if (!UniformBase) {
3923     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3924     Index = getValue(Ptr);
3925   }
3926   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3927   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3928                                          Ops, MMO);
3929   DAG.setRoot(Scatter);
3930   setValue(&I, Scatter);
3931 }
3932 
3933 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3934   SDLoc sdl = getCurSDLoc();
3935 
3936   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3937                            unsigned& Alignment) {
3938     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3939     Ptr = I.getArgOperand(0);
3940     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3941     Mask = I.getArgOperand(2);
3942     Src0 = I.getArgOperand(3);
3943   };
3944   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3945                            unsigned& Alignment) {
3946     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3947     Ptr = I.getArgOperand(0);
3948     Alignment = 0;
3949     Mask = I.getArgOperand(1);
3950     Src0 = I.getArgOperand(2);
3951   };
3952 
3953   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3954   unsigned Alignment;
3955   if (IsExpanding)
3956     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3957   else
3958     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3959 
3960   SDValue Ptr = getValue(PtrOperand);
3961   SDValue Src0 = getValue(Src0Operand);
3962   SDValue Mask = getValue(MaskOperand);
3963 
3964   EVT VT = Src0.getValueType();
3965   if (!Alignment)
3966     Alignment = DAG.getEVTAlignment(VT);
3967 
3968   AAMDNodes AAInfo;
3969   I.getAAMetadata(AAInfo);
3970   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3971 
3972   // Do not serialize masked loads of constant memory with anything.
3973   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3974       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3975   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3976 
3977   MachineMemOperand *MMO =
3978     DAG.getMachineFunction().
3979     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3980                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3981                           Alignment, AAInfo, Ranges);
3982 
3983   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3984                                    ISD::NON_EXTLOAD, IsExpanding);
3985   if (AddToChain) {
3986     SDValue OutChain = Load.getValue(1);
3987     DAG.setRoot(OutChain);
3988   }
3989   setValue(&I, Load);
3990 }
3991 
3992 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3993   SDLoc sdl = getCurSDLoc();
3994 
3995   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3996   const Value *Ptr = I.getArgOperand(0);
3997   SDValue Src0 = getValue(I.getArgOperand(3));
3998   SDValue Mask = getValue(I.getArgOperand(2));
3999 
4000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4001   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4002   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4003   if (!Alignment)
4004     Alignment = DAG.getEVTAlignment(VT);
4005 
4006   AAMDNodes AAInfo;
4007   I.getAAMetadata(AAInfo);
4008   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4009 
4010   SDValue Root = DAG.getRoot();
4011   SDValue Base;
4012   SDValue Index;
4013   const Value *BasePtr = Ptr;
4014   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
4015   bool ConstantMemory = false;
4016   if (UniformBase &&
4017       AA && AA->pointsToConstantMemory(MemoryLocation(
4018           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4019           AAInfo))) {
4020     // Do not serialize (non-volatile) loads of constant memory with anything.
4021     Root = DAG.getEntryNode();
4022     ConstantMemory = true;
4023   }
4024 
4025   MachineMemOperand *MMO =
4026     DAG.getMachineFunction().
4027     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4028                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4029                          Alignment, AAInfo, Ranges);
4030 
4031   if (!UniformBase) {
4032     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4033     Index = getValue(Ptr);
4034   }
4035   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
4036   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4037                                        Ops, MMO);
4038 
4039   SDValue OutChain = Gather.getValue(1);
4040   if (!ConstantMemory)
4041     PendingLoads.push_back(OutChain);
4042   setValue(&I, Gather);
4043 }
4044 
4045 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4046   SDLoc dl = getCurSDLoc();
4047   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4048   AtomicOrdering FailureOrder = I.getFailureOrdering();
4049   SyncScope::ID SSID = I.getSyncScopeID();
4050 
4051   SDValue InChain = getRoot();
4052 
4053   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4054   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4055   SDValue L = DAG.getAtomicCmpSwap(
4056       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4057       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4058       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4059       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4060 
4061   SDValue OutChain = L.getValue(2);
4062 
4063   setValue(&I, L);
4064   DAG.setRoot(OutChain);
4065 }
4066 
4067 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4068   SDLoc dl = getCurSDLoc();
4069   ISD::NodeType NT;
4070   switch (I.getOperation()) {
4071   default: llvm_unreachable("Unknown atomicrmw operation");
4072   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4073   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4074   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4075   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4076   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4077   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4078   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4079   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4080   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4081   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4082   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4083   }
4084   AtomicOrdering Order = I.getOrdering();
4085   SyncScope::ID SSID = I.getSyncScopeID();
4086 
4087   SDValue InChain = getRoot();
4088 
4089   SDValue L =
4090     DAG.getAtomic(NT, dl,
4091                   getValue(I.getValOperand()).getSimpleValueType(),
4092                   InChain,
4093                   getValue(I.getPointerOperand()),
4094                   getValue(I.getValOperand()),
4095                   I.getPointerOperand(),
4096                   /* Alignment=*/ 0, Order, SSID);
4097 
4098   SDValue OutChain = L.getValue(1);
4099 
4100   setValue(&I, L);
4101   DAG.setRoot(OutChain);
4102 }
4103 
4104 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4105   SDLoc dl = getCurSDLoc();
4106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4107   SDValue Ops[3];
4108   Ops[0] = getRoot();
4109   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4110                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4111   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4112                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4113   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4114 }
4115 
4116 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4117   SDLoc dl = getCurSDLoc();
4118   AtomicOrdering Order = I.getOrdering();
4119   SyncScope::ID SSID = I.getSyncScopeID();
4120 
4121   SDValue InChain = getRoot();
4122 
4123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4124   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4125 
4126   if (I.getAlignment() < VT.getSizeInBits() / 8)
4127     report_fatal_error("Cannot generate unaligned atomic load");
4128 
4129   MachineMemOperand *MMO =
4130       DAG.getMachineFunction().
4131       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4132                            MachineMemOperand::MOVolatile |
4133                            MachineMemOperand::MOLoad,
4134                            VT.getStoreSize(),
4135                            I.getAlignment() ? I.getAlignment() :
4136                                               DAG.getEVTAlignment(VT),
4137                            AAMDNodes(), nullptr, SSID, Order);
4138 
4139   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4140   SDValue L =
4141       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4142                     getValue(I.getPointerOperand()), MMO);
4143 
4144   SDValue OutChain = L.getValue(1);
4145 
4146   setValue(&I, L);
4147   DAG.setRoot(OutChain);
4148 }
4149 
4150 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4151   SDLoc dl = getCurSDLoc();
4152 
4153   AtomicOrdering Order = I.getOrdering();
4154   SyncScope::ID SSID = I.getSyncScopeID();
4155 
4156   SDValue InChain = getRoot();
4157 
4158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4159   EVT VT =
4160       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4161 
4162   if (I.getAlignment() < VT.getSizeInBits() / 8)
4163     report_fatal_error("Cannot generate unaligned atomic store");
4164 
4165   SDValue OutChain =
4166     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4167                   InChain,
4168                   getValue(I.getPointerOperand()),
4169                   getValue(I.getValueOperand()),
4170                   I.getPointerOperand(), I.getAlignment(),
4171                   Order, SSID);
4172 
4173   DAG.setRoot(OutChain);
4174 }
4175 
4176 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4177 /// node.
4178 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4179                                                unsigned Intrinsic) {
4180   // Ignore the callsite's attributes. A specific call site may be marked with
4181   // readnone, but the lowering code will expect the chain based on the
4182   // definition.
4183   const Function *F = I.getCalledFunction();
4184   bool HasChain = !F->doesNotAccessMemory();
4185   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4186 
4187   // Build the operand list.
4188   SmallVector<SDValue, 8> Ops;
4189   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4190     if (OnlyLoad) {
4191       // We don't need to serialize loads against other loads.
4192       Ops.push_back(DAG.getRoot());
4193     } else {
4194       Ops.push_back(getRoot());
4195     }
4196   }
4197 
4198   // Info is set by getTgtMemInstrinsic
4199   TargetLowering::IntrinsicInfo Info;
4200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4201   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4202 
4203   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4204   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4205       Info.opc == ISD::INTRINSIC_W_CHAIN)
4206     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4207                                         TLI.getPointerTy(DAG.getDataLayout())));
4208 
4209   // Add all operands of the call to the operand list.
4210   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4211     SDValue Op = getValue(I.getArgOperand(i));
4212     Ops.push_back(Op);
4213   }
4214 
4215   SmallVector<EVT, 4> ValueVTs;
4216   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4217 
4218   if (HasChain)
4219     ValueVTs.push_back(MVT::Other);
4220 
4221   SDVTList VTs = DAG.getVTList(ValueVTs);
4222 
4223   // Create the node.
4224   SDValue Result;
4225   if (IsTgtIntrinsic) {
4226     // This is target intrinsic that touches memory
4227     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4228                                      VTs, Ops, Info.memVT,
4229                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4230                                      Info.align, Info.vol,
4231                                      Info.readMem, Info.writeMem, Info.size);
4232   } else if (!HasChain) {
4233     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4234   } else if (!I.getType()->isVoidTy()) {
4235     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4236   } else {
4237     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4238   }
4239 
4240   if (HasChain) {
4241     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4242     if (OnlyLoad)
4243       PendingLoads.push_back(Chain);
4244     else
4245       DAG.setRoot(Chain);
4246   }
4247 
4248   if (!I.getType()->isVoidTy()) {
4249     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4250       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4251       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4252     } else
4253       Result = lowerRangeToAssertZExt(DAG, I, Result);
4254 
4255     setValue(&I, Result);
4256   }
4257 }
4258 
4259 /// GetSignificand - Get the significand and build it into a floating-point
4260 /// number with exponent of 1:
4261 ///
4262 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4263 ///
4264 /// where Op is the hexadecimal representation of floating point value.
4265 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4266   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4267                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4268   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4269                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4270   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4271 }
4272 
4273 /// GetExponent - Get the exponent:
4274 ///
4275 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4276 ///
4277 /// where Op is the hexadecimal representation of floating point value.
4278 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4279                            const TargetLowering &TLI, const SDLoc &dl) {
4280   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4281                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4282   SDValue t1 = DAG.getNode(
4283       ISD::SRL, dl, MVT::i32, t0,
4284       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4285   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4286                            DAG.getConstant(127, dl, MVT::i32));
4287   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4288 }
4289 
4290 /// getF32Constant - Get 32-bit floating point constant.
4291 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4292                               const SDLoc &dl) {
4293   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4294                            MVT::f32);
4295 }
4296 
4297 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4298                                        SelectionDAG &DAG) {
4299   // TODO: What fast-math-flags should be set on the floating-point nodes?
4300 
4301   //   IntegerPartOfX = ((int32_t)(t0);
4302   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4303 
4304   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4305   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4306   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4307 
4308   //   IntegerPartOfX <<= 23;
4309   IntegerPartOfX = DAG.getNode(
4310       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4311       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4312                                   DAG.getDataLayout())));
4313 
4314   SDValue TwoToFractionalPartOfX;
4315   if (LimitFloatPrecision <= 6) {
4316     // For floating-point precision of 6:
4317     //
4318     //   TwoToFractionalPartOfX =
4319     //     0.997535578f +
4320     //       (0.735607626f + 0.252464424f * x) * x;
4321     //
4322     // error 0.0144103317, which is 6 bits
4323     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4324                              getF32Constant(DAG, 0x3e814304, dl));
4325     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4326                              getF32Constant(DAG, 0x3f3c50c8, dl));
4327     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4328     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4329                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4330   } else if (LimitFloatPrecision <= 12) {
4331     // For floating-point precision of 12:
4332     //
4333     //   TwoToFractionalPartOfX =
4334     //     0.999892986f +
4335     //       (0.696457318f +
4336     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4337     //
4338     // error 0.000107046256, which is 13 to 14 bits
4339     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4340                              getF32Constant(DAG, 0x3da235e3, dl));
4341     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4342                              getF32Constant(DAG, 0x3e65b8f3, dl));
4343     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4344     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4345                              getF32Constant(DAG, 0x3f324b07, dl));
4346     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4347     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4348                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4349   } else { // LimitFloatPrecision <= 18
4350     // For floating-point precision of 18:
4351     //
4352     //   TwoToFractionalPartOfX =
4353     //     0.999999982f +
4354     //       (0.693148872f +
4355     //         (0.240227044f +
4356     //           (0.554906021e-1f +
4357     //             (0.961591928e-2f +
4358     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4359     // error 2.47208000*10^(-7), which is better than 18 bits
4360     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4361                              getF32Constant(DAG, 0x3924b03e, dl));
4362     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4363                              getF32Constant(DAG, 0x3ab24b87, dl));
4364     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4365     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4366                              getF32Constant(DAG, 0x3c1d8c17, dl));
4367     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4368     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4369                              getF32Constant(DAG, 0x3d634a1d, dl));
4370     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4371     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4372                              getF32Constant(DAG, 0x3e75fe14, dl));
4373     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4374     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4375                               getF32Constant(DAG, 0x3f317234, dl));
4376     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4377     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4378                                          getF32Constant(DAG, 0x3f800000, dl));
4379   }
4380 
4381   // Add the exponent into the result in integer domain.
4382   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4383   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4384                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4385 }
4386 
4387 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4388 /// limited-precision mode.
4389 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4390                          const TargetLowering &TLI) {
4391   if (Op.getValueType() == MVT::f32 &&
4392       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4393 
4394     // Put the exponent in the right bit position for later addition to the
4395     // final result:
4396     //
4397     //   #define LOG2OFe 1.4426950f
4398     //   t0 = Op * LOG2OFe
4399 
4400     // TODO: What fast-math-flags should be set here?
4401     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4402                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4403     return getLimitedPrecisionExp2(t0, dl, DAG);
4404   }
4405 
4406   // No special expansion.
4407   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4408 }
4409 
4410 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4411 /// limited-precision mode.
4412 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4413                          const TargetLowering &TLI) {
4414   // TODO: What fast-math-flags should be set on the floating-point nodes?
4415 
4416   if (Op.getValueType() == MVT::f32 &&
4417       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4418     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4419 
4420     // Scale the exponent by log(2) [0.69314718f].
4421     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4422     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4423                                         getF32Constant(DAG, 0x3f317218, dl));
4424 
4425     // Get the significand and build it into a floating-point number with
4426     // exponent of 1.
4427     SDValue X = GetSignificand(DAG, Op1, dl);
4428 
4429     SDValue LogOfMantissa;
4430     if (LimitFloatPrecision <= 6) {
4431       // For floating-point precision of 6:
4432       //
4433       //   LogofMantissa =
4434       //     -1.1609546f +
4435       //       (1.4034025f - 0.23903021f * x) * x;
4436       //
4437       // error 0.0034276066, which is better than 8 bits
4438       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4439                                getF32Constant(DAG, 0xbe74c456, dl));
4440       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4441                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4442       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4443       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4444                                   getF32Constant(DAG, 0x3f949a29, dl));
4445     } else if (LimitFloatPrecision <= 12) {
4446       // For floating-point precision of 12:
4447       //
4448       //   LogOfMantissa =
4449       //     -1.7417939f +
4450       //       (2.8212026f +
4451       //         (-1.4699568f +
4452       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4453       //
4454       // error 0.000061011436, which is 14 bits
4455       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4456                                getF32Constant(DAG, 0xbd67b6d6, dl));
4457       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4458                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4459       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4460       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4461                                getF32Constant(DAG, 0x3fbc278b, dl));
4462       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4463       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4464                                getF32Constant(DAG, 0x40348e95, dl));
4465       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4466       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4467                                   getF32Constant(DAG, 0x3fdef31a, dl));
4468     } else { // LimitFloatPrecision <= 18
4469       // For floating-point precision of 18:
4470       //
4471       //   LogOfMantissa =
4472       //     -2.1072184f +
4473       //       (4.2372794f +
4474       //         (-3.7029485f +
4475       //           (2.2781945f +
4476       //             (-0.87823314f +
4477       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4478       //
4479       // error 0.0000023660568, which is better than 18 bits
4480       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4481                                getF32Constant(DAG, 0xbc91e5ac, dl));
4482       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4483                                getF32Constant(DAG, 0x3e4350aa, dl));
4484       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4485       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4486                                getF32Constant(DAG, 0x3f60d3e3, dl));
4487       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4488       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4489                                getF32Constant(DAG, 0x4011cdf0, dl));
4490       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4491       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4492                                getF32Constant(DAG, 0x406cfd1c, dl));
4493       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4494       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4495                                getF32Constant(DAG, 0x408797cb, dl));
4496       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4497       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4498                                   getF32Constant(DAG, 0x4006dcab, dl));
4499     }
4500 
4501     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4502   }
4503 
4504   // No special expansion.
4505   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4506 }
4507 
4508 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4509 /// limited-precision mode.
4510 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4511                           const TargetLowering &TLI) {
4512   // TODO: What fast-math-flags should be set on the floating-point nodes?
4513 
4514   if (Op.getValueType() == MVT::f32 &&
4515       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4516     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4517 
4518     // Get the exponent.
4519     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4520 
4521     // Get the significand and build it into a floating-point number with
4522     // exponent of 1.
4523     SDValue X = GetSignificand(DAG, Op1, dl);
4524 
4525     // Different possible minimax approximations of significand in
4526     // floating-point for various degrees of accuracy over [1,2].
4527     SDValue Log2ofMantissa;
4528     if (LimitFloatPrecision <= 6) {
4529       // For floating-point precision of 6:
4530       //
4531       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4532       //
4533       // error 0.0049451742, which is more than 7 bits
4534       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4535                                getF32Constant(DAG, 0xbeb08fe0, dl));
4536       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4537                                getF32Constant(DAG, 0x40019463, dl));
4538       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4539       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4540                                    getF32Constant(DAG, 0x3fd6633d, dl));
4541     } else if (LimitFloatPrecision <= 12) {
4542       // For floating-point precision of 12:
4543       //
4544       //   Log2ofMantissa =
4545       //     -2.51285454f +
4546       //       (4.07009056f +
4547       //         (-2.12067489f +
4548       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4549       //
4550       // error 0.0000876136000, which is better than 13 bits
4551       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4552                                getF32Constant(DAG, 0xbda7262e, dl));
4553       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4554                                getF32Constant(DAG, 0x3f25280b, dl));
4555       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4556       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4557                                getF32Constant(DAG, 0x4007b923, dl));
4558       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4559       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4560                                getF32Constant(DAG, 0x40823e2f, dl));
4561       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4562       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4563                                    getF32Constant(DAG, 0x4020d29c, dl));
4564     } else { // LimitFloatPrecision <= 18
4565       // For floating-point precision of 18:
4566       //
4567       //   Log2ofMantissa =
4568       //     -3.0400495f +
4569       //       (6.1129976f +
4570       //         (-5.3420409f +
4571       //           (3.2865683f +
4572       //             (-1.2669343f +
4573       //               (0.27515199f -
4574       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4575       //
4576       // error 0.0000018516, which is better than 18 bits
4577       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4578                                getF32Constant(DAG, 0xbcd2769e, dl));
4579       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4580                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4581       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4582       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4583                                getF32Constant(DAG, 0x3fa22ae7, dl));
4584       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4585       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4586                                getF32Constant(DAG, 0x40525723, dl));
4587       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4588       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4589                                getF32Constant(DAG, 0x40aaf200, dl));
4590       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4591       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4592                                getF32Constant(DAG, 0x40c39dad, dl));
4593       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4594       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4595                                    getF32Constant(DAG, 0x4042902c, dl));
4596     }
4597 
4598     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4599   }
4600 
4601   // No special expansion.
4602   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4603 }
4604 
4605 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4606 /// limited-precision mode.
4607 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4608                            const TargetLowering &TLI) {
4609   // TODO: What fast-math-flags should be set on the floating-point nodes?
4610 
4611   if (Op.getValueType() == MVT::f32 &&
4612       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4613     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4614 
4615     // Scale the exponent by log10(2) [0.30102999f].
4616     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4617     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4618                                         getF32Constant(DAG, 0x3e9a209a, dl));
4619 
4620     // Get the significand and build it into a floating-point number with
4621     // exponent of 1.
4622     SDValue X = GetSignificand(DAG, Op1, dl);
4623 
4624     SDValue Log10ofMantissa;
4625     if (LimitFloatPrecision <= 6) {
4626       // For floating-point precision of 6:
4627       //
4628       //   Log10ofMantissa =
4629       //     -0.50419619f +
4630       //       (0.60948995f - 0.10380950f * x) * x;
4631       //
4632       // error 0.0014886165, which is 6 bits
4633       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4634                                getF32Constant(DAG, 0xbdd49a13, dl));
4635       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4636                                getF32Constant(DAG, 0x3f1c0789, dl));
4637       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4638       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4639                                     getF32Constant(DAG, 0x3f011300, dl));
4640     } else if (LimitFloatPrecision <= 12) {
4641       // For floating-point precision of 12:
4642       //
4643       //   Log10ofMantissa =
4644       //     -0.64831180f +
4645       //       (0.91751397f +
4646       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4647       //
4648       // error 0.00019228036, which is better than 12 bits
4649       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4650                                getF32Constant(DAG, 0x3d431f31, dl));
4651       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4652                                getF32Constant(DAG, 0x3ea21fb2, dl));
4653       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4654       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4655                                getF32Constant(DAG, 0x3f6ae232, dl));
4656       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4657       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4658                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4659     } else { // LimitFloatPrecision <= 18
4660       // For floating-point precision of 18:
4661       //
4662       //   Log10ofMantissa =
4663       //     -0.84299375f +
4664       //       (1.5327582f +
4665       //         (-1.0688956f +
4666       //           (0.49102474f +
4667       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4668       //
4669       // error 0.0000037995730, which is better than 18 bits
4670       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4671                                getF32Constant(DAG, 0x3c5d51ce, dl));
4672       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4673                                getF32Constant(DAG, 0x3e00685a, dl));
4674       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4675       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4676                                getF32Constant(DAG, 0x3efb6798, dl));
4677       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4678       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4679                                getF32Constant(DAG, 0x3f88d192, dl));
4680       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4681       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4682                                getF32Constant(DAG, 0x3fc4316c, dl));
4683       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4684       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4685                                     getF32Constant(DAG, 0x3f57ce70, dl));
4686     }
4687 
4688     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4689   }
4690 
4691   // No special expansion.
4692   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4693 }
4694 
4695 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4696 /// limited-precision mode.
4697 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4698                           const TargetLowering &TLI) {
4699   if (Op.getValueType() == MVT::f32 &&
4700       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4701     return getLimitedPrecisionExp2(Op, dl, DAG);
4702 
4703   // No special expansion.
4704   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4705 }
4706 
4707 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4708 /// limited-precision mode with x == 10.0f.
4709 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4710                          SelectionDAG &DAG, const TargetLowering &TLI) {
4711   bool IsExp10 = false;
4712   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4713       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4714     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4715       APFloat Ten(10.0f);
4716       IsExp10 = LHSC->isExactlyValue(Ten);
4717     }
4718   }
4719 
4720   // TODO: What fast-math-flags should be set on the FMUL node?
4721   if (IsExp10) {
4722     // Put the exponent in the right bit position for later addition to the
4723     // final result:
4724     //
4725     //   #define LOG2OF10 3.3219281f
4726     //   t0 = Op * LOG2OF10;
4727     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4728                              getF32Constant(DAG, 0x40549a78, dl));
4729     return getLimitedPrecisionExp2(t0, dl, DAG);
4730   }
4731 
4732   // No special expansion.
4733   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4734 }
4735 
4736 /// ExpandPowI - Expand a llvm.powi intrinsic.
4737 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4738                           SelectionDAG &DAG) {
4739   // If RHS is a constant, we can expand this out to a multiplication tree,
4740   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4741   // optimizing for size, we only want to do this if the expansion would produce
4742   // a small number of multiplies, otherwise we do the full expansion.
4743   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4744     // Get the exponent as a positive value.
4745     unsigned Val = RHSC->getSExtValue();
4746     if ((int)Val < 0) Val = -Val;
4747 
4748     // powi(x, 0) -> 1.0
4749     if (Val == 0)
4750       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4751 
4752     const Function *F = DAG.getMachineFunction().getFunction();
4753     if (!F->optForSize() ||
4754         // If optimizing for size, don't insert too many multiplies.
4755         // This inserts up to 5 multiplies.
4756         countPopulation(Val) + Log2_32(Val) < 7) {
4757       // We use the simple binary decomposition method to generate the multiply
4758       // sequence.  There are more optimal ways to do this (for example,
4759       // powi(x,15) generates one more multiply than it should), but this has
4760       // the benefit of being both really simple and much better than a libcall.
4761       SDValue Res;  // Logically starts equal to 1.0
4762       SDValue CurSquare = LHS;
4763       // TODO: Intrinsics should have fast-math-flags that propagate to these
4764       // nodes.
4765       while (Val) {
4766         if (Val & 1) {
4767           if (Res.getNode())
4768             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4769           else
4770             Res = CurSquare;  // 1.0*CurSquare.
4771         }
4772 
4773         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4774                                 CurSquare, CurSquare);
4775         Val >>= 1;
4776       }
4777 
4778       // If the original was negative, invert the result, producing 1/(x*x*x).
4779       if (RHSC->getSExtValue() < 0)
4780         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4781                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4782       return Res;
4783     }
4784   }
4785 
4786   // Otherwise, expand to a libcall.
4787   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4788 }
4789 
4790 // getUnderlyingArgReg - Find underlying register used for a truncated or
4791 // bitcasted argument.
4792 static unsigned getUnderlyingArgReg(const SDValue &N) {
4793   switch (N.getOpcode()) {
4794   case ISD::CopyFromReg:
4795     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4796   case ISD::BITCAST:
4797   case ISD::AssertZext:
4798   case ISD::AssertSext:
4799   case ISD::TRUNCATE:
4800     return getUnderlyingArgReg(N.getOperand(0));
4801   default:
4802     return 0;
4803   }
4804 }
4805 
4806 /// If the DbgValueInst is a dbg_value of a function argument, create the
4807 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4808 /// instruction selection, they will be inserted to the entry BB.
4809 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4810     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4811     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4812   const Argument *Arg = dyn_cast<Argument>(V);
4813   if (!Arg)
4814     return false;
4815 
4816   MachineFunction &MF = DAG.getMachineFunction();
4817   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4818 
4819   // Ignore inlined function arguments here.
4820   //
4821   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4822   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4823     return false;
4824 
4825   bool IsIndirect = false;
4826   Optional<MachineOperand> Op;
4827   // Some arguments' frame index is recorded during argument lowering.
4828   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4829   if (FI != std::numeric_limits<int>::max())
4830     Op = MachineOperand::CreateFI(FI);
4831 
4832   if (!Op && N.getNode()) {
4833     unsigned Reg = getUnderlyingArgReg(N);
4834     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4835       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4836       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4837       if (PR)
4838         Reg = PR;
4839     }
4840     if (Reg) {
4841       Op = MachineOperand::CreateReg(Reg, false);
4842       IsIndirect = IsDbgDeclare;
4843     }
4844   }
4845 
4846   if (!Op) {
4847     // Check if ValueMap has reg number.
4848     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4849     if (VMI != FuncInfo.ValueMap.end()) {
4850       const auto &TLI = DAG.getTargetLoweringInfo();
4851       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4852                        V->getType(), isABIRegCopy(V));
4853       unsigned NumRegs =
4854           std::accumulate(RFV.RegCount.begin(), RFV.RegCount.end(), 0);
4855       if (NumRegs > 1) {
4856         unsigned I = 0;
4857         unsigned Offset = 0;
4858         auto RegisterVT = RFV.RegVTs.begin();
4859         for (auto RegCount : RFV.RegCount) {
4860           unsigned RegisterSize = (RegisterVT++)->getSizeInBits();
4861           for (unsigned E = I + RegCount; I != E; ++I) {
4862             // The vregs are guaranteed to be allocated in sequence.
4863             Op = MachineOperand::CreateReg(VMI->second + I, false);
4864             auto *FragmentExpr = DIExpression::createFragmentExpression(
4865                 Expr, Offset, RegisterSize);
4866             FuncInfo.ArgDbgValues.push_back(
4867                 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4868                         Op->getReg(), Variable, FragmentExpr));
4869             Offset += RegisterSize;
4870           }
4871         }
4872         return true;
4873       }
4874       Op = MachineOperand::CreateReg(VMI->second, false);
4875       IsIndirect = IsDbgDeclare;
4876     }
4877   }
4878 
4879   if (!Op && N.getNode())
4880     // Check if frame index is available.
4881     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4882       if (FrameIndexSDNode *FINode =
4883           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4884         Op = MachineOperand::CreateFI(FINode->getIndex());
4885 
4886   if (!Op)
4887     return false;
4888 
4889   assert(Variable->isValidLocationForIntrinsic(DL) &&
4890          "Expected inlined-at fields to agree");
4891   if (Op->isReg())
4892     FuncInfo.ArgDbgValues.push_back(
4893         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4894                 Op->getReg(), Variable, Expr));
4895   else
4896     FuncInfo.ArgDbgValues.push_back(
4897         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4898             .add(*Op)
4899             .addImm(0)
4900             .addMetadata(Variable)
4901             .addMetadata(Expr));
4902 
4903   return true;
4904 }
4905 
4906 /// Return the appropriate SDDbgValue based on N.
4907 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4908                                              DILocalVariable *Variable,
4909                                              DIExpression *Expr,
4910                                              const DebugLoc &dl,
4911                                              unsigned DbgSDNodeOrder) {
4912   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4913     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4914     // stack slot locations as such instead of as indirectly addressed
4915     // locations.
4916     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4917                                      DbgSDNodeOrder);
4918   }
4919   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4920                          DbgSDNodeOrder);
4921 }
4922 
4923 // VisualStudio defines setjmp as _setjmp
4924 #if defined(_MSC_VER) && defined(setjmp) && \
4925                          !defined(setjmp_undefined_for_msvc)
4926 #  pragma push_macro("setjmp")
4927 #  undef setjmp
4928 #  define setjmp_undefined_for_msvc
4929 #endif
4930 
4931 /// Lower the call to the specified intrinsic function. If we want to emit this
4932 /// as a call to a named external function, return the name. Otherwise, lower it
4933 /// and return null.
4934 const char *
4935 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4937   SDLoc sdl = getCurSDLoc();
4938   DebugLoc dl = getCurDebugLoc();
4939   SDValue Res;
4940 
4941   switch (Intrinsic) {
4942   default:
4943     // By default, turn this into a target intrinsic node.
4944     visitTargetIntrinsic(I, Intrinsic);
4945     return nullptr;
4946   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4947   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4948   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4949   case Intrinsic::returnaddress:
4950     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4951                              TLI.getPointerTy(DAG.getDataLayout()),
4952                              getValue(I.getArgOperand(0))));
4953     return nullptr;
4954   case Intrinsic::addressofreturnaddress:
4955     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4956                              TLI.getPointerTy(DAG.getDataLayout())));
4957     return nullptr;
4958   case Intrinsic::frameaddress:
4959     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4960                              TLI.getPointerTy(DAG.getDataLayout()),
4961                              getValue(I.getArgOperand(0))));
4962     return nullptr;
4963   case Intrinsic::read_register: {
4964     Value *Reg = I.getArgOperand(0);
4965     SDValue Chain = getRoot();
4966     SDValue RegName =
4967         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4968     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4969     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4970       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4971     setValue(&I, Res);
4972     DAG.setRoot(Res.getValue(1));
4973     return nullptr;
4974   }
4975   case Intrinsic::write_register: {
4976     Value *Reg = I.getArgOperand(0);
4977     Value *RegValue = I.getArgOperand(1);
4978     SDValue Chain = getRoot();
4979     SDValue RegName =
4980         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4981     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4982                             RegName, getValue(RegValue)));
4983     return nullptr;
4984   }
4985   case Intrinsic::setjmp:
4986     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4987   case Intrinsic::longjmp:
4988     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4989   case Intrinsic::memcpy: {
4990     SDValue Op1 = getValue(I.getArgOperand(0));
4991     SDValue Op2 = getValue(I.getArgOperand(1));
4992     SDValue Op3 = getValue(I.getArgOperand(2));
4993     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4994     if (!Align)
4995       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4996     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4997     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4998     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4999                                false, isTC,
5000                                MachinePointerInfo(I.getArgOperand(0)),
5001                                MachinePointerInfo(I.getArgOperand(1)));
5002     updateDAGForMaybeTailCall(MC);
5003     return nullptr;
5004   }
5005   case Intrinsic::memset: {
5006     SDValue Op1 = getValue(I.getArgOperand(0));
5007     SDValue Op2 = getValue(I.getArgOperand(1));
5008     SDValue Op3 = getValue(I.getArgOperand(2));
5009     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5010     if (!Align)
5011       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
5012     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5013     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5014     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5015                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5016     updateDAGForMaybeTailCall(MS);
5017     return nullptr;
5018   }
5019   case Intrinsic::memmove: {
5020     SDValue Op1 = getValue(I.getArgOperand(0));
5021     SDValue Op2 = getValue(I.getArgOperand(1));
5022     SDValue Op3 = getValue(I.getArgOperand(2));
5023     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
5024     if (!Align)
5025       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
5026     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
5027     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5028     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5029                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5030                                 MachinePointerInfo(I.getArgOperand(1)));
5031     updateDAGForMaybeTailCall(MM);
5032     return nullptr;
5033   }
5034   case Intrinsic::memcpy_element_unordered_atomic: {
5035     const ElementUnorderedAtomicMemCpyInst &MI =
5036         cast<ElementUnorderedAtomicMemCpyInst>(I);
5037     SDValue Dst = getValue(MI.getRawDest());
5038     SDValue Src = getValue(MI.getRawSource());
5039     SDValue Length = getValue(MI.getLength());
5040 
5041     // Emit a library call.
5042     TargetLowering::ArgListTy Args;
5043     TargetLowering::ArgListEntry Entry;
5044     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5045     Entry.Node = Dst;
5046     Args.push_back(Entry);
5047 
5048     Entry.Node = Src;
5049     Args.push_back(Entry);
5050 
5051     Entry.Ty = MI.getLength()->getType();
5052     Entry.Node = Length;
5053     Args.push_back(Entry);
5054 
5055     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5056     RTLIB::Libcall LibraryCall =
5057         RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5058     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5059       report_fatal_error("Unsupported element size");
5060 
5061     TargetLowering::CallLoweringInfo CLI(DAG);
5062     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5063         TLI.getLibcallCallingConv(LibraryCall),
5064         Type::getVoidTy(*DAG.getContext()),
5065         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5066                               TLI.getPointerTy(DAG.getDataLayout())),
5067         std::move(Args));
5068 
5069     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5070     DAG.setRoot(CallResult.second);
5071     return nullptr;
5072   }
5073   case Intrinsic::memmove_element_unordered_atomic: {
5074     auto &MI = cast<ElementUnorderedAtomicMemMoveInst>(I);
5075     SDValue Dst = getValue(MI.getRawDest());
5076     SDValue Src = getValue(MI.getRawSource());
5077     SDValue Length = getValue(MI.getLength());
5078 
5079     // Emit a library call.
5080     TargetLowering::ArgListTy Args;
5081     TargetLowering::ArgListEntry Entry;
5082     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5083     Entry.Node = Dst;
5084     Args.push_back(Entry);
5085 
5086     Entry.Node = Src;
5087     Args.push_back(Entry);
5088 
5089     Entry.Ty = MI.getLength()->getType();
5090     Entry.Node = Length;
5091     Args.push_back(Entry);
5092 
5093     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5094     RTLIB::Libcall LibraryCall =
5095         RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5096     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5097       report_fatal_error("Unsupported element size");
5098 
5099     TargetLowering::CallLoweringInfo CLI(DAG);
5100     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5101         TLI.getLibcallCallingConv(LibraryCall),
5102         Type::getVoidTy(*DAG.getContext()),
5103         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5104                               TLI.getPointerTy(DAG.getDataLayout())),
5105         std::move(Args));
5106 
5107     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5108     DAG.setRoot(CallResult.second);
5109     return nullptr;
5110   }
5111   case Intrinsic::memset_element_unordered_atomic: {
5112     auto &MI = cast<ElementUnorderedAtomicMemSetInst>(I);
5113     SDValue Dst = getValue(MI.getRawDest());
5114     SDValue Val = getValue(MI.getValue());
5115     SDValue Length = getValue(MI.getLength());
5116 
5117     // Emit a library call.
5118     TargetLowering::ArgListTy Args;
5119     TargetLowering::ArgListEntry Entry;
5120     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
5121     Entry.Node = Dst;
5122     Args.push_back(Entry);
5123 
5124     Entry.Ty = Type::getInt8Ty(*DAG.getContext());
5125     Entry.Node = Val;
5126     Args.push_back(Entry);
5127 
5128     Entry.Ty = MI.getLength()->getType();
5129     Entry.Node = Length;
5130     Args.push_back(Entry);
5131 
5132     uint64_t ElementSizeConstant = MI.getElementSizeInBytes();
5133     RTLIB::Libcall LibraryCall =
5134         RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant);
5135     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
5136       report_fatal_error("Unsupported element size");
5137 
5138     TargetLowering::CallLoweringInfo CLI(DAG);
5139     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5140         TLI.getLibcallCallingConv(LibraryCall),
5141         Type::getVoidTy(*DAG.getContext()),
5142         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
5143                               TLI.getPointerTy(DAG.getDataLayout())),
5144         std::move(Args));
5145 
5146     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
5147     DAG.setRoot(CallResult.second);
5148     return nullptr;
5149   }
5150   case Intrinsic::dbg_addr:
5151   case Intrinsic::dbg_declare: {
5152     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5153     DILocalVariable *Variable = DI.getVariable();
5154     DIExpression *Expression = DI.getExpression();
5155     assert(Variable && "Missing variable");
5156 
5157     // Check if address has undef value.
5158     const Value *Address = DI.getVariableLocation();
5159     if (!Address || isa<UndefValue>(Address) ||
5160         (Address->use_empty() && !isa<Argument>(Address))) {
5161       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5162       return nullptr;
5163     }
5164 
5165     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5166 
5167     // Check if this variable can be described by a frame index, typically
5168     // either as a static alloca or a byval parameter.
5169     int FI = std::numeric_limits<int>::max();
5170     if (const auto *AI =
5171             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5172       if (AI->isStaticAlloca()) {
5173         auto I = FuncInfo.StaticAllocaMap.find(AI);
5174         if (I != FuncInfo.StaticAllocaMap.end())
5175           FI = I->second;
5176       }
5177     } else if (const auto *Arg = dyn_cast<Argument>(
5178                    Address->stripInBoundsConstantOffsets())) {
5179       FI = FuncInfo.getArgumentFrameIndex(Arg);
5180     }
5181 
5182     // llvm.dbg.addr is control dependent and always generates indirect
5183     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5184     // the MachineFunction variable table.
5185     if (FI != std::numeric_limits<int>::max()) {
5186       if (Intrinsic == Intrinsic::dbg_addr)
5187         DAG.AddDbgValue(DAG.getFrameIndexDbgValue(Variable, Expression, FI, dl,
5188                                                   SDNodeOrder),
5189                         getRoot().getNode(), isParameter);
5190       return nullptr;
5191     }
5192 
5193     SDValue &N = NodeMap[Address];
5194     if (!N.getNode() && isa<Argument>(Address))
5195       // Check unused arguments map.
5196       N = UnusedArgNodeMap[Address];
5197     SDDbgValue *SDV;
5198     if (N.getNode()) {
5199       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5200         Address = BCI->getOperand(0);
5201       // Parameters are handled specially.
5202       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5203       if (isParameter && FINode) {
5204         // Byval parameter. We have a frame index at this point.
5205         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5206                                         FINode->getIndex(), dl, SDNodeOrder);
5207       } else if (isa<Argument>(Address)) {
5208         // Address is an argument, so try to emit its dbg value using
5209         // virtual register info from the FuncInfo.ValueMap.
5210         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5211         return nullptr;
5212       } else {
5213         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5214                               true, dl, SDNodeOrder);
5215       }
5216       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5217     } else {
5218       // If Address is an argument then try to emit its dbg value using
5219       // virtual register info from the FuncInfo.ValueMap.
5220       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5221                                     N)) {
5222         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5223       }
5224     }
5225     return nullptr;
5226   }
5227   case Intrinsic::dbg_value: {
5228     const DbgValueInst &DI = cast<DbgValueInst>(I);
5229     assert(DI.getVariable() && "Missing variable");
5230 
5231     DILocalVariable *Variable = DI.getVariable();
5232     DIExpression *Expression = DI.getExpression();
5233     const Value *V = DI.getValue();
5234     if (!V)
5235       return nullptr;
5236 
5237     SDDbgValue *SDV;
5238     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5239       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5240       DAG.AddDbgValue(SDV, nullptr, false);
5241       return nullptr;
5242     }
5243 
5244     // Do not use getValue() in here; we don't want to generate code at
5245     // this point if it hasn't been done yet.
5246     SDValue N = NodeMap[V];
5247     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5248       N = UnusedArgNodeMap[V];
5249     if (N.getNode()) {
5250       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5251         return nullptr;
5252       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5253       DAG.AddDbgValue(SDV, N.getNode(), false);
5254       return nullptr;
5255     }
5256 
5257     if (!V->use_empty() ) {
5258       // Do not call getValue(V) yet, as we don't want to generate code.
5259       // Remember it for later.
5260       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5261       DanglingDebugInfoMap[V] = DDI;
5262       return nullptr;
5263     }
5264 
5265     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5266     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5267     return nullptr;
5268   }
5269 
5270   case Intrinsic::eh_typeid_for: {
5271     // Find the type id for the given typeinfo.
5272     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5273     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5274     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5275     setValue(&I, Res);
5276     return nullptr;
5277   }
5278 
5279   case Intrinsic::eh_return_i32:
5280   case Intrinsic::eh_return_i64:
5281     DAG.getMachineFunction().setCallsEHReturn(true);
5282     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5283                             MVT::Other,
5284                             getControlRoot(),
5285                             getValue(I.getArgOperand(0)),
5286                             getValue(I.getArgOperand(1))));
5287     return nullptr;
5288   case Intrinsic::eh_unwind_init:
5289     DAG.getMachineFunction().setCallsUnwindInit(true);
5290     return nullptr;
5291   case Intrinsic::eh_dwarf_cfa:
5292     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5293                              TLI.getPointerTy(DAG.getDataLayout()),
5294                              getValue(I.getArgOperand(0))));
5295     return nullptr;
5296   case Intrinsic::eh_sjlj_callsite: {
5297     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5298     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5299     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5300     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5301 
5302     MMI.setCurrentCallSite(CI->getZExtValue());
5303     return nullptr;
5304   }
5305   case Intrinsic::eh_sjlj_functioncontext: {
5306     // Get and store the index of the function context.
5307     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5308     AllocaInst *FnCtx =
5309       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5310     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5311     MFI.setFunctionContextIndex(FI);
5312     return nullptr;
5313   }
5314   case Intrinsic::eh_sjlj_setjmp: {
5315     SDValue Ops[2];
5316     Ops[0] = getRoot();
5317     Ops[1] = getValue(I.getArgOperand(0));
5318     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5319                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5320     setValue(&I, Op.getValue(0));
5321     DAG.setRoot(Op.getValue(1));
5322     return nullptr;
5323   }
5324   case Intrinsic::eh_sjlj_longjmp:
5325     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5326                             getRoot(), getValue(I.getArgOperand(0))));
5327     return nullptr;
5328   case Intrinsic::eh_sjlj_setup_dispatch:
5329     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5330                             getRoot()));
5331     return nullptr;
5332   case Intrinsic::masked_gather:
5333     visitMaskedGather(I);
5334     return nullptr;
5335   case Intrinsic::masked_load:
5336     visitMaskedLoad(I);
5337     return nullptr;
5338   case Intrinsic::masked_scatter:
5339     visitMaskedScatter(I);
5340     return nullptr;
5341   case Intrinsic::masked_store:
5342     visitMaskedStore(I);
5343     return nullptr;
5344   case Intrinsic::masked_expandload:
5345     visitMaskedLoad(I, true /* IsExpanding */);
5346     return nullptr;
5347   case Intrinsic::masked_compressstore:
5348     visitMaskedStore(I, true /* IsCompressing */);
5349     return nullptr;
5350   case Intrinsic::x86_mmx_pslli_w:
5351   case Intrinsic::x86_mmx_pslli_d:
5352   case Intrinsic::x86_mmx_pslli_q:
5353   case Intrinsic::x86_mmx_psrli_w:
5354   case Intrinsic::x86_mmx_psrli_d:
5355   case Intrinsic::x86_mmx_psrli_q:
5356   case Intrinsic::x86_mmx_psrai_w:
5357   case Intrinsic::x86_mmx_psrai_d: {
5358     SDValue ShAmt = getValue(I.getArgOperand(1));
5359     if (isa<ConstantSDNode>(ShAmt)) {
5360       visitTargetIntrinsic(I, Intrinsic);
5361       return nullptr;
5362     }
5363     unsigned NewIntrinsic = 0;
5364     EVT ShAmtVT = MVT::v2i32;
5365     switch (Intrinsic) {
5366     case Intrinsic::x86_mmx_pslli_w:
5367       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5368       break;
5369     case Intrinsic::x86_mmx_pslli_d:
5370       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5371       break;
5372     case Intrinsic::x86_mmx_pslli_q:
5373       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5374       break;
5375     case Intrinsic::x86_mmx_psrli_w:
5376       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5377       break;
5378     case Intrinsic::x86_mmx_psrli_d:
5379       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5380       break;
5381     case Intrinsic::x86_mmx_psrli_q:
5382       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5383       break;
5384     case Intrinsic::x86_mmx_psrai_w:
5385       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5386       break;
5387     case Intrinsic::x86_mmx_psrai_d:
5388       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5389       break;
5390     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5391     }
5392 
5393     // The vector shift intrinsics with scalars uses 32b shift amounts but
5394     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5395     // to be zero.
5396     // We must do this early because v2i32 is not a legal type.
5397     SDValue ShOps[2];
5398     ShOps[0] = ShAmt;
5399     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5400     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5401     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5402     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5403     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5404                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5405                        getValue(I.getArgOperand(0)), ShAmt);
5406     setValue(&I, Res);
5407     return nullptr;
5408   }
5409   case Intrinsic::powi:
5410     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5411                             getValue(I.getArgOperand(1)), DAG));
5412     return nullptr;
5413   case Intrinsic::log:
5414     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5415     return nullptr;
5416   case Intrinsic::log2:
5417     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5418     return nullptr;
5419   case Intrinsic::log10:
5420     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5421     return nullptr;
5422   case Intrinsic::exp:
5423     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5424     return nullptr;
5425   case Intrinsic::exp2:
5426     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5427     return nullptr;
5428   case Intrinsic::pow:
5429     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5430                            getValue(I.getArgOperand(1)), DAG, TLI));
5431     return nullptr;
5432   case Intrinsic::sqrt:
5433   case Intrinsic::fabs:
5434   case Intrinsic::sin:
5435   case Intrinsic::cos:
5436   case Intrinsic::floor:
5437   case Intrinsic::ceil:
5438   case Intrinsic::trunc:
5439   case Intrinsic::rint:
5440   case Intrinsic::nearbyint:
5441   case Intrinsic::round:
5442   case Intrinsic::canonicalize: {
5443     unsigned Opcode;
5444     switch (Intrinsic) {
5445     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5446     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5447     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5448     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5449     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5450     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5451     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5452     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5453     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5454     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5455     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5456     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5457     }
5458 
5459     setValue(&I, DAG.getNode(Opcode, sdl,
5460                              getValue(I.getArgOperand(0)).getValueType(),
5461                              getValue(I.getArgOperand(0))));
5462     return nullptr;
5463   }
5464   case Intrinsic::minnum: {
5465     auto VT = getValue(I.getArgOperand(0)).getValueType();
5466     unsigned Opc =
5467         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5468             ? ISD::FMINNAN
5469             : ISD::FMINNUM;
5470     setValue(&I, DAG.getNode(Opc, sdl, VT,
5471                              getValue(I.getArgOperand(0)),
5472                              getValue(I.getArgOperand(1))));
5473     return nullptr;
5474   }
5475   case Intrinsic::maxnum: {
5476     auto VT = getValue(I.getArgOperand(0)).getValueType();
5477     unsigned Opc =
5478         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5479             ? ISD::FMAXNAN
5480             : ISD::FMAXNUM;
5481     setValue(&I, DAG.getNode(Opc, sdl, VT,
5482                              getValue(I.getArgOperand(0)),
5483                              getValue(I.getArgOperand(1))));
5484     return nullptr;
5485   }
5486   case Intrinsic::copysign:
5487     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5488                              getValue(I.getArgOperand(0)).getValueType(),
5489                              getValue(I.getArgOperand(0)),
5490                              getValue(I.getArgOperand(1))));
5491     return nullptr;
5492   case Intrinsic::fma:
5493     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5494                              getValue(I.getArgOperand(0)).getValueType(),
5495                              getValue(I.getArgOperand(0)),
5496                              getValue(I.getArgOperand(1)),
5497                              getValue(I.getArgOperand(2))));
5498     return nullptr;
5499   case Intrinsic::experimental_constrained_fadd:
5500   case Intrinsic::experimental_constrained_fsub:
5501   case Intrinsic::experimental_constrained_fmul:
5502   case Intrinsic::experimental_constrained_fdiv:
5503   case Intrinsic::experimental_constrained_frem:
5504   case Intrinsic::experimental_constrained_fma:
5505   case Intrinsic::experimental_constrained_sqrt:
5506   case Intrinsic::experimental_constrained_pow:
5507   case Intrinsic::experimental_constrained_powi:
5508   case Intrinsic::experimental_constrained_sin:
5509   case Intrinsic::experimental_constrained_cos:
5510   case Intrinsic::experimental_constrained_exp:
5511   case Intrinsic::experimental_constrained_exp2:
5512   case Intrinsic::experimental_constrained_log:
5513   case Intrinsic::experimental_constrained_log10:
5514   case Intrinsic::experimental_constrained_log2:
5515   case Intrinsic::experimental_constrained_rint:
5516   case Intrinsic::experimental_constrained_nearbyint:
5517     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5518     return nullptr;
5519   case Intrinsic::fmuladd: {
5520     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5521     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5522         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5523       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5524                                getValue(I.getArgOperand(0)).getValueType(),
5525                                getValue(I.getArgOperand(0)),
5526                                getValue(I.getArgOperand(1)),
5527                                getValue(I.getArgOperand(2))));
5528     } else {
5529       // TODO: Intrinsic calls should have fast-math-flags.
5530       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5531                                 getValue(I.getArgOperand(0)).getValueType(),
5532                                 getValue(I.getArgOperand(0)),
5533                                 getValue(I.getArgOperand(1)));
5534       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5535                                 getValue(I.getArgOperand(0)).getValueType(),
5536                                 Mul,
5537                                 getValue(I.getArgOperand(2)));
5538       setValue(&I, Add);
5539     }
5540     return nullptr;
5541   }
5542   case Intrinsic::convert_to_fp16:
5543     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5544                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5545                                          getValue(I.getArgOperand(0)),
5546                                          DAG.getTargetConstant(0, sdl,
5547                                                                MVT::i32))));
5548     return nullptr;
5549   case Intrinsic::convert_from_fp16:
5550     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5551                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5552                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5553                                          getValue(I.getArgOperand(0)))));
5554     return nullptr;
5555   case Intrinsic::pcmarker: {
5556     SDValue Tmp = getValue(I.getArgOperand(0));
5557     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5558     return nullptr;
5559   }
5560   case Intrinsic::readcyclecounter: {
5561     SDValue Op = getRoot();
5562     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5563                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5564     setValue(&I, Res);
5565     DAG.setRoot(Res.getValue(1));
5566     return nullptr;
5567   }
5568   case Intrinsic::bitreverse:
5569     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5570                              getValue(I.getArgOperand(0)).getValueType(),
5571                              getValue(I.getArgOperand(0))));
5572     return nullptr;
5573   case Intrinsic::bswap:
5574     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5575                              getValue(I.getArgOperand(0)).getValueType(),
5576                              getValue(I.getArgOperand(0))));
5577     return nullptr;
5578   case Intrinsic::cttz: {
5579     SDValue Arg = getValue(I.getArgOperand(0));
5580     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5581     EVT Ty = Arg.getValueType();
5582     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5583                              sdl, Ty, Arg));
5584     return nullptr;
5585   }
5586   case Intrinsic::ctlz: {
5587     SDValue Arg = getValue(I.getArgOperand(0));
5588     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5589     EVT Ty = Arg.getValueType();
5590     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5591                              sdl, Ty, Arg));
5592     return nullptr;
5593   }
5594   case Intrinsic::ctpop: {
5595     SDValue Arg = getValue(I.getArgOperand(0));
5596     EVT Ty = Arg.getValueType();
5597     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5598     return nullptr;
5599   }
5600   case Intrinsic::stacksave: {
5601     SDValue Op = getRoot();
5602     Res = DAG.getNode(
5603         ISD::STACKSAVE, sdl,
5604         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5605     setValue(&I, Res);
5606     DAG.setRoot(Res.getValue(1));
5607     return nullptr;
5608   }
5609   case Intrinsic::stackrestore:
5610     Res = getValue(I.getArgOperand(0));
5611     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5612     return nullptr;
5613   case Intrinsic::get_dynamic_area_offset: {
5614     SDValue Op = getRoot();
5615     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5616     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5617     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5618     // target.
5619     if (PtrTy != ResTy)
5620       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5621                          " intrinsic!");
5622     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5623                       Op);
5624     DAG.setRoot(Op);
5625     setValue(&I, Res);
5626     return nullptr;
5627   }
5628   case Intrinsic::stackguard: {
5629     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5630     MachineFunction &MF = DAG.getMachineFunction();
5631     const Module &M = *MF.getFunction()->getParent();
5632     SDValue Chain = getRoot();
5633     if (TLI.useLoadStackGuardNode()) {
5634       Res = getLoadStackGuard(DAG, sdl, Chain);
5635     } else {
5636       const Value *Global = TLI.getSDagStackGuard(M);
5637       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5638       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5639                         MachinePointerInfo(Global, 0), Align,
5640                         MachineMemOperand::MOVolatile);
5641     }
5642     DAG.setRoot(Chain);
5643     setValue(&I, Res);
5644     return nullptr;
5645   }
5646   case Intrinsic::stackprotector: {
5647     // Emit code into the DAG to store the stack guard onto the stack.
5648     MachineFunction &MF = DAG.getMachineFunction();
5649     MachineFrameInfo &MFI = MF.getFrameInfo();
5650     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5651     SDValue Src, Chain = getRoot();
5652 
5653     if (TLI.useLoadStackGuardNode())
5654       Src = getLoadStackGuard(DAG, sdl, Chain);
5655     else
5656       Src = getValue(I.getArgOperand(0));   // The guard's value.
5657 
5658     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5659 
5660     int FI = FuncInfo.StaticAllocaMap[Slot];
5661     MFI.setStackProtectorIndex(FI);
5662 
5663     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5664 
5665     // Store the stack protector onto the stack.
5666     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5667                                                  DAG.getMachineFunction(), FI),
5668                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5669     setValue(&I, Res);
5670     DAG.setRoot(Res);
5671     return nullptr;
5672   }
5673   case Intrinsic::objectsize: {
5674     // If we don't know by now, we're never going to know.
5675     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5676 
5677     assert(CI && "Non-constant type in __builtin_object_size?");
5678 
5679     SDValue Arg = getValue(I.getCalledValue());
5680     EVT Ty = Arg.getValueType();
5681 
5682     if (CI->isZero())
5683       Res = DAG.getConstant(-1ULL, sdl, Ty);
5684     else
5685       Res = DAG.getConstant(0, sdl, Ty);
5686 
5687     setValue(&I, Res);
5688     return nullptr;
5689   }
5690   case Intrinsic::annotation:
5691   case Intrinsic::ptr_annotation:
5692   case Intrinsic::invariant_group_barrier:
5693     // Drop the intrinsic, but forward the value
5694     setValue(&I, getValue(I.getOperand(0)));
5695     return nullptr;
5696   case Intrinsic::assume:
5697   case Intrinsic::var_annotation:
5698     // Discard annotate attributes and assumptions
5699     return nullptr;
5700 
5701   case Intrinsic::codeview_annotation: {
5702     // Emit a label associated with this metadata.
5703     MachineFunction &MF = DAG.getMachineFunction();
5704     MCSymbol *Label =
5705         MF.getMMI().getContext().createTempSymbol("annotation", true);
5706     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5707     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5708     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5709     DAG.setRoot(Res);
5710     return nullptr;
5711   }
5712 
5713   case Intrinsic::init_trampoline: {
5714     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5715 
5716     SDValue Ops[6];
5717     Ops[0] = getRoot();
5718     Ops[1] = getValue(I.getArgOperand(0));
5719     Ops[2] = getValue(I.getArgOperand(1));
5720     Ops[3] = getValue(I.getArgOperand(2));
5721     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5722     Ops[5] = DAG.getSrcValue(F);
5723 
5724     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5725 
5726     DAG.setRoot(Res);
5727     return nullptr;
5728   }
5729   case Intrinsic::adjust_trampoline:
5730     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5731                              TLI.getPointerTy(DAG.getDataLayout()),
5732                              getValue(I.getArgOperand(0))));
5733     return nullptr;
5734   case Intrinsic::gcroot: {
5735     MachineFunction &MF = DAG.getMachineFunction();
5736     const Function *F = MF.getFunction();
5737     (void)F;
5738     assert(F->hasGC() &&
5739            "only valid in functions with gc specified, enforced by Verifier");
5740     assert(GFI && "implied by previous");
5741     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5742     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5743 
5744     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5745     GFI->addStackRoot(FI->getIndex(), TypeMap);
5746     return nullptr;
5747   }
5748   case Intrinsic::gcread:
5749   case Intrinsic::gcwrite:
5750     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5751   case Intrinsic::flt_rounds:
5752     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5753     return nullptr;
5754 
5755   case Intrinsic::expect:
5756     // Just replace __builtin_expect(exp, c) with EXP.
5757     setValue(&I, getValue(I.getArgOperand(0)));
5758     return nullptr;
5759 
5760   case Intrinsic::debugtrap:
5761   case Intrinsic::trap: {
5762     StringRef TrapFuncName =
5763         I.getAttributes()
5764             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5765             .getValueAsString();
5766     if (TrapFuncName.empty()) {
5767       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5768         ISD::TRAP : ISD::DEBUGTRAP;
5769       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5770       return nullptr;
5771     }
5772     TargetLowering::ArgListTy Args;
5773 
5774     TargetLowering::CallLoweringInfo CLI(DAG);
5775     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5776         CallingConv::C, I.getType(),
5777         DAG.getExternalSymbol(TrapFuncName.data(),
5778                               TLI.getPointerTy(DAG.getDataLayout())),
5779         std::move(Args));
5780 
5781     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5782     DAG.setRoot(Result.second);
5783     return nullptr;
5784   }
5785 
5786   case Intrinsic::uadd_with_overflow:
5787   case Intrinsic::sadd_with_overflow:
5788   case Intrinsic::usub_with_overflow:
5789   case Intrinsic::ssub_with_overflow:
5790   case Intrinsic::umul_with_overflow:
5791   case Intrinsic::smul_with_overflow: {
5792     ISD::NodeType Op;
5793     switch (Intrinsic) {
5794     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5795     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5796     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5797     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5798     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5799     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5800     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5801     }
5802     SDValue Op1 = getValue(I.getArgOperand(0));
5803     SDValue Op2 = getValue(I.getArgOperand(1));
5804 
5805     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5806     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5807     return nullptr;
5808   }
5809   case Intrinsic::prefetch: {
5810     SDValue Ops[5];
5811     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5812     Ops[0] = getRoot();
5813     Ops[1] = getValue(I.getArgOperand(0));
5814     Ops[2] = getValue(I.getArgOperand(1));
5815     Ops[3] = getValue(I.getArgOperand(2));
5816     Ops[4] = getValue(I.getArgOperand(3));
5817     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5818                                         DAG.getVTList(MVT::Other), Ops,
5819                                         EVT::getIntegerVT(*Context, 8),
5820                                         MachinePointerInfo(I.getArgOperand(0)),
5821                                         0, /* align */
5822                                         false, /* volatile */
5823                                         rw==0, /* read */
5824                                         rw==1)); /* write */
5825     return nullptr;
5826   }
5827   case Intrinsic::lifetime_start:
5828   case Intrinsic::lifetime_end: {
5829     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5830     // Stack coloring is not enabled in O0, discard region information.
5831     if (TM.getOptLevel() == CodeGenOpt::None)
5832       return nullptr;
5833 
5834     SmallVector<Value *, 4> Allocas;
5835     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5836 
5837     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5838            E = Allocas.end(); Object != E; ++Object) {
5839       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5840 
5841       // Could not find an Alloca.
5842       if (!LifetimeObject)
5843         continue;
5844 
5845       // First check that the Alloca is static, otherwise it won't have a
5846       // valid frame index.
5847       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5848       if (SI == FuncInfo.StaticAllocaMap.end())
5849         return nullptr;
5850 
5851       int FI = SI->second;
5852 
5853       SDValue Ops[2];
5854       Ops[0] = getRoot();
5855       Ops[1] =
5856           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5857       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5858 
5859       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5860       DAG.setRoot(Res);
5861     }
5862     return nullptr;
5863   }
5864   case Intrinsic::invariant_start:
5865     // Discard region information.
5866     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5867     return nullptr;
5868   case Intrinsic::invariant_end:
5869     // Discard region information.
5870     return nullptr;
5871   case Intrinsic::clear_cache:
5872     return TLI.getClearCacheBuiltinName();
5873   case Intrinsic::donothing:
5874     // ignore
5875     return nullptr;
5876   case Intrinsic::experimental_stackmap:
5877     visitStackmap(I);
5878     return nullptr;
5879   case Intrinsic::experimental_patchpoint_void:
5880   case Intrinsic::experimental_patchpoint_i64:
5881     visitPatchpoint(&I);
5882     return nullptr;
5883   case Intrinsic::experimental_gc_statepoint:
5884     LowerStatepoint(ImmutableStatepoint(&I));
5885     return nullptr;
5886   case Intrinsic::experimental_gc_result:
5887     visitGCResult(cast<GCResultInst>(I));
5888     return nullptr;
5889   case Intrinsic::experimental_gc_relocate:
5890     visitGCRelocate(cast<GCRelocateInst>(I));
5891     return nullptr;
5892   case Intrinsic::instrprof_increment:
5893     llvm_unreachable("instrprof failed to lower an increment");
5894   case Intrinsic::instrprof_value_profile:
5895     llvm_unreachable("instrprof failed to lower a value profiling call");
5896   case Intrinsic::localescape: {
5897     MachineFunction &MF = DAG.getMachineFunction();
5898     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5899 
5900     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5901     // is the same on all targets.
5902     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5903       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5904       if (isa<ConstantPointerNull>(Arg))
5905         continue; // Skip null pointers. They represent a hole in index space.
5906       AllocaInst *Slot = cast<AllocaInst>(Arg);
5907       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5908              "can only escape static allocas");
5909       int FI = FuncInfo.StaticAllocaMap[Slot];
5910       MCSymbol *FrameAllocSym =
5911           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5912               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5913       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5914               TII->get(TargetOpcode::LOCAL_ESCAPE))
5915           .addSym(FrameAllocSym)
5916           .addFrameIndex(FI);
5917     }
5918 
5919     return nullptr;
5920   }
5921 
5922   case Intrinsic::localrecover: {
5923     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5924     MachineFunction &MF = DAG.getMachineFunction();
5925     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5926 
5927     // Get the symbol that defines the frame offset.
5928     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5929     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5930     unsigned IdxVal =
5931         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5932     MCSymbol *FrameAllocSym =
5933         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5934             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5935 
5936     // Create a MCSymbol for the label to avoid any target lowering
5937     // that would make this PC relative.
5938     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5939     SDValue OffsetVal =
5940         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5941 
5942     // Add the offset to the FP.
5943     Value *FP = I.getArgOperand(1);
5944     SDValue FPVal = getValue(FP);
5945     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5946     setValue(&I, Add);
5947 
5948     return nullptr;
5949   }
5950 
5951   case Intrinsic::eh_exceptionpointer:
5952   case Intrinsic::eh_exceptioncode: {
5953     // Get the exception pointer vreg, copy from it, and resize it to fit.
5954     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5955     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5956     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5957     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5958     SDValue N =
5959         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5960     if (Intrinsic == Intrinsic::eh_exceptioncode)
5961       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5962     setValue(&I, N);
5963     return nullptr;
5964   }
5965   case Intrinsic::xray_customevent: {
5966     // Here we want to make sure that the intrinsic behaves as if it has a
5967     // specific calling convention, and only for x86_64.
5968     // FIXME: Support other platforms later.
5969     const auto &Triple = DAG.getTarget().getTargetTriple();
5970     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5971       return nullptr;
5972 
5973     SDLoc DL = getCurSDLoc();
5974     SmallVector<SDValue, 8> Ops;
5975 
5976     // We want to say that we always want the arguments in registers.
5977     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5978     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5979     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5980     SDValue Chain = getRoot();
5981     Ops.push_back(LogEntryVal);
5982     Ops.push_back(StrSizeVal);
5983     Ops.push_back(Chain);
5984 
5985     // We need to enforce the calling convention for the callsite, so that
5986     // argument ordering is enforced correctly, and that register allocation can
5987     // see that some registers may be assumed clobbered and have to preserve
5988     // them across calls to the intrinsic.
5989     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
5990                                            DL, NodeTys, Ops);
5991     SDValue patchableNode = SDValue(MN, 0);
5992     DAG.setRoot(patchableNode);
5993     setValue(&I, patchableNode);
5994     return nullptr;
5995   }
5996   case Intrinsic::experimental_deoptimize:
5997     LowerDeoptimizeCall(&I);
5998     return nullptr;
5999 
6000   case Intrinsic::experimental_vector_reduce_fadd:
6001   case Intrinsic::experimental_vector_reduce_fmul:
6002   case Intrinsic::experimental_vector_reduce_add:
6003   case Intrinsic::experimental_vector_reduce_mul:
6004   case Intrinsic::experimental_vector_reduce_and:
6005   case Intrinsic::experimental_vector_reduce_or:
6006   case Intrinsic::experimental_vector_reduce_xor:
6007   case Intrinsic::experimental_vector_reduce_smax:
6008   case Intrinsic::experimental_vector_reduce_smin:
6009   case Intrinsic::experimental_vector_reduce_umax:
6010   case Intrinsic::experimental_vector_reduce_umin:
6011   case Intrinsic::experimental_vector_reduce_fmax:
6012   case Intrinsic::experimental_vector_reduce_fmin:
6013     visitVectorReduce(I, Intrinsic);
6014     return nullptr;
6015   }
6016 }
6017 
6018 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6019     const ConstrainedFPIntrinsic &FPI) {
6020   SDLoc sdl = getCurSDLoc();
6021   unsigned Opcode;
6022   switch (FPI.getIntrinsicID()) {
6023   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6024   case Intrinsic::experimental_constrained_fadd:
6025     Opcode = ISD::STRICT_FADD;
6026     break;
6027   case Intrinsic::experimental_constrained_fsub:
6028     Opcode = ISD::STRICT_FSUB;
6029     break;
6030   case Intrinsic::experimental_constrained_fmul:
6031     Opcode = ISD::STRICT_FMUL;
6032     break;
6033   case Intrinsic::experimental_constrained_fdiv:
6034     Opcode = ISD::STRICT_FDIV;
6035     break;
6036   case Intrinsic::experimental_constrained_frem:
6037     Opcode = ISD::STRICT_FREM;
6038     break;
6039   case Intrinsic::experimental_constrained_fma:
6040     Opcode = ISD::STRICT_FMA;
6041     break;
6042   case Intrinsic::experimental_constrained_sqrt:
6043     Opcode = ISD::STRICT_FSQRT;
6044     break;
6045   case Intrinsic::experimental_constrained_pow:
6046     Opcode = ISD::STRICT_FPOW;
6047     break;
6048   case Intrinsic::experimental_constrained_powi:
6049     Opcode = ISD::STRICT_FPOWI;
6050     break;
6051   case Intrinsic::experimental_constrained_sin:
6052     Opcode = ISD::STRICT_FSIN;
6053     break;
6054   case Intrinsic::experimental_constrained_cos:
6055     Opcode = ISD::STRICT_FCOS;
6056     break;
6057   case Intrinsic::experimental_constrained_exp:
6058     Opcode = ISD::STRICT_FEXP;
6059     break;
6060   case Intrinsic::experimental_constrained_exp2:
6061     Opcode = ISD::STRICT_FEXP2;
6062     break;
6063   case Intrinsic::experimental_constrained_log:
6064     Opcode = ISD::STRICT_FLOG;
6065     break;
6066   case Intrinsic::experimental_constrained_log10:
6067     Opcode = ISD::STRICT_FLOG10;
6068     break;
6069   case Intrinsic::experimental_constrained_log2:
6070     Opcode = ISD::STRICT_FLOG2;
6071     break;
6072   case Intrinsic::experimental_constrained_rint:
6073     Opcode = ISD::STRICT_FRINT;
6074     break;
6075   case Intrinsic::experimental_constrained_nearbyint:
6076     Opcode = ISD::STRICT_FNEARBYINT;
6077     break;
6078   }
6079   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6080   SDValue Chain = getRoot();
6081   SmallVector<EVT, 4> ValueVTs;
6082   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6083   ValueVTs.push_back(MVT::Other); // Out chain
6084 
6085   SDVTList VTs = DAG.getVTList(ValueVTs);
6086   SDValue Result;
6087   if (FPI.isUnaryOp())
6088     Result = DAG.getNode(Opcode, sdl, VTs,
6089                          { Chain, getValue(FPI.getArgOperand(0)) });
6090   else if (FPI.isTernaryOp())
6091     Result = DAG.getNode(Opcode, sdl, VTs,
6092                          { Chain, getValue(FPI.getArgOperand(0)),
6093                                   getValue(FPI.getArgOperand(1)),
6094                                   getValue(FPI.getArgOperand(2)) });
6095   else
6096     Result = DAG.getNode(Opcode, sdl, VTs,
6097                          { Chain, getValue(FPI.getArgOperand(0)),
6098                            getValue(FPI.getArgOperand(1))  });
6099 
6100   assert(Result.getNode()->getNumValues() == 2);
6101   SDValue OutChain = Result.getValue(1);
6102   DAG.setRoot(OutChain);
6103   SDValue FPResult = Result.getValue(0);
6104   setValue(&FPI, FPResult);
6105 }
6106 
6107 std::pair<SDValue, SDValue>
6108 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6109                                     const BasicBlock *EHPadBB) {
6110   MachineFunction &MF = DAG.getMachineFunction();
6111   MachineModuleInfo &MMI = MF.getMMI();
6112   MCSymbol *BeginLabel = nullptr;
6113 
6114   if (EHPadBB) {
6115     // Insert a label before the invoke call to mark the try range.  This can be
6116     // used to detect deletion of the invoke via the MachineModuleInfo.
6117     BeginLabel = MMI.getContext().createTempSymbol();
6118 
6119     // For SjLj, keep track of which landing pads go with which invokes
6120     // so as to maintain the ordering of pads in the LSDA.
6121     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6122     if (CallSiteIndex) {
6123       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6124       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6125 
6126       // Now that the call site is handled, stop tracking it.
6127       MMI.setCurrentCallSite(0);
6128     }
6129 
6130     // Both PendingLoads and PendingExports must be flushed here;
6131     // this call might not return.
6132     (void)getRoot();
6133     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6134 
6135     CLI.setChain(getRoot());
6136   }
6137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6138   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6139 
6140   assert((CLI.IsTailCall || Result.second.getNode()) &&
6141          "Non-null chain expected with non-tail call!");
6142   assert((Result.second.getNode() || !Result.first.getNode()) &&
6143          "Null value expected with tail call!");
6144 
6145   if (!Result.second.getNode()) {
6146     // As a special case, a null chain means that a tail call has been emitted
6147     // and the DAG root is already updated.
6148     HasTailCall = true;
6149 
6150     // Since there's no actual continuation from this block, nothing can be
6151     // relying on us setting vregs for them.
6152     PendingExports.clear();
6153   } else {
6154     DAG.setRoot(Result.second);
6155   }
6156 
6157   if (EHPadBB) {
6158     // Insert a label at the end of the invoke call to mark the try range.  This
6159     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6160     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6161     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6162 
6163     // Inform MachineModuleInfo of range.
6164     if (MF.hasEHFunclets()) {
6165       assert(CLI.CS);
6166       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6167       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6168                                 BeginLabel, EndLabel);
6169     } else {
6170       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6171     }
6172   }
6173 
6174   return Result;
6175 }
6176 
6177 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6178                                       bool isTailCall,
6179                                       const BasicBlock *EHPadBB) {
6180   auto &DL = DAG.getDataLayout();
6181   FunctionType *FTy = CS.getFunctionType();
6182   Type *RetTy = CS.getType();
6183 
6184   TargetLowering::ArgListTy Args;
6185   Args.reserve(CS.arg_size());
6186 
6187   const Value *SwiftErrorVal = nullptr;
6188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6189 
6190   // We can't tail call inside a function with a swifterror argument. Lowering
6191   // does not support this yet. It would have to move into the swifterror
6192   // register before the call.
6193   auto *Caller = CS.getInstruction()->getParent()->getParent();
6194   if (TLI.supportSwiftError() &&
6195       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6196     isTailCall = false;
6197 
6198   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6199        i != e; ++i) {
6200     TargetLowering::ArgListEntry Entry;
6201     const Value *V = *i;
6202 
6203     // Skip empty types
6204     if (V->getType()->isEmptyTy())
6205       continue;
6206 
6207     SDValue ArgNode = getValue(V);
6208     Entry.Node = ArgNode; Entry.Ty = V->getType();
6209 
6210     Entry.setAttributes(&CS, i - CS.arg_begin());
6211 
6212     // Use swifterror virtual register as input to the call.
6213     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6214       SwiftErrorVal = V;
6215       // We find the virtual register for the actual swifterror argument.
6216       // Instead of using the Value, we use the virtual register instead.
6217       Entry.Node = DAG.getRegister(FuncInfo
6218                                        .getOrCreateSwiftErrorVRegUseAt(
6219                                            CS.getInstruction(), FuncInfo.MBB, V)
6220                                        .first,
6221                                    EVT(TLI.getPointerTy(DL)));
6222     }
6223 
6224     Args.push_back(Entry);
6225 
6226     // If we have an explicit sret argument that is an Instruction, (i.e., it
6227     // might point to function-local memory), we can't meaningfully tail-call.
6228     if (Entry.IsSRet && isa<Instruction>(V))
6229       isTailCall = false;
6230   }
6231 
6232   // Check if target-independent constraints permit a tail call here.
6233   // Target-dependent constraints are checked within TLI->LowerCallTo.
6234   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6235     isTailCall = false;
6236 
6237   // Disable tail calls if there is an swifterror argument. Targets have not
6238   // been updated to support tail calls.
6239   if (TLI.supportSwiftError() && SwiftErrorVal)
6240     isTailCall = false;
6241 
6242   TargetLowering::CallLoweringInfo CLI(DAG);
6243   CLI.setDebugLoc(getCurSDLoc())
6244       .setChain(getRoot())
6245       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6246       .setTailCall(isTailCall)
6247       .setConvergent(CS.isConvergent());
6248   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6249 
6250   if (Result.first.getNode()) {
6251     const Instruction *Inst = CS.getInstruction();
6252     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6253     setValue(Inst, Result.first);
6254   }
6255 
6256   // The last element of CLI.InVals has the SDValue for swifterror return.
6257   // Here we copy it to a virtual register and update SwiftErrorMap for
6258   // book-keeping.
6259   if (SwiftErrorVal && TLI.supportSwiftError()) {
6260     // Get the last element of InVals.
6261     SDValue Src = CLI.InVals.back();
6262     unsigned VReg; bool CreatedVReg;
6263     std::tie(VReg, CreatedVReg) =
6264         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6265     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6266     // We update the virtual register for the actual swifterror argument.
6267     if (CreatedVReg)
6268       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6269     DAG.setRoot(CopyNode);
6270   }
6271 }
6272 
6273 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6274                              SelectionDAGBuilder &Builder) {
6275   // Check to see if this load can be trivially constant folded, e.g. if the
6276   // input is from a string literal.
6277   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6278     // Cast pointer to the type we really want to load.
6279     Type *LoadTy =
6280         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6281     if (LoadVT.isVector())
6282       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6283 
6284     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6285                                          PointerType::getUnqual(LoadTy));
6286 
6287     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6288             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6289       return Builder.getValue(LoadCst);
6290   }
6291 
6292   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6293   // still constant memory, the input chain can be the entry node.
6294   SDValue Root;
6295   bool ConstantMemory = false;
6296 
6297   // Do not serialize (non-volatile) loads of constant memory with anything.
6298   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6299     Root = Builder.DAG.getEntryNode();
6300     ConstantMemory = true;
6301   } else {
6302     // Do not serialize non-volatile loads against each other.
6303     Root = Builder.DAG.getRoot();
6304   }
6305 
6306   SDValue Ptr = Builder.getValue(PtrVal);
6307   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6308                                         Ptr, MachinePointerInfo(PtrVal),
6309                                         /* Alignment = */ 1);
6310 
6311   if (!ConstantMemory)
6312     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6313   return LoadVal;
6314 }
6315 
6316 /// Record the value for an instruction that produces an integer result,
6317 /// converting the type where necessary.
6318 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6319                                                   SDValue Value,
6320                                                   bool IsSigned) {
6321   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6322                                                     I.getType(), true);
6323   if (IsSigned)
6324     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6325   else
6326     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6327   setValue(&I, Value);
6328 }
6329 
6330 /// See if we can lower a memcmp call into an optimized form. If so, return
6331 /// true and lower it. Otherwise return false, and it will be lowered like a
6332 /// normal call.
6333 /// The caller already checked that \p I calls the appropriate LibFunc with a
6334 /// correct prototype.
6335 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6336   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6337   const Value *Size = I.getArgOperand(2);
6338   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6339   if (CSize && CSize->getZExtValue() == 0) {
6340     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6341                                                           I.getType(), true);
6342     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6343     return true;
6344   }
6345 
6346   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6347   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6348       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6349       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6350   if (Res.first.getNode()) {
6351     processIntegerCallValue(I, Res.first, true);
6352     PendingLoads.push_back(Res.second);
6353     return true;
6354   }
6355 
6356   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6357   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6358   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6359     return false;
6360 
6361   // If the target has a fast compare for the given size, it will return a
6362   // preferred load type for that size. Require that the load VT is legal and
6363   // that the target supports unaligned loads of that type. Otherwise, return
6364   // INVALID.
6365   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6366     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6367     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6368     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6369       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6370       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6371       // TODO: Check alignment of src and dest ptrs.
6372       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6373       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6374       if (!TLI.isTypeLegal(LVT) ||
6375           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6376           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6377         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6378     }
6379 
6380     return LVT;
6381   };
6382 
6383   // This turns into unaligned loads. We only do this if the target natively
6384   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6385   // we'll only produce a small number of byte loads.
6386   MVT LoadVT;
6387   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6388   switch (NumBitsToCompare) {
6389   default:
6390     return false;
6391   case 16:
6392     LoadVT = MVT::i16;
6393     break;
6394   case 32:
6395     LoadVT = MVT::i32;
6396     break;
6397   case 64:
6398   case 128:
6399   case 256:
6400     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6401     break;
6402   }
6403 
6404   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6405     return false;
6406 
6407   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6408   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6409 
6410   // Bitcast to a wide integer type if the loads are vectors.
6411   if (LoadVT.isVector()) {
6412     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6413     LoadL = DAG.getBitcast(CmpVT, LoadL);
6414     LoadR = DAG.getBitcast(CmpVT, LoadR);
6415   }
6416 
6417   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6418   processIntegerCallValue(I, Cmp, false);
6419   return true;
6420 }
6421 
6422 /// See if we can lower a memchr call into an optimized form. If so, return
6423 /// true and lower it. Otherwise return false, and it will be lowered like a
6424 /// normal call.
6425 /// The caller already checked that \p I calls the appropriate LibFunc with a
6426 /// correct prototype.
6427 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6428   const Value *Src = I.getArgOperand(0);
6429   const Value *Char = I.getArgOperand(1);
6430   const Value *Length = I.getArgOperand(2);
6431 
6432   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6433   std::pair<SDValue, SDValue> Res =
6434     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6435                                 getValue(Src), getValue(Char), getValue(Length),
6436                                 MachinePointerInfo(Src));
6437   if (Res.first.getNode()) {
6438     setValue(&I, Res.first);
6439     PendingLoads.push_back(Res.second);
6440     return true;
6441   }
6442 
6443   return false;
6444 }
6445 
6446 /// See if we can lower a mempcpy call into an optimized form. If so, return
6447 /// true and lower it. Otherwise return false, and it will be lowered like a
6448 /// normal call.
6449 /// The caller already checked that \p I calls the appropriate LibFunc with a
6450 /// correct prototype.
6451 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6452   SDValue Dst = getValue(I.getArgOperand(0));
6453   SDValue Src = getValue(I.getArgOperand(1));
6454   SDValue Size = getValue(I.getArgOperand(2));
6455 
6456   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6457   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6458   unsigned Align = std::min(DstAlign, SrcAlign);
6459   if (Align == 0) // Alignment of one or both could not be inferred.
6460     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6461 
6462   bool isVol = false;
6463   SDLoc sdl = getCurSDLoc();
6464 
6465   // In the mempcpy context we need to pass in a false value for isTailCall
6466   // because the return pointer needs to be adjusted by the size of
6467   // the copied memory.
6468   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6469                              false, /*isTailCall=*/false,
6470                              MachinePointerInfo(I.getArgOperand(0)),
6471                              MachinePointerInfo(I.getArgOperand(1)));
6472   assert(MC.getNode() != nullptr &&
6473          "** memcpy should not be lowered as TailCall in mempcpy context **");
6474   DAG.setRoot(MC);
6475 
6476   // Check if Size needs to be truncated or extended.
6477   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6478 
6479   // Adjust return pointer to point just past the last dst byte.
6480   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6481                                     Dst, Size);
6482   setValue(&I, DstPlusSize);
6483   return true;
6484 }
6485 
6486 /// See if we can lower a strcpy call into an optimized form.  If so, return
6487 /// true and lower it, otherwise return false and it will be lowered like a
6488 /// normal call.
6489 /// The caller already checked that \p I calls the appropriate LibFunc with a
6490 /// correct prototype.
6491 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6492   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6493 
6494   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6495   std::pair<SDValue, SDValue> Res =
6496     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6497                                 getValue(Arg0), getValue(Arg1),
6498                                 MachinePointerInfo(Arg0),
6499                                 MachinePointerInfo(Arg1), isStpcpy);
6500   if (Res.first.getNode()) {
6501     setValue(&I, Res.first);
6502     DAG.setRoot(Res.second);
6503     return true;
6504   }
6505 
6506   return false;
6507 }
6508 
6509 /// See if we can lower a strcmp call into an optimized form.  If so, return
6510 /// true and lower it, otherwise return false and it will be lowered like a
6511 /// normal call.
6512 /// The caller already checked that \p I calls the appropriate LibFunc with a
6513 /// correct prototype.
6514 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6515   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6516 
6517   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6518   std::pair<SDValue, SDValue> Res =
6519     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6520                                 getValue(Arg0), getValue(Arg1),
6521                                 MachinePointerInfo(Arg0),
6522                                 MachinePointerInfo(Arg1));
6523   if (Res.first.getNode()) {
6524     processIntegerCallValue(I, Res.first, true);
6525     PendingLoads.push_back(Res.second);
6526     return true;
6527   }
6528 
6529   return false;
6530 }
6531 
6532 /// See if we can lower a strlen call into an optimized form.  If so, return
6533 /// true and lower it, otherwise return false and it will be lowered like a
6534 /// normal call.
6535 /// The caller already checked that \p I calls the appropriate LibFunc with a
6536 /// correct prototype.
6537 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6538   const Value *Arg0 = I.getArgOperand(0);
6539 
6540   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6541   std::pair<SDValue, SDValue> Res =
6542     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6543                                 getValue(Arg0), MachinePointerInfo(Arg0));
6544   if (Res.first.getNode()) {
6545     processIntegerCallValue(I, Res.first, false);
6546     PendingLoads.push_back(Res.second);
6547     return true;
6548   }
6549 
6550   return false;
6551 }
6552 
6553 /// See if we can lower a strnlen call into an optimized form.  If so, return
6554 /// true and lower it, otherwise return false and it will be lowered like a
6555 /// normal call.
6556 /// The caller already checked that \p I calls the appropriate LibFunc with a
6557 /// correct prototype.
6558 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6559   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6560 
6561   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6562   std::pair<SDValue, SDValue> Res =
6563     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6564                                  getValue(Arg0), getValue(Arg1),
6565                                  MachinePointerInfo(Arg0));
6566   if (Res.first.getNode()) {
6567     processIntegerCallValue(I, Res.first, false);
6568     PendingLoads.push_back(Res.second);
6569     return true;
6570   }
6571 
6572   return false;
6573 }
6574 
6575 /// See if we can lower a unary floating-point operation into an SDNode with
6576 /// the specified Opcode.  If so, return true and lower it, otherwise return
6577 /// false and it will be lowered like a normal call.
6578 /// The caller already checked that \p I calls the appropriate LibFunc with a
6579 /// correct prototype.
6580 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6581                                               unsigned Opcode) {
6582   // We already checked this call's prototype; verify it doesn't modify errno.
6583   if (!I.onlyReadsMemory())
6584     return false;
6585 
6586   SDValue Tmp = getValue(I.getArgOperand(0));
6587   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6588   return true;
6589 }
6590 
6591 /// See if we can lower a binary floating-point operation into an SDNode with
6592 /// the specified Opcode. If so, return true and lower it. Otherwise return
6593 /// false, and it will be lowered like a normal call.
6594 /// The caller already checked that \p I calls the appropriate LibFunc with a
6595 /// correct prototype.
6596 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6597                                                unsigned Opcode) {
6598   // We already checked this call's prototype; verify it doesn't modify errno.
6599   if (!I.onlyReadsMemory())
6600     return false;
6601 
6602   SDValue Tmp0 = getValue(I.getArgOperand(0));
6603   SDValue Tmp1 = getValue(I.getArgOperand(1));
6604   EVT VT = Tmp0.getValueType();
6605   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6606   return true;
6607 }
6608 
6609 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6610   // Handle inline assembly differently.
6611   if (isa<InlineAsm>(I.getCalledValue())) {
6612     visitInlineAsm(&I);
6613     return;
6614   }
6615 
6616   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6617   computeUsesVAFloatArgument(I, MMI);
6618 
6619   const char *RenameFn = nullptr;
6620   if (Function *F = I.getCalledFunction()) {
6621     if (F->isDeclaration()) {
6622       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6623         if (unsigned IID = II->getIntrinsicID(F)) {
6624           RenameFn = visitIntrinsicCall(I, IID);
6625           if (!RenameFn)
6626             return;
6627         }
6628       }
6629       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6630         RenameFn = visitIntrinsicCall(I, IID);
6631         if (!RenameFn)
6632           return;
6633       }
6634     }
6635 
6636     // Check for well-known libc/libm calls.  If the function is internal, it
6637     // can't be a library call.  Don't do the check if marked as nobuiltin for
6638     // some reason or the call site requires strict floating point semantics.
6639     LibFunc Func;
6640     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6641         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6642         LibInfo->hasOptimizedCodeGen(Func)) {
6643       switch (Func) {
6644       default: break;
6645       case LibFunc_copysign:
6646       case LibFunc_copysignf:
6647       case LibFunc_copysignl:
6648         // We already checked this call's prototype; verify it doesn't modify
6649         // errno.
6650         if (I.onlyReadsMemory()) {
6651           SDValue LHS = getValue(I.getArgOperand(0));
6652           SDValue RHS = getValue(I.getArgOperand(1));
6653           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6654                                    LHS.getValueType(), LHS, RHS));
6655           return;
6656         }
6657         break;
6658       case LibFunc_fabs:
6659       case LibFunc_fabsf:
6660       case LibFunc_fabsl:
6661         if (visitUnaryFloatCall(I, ISD::FABS))
6662           return;
6663         break;
6664       case LibFunc_fmin:
6665       case LibFunc_fminf:
6666       case LibFunc_fminl:
6667         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6668           return;
6669         break;
6670       case LibFunc_fmax:
6671       case LibFunc_fmaxf:
6672       case LibFunc_fmaxl:
6673         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6674           return;
6675         break;
6676       case LibFunc_sin:
6677       case LibFunc_sinf:
6678       case LibFunc_sinl:
6679         if (visitUnaryFloatCall(I, ISD::FSIN))
6680           return;
6681         break;
6682       case LibFunc_cos:
6683       case LibFunc_cosf:
6684       case LibFunc_cosl:
6685         if (visitUnaryFloatCall(I, ISD::FCOS))
6686           return;
6687         break;
6688       case LibFunc_sqrt:
6689       case LibFunc_sqrtf:
6690       case LibFunc_sqrtl:
6691       case LibFunc_sqrt_finite:
6692       case LibFunc_sqrtf_finite:
6693       case LibFunc_sqrtl_finite:
6694         if (visitUnaryFloatCall(I, ISD::FSQRT))
6695           return;
6696         break;
6697       case LibFunc_floor:
6698       case LibFunc_floorf:
6699       case LibFunc_floorl:
6700         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6701           return;
6702         break;
6703       case LibFunc_nearbyint:
6704       case LibFunc_nearbyintf:
6705       case LibFunc_nearbyintl:
6706         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6707           return;
6708         break;
6709       case LibFunc_ceil:
6710       case LibFunc_ceilf:
6711       case LibFunc_ceill:
6712         if (visitUnaryFloatCall(I, ISD::FCEIL))
6713           return;
6714         break;
6715       case LibFunc_rint:
6716       case LibFunc_rintf:
6717       case LibFunc_rintl:
6718         if (visitUnaryFloatCall(I, ISD::FRINT))
6719           return;
6720         break;
6721       case LibFunc_round:
6722       case LibFunc_roundf:
6723       case LibFunc_roundl:
6724         if (visitUnaryFloatCall(I, ISD::FROUND))
6725           return;
6726         break;
6727       case LibFunc_trunc:
6728       case LibFunc_truncf:
6729       case LibFunc_truncl:
6730         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6731           return;
6732         break;
6733       case LibFunc_log2:
6734       case LibFunc_log2f:
6735       case LibFunc_log2l:
6736         if (visitUnaryFloatCall(I, ISD::FLOG2))
6737           return;
6738         break;
6739       case LibFunc_exp2:
6740       case LibFunc_exp2f:
6741       case LibFunc_exp2l:
6742         if (visitUnaryFloatCall(I, ISD::FEXP2))
6743           return;
6744         break;
6745       case LibFunc_memcmp:
6746         if (visitMemCmpCall(I))
6747           return;
6748         break;
6749       case LibFunc_mempcpy:
6750         if (visitMemPCpyCall(I))
6751           return;
6752         break;
6753       case LibFunc_memchr:
6754         if (visitMemChrCall(I))
6755           return;
6756         break;
6757       case LibFunc_strcpy:
6758         if (visitStrCpyCall(I, false))
6759           return;
6760         break;
6761       case LibFunc_stpcpy:
6762         if (visitStrCpyCall(I, true))
6763           return;
6764         break;
6765       case LibFunc_strcmp:
6766         if (visitStrCmpCall(I))
6767           return;
6768         break;
6769       case LibFunc_strlen:
6770         if (visitStrLenCall(I))
6771           return;
6772         break;
6773       case LibFunc_strnlen:
6774         if (visitStrNLenCall(I))
6775           return;
6776         break;
6777       }
6778     }
6779   }
6780 
6781   SDValue Callee;
6782   if (!RenameFn)
6783     Callee = getValue(I.getCalledValue());
6784   else
6785     Callee = DAG.getExternalSymbol(
6786         RenameFn,
6787         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6788 
6789   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6790   // have to do anything here to lower funclet bundles.
6791   assert(!I.hasOperandBundlesOtherThan(
6792              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6793          "Cannot lower calls with arbitrary operand bundles!");
6794 
6795   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6796     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6797   else
6798     // Check if we can potentially perform a tail call. More detailed checking
6799     // is be done within LowerCallTo, after more information about the call is
6800     // known.
6801     LowerCallTo(&I, Callee, I.isTailCall());
6802 }
6803 
6804 namespace {
6805 
6806 /// AsmOperandInfo - This contains information for each constraint that we are
6807 /// lowering.
6808 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6809 public:
6810   /// CallOperand - If this is the result output operand or a clobber
6811   /// this is null, otherwise it is the incoming operand to the CallInst.
6812   /// This gets modified as the asm is processed.
6813   SDValue CallOperand;
6814 
6815   /// AssignedRegs - If this is a register or register class operand, this
6816   /// contains the set of register corresponding to the operand.
6817   RegsForValue AssignedRegs;
6818 
6819   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6820     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6821   }
6822 
6823   /// Whether or not this operand accesses memory
6824   bool hasMemory(const TargetLowering &TLI) const {
6825     // Indirect operand accesses access memory.
6826     if (isIndirect)
6827       return true;
6828 
6829     for (const auto &Code : Codes)
6830       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6831         return true;
6832 
6833     return false;
6834   }
6835 
6836   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6837   /// corresponds to.  If there is no Value* for this operand, it returns
6838   /// MVT::Other.
6839   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6840                            const DataLayout &DL) const {
6841     if (!CallOperandVal) return MVT::Other;
6842 
6843     if (isa<BasicBlock>(CallOperandVal))
6844       return TLI.getPointerTy(DL);
6845 
6846     llvm::Type *OpTy = CallOperandVal->getType();
6847 
6848     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6849     // If this is an indirect operand, the operand is a pointer to the
6850     // accessed type.
6851     if (isIndirect) {
6852       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6853       if (!PtrTy)
6854         report_fatal_error("Indirect operand for inline asm not a pointer!");
6855       OpTy = PtrTy->getElementType();
6856     }
6857 
6858     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6859     if (StructType *STy = dyn_cast<StructType>(OpTy))
6860       if (STy->getNumElements() == 1)
6861         OpTy = STy->getElementType(0);
6862 
6863     // If OpTy is not a single value, it may be a struct/union that we
6864     // can tile with integers.
6865     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6866       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6867       switch (BitSize) {
6868       default: break;
6869       case 1:
6870       case 8:
6871       case 16:
6872       case 32:
6873       case 64:
6874       case 128:
6875         OpTy = IntegerType::get(Context, BitSize);
6876         break;
6877       }
6878     }
6879 
6880     return TLI.getValueType(DL, OpTy, true);
6881   }
6882 };
6883 
6884 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
6885 
6886 } // end anonymous namespace
6887 
6888 /// Make sure that the output operand \p OpInfo and its corresponding input
6889 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6890 /// out).
6891 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6892                                SDISelAsmOperandInfo &MatchingOpInfo,
6893                                SelectionDAG &DAG) {
6894   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6895     return;
6896 
6897   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6898   const auto &TLI = DAG.getTargetLoweringInfo();
6899 
6900   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6901       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6902                                        OpInfo.ConstraintVT);
6903   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6904       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6905                                        MatchingOpInfo.ConstraintVT);
6906   if ((OpInfo.ConstraintVT.isInteger() !=
6907        MatchingOpInfo.ConstraintVT.isInteger()) ||
6908       (MatchRC.second != InputRC.second)) {
6909     // FIXME: error out in a more elegant fashion
6910     report_fatal_error("Unsupported asm: input constraint"
6911                        " with a matching output constraint of"
6912                        " incompatible type!");
6913   }
6914   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6915 }
6916 
6917 /// Get a direct memory input to behave well as an indirect operand.
6918 /// This may introduce stores, hence the need for a \p Chain.
6919 /// \return The (possibly updated) chain.
6920 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6921                                         SDISelAsmOperandInfo &OpInfo,
6922                                         SelectionDAG &DAG) {
6923   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6924 
6925   // If we don't have an indirect input, put it in the constpool if we can,
6926   // otherwise spill it to a stack slot.
6927   // TODO: This isn't quite right. We need to handle these according to
6928   // the addressing mode that the constraint wants. Also, this may take
6929   // an additional register for the computation and we don't want that
6930   // either.
6931 
6932   // If the operand is a float, integer, or vector constant, spill to a
6933   // constant pool entry to get its address.
6934   const Value *OpVal = OpInfo.CallOperandVal;
6935   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6936       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6937     OpInfo.CallOperand = DAG.getConstantPool(
6938         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6939     return Chain;
6940   }
6941 
6942   // Otherwise, create a stack slot and emit a store to it before the asm.
6943   Type *Ty = OpVal->getType();
6944   auto &DL = DAG.getDataLayout();
6945   uint64_t TySize = DL.getTypeAllocSize(Ty);
6946   unsigned Align = DL.getPrefTypeAlignment(Ty);
6947   MachineFunction &MF = DAG.getMachineFunction();
6948   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6949   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6950   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6951                        MachinePointerInfo::getFixedStack(MF, SSFI));
6952   OpInfo.CallOperand = StackSlot;
6953 
6954   return Chain;
6955 }
6956 
6957 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6958 /// specified operand.  We prefer to assign virtual registers, to allow the
6959 /// register allocator to handle the assignment process.  However, if the asm
6960 /// uses features that we can't model on machineinstrs, we have SDISel do the
6961 /// allocation.  This produces generally horrible, but correct, code.
6962 ///
6963 ///   OpInfo describes the operand.
6964 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6965                                  const SDLoc &DL,
6966                                  SDISelAsmOperandInfo &OpInfo) {
6967   LLVMContext &Context = *DAG.getContext();
6968 
6969   MachineFunction &MF = DAG.getMachineFunction();
6970   SmallVector<unsigned, 4> Regs;
6971   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6972 
6973   // If this is a constraint for a single physreg, or a constraint for a
6974   // register class, find it.
6975   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6976       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6977                                        OpInfo.ConstraintVT);
6978 
6979   unsigned NumRegs = 1;
6980   if (OpInfo.ConstraintVT != MVT::Other) {
6981     // If this is a FP input in an integer register (or visa versa) insert a bit
6982     // cast of the input value.  More generally, handle any case where the input
6983     // value disagrees with the register class we plan to stick this in.
6984     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
6985         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
6986       // Try to convert to the first EVT that the reg class contains.  If the
6987       // types are identical size, use a bitcast to convert (e.g. two differing
6988       // vector types).
6989       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
6990       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6991         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6992                                          RegVT, OpInfo.CallOperand);
6993         OpInfo.ConstraintVT = RegVT;
6994       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6995         // If the input is a FP value and we want it in FP registers, do a
6996         // bitcast to the corresponding integer type.  This turns an f64 value
6997         // into i64, which can be passed with two i32 values on a 32-bit
6998         // machine.
6999         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7000         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7001                                          RegVT, OpInfo.CallOperand);
7002         OpInfo.ConstraintVT = RegVT;
7003       }
7004     }
7005 
7006     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7007   }
7008 
7009   MVT RegVT;
7010   EVT ValueVT = OpInfo.ConstraintVT;
7011 
7012   // If this is a constraint for a specific physical register, like {r17},
7013   // assign it now.
7014   if (unsigned AssignedReg = PhysReg.first) {
7015     const TargetRegisterClass *RC = PhysReg.second;
7016     if (OpInfo.ConstraintVT == MVT::Other)
7017       ValueVT = *TRI.legalclasstypes_begin(*RC);
7018 
7019     // Get the actual register value type.  This is important, because the user
7020     // may have asked for (e.g.) the AX register in i32 type.  We need to
7021     // remember that AX is actually i16 to get the right extension.
7022     RegVT = *TRI.legalclasstypes_begin(*RC);
7023 
7024     // This is a explicit reference to a physical register.
7025     Regs.push_back(AssignedReg);
7026 
7027     // If this is an expanded reference, add the rest of the regs to Regs.
7028     if (NumRegs != 1) {
7029       TargetRegisterClass::iterator I = RC->begin();
7030       for (; *I != AssignedReg; ++I)
7031         assert(I != RC->end() && "Didn't find reg!");
7032 
7033       // Already added the first reg.
7034       --NumRegs; ++I;
7035       for (; NumRegs; --NumRegs, ++I) {
7036         assert(I != RC->end() && "Ran out of registers to allocate!");
7037         Regs.push_back(*I);
7038       }
7039     }
7040 
7041     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7042     return;
7043   }
7044 
7045   // Otherwise, if this was a reference to an LLVM register class, create vregs
7046   // for this reference.
7047   if (const TargetRegisterClass *RC = PhysReg.second) {
7048     RegVT = *TRI.legalclasstypes_begin(*RC);
7049     if (OpInfo.ConstraintVT == MVT::Other)
7050       ValueVT = RegVT;
7051 
7052     // Create the appropriate number of virtual registers.
7053     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7054     for (; NumRegs; --NumRegs)
7055       Regs.push_back(RegInfo.createVirtualRegister(RC));
7056 
7057     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7058     return;
7059   }
7060 
7061   // Otherwise, we couldn't allocate enough registers for this.
7062 }
7063 
7064 static unsigned
7065 findMatchingInlineAsmOperand(unsigned OperandNo,
7066                              const std::vector<SDValue> &AsmNodeOperands) {
7067   // Scan until we find the definition we already emitted of this operand.
7068   unsigned CurOp = InlineAsm::Op_FirstOperand;
7069   for (; OperandNo; --OperandNo) {
7070     // Advance to the next operand.
7071     unsigned OpFlag =
7072         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7073     assert((InlineAsm::isRegDefKind(OpFlag) ||
7074             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7075             InlineAsm::isMemKind(OpFlag)) &&
7076            "Skipped past definitions?");
7077     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7078   }
7079   return CurOp;
7080 }
7081 
7082 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7083 /// \return true if it has succeeded, false otherwise
7084 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7085                               MVT RegVT, SelectionDAG &DAG) {
7086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7087   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7088   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7089     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7090       Regs.push_back(RegInfo.createVirtualRegister(RC));
7091     else
7092       return false;
7093   }
7094   return true;
7095 }
7096 
7097 namespace {
7098 
7099 class ExtraFlags {
7100   unsigned Flags = 0;
7101 
7102 public:
7103   explicit ExtraFlags(ImmutableCallSite CS) {
7104     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7105     if (IA->hasSideEffects())
7106       Flags |= InlineAsm::Extra_HasSideEffects;
7107     if (IA->isAlignStack())
7108       Flags |= InlineAsm::Extra_IsAlignStack;
7109     if (CS.isConvergent())
7110       Flags |= InlineAsm::Extra_IsConvergent;
7111     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7112   }
7113 
7114   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7115     // Ideally, we would only check against memory constraints.  However, the
7116     // meaning of an Other constraint can be target-specific and we can't easily
7117     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7118     // for Other constraints as well.
7119     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7120         OpInfo.ConstraintType == TargetLowering::C_Other) {
7121       if (OpInfo.Type == InlineAsm::isInput)
7122         Flags |= InlineAsm::Extra_MayLoad;
7123       else if (OpInfo.Type == InlineAsm::isOutput)
7124         Flags |= InlineAsm::Extra_MayStore;
7125       else if (OpInfo.Type == InlineAsm::isClobber)
7126         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7127     }
7128   }
7129 
7130   unsigned get() const { return Flags; }
7131 };
7132 
7133 } // end anonymous namespace
7134 
7135 /// visitInlineAsm - Handle a call to an InlineAsm object.
7136 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7137   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7138 
7139   /// ConstraintOperands - Information about all of the constraints.
7140   SDISelAsmOperandInfoVector ConstraintOperands;
7141 
7142   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7143   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7144       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7145 
7146   bool hasMemory = false;
7147 
7148   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7149   ExtraFlags ExtraInfo(CS);
7150 
7151   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7152   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7153   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7154     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7155     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7156 
7157     MVT OpVT = MVT::Other;
7158 
7159     // Compute the value type for each operand.
7160     if (OpInfo.Type == InlineAsm::isInput ||
7161         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7162       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7163 
7164       // Process the call argument. BasicBlocks are labels, currently appearing
7165       // only in asm's.
7166       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7167         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7168       } else {
7169         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7170       }
7171 
7172       OpVT =
7173           OpInfo
7174               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7175               .getSimpleVT();
7176     }
7177 
7178     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7179       // The return value of the call is this value.  As such, there is no
7180       // corresponding argument.
7181       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7182       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7183         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7184                                       STy->getElementType(ResNo));
7185       } else {
7186         assert(ResNo == 0 && "Asm only has one result!");
7187         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7188       }
7189       ++ResNo;
7190     }
7191 
7192     OpInfo.ConstraintVT = OpVT;
7193 
7194     if (!hasMemory)
7195       hasMemory = OpInfo.hasMemory(TLI);
7196 
7197     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7198     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7199     auto TargetConstraint = TargetConstraints[i];
7200 
7201     // Compute the constraint code and ConstraintType to use.
7202     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7203 
7204     ExtraInfo.update(TargetConstraint);
7205   }
7206 
7207   SDValue Chain, Flag;
7208 
7209   // We won't need to flush pending loads if this asm doesn't touch
7210   // memory and is nonvolatile.
7211   if (hasMemory || IA->hasSideEffects())
7212     Chain = getRoot();
7213   else
7214     Chain = DAG.getRoot();
7215 
7216   // Second pass over the constraints: compute which constraint option to use
7217   // and assign registers to constraints that want a specific physreg.
7218   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7219     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7220 
7221     // If this is an output operand with a matching input operand, look up the
7222     // matching input. If their types mismatch, e.g. one is an integer, the
7223     // other is floating point, or their sizes are different, flag it as an
7224     // error.
7225     if (OpInfo.hasMatchingInput()) {
7226       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7227       patchMatchingInput(OpInfo, Input, DAG);
7228     }
7229 
7230     // Compute the constraint code and ConstraintType to use.
7231     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7232 
7233     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7234         OpInfo.Type == InlineAsm::isClobber)
7235       continue;
7236 
7237     // If this is a memory input, and if the operand is not indirect, do what we
7238     // need to to provide an address for the memory input.
7239     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7240         !OpInfo.isIndirect) {
7241       assert((OpInfo.isMultipleAlternative ||
7242               (OpInfo.Type == InlineAsm::isInput)) &&
7243              "Can only indirectify direct input operands!");
7244 
7245       // Memory operands really want the address of the value.
7246       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7247 
7248       // There is no longer a Value* corresponding to this operand.
7249       OpInfo.CallOperandVal = nullptr;
7250 
7251       // It is now an indirect operand.
7252       OpInfo.isIndirect = true;
7253     }
7254 
7255     // If this constraint is for a specific register, allocate it before
7256     // anything else.
7257     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7258       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7259   }
7260 
7261   // Third pass - Loop over all of the operands, assigning virtual or physregs
7262   // to register class operands.
7263   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7264     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7265 
7266     // C_Register operands have already been allocated, Other/Memory don't need
7267     // to be.
7268     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7269       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7270   }
7271 
7272   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7273   std::vector<SDValue> AsmNodeOperands;
7274   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7275   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7276       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7277 
7278   // If we have a !srcloc metadata node associated with it, we want to attach
7279   // this to the ultimately generated inline asm machineinstr.  To do this, we
7280   // pass in the third operand as this (potentially null) inline asm MDNode.
7281   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7282   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7283 
7284   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7285   // bits as operand 3.
7286   AsmNodeOperands.push_back(DAG.getTargetConstant(
7287       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7288 
7289   // Loop over all of the inputs, copying the operand values into the
7290   // appropriate registers and processing the output regs.
7291   RegsForValue RetValRegs;
7292 
7293   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7294   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7295 
7296   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7297     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7298 
7299     switch (OpInfo.Type) {
7300     case InlineAsm::isOutput:
7301       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7302           OpInfo.ConstraintType != TargetLowering::C_Register) {
7303         // Memory output, or 'other' output (e.g. 'X' constraint).
7304         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7305 
7306         unsigned ConstraintID =
7307             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7308         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7309                "Failed to convert memory constraint code to constraint id.");
7310 
7311         // Add information to the INLINEASM node to know about this output.
7312         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7313         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7314         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7315                                                         MVT::i32));
7316         AsmNodeOperands.push_back(OpInfo.CallOperand);
7317         break;
7318       }
7319 
7320       // Otherwise, this is a register or register class output.
7321 
7322       // Copy the output from the appropriate register.  Find a register that
7323       // we can use.
7324       if (OpInfo.AssignedRegs.Regs.empty()) {
7325         emitInlineAsmError(
7326             CS, "couldn't allocate output register for constraint '" +
7327                     Twine(OpInfo.ConstraintCode) + "'");
7328         return;
7329       }
7330 
7331       // If this is an indirect operand, store through the pointer after the
7332       // asm.
7333       if (OpInfo.isIndirect) {
7334         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7335                                                       OpInfo.CallOperandVal));
7336       } else {
7337         // This is the result value of the call.
7338         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7339         // Concatenate this output onto the outputs list.
7340         RetValRegs.append(OpInfo.AssignedRegs);
7341       }
7342 
7343       // Add information to the INLINEASM node to know that this register is
7344       // set.
7345       OpInfo.AssignedRegs
7346           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7347                                     ? InlineAsm::Kind_RegDefEarlyClobber
7348                                     : InlineAsm::Kind_RegDef,
7349                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7350       break;
7351 
7352     case InlineAsm::isInput: {
7353       SDValue InOperandVal = OpInfo.CallOperand;
7354 
7355       if (OpInfo.isMatchingInputConstraint()) {
7356         // If this is required to match an output register we have already set,
7357         // just use its register.
7358         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7359                                                   AsmNodeOperands);
7360         unsigned OpFlag =
7361           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7362         if (InlineAsm::isRegDefKind(OpFlag) ||
7363             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7364           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7365           if (OpInfo.isIndirect) {
7366             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7367             emitInlineAsmError(CS, "inline asm not supported yet:"
7368                                    " don't know how to handle tied "
7369                                    "indirect register inputs");
7370             return;
7371           }
7372 
7373           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7374           SmallVector<unsigned, 4> Regs;
7375 
7376           if (!createVirtualRegs(Regs,
7377                                  InlineAsm::getNumOperandRegisters(OpFlag),
7378                                  RegVT, DAG)) {
7379             emitInlineAsmError(CS, "inline asm error: This value type register "
7380                                    "class is not natively supported!");
7381             return;
7382           }
7383 
7384           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7385 
7386           SDLoc dl = getCurSDLoc();
7387           // Use the produced MatchedRegs object to
7388           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7389                                     CS.getInstruction());
7390           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7391                                            true, OpInfo.getMatchedOperand(), dl,
7392                                            DAG, AsmNodeOperands);
7393           break;
7394         }
7395 
7396         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7397         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7398                "Unexpected number of operands");
7399         // Add information to the INLINEASM node to know about this input.
7400         // See InlineAsm.h isUseOperandTiedToDef.
7401         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7402         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7403                                                     OpInfo.getMatchedOperand());
7404         AsmNodeOperands.push_back(DAG.getTargetConstant(
7405             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7406         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7407         break;
7408       }
7409 
7410       // Treat indirect 'X' constraint as memory.
7411       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7412           OpInfo.isIndirect)
7413         OpInfo.ConstraintType = TargetLowering::C_Memory;
7414 
7415       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7416         std::vector<SDValue> Ops;
7417         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7418                                           Ops, DAG);
7419         if (Ops.empty()) {
7420           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7421                                      Twine(OpInfo.ConstraintCode) + "'");
7422           return;
7423         }
7424 
7425         // Add information to the INLINEASM node to know about this input.
7426         unsigned ResOpType =
7427           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7428         AsmNodeOperands.push_back(DAG.getTargetConstant(
7429             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7430         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7431         break;
7432       }
7433 
7434       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7435         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7436         assert(InOperandVal.getValueType() ==
7437                    TLI.getPointerTy(DAG.getDataLayout()) &&
7438                "Memory operands expect pointer values");
7439 
7440         unsigned ConstraintID =
7441             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7442         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7443                "Failed to convert memory constraint code to constraint id.");
7444 
7445         // Add information to the INLINEASM node to know about this input.
7446         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7447         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7448         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7449                                                         getCurSDLoc(),
7450                                                         MVT::i32));
7451         AsmNodeOperands.push_back(InOperandVal);
7452         break;
7453       }
7454 
7455       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7456               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7457              "Unknown constraint type!");
7458 
7459       // TODO: Support this.
7460       if (OpInfo.isIndirect) {
7461         emitInlineAsmError(
7462             CS, "Don't know how to handle indirect register inputs yet "
7463                 "for constraint '" +
7464                     Twine(OpInfo.ConstraintCode) + "'");
7465         return;
7466       }
7467 
7468       // Copy the input into the appropriate registers.
7469       if (OpInfo.AssignedRegs.Regs.empty()) {
7470         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7471                                    Twine(OpInfo.ConstraintCode) + "'");
7472         return;
7473       }
7474 
7475       SDLoc dl = getCurSDLoc();
7476 
7477       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7478                                         Chain, &Flag, CS.getInstruction());
7479 
7480       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7481                                                dl, DAG, AsmNodeOperands);
7482       break;
7483     }
7484     case InlineAsm::isClobber:
7485       // Add the clobbered value to the operand list, so that the register
7486       // allocator is aware that the physreg got clobbered.
7487       if (!OpInfo.AssignedRegs.Regs.empty())
7488         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7489                                                  false, 0, getCurSDLoc(), DAG,
7490                                                  AsmNodeOperands);
7491       break;
7492     }
7493   }
7494 
7495   // Finish up input operands.  Set the input chain and add the flag last.
7496   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7497   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7498 
7499   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7500                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7501   Flag = Chain.getValue(1);
7502 
7503   // If this asm returns a register value, copy the result from that register
7504   // and set it as the value of the call.
7505   if (!RetValRegs.Regs.empty()) {
7506     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7507                                              Chain, &Flag, CS.getInstruction());
7508 
7509     // FIXME: Why don't we do this for inline asms with MRVs?
7510     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7511       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7512 
7513       // If any of the results of the inline asm is a vector, it may have the
7514       // wrong width/num elts.  This can happen for register classes that can
7515       // contain multiple different value types.  The preg or vreg allocated may
7516       // not have the same VT as was expected.  Convert it to the right type
7517       // with bit_convert.
7518       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7519         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7520                           ResultType, Val);
7521 
7522       } else if (ResultType != Val.getValueType() &&
7523                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7524         // If a result value was tied to an input value, the computed result may
7525         // have a wider width than the expected result.  Extract the relevant
7526         // portion.
7527         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7528       }
7529 
7530       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7531     }
7532 
7533     setValue(CS.getInstruction(), Val);
7534     // Don't need to use this as a chain in this case.
7535     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7536       return;
7537   }
7538 
7539   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7540 
7541   // Process indirect outputs, first output all of the flagged copies out of
7542   // physregs.
7543   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7544     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7545     const Value *Ptr = IndirectStoresToEmit[i].second;
7546     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7547                                              Chain, &Flag, IA);
7548     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7549   }
7550 
7551   // Emit the non-flagged stores from the physregs.
7552   SmallVector<SDValue, 8> OutChains;
7553   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7554     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7555                                getValue(StoresToEmit[i].second),
7556                                MachinePointerInfo(StoresToEmit[i].second));
7557     OutChains.push_back(Val);
7558   }
7559 
7560   if (!OutChains.empty())
7561     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7562 
7563   DAG.setRoot(Chain);
7564 }
7565 
7566 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7567                                              const Twine &Message) {
7568   LLVMContext &Ctx = *DAG.getContext();
7569   Ctx.emitError(CS.getInstruction(), Message);
7570 
7571   // Make sure we leave the DAG in a valid state
7572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7573   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7574   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7575 }
7576 
7577 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7578   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7579                           MVT::Other, getRoot(),
7580                           getValue(I.getArgOperand(0)),
7581                           DAG.getSrcValue(I.getArgOperand(0))));
7582 }
7583 
7584 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7586   const DataLayout &DL = DAG.getDataLayout();
7587   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7588                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7589                            DAG.getSrcValue(I.getOperand(0)),
7590                            DL.getABITypeAlignment(I.getType()));
7591   setValue(&I, V);
7592   DAG.setRoot(V.getValue(1));
7593 }
7594 
7595 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7596   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7597                           MVT::Other, getRoot(),
7598                           getValue(I.getArgOperand(0)),
7599                           DAG.getSrcValue(I.getArgOperand(0))));
7600 }
7601 
7602 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7603   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7604                           MVT::Other, getRoot(),
7605                           getValue(I.getArgOperand(0)),
7606                           getValue(I.getArgOperand(1)),
7607                           DAG.getSrcValue(I.getArgOperand(0)),
7608                           DAG.getSrcValue(I.getArgOperand(1))));
7609 }
7610 
7611 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7612                                                     const Instruction &I,
7613                                                     SDValue Op) {
7614   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7615   if (!Range)
7616     return Op;
7617 
7618   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7619   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7620     return Op;
7621 
7622   APInt Lo = CR.getUnsignedMin();
7623   if (!Lo.isMinValue())
7624     return Op;
7625 
7626   APInt Hi = CR.getUnsignedMax();
7627   unsigned Bits = Hi.getActiveBits();
7628 
7629   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7630 
7631   SDLoc SL = getCurSDLoc();
7632 
7633   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7634                              DAG.getValueType(SmallVT));
7635   unsigned NumVals = Op.getNode()->getNumValues();
7636   if (NumVals == 1)
7637     return ZExt;
7638 
7639   SmallVector<SDValue, 4> Ops;
7640 
7641   Ops.push_back(ZExt);
7642   for (unsigned I = 1; I != NumVals; ++I)
7643     Ops.push_back(Op.getValue(I));
7644 
7645   return DAG.getMergeValues(Ops, SL);
7646 }
7647 
7648 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7649 /// the call being lowered.
7650 ///
7651 /// This is a helper for lowering intrinsics that follow a target calling
7652 /// convention or require stack pointer adjustment. Only a subset of the
7653 /// intrinsic's operands need to participate in the calling convention.
7654 void SelectionDAGBuilder::populateCallLoweringInfo(
7655     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7656     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7657     bool IsPatchPoint) {
7658   TargetLowering::ArgListTy Args;
7659   Args.reserve(NumArgs);
7660 
7661   // Populate the argument list.
7662   // Attributes for args start at offset 1, after the return attribute.
7663   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7664        ArgI != ArgE; ++ArgI) {
7665     const Value *V = CS->getOperand(ArgI);
7666 
7667     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7668 
7669     TargetLowering::ArgListEntry Entry;
7670     Entry.Node = getValue(V);
7671     Entry.Ty = V->getType();
7672     Entry.setAttributes(&CS, ArgIdx);
7673     Args.push_back(Entry);
7674   }
7675 
7676   CLI.setDebugLoc(getCurSDLoc())
7677       .setChain(getRoot())
7678       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7679       .setDiscardResult(CS->use_empty())
7680       .setIsPatchPoint(IsPatchPoint);
7681 }
7682 
7683 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7684 /// or patchpoint target node's operand list.
7685 ///
7686 /// Constants are converted to TargetConstants purely as an optimization to
7687 /// avoid constant materialization and register allocation.
7688 ///
7689 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7690 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7691 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7692 /// address materialization and register allocation, but may also be required
7693 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7694 /// alloca in the entry block, then the runtime may assume that the alloca's
7695 /// StackMap location can be read immediately after compilation and that the
7696 /// location is valid at any point during execution (this is similar to the
7697 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7698 /// only available in a register, then the runtime would need to trap when
7699 /// execution reaches the StackMap in order to read the alloca's location.
7700 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7701                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7702                                 SelectionDAGBuilder &Builder) {
7703   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7704     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7705     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7706       Ops.push_back(
7707         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7708       Ops.push_back(
7709         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7710     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7711       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7712       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7713           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7714     } else
7715       Ops.push_back(OpVal);
7716   }
7717 }
7718 
7719 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7720 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7721   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7722   //                                  [live variables...])
7723 
7724   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7725 
7726   SDValue Chain, InFlag, Callee, NullPtr;
7727   SmallVector<SDValue, 32> Ops;
7728 
7729   SDLoc DL = getCurSDLoc();
7730   Callee = getValue(CI.getCalledValue());
7731   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7732 
7733   // The stackmap intrinsic only records the live variables (the arguemnts
7734   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7735   // intrinsic, this won't be lowered to a function call. This means we don't
7736   // have to worry about calling conventions and target specific lowering code.
7737   // Instead we perform the call lowering right here.
7738   //
7739   // chain, flag = CALLSEQ_START(chain, 0, 0)
7740   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7741   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7742   //
7743   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7744   InFlag = Chain.getValue(1);
7745 
7746   // Add the <id> and <numBytes> constants.
7747   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7748   Ops.push_back(DAG.getTargetConstant(
7749                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7750   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7751   Ops.push_back(DAG.getTargetConstant(
7752                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7753                   MVT::i32));
7754 
7755   // Push live variables for the stack map.
7756   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7757 
7758   // We are not pushing any register mask info here on the operands list,
7759   // because the stackmap doesn't clobber anything.
7760 
7761   // Push the chain and the glue flag.
7762   Ops.push_back(Chain);
7763   Ops.push_back(InFlag);
7764 
7765   // Create the STACKMAP node.
7766   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7767   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7768   Chain = SDValue(SM, 0);
7769   InFlag = Chain.getValue(1);
7770 
7771   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7772 
7773   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7774 
7775   // Set the root to the target-lowered call chain.
7776   DAG.setRoot(Chain);
7777 
7778   // Inform the Frame Information that we have a stackmap in this function.
7779   FuncInfo.MF->getFrameInfo().setHasStackMap();
7780 }
7781 
7782 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7783 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7784                                           const BasicBlock *EHPadBB) {
7785   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7786   //                                                 i32 <numBytes>,
7787   //                                                 i8* <target>,
7788   //                                                 i32 <numArgs>,
7789   //                                                 [Args...],
7790   //                                                 [live variables...])
7791 
7792   CallingConv::ID CC = CS.getCallingConv();
7793   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7794   bool HasDef = !CS->getType()->isVoidTy();
7795   SDLoc dl = getCurSDLoc();
7796   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7797 
7798   // Handle immediate and symbolic callees.
7799   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7800     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7801                                    /*isTarget=*/true);
7802   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7803     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7804                                          SDLoc(SymbolicCallee),
7805                                          SymbolicCallee->getValueType(0));
7806 
7807   // Get the real number of arguments participating in the call <numArgs>
7808   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7809   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7810 
7811   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7812   // Intrinsics include all meta-operands up to but not including CC.
7813   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7814   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7815          "Not enough arguments provided to the patchpoint intrinsic");
7816 
7817   // For AnyRegCC the arguments are lowered later on manually.
7818   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7819   Type *ReturnTy =
7820     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7821 
7822   TargetLowering::CallLoweringInfo CLI(DAG);
7823   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7824                            true);
7825   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7826 
7827   SDNode *CallEnd = Result.second.getNode();
7828   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7829     CallEnd = CallEnd->getOperand(0).getNode();
7830 
7831   /// Get a call instruction from the call sequence chain.
7832   /// Tail calls are not allowed.
7833   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7834          "Expected a callseq node.");
7835   SDNode *Call = CallEnd->getOperand(0).getNode();
7836   bool HasGlue = Call->getGluedNode();
7837 
7838   // Replace the target specific call node with the patchable intrinsic.
7839   SmallVector<SDValue, 8> Ops;
7840 
7841   // Add the <id> and <numBytes> constants.
7842   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7843   Ops.push_back(DAG.getTargetConstant(
7844                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7845   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7846   Ops.push_back(DAG.getTargetConstant(
7847                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7848                   MVT::i32));
7849 
7850   // Add the callee.
7851   Ops.push_back(Callee);
7852 
7853   // Adjust <numArgs> to account for any arguments that have been passed on the
7854   // stack instead.
7855   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7856   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7857   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7858   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7859 
7860   // Add the calling convention
7861   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7862 
7863   // Add the arguments we omitted previously. The register allocator should
7864   // place these in any free register.
7865   if (IsAnyRegCC)
7866     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7867       Ops.push_back(getValue(CS.getArgument(i)));
7868 
7869   // Push the arguments from the call instruction up to the register mask.
7870   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7871   Ops.append(Call->op_begin() + 2, e);
7872 
7873   // Push live variables for the stack map.
7874   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7875 
7876   // Push the register mask info.
7877   if (HasGlue)
7878     Ops.push_back(*(Call->op_end()-2));
7879   else
7880     Ops.push_back(*(Call->op_end()-1));
7881 
7882   // Push the chain (this is originally the first operand of the call, but
7883   // becomes now the last or second to last operand).
7884   Ops.push_back(*(Call->op_begin()));
7885 
7886   // Push the glue flag (last operand).
7887   if (HasGlue)
7888     Ops.push_back(*(Call->op_end()-1));
7889 
7890   SDVTList NodeTys;
7891   if (IsAnyRegCC && HasDef) {
7892     // Create the return types based on the intrinsic definition
7893     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7894     SmallVector<EVT, 3> ValueVTs;
7895     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7896     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7897 
7898     // There is always a chain and a glue type at the end
7899     ValueVTs.push_back(MVT::Other);
7900     ValueVTs.push_back(MVT::Glue);
7901     NodeTys = DAG.getVTList(ValueVTs);
7902   } else
7903     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7904 
7905   // Replace the target specific call node with a PATCHPOINT node.
7906   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7907                                          dl, NodeTys, Ops);
7908 
7909   // Update the NodeMap.
7910   if (HasDef) {
7911     if (IsAnyRegCC)
7912       setValue(CS.getInstruction(), SDValue(MN, 0));
7913     else
7914       setValue(CS.getInstruction(), Result.first);
7915   }
7916 
7917   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7918   // call sequence. Furthermore the location of the chain and glue can change
7919   // when the AnyReg calling convention is used and the intrinsic returns a
7920   // value.
7921   if (IsAnyRegCC && HasDef) {
7922     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7923     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7924     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7925   } else
7926     DAG.ReplaceAllUsesWith(Call, MN);
7927   DAG.DeleteNode(Call);
7928 
7929   // Inform the Frame Information that we have a patchpoint in this function.
7930   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7931 }
7932 
7933 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7934                                             unsigned Intrinsic) {
7935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7936   SDValue Op1 = getValue(I.getArgOperand(0));
7937   SDValue Op2;
7938   if (I.getNumArgOperands() > 1)
7939     Op2 = getValue(I.getArgOperand(1));
7940   SDLoc dl = getCurSDLoc();
7941   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7942   SDValue Res;
7943   FastMathFlags FMF;
7944   if (isa<FPMathOperator>(I))
7945     FMF = I.getFastMathFlags();
7946   SDNodeFlags SDFlags;
7947   SDFlags.setNoNaNs(FMF.noNaNs());
7948 
7949   switch (Intrinsic) {
7950   case Intrinsic::experimental_vector_reduce_fadd:
7951     if (FMF.unsafeAlgebra())
7952       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7953     else
7954       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7955     break;
7956   case Intrinsic::experimental_vector_reduce_fmul:
7957     if (FMF.unsafeAlgebra())
7958       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7959     else
7960       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7961     break;
7962   case Intrinsic::experimental_vector_reduce_add:
7963     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7964     break;
7965   case Intrinsic::experimental_vector_reduce_mul:
7966     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7967     break;
7968   case Intrinsic::experimental_vector_reduce_and:
7969     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7970     break;
7971   case Intrinsic::experimental_vector_reduce_or:
7972     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7973     break;
7974   case Intrinsic::experimental_vector_reduce_xor:
7975     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7976     break;
7977   case Intrinsic::experimental_vector_reduce_smax:
7978     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7979     break;
7980   case Intrinsic::experimental_vector_reduce_smin:
7981     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
7982     break;
7983   case Intrinsic::experimental_vector_reduce_umax:
7984     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
7985     break;
7986   case Intrinsic::experimental_vector_reduce_umin:
7987     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
7988     break;
7989   case Intrinsic::experimental_vector_reduce_fmax:
7990     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
7991     break;
7992   case Intrinsic::experimental_vector_reduce_fmin:
7993     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
7994     break;
7995   default:
7996     llvm_unreachable("Unhandled vector reduce intrinsic");
7997   }
7998   setValue(&I, Res);
7999 }
8000 
8001 /// Returns an AttributeList representing the attributes applied to the return
8002 /// value of the given call.
8003 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8004   SmallVector<Attribute::AttrKind, 2> Attrs;
8005   if (CLI.RetSExt)
8006     Attrs.push_back(Attribute::SExt);
8007   if (CLI.RetZExt)
8008     Attrs.push_back(Attribute::ZExt);
8009   if (CLI.IsInReg)
8010     Attrs.push_back(Attribute::InReg);
8011 
8012   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8013                             Attrs);
8014 }
8015 
8016 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8017 /// implementation, which just calls LowerCall.
8018 /// FIXME: When all targets are
8019 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8020 std::pair<SDValue, SDValue>
8021 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8022   // Handle the incoming return values from the call.
8023   CLI.Ins.clear();
8024   Type *OrigRetTy = CLI.RetTy;
8025   SmallVector<EVT, 4> RetTys;
8026   SmallVector<uint64_t, 4> Offsets;
8027   auto &DL = CLI.DAG.getDataLayout();
8028   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8029 
8030   if (CLI.IsPostTypeLegalization) {
8031     // If we are lowering a libcall after legalization, split the return type.
8032     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8033     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8034     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8035       EVT RetVT = OldRetTys[i];
8036       uint64_t Offset = OldOffsets[i];
8037       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8038       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8039       unsigned RegisterVTSize = RegisterVT.getSizeInBits();
8040       RetTys.append(NumRegs, RegisterVT);
8041       for (unsigned j = 0; j != NumRegs; ++j)
8042         Offsets.push_back(Offset + j * RegisterVTSize);
8043     }
8044   }
8045 
8046   SmallVector<ISD::OutputArg, 4> Outs;
8047   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8048 
8049   bool CanLowerReturn =
8050       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8051                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8052 
8053   SDValue DemoteStackSlot;
8054   int DemoteStackIdx = -100;
8055   if (!CanLowerReturn) {
8056     // FIXME: equivalent assert?
8057     // assert(!CS.hasInAllocaArgument() &&
8058     //        "sret demotion is incompatible with inalloca");
8059     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8060     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8061     MachineFunction &MF = CLI.DAG.getMachineFunction();
8062     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8063     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8064 
8065     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8066     ArgListEntry Entry;
8067     Entry.Node = DemoteStackSlot;
8068     Entry.Ty = StackSlotPtrType;
8069     Entry.IsSExt = false;
8070     Entry.IsZExt = false;
8071     Entry.IsInReg = false;
8072     Entry.IsSRet = true;
8073     Entry.IsNest = false;
8074     Entry.IsByVal = false;
8075     Entry.IsReturned = false;
8076     Entry.IsSwiftSelf = false;
8077     Entry.IsSwiftError = false;
8078     Entry.Alignment = Align;
8079     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8080     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8081 
8082     // sret demotion isn't compatible with tail-calls, since the sret argument
8083     // points into the callers stack frame.
8084     CLI.IsTailCall = false;
8085   } else {
8086     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8087       EVT VT = RetTys[I];
8088       MVT RegisterVT =
8089           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8090       unsigned NumRegs =
8091           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8092       for (unsigned i = 0; i != NumRegs; ++i) {
8093         ISD::InputArg MyFlags;
8094         MyFlags.VT = RegisterVT;
8095         MyFlags.ArgVT = VT;
8096         MyFlags.Used = CLI.IsReturnValueUsed;
8097         if (CLI.RetSExt)
8098           MyFlags.Flags.setSExt();
8099         if (CLI.RetZExt)
8100           MyFlags.Flags.setZExt();
8101         if (CLI.IsInReg)
8102           MyFlags.Flags.setInReg();
8103         CLI.Ins.push_back(MyFlags);
8104       }
8105     }
8106   }
8107 
8108   // We push in swifterror return as the last element of CLI.Ins.
8109   ArgListTy &Args = CLI.getArgs();
8110   if (supportSwiftError()) {
8111     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8112       if (Args[i].IsSwiftError) {
8113         ISD::InputArg MyFlags;
8114         MyFlags.VT = getPointerTy(DL);
8115         MyFlags.ArgVT = EVT(getPointerTy(DL));
8116         MyFlags.Flags.setSwiftError();
8117         CLI.Ins.push_back(MyFlags);
8118       }
8119     }
8120   }
8121 
8122   // Handle all of the outgoing arguments.
8123   CLI.Outs.clear();
8124   CLI.OutVals.clear();
8125   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8126     SmallVector<EVT, 4> ValueVTs;
8127     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8128     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8129     Type *FinalType = Args[i].Ty;
8130     if (Args[i].IsByVal)
8131       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8132     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8133         FinalType, CLI.CallConv, CLI.IsVarArg);
8134     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8135          ++Value) {
8136       EVT VT = ValueVTs[Value];
8137       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8138       SDValue Op = SDValue(Args[i].Node.getNode(),
8139                            Args[i].Node.getResNo() + Value);
8140       ISD::ArgFlagsTy Flags;
8141 
8142       // Certain targets (such as MIPS), may have a different ABI alignment
8143       // for a type depending on the context. Give the target a chance to
8144       // specify the alignment it wants.
8145       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8146 
8147       if (Args[i].IsZExt)
8148         Flags.setZExt();
8149       if (Args[i].IsSExt)
8150         Flags.setSExt();
8151       if (Args[i].IsInReg) {
8152         // If we are using vectorcall calling convention, a structure that is
8153         // passed InReg - is surely an HVA
8154         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8155             isa<StructType>(FinalType)) {
8156           // The first value of a structure is marked
8157           if (0 == Value)
8158             Flags.setHvaStart();
8159           Flags.setHva();
8160         }
8161         // Set InReg Flag
8162         Flags.setInReg();
8163       }
8164       if (Args[i].IsSRet)
8165         Flags.setSRet();
8166       if (Args[i].IsSwiftSelf)
8167         Flags.setSwiftSelf();
8168       if (Args[i].IsSwiftError)
8169         Flags.setSwiftError();
8170       if (Args[i].IsByVal)
8171         Flags.setByVal();
8172       if (Args[i].IsInAlloca) {
8173         Flags.setInAlloca();
8174         // Set the byval flag for CCAssignFn callbacks that don't know about
8175         // inalloca.  This way we can know how many bytes we should've allocated
8176         // and how many bytes a callee cleanup function will pop.  If we port
8177         // inalloca to more targets, we'll have to add custom inalloca handling
8178         // in the various CC lowering callbacks.
8179         Flags.setByVal();
8180       }
8181       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8182         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8183         Type *ElementTy = Ty->getElementType();
8184         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8185         // For ByVal, alignment should come from FE.  BE will guess if this
8186         // info is not there but there are cases it cannot get right.
8187         unsigned FrameAlign;
8188         if (Args[i].Alignment)
8189           FrameAlign = Args[i].Alignment;
8190         else
8191           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8192         Flags.setByValAlign(FrameAlign);
8193       }
8194       if (Args[i].IsNest)
8195         Flags.setNest();
8196       if (NeedsRegBlock)
8197         Flags.setInConsecutiveRegs();
8198       Flags.setOrigAlign(OriginalAlignment);
8199 
8200       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8201       unsigned NumParts =
8202           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8203       SmallVector<SDValue, 4> Parts(NumParts);
8204       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8205 
8206       if (Args[i].IsSExt)
8207         ExtendKind = ISD::SIGN_EXTEND;
8208       else if (Args[i].IsZExt)
8209         ExtendKind = ISD::ZERO_EXTEND;
8210 
8211       // Conservatively only handle 'returned' on non-vectors for now
8212       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
8213         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8214                "unexpected use of 'returned'");
8215         // Before passing 'returned' to the target lowering code, ensure that
8216         // either the register MVT and the actual EVT are the same size or that
8217         // the return value and argument are extended in the same way; in these
8218         // cases it's safe to pass the argument register value unchanged as the
8219         // return register value (although it's at the target's option whether
8220         // to do so)
8221         // TODO: allow code generation to take advantage of partially preserved
8222         // registers rather than clobbering the entire register when the
8223         // parameter extension method is not compatible with the return
8224         // extension method
8225         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8226             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8227              CLI.RetZExt == Args[i].IsZExt))
8228           Flags.setReturned();
8229       }
8230 
8231       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8232                      CLI.CS.getInstruction(), ExtendKind, true);
8233 
8234       for (unsigned j = 0; j != NumParts; ++j) {
8235         // if it isn't first piece, alignment must be 1
8236         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8237                                i < CLI.NumFixedArgs,
8238                                i, j*Parts[j].getValueType().getStoreSize());
8239         if (NumParts > 1 && j == 0)
8240           MyFlags.Flags.setSplit();
8241         else if (j != 0) {
8242           MyFlags.Flags.setOrigAlign(1);
8243           if (j == NumParts - 1)
8244             MyFlags.Flags.setSplitEnd();
8245         }
8246 
8247         CLI.Outs.push_back(MyFlags);
8248         CLI.OutVals.push_back(Parts[j]);
8249       }
8250 
8251       if (NeedsRegBlock && Value == NumValues - 1)
8252         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8253     }
8254   }
8255 
8256   SmallVector<SDValue, 4> InVals;
8257   CLI.Chain = LowerCall(CLI, InVals);
8258 
8259   // Update CLI.InVals to use outside of this function.
8260   CLI.InVals = InVals;
8261 
8262   // Verify that the target's LowerCall behaved as expected.
8263   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8264          "LowerCall didn't return a valid chain!");
8265   assert((!CLI.IsTailCall || InVals.empty()) &&
8266          "LowerCall emitted a return value for a tail call!");
8267   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8268          "LowerCall didn't emit the correct number of values!");
8269 
8270   // For a tail call, the return value is merely live-out and there aren't
8271   // any nodes in the DAG representing it. Return a special value to
8272   // indicate that a tail call has been emitted and no more Instructions
8273   // should be processed in the current block.
8274   if (CLI.IsTailCall) {
8275     CLI.DAG.setRoot(CLI.Chain);
8276     return std::make_pair(SDValue(), SDValue());
8277   }
8278 
8279 #ifndef NDEBUG
8280   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8281     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8282     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8283            "LowerCall emitted a value with the wrong type!");
8284   }
8285 #endif
8286 
8287   SmallVector<SDValue, 4> ReturnValues;
8288   if (!CanLowerReturn) {
8289     // The instruction result is the result of loading from the
8290     // hidden sret parameter.
8291     SmallVector<EVT, 1> PVTs;
8292     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
8293 
8294     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8295     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8296     EVT PtrVT = PVTs[0];
8297 
8298     unsigned NumValues = RetTys.size();
8299     ReturnValues.resize(NumValues);
8300     SmallVector<SDValue, 4> Chains(NumValues);
8301 
8302     // An aggregate return value cannot wrap around the address space, so
8303     // offsets to its parts don't wrap either.
8304     SDNodeFlags Flags;
8305     Flags.setNoUnsignedWrap(true);
8306 
8307     for (unsigned i = 0; i < NumValues; ++i) {
8308       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8309                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8310                                                         PtrVT), Flags);
8311       SDValue L = CLI.DAG.getLoad(
8312           RetTys[i], CLI.DL, CLI.Chain, Add,
8313           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8314                                             DemoteStackIdx, Offsets[i]),
8315           /* Alignment = */ 1);
8316       ReturnValues[i] = L;
8317       Chains[i] = L.getValue(1);
8318     }
8319 
8320     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8321   } else {
8322     // Collect the legal value parts into potentially illegal values
8323     // that correspond to the original function's return values.
8324     Optional<ISD::NodeType> AssertOp;
8325     if (CLI.RetSExt)
8326       AssertOp = ISD::AssertSext;
8327     else if (CLI.RetZExt)
8328       AssertOp = ISD::AssertZext;
8329     unsigned CurReg = 0;
8330     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8331       EVT VT = RetTys[I];
8332       MVT RegisterVT =
8333           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8334       unsigned NumRegs =
8335           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8336 
8337       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8338                                               NumRegs, RegisterVT, VT, nullptr,
8339                                               AssertOp, true));
8340       CurReg += NumRegs;
8341     }
8342 
8343     // For a function returning void, there is no return value. We can't create
8344     // such a node, so we just return a null return value in that case. In
8345     // that case, nothing will actually look at the value.
8346     if (ReturnValues.empty())
8347       return std::make_pair(SDValue(), CLI.Chain);
8348   }
8349 
8350   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8351                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8352   return std::make_pair(Res, CLI.Chain);
8353 }
8354 
8355 void TargetLowering::LowerOperationWrapper(SDNode *N,
8356                                            SmallVectorImpl<SDValue> &Results,
8357                                            SelectionDAG &DAG) const {
8358   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8359     Results.push_back(Res);
8360 }
8361 
8362 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8363   llvm_unreachable("LowerOperation not implemented for this target!");
8364 }
8365 
8366 void
8367 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8368   SDValue Op = getNonRegisterValue(V);
8369   assert((Op.getOpcode() != ISD::CopyFromReg ||
8370           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8371          "Copy from a reg to the same reg!");
8372   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8373 
8374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8375   // If this is an InlineAsm we have to match the registers required, not the
8376   // notional registers required by the type.
8377 
8378   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8379                    V->getType(), isABIRegCopy(V));
8380   SDValue Chain = DAG.getEntryNode();
8381 
8382   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8383                               FuncInfo.PreferredExtendType.end())
8384                                  ? ISD::ANY_EXTEND
8385                                  : FuncInfo.PreferredExtendType[V];
8386   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8387   PendingExports.push_back(Chain);
8388 }
8389 
8390 #include "llvm/CodeGen/SelectionDAGISel.h"
8391 
8392 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8393 /// entry block, return true.  This includes arguments used by switches, since
8394 /// the switch may expand into multiple basic blocks.
8395 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8396   // With FastISel active, we may be splitting blocks, so force creation
8397   // of virtual registers for all non-dead arguments.
8398   if (FastISel)
8399     return A->use_empty();
8400 
8401   const BasicBlock &Entry = A->getParent()->front();
8402   for (const User *U : A->users())
8403     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8404       return false;  // Use not in entry block.
8405 
8406   return true;
8407 }
8408 
8409 using ArgCopyElisionMapTy =
8410     DenseMap<const Argument *,
8411              std::pair<const AllocaInst *, const StoreInst *>>;
8412 
8413 /// Scan the entry block of the function in FuncInfo for arguments that look
8414 /// like copies into a local alloca. Record any copied arguments in
8415 /// ArgCopyElisionCandidates.
8416 static void
8417 findArgumentCopyElisionCandidates(const DataLayout &DL,
8418                                   FunctionLoweringInfo *FuncInfo,
8419                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8420   // Record the state of every static alloca used in the entry block. Argument
8421   // allocas are all used in the entry block, so we need approximately as many
8422   // entries as we have arguments.
8423   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8424   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8425   unsigned NumArgs = FuncInfo->Fn->arg_size();
8426   StaticAllocas.reserve(NumArgs * 2);
8427 
8428   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8429     if (!V)
8430       return nullptr;
8431     V = V->stripPointerCasts();
8432     const auto *AI = dyn_cast<AllocaInst>(V);
8433     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8434       return nullptr;
8435     auto Iter = StaticAllocas.insert({AI, Unknown});
8436     return &Iter.first->second;
8437   };
8438 
8439   // Look for stores of arguments to static allocas. Look through bitcasts and
8440   // GEPs to handle type coercions, as long as the alloca is fully initialized
8441   // by the store. Any non-store use of an alloca escapes it and any subsequent
8442   // unanalyzed store might write it.
8443   // FIXME: Handle structs initialized with multiple stores.
8444   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8445     // Look for stores, and handle non-store uses conservatively.
8446     const auto *SI = dyn_cast<StoreInst>(&I);
8447     if (!SI) {
8448       // We will look through cast uses, so ignore them completely.
8449       if (I.isCast())
8450         continue;
8451       // Ignore debug info intrinsics, they don't escape or store to allocas.
8452       if (isa<DbgInfoIntrinsic>(I))
8453         continue;
8454       // This is an unknown instruction. Assume it escapes or writes to all
8455       // static alloca operands.
8456       for (const Use &U : I.operands()) {
8457         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8458           *Info = StaticAllocaInfo::Clobbered;
8459       }
8460       continue;
8461     }
8462 
8463     // If the stored value is a static alloca, mark it as escaped.
8464     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8465       *Info = StaticAllocaInfo::Clobbered;
8466 
8467     // Check if the destination is a static alloca.
8468     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8469     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8470     if (!Info)
8471       continue;
8472     const AllocaInst *AI = cast<AllocaInst>(Dst);
8473 
8474     // Skip allocas that have been initialized or clobbered.
8475     if (*Info != StaticAllocaInfo::Unknown)
8476       continue;
8477 
8478     // Check if the stored value is an argument, and that this store fully
8479     // initializes the alloca. Don't elide copies from the same argument twice.
8480     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8481     const auto *Arg = dyn_cast<Argument>(Val);
8482     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8483         Arg->getType()->isEmptyTy() ||
8484         DL.getTypeStoreSize(Arg->getType()) !=
8485             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8486         ArgCopyElisionCandidates.count(Arg)) {
8487       *Info = StaticAllocaInfo::Clobbered;
8488       continue;
8489     }
8490 
8491     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8492 
8493     // Mark this alloca and store for argument copy elision.
8494     *Info = StaticAllocaInfo::Elidable;
8495     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8496 
8497     // Stop scanning if we've seen all arguments. This will happen early in -O0
8498     // builds, which is useful, because -O0 builds have large entry blocks and
8499     // many allocas.
8500     if (ArgCopyElisionCandidates.size() == NumArgs)
8501       break;
8502   }
8503 }
8504 
8505 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8506 /// ArgVal is a load from a suitable fixed stack object.
8507 static void tryToElideArgumentCopy(
8508     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8509     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8510     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8511     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8512     SDValue ArgVal, bool &ArgHasUses) {
8513   // Check if this is a load from a fixed stack object.
8514   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8515   if (!LNode)
8516     return;
8517   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8518   if (!FINode)
8519     return;
8520 
8521   // Check that the fixed stack object is the right size and alignment.
8522   // Look at the alignment that the user wrote on the alloca instead of looking
8523   // at the stack object.
8524   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8525   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8526   const AllocaInst *AI = ArgCopyIter->second.first;
8527   int FixedIndex = FINode->getIndex();
8528   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8529   int OldIndex = AllocaIndex;
8530   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8531   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8532     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8533                     "object size\n");
8534     return;
8535   }
8536   unsigned RequiredAlignment = AI->getAlignment();
8537   if (!RequiredAlignment) {
8538     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8539         AI->getAllocatedType());
8540   }
8541   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8542     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8543                     "greater than stack argument alignment ("
8544                  << RequiredAlignment << " vs "
8545                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8546     return;
8547   }
8548 
8549   // Perform the elision. Delete the old stack object and replace its only use
8550   // in the variable info map. Mark the stack object as mutable.
8551   DEBUG({
8552     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8553            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8554            << '\n';
8555   });
8556   MFI.RemoveStackObject(OldIndex);
8557   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8558   AllocaIndex = FixedIndex;
8559   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8560   Chains.push_back(ArgVal.getValue(1));
8561 
8562   // Avoid emitting code for the store implementing the copy.
8563   const StoreInst *SI = ArgCopyIter->second.second;
8564   ElidedArgCopyInstrs.insert(SI);
8565 
8566   // Check for uses of the argument again so that we can avoid exporting ArgVal
8567   // if it is't used by anything other than the store.
8568   for (const Value *U : Arg.users()) {
8569     if (U != SI) {
8570       ArgHasUses = true;
8571       break;
8572     }
8573   }
8574 }
8575 
8576 void SelectionDAGISel::LowerArguments(const Function &F) {
8577   SelectionDAG &DAG = SDB->DAG;
8578   SDLoc dl = SDB->getCurSDLoc();
8579   const DataLayout &DL = DAG.getDataLayout();
8580   SmallVector<ISD::InputArg, 16> Ins;
8581 
8582   if (!FuncInfo->CanLowerReturn) {
8583     // Put in an sret pointer parameter before all the other parameters.
8584     SmallVector<EVT, 1> ValueVTs;
8585     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8586                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8587 
8588     // NOTE: Assuming that a pointer will never break down to more than one VT
8589     // or one register.
8590     ISD::ArgFlagsTy Flags;
8591     Flags.setSRet();
8592     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8593     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8594                          ISD::InputArg::NoArgIndex, 0);
8595     Ins.push_back(RetArg);
8596   }
8597 
8598   // Look for stores of arguments to static allocas. Mark such arguments with a
8599   // flag to ask the target to give us the memory location of that argument if
8600   // available.
8601   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8602   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8603 
8604   // Set up the incoming argument description vector.
8605   for (const Argument &Arg : F.args()) {
8606     unsigned ArgNo = Arg.getArgNo();
8607     SmallVector<EVT, 4> ValueVTs;
8608     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8609     bool isArgValueUsed = !Arg.use_empty();
8610     unsigned PartBase = 0;
8611     Type *FinalType = Arg.getType();
8612     if (Arg.hasAttribute(Attribute::ByVal))
8613       FinalType = cast<PointerType>(FinalType)->getElementType();
8614     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8615         FinalType, F.getCallingConv(), F.isVarArg());
8616     for (unsigned Value = 0, NumValues = ValueVTs.size();
8617          Value != NumValues; ++Value) {
8618       EVT VT = ValueVTs[Value];
8619       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8620       ISD::ArgFlagsTy Flags;
8621 
8622       // Certain targets (such as MIPS), may have a different ABI alignment
8623       // for a type depending on the context. Give the target a chance to
8624       // specify the alignment it wants.
8625       unsigned OriginalAlignment =
8626           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8627 
8628       if (Arg.hasAttribute(Attribute::ZExt))
8629         Flags.setZExt();
8630       if (Arg.hasAttribute(Attribute::SExt))
8631         Flags.setSExt();
8632       if (Arg.hasAttribute(Attribute::InReg)) {
8633         // If we are using vectorcall calling convention, a structure that is
8634         // passed InReg - is surely an HVA
8635         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8636             isa<StructType>(Arg.getType())) {
8637           // The first value of a structure is marked
8638           if (0 == Value)
8639             Flags.setHvaStart();
8640           Flags.setHva();
8641         }
8642         // Set InReg Flag
8643         Flags.setInReg();
8644       }
8645       if (Arg.hasAttribute(Attribute::StructRet))
8646         Flags.setSRet();
8647       if (Arg.hasAttribute(Attribute::SwiftSelf))
8648         Flags.setSwiftSelf();
8649       if (Arg.hasAttribute(Attribute::SwiftError))
8650         Flags.setSwiftError();
8651       if (Arg.hasAttribute(Attribute::ByVal))
8652         Flags.setByVal();
8653       if (Arg.hasAttribute(Attribute::InAlloca)) {
8654         Flags.setInAlloca();
8655         // Set the byval flag for CCAssignFn callbacks that don't know about
8656         // inalloca.  This way we can know how many bytes we should've allocated
8657         // and how many bytes a callee cleanup function will pop.  If we port
8658         // inalloca to more targets, we'll have to add custom inalloca handling
8659         // in the various CC lowering callbacks.
8660         Flags.setByVal();
8661       }
8662       if (F.getCallingConv() == CallingConv::X86_INTR) {
8663         // IA Interrupt passes frame (1st parameter) by value in the stack.
8664         if (ArgNo == 0)
8665           Flags.setByVal();
8666       }
8667       if (Flags.isByVal() || Flags.isInAlloca()) {
8668         PointerType *Ty = cast<PointerType>(Arg.getType());
8669         Type *ElementTy = Ty->getElementType();
8670         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8671         // For ByVal, alignment should be passed from FE.  BE will guess if
8672         // this info is not there but there are cases it cannot get right.
8673         unsigned FrameAlign;
8674         if (Arg.getParamAlignment())
8675           FrameAlign = Arg.getParamAlignment();
8676         else
8677           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8678         Flags.setByValAlign(FrameAlign);
8679       }
8680       if (Arg.hasAttribute(Attribute::Nest))
8681         Flags.setNest();
8682       if (NeedsRegBlock)
8683         Flags.setInConsecutiveRegs();
8684       Flags.setOrigAlign(OriginalAlignment);
8685       if (ArgCopyElisionCandidates.count(&Arg))
8686         Flags.setCopyElisionCandidate();
8687 
8688       MVT RegisterVT =
8689           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8690       unsigned NumRegs =
8691           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8692       for (unsigned i = 0; i != NumRegs; ++i) {
8693         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8694                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8695         if (NumRegs > 1 && i == 0)
8696           MyFlags.Flags.setSplit();
8697         // if it isn't first piece, alignment must be 1
8698         else if (i > 0) {
8699           MyFlags.Flags.setOrigAlign(1);
8700           if (i == NumRegs - 1)
8701             MyFlags.Flags.setSplitEnd();
8702         }
8703         Ins.push_back(MyFlags);
8704       }
8705       if (NeedsRegBlock && Value == NumValues - 1)
8706         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8707       PartBase += VT.getStoreSize();
8708     }
8709   }
8710 
8711   // Call the target to set up the argument values.
8712   SmallVector<SDValue, 8> InVals;
8713   SDValue NewRoot = TLI->LowerFormalArguments(
8714       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8715 
8716   // Verify that the target's LowerFormalArguments behaved as expected.
8717   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8718          "LowerFormalArguments didn't return a valid chain!");
8719   assert(InVals.size() == Ins.size() &&
8720          "LowerFormalArguments didn't emit the correct number of values!");
8721   DEBUG({
8722       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8723         assert(InVals[i].getNode() &&
8724                "LowerFormalArguments emitted a null value!");
8725         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8726                "LowerFormalArguments emitted a value with the wrong type!");
8727       }
8728     });
8729 
8730   // Update the DAG with the new chain value resulting from argument lowering.
8731   DAG.setRoot(NewRoot);
8732 
8733   // Set up the argument values.
8734   unsigned i = 0;
8735   if (!FuncInfo->CanLowerReturn) {
8736     // Create a virtual register for the sret pointer, and put in a copy
8737     // from the sret argument into it.
8738     SmallVector<EVT, 1> ValueVTs;
8739     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8740                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8741     MVT VT = ValueVTs[0].getSimpleVT();
8742     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8743     Optional<ISD::NodeType> AssertOp = None;
8744     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8745                                         RegVT, VT, nullptr, AssertOp);
8746 
8747     MachineFunction& MF = SDB->DAG.getMachineFunction();
8748     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8749     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8750     FuncInfo->DemoteRegister = SRetReg;
8751     NewRoot =
8752         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8753     DAG.setRoot(NewRoot);
8754 
8755     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8756     ++i;
8757   }
8758 
8759   SmallVector<SDValue, 4> Chains;
8760   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8761   for (const Argument &Arg : F.args()) {
8762     SmallVector<SDValue, 4> ArgValues;
8763     SmallVector<EVT, 4> ValueVTs;
8764     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8765     unsigned NumValues = ValueVTs.size();
8766     if (NumValues == 0)
8767       continue;
8768 
8769     bool ArgHasUses = !Arg.use_empty();
8770 
8771     // Elide the copying store if the target loaded this argument from a
8772     // suitable fixed stack object.
8773     if (Ins[i].Flags.isCopyElisionCandidate()) {
8774       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8775                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8776                              InVals[i], ArgHasUses);
8777     }
8778 
8779     // If this argument is unused then remember its value. It is used to generate
8780     // debugging information.
8781     bool isSwiftErrorArg =
8782         TLI->supportSwiftError() &&
8783         Arg.hasAttribute(Attribute::SwiftError);
8784     if (!ArgHasUses && !isSwiftErrorArg) {
8785       SDB->setUnusedArgValue(&Arg, InVals[i]);
8786 
8787       // Also remember any frame index for use in FastISel.
8788       if (FrameIndexSDNode *FI =
8789           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8790         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8791     }
8792 
8793     for (unsigned Val = 0; Val != NumValues; ++Val) {
8794       EVT VT = ValueVTs[Val];
8795       MVT PartVT =
8796           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8797       unsigned NumParts =
8798           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8799 
8800       // Even an apparant 'unused' swifterror argument needs to be returned. So
8801       // we do generate a copy for it that can be used on return from the
8802       // function.
8803       if (ArgHasUses || isSwiftErrorArg) {
8804         Optional<ISD::NodeType> AssertOp;
8805         if (Arg.hasAttribute(Attribute::SExt))
8806           AssertOp = ISD::AssertSext;
8807         else if (Arg.hasAttribute(Attribute::ZExt))
8808           AssertOp = ISD::AssertZext;
8809 
8810         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8811                                              PartVT, VT, nullptr, AssertOp,
8812                                              true));
8813       }
8814 
8815       i += NumParts;
8816     }
8817 
8818     // We don't need to do anything else for unused arguments.
8819     if (ArgValues.empty())
8820       continue;
8821 
8822     // Note down frame index.
8823     if (FrameIndexSDNode *FI =
8824         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8825       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8826 
8827     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8828                                      SDB->getCurSDLoc());
8829 
8830     SDB->setValue(&Arg, Res);
8831     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8832       // We want to associate the argument with the frame index, among
8833       // involved operands, that correspond to the lowest address. The
8834       // getCopyFromParts function, called earlier, is swapping the order of
8835       // the operands to BUILD_PAIR depending on endianness. The result of
8836       // that swapping is that the least significant bits of the argument will
8837       // be in the first operand of the BUILD_PAIR node, and the most
8838       // significant bits will be in the second operand.
8839       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8840       if (LoadSDNode *LNode =
8841           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8842         if (FrameIndexSDNode *FI =
8843             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8844           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8845     }
8846 
8847     // Update the SwiftErrorVRegDefMap.
8848     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8849       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8850       if (TargetRegisterInfo::isVirtualRegister(Reg))
8851         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8852                                            FuncInfo->SwiftErrorArg, Reg);
8853     }
8854 
8855     // If this argument is live outside of the entry block, insert a copy from
8856     // wherever we got it to the vreg that other BB's will reference it as.
8857     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8858       // If we can, though, try to skip creating an unnecessary vreg.
8859       // FIXME: This isn't very clean... it would be nice to make this more
8860       // general.  It's also subtly incompatible with the hacks FastISel
8861       // uses with vregs.
8862       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8863       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8864         FuncInfo->ValueMap[&Arg] = Reg;
8865         continue;
8866       }
8867     }
8868     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8869       FuncInfo->InitializeRegForValue(&Arg);
8870       SDB->CopyToExportRegsIfNeeded(&Arg);
8871     }
8872   }
8873 
8874   if (!Chains.empty()) {
8875     Chains.push_back(NewRoot);
8876     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8877   }
8878 
8879   DAG.setRoot(NewRoot);
8880 
8881   assert(i == InVals.size() && "Argument register count mismatch!");
8882 
8883   // If any argument copy elisions occurred and we have debug info, update the
8884   // stale frame indices used in the dbg.declare variable info table.
8885   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8886   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8887     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8888       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8889       if (I != ArgCopyElisionFrameIndexMap.end())
8890         VI.Slot = I->second;
8891     }
8892   }
8893 
8894   // Finally, if the target has anything special to do, allow it to do so.
8895   EmitFunctionEntryCode();
8896 }
8897 
8898 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8899 /// ensure constants are generated when needed.  Remember the virtual registers
8900 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8901 /// directly add them, because expansion might result in multiple MBB's for one
8902 /// BB.  As such, the start of the BB might correspond to a different MBB than
8903 /// the end.
8904 void
8905 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8906   const TerminatorInst *TI = LLVMBB->getTerminator();
8907 
8908   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8909 
8910   // Check PHI nodes in successors that expect a value to be available from this
8911   // block.
8912   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8913     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8914     if (!isa<PHINode>(SuccBB->begin())) continue;
8915     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8916 
8917     // If this terminator has multiple identical successors (common for
8918     // switches), only handle each succ once.
8919     if (!SuccsHandled.insert(SuccMBB).second)
8920       continue;
8921 
8922     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8923 
8924     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8925     // nodes and Machine PHI nodes, but the incoming operands have not been
8926     // emitted yet.
8927     for (BasicBlock::const_iterator I = SuccBB->begin();
8928          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8929       // Ignore dead phi's.
8930       if (PN->use_empty()) continue;
8931 
8932       // Skip empty types
8933       if (PN->getType()->isEmptyTy())
8934         continue;
8935 
8936       unsigned Reg;
8937       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8938 
8939       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8940         unsigned &RegOut = ConstantsOut[C];
8941         if (RegOut == 0) {
8942           RegOut = FuncInfo.CreateRegs(C->getType());
8943           CopyValueToVirtualRegister(C, RegOut);
8944         }
8945         Reg = RegOut;
8946       } else {
8947         DenseMap<const Value *, unsigned>::iterator I =
8948           FuncInfo.ValueMap.find(PHIOp);
8949         if (I != FuncInfo.ValueMap.end())
8950           Reg = I->second;
8951         else {
8952           assert(isa<AllocaInst>(PHIOp) &&
8953                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8954                  "Didn't codegen value into a register!??");
8955           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8956           CopyValueToVirtualRegister(PHIOp, Reg);
8957         }
8958       }
8959 
8960       // Remember that this register needs to added to the machine PHI node as
8961       // the input for this MBB.
8962       SmallVector<EVT, 4> ValueVTs;
8963       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8964       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8965       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8966         EVT VT = ValueVTs[vti];
8967         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8968         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8969           FuncInfo.PHINodesToUpdate.push_back(
8970               std::make_pair(&*MBBI++, Reg + i));
8971         Reg += NumRegisters;
8972       }
8973     }
8974   }
8975 
8976   ConstantsOut.clear();
8977 }
8978 
8979 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8980 /// is 0.
8981 MachineBasicBlock *
8982 SelectionDAGBuilder::StackProtectorDescriptor::
8983 AddSuccessorMBB(const BasicBlock *BB,
8984                 MachineBasicBlock *ParentMBB,
8985                 bool IsLikely,
8986                 MachineBasicBlock *SuccMBB) {
8987   // If SuccBB has not been created yet, create it.
8988   if (!SuccMBB) {
8989     MachineFunction *MF = ParentMBB->getParent();
8990     MachineFunction::iterator BBI(ParentMBB);
8991     SuccMBB = MF->CreateMachineBasicBlock(BB);
8992     MF->insert(++BBI, SuccMBB);
8993   }
8994   // Add it as a successor of ParentMBB.
8995   ParentMBB->addSuccessor(
8996       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8997   return SuccMBB;
8998 }
8999 
9000 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9001   MachineFunction::iterator I(MBB);
9002   if (++I == FuncInfo.MF->end())
9003     return nullptr;
9004   return &*I;
9005 }
9006 
9007 /// During lowering new call nodes can be created (such as memset, etc.).
9008 /// Those will become new roots of the current DAG, but complications arise
9009 /// when they are tail calls. In such cases, the call lowering will update
9010 /// the root, but the builder still needs to know that a tail call has been
9011 /// lowered in order to avoid generating an additional return.
9012 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9013   // If the node is null, we do have a tail call.
9014   if (MaybeTC.getNode() != nullptr)
9015     DAG.setRoot(MaybeTC);
9016   else
9017     HasTailCall = true;
9018 }
9019 
9020 uint64_t
9021 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9022                                        unsigned First, unsigned Last) const {
9023   assert(Last >= First);
9024   const APInt &LowCase = Clusters[First].Low->getValue();
9025   const APInt &HighCase = Clusters[Last].High->getValue();
9026   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9027 
9028   // FIXME: A range of consecutive cases has 100% density, but only requires one
9029   // comparison to lower. We should discriminate against such consecutive ranges
9030   // in jump tables.
9031 
9032   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9033 }
9034 
9035 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9036     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9037     unsigned Last) const {
9038   assert(Last >= First);
9039   assert(TotalCases[Last] >= TotalCases[First]);
9040   uint64_t NumCases =
9041       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9042   return NumCases;
9043 }
9044 
9045 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9046                                          unsigned First, unsigned Last,
9047                                          const SwitchInst *SI,
9048                                          MachineBasicBlock *DefaultMBB,
9049                                          CaseCluster &JTCluster) {
9050   assert(First <= Last);
9051 
9052   auto Prob = BranchProbability::getZero();
9053   unsigned NumCmps = 0;
9054   std::vector<MachineBasicBlock*> Table;
9055   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9056 
9057   // Initialize probabilities in JTProbs.
9058   for (unsigned I = First; I <= Last; ++I)
9059     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9060 
9061   for (unsigned I = First; I <= Last; ++I) {
9062     assert(Clusters[I].Kind == CC_Range);
9063     Prob += Clusters[I].Prob;
9064     const APInt &Low = Clusters[I].Low->getValue();
9065     const APInt &High = Clusters[I].High->getValue();
9066     NumCmps += (Low == High) ? 1 : 2;
9067     if (I != First) {
9068       // Fill the gap between this and the previous cluster.
9069       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9070       assert(PreviousHigh.slt(Low));
9071       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9072       for (uint64_t J = 0; J < Gap; J++)
9073         Table.push_back(DefaultMBB);
9074     }
9075     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9076     for (uint64_t J = 0; J < ClusterSize; ++J)
9077       Table.push_back(Clusters[I].MBB);
9078     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9079   }
9080 
9081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9082   unsigned NumDests = JTProbs.size();
9083   if (TLI.isSuitableForBitTests(
9084           NumDests, NumCmps, Clusters[First].Low->getValue(),
9085           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9086     // Clusters[First..Last] should be lowered as bit tests instead.
9087     return false;
9088   }
9089 
9090   // Create the MBB that will load from and jump through the table.
9091   // Note: We create it here, but it's not inserted into the function yet.
9092   MachineFunction *CurMF = FuncInfo.MF;
9093   MachineBasicBlock *JumpTableMBB =
9094       CurMF->CreateMachineBasicBlock(SI->getParent());
9095 
9096   // Add successors. Note: use table order for determinism.
9097   SmallPtrSet<MachineBasicBlock *, 8> Done;
9098   for (MachineBasicBlock *Succ : Table) {
9099     if (Done.count(Succ))
9100       continue;
9101     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9102     Done.insert(Succ);
9103   }
9104   JumpTableMBB->normalizeSuccProbs();
9105 
9106   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9107                      ->createJumpTableIndex(Table);
9108 
9109   // Set up the jump table info.
9110   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9111   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9112                       Clusters[Last].High->getValue(), SI->getCondition(),
9113                       nullptr, false);
9114   JTCases.emplace_back(std::move(JTH), std::move(JT));
9115 
9116   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9117                                      JTCases.size() - 1, Prob);
9118   return true;
9119 }
9120 
9121 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9122                                          const SwitchInst *SI,
9123                                          MachineBasicBlock *DefaultMBB) {
9124 #ifndef NDEBUG
9125   // Clusters must be non-empty, sorted, and only contain Range clusters.
9126   assert(!Clusters.empty());
9127   for (CaseCluster &C : Clusters)
9128     assert(C.Kind == CC_Range);
9129   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9130     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9131 #endif
9132 
9133   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9134   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9135     return;
9136 
9137   const int64_t N = Clusters.size();
9138   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9139   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9140 
9141   if (N < 2 || N < MinJumpTableEntries)
9142     return;
9143 
9144   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9145   SmallVector<unsigned, 8> TotalCases(N);
9146   for (unsigned i = 0; i < N; ++i) {
9147     const APInt &Hi = Clusters[i].High->getValue();
9148     const APInt &Lo = Clusters[i].Low->getValue();
9149     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9150     if (i != 0)
9151       TotalCases[i] += TotalCases[i - 1];
9152   }
9153 
9154   // Cheap case: the whole range may be suitable for jump table.
9155   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9156   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9157   assert(NumCases < UINT64_MAX / 100);
9158   assert(Range >= NumCases);
9159   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9160     CaseCluster JTCluster;
9161     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9162       Clusters[0] = JTCluster;
9163       Clusters.resize(1);
9164       return;
9165     }
9166   }
9167 
9168   // The algorithm below is not suitable for -O0.
9169   if (TM.getOptLevel() == CodeGenOpt::None)
9170     return;
9171 
9172   // Split Clusters into minimum number of dense partitions. The algorithm uses
9173   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9174   // for the Case Statement'" (1994), but builds the MinPartitions array in
9175   // reverse order to make it easier to reconstruct the partitions in ascending
9176   // order. In the choice between two optimal partitionings, it picks the one
9177   // which yields more jump tables.
9178 
9179   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9180   SmallVector<unsigned, 8> MinPartitions(N);
9181   // LastElement[i] is the last element of the partition starting at i.
9182   SmallVector<unsigned, 8> LastElement(N);
9183   // PartitionsScore[i] is used to break ties when choosing between two
9184   // partitionings resulting in the same number of partitions.
9185   SmallVector<unsigned, 8> PartitionsScore(N);
9186   // For PartitionsScore, a small number of comparisons is considered as good as
9187   // a jump table and a single comparison is considered better than a jump
9188   // table.
9189   enum PartitionScores : unsigned {
9190     NoTable = 0,
9191     Table = 1,
9192     FewCases = 1,
9193     SingleCase = 2
9194   };
9195 
9196   // Base case: There is only one way to partition Clusters[N-1].
9197   MinPartitions[N - 1] = 1;
9198   LastElement[N - 1] = N - 1;
9199   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9200 
9201   // Note: loop indexes are signed to avoid underflow.
9202   for (int64_t i = N - 2; i >= 0; i--) {
9203     // Find optimal partitioning of Clusters[i..N-1].
9204     // Baseline: Put Clusters[i] into a partition on its own.
9205     MinPartitions[i] = MinPartitions[i + 1] + 1;
9206     LastElement[i] = i;
9207     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9208 
9209     // Search for a solution that results in fewer partitions.
9210     for (int64_t j = N - 1; j > i; j--) {
9211       // Try building a partition from Clusters[i..j].
9212       uint64_t Range = getJumpTableRange(Clusters, i, j);
9213       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9214       assert(NumCases < UINT64_MAX / 100);
9215       assert(Range >= NumCases);
9216       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9217         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9218         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9219         int64_t NumEntries = j - i + 1;
9220 
9221         if (NumEntries == 1)
9222           Score += PartitionScores::SingleCase;
9223         else if (NumEntries <= SmallNumberOfEntries)
9224           Score += PartitionScores::FewCases;
9225         else if (NumEntries >= MinJumpTableEntries)
9226           Score += PartitionScores::Table;
9227 
9228         // If this leads to fewer partitions, or to the same number of
9229         // partitions with better score, it is a better partitioning.
9230         if (NumPartitions < MinPartitions[i] ||
9231             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9232           MinPartitions[i] = NumPartitions;
9233           LastElement[i] = j;
9234           PartitionsScore[i] = Score;
9235         }
9236       }
9237     }
9238   }
9239 
9240   // Iterate over the partitions, replacing some with jump tables in-place.
9241   unsigned DstIndex = 0;
9242   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9243     Last = LastElement[First];
9244     assert(Last >= First);
9245     assert(DstIndex <= First);
9246     unsigned NumClusters = Last - First + 1;
9247 
9248     CaseCluster JTCluster;
9249     if (NumClusters >= MinJumpTableEntries &&
9250         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9251       Clusters[DstIndex++] = JTCluster;
9252     } else {
9253       for (unsigned I = First; I <= Last; ++I)
9254         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9255     }
9256   }
9257   Clusters.resize(DstIndex);
9258 }
9259 
9260 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9261                                         unsigned First, unsigned Last,
9262                                         const SwitchInst *SI,
9263                                         CaseCluster &BTCluster) {
9264   assert(First <= Last);
9265   if (First == Last)
9266     return false;
9267 
9268   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9269   unsigned NumCmps = 0;
9270   for (int64_t I = First; I <= Last; ++I) {
9271     assert(Clusters[I].Kind == CC_Range);
9272     Dests.set(Clusters[I].MBB->getNumber());
9273     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9274   }
9275   unsigned NumDests = Dests.count();
9276 
9277   APInt Low = Clusters[First].Low->getValue();
9278   APInt High = Clusters[Last].High->getValue();
9279   assert(Low.slt(High));
9280 
9281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9282   const DataLayout &DL = DAG.getDataLayout();
9283   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9284     return false;
9285 
9286   APInt LowBound;
9287   APInt CmpRange;
9288 
9289   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9290   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9291          "Case range must fit in bit mask!");
9292 
9293   // Check if the clusters cover a contiguous range such that no value in the
9294   // range will jump to the default statement.
9295   bool ContiguousRange = true;
9296   for (int64_t I = First + 1; I <= Last; ++I) {
9297     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9298       ContiguousRange = false;
9299       break;
9300     }
9301   }
9302 
9303   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9304     // Optimize the case where all the case values fit in a word without having
9305     // to subtract minValue. In this case, we can optimize away the subtraction.
9306     LowBound = APInt::getNullValue(Low.getBitWidth());
9307     CmpRange = High;
9308     ContiguousRange = false;
9309   } else {
9310     LowBound = Low;
9311     CmpRange = High - Low;
9312   }
9313 
9314   CaseBitsVector CBV;
9315   auto TotalProb = BranchProbability::getZero();
9316   for (unsigned i = First; i <= Last; ++i) {
9317     // Find the CaseBits for this destination.
9318     unsigned j;
9319     for (j = 0; j < CBV.size(); ++j)
9320       if (CBV[j].BB == Clusters[i].MBB)
9321         break;
9322     if (j == CBV.size())
9323       CBV.push_back(
9324           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9325     CaseBits *CB = &CBV[j];
9326 
9327     // Update Mask, Bits and ExtraProb.
9328     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9329     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9330     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9331     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9332     CB->Bits += Hi - Lo + 1;
9333     CB->ExtraProb += Clusters[i].Prob;
9334     TotalProb += Clusters[i].Prob;
9335   }
9336 
9337   BitTestInfo BTI;
9338   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9339     // Sort by probability first, number of bits second.
9340     if (a.ExtraProb != b.ExtraProb)
9341       return a.ExtraProb > b.ExtraProb;
9342     return a.Bits > b.Bits;
9343   });
9344 
9345   for (auto &CB : CBV) {
9346     MachineBasicBlock *BitTestBB =
9347         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9348     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9349   }
9350   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9351                             SI->getCondition(), -1U, MVT::Other, false,
9352                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9353                             TotalProb);
9354 
9355   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9356                                     BitTestCases.size() - 1, TotalProb);
9357   return true;
9358 }
9359 
9360 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9361                                               const SwitchInst *SI) {
9362 // Partition Clusters into as few subsets as possible, where each subset has a
9363 // range that fits in a machine word and has <= 3 unique destinations.
9364 
9365 #ifndef NDEBUG
9366   // Clusters must be sorted and contain Range or JumpTable clusters.
9367   assert(!Clusters.empty());
9368   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9369   for (const CaseCluster &C : Clusters)
9370     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9371   for (unsigned i = 1; i < Clusters.size(); ++i)
9372     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9373 #endif
9374 
9375   // The algorithm below is not suitable for -O0.
9376   if (TM.getOptLevel() == CodeGenOpt::None)
9377     return;
9378 
9379   // If target does not have legal shift left, do not emit bit tests at all.
9380   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9381   const DataLayout &DL = DAG.getDataLayout();
9382 
9383   EVT PTy = TLI.getPointerTy(DL);
9384   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9385     return;
9386 
9387   int BitWidth = PTy.getSizeInBits();
9388   const int64_t N = Clusters.size();
9389 
9390   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9391   SmallVector<unsigned, 8> MinPartitions(N);
9392   // LastElement[i] is the last element of the partition starting at i.
9393   SmallVector<unsigned, 8> LastElement(N);
9394 
9395   // FIXME: This might not be the best algorithm for finding bit test clusters.
9396 
9397   // Base case: There is only one way to partition Clusters[N-1].
9398   MinPartitions[N - 1] = 1;
9399   LastElement[N - 1] = N - 1;
9400 
9401   // Note: loop indexes are signed to avoid underflow.
9402   for (int64_t i = N - 2; i >= 0; --i) {
9403     // Find optimal partitioning of Clusters[i..N-1].
9404     // Baseline: Put Clusters[i] into a partition on its own.
9405     MinPartitions[i] = MinPartitions[i + 1] + 1;
9406     LastElement[i] = i;
9407 
9408     // Search for a solution that results in fewer partitions.
9409     // Note: the search is limited by BitWidth, reducing time complexity.
9410     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9411       // Try building a partition from Clusters[i..j].
9412 
9413       // Check the range.
9414       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9415                                Clusters[j].High->getValue(), DL))
9416         continue;
9417 
9418       // Check nbr of destinations and cluster types.
9419       // FIXME: This works, but doesn't seem very efficient.
9420       bool RangesOnly = true;
9421       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9422       for (int64_t k = i; k <= j; k++) {
9423         if (Clusters[k].Kind != CC_Range) {
9424           RangesOnly = false;
9425           break;
9426         }
9427         Dests.set(Clusters[k].MBB->getNumber());
9428       }
9429       if (!RangesOnly || Dests.count() > 3)
9430         break;
9431 
9432       // Check if it's a better partition.
9433       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9434       if (NumPartitions < MinPartitions[i]) {
9435         // Found a better partition.
9436         MinPartitions[i] = NumPartitions;
9437         LastElement[i] = j;
9438       }
9439     }
9440   }
9441 
9442   // Iterate over the partitions, replacing with bit-test clusters in-place.
9443   unsigned DstIndex = 0;
9444   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9445     Last = LastElement[First];
9446     assert(First <= Last);
9447     assert(DstIndex <= First);
9448 
9449     CaseCluster BitTestCluster;
9450     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9451       Clusters[DstIndex++] = BitTestCluster;
9452     } else {
9453       size_t NumClusters = Last - First + 1;
9454       std::memmove(&Clusters[DstIndex], &Clusters[First],
9455                    sizeof(Clusters[0]) * NumClusters);
9456       DstIndex += NumClusters;
9457     }
9458   }
9459   Clusters.resize(DstIndex);
9460 }
9461 
9462 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9463                                         MachineBasicBlock *SwitchMBB,
9464                                         MachineBasicBlock *DefaultMBB) {
9465   MachineFunction *CurMF = FuncInfo.MF;
9466   MachineBasicBlock *NextMBB = nullptr;
9467   MachineFunction::iterator BBI(W.MBB);
9468   if (++BBI != FuncInfo.MF->end())
9469     NextMBB = &*BBI;
9470 
9471   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9472 
9473   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9474 
9475   if (Size == 2 && W.MBB == SwitchMBB) {
9476     // If any two of the cases has the same destination, and if one value
9477     // is the same as the other, but has one bit unset that the other has set,
9478     // use bit manipulation to do two compares at once.  For example:
9479     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9480     // TODO: This could be extended to merge any 2 cases in switches with 3
9481     // cases.
9482     // TODO: Handle cases where W.CaseBB != SwitchBB.
9483     CaseCluster &Small = *W.FirstCluster;
9484     CaseCluster &Big = *W.LastCluster;
9485 
9486     if (Small.Low == Small.High && Big.Low == Big.High &&
9487         Small.MBB == Big.MBB) {
9488       const APInt &SmallValue = Small.Low->getValue();
9489       const APInt &BigValue = Big.Low->getValue();
9490 
9491       // Check that there is only one bit different.
9492       APInt CommonBit = BigValue ^ SmallValue;
9493       if (CommonBit.isPowerOf2()) {
9494         SDValue CondLHS = getValue(Cond);
9495         EVT VT = CondLHS.getValueType();
9496         SDLoc DL = getCurSDLoc();
9497 
9498         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9499                                  DAG.getConstant(CommonBit, DL, VT));
9500         SDValue Cond = DAG.getSetCC(
9501             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9502             ISD::SETEQ);
9503 
9504         // Update successor info.
9505         // Both Small and Big will jump to Small.BB, so we sum up the
9506         // probabilities.
9507         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9508         if (BPI)
9509           addSuccessorWithProb(
9510               SwitchMBB, DefaultMBB,
9511               // The default destination is the first successor in IR.
9512               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9513         else
9514           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9515 
9516         // Insert the true branch.
9517         SDValue BrCond =
9518             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9519                         DAG.getBasicBlock(Small.MBB));
9520         // Insert the false branch.
9521         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9522                              DAG.getBasicBlock(DefaultMBB));
9523 
9524         DAG.setRoot(BrCond);
9525         return;
9526       }
9527     }
9528   }
9529 
9530   if (TM.getOptLevel() != CodeGenOpt::None) {
9531     // Order cases by probability so the most likely case will be checked first.
9532     std::sort(W.FirstCluster, W.LastCluster + 1,
9533               [](const CaseCluster &a, const CaseCluster &b) {
9534       return a.Prob > b.Prob;
9535     });
9536 
9537     // Rearrange the case blocks so that the last one falls through if possible
9538     // without without changing the order of probabilities.
9539     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9540       --I;
9541       if (I->Prob > W.LastCluster->Prob)
9542         break;
9543       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9544         std::swap(*I, *W.LastCluster);
9545         break;
9546       }
9547     }
9548   }
9549 
9550   // Compute total probability.
9551   BranchProbability DefaultProb = W.DefaultProb;
9552   BranchProbability UnhandledProbs = DefaultProb;
9553   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9554     UnhandledProbs += I->Prob;
9555 
9556   MachineBasicBlock *CurMBB = W.MBB;
9557   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9558     MachineBasicBlock *Fallthrough;
9559     if (I == W.LastCluster) {
9560       // For the last cluster, fall through to the default destination.
9561       Fallthrough = DefaultMBB;
9562     } else {
9563       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9564       CurMF->insert(BBI, Fallthrough);
9565       // Put Cond in a virtual register to make it available from the new blocks.
9566       ExportFromCurrentBlock(Cond);
9567     }
9568     UnhandledProbs -= I->Prob;
9569 
9570     switch (I->Kind) {
9571       case CC_JumpTable: {
9572         // FIXME: Optimize away range check based on pivot comparisons.
9573         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9574         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9575 
9576         // The jump block hasn't been inserted yet; insert it here.
9577         MachineBasicBlock *JumpMBB = JT->MBB;
9578         CurMF->insert(BBI, JumpMBB);
9579 
9580         auto JumpProb = I->Prob;
9581         auto FallthroughProb = UnhandledProbs;
9582 
9583         // If the default statement is a target of the jump table, we evenly
9584         // distribute the default probability to successors of CurMBB. Also
9585         // update the probability on the edge from JumpMBB to Fallthrough.
9586         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9587                                               SE = JumpMBB->succ_end();
9588              SI != SE; ++SI) {
9589           if (*SI == DefaultMBB) {
9590             JumpProb += DefaultProb / 2;
9591             FallthroughProb -= DefaultProb / 2;
9592             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9593             JumpMBB->normalizeSuccProbs();
9594             break;
9595           }
9596         }
9597 
9598         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9599         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9600         CurMBB->normalizeSuccProbs();
9601 
9602         // The jump table header will be inserted in our current block, do the
9603         // range check, and fall through to our fallthrough block.
9604         JTH->HeaderBB = CurMBB;
9605         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9606 
9607         // If we're in the right place, emit the jump table header right now.
9608         if (CurMBB == SwitchMBB) {
9609           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9610           JTH->Emitted = true;
9611         }
9612         break;
9613       }
9614       case CC_BitTests: {
9615         // FIXME: Optimize away range check based on pivot comparisons.
9616         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9617 
9618         // The bit test blocks haven't been inserted yet; insert them here.
9619         for (BitTestCase &BTC : BTB->Cases)
9620           CurMF->insert(BBI, BTC.ThisBB);
9621 
9622         // Fill in fields of the BitTestBlock.
9623         BTB->Parent = CurMBB;
9624         BTB->Default = Fallthrough;
9625 
9626         BTB->DefaultProb = UnhandledProbs;
9627         // If the cases in bit test don't form a contiguous range, we evenly
9628         // distribute the probability on the edge to Fallthrough to two
9629         // successors of CurMBB.
9630         if (!BTB->ContiguousRange) {
9631           BTB->Prob += DefaultProb / 2;
9632           BTB->DefaultProb -= DefaultProb / 2;
9633         }
9634 
9635         // If we're in the right place, emit the bit test header right now.
9636         if (CurMBB == SwitchMBB) {
9637           visitBitTestHeader(*BTB, SwitchMBB);
9638           BTB->Emitted = true;
9639         }
9640         break;
9641       }
9642       case CC_Range: {
9643         const Value *RHS, *LHS, *MHS;
9644         ISD::CondCode CC;
9645         if (I->Low == I->High) {
9646           // Check Cond == I->Low.
9647           CC = ISD::SETEQ;
9648           LHS = Cond;
9649           RHS=I->Low;
9650           MHS = nullptr;
9651         } else {
9652           // Check I->Low <= Cond <= I->High.
9653           CC = ISD::SETLE;
9654           LHS = I->Low;
9655           MHS = Cond;
9656           RHS = I->High;
9657         }
9658 
9659         // The false probability is the sum of all unhandled cases.
9660         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9661                      getCurSDLoc(), I->Prob, UnhandledProbs);
9662 
9663         if (CurMBB == SwitchMBB)
9664           visitSwitchCase(CB, SwitchMBB);
9665         else
9666           SwitchCases.push_back(CB);
9667 
9668         break;
9669       }
9670     }
9671     CurMBB = Fallthrough;
9672   }
9673 }
9674 
9675 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9676                                               CaseClusterIt First,
9677                                               CaseClusterIt Last) {
9678   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9679     if (X.Prob != CC.Prob)
9680       return X.Prob > CC.Prob;
9681 
9682     // Ties are broken by comparing the case value.
9683     return X.Low->getValue().slt(CC.Low->getValue());
9684   });
9685 }
9686 
9687 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9688                                         const SwitchWorkListItem &W,
9689                                         Value *Cond,
9690                                         MachineBasicBlock *SwitchMBB) {
9691   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9692          "Clusters not sorted?");
9693 
9694   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9695 
9696   // Balance the tree based on branch probabilities to create a near-optimal (in
9697   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9698   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9699   CaseClusterIt LastLeft = W.FirstCluster;
9700   CaseClusterIt FirstRight = W.LastCluster;
9701   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9702   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9703 
9704   // Move LastLeft and FirstRight towards each other from opposite directions to
9705   // find a partitioning of the clusters which balances the probability on both
9706   // sides. If LeftProb and RightProb are equal, alternate which side is
9707   // taken to ensure 0-probability nodes are distributed evenly.
9708   unsigned I = 0;
9709   while (LastLeft + 1 < FirstRight) {
9710     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9711       LeftProb += (++LastLeft)->Prob;
9712     else
9713       RightProb += (--FirstRight)->Prob;
9714     I++;
9715   }
9716 
9717   while (true) {
9718     // Our binary search tree differs from a typical BST in that ours can have up
9719     // to three values in each leaf. The pivot selection above doesn't take that
9720     // into account, which means the tree might require more nodes and be less
9721     // efficient. We compensate for this here.
9722 
9723     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9724     unsigned NumRight = W.LastCluster - FirstRight + 1;
9725 
9726     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9727       // If one side has less than 3 clusters, and the other has more than 3,
9728       // consider taking a cluster from the other side.
9729 
9730       if (NumLeft < NumRight) {
9731         // Consider moving the first cluster on the right to the left side.
9732         CaseCluster &CC = *FirstRight;
9733         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9734         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9735         if (LeftSideRank <= RightSideRank) {
9736           // Moving the cluster to the left does not demote it.
9737           ++LastLeft;
9738           ++FirstRight;
9739           continue;
9740         }
9741       } else {
9742         assert(NumRight < NumLeft);
9743         // Consider moving the last element on the left to the right side.
9744         CaseCluster &CC = *LastLeft;
9745         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9746         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9747         if (RightSideRank <= LeftSideRank) {
9748           // Moving the cluster to the right does not demot it.
9749           --LastLeft;
9750           --FirstRight;
9751           continue;
9752         }
9753       }
9754     }
9755     break;
9756   }
9757 
9758   assert(LastLeft + 1 == FirstRight);
9759   assert(LastLeft >= W.FirstCluster);
9760   assert(FirstRight <= W.LastCluster);
9761 
9762   // Use the first element on the right as pivot since we will make less-than
9763   // comparisons against it.
9764   CaseClusterIt PivotCluster = FirstRight;
9765   assert(PivotCluster > W.FirstCluster);
9766   assert(PivotCluster <= W.LastCluster);
9767 
9768   CaseClusterIt FirstLeft = W.FirstCluster;
9769   CaseClusterIt LastRight = W.LastCluster;
9770 
9771   const ConstantInt *Pivot = PivotCluster->Low;
9772 
9773   // New blocks will be inserted immediately after the current one.
9774   MachineFunction::iterator BBI(W.MBB);
9775   ++BBI;
9776 
9777   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9778   // we can branch to its destination directly if it's squeezed exactly in
9779   // between the known lower bound and Pivot - 1.
9780   MachineBasicBlock *LeftMBB;
9781   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9782       FirstLeft->Low == W.GE &&
9783       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9784     LeftMBB = FirstLeft->MBB;
9785   } else {
9786     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9787     FuncInfo.MF->insert(BBI, LeftMBB);
9788     WorkList.push_back(
9789         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9790     // Put Cond in a virtual register to make it available from the new blocks.
9791     ExportFromCurrentBlock(Cond);
9792   }
9793 
9794   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9795   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9796   // directly if RHS.High equals the current upper bound.
9797   MachineBasicBlock *RightMBB;
9798   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9799       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9800     RightMBB = FirstRight->MBB;
9801   } else {
9802     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9803     FuncInfo.MF->insert(BBI, RightMBB);
9804     WorkList.push_back(
9805         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9806     // Put Cond in a virtual register to make it available from the new blocks.
9807     ExportFromCurrentBlock(Cond);
9808   }
9809 
9810   // Create the CaseBlock record that will be used to lower the branch.
9811   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9812                getCurSDLoc(), LeftProb, RightProb);
9813 
9814   if (W.MBB == SwitchMBB)
9815     visitSwitchCase(CB, SwitchMBB);
9816   else
9817     SwitchCases.push_back(CB);
9818 }
9819 
9820 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9821   // Extract cases from the switch.
9822   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9823   CaseClusterVector Clusters;
9824   Clusters.reserve(SI.getNumCases());
9825   for (auto I : SI.cases()) {
9826     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9827     const ConstantInt *CaseVal = I.getCaseValue();
9828     BranchProbability Prob =
9829         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9830             : BranchProbability(1, SI.getNumCases() + 1);
9831     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9832   }
9833 
9834   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9835 
9836   // Cluster adjacent cases with the same destination. We do this at all
9837   // optimization levels because it's cheap to do and will make codegen faster
9838   // if there are many clusters.
9839   sortAndRangeify(Clusters);
9840 
9841   if (TM.getOptLevel() != CodeGenOpt::None) {
9842     // Replace an unreachable default with the most popular destination.
9843     // FIXME: Exploit unreachable default more aggressively.
9844     bool UnreachableDefault =
9845         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9846     if (UnreachableDefault && !Clusters.empty()) {
9847       DenseMap<const BasicBlock *, unsigned> Popularity;
9848       unsigned MaxPop = 0;
9849       const BasicBlock *MaxBB = nullptr;
9850       for (auto I : SI.cases()) {
9851         const BasicBlock *BB = I.getCaseSuccessor();
9852         if (++Popularity[BB] > MaxPop) {
9853           MaxPop = Popularity[BB];
9854           MaxBB = BB;
9855         }
9856       }
9857       // Set new default.
9858       assert(MaxPop > 0 && MaxBB);
9859       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9860 
9861       // Remove cases that were pointing to the destination that is now the
9862       // default.
9863       CaseClusterVector New;
9864       New.reserve(Clusters.size());
9865       for (CaseCluster &CC : Clusters) {
9866         if (CC.MBB != DefaultMBB)
9867           New.push_back(CC);
9868       }
9869       Clusters = std::move(New);
9870     }
9871   }
9872 
9873   // If there is only the default destination, jump there directly.
9874   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9875   if (Clusters.empty()) {
9876     SwitchMBB->addSuccessor(DefaultMBB);
9877     if (DefaultMBB != NextBlock(SwitchMBB)) {
9878       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9879                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9880     }
9881     return;
9882   }
9883 
9884   findJumpTables(Clusters, &SI, DefaultMBB);
9885   findBitTestClusters(Clusters, &SI);
9886 
9887   DEBUG({
9888     dbgs() << "Case clusters: ";
9889     for (const CaseCluster &C : Clusters) {
9890       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9891       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9892 
9893       C.Low->getValue().print(dbgs(), true);
9894       if (C.Low != C.High) {
9895         dbgs() << '-';
9896         C.High->getValue().print(dbgs(), true);
9897       }
9898       dbgs() << ' ';
9899     }
9900     dbgs() << '\n';
9901   });
9902 
9903   assert(!Clusters.empty());
9904   SwitchWorkList WorkList;
9905   CaseClusterIt First = Clusters.begin();
9906   CaseClusterIt Last = Clusters.end() - 1;
9907   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9908   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9909 
9910   while (!WorkList.empty()) {
9911     SwitchWorkListItem W = WorkList.back();
9912     WorkList.pop_back();
9913     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9914 
9915     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9916         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9917       // For optimized builds, lower large range as a balanced binary tree.
9918       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9919       continue;
9920     }
9921 
9922     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9923   }
9924 }
9925