1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropiate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && 952 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 953 // Put the register class of the virtual registers in the flag word. That 954 // way, later passes can recompute register class constraints for inline 955 // assembly as well as normal instructions. 956 // Don't do this for tied operands that can use the regclass information 957 // from the def. 958 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 959 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 960 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 961 } 962 963 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 964 Ops.push_back(Res); 965 966 if (Code == InlineAsm::Kind_Clobber) { 967 // Clobbers should always have a 1:1 mapping with registers, and may 968 // reference registers that have illegal (e.g. vector) types. Hence, we 969 // shouldn't try to apply any sort of splitting logic to them. 970 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 971 "No 1:1 mapping from clobbers to regs?"); 972 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 973 (void)SP; 974 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 975 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 976 assert( 977 (Regs[I] != SP || 978 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 979 "If we clobbered the stack pointer, MFI should know about it."); 980 } 981 return; 982 } 983 984 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 985 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 986 MVT RegisterVT = RegVTs[Value]; 987 for (unsigned i = 0; i != NumRegs; ++i) { 988 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 989 unsigned TheReg = Regs[Reg++]; 990 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 991 } 992 } 993 } 994 995 SmallVector<std::pair<unsigned, unsigned>, 4> 996 RegsForValue::getRegsAndSizes() const { 997 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 998 unsigned I = 0; 999 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1000 unsigned RegCount = std::get<0>(CountAndVT); 1001 MVT RegisterVT = std::get<1>(CountAndVT); 1002 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1003 for (unsigned E = I + RegCount; I != E; ++I) 1004 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1005 } 1006 return OutVec; 1007 } 1008 1009 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1010 const TargetLibraryInfo *li) { 1011 AA = aa; 1012 GFI = gfi; 1013 LibInfo = li; 1014 DL = &DAG.getDataLayout(); 1015 Context = DAG.getContext(); 1016 LPadToCallSiteMap.clear(); 1017 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1018 } 1019 1020 void SelectionDAGBuilder::clear() { 1021 NodeMap.clear(); 1022 UnusedArgNodeMap.clear(); 1023 PendingLoads.clear(); 1024 PendingExports.clear(); 1025 CurInst = nullptr; 1026 HasTailCall = false; 1027 SDNodeOrder = LowestSDNodeOrder; 1028 StatepointLowering.clear(); 1029 } 1030 1031 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1032 DanglingDebugInfoMap.clear(); 1033 } 1034 1035 SDValue SelectionDAGBuilder::getRoot() { 1036 if (PendingLoads.empty()) 1037 return DAG.getRoot(); 1038 1039 if (PendingLoads.size() == 1) { 1040 SDValue Root = PendingLoads[0]; 1041 DAG.setRoot(Root); 1042 PendingLoads.clear(); 1043 return Root; 1044 } 1045 1046 // Otherwise, we have to make a token factor node. 1047 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1048 PendingLoads.clear(); 1049 DAG.setRoot(Root); 1050 return Root; 1051 } 1052 1053 SDValue SelectionDAGBuilder::getControlRoot() { 1054 SDValue Root = DAG.getRoot(); 1055 1056 if (PendingExports.empty()) 1057 return Root; 1058 1059 // Turn all of the CopyToReg chains into one factored node. 1060 if (Root.getOpcode() != ISD::EntryToken) { 1061 unsigned i = 0, e = PendingExports.size(); 1062 for (; i != e; ++i) { 1063 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1064 if (PendingExports[i].getNode()->getOperand(0) == Root) 1065 break; // Don't add the root if we already indirectly depend on it. 1066 } 1067 1068 if (i == e) 1069 PendingExports.push_back(Root); 1070 } 1071 1072 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1073 PendingExports); 1074 PendingExports.clear(); 1075 DAG.setRoot(Root); 1076 return Root; 1077 } 1078 1079 void SelectionDAGBuilder::visit(const Instruction &I) { 1080 // Set up outgoing PHI node register values before emitting the terminator. 1081 if (I.isTerminator()) { 1082 HandlePHINodesInSuccessorBlocks(I.getParent()); 1083 } 1084 1085 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1086 if (!isa<DbgInfoIntrinsic>(I)) 1087 ++SDNodeOrder; 1088 1089 CurInst = &I; 1090 1091 visit(I.getOpcode(), I); 1092 1093 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1095 // maps to this instruction. 1096 // TODO: We could handle all flags (nsw, etc) here. 1097 // TODO: If an IR instruction maps to >1 node, only the final node will have 1098 // flags set. 1099 if (SDNode *Node = getNodeForIRValue(&I)) { 1100 SDNodeFlags IncomingFlags; 1101 IncomingFlags.copyFMF(*FPMO); 1102 if (!Node->getFlags().isDefined()) 1103 Node->setFlags(IncomingFlags); 1104 else 1105 Node->intersectFlagsWith(IncomingFlags); 1106 } 1107 } 1108 1109 if (!I.isTerminator() && !HasTailCall && 1110 !isStatepoint(&I)) // statepoints handle their exports internally 1111 CopyToExportRegsIfNeeded(&I); 1112 1113 CurInst = nullptr; 1114 } 1115 1116 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1118 } 1119 1120 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1121 // Note: this doesn't use InstVisitor, because it has to work with 1122 // ConstantExpr's in addition to instructions. 1123 switch (Opcode) { 1124 default: llvm_unreachable("Unknown instruction type encountered!"); 1125 // Build the switch statement using the Instruction.def file. 1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1128 #include "llvm/IR/Instruction.def" 1129 } 1130 } 1131 1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1133 const DIExpression *Expr) { 1134 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1135 const DbgValueInst *DI = DDI.getDI(); 1136 DIVariable *DanglingVariable = DI->getVariable(); 1137 DIExpression *DanglingExpr = DI->getExpression(); 1138 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1140 return true; 1141 } 1142 return false; 1143 }; 1144 1145 for (auto &DDIMI : DanglingDebugInfoMap) { 1146 DanglingDebugInfoVector &DDIV = DDIMI.second; 1147 1148 // If debug info is to be dropped, run it through final checks to see 1149 // whether it can be salvaged. 1150 for (auto &DDI : DDIV) 1151 if (isMatchingDbgValue(DDI)) 1152 salvageUnresolvedDbgValue(DDI); 1153 1154 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1155 } 1156 } 1157 1158 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1159 // generate the debug data structures now that we've seen its definition. 1160 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1161 SDValue Val) { 1162 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1163 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1164 return; 1165 1166 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1167 for (auto &DDI : DDIV) { 1168 const DbgValueInst *DI = DDI.getDI(); 1169 assert(DI && "Ill-formed DanglingDebugInfo"); 1170 DebugLoc dl = DDI.getdl(); 1171 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1172 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1173 DILocalVariable *Variable = DI->getVariable(); 1174 DIExpression *Expr = DI->getExpression(); 1175 assert(Variable->isValidLocationForIntrinsic(dl) && 1176 "Expected inlined-at fields to agree"); 1177 SDDbgValue *SDV; 1178 if (Val.getNode()) { 1179 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1180 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1181 // we couldn't resolve it directly when examining the DbgValue intrinsic 1182 // in the first place we should not be more successful here). Unless we 1183 // have some test case that prove this to be correct we should avoid 1184 // calling EmitFuncArgumentDbgValue here. 1185 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1186 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1187 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1188 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1189 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1190 // inserted after the definition of Val when emitting the instructions 1191 // after ISel. An alternative could be to teach 1192 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1193 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1194 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1195 << ValSDNodeOrder << "\n"); 1196 SDV = getDbgValue(Val, Variable, Expr, dl, 1197 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1198 DAG.AddDbgValue(SDV, Val.getNode(), false); 1199 } else 1200 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1201 << "in EmitFuncArgumentDbgValue\n"); 1202 } else { 1203 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1204 auto Undef = 1205 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1206 auto SDV = 1207 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1208 DAG.AddDbgValue(SDV, nullptr, false); 1209 } 1210 } 1211 DDIV.clear(); 1212 } 1213 1214 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1215 Value *V = DDI.getDI()->getValue(); 1216 DILocalVariable *Var = DDI.getDI()->getVariable(); 1217 DIExpression *Expr = DDI.getDI()->getExpression(); 1218 DebugLoc DL = DDI.getdl(); 1219 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1220 unsigned SDOrder = DDI.getSDNodeOrder(); 1221 1222 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1223 // that DW_OP_stack_value is desired. 1224 assert(isa<DbgValueInst>(DDI.getDI())); 1225 bool StackValue = true; 1226 1227 // Can this Value can be encoded without any further work? 1228 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1229 return; 1230 1231 // Attempt to salvage back through as many instructions as possible. Bail if 1232 // a non-instruction is seen, such as a constant expression or global 1233 // variable. FIXME: Further work could recover those too. 1234 while (isa<Instruction>(V)) { 1235 Instruction &VAsInst = *cast<Instruction>(V); 1236 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1237 1238 // If we cannot salvage any further, and haven't yet found a suitable debug 1239 // expression, bail out. 1240 if (!NewExpr) 1241 break; 1242 1243 // New value and expr now represent this debuginfo. 1244 V = VAsInst.getOperand(0); 1245 Expr = NewExpr; 1246 1247 // Some kind of simplification occurred: check whether the operand of the 1248 // salvaged debug expression can be encoded in this DAG. 1249 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1250 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1251 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1252 return; 1253 } 1254 } 1255 1256 // This was the final opportunity to salvage this debug information, and it 1257 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1258 // any earlier variable location. 1259 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1260 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1261 DAG.AddDbgValue(SDV, nullptr, false); 1262 1263 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1264 << "\n"); 1265 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1266 << "\n"); 1267 } 1268 1269 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1270 DIExpression *Expr, DebugLoc dl, 1271 DebugLoc InstDL, unsigned Order) { 1272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1273 SDDbgValue *SDV; 1274 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1275 isa<ConstantPointerNull>(V)) { 1276 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1277 DAG.AddDbgValue(SDV, nullptr, false); 1278 return true; 1279 } 1280 1281 // If the Value is a frame index, we can create a FrameIndex debug value 1282 // without relying on the DAG at all. 1283 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1284 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1285 if (SI != FuncInfo.StaticAllocaMap.end()) { 1286 auto SDV = 1287 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1288 /*IsIndirect*/ false, dl, SDNodeOrder); 1289 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1290 // is still available even if the SDNode gets optimized out. 1291 DAG.AddDbgValue(SDV, nullptr, false); 1292 return true; 1293 } 1294 } 1295 1296 // Do not use getValue() in here; we don't want to generate code at 1297 // this point if it hasn't been done yet. 1298 SDValue N = NodeMap[V]; 1299 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1300 N = UnusedArgNodeMap[V]; 1301 if (N.getNode()) { 1302 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1303 return true; 1304 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1305 DAG.AddDbgValue(SDV, N.getNode(), false); 1306 return true; 1307 } 1308 1309 // Special rules apply for the first dbg.values of parameter variables in a 1310 // function. Identify them by the fact they reference Argument Values, that 1311 // they're parameters, and they are parameters of the current function. We 1312 // need to let them dangle until they get an SDNode. 1313 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1314 !InstDL.getInlinedAt(); 1315 if (!IsParamOfFunc) { 1316 // The value is not used in this block yet (or it would have an SDNode). 1317 // We still want the value to appear for the user if possible -- if it has 1318 // an associated VReg, we can refer to that instead. 1319 auto VMI = FuncInfo.ValueMap.find(V); 1320 if (VMI != FuncInfo.ValueMap.end()) { 1321 unsigned Reg = VMI->second; 1322 // If this is a PHI node, it may be split up into several MI PHI nodes 1323 // (in FunctionLoweringInfo::set). 1324 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1325 V->getType(), None); 1326 if (RFV.occupiesMultipleRegs()) { 1327 unsigned Offset = 0; 1328 unsigned BitsToDescribe = 0; 1329 if (auto VarSize = Var->getSizeInBits()) 1330 BitsToDescribe = *VarSize; 1331 if (auto Fragment = Expr->getFragmentInfo()) 1332 BitsToDescribe = Fragment->SizeInBits; 1333 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1334 unsigned RegisterSize = RegAndSize.second; 1335 // Bail out if all bits are described already. 1336 if (Offset >= BitsToDescribe) 1337 break; 1338 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1339 ? BitsToDescribe - Offset 1340 : RegisterSize; 1341 auto FragmentExpr = DIExpression::createFragmentExpression( 1342 Expr, Offset, FragmentSize); 1343 if (!FragmentExpr) 1344 continue; 1345 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1346 false, dl, SDNodeOrder); 1347 DAG.AddDbgValue(SDV, nullptr, false); 1348 Offset += RegisterSize; 1349 } 1350 } else { 1351 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1352 DAG.AddDbgValue(SDV, nullptr, false); 1353 } 1354 return true; 1355 } 1356 } 1357 1358 return false; 1359 } 1360 1361 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1362 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1363 for (auto &Pair : DanglingDebugInfoMap) 1364 for (auto &DDI : Pair.second) 1365 salvageUnresolvedDbgValue(DDI); 1366 clearDanglingDebugInfo(); 1367 } 1368 1369 /// getCopyFromRegs - If there was virtual register allocated for the value V 1370 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1371 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1372 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1373 SDValue Result; 1374 1375 if (It != FuncInfo.ValueMap.end()) { 1376 unsigned InReg = It->second; 1377 1378 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1379 DAG.getDataLayout(), InReg, Ty, 1380 None); // This is not an ABI copy. 1381 SDValue Chain = DAG.getEntryNode(); 1382 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1383 V); 1384 resolveDanglingDebugInfo(V, Result); 1385 } 1386 1387 return Result; 1388 } 1389 1390 /// getValue - Return an SDValue for the given Value. 1391 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1392 // If we already have an SDValue for this value, use it. It's important 1393 // to do this first, so that we don't create a CopyFromReg if we already 1394 // have a regular SDValue. 1395 SDValue &N = NodeMap[V]; 1396 if (N.getNode()) return N; 1397 1398 // If there's a virtual register allocated and initialized for this 1399 // value, use it. 1400 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1401 return copyFromReg; 1402 1403 // Otherwise create a new SDValue and remember it. 1404 SDValue Val = getValueImpl(V); 1405 NodeMap[V] = Val; 1406 resolveDanglingDebugInfo(V, Val); 1407 return Val; 1408 } 1409 1410 // Return true if SDValue exists for the given Value 1411 bool SelectionDAGBuilder::findValue(const Value *V) const { 1412 return (NodeMap.find(V) != NodeMap.end()) || 1413 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1414 } 1415 1416 /// getNonRegisterValue - Return an SDValue for the given Value, but 1417 /// don't look in FuncInfo.ValueMap for a virtual register. 1418 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1419 // If we already have an SDValue for this value, use it. 1420 SDValue &N = NodeMap[V]; 1421 if (N.getNode()) { 1422 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1423 // Remove the debug location from the node as the node is about to be used 1424 // in a location which may differ from the original debug location. This 1425 // is relevant to Constant and ConstantFP nodes because they can appear 1426 // as constant expressions inside PHI nodes. 1427 N->setDebugLoc(DebugLoc()); 1428 } 1429 return N; 1430 } 1431 1432 // Otherwise create a new SDValue and remember it. 1433 SDValue Val = getValueImpl(V); 1434 NodeMap[V] = Val; 1435 resolveDanglingDebugInfo(V, Val); 1436 return Val; 1437 } 1438 1439 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1440 /// Create an SDValue for the given value. 1441 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1443 1444 if (const Constant *C = dyn_cast<Constant>(V)) { 1445 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1446 1447 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1448 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1449 1450 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1451 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1452 1453 if (isa<ConstantPointerNull>(C)) { 1454 unsigned AS = V->getType()->getPointerAddressSpace(); 1455 return DAG.getConstant(0, getCurSDLoc(), 1456 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1457 } 1458 1459 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1460 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1461 1462 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1463 return DAG.getUNDEF(VT); 1464 1465 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1466 visit(CE->getOpcode(), *CE); 1467 SDValue N1 = NodeMap[V]; 1468 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1469 return N1; 1470 } 1471 1472 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1473 SmallVector<SDValue, 4> Constants; 1474 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1475 OI != OE; ++OI) { 1476 SDNode *Val = getValue(*OI).getNode(); 1477 // If the operand is an empty aggregate, there are no values. 1478 if (!Val) continue; 1479 // Add each leaf value from the operand to the Constants list 1480 // to form a flattened list of all the values. 1481 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1482 Constants.push_back(SDValue(Val, i)); 1483 } 1484 1485 return DAG.getMergeValues(Constants, getCurSDLoc()); 1486 } 1487 1488 if (const ConstantDataSequential *CDS = 1489 dyn_cast<ConstantDataSequential>(C)) { 1490 SmallVector<SDValue, 4> Ops; 1491 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1492 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1493 // Add each leaf value from the operand to the Constants list 1494 // to form a flattened list of all the values. 1495 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1496 Ops.push_back(SDValue(Val, i)); 1497 } 1498 1499 if (isa<ArrayType>(CDS->getType())) 1500 return DAG.getMergeValues(Ops, getCurSDLoc()); 1501 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1502 } 1503 1504 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1505 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1506 "Unknown struct or array constant!"); 1507 1508 SmallVector<EVT, 4> ValueVTs; 1509 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1510 unsigned NumElts = ValueVTs.size(); 1511 if (NumElts == 0) 1512 return SDValue(); // empty struct 1513 SmallVector<SDValue, 4> Constants(NumElts); 1514 for (unsigned i = 0; i != NumElts; ++i) { 1515 EVT EltVT = ValueVTs[i]; 1516 if (isa<UndefValue>(C)) 1517 Constants[i] = DAG.getUNDEF(EltVT); 1518 else if (EltVT.isFloatingPoint()) 1519 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1520 else 1521 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1522 } 1523 1524 return DAG.getMergeValues(Constants, getCurSDLoc()); 1525 } 1526 1527 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1528 return DAG.getBlockAddress(BA, VT); 1529 1530 VectorType *VecTy = cast<VectorType>(V->getType()); 1531 unsigned NumElements = VecTy->getNumElements(); 1532 1533 // Now that we know the number and type of the elements, get that number of 1534 // elements into the Ops array based on what kind of constant it is. 1535 SmallVector<SDValue, 16> Ops; 1536 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1537 for (unsigned i = 0; i != NumElements; ++i) 1538 Ops.push_back(getValue(CV->getOperand(i))); 1539 } else { 1540 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1541 EVT EltVT = 1542 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1543 1544 SDValue Op; 1545 if (EltVT.isFloatingPoint()) 1546 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1547 else 1548 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1549 Ops.assign(NumElements, Op); 1550 } 1551 1552 // Create a BUILD_VECTOR node. 1553 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1554 } 1555 1556 // If this is a static alloca, generate it as the frameindex instead of 1557 // computation. 1558 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1559 DenseMap<const AllocaInst*, int>::iterator SI = 1560 FuncInfo.StaticAllocaMap.find(AI); 1561 if (SI != FuncInfo.StaticAllocaMap.end()) 1562 return DAG.getFrameIndex(SI->second, 1563 TLI.getFrameIndexTy(DAG.getDataLayout())); 1564 } 1565 1566 // If this is an instruction which fast-isel has deferred, select it now. 1567 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1568 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1569 1570 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1571 Inst->getType(), getABIRegCopyCC(V)); 1572 SDValue Chain = DAG.getEntryNode(); 1573 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1574 } 1575 1576 llvm_unreachable("Can't get register for value!"); 1577 } 1578 1579 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1580 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1581 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1582 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1583 bool IsSEH = isAsynchronousEHPersonality(Pers); 1584 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1585 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1586 if (!IsSEH) 1587 CatchPadMBB->setIsEHScopeEntry(); 1588 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1589 if (IsMSVCCXX || IsCoreCLR) 1590 CatchPadMBB->setIsEHFuncletEntry(); 1591 // Wasm does not need catchpads anymore 1592 if (!IsWasmCXX) 1593 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1594 getControlRoot())); 1595 } 1596 1597 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1598 // Update machine-CFG edge. 1599 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1600 FuncInfo.MBB->addSuccessor(TargetMBB); 1601 1602 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1603 bool IsSEH = isAsynchronousEHPersonality(Pers); 1604 if (IsSEH) { 1605 // If this is not a fall-through branch or optimizations are switched off, 1606 // emit the branch. 1607 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1608 TM.getOptLevel() == CodeGenOpt::None) 1609 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1610 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1611 return; 1612 } 1613 1614 // Figure out the funclet membership for the catchret's successor. 1615 // This will be used by the FuncletLayout pass to determine how to order the 1616 // BB's. 1617 // A 'catchret' returns to the outer scope's color. 1618 Value *ParentPad = I.getCatchSwitchParentPad(); 1619 const BasicBlock *SuccessorColor; 1620 if (isa<ConstantTokenNone>(ParentPad)) 1621 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1622 else 1623 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1624 assert(SuccessorColor && "No parent funclet for catchret!"); 1625 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1626 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1627 1628 // Create the terminator node. 1629 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1630 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1631 DAG.getBasicBlock(SuccessorColorMBB)); 1632 DAG.setRoot(Ret); 1633 } 1634 1635 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1636 // Don't emit any special code for the cleanuppad instruction. It just marks 1637 // the start of an EH scope/funclet. 1638 FuncInfo.MBB->setIsEHScopeEntry(); 1639 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1640 if (Pers != EHPersonality::Wasm_CXX) { 1641 FuncInfo.MBB->setIsEHFuncletEntry(); 1642 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1643 } 1644 } 1645 1646 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1647 // the control flow always stops at the single catch pad, as it does for a 1648 // cleanup pad. In case the exception caught is not of the types the catch pad 1649 // catches, it will be rethrown by a rethrow. 1650 static void findWasmUnwindDestinations( 1651 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1652 BranchProbability Prob, 1653 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1654 &UnwindDests) { 1655 while (EHPadBB) { 1656 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1657 if (isa<CleanupPadInst>(Pad)) { 1658 // Stop on cleanup pads. 1659 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1660 UnwindDests.back().first->setIsEHScopeEntry(); 1661 break; 1662 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1663 // Add the catchpad handlers to the possible destinations. We don't 1664 // continue to the unwind destination of the catchswitch for wasm. 1665 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1666 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1667 UnwindDests.back().first->setIsEHScopeEntry(); 1668 } 1669 break; 1670 } else { 1671 continue; 1672 } 1673 } 1674 } 1675 1676 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1677 /// many places it could ultimately go. In the IR, we have a single unwind 1678 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1679 /// This function skips over imaginary basic blocks that hold catchswitch 1680 /// instructions, and finds all the "real" machine 1681 /// basic block destinations. As those destinations may not be successors of 1682 /// EHPadBB, here we also calculate the edge probability to those destinations. 1683 /// The passed-in Prob is the edge probability to EHPadBB. 1684 static void findUnwindDestinations( 1685 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1686 BranchProbability Prob, 1687 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1688 &UnwindDests) { 1689 EHPersonality Personality = 1690 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1691 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1692 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1693 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1694 bool IsSEH = isAsynchronousEHPersonality(Personality); 1695 1696 if (IsWasmCXX) { 1697 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1698 assert(UnwindDests.size() <= 1 && 1699 "There should be at most one unwind destination for wasm"); 1700 return; 1701 } 1702 1703 while (EHPadBB) { 1704 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1705 BasicBlock *NewEHPadBB = nullptr; 1706 if (isa<LandingPadInst>(Pad)) { 1707 // Stop on landingpads. They are not funclets. 1708 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1709 break; 1710 } else if (isa<CleanupPadInst>(Pad)) { 1711 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1712 // personalities. 1713 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 UnwindDests.back().first->setIsEHFuncletEntry(); 1716 break; 1717 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1718 // Add the catchpad handlers to the possible destinations. 1719 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1720 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1721 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1722 if (IsMSVCCXX || IsCoreCLR) 1723 UnwindDests.back().first->setIsEHFuncletEntry(); 1724 if (!IsSEH) 1725 UnwindDests.back().first->setIsEHScopeEntry(); 1726 } 1727 NewEHPadBB = CatchSwitch->getUnwindDest(); 1728 } else { 1729 continue; 1730 } 1731 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 if (BPI && NewEHPadBB) 1734 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1735 EHPadBB = NewEHPadBB; 1736 } 1737 } 1738 1739 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1740 // Update successor info. 1741 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1742 auto UnwindDest = I.getUnwindDest(); 1743 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1744 BranchProbability UnwindDestProb = 1745 (BPI && UnwindDest) 1746 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1747 : BranchProbability::getZero(); 1748 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1749 for (auto &UnwindDest : UnwindDests) { 1750 UnwindDest.first->setIsEHPad(); 1751 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1752 } 1753 FuncInfo.MBB->normalizeSuccProbs(); 1754 1755 // Create the terminator node. 1756 SDValue Ret = 1757 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1758 DAG.setRoot(Ret); 1759 } 1760 1761 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1762 report_fatal_error("visitCatchSwitch not yet implemented!"); 1763 } 1764 1765 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1767 auto &DL = DAG.getDataLayout(); 1768 SDValue Chain = getControlRoot(); 1769 SmallVector<ISD::OutputArg, 8> Outs; 1770 SmallVector<SDValue, 8> OutVals; 1771 1772 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1773 // lower 1774 // 1775 // %val = call <ty> @llvm.experimental.deoptimize() 1776 // ret <ty> %val 1777 // 1778 // differently. 1779 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1780 LowerDeoptimizingReturn(); 1781 return; 1782 } 1783 1784 if (!FuncInfo.CanLowerReturn) { 1785 unsigned DemoteReg = FuncInfo.DemoteRegister; 1786 const Function *F = I.getParent()->getParent(); 1787 1788 // Emit a store of the return value through the virtual register. 1789 // Leave Outs empty so that LowerReturn won't try to load return 1790 // registers the usual way. 1791 SmallVector<EVT, 1> PtrValueVTs; 1792 ComputeValueVTs(TLI, DL, 1793 F->getReturnType()->getPointerTo( 1794 DAG.getDataLayout().getAllocaAddrSpace()), 1795 PtrValueVTs); 1796 1797 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1798 DemoteReg, PtrValueVTs[0]); 1799 SDValue RetOp = getValue(I.getOperand(0)); 1800 1801 SmallVector<EVT, 4> ValueVTs, MemVTs; 1802 SmallVector<uint64_t, 4> Offsets; 1803 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1804 &Offsets); 1805 unsigned NumValues = ValueVTs.size(); 1806 1807 SmallVector<SDValue, 4> Chains(NumValues); 1808 for (unsigned i = 0; i != NumValues; ++i) { 1809 // An aggregate return value cannot wrap around the address space, so 1810 // offsets to its parts don't wrap either. 1811 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1812 1813 SDValue Val = RetOp.getValue(i); 1814 if (MemVTs[i] != ValueVTs[i]) 1815 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1816 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1817 // FIXME: better loc info would be nice. 1818 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1819 } 1820 1821 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1822 MVT::Other, Chains); 1823 } else if (I.getNumOperands() != 0) { 1824 SmallVector<EVT, 4> ValueVTs; 1825 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1826 unsigned NumValues = ValueVTs.size(); 1827 if (NumValues) { 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 const Function *F = I.getParent()->getParent(); 1831 1832 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1833 I.getOperand(0)->getType(), F->getCallingConv(), 1834 /*IsVarArg*/ false); 1835 1836 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1837 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1838 Attribute::SExt)) 1839 ExtendKind = ISD::SIGN_EXTEND; 1840 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::ZExt)) 1842 ExtendKind = ISD::ZERO_EXTEND; 1843 1844 LLVMContext &Context = F->getContext(); 1845 bool RetInReg = F->getAttributes().hasAttribute( 1846 AttributeList::ReturnIndex, Attribute::InReg); 1847 1848 for (unsigned j = 0; j != NumValues; ++j) { 1849 EVT VT = ValueVTs[j]; 1850 1851 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1852 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1853 1854 CallingConv::ID CC = F->getCallingConv(); 1855 1856 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1857 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1858 SmallVector<SDValue, 4> Parts(NumParts); 1859 getCopyToParts(DAG, getCurSDLoc(), 1860 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1861 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1862 1863 // 'inreg' on function refers to return value 1864 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1865 if (RetInReg) 1866 Flags.setInReg(); 1867 1868 if (I.getOperand(0)->getType()->isPointerTy()) { 1869 Flags.setPointer(); 1870 Flags.setPointerAddrSpace( 1871 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1872 } 1873 1874 if (NeedsRegBlock) { 1875 Flags.setInConsecutiveRegs(); 1876 if (j == NumValues - 1) 1877 Flags.setInConsecutiveRegsLast(); 1878 } 1879 1880 // Propagate extension type if any 1881 if (ExtendKind == ISD::SIGN_EXTEND) 1882 Flags.setSExt(); 1883 else if (ExtendKind == ISD::ZERO_EXTEND) 1884 Flags.setZExt(); 1885 1886 for (unsigned i = 0; i < NumParts; ++i) { 1887 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1888 VT, /*isfixed=*/true, 0, 0)); 1889 OutVals.push_back(Parts[i]); 1890 } 1891 } 1892 } 1893 } 1894 1895 // Push in swifterror virtual register as the last element of Outs. This makes 1896 // sure swifterror virtual register will be returned in the swifterror 1897 // physical register. 1898 const Function *F = I.getParent()->getParent(); 1899 if (TLI.supportSwiftError() && 1900 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1901 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1902 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1903 Flags.setSwiftError(); 1904 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1905 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1906 true /*isfixed*/, 1 /*origidx*/, 1907 0 /*partOffs*/)); 1908 // Create SDNode for the swifterror virtual register. 1909 OutVals.push_back( 1910 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1911 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1912 EVT(TLI.getPointerTy(DL)))); 1913 } 1914 1915 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1916 CallingConv::ID CallConv = 1917 DAG.getMachineFunction().getFunction().getCallingConv(); 1918 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1919 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1920 1921 // Verify that the target's LowerReturn behaved as expected. 1922 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1923 "LowerReturn didn't return a valid chain!"); 1924 1925 // Update the DAG with the new chain value resulting from return lowering. 1926 DAG.setRoot(Chain); 1927 } 1928 1929 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1930 /// created for it, emit nodes to copy the value into the virtual 1931 /// registers. 1932 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1933 // Skip empty types 1934 if (V->getType()->isEmptyTy()) 1935 return; 1936 1937 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1938 if (VMI != FuncInfo.ValueMap.end()) { 1939 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1940 CopyValueToVirtualRegister(V, VMI->second); 1941 } 1942 } 1943 1944 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1945 /// the current basic block, add it to ValueMap now so that we'll get a 1946 /// CopyTo/FromReg. 1947 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1948 // No need to export constants. 1949 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1950 1951 // Already exported? 1952 if (FuncInfo.isExportedInst(V)) return; 1953 1954 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1955 CopyValueToVirtualRegister(V, Reg); 1956 } 1957 1958 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1959 const BasicBlock *FromBB) { 1960 // The operands of the setcc have to be in this block. We don't know 1961 // how to export them from some other block. 1962 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1963 // Can export from current BB. 1964 if (VI->getParent() == FromBB) 1965 return true; 1966 1967 // Is already exported, noop. 1968 return FuncInfo.isExportedInst(V); 1969 } 1970 1971 // If this is an argument, we can export it if the BB is the entry block or 1972 // if it is already exported. 1973 if (isa<Argument>(V)) { 1974 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1975 return true; 1976 1977 // Otherwise, can only export this if it is already exported. 1978 return FuncInfo.isExportedInst(V); 1979 } 1980 1981 // Otherwise, constants can always be exported. 1982 return true; 1983 } 1984 1985 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1986 BranchProbability 1987 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1988 const MachineBasicBlock *Dst) const { 1989 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1990 const BasicBlock *SrcBB = Src->getBasicBlock(); 1991 const BasicBlock *DstBB = Dst->getBasicBlock(); 1992 if (!BPI) { 1993 // If BPI is not available, set the default probability as 1 / N, where N is 1994 // the number of successors. 1995 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1996 return BranchProbability(1, SuccSize); 1997 } 1998 return BPI->getEdgeProbability(SrcBB, DstBB); 1999 } 2000 2001 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2002 MachineBasicBlock *Dst, 2003 BranchProbability Prob) { 2004 if (!FuncInfo.BPI) 2005 Src->addSuccessorWithoutProb(Dst); 2006 else { 2007 if (Prob.isUnknown()) 2008 Prob = getEdgeProbability(Src, Dst); 2009 Src->addSuccessor(Dst, Prob); 2010 } 2011 } 2012 2013 static bool InBlock(const Value *V, const BasicBlock *BB) { 2014 if (const Instruction *I = dyn_cast<Instruction>(V)) 2015 return I->getParent() == BB; 2016 return true; 2017 } 2018 2019 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2020 /// This function emits a branch and is used at the leaves of an OR or an 2021 /// AND operator tree. 2022 void 2023 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2024 MachineBasicBlock *TBB, 2025 MachineBasicBlock *FBB, 2026 MachineBasicBlock *CurBB, 2027 MachineBasicBlock *SwitchBB, 2028 BranchProbability TProb, 2029 BranchProbability FProb, 2030 bool InvertCond) { 2031 const BasicBlock *BB = CurBB->getBasicBlock(); 2032 2033 // If the leaf of the tree is a comparison, merge the condition into 2034 // the caseblock. 2035 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2036 // The operands of the cmp have to be in this block. We don't know 2037 // how to export them from some other block. If this is the first block 2038 // of the sequence, no exporting is needed. 2039 if (CurBB == SwitchBB || 2040 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2041 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2042 ISD::CondCode Condition; 2043 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2044 ICmpInst::Predicate Pred = 2045 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2046 Condition = getICmpCondCode(Pred); 2047 } else { 2048 const FCmpInst *FC = cast<FCmpInst>(Cond); 2049 FCmpInst::Predicate Pred = 2050 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2051 Condition = getFCmpCondCode(Pred); 2052 if (TM.Options.NoNaNsFPMath) 2053 Condition = getFCmpCodeWithoutNaN(Condition); 2054 } 2055 2056 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2057 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2058 SL->SwitchCases.push_back(CB); 2059 return; 2060 } 2061 } 2062 2063 // Create a CaseBlock record representing this branch. 2064 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2065 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2066 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2067 SL->SwitchCases.push_back(CB); 2068 } 2069 2070 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2071 MachineBasicBlock *TBB, 2072 MachineBasicBlock *FBB, 2073 MachineBasicBlock *CurBB, 2074 MachineBasicBlock *SwitchBB, 2075 Instruction::BinaryOps Opc, 2076 BranchProbability TProb, 2077 BranchProbability FProb, 2078 bool InvertCond) { 2079 // Skip over not part of the tree and remember to invert op and operands at 2080 // next level. 2081 Value *NotCond; 2082 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2083 InBlock(NotCond, CurBB->getBasicBlock())) { 2084 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2085 !InvertCond); 2086 return; 2087 } 2088 2089 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2090 // Compute the effective opcode for Cond, taking into account whether it needs 2091 // to be inverted, e.g. 2092 // and (not (or A, B)), C 2093 // gets lowered as 2094 // and (and (not A, not B), C) 2095 unsigned BOpc = 0; 2096 if (BOp) { 2097 BOpc = BOp->getOpcode(); 2098 if (InvertCond) { 2099 if (BOpc == Instruction::And) 2100 BOpc = Instruction::Or; 2101 else if (BOpc == Instruction::Or) 2102 BOpc = Instruction::And; 2103 } 2104 } 2105 2106 // If this node is not part of the or/and tree, emit it as a branch. 2107 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2108 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2109 BOp->getParent() != CurBB->getBasicBlock() || 2110 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2111 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2112 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2113 TProb, FProb, InvertCond); 2114 return; 2115 } 2116 2117 // Create TmpBB after CurBB. 2118 MachineFunction::iterator BBI(CurBB); 2119 MachineFunction &MF = DAG.getMachineFunction(); 2120 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2121 CurBB->getParent()->insert(++BBI, TmpBB); 2122 2123 if (Opc == Instruction::Or) { 2124 // Codegen X | Y as: 2125 // BB1: 2126 // jmp_if_X TBB 2127 // jmp TmpBB 2128 // TmpBB: 2129 // jmp_if_Y TBB 2130 // jmp FBB 2131 // 2132 2133 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2134 // The requirement is that 2135 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2136 // = TrueProb for original BB. 2137 // Assuming the original probabilities are A and B, one choice is to set 2138 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2139 // A/(1+B) and 2B/(1+B). This choice assumes that 2140 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2141 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2142 // TmpBB, but the math is more complicated. 2143 2144 auto NewTrueProb = TProb / 2; 2145 auto NewFalseProb = TProb / 2 + FProb; 2146 // Emit the LHS condition. 2147 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2148 NewTrueProb, NewFalseProb, InvertCond); 2149 2150 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2151 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2152 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2153 // Emit the RHS condition into TmpBB. 2154 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2155 Probs[0], Probs[1], InvertCond); 2156 } else { 2157 assert(Opc == Instruction::And && "Unknown merge op!"); 2158 // Codegen X & Y as: 2159 // BB1: 2160 // jmp_if_X TmpBB 2161 // jmp FBB 2162 // TmpBB: 2163 // jmp_if_Y TBB 2164 // jmp FBB 2165 // 2166 // This requires creation of TmpBB after CurBB. 2167 2168 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2169 // The requirement is that 2170 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2171 // = FalseProb for original BB. 2172 // Assuming the original probabilities are A and B, one choice is to set 2173 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2174 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2175 // TrueProb for BB1 * FalseProb for TmpBB. 2176 2177 auto NewTrueProb = TProb + FProb / 2; 2178 auto NewFalseProb = FProb / 2; 2179 // Emit the LHS condition. 2180 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2181 NewTrueProb, NewFalseProb, InvertCond); 2182 2183 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2184 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2185 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2186 // Emit the RHS condition into TmpBB. 2187 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2188 Probs[0], Probs[1], InvertCond); 2189 } 2190 } 2191 2192 /// If the set of cases should be emitted as a series of branches, return true. 2193 /// If we should emit this as a bunch of and/or'd together conditions, return 2194 /// false. 2195 bool 2196 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2197 if (Cases.size() != 2) return true; 2198 2199 // If this is two comparisons of the same values or'd or and'd together, they 2200 // will get folded into a single comparison, so don't emit two blocks. 2201 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2202 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2203 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2204 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2205 return false; 2206 } 2207 2208 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2209 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2210 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2211 Cases[0].CC == Cases[1].CC && 2212 isa<Constant>(Cases[0].CmpRHS) && 2213 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2214 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2215 return false; 2216 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2217 return false; 2218 } 2219 2220 return true; 2221 } 2222 2223 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2224 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2225 2226 // Update machine-CFG edges. 2227 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2228 2229 if (I.isUnconditional()) { 2230 // Update machine-CFG edges. 2231 BrMBB->addSuccessor(Succ0MBB); 2232 2233 // If this is not a fall-through branch or optimizations are switched off, 2234 // emit the branch. 2235 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2236 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2237 MVT::Other, getControlRoot(), 2238 DAG.getBasicBlock(Succ0MBB))); 2239 2240 return; 2241 } 2242 2243 // If this condition is one of the special cases we handle, do special stuff 2244 // now. 2245 const Value *CondVal = I.getCondition(); 2246 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2247 2248 // If this is a series of conditions that are or'd or and'd together, emit 2249 // this as a sequence of branches instead of setcc's with and/or operations. 2250 // As long as jumps are not expensive, this should improve performance. 2251 // For example, instead of something like: 2252 // cmp A, B 2253 // C = seteq 2254 // cmp D, E 2255 // F = setle 2256 // or C, F 2257 // jnz foo 2258 // Emit: 2259 // cmp A, B 2260 // je foo 2261 // cmp D, E 2262 // jle foo 2263 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2264 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2265 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2266 !I.getMetadata(LLVMContext::MD_unpredictable) && 2267 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2268 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2269 Opcode, 2270 getEdgeProbability(BrMBB, Succ0MBB), 2271 getEdgeProbability(BrMBB, Succ1MBB), 2272 /*InvertCond=*/false); 2273 // If the compares in later blocks need to use values not currently 2274 // exported from this block, export them now. This block should always 2275 // be the first entry. 2276 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2277 2278 // Allow some cases to be rejected. 2279 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2280 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2282 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2283 } 2284 2285 // Emit the branch for this block. 2286 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2287 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2288 return; 2289 } 2290 2291 // Okay, we decided not to do this, remove any inserted MBB's and clear 2292 // SwitchCases. 2293 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2294 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2295 2296 SL->SwitchCases.clear(); 2297 } 2298 } 2299 2300 // Create a CaseBlock record representing this branch. 2301 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2302 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2303 2304 // Use visitSwitchCase to actually insert the fast branch sequence for this 2305 // cond branch. 2306 visitSwitchCase(CB, BrMBB); 2307 } 2308 2309 /// visitSwitchCase - Emits the necessary code to represent a single node in 2310 /// the binary search tree resulting from lowering a switch instruction. 2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2312 MachineBasicBlock *SwitchBB) { 2313 SDValue Cond; 2314 SDValue CondLHS = getValue(CB.CmpLHS); 2315 SDLoc dl = CB.DL; 2316 2317 if (CB.CC == ISD::SETTRUE) { 2318 // Branch or fall through to TrueBB. 2319 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2320 SwitchBB->normalizeSuccProbs(); 2321 if (CB.TrueBB != NextBlock(SwitchBB)) { 2322 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2323 DAG.getBasicBlock(CB.TrueBB))); 2324 } 2325 return; 2326 } 2327 2328 auto &TLI = DAG.getTargetLoweringInfo(); 2329 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2330 2331 // Build the setcc now. 2332 if (!CB.CmpMHS) { 2333 // Fold "(X == true)" to X and "(X == false)" to !X to 2334 // handle common cases produced by branch lowering. 2335 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2336 CB.CC == ISD::SETEQ) 2337 Cond = CondLHS; 2338 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) { 2340 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2341 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2342 } else { 2343 SDValue CondRHS = getValue(CB.CmpRHS); 2344 2345 // If a pointer's DAG type is larger than its memory type then the DAG 2346 // values are zero-extended. This breaks signed comparisons so truncate 2347 // back to the underlying type before doing the compare. 2348 if (CondLHS.getValueType() != MemVT) { 2349 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2350 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2351 } 2352 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2353 } 2354 } else { 2355 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2356 2357 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2358 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2359 2360 SDValue CmpOp = getValue(CB.CmpMHS); 2361 EVT VT = CmpOp.getValueType(); 2362 2363 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2364 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2365 ISD::SETLE); 2366 } else { 2367 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2368 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2369 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2370 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2371 } 2372 } 2373 2374 // Update successor info 2375 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2376 // TrueBB and FalseBB are always different unless the incoming IR is 2377 // degenerate. This only happens when running llc on weird IR. 2378 if (CB.TrueBB != CB.FalseBB) 2379 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2380 SwitchBB->normalizeSuccProbs(); 2381 2382 // If the lhs block is the next block, invert the condition so that we can 2383 // fall through to the lhs instead of the rhs block. 2384 if (CB.TrueBB == NextBlock(SwitchBB)) { 2385 std::swap(CB.TrueBB, CB.FalseBB); 2386 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2387 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2388 } 2389 2390 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2391 MVT::Other, getControlRoot(), Cond, 2392 DAG.getBasicBlock(CB.TrueBB)); 2393 2394 // Insert the false branch. Do this even if it's a fall through branch, 2395 // this makes it easier to do DAG optimizations which require inverting 2396 // the branch condition. 2397 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2398 DAG.getBasicBlock(CB.FalseBB)); 2399 2400 DAG.setRoot(BrCond); 2401 } 2402 2403 /// visitJumpTable - Emit JumpTable node in the current MBB 2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2405 // Emit the code for the jump table 2406 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2407 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2408 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2409 JT.Reg, PTy); 2410 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2411 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2412 MVT::Other, Index.getValue(1), 2413 Table, Index); 2414 DAG.setRoot(BrJumpTable); 2415 } 2416 2417 /// visitJumpTableHeader - This function emits necessary code to produce index 2418 /// in the JumpTable from switch case. 2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2420 JumpTableHeader &JTH, 2421 MachineBasicBlock *SwitchBB) { 2422 SDLoc dl = getCurSDLoc(); 2423 2424 // Subtract the lowest switch case value from the value being switched on. 2425 SDValue SwitchOp = getValue(JTH.SValue); 2426 EVT VT = SwitchOp.getValueType(); 2427 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2428 DAG.getConstant(JTH.First, dl, VT)); 2429 2430 // The SDNode we just created, which holds the value being switched on minus 2431 // the smallest case value, needs to be copied to a virtual register so it 2432 // can be used as an index into the jump table in a subsequent basic block. 2433 // This value may be smaller or larger than the target's pointer type, and 2434 // therefore require extension or truncating. 2435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2436 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2437 2438 unsigned JumpTableReg = 2439 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2440 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2441 JumpTableReg, SwitchOp); 2442 JT.Reg = JumpTableReg; 2443 2444 if (!JTH.OmitRangeCheck) { 2445 // Emit the range check for the jump table, and branch to the default block 2446 // for the switch statement if the value being switched on exceeds the 2447 // largest case in the switch. 2448 SDValue CMP = DAG.getSetCC( 2449 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2450 Sub.getValueType()), 2451 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2452 2453 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2454 MVT::Other, CopyTo, CMP, 2455 DAG.getBasicBlock(JT.Default)); 2456 2457 // Avoid emitting unnecessary branches to the next block. 2458 if (JT.MBB != NextBlock(SwitchBB)) 2459 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2460 DAG.getBasicBlock(JT.MBB)); 2461 2462 DAG.setRoot(BrCond); 2463 } else { 2464 // Avoid emitting unnecessary branches to the next block. 2465 if (JT.MBB != NextBlock(SwitchBB)) 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2467 DAG.getBasicBlock(JT.MBB))); 2468 else 2469 DAG.setRoot(CopyTo); 2470 } 2471 } 2472 2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2474 /// variable if there exists one. 2475 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2476 SDValue &Chain) { 2477 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2478 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2479 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2480 MachineFunction &MF = DAG.getMachineFunction(); 2481 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2482 MachineSDNode *Node = 2483 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2484 if (Global) { 2485 MachinePointerInfo MPInfo(Global); 2486 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2487 MachineMemOperand::MODereferenceable; 2488 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2489 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2490 DAG.setNodeMemRefs(Node, {MemRef}); 2491 } 2492 if (PtrTy != PtrMemTy) 2493 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2494 return SDValue(Node, 0); 2495 } 2496 2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2498 /// tail spliced into a stack protector check success bb. 2499 /// 2500 /// For a high level explanation of how this fits into the stack protector 2501 /// generation see the comment on the declaration of class 2502 /// StackProtectorDescriptor. 2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2504 MachineBasicBlock *ParentBB) { 2505 2506 // First create the loads to the guard/stack slot for the comparison. 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2509 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2510 2511 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2512 int FI = MFI.getStackProtectorIndex(); 2513 2514 SDValue Guard; 2515 SDLoc dl = getCurSDLoc(); 2516 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2517 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2518 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2519 2520 // Generate code to load the content of the guard slot. 2521 SDValue GuardVal = DAG.getLoad( 2522 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2523 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2524 MachineMemOperand::MOVolatile); 2525 2526 if (TLI.useStackGuardXorFP()) 2527 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2528 2529 // Retrieve guard check function, nullptr if instrumentation is inlined. 2530 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2531 // The target provides a guard check function to validate the guard value. 2532 // Generate a call to that function with the content of the guard slot as 2533 // argument. 2534 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2535 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2536 2537 TargetLowering::ArgListTy Args; 2538 TargetLowering::ArgListEntry Entry; 2539 Entry.Node = GuardVal; 2540 Entry.Ty = FnTy->getParamType(0); 2541 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2542 Entry.IsInReg = true; 2543 Args.push_back(Entry); 2544 2545 TargetLowering::CallLoweringInfo CLI(DAG); 2546 CLI.setDebugLoc(getCurSDLoc()) 2547 .setChain(DAG.getEntryNode()) 2548 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2549 getValue(GuardCheckFn), std::move(Args)); 2550 2551 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2552 DAG.setRoot(Result.second); 2553 return; 2554 } 2555 2556 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2557 // Otherwise, emit a volatile load to retrieve the stack guard value. 2558 SDValue Chain = DAG.getEntryNode(); 2559 if (TLI.useLoadStackGuardNode()) { 2560 Guard = getLoadStackGuard(DAG, dl, Chain); 2561 } else { 2562 const Value *IRGuard = TLI.getSDagStackGuard(M); 2563 SDValue GuardPtr = getValue(IRGuard); 2564 2565 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2566 MachinePointerInfo(IRGuard, 0), Align, 2567 MachineMemOperand::MOVolatile); 2568 } 2569 2570 // Perform the comparison via a subtract/getsetcc. 2571 EVT VT = Guard.getValueType(); 2572 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2573 2574 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2575 *DAG.getContext(), 2576 Sub.getValueType()), 2577 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2578 2579 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2580 // branch to failure MBB. 2581 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2582 MVT::Other, GuardVal.getOperand(0), 2583 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2584 // Otherwise branch to success MBB. 2585 SDValue Br = DAG.getNode(ISD::BR, dl, 2586 MVT::Other, BrCond, 2587 DAG.getBasicBlock(SPD.getSuccessMBB())); 2588 2589 DAG.setRoot(Br); 2590 } 2591 2592 /// Codegen the failure basic block for a stack protector check. 2593 /// 2594 /// A failure stack protector machine basic block consists simply of a call to 2595 /// __stack_chk_fail(). 2596 /// 2597 /// For a high level explanation of how this fits into the stack protector 2598 /// generation see the comment on the declaration of class 2599 /// StackProtectorDescriptor. 2600 void 2601 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2603 SDValue Chain = 2604 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2605 None, false, getCurSDLoc(), false, false).second; 2606 // On PS4, the "return address" must still be within the calling function, 2607 // even if it's at the very end, so emit an explicit TRAP here. 2608 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2609 if (TM.getTargetTriple().isPS4CPU()) 2610 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2611 2612 DAG.setRoot(Chain); 2613 } 2614 2615 /// visitBitTestHeader - This function emits necessary code to produce value 2616 /// suitable for "bit tests" 2617 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2618 MachineBasicBlock *SwitchBB) { 2619 SDLoc dl = getCurSDLoc(); 2620 2621 // Subtract the minimum value 2622 SDValue SwitchOp = getValue(B.SValue); 2623 EVT VT = SwitchOp.getValueType(); 2624 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2625 DAG.getConstant(B.First, dl, VT)); 2626 2627 // Check range 2628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2629 SDValue RangeCmp = DAG.getSetCC( 2630 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2631 Sub.getValueType()), 2632 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2633 2634 // Determine the type of the test operands. 2635 bool UsePtrType = false; 2636 if (!TLI.isTypeLegal(VT)) 2637 UsePtrType = true; 2638 else { 2639 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2640 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2641 // Switch table case range are encoded into series of masks. 2642 // Just use pointer type, it's guaranteed to fit. 2643 UsePtrType = true; 2644 break; 2645 } 2646 } 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2659 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2660 SwitchBB->normalizeSuccProbs(); 2661 2662 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2663 MVT::Other, CopyTo, RangeCmp, 2664 DAG.getBasicBlock(B.Default)); 2665 2666 // Avoid emitting unnecessary branches to the next block. 2667 if (MBB != NextBlock(SwitchBB)) 2668 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2669 DAG.getBasicBlock(MBB)); 2670 2671 DAG.setRoot(BrRange); 2672 } 2673 2674 /// visitBitTestCase - this function produces one "bit test" 2675 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2676 MachineBasicBlock* NextMBB, 2677 BranchProbability BranchProbToNext, 2678 unsigned Reg, 2679 BitTestCase &B, 2680 MachineBasicBlock *SwitchBB) { 2681 SDLoc dl = getCurSDLoc(); 2682 MVT VT = BB.RegVT; 2683 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2684 SDValue Cmp; 2685 unsigned PopCount = countPopulation(B.Mask); 2686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2687 if (PopCount == 1) { 2688 // Testing for a single bit; just compare the shift count with what it 2689 // would need to be to shift a 1 bit in that position. 2690 Cmp = DAG.getSetCC( 2691 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2692 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2693 ISD::SETEQ); 2694 } else if (PopCount == BB.Range) { 2695 // There is only one zero bit in the range, test for it directly. 2696 Cmp = DAG.getSetCC( 2697 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2698 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2699 ISD::SETNE); 2700 } else { 2701 // Make desired shift 2702 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2703 DAG.getConstant(1, dl, VT), ShiftOp); 2704 2705 // Emit bit tests and jumps 2706 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2707 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2708 Cmp = DAG.getSetCC( 2709 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2710 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2711 } 2712 2713 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2714 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2715 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2716 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2717 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2718 // one as they are relative probabilities (and thus work more like weights), 2719 // and hence we need to normalize them to let the sum of them become one. 2720 SwitchBB->normalizeSuccProbs(); 2721 2722 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2723 MVT::Other, getControlRoot(), 2724 Cmp, DAG.getBasicBlock(B.TargetBB)); 2725 2726 // Avoid emitting unnecessary branches to the next block. 2727 if (NextMBB != NextBlock(SwitchBB)) 2728 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2729 DAG.getBasicBlock(NextMBB)); 2730 2731 DAG.setRoot(BrAnd); 2732 } 2733 2734 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2735 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2736 2737 // Retrieve successors. Look through artificial IR level blocks like 2738 // catchswitch for successors. 2739 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2740 const BasicBlock *EHPadBB = I.getSuccessor(1); 2741 2742 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2743 // have to do anything here to lower funclet bundles. 2744 assert(!I.hasOperandBundlesOtherThan( 2745 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2746 "Cannot lower invokes with arbitrary operand bundles yet!"); 2747 2748 const Value *Callee(I.getCalledValue()); 2749 const Function *Fn = dyn_cast<Function>(Callee); 2750 if (isa<InlineAsm>(Callee)) 2751 visitInlineAsm(&I); 2752 else if (Fn && Fn->isIntrinsic()) { 2753 switch (Fn->getIntrinsicID()) { 2754 default: 2755 llvm_unreachable("Cannot invoke this intrinsic"); 2756 case Intrinsic::donothing: 2757 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2758 break; 2759 case Intrinsic::experimental_patchpoint_void: 2760 case Intrinsic::experimental_patchpoint_i64: 2761 visitPatchpoint(&I, EHPadBB); 2762 break; 2763 case Intrinsic::experimental_gc_statepoint: 2764 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2765 break; 2766 case Intrinsic::wasm_rethrow_in_catch: { 2767 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2768 // special because it can be invoked, so we manually lower it to a DAG 2769 // node here. 2770 SmallVector<SDValue, 8> Ops; 2771 Ops.push_back(getRoot()); // inchain 2772 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2773 Ops.push_back( 2774 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2775 TLI.getPointerTy(DAG.getDataLayout()))); 2776 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2777 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2778 break; 2779 } 2780 } 2781 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2782 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2783 // Eventually we will support lowering the @llvm.experimental.deoptimize 2784 // intrinsic, and right now there are no plans to support other intrinsics 2785 // with deopt state. 2786 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2787 } else { 2788 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2789 } 2790 2791 // If the value of the invoke is used outside of its defining block, make it 2792 // available as a virtual register. 2793 // We already took care of the exported value for the statepoint instruction 2794 // during call to the LowerStatepoint. 2795 if (!isStatepoint(I)) { 2796 CopyToExportRegsIfNeeded(&I); 2797 } 2798 2799 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2800 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2801 BranchProbability EHPadBBProb = 2802 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2803 : BranchProbability::getZero(); 2804 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2805 2806 // Update successor info. 2807 addSuccessorWithProb(InvokeMBB, Return); 2808 for (auto &UnwindDest : UnwindDests) { 2809 UnwindDest.first->setIsEHPad(); 2810 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2811 } 2812 InvokeMBB->normalizeSuccProbs(); 2813 2814 // Drop into normal successor. 2815 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2816 DAG.getBasicBlock(Return))); 2817 } 2818 2819 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2820 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2821 2822 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2823 // have to do anything here to lower funclet bundles. 2824 assert(!I.hasOperandBundlesOtherThan( 2825 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2826 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2827 2828 assert(isa<InlineAsm>(I.getCalledValue()) && 2829 "Only know how to handle inlineasm callbr"); 2830 visitInlineAsm(&I); 2831 2832 // Retrieve successors. 2833 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2834 2835 // Update successor info. 2836 addSuccessorWithProb(CallBrMBB, Return); 2837 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2838 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2839 addSuccessorWithProb(CallBrMBB, Target); 2840 } 2841 CallBrMBB->normalizeSuccProbs(); 2842 2843 // Drop into default successor. 2844 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2845 MVT::Other, getControlRoot(), 2846 DAG.getBasicBlock(Return))); 2847 } 2848 2849 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2850 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2851 } 2852 2853 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2854 assert(FuncInfo.MBB->isEHPad() && 2855 "Call to landingpad not in landing pad!"); 2856 2857 // If there aren't registers to copy the values into (e.g., during SjLj 2858 // exceptions), then don't bother to create these DAG nodes. 2859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2860 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2861 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2862 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2863 return; 2864 2865 // If landingpad's return type is token type, we don't create DAG nodes 2866 // for its exception pointer and selector value. The extraction of exception 2867 // pointer or selector value from token type landingpads is not currently 2868 // supported. 2869 if (LP.getType()->isTokenTy()) 2870 return; 2871 2872 SmallVector<EVT, 2> ValueVTs; 2873 SDLoc dl = getCurSDLoc(); 2874 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2875 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2876 2877 // Get the two live-in registers as SDValues. The physregs have already been 2878 // copied into virtual registers. 2879 SDValue Ops[2]; 2880 if (FuncInfo.ExceptionPointerVirtReg) { 2881 Ops[0] = DAG.getZExtOrTrunc( 2882 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2883 FuncInfo.ExceptionPointerVirtReg, 2884 TLI.getPointerTy(DAG.getDataLayout())), 2885 dl, ValueVTs[0]); 2886 } else { 2887 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2888 } 2889 Ops[1] = DAG.getZExtOrTrunc( 2890 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2891 FuncInfo.ExceptionSelectorVirtReg, 2892 TLI.getPointerTy(DAG.getDataLayout())), 2893 dl, ValueVTs[1]); 2894 2895 // Merge into one. 2896 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2897 DAG.getVTList(ValueVTs), Ops); 2898 setValue(&LP, Res); 2899 } 2900 2901 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2902 MachineBasicBlock *Last) { 2903 // Update JTCases. 2904 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2905 if (SL->JTCases[i].first.HeaderBB == First) 2906 SL->JTCases[i].first.HeaderBB = Last; 2907 2908 // Update BitTestCases. 2909 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2910 if (SL->BitTestCases[i].Parent == First) 2911 SL->BitTestCases[i].Parent = Last; 2912 } 2913 2914 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2915 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2916 2917 // Update machine-CFG edges with unique successors. 2918 SmallSet<BasicBlock*, 32> Done; 2919 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2920 BasicBlock *BB = I.getSuccessor(i); 2921 bool Inserted = Done.insert(BB).second; 2922 if (!Inserted) 2923 continue; 2924 2925 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2926 addSuccessorWithProb(IndirectBrMBB, Succ); 2927 } 2928 IndirectBrMBB->normalizeSuccProbs(); 2929 2930 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2931 MVT::Other, getControlRoot(), 2932 getValue(I.getAddress()))); 2933 } 2934 2935 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2936 if (!DAG.getTarget().Options.TrapUnreachable) 2937 return; 2938 2939 // We may be able to ignore unreachable behind a noreturn call. 2940 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2941 const BasicBlock &BB = *I.getParent(); 2942 if (&I != &BB.front()) { 2943 BasicBlock::const_iterator PredI = 2944 std::prev(BasicBlock::const_iterator(&I)); 2945 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2946 if (Call->doesNotReturn()) 2947 return; 2948 } 2949 } 2950 } 2951 2952 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2953 } 2954 2955 void SelectionDAGBuilder::visitFSub(const User &I) { 2956 // -0.0 - X --> fneg 2957 Type *Ty = I.getType(); 2958 if (isa<Constant>(I.getOperand(0)) && 2959 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2960 SDValue Op2 = getValue(I.getOperand(1)); 2961 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2962 Op2.getValueType(), Op2)); 2963 return; 2964 } 2965 2966 visitBinary(I, ISD::FSUB); 2967 } 2968 2969 /// Checks if the given instruction performs a vector reduction, in which case 2970 /// we have the freedom to alter the elements in the result as long as the 2971 /// reduction of them stays unchanged. 2972 static bool isVectorReductionOp(const User *I) { 2973 const Instruction *Inst = dyn_cast<Instruction>(I); 2974 if (!Inst || !Inst->getType()->isVectorTy()) 2975 return false; 2976 2977 auto OpCode = Inst->getOpcode(); 2978 switch (OpCode) { 2979 case Instruction::Add: 2980 case Instruction::Mul: 2981 case Instruction::And: 2982 case Instruction::Or: 2983 case Instruction::Xor: 2984 break; 2985 case Instruction::FAdd: 2986 case Instruction::FMul: 2987 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2988 if (FPOp->getFastMathFlags().isFast()) 2989 break; 2990 LLVM_FALLTHROUGH; 2991 default: 2992 return false; 2993 } 2994 2995 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2996 // Ensure the reduction size is a power of 2. 2997 if (!isPowerOf2_32(ElemNum)) 2998 return false; 2999 3000 unsigned ElemNumToReduce = ElemNum; 3001 3002 // Do DFS search on the def-use chain from the given instruction. We only 3003 // allow four kinds of operations during the search until we reach the 3004 // instruction that extracts the first element from the vector: 3005 // 3006 // 1. The reduction operation of the same opcode as the given instruction. 3007 // 3008 // 2. PHI node. 3009 // 3010 // 3. ShuffleVector instruction together with a reduction operation that 3011 // does a partial reduction. 3012 // 3013 // 4. ExtractElement that extracts the first element from the vector, and we 3014 // stop searching the def-use chain here. 3015 // 3016 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3017 // from 1-3 to the stack to continue the DFS. The given instruction is not 3018 // a reduction operation if we meet any other instructions other than those 3019 // listed above. 3020 3021 SmallVector<const User *, 16> UsersToVisit{Inst}; 3022 SmallPtrSet<const User *, 16> Visited; 3023 bool ReduxExtracted = false; 3024 3025 while (!UsersToVisit.empty()) { 3026 auto User = UsersToVisit.back(); 3027 UsersToVisit.pop_back(); 3028 if (!Visited.insert(User).second) 3029 continue; 3030 3031 for (const auto &U : User->users()) { 3032 auto Inst = dyn_cast<Instruction>(U); 3033 if (!Inst) 3034 return false; 3035 3036 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3037 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3038 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3039 return false; 3040 UsersToVisit.push_back(U); 3041 } else if (const ShuffleVectorInst *ShufInst = 3042 dyn_cast<ShuffleVectorInst>(U)) { 3043 // Detect the following pattern: A ShuffleVector instruction together 3044 // with a reduction that do partial reduction on the first and second 3045 // ElemNumToReduce / 2 elements, and store the result in 3046 // ElemNumToReduce / 2 elements in another vector. 3047 3048 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3049 if (ResultElements < ElemNum) 3050 return false; 3051 3052 if (ElemNumToReduce == 1) 3053 return false; 3054 if (!isa<UndefValue>(U->getOperand(1))) 3055 return false; 3056 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3057 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3058 return false; 3059 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3060 if (ShufInst->getMaskValue(i) != -1) 3061 return false; 3062 3063 // There is only one user of this ShuffleVector instruction, which 3064 // must be a reduction operation. 3065 if (!U->hasOneUse()) 3066 return false; 3067 3068 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3069 if (!U2 || U2->getOpcode() != OpCode) 3070 return false; 3071 3072 // Check operands of the reduction operation. 3073 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3074 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3075 UsersToVisit.push_back(U2); 3076 ElemNumToReduce /= 2; 3077 } else 3078 return false; 3079 } else if (isa<ExtractElementInst>(U)) { 3080 // At this moment we should have reduced all elements in the vector. 3081 if (ElemNumToReduce != 1) 3082 return false; 3083 3084 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3085 if (!Val || !Val->isZero()) 3086 return false; 3087 3088 ReduxExtracted = true; 3089 } else 3090 return false; 3091 } 3092 } 3093 return ReduxExtracted; 3094 } 3095 3096 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3097 SDNodeFlags Flags; 3098 3099 SDValue Op = getValue(I.getOperand(0)); 3100 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3101 Op, Flags); 3102 setValue(&I, UnNodeValue); 3103 } 3104 3105 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3106 SDNodeFlags Flags; 3107 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3108 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3109 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3110 } 3111 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3112 Flags.setExact(ExactOp->isExact()); 3113 } 3114 if (isVectorReductionOp(&I)) { 3115 Flags.setVectorReduction(true); 3116 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3117 } 3118 3119 SDValue Op1 = getValue(I.getOperand(0)); 3120 SDValue Op2 = getValue(I.getOperand(1)); 3121 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3122 Op1, Op2, Flags); 3123 setValue(&I, BinNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3127 SDValue Op1 = getValue(I.getOperand(0)); 3128 SDValue Op2 = getValue(I.getOperand(1)); 3129 3130 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3131 Op1.getValueType(), DAG.getDataLayout()); 3132 3133 // Coerce the shift amount to the right type if we can. 3134 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3135 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3136 unsigned Op2Size = Op2.getValueSizeInBits(); 3137 SDLoc DL = getCurSDLoc(); 3138 3139 // If the operand is smaller than the shift count type, promote it. 3140 if (ShiftSize > Op2Size) 3141 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3142 3143 // If the operand is larger than the shift count type but the shift 3144 // count type has enough bits to represent any shift value, truncate 3145 // it now. This is a common case and it exposes the truncate to 3146 // optimization early. 3147 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3148 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3149 // Otherwise we'll need to temporarily settle for some other convenient 3150 // type. Type legalization will make adjustments once the shiftee is split. 3151 else 3152 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3153 } 3154 3155 bool nuw = false; 3156 bool nsw = false; 3157 bool exact = false; 3158 3159 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3160 3161 if (const OverflowingBinaryOperator *OFBinOp = 3162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3163 nuw = OFBinOp->hasNoUnsignedWrap(); 3164 nsw = OFBinOp->hasNoSignedWrap(); 3165 } 3166 if (const PossiblyExactOperator *ExactOp = 3167 dyn_cast<const PossiblyExactOperator>(&I)) 3168 exact = ExactOp->isExact(); 3169 } 3170 SDNodeFlags Flags; 3171 Flags.setExact(exact); 3172 Flags.setNoSignedWrap(nsw); 3173 Flags.setNoUnsignedWrap(nuw); 3174 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3175 Flags); 3176 setValue(&I, Res); 3177 } 3178 3179 void SelectionDAGBuilder::visitSDiv(const User &I) { 3180 SDValue Op1 = getValue(I.getOperand(0)); 3181 SDValue Op2 = getValue(I.getOperand(1)); 3182 3183 SDNodeFlags Flags; 3184 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3185 cast<PossiblyExactOperator>(&I)->isExact()); 3186 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3187 Op2, Flags)); 3188 } 3189 3190 void SelectionDAGBuilder::visitICmp(const User &I) { 3191 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3192 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3193 predicate = IC->getPredicate(); 3194 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3195 predicate = ICmpInst::Predicate(IC->getPredicate()); 3196 SDValue Op1 = getValue(I.getOperand(0)); 3197 SDValue Op2 = getValue(I.getOperand(1)); 3198 ISD::CondCode Opcode = getICmpCondCode(predicate); 3199 3200 auto &TLI = DAG.getTargetLoweringInfo(); 3201 EVT MemVT = 3202 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3203 3204 // If a pointer's DAG type is larger than its memory type then the DAG values 3205 // are zero-extended. This breaks signed comparisons so truncate back to the 3206 // underlying type before doing the compare. 3207 if (Op1.getValueType() != MemVT) { 3208 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3209 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3210 } 3211 3212 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3213 I.getType()); 3214 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3215 } 3216 3217 void SelectionDAGBuilder::visitFCmp(const User &I) { 3218 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3219 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3220 predicate = FC->getPredicate(); 3221 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3222 predicate = FCmpInst::Predicate(FC->getPredicate()); 3223 SDValue Op1 = getValue(I.getOperand(0)); 3224 SDValue Op2 = getValue(I.getOperand(1)); 3225 3226 ISD::CondCode Condition = getFCmpCondCode(predicate); 3227 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3228 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3229 Condition = getFCmpCodeWithoutNaN(Condition); 3230 3231 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3232 I.getType()); 3233 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3234 } 3235 3236 // Check if the condition of the select has one use or two users that are both 3237 // selects with the same condition. 3238 static bool hasOnlySelectUsers(const Value *Cond) { 3239 return llvm::all_of(Cond->users(), [](const Value *V) { 3240 return isa<SelectInst>(V); 3241 }); 3242 } 3243 3244 void SelectionDAGBuilder::visitSelect(const User &I) { 3245 SmallVector<EVT, 4> ValueVTs; 3246 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3247 ValueVTs); 3248 unsigned NumValues = ValueVTs.size(); 3249 if (NumValues == 0) return; 3250 3251 SmallVector<SDValue, 4> Values(NumValues); 3252 SDValue Cond = getValue(I.getOperand(0)); 3253 SDValue LHSVal = getValue(I.getOperand(1)); 3254 SDValue RHSVal = getValue(I.getOperand(2)); 3255 auto BaseOps = {Cond}; 3256 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3257 ISD::VSELECT : ISD::SELECT; 3258 3259 bool IsUnaryAbs = false; 3260 3261 // Min/max matching is only viable if all output VTs are the same. 3262 if (is_splat(ValueVTs)) { 3263 EVT VT = ValueVTs[0]; 3264 LLVMContext &Ctx = *DAG.getContext(); 3265 auto &TLI = DAG.getTargetLoweringInfo(); 3266 3267 // We care about the legality of the operation after it has been type 3268 // legalized. 3269 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3270 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3271 VT = TLI.getTypeToTransformTo(Ctx, VT); 3272 3273 // If the vselect is legal, assume we want to leave this as a vector setcc + 3274 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3275 // min/max is legal on the scalar type. 3276 bool UseScalarMinMax = VT.isVector() && 3277 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3278 3279 Value *LHS, *RHS; 3280 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3281 ISD::NodeType Opc = ISD::DELETED_NODE; 3282 switch (SPR.Flavor) { 3283 case SPF_UMAX: Opc = ISD::UMAX; break; 3284 case SPF_UMIN: Opc = ISD::UMIN; break; 3285 case SPF_SMAX: Opc = ISD::SMAX; break; 3286 case SPF_SMIN: Opc = ISD::SMIN; break; 3287 case SPF_FMINNUM: 3288 switch (SPR.NaNBehavior) { 3289 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3290 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3291 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3292 case SPNB_RETURNS_ANY: { 3293 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3294 Opc = ISD::FMINNUM; 3295 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3296 Opc = ISD::FMINIMUM; 3297 else if (UseScalarMinMax) 3298 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3299 ISD::FMINNUM : ISD::FMINIMUM; 3300 break; 3301 } 3302 } 3303 break; 3304 case SPF_FMAXNUM: 3305 switch (SPR.NaNBehavior) { 3306 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3307 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3308 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3309 case SPNB_RETURNS_ANY: 3310 3311 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3312 Opc = ISD::FMAXNUM; 3313 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3314 Opc = ISD::FMAXIMUM; 3315 else if (UseScalarMinMax) 3316 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3317 ISD::FMAXNUM : ISD::FMAXIMUM; 3318 break; 3319 } 3320 break; 3321 case SPF_ABS: 3322 IsUnaryAbs = true; 3323 Opc = ISD::ABS; 3324 break; 3325 case SPF_NABS: 3326 // TODO: we need to produce sub(0, abs(X)). 3327 default: break; 3328 } 3329 3330 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3331 (TLI.isOperationLegalOrCustom(Opc, VT) || 3332 (UseScalarMinMax && 3333 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3334 // If the underlying comparison instruction is used by any other 3335 // instruction, the consumed instructions won't be destroyed, so it is 3336 // not profitable to convert to a min/max. 3337 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3338 OpCode = Opc; 3339 LHSVal = getValue(LHS); 3340 RHSVal = getValue(RHS); 3341 BaseOps = {}; 3342 } 3343 3344 if (IsUnaryAbs) { 3345 OpCode = Opc; 3346 LHSVal = getValue(LHS); 3347 BaseOps = {}; 3348 } 3349 } 3350 3351 if (IsUnaryAbs) { 3352 for (unsigned i = 0; i != NumValues; ++i) { 3353 Values[i] = 3354 DAG.getNode(OpCode, getCurSDLoc(), 3355 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3356 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3357 } 3358 } else { 3359 for (unsigned i = 0; i != NumValues; ++i) { 3360 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3361 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3362 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3363 Values[i] = DAG.getNode( 3364 OpCode, getCurSDLoc(), 3365 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3366 } 3367 } 3368 3369 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3370 DAG.getVTList(ValueVTs), Values)); 3371 } 3372 3373 void SelectionDAGBuilder::visitTrunc(const User &I) { 3374 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3375 SDValue N = getValue(I.getOperand(0)); 3376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3377 I.getType()); 3378 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3379 } 3380 3381 void SelectionDAGBuilder::visitZExt(const User &I) { 3382 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3383 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitSExt(const User &I) { 3391 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3392 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3397 } 3398 3399 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3400 // FPTrunc is never a no-op cast, no need to check 3401 SDValue N = getValue(I.getOperand(0)); 3402 SDLoc dl = getCurSDLoc(); 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3405 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3406 DAG.getTargetConstant( 3407 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3408 } 3409 3410 void SelectionDAGBuilder::visitFPExt(const User &I) { 3411 // FPExt is never a no-op cast, no need to check 3412 SDValue N = getValue(I.getOperand(0)); 3413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3414 I.getType()); 3415 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3416 } 3417 3418 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3419 // FPToUI is never a no-op cast, no need to check 3420 SDValue N = getValue(I.getOperand(0)); 3421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3422 I.getType()); 3423 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3427 // FPToSI is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3435 // UIToFP is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3443 // SIToFP is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3451 // What to do depends on the size of the integer and the size of the pointer. 3452 // We can either truncate, zero extend, or no-op, accordingly. 3453 SDValue N = getValue(I.getOperand(0)); 3454 auto &TLI = DAG.getTargetLoweringInfo(); 3455 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3456 I.getType()); 3457 EVT PtrMemVT = 3458 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3459 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3460 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3461 setValue(&I, N); 3462 } 3463 3464 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3465 // What to do depends on the size of the integer and the size of the pointer. 3466 // We can either truncate, zero extend, or no-op, accordingly. 3467 SDValue N = getValue(I.getOperand(0)); 3468 auto &TLI = DAG.getTargetLoweringInfo(); 3469 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3470 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3471 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3472 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3473 setValue(&I, N); 3474 } 3475 3476 void SelectionDAGBuilder::visitBitCast(const User &I) { 3477 SDValue N = getValue(I.getOperand(0)); 3478 SDLoc dl = getCurSDLoc(); 3479 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3480 I.getType()); 3481 3482 // BitCast assures us that source and destination are the same size so this is 3483 // either a BITCAST or a no-op. 3484 if (DestVT != N.getValueType()) 3485 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3486 DestVT, N)); // convert types. 3487 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3488 // might fold any kind of constant expression to an integer constant and that 3489 // is not what we are looking for. Only recognize a bitcast of a genuine 3490 // constant integer as an opaque constant. 3491 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3492 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3493 /*isOpaque*/true)); 3494 else 3495 setValue(&I, N); // noop cast. 3496 } 3497 3498 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3500 const Value *SV = I.getOperand(0); 3501 SDValue N = getValue(SV); 3502 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3503 3504 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3505 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3506 3507 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3508 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3509 3510 setValue(&I, N); 3511 } 3512 3513 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3515 SDValue InVec = getValue(I.getOperand(0)); 3516 SDValue InVal = getValue(I.getOperand(1)); 3517 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3518 TLI.getVectorIdxTy(DAG.getDataLayout())); 3519 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3520 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3521 InVec, InVal, InIdx)); 3522 } 3523 3524 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3526 SDValue InVec = getValue(I.getOperand(0)); 3527 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3528 TLI.getVectorIdxTy(DAG.getDataLayout())); 3529 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3530 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3531 InVec, InIdx)); 3532 } 3533 3534 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3535 SDValue Src1 = getValue(I.getOperand(0)); 3536 SDValue Src2 = getValue(I.getOperand(1)); 3537 SDLoc DL = getCurSDLoc(); 3538 3539 SmallVector<int, 8> Mask; 3540 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3541 unsigned MaskNumElts = Mask.size(); 3542 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3545 EVT SrcVT = Src1.getValueType(); 3546 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3547 3548 if (SrcNumElts == MaskNumElts) { 3549 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3550 return; 3551 } 3552 3553 // Normalize the shuffle vector since mask and vector length don't match. 3554 if (SrcNumElts < MaskNumElts) { 3555 // Mask is longer than the source vectors. We can use concatenate vector to 3556 // make the mask and vectors lengths match. 3557 3558 if (MaskNumElts % SrcNumElts == 0) { 3559 // Mask length is a multiple of the source vector length. 3560 // Check if the shuffle is some kind of concatenation of the input 3561 // vectors. 3562 unsigned NumConcat = MaskNumElts / SrcNumElts; 3563 bool IsConcat = true; 3564 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3565 for (unsigned i = 0; i != MaskNumElts; ++i) { 3566 int Idx = Mask[i]; 3567 if (Idx < 0) 3568 continue; 3569 // Ensure the indices in each SrcVT sized piece are sequential and that 3570 // the same source is used for the whole piece. 3571 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3572 (ConcatSrcs[i / SrcNumElts] >= 0 && 3573 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3574 IsConcat = false; 3575 break; 3576 } 3577 // Remember which source this index came from. 3578 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3579 } 3580 3581 // The shuffle is concatenating multiple vectors together. Just emit 3582 // a CONCAT_VECTORS operation. 3583 if (IsConcat) { 3584 SmallVector<SDValue, 8> ConcatOps; 3585 for (auto Src : ConcatSrcs) { 3586 if (Src < 0) 3587 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3588 else if (Src == 0) 3589 ConcatOps.push_back(Src1); 3590 else 3591 ConcatOps.push_back(Src2); 3592 } 3593 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3594 return; 3595 } 3596 } 3597 3598 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3599 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3600 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3601 PaddedMaskNumElts); 3602 3603 // Pad both vectors with undefs to make them the same length as the mask. 3604 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3605 3606 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3607 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3608 MOps1[0] = Src1; 3609 MOps2[0] = Src2; 3610 3611 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3612 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3613 3614 // Readjust mask for new input vector length. 3615 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3616 for (unsigned i = 0; i != MaskNumElts; ++i) { 3617 int Idx = Mask[i]; 3618 if (Idx >= (int)SrcNumElts) 3619 Idx -= SrcNumElts - PaddedMaskNumElts; 3620 MappedOps[i] = Idx; 3621 } 3622 3623 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3624 3625 // If the concatenated vector was padded, extract a subvector with the 3626 // correct number of elements. 3627 if (MaskNumElts != PaddedMaskNumElts) 3628 Result = DAG.getNode( 3629 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3630 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3631 3632 setValue(&I, Result); 3633 return; 3634 } 3635 3636 if (SrcNumElts > MaskNumElts) { 3637 // Analyze the access pattern of the vector to see if we can extract 3638 // two subvectors and do the shuffle. 3639 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3640 bool CanExtract = true; 3641 for (int Idx : Mask) { 3642 unsigned Input = 0; 3643 if (Idx < 0) 3644 continue; 3645 3646 if (Idx >= (int)SrcNumElts) { 3647 Input = 1; 3648 Idx -= SrcNumElts; 3649 } 3650 3651 // If all the indices come from the same MaskNumElts sized portion of 3652 // the sources we can use extract. Also make sure the extract wouldn't 3653 // extract past the end of the source. 3654 int NewStartIdx = alignDown(Idx, MaskNumElts); 3655 if (NewStartIdx + MaskNumElts > SrcNumElts || 3656 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3657 CanExtract = false; 3658 // Make sure we always update StartIdx as we use it to track if all 3659 // elements are undef. 3660 StartIdx[Input] = NewStartIdx; 3661 } 3662 3663 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3664 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3665 return; 3666 } 3667 if (CanExtract) { 3668 // Extract appropriate subvector and generate a vector shuffle 3669 for (unsigned Input = 0; Input < 2; ++Input) { 3670 SDValue &Src = Input == 0 ? Src1 : Src2; 3671 if (StartIdx[Input] < 0) 3672 Src = DAG.getUNDEF(VT); 3673 else { 3674 Src = DAG.getNode( 3675 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3676 DAG.getConstant(StartIdx[Input], DL, 3677 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3678 } 3679 } 3680 3681 // Calculate new mask. 3682 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3683 for (int &Idx : MappedOps) { 3684 if (Idx >= (int)SrcNumElts) 3685 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3686 else if (Idx >= 0) 3687 Idx -= StartIdx[0]; 3688 } 3689 3690 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3691 return; 3692 } 3693 } 3694 3695 // We can't use either concat vectors or extract subvectors so fall back to 3696 // replacing the shuffle with extract and build vector. 3697 // to insert and build vector. 3698 EVT EltVT = VT.getVectorElementType(); 3699 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3700 SmallVector<SDValue,8> Ops; 3701 for (int Idx : Mask) { 3702 SDValue Res; 3703 3704 if (Idx < 0) { 3705 Res = DAG.getUNDEF(EltVT); 3706 } else { 3707 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3708 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3709 3710 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3711 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3712 } 3713 3714 Ops.push_back(Res); 3715 } 3716 3717 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3718 } 3719 3720 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3721 ArrayRef<unsigned> Indices; 3722 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3723 Indices = IV->getIndices(); 3724 else 3725 Indices = cast<ConstantExpr>(&I)->getIndices(); 3726 3727 const Value *Op0 = I.getOperand(0); 3728 const Value *Op1 = I.getOperand(1); 3729 Type *AggTy = I.getType(); 3730 Type *ValTy = Op1->getType(); 3731 bool IntoUndef = isa<UndefValue>(Op0); 3732 bool FromUndef = isa<UndefValue>(Op1); 3733 3734 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3735 3736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3737 SmallVector<EVT, 4> AggValueVTs; 3738 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3739 SmallVector<EVT, 4> ValValueVTs; 3740 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3741 3742 unsigned NumAggValues = AggValueVTs.size(); 3743 unsigned NumValValues = ValValueVTs.size(); 3744 SmallVector<SDValue, 4> Values(NumAggValues); 3745 3746 // Ignore an insertvalue that produces an empty object 3747 if (!NumAggValues) { 3748 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3749 return; 3750 } 3751 3752 SDValue Agg = getValue(Op0); 3753 unsigned i = 0; 3754 // Copy the beginning value(s) from the original aggregate. 3755 for (; i != LinearIndex; ++i) 3756 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3757 SDValue(Agg.getNode(), Agg.getResNo() + i); 3758 // Copy values from the inserted value(s). 3759 if (NumValValues) { 3760 SDValue Val = getValue(Op1); 3761 for (; i != LinearIndex + NumValValues; ++i) 3762 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3763 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3764 } 3765 // Copy remaining value(s) from the original aggregate. 3766 for (; i != NumAggValues; ++i) 3767 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3768 SDValue(Agg.getNode(), Agg.getResNo() + i); 3769 3770 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3771 DAG.getVTList(AggValueVTs), Values)); 3772 } 3773 3774 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3775 ArrayRef<unsigned> Indices; 3776 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3777 Indices = EV->getIndices(); 3778 else 3779 Indices = cast<ConstantExpr>(&I)->getIndices(); 3780 3781 const Value *Op0 = I.getOperand(0); 3782 Type *AggTy = Op0->getType(); 3783 Type *ValTy = I.getType(); 3784 bool OutOfUndef = isa<UndefValue>(Op0); 3785 3786 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3787 3788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3789 SmallVector<EVT, 4> ValValueVTs; 3790 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3791 3792 unsigned NumValValues = ValValueVTs.size(); 3793 3794 // Ignore a extractvalue that produces an empty object 3795 if (!NumValValues) { 3796 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3797 return; 3798 } 3799 3800 SmallVector<SDValue, 4> Values(NumValValues); 3801 3802 SDValue Agg = getValue(Op0); 3803 // Copy out the selected value(s). 3804 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3805 Values[i - LinearIndex] = 3806 OutOfUndef ? 3807 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3808 SDValue(Agg.getNode(), Agg.getResNo() + i); 3809 3810 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3811 DAG.getVTList(ValValueVTs), Values)); 3812 } 3813 3814 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3815 Value *Op0 = I.getOperand(0); 3816 // Note that the pointer operand may be a vector of pointers. Take the scalar 3817 // element which holds a pointer. 3818 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3819 SDValue N = getValue(Op0); 3820 SDLoc dl = getCurSDLoc(); 3821 auto &TLI = DAG.getTargetLoweringInfo(); 3822 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3823 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3824 3825 // Normalize Vector GEP - all scalar operands should be converted to the 3826 // splat vector. 3827 unsigned VectorWidth = I.getType()->isVectorTy() ? 3828 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3829 3830 if (VectorWidth && !N.getValueType().isVector()) { 3831 LLVMContext &Context = *DAG.getContext(); 3832 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3833 N = DAG.getSplatBuildVector(VT, dl, N); 3834 } 3835 3836 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3837 GTI != E; ++GTI) { 3838 const Value *Idx = GTI.getOperand(); 3839 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3840 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3841 if (Field) { 3842 // N = N + Offset 3843 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3844 3845 // In an inbounds GEP with an offset that is nonnegative even when 3846 // interpreted as signed, assume there is no unsigned overflow. 3847 SDNodeFlags Flags; 3848 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3849 Flags.setNoUnsignedWrap(true); 3850 3851 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3852 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3853 } 3854 } else { 3855 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3856 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3857 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3858 3859 // If this is a scalar constant or a splat vector of constants, 3860 // handle it quickly. 3861 const auto *CI = dyn_cast<ConstantInt>(Idx); 3862 if (!CI && isa<ConstantDataVector>(Idx) && 3863 cast<ConstantDataVector>(Idx)->getSplatValue()) 3864 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3865 3866 if (CI) { 3867 if (CI->isZero()) 3868 continue; 3869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3870 LLVMContext &Context = *DAG.getContext(); 3871 SDValue OffsVal = VectorWidth ? 3872 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3873 DAG.getConstant(Offs, dl, IdxTy); 3874 3875 // In an inbouds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3882 3883 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3884 continue; 3885 } 3886 3887 // N = N + Idx * ElementSize; 3888 SDValue IdxN = getValue(Idx); 3889 3890 if (!IdxN.getValueType().isVector() && VectorWidth) { 3891 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3892 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3893 } 3894 3895 // If the index is smaller or larger than intptr_t, truncate or extend 3896 // it. 3897 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3898 3899 // If this is a multiply by a power of two, turn it into a shl 3900 // immediately. This is a very common case. 3901 if (ElementSize != 1) { 3902 if (ElementSize.isPowerOf2()) { 3903 unsigned Amt = ElementSize.logBase2(); 3904 IdxN = DAG.getNode(ISD::SHL, dl, 3905 N.getValueType(), IdxN, 3906 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3907 } else { 3908 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3909 IdxN.getValueType()); 3910 IdxN = DAG.getNode(ISD::MUL, dl, 3911 N.getValueType(), IdxN, Scale); 3912 } 3913 } 3914 3915 N = DAG.getNode(ISD::ADD, dl, 3916 N.getValueType(), N, IdxN); 3917 } 3918 } 3919 3920 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3921 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3922 3923 setValue(&I, N); 3924 } 3925 3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3927 // If this is a fixed sized alloca in the entry block of the function, 3928 // allocate it statically on the stack. 3929 if (FuncInfo.StaticAllocaMap.count(&I)) 3930 return; // getValue will auto-populate this. 3931 3932 SDLoc dl = getCurSDLoc(); 3933 Type *Ty = I.getAllocatedType(); 3934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3935 auto &DL = DAG.getDataLayout(); 3936 uint64_t TySize = DL.getTypeAllocSize(Ty); 3937 unsigned Align = 3938 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3939 3940 SDValue AllocSize = getValue(I.getArraySize()); 3941 3942 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3943 if (AllocSize.getValueType() != IntPtr) 3944 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3945 3946 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3947 AllocSize, 3948 DAG.getConstant(TySize, dl, IntPtr)); 3949 3950 // Handle alignment. If the requested alignment is less than or equal to 3951 // the stack alignment, ignore it. If the size is greater than or equal to 3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3953 unsigned StackAlign = 3954 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3955 if (Align <= StackAlign) 3956 Align = 0; 3957 3958 // Round the size of the allocation up to the stack alignment size 3959 // by add SA-1 to the size. This doesn't overflow because we're computing 3960 // an address inside an alloca. 3961 SDNodeFlags Flags; 3962 Flags.setNoUnsignedWrap(true); 3963 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3964 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3965 3966 // Mask out the low bits for alignment purposes. 3967 AllocSize = 3968 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3969 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3970 3971 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3972 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3973 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3974 setValue(&I, DSA); 3975 DAG.setRoot(DSA.getValue(1)); 3976 3977 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3978 } 3979 3980 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3981 if (I.isAtomic()) 3982 return visitAtomicLoad(I); 3983 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 const Value *SV = I.getOperand(0); 3986 if (TLI.supportSwiftError()) { 3987 // Swifterror values can come from either a function parameter with 3988 // swifterror attribute or an alloca with swifterror attribute. 3989 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3990 if (Arg->hasSwiftErrorAttr()) 3991 return visitLoadFromSwiftError(I); 3992 } 3993 3994 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3995 if (Alloca->isSwiftError()) 3996 return visitLoadFromSwiftError(I); 3997 } 3998 } 3999 4000 SDValue Ptr = getValue(SV); 4001 4002 Type *Ty = I.getType(); 4003 4004 bool isVolatile = I.isVolatile(); 4005 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4006 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4007 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 4008 unsigned Alignment = I.getAlignment(); 4009 4010 AAMDNodes AAInfo; 4011 I.getAAMetadata(AAInfo); 4012 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4013 4014 SmallVector<EVT, 4> ValueVTs, MemVTs; 4015 SmallVector<uint64_t, 4> Offsets; 4016 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4017 unsigned NumValues = ValueVTs.size(); 4018 if (NumValues == 0) 4019 return; 4020 4021 SDValue Root; 4022 bool ConstantMemory = false; 4023 if (isVolatile || NumValues > MaxParallelChains) 4024 // Serialize volatile loads with other side effects. 4025 Root = getRoot(); 4026 else if (AA && 4027 AA->pointsToConstantMemory(MemoryLocation( 4028 SV, 4029 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4030 AAInfo))) { 4031 // Do not serialize (non-volatile) loads of constant memory with anything. 4032 Root = DAG.getEntryNode(); 4033 ConstantMemory = true; 4034 } else { 4035 // Do not serialize non-volatile loads against each other. 4036 Root = DAG.getRoot(); 4037 } 4038 4039 SDLoc dl = getCurSDLoc(); 4040 4041 if (isVolatile) 4042 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4043 4044 // An aggregate load cannot wrap around the address space, so offsets to its 4045 // parts don't wrap either. 4046 SDNodeFlags Flags; 4047 Flags.setNoUnsignedWrap(true); 4048 4049 SmallVector<SDValue, 4> Values(NumValues); 4050 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4051 EVT PtrVT = Ptr.getValueType(); 4052 unsigned ChainI = 0; 4053 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4054 // Serializing loads here may result in excessive register pressure, and 4055 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4056 // could recover a bit by hoisting nodes upward in the chain by recognizing 4057 // they are side-effect free or do not alias. The optimizer should really 4058 // avoid this case by converting large object/array copies to llvm.memcpy 4059 // (MaxParallelChains should always remain as failsafe). 4060 if (ChainI == MaxParallelChains) { 4061 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4062 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4063 makeArrayRef(Chains.data(), ChainI)); 4064 Root = Chain; 4065 ChainI = 0; 4066 } 4067 SDValue A = DAG.getNode(ISD::ADD, dl, 4068 PtrVT, Ptr, 4069 DAG.getConstant(Offsets[i], dl, PtrVT), 4070 Flags); 4071 auto MMOFlags = MachineMemOperand::MONone; 4072 if (isVolatile) 4073 MMOFlags |= MachineMemOperand::MOVolatile; 4074 if (isNonTemporal) 4075 MMOFlags |= MachineMemOperand::MONonTemporal; 4076 if (isInvariant) 4077 MMOFlags |= MachineMemOperand::MOInvariant; 4078 if (isDereferenceable) 4079 MMOFlags |= MachineMemOperand::MODereferenceable; 4080 MMOFlags |= TLI.getMMOFlags(I); 4081 4082 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4083 MachinePointerInfo(SV, Offsets[i]), Alignment, 4084 MMOFlags, AAInfo, Ranges); 4085 Chains[ChainI] = L.getValue(1); 4086 4087 if (MemVTs[i] != ValueVTs[i]) 4088 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4089 4090 Values[i] = L; 4091 } 4092 4093 if (!ConstantMemory) { 4094 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4095 makeArrayRef(Chains.data(), ChainI)); 4096 if (isVolatile) 4097 DAG.setRoot(Chain); 4098 else 4099 PendingLoads.push_back(Chain); 4100 } 4101 4102 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4103 DAG.getVTList(ValueVTs), Values)); 4104 } 4105 4106 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4107 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4108 "call visitStoreToSwiftError when backend supports swifterror"); 4109 4110 SmallVector<EVT, 4> ValueVTs; 4111 SmallVector<uint64_t, 4> Offsets; 4112 const Value *SrcV = I.getOperand(0); 4113 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4114 SrcV->getType(), ValueVTs, &Offsets); 4115 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4116 "expect a single EVT for swifterror"); 4117 4118 SDValue Src = getValue(SrcV); 4119 // Create a virtual register, then update the virtual register. 4120 unsigned VReg = 4121 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4122 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4123 // Chain can be getRoot or getControlRoot. 4124 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4125 SDValue(Src.getNode(), Src.getResNo())); 4126 DAG.setRoot(CopyNode); 4127 } 4128 4129 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4130 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4131 "call visitLoadFromSwiftError when backend supports swifterror"); 4132 4133 assert(!I.isVolatile() && 4134 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4135 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4136 "Support volatile, non temporal, invariant for load_from_swift_error"); 4137 4138 const Value *SV = I.getOperand(0); 4139 Type *Ty = I.getType(); 4140 AAMDNodes AAInfo; 4141 I.getAAMetadata(AAInfo); 4142 assert( 4143 (!AA || 4144 !AA->pointsToConstantMemory(MemoryLocation( 4145 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4146 AAInfo))) && 4147 "load_from_swift_error should not be constant memory"); 4148 4149 SmallVector<EVT, 4> ValueVTs; 4150 SmallVector<uint64_t, 4> Offsets; 4151 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4152 ValueVTs, &Offsets); 4153 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4154 "expect a single EVT for swifterror"); 4155 4156 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4157 SDValue L = DAG.getCopyFromReg( 4158 getRoot(), getCurSDLoc(), 4159 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4160 4161 setValue(&I, L); 4162 } 4163 4164 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4165 if (I.isAtomic()) 4166 return visitAtomicStore(I); 4167 4168 const Value *SrcV = I.getOperand(0); 4169 const Value *PtrV = I.getOperand(1); 4170 4171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4172 if (TLI.supportSwiftError()) { 4173 // Swifterror values can come from either a function parameter with 4174 // swifterror attribute or an alloca with swifterror attribute. 4175 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4176 if (Arg->hasSwiftErrorAttr()) 4177 return visitStoreToSwiftError(I); 4178 } 4179 4180 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4181 if (Alloca->isSwiftError()) 4182 return visitStoreToSwiftError(I); 4183 } 4184 } 4185 4186 SmallVector<EVT, 4> ValueVTs, MemVTs; 4187 SmallVector<uint64_t, 4> Offsets; 4188 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4189 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4190 unsigned NumValues = ValueVTs.size(); 4191 if (NumValues == 0) 4192 return; 4193 4194 // Get the lowered operands. Note that we do this after 4195 // checking if NumResults is zero, because with zero results 4196 // the operands won't have values in the map. 4197 SDValue Src = getValue(SrcV); 4198 SDValue Ptr = getValue(PtrV); 4199 4200 SDValue Root = getRoot(); 4201 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4202 SDLoc dl = getCurSDLoc(); 4203 EVT PtrVT = Ptr.getValueType(); 4204 unsigned Alignment = I.getAlignment(); 4205 AAMDNodes AAInfo; 4206 I.getAAMetadata(AAInfo); 4207 4208 auto MMOFlags = MachineMemOperand::MONone; 4209 if (I.isVolatile()) 4210 MMOFlags |= MachineMemOperand::MOVolatile; 4211 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4212 MMOFlags |= MachineMemOperand::MONonTemporal; 4213 MMOFlags |= TLI.getMMOFlags(I); 4214 4215 // An aggregate load cannot wrap around the address space, so offsets to its 4216 // parts don't wrap either. 4217 SDNodeFlags Flags; 4218 Flags.setNoUnsignedWrap(true); 4219 4220 unsigned ChainI = 0; 4221 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4222 // See visitLoad comments. 4223 if (ChainI == MaxParallelChains) { 4224 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4225 makeArrayRef(Chains.data(), ChainI)); 4226 Root = Chain; 4227 ChainI = 0; 4228 } 4229 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4230 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4231 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4232 if (MemVTs[i] != ValueVTs[i]) 4233 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4234 SDValue St = 4235 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4236 Alignment, MMOFlags, AAInfo); 4237 Chains[ChainI] = St; 4238 } 4239 4240 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4241 makeArrayRef(Chains.data(), ChainI)); 4242 DAG.setRoot(StoreNode); 4243 } 4244 4245 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4246 bool IsCompressing) { 4247 SDLoc sdl = getCurSDLoc(); 4248 4249 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4250 unsigned& Alignment) { 4251 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4252 Src0 = I.getArgOperand(0); 4253 Ptr = I.getArgOperand(1); 4254 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4255 Mask = I.getArgOperand(3); 4256 }; 4257 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4258 unsigned& Alignment) { 4259 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4260 Src0 = I.getArgOperand(0); 4261 Ptr = I.getArgOperand(1); 4262 Mask = I.getArgOperand(2); 4263 Alignment = 0; 4264 }; 4265 4266 Value *PtrOperand, *MaskOperand, *Src0Operand; 4267 unsigned Alignment; 4268 if (IsCompressing) 4269 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4270 else 4271 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4272 4273 SDValue Ptr = getValue(PtrOperand); 4274 SDValue Src0 = getValue(Src0Operand); 4275 SDValue Mask = getValue(MaskOperand); 4276 4277 EVT VT = Src0.getValueType(); 4278 if (!Alignment) 4279 Alignment = DAG.getEVTAlignment(VT); 4280 4281 AAMDNodes AAInfo; 4282 I.getAAMetadata(AAInfo); 4283 4284 MachineMemOperand *MMO = 4285 DAG.getMachineFunction(). 4286 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4287 MachineMemOperand::MOStore, VT.getStoreSize(), 4288 Alignment, AAInfo); 4289 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4290 MMO, false /* Truncating */, 4291 IsCompressing); 4292 DAG.setRoot(StoreNode); 4293 setValue(&I, StoreNode); 4294 } 4295 4296 // Get a uniform base for the Gather/Scatter intrinsic. 4297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4298 // We try to represent it as a base pointer + vector of indices. 4299 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4300 // The first operand of the GEP may be a single pointer or a vector of pointers 4301 // Example: 4302 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4303 // or 4304 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4306 // 4307 // When the first GEP operand is a single pointer - it is the uniform base we 4308 // are looking for. If first operand of the GEP is a splat vector - we 4309 // extract the splat value and use it as a uniform base. 4310 // In all other cases the function returns 'false'. 4311 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4312 SDValue &Scale, SelectionDAGBuilder* SDB) { 4313 SelectionDAG& DAG = SDB->DAG; 4314 LLVMContext &Context = *DAG.getContext(); 4315 4316 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4317 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4318 if (!GEP) 4319 return false; 4320 4321 const Value *GEPPtr = GEP->getPointerOperand(); 4322 if (!GEPPtr->getType()->isVectorTy()) 4323 Ptr = GEPPtr; 4324 else if (!(Ptr = getSplatValue(GEPPtr))) 4325 return false; 4326 4327 unsigned FinalIndex = GEP->getNumOperands() - 1; 4328 Value *IndexVal = GEP->getOperand(FinalIndex); 4329 4330 // Ensure all the other indices are 0. 4331 for (unsigned i = 1; i < FinalIndex; ++i) { 4332 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4333 if (!C || !C->isZero()) 4334 return false; 4335 } 4336 4337 // The operands of the GEP may be defined in another basic block. 4338 // In this case we'll not find nodes for the operands. 4339 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4340 return false; 4341 4342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4343 const DataLayout &DL = DAG.getDataLayout(); 4344 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4345 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4346 Base = SDB->getValue(Ptr); 4347 Index = SDB->getValue(IndexVal); 4348 4349 if (!Index.getValueType().isVector()) { 4350 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4351 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4352 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4353 } 4354 return true; 4355 } 4356 4357 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4358 SDLoc sdl = getCurSDLoc(); 4359 4360 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4361 const Value *Ptr = I.getArgOperand(1); 4362 SDValue Src0 = getValue(I.getArgOperand(0)); 4363 SDValue Mask = getValue(I.getArgOperand(3)); 4364 EVT VT = Src0.getValueType(); 4365 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4366 if (!Alignment) 4367 Alignment = DAG.getEVTAlignment(VT); 4368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4369 4370 AAMDNodes AAInfo; 4371 I.getAAMetadata(AAInfo); 4372 4373 SDValue Base; 4374 SDValue Index; 4375 SDValue Scale; 4376 const Value *BasePtr = Ptr; 4377 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4378 4379 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4380 MachineMemOperand *MMO = DAG.getMachineFunction(). 4381 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4382 MachineMemOperand::MOStore, VT.getStoreSize(), 4383 Alignment, AAInfo); 4384 if (!UniformBase) { 4385 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4386 Index = getValue(Ptr); 4387 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4388 } 4389 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4390 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4391 Ops, MMO); 4392 DAG.setRoot(Scatter); 4393 setValue(&I, Scatter); 4394 } 4395 4396 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4397 SDLoc sdl = getCurSDLoc(); 4398 4399 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4400 unsigned& Alignment) { 4401 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4402 Ptr = I.getArgOperand(0); 4403 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4404 Mask = I.getArgOperand(2); 4405 Src0 = I.getArgOperand(3); 4406 }; 4407 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4408 unsigned& Alignment) { 4409 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4410 Ptr = I.getArgOperand(0); 4411 Alignment = 0; 4412 Mask = I.getArgOperand(1); 4413 Src0 = I.getArgOperand(2); 4414 }; 4415 4416 Value *PtrOperand, *MaskOperand, *Src0Operand; 4417 unsigned Alignment; 4418 if (IsExpanding) 4419 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4420 else 4421 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4422 4423 SDValue Ptr = getValue(PtrOperand); 4424 SDValue Src0 = getValue(Src0Operand); 4425 SDValue Mask = getValue(MaskOperand); 4426 4427 EVT VT = Src0.getValueType(); 4428 if (!Alignment) 4429 Alignment = DAG.getEVTAlignment(VT); 4430 4431 AAMDNodes AAInfo; 4432 I.getAAMetadata(AAInfo); 4433 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4434 4435 // Do not serialize masked loads of constant memory with anything. 4436 bool AddToChain = 4437 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4438 PtrOperand, 4439 LocationSize::precise( 4440 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4441 AAInfo)); 4442 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4443 4444 MachineMemOperand *MMO = 4445 DAG.getMachineFunction(). 4446 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4447 MachineMemOperand::MOLoad, VT.getStoreSize(), 4448 Alignment, AAInfo, Ranges); 4449 4450 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4451 ISD::NON_EXTLOAD, IsExpanding); 4452 if (AddToChain) 4453 PendingLoads.push_back(Load.getValue(1)); 4454 setValue(&I, Load); 4455 } 4456 4457 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4458 SDLoc sdl = getCurSDLoc(); 4459 4460 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4461 const Value *Ptr = I.getArgOperand(0); 4462 SDValue Src0 = getValue(I.getArgOperand(3)); 4463 SDValue Mask = getValue(I.getArgOperand(2)); 4464 4465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4466 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4467 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4468 if (!Alignment) 4469 Alignment = DAG.getEVTAlignment(VT); 4470 4471 AAMDNodes AAInfo; 4472 I.getAAMetadata(AAInfo); 4473 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4474 4475 SDValue Root = DAG.getRoot(); 4476 SDValue Base; 4477 SDValue Index; 4478 SDValue Scale; 4479 const Value *BasePtr = Ptr; 4480 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4481 bool ConstantMemory = false; 4482 if (UniformBase && AA && 4483 AA->pointsToConstantMemory( 4484 MemoryLocation(BasePtr, 4485 LocationSize::precise( 4486 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4487 AAInfo))) { 4488 // Do not serialize (non-volatile) loads of constant memory with anything. 4489 Root = DAG.getEntryNode(); 4490 ConstantMemory = true; 4491 } 4492 4493 MachineMemOperand *MMO = 4494 DAG.getMachineFunction(). 4495 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4496 MachineMemOperand::MOLoad, VT.getStoreSize(), 4497 Alignment, AAInfo, Ranges); 4498 4499 if (!UniformBase) { 4500 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4501 Index = getValue(Ptr); 4502 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4503 } 4504 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4505 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4506 Ops, MMO); 4507 4508 SDValue OutChain = Gather.getValue(1); 4509 if (!ConstantMemory) 4510 PendingLoads.push_back(OutChain); 4511 setValue(&I, Gather); 4512 } 4513 4514 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4515 SDLoc dl = getCurSDLoc(); 4516 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4517 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4518 SyncScope::ID SSID = I.getSyncScopeID(); 4519 4520 SDValue InChain = getRoot(); 4521 4522 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4523 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4524 4525 auto Alignment = DAG.getEVTAlignment(MemVT); 4526 4527 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4528 if (I.isVolatile()) 4529 Flags |= MachineMemOperand::MOVolatile; 4530 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4531 4532 MachineFunction &MF = DAG.getMachineFunction(); 4533 MachineMemOperand *MMO = 4534 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4535 Flags, MemVT.getStoreSize(), Alignment, 4536 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4537 FailureOrdering); 4538 4539 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4540 dl, MemVT, VTs, InChain, 4541 getValue(I.getPointerOperand()), 4542 getValue(I.getCompareOperand()), 4543 getValue(I.getNewValOperand()), MMO); 4544 4545 SDValue OutChain = L.getValue(2); 4546 4547 setValue(&I, L); 4548 DAG.setRoot(OutChain); 4549 } 4550 4551 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4552 SDLoc dl = getCurSDLoc(); 4553 ISD::NodeType NT; 4554 switch (I.getOperation()) { 4555 default: llvm_unreachable("Unknown atomicrmw operation"); 4556 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4557 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4558 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4559 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4560 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4561 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4562 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4563 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4564 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4565 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4566 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4567 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4568 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4569 } 4570 AtomicOrdering Ordering = I.getOrdering(); 4571 SyncScope::ID SSID = I.getSyncScopeID(); 4572 4573 SDValue InChain = getRoot(); 4574 4575 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4576 auto Alignment = DAG.getEVTAlignment(MemVT); 4577 4578 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4579 if (I.isVolatile()) 4580 Flags |= MachineMemOperand::MOVolatile; 4581 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4582 4583 MachineFunction &MF = DAG.getMachineFunction(); 4584 MachineMemOperand *MMO = 4585 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4586 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4587 nullptr, SSID, Ordering); 4588 4589 SDValue L = 4590 DAG.getAtomic(NT, dl, MemVT, InChain, 4591 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4592 MMO); 4593 4594 SDValue OutChain = L.getValue(1); 4595 4596 setValue(&I, L); 4597 DAG.setRoot(OutChain); 4598 } 4599 4600 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4601 SDLoc dl = getCurSDLoc(); 4602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4603 SDValue Ops[3]; 4604 Ops[0] = getRoot(); 4605 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4606 TLI.getFenceOperandTy(DAG.getDataLayout())); 4607 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4608 TLI.getFenceOperandTy(DAG.getDataLayout())); 4609 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4610 } 4611 4612 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4613 SDLoc dl = getCurSDLoc(); 4614 AtomicOrdering Order = I.getOrdering(); 4615 SyncScope::ID SSID = I.getSyncScopeID(); 4616 4617 SDValue InChain = getRoot(); 4618 4619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4620 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4621 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4622 4623 if (!TLI.supportsUnalignedAtomics() && 4624 I.getAlignment() < MemVT.getSizeInBits() / 8) 4625 report_fatal_error("Cannot generate unaligned atomic load"); 4626 4627 auto Flags = MachineMemOperand::MOLoad; 4628 if (I.isVolatile()) 4629 Flags |= MachineMemOperand::MOVolatile; 4630 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4631 Flags |= MachineMemOperand::MOInvariant; 4632 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout())) 4633 Flags |= MachineMemOperand::MODereferenceable; 4634 4635 Flags |= TLI.getMMOFlags(I); 4636 4637 MachineMemOperand *MMO = 4638 DAG.getMachineFunction(). 4639 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4640 Flags, MemVT.getStoreSize(), 4641 I.getAlignment() ? I.getAlignment() : 4642 DAG.getEVTAlignment(MemVT), 4643 AAMDNodes(), nullptr, SSID, Order); 4644 4645 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4646 SDValue L = 4647 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4648 getValue(I.getPointerOperand()), MMO); 4649 4650 SDValue OutChain = L.getValue(1); 4651 if (MemVT != VT) 4652 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4653 4654 setValue(&I, L); 4655 DAG.setRoot(OutChain); 4656 } 4657 4658 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4659 SDLoc dl = getCurSDLoc(); 4660 4661 AtomicOrdering Ordering = I.getOrdering(); 4662 SyncScope::ID SSID = I.getSyncScopeID(); 4663 4664 SDValue InChain = getRoot(); 4665 4666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4667 EVT MemVT = 4668 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4669 4670 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4671 report_fatal_error("Cannot generate unaligned atomic store"); 4672 4673 auto Flags = MachineMemOperand::MOStore; 4674 if (I.isVolatile()) 4675 Flags |= MachineMemOperand::MOVolatile; 4676 Flags |= TLI.getMMOFlags(I); 4677 4678 MachineFunction &MF = DAG.getMachineFunction(); 4679 MachineMemOperand *MMO = 4680 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4681 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4682 nullptr, SSID, Ordering); 4683 4684 SDValue Val = getValue(I.getValueOperand()); 4685 if (Val.getValueType() != MemVT) 4686 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4687 4688 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4689 getValue(I.getPointerOperand()), Val, MMO); 4690 4691 4692 DAG.setRoot(OutChain); 4693 } 4694 4695 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4696 /// node. 4697 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4698 unsigned Intrinsic) { 4699 // Ignore the callsite's attributes. A specific call site may be marked with 4700 // readnone, but the lowering code will expect the chain based on the 4701 // definition. 4702 const Function *F = I.getCalledFunction(); 4703 bool HasChain = !F->doesNotAccessMemory(); 4704 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4705 4706 // Build the operand list. 4707 SmallVector<SDValue, 8> Ops; 4708 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4709 if (OnlyLoad) { 4710 // We don't need to serialize loads against other loads. 4711 Ops.push_back(DAG.getRoot()); 4712 } else { 4713 Ops.push_back(getRoot()); 4714 } 4715 } 4716 4717 // Info is set by getTgtMemInstrinsic 4718 TargetLowering::IntrinsicInfo Info; 4719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4720 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4721 DAG.getMachineFunction(), 4722 Intrinsic); 4723 4724 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4725 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4726 Info.opc == ISD::INTRINSIC_W_CHAIN) 4727 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4728 TLI.getPointerTy(DAG.getDataLayout()))); 4729 4730 // Add all operands of the call to the operand list. 4731 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4732 SDValue Op = getValue(I.getArgOperand(i)); 4733 Ops.push_back(Op); 4734 } 4735 4736 SmallVector<EVT, 4> ValueVTs; 4737 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4738 4739 if (HasChain) 4740 ValueVTs.push_back(MVT::Other); 4741 4742 SDVTList VTs = DAG.getVTList(ValueVTs); 4743 4744 // Create the node. 4745 SDValue Result; 4746 if (IsTgtIntrinsic) { 4747 // This is target intrinsic that touches memory 4748 AAMDNodes AAInfo; 4749 I.getAAMetadata(AAInfo); 4750 Result = 4751 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4752 MachinePointerInfo(Info.ptrVal, Info.offset), 4753 Info.align, Info.flags, Info.size, AAInfo); 4754 } else if (!HasChain) { 4755 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4756 } else if (!I.getType()->isVoidTy()) { 4757 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4758 } else { 4759 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4760 } 4761 4762 if (HasChain) { 4763 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4764 if (OnlyLoad) 4765 PendingLoads.push_back(Chain); 4766 else 4767 DAG.setRoot(Chain); 4768 } 4769 4770 if (!I.getType()->isVoidTy()) { 4771 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4772 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4773 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4774 } else 4775 Result = lowerRangeToAssertZExt(DAG, I, Result); 4776 4777 setValue(&I, Result); 4778 } 4779 } 4780 4781 /// GetSignificand - Get the significand and build it into a floating-point 4782 /// number with exponent of 1: 4783 /// 4784 /// Op = (Op & 0x007fffff) | 0x3f800000; 4785 /// 4786 /// where Op is the hexadecimal representation of floating point value. 4787 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4788 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4789 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4790 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4791 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4792 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4793 } 4794 4795 /// GetExponent - Get the exponent: 4796 /// 4797 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4798 /// 4799 /// where Op is the hexadecimal representation of floating point value. 4800 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4801 const TargetLowering &TLI, const SDLoc &dl) { 4802 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4803 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4804 SDValue t1 = DAG.getNode( 4805 ISD::SRL, dl, MVT::i32, t0, 4806 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4807 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4808 DAG.getConstant(127, dl, MVT::i32)); 4809 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4810 } 4811 4812 /// getF32Constant - Get 32-bit floating point constant. 4813 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4814 const SDLoc &dl) { 4815 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4816 MVT::f32); 4817 } 4818 4819 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4820 SelectionDAG &DAG) { 4821 // TODO: What fast-math-flags should be set on the floating-point nodes? 4822 4823 // IntegerPartOfX = ((int32_t)(t0); 4824 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4825 4826 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4827 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4828 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4829 4830 // IntegerPartOfX <<= 23; 4831 IntegerPartOfX = DAG.getNode( 4832 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4833 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4834 DAG.getDataLayout()))); 4835 4836 SDValue TwoToFractionalPartOfX; 4837 if (LimitFloatPrecision <= 6) { 4838 // For floating-point precision of 6: 4839 // 4840 // TwoToFractionalPartOfX = 4841 // 0.997535578f + 4842 // (0.735607626f + 0.252464424f * x) * x; 4843 // 4844 // error 0.0144103317, which is 6 bits 4845 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4846 getF32Constant(DAG, 0x3e814304, dl)); 4847 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4848 getF32Constant(DAG, 0x3f3c50c8, dl)); 4849 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4850 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4851 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4852 } else if (LimitFloatPrecision <= 12) { 4853 // For floating-point precision of 12: 4854 // 4855 // TwoToFractionalPartOfX = 4856 // 0.999892986f + 4857 // (0.696457318f + 4858 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4859 // 4860 // error 0.000107046256, which is 13 to 14 bits 4861 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4862 getF32Constant(DAG, 0x3da235e3, dl)); 4863 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4864 getF32Constant(DAG, 0x3e65b8f3, dl)); 4865 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4866 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4867 getF32Constant(DAG, 0x3f324b07, dl)); 4868 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4869 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4870 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4871 } else { // LimitFloatPrecision <= 18 4872 // For floating-point precision of 18: 4873 // 4874 // TwoToFractionalPartOfX = 4875 // 0.999999982f + 4876 // (0.693148872f + 4877 // (0.240227044f + 4878 // (0.554906021e-1f + 4879 // (0.961591928e-2f + 4880 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4881 // error 2.47208000*10^(-7), which is better than 18 bits 4882 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4883 getF32Constant(DAG, 0x3924b03e, dl)); 4884 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4885 getF32Constant(DAG, 0x3ab24b87, dl)); 4886 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4887 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4888 getF32Constant(DAG, 0x3c1d8c17, dl)); 4889 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4890 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4891 getF32Constant(DAG, 0x3d634a1d, dl)); 4892 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4893 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4894 getF32Constant(DAG, 0x3e75fe14, dl)); 4895 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4896 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4897 getF32Constant(DAG, 0x3f317234, dl)); 4898 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4899 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4900 getF32Constant(DAG, 0x3f800000, dl)); 4901 } 4902 4903 // Add the exponent into the result in integer domain. 4904 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4905 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4906 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4907 } 4908 4909 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4910 /// limited-precision mode. 4911 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4912 const TargetLowering &TLI) { 4913 if (Op.getValueType() == MVT::f32 && 4914 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4915 4916 // Put the exponent in the right bit position for later addition to the 4917 // final result: 4918 // 4919 // #define LOG2OFe 1.4426950f 4920 // t0 = Op * LOG2OFe 4921 4922 // TODO: What fast-math-flags should be set here? 4923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4924 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4925 return getLimitedPrecisionExp2(t0, dl, DAG); 4926 } 4927 4928 // No special expansion. 4929 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4930 } 4931 4932 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4933 /// limited-precision mode. 4934 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4935 const TargetLowering &TLI) { 4936 // TODO: What fast-math-flags should be set on the floating-point nodes? 4937 4938 if (Op.getValueType() == MVT::f32 && 4939 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4940 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4941 4942 // Scale the exponent by log(2) [0.69314718f]. 4943 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4944 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4945 getF32Constant(DAG, 0x3f317218, dl)); 4946 4947 // Get the significand and build it into a floating-point number with 4948 // exponent of 1. 4949 SDValue X = GetSignificand(DAG, Op1, dl); 4950 4951 SDValue LogOfMantissa; 4952 if (LimitFloatPrecision <= 6) { 4953 // For floating-point precision of 6: 4954 // 4955 // LogofMantissa = 4956 // -1.1609546f + 4957 // (1.4034025f - 0.23903021f * x) * x; 4958 // 4959 // error 0.0034276066, which is better than 8 bits 4960 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4961 getF32Constant(DAG, 0xbe74c456, dl)); 4962 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4963 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4965 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4966 getF32Constant(DAG, 0x3f949a29, dl)); 4967 } else if (LimitFloatPrecision <= 12) { 4968 // For floating-point precision of 12: 4969 // 4970 // LogOfMantissa = 4971 // -1.7417939f + 4972 // (2.8212026f + 4973 // (-1.4699568f + 4974 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4975 // 4976 // error 0.000061011436, which is 14 bits 4977 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4978 getF32Constant(DAG, 0xbd67b6d6, dl)); 4979 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4980 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4981 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4982 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4983 getF32Constant(DAG, 0x3fbc278b, dl)); 4984 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4985 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4986 getF32Constant(DAG, 0x40348e95, dl)); 4987 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4988 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4989 getF32Constant(DAG, 0x3fdef31a, dl)); 4990 } else { // LimitFloatPrecision <= 18 4991 // For floating-point precision of 18: 4992 // 4993 // LogOfMantissa = 4994 // -2.1072184f + 4995 // (4.2372794f + 4996 // (-3.7029485f + 4997 // (2.2781945f + 4998 // (-0.87823314f + 4999 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5000 // 5001 // error 0.0000023660568, which is better than 18 bits 5002 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5003 getF32Constant(DAG, 0xbc91e5ac, dl)); 5004 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5005 getF32Constant(DAG, 0x3e4350aa, dl)); 5006 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5007 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5008 getF32Constant(DAG, 0x3f60d3e3, dl)); 5009 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5010 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5011 getF32Constant(DAG, 0x4011cdf0, dl)); 5012 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5013 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5014 getF32Constant(DAG, 0x406cfd1c, dl)); 5015 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5016 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5017 getF32Constant(DAG, 0x408797cb, dl)); 5018 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5019 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5020 getF32Constant(DAG, 0x4006dcab, dl)); 5021 } 5022 5023 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5024 } 5025 5026 // No special expansion. 5027 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5028 } 5029 5030 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5031 /// limited-precision mode. 5032 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5033 const TargetLowering &TLI) { 5034 // TODO: What fast-math-flags should be set on the floating-point nodes? 5035 5036 if (Op.getValueType() == MVT::f32 && 5037 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5038 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5039 5040 // Get the exponent. 5041 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5042 5043 // Get the significand and build it into a floating-point number with 5044 // exponent of 1. 5045 SDValue X = GetSignificand(DAG, Op1, dl); 5046 5047 // Different possible minimax approximations of significand in 5048 // floating-point for various degrees of accuracy over [1,2]. 5049 SDValue Log2ofMantissa; 5050 if (LimitFloatPrecision <= 6) { 5051 // For floating-point precision of 6: 5052 // 5053 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5054 // 5055 // error 0.0049451742, which is more than 7 bits 5056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5057 getF32Constant(DAG, 0xbeb08fe0, dl)); 5058 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5059 getF32Constant(DAG, 0x40019463, dl)); 5060 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5061 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5062 getF32Constant(DAG, 0x3fd6633d, dl)); 5063 } else if (LimitFloatPrecision <= 12) { 5064 // For floating-point precision of 12: 5065 // 5066 // Log2ofMantissa = 5067 // -2.51285454f + 5068 // (4.07009056f + 5069 // (-2.12067489f + 5070 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5071 // 5072 // error 0.0000876136000, which is better than 13 bits 5073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5074 getF32Constant(DAG, 0xbda7262e, dl)); 5075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5076 getF32Constant(DAG, 0x3f25280b, dl)); 5077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5078 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5079 getF32Constant(DAG, 0x4007b923, dl)); 5080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5081 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5082 getF32Constant(DAG, 0x40823e2f, dl)); 5083 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5084 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5085 getF32Constant(DAG, 0x4020d29c, dl)); 5086 } else { // LimitFloatPrecision <= 18 5087 // For floating-point precision of 18: 5088 // 5089 // Log2ofMantissa = 5090 // -3.0400495f + 5091 // (6.1129976f + 5092 // (-5.3420409f + 5093 // (3.2865683f + 5094 // (-1.2669343f + 5095 // (0.27515199f - 5096 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5097 // 5098 // error 0.0000018516, which is better than 18 bits 5099 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5100 getF32Constant(DAG, 0xbcd2769e, dl)); 5101 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5102 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5103 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5104 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5105 getF32Constant(DAG, 0x3fa22ae7, dl)); 5106 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5107 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5108 getF32Constant(DAG, 0x40525723, dl)); 5109 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5110 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5111 getF32Constant(DAG, 0x40aaf200, dl)); 5112 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5113 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5114 getF32Constant(DAG, 0x40c39dad, dl)); 5115 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5116 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5117 getF32Constant(DAG, 0x4042902c, dl)); 5118 } 5119 5120 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5121 } 5122 5123 // No special expansion. 5124 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5125 } 5126 5127 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5128 /// limited-precision mode. 5129 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5130 const TargetLowering &TLI) { 5131 // TODO: What fast-math-flags should be set on the floating-point nodes? 5132 5133 if (Op.getValueType() == MVT::f32 && 5134 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5135 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5136 5137 // Scale the exponent by log10(2) [0.30102999f]. 5138 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5139 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5140 getF32Constant(DAG, 0x3e9a209a, dl)); 5141 5142 // Get the significand and build it into a floating-point number with 5143 // exponent of 1. 5144 SDValue X = GetSignificand(DAG, Op1, dl); 5145 5146 SDValue Log10ofMantissa; 5147 if (LimitFloatPrecision <= 6) { 5148 // For floating-point precision of 6: 5149 // 5150 // Log10ofMantissa = 5151 // -0.50419619f + 5152 // (0.60948995f - 0.10380950f * x) * x; 5153 // 5154 // error 0.0014886165, which is 6 bits 5155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5156 getF32Constant(DAG, 0xbdd49a13, dl)); 5157 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5158 getF32Constant(DAG, 0x3f1c0789, dl)); 5159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5160 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5161 getF32Constant(DAG, 0x3f011300, dl)); 5162 } else if (LimitFloatPrecision <= 12) { 5163 // For floating-point precision of 12: 5164 // 5165 // Log10ofMantissa = 5166 // -0.64831180f + 5167 // (0.91751397f + 5168 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5169 // 5170 // error 0.00019228036, which is better than 12 bits 5171 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5172 getF32Constant(DAG, 0x3d431f31, dl)); 5173 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5174 getF32Constant(DAG, 0x3ea21fb2, dl)); 5175 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5176 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5177 getF32Constant(DAG, 0x3f6ae232, dl)); 5178 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5179 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5180 getF32Constant(DAG, 0x3f25f7c3, dl)); 5181 } else { // LimitFloatPrecision <= 18 5182 // For floating-point precision of 18: 5183 // 5184 // Log10ofMantissa = 5185 // -0.84299375f + 5186 // (1.5327582f + 5187 // (-1.0688956f + 5188 // (0.49102474f + 5189 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5190 // 5191 // error 0.0000037995730, which is better than 18 bits 5192 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5193 getF32Constant(DAG, 0x3c5d51ce, dl)); 5194 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5195 getF32Constant(DAG, 0x3e00685a, dl)); 5196 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5197 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5198 getF32Constant(DAG, 0x3efb6798, dl)); 5199 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5200 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5201 getF32Constant(DAG, 0x3f88d192, dl)); 5202 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5203 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5204 getF32Constant(DAG, 0x3fc4316c, dl)); 5205 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5206 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5207 getF32Constant(DAG, 0x3f57ce70, dl)); 5208 } 5209 5210 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5211 } 5212 5213 // No special expansion. 5214 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5215 } 5216 5217 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5218 /// limited-precision mode. 5219 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5220 const TargetLowering &TLI) { 5221 if (Op.getValueType() == MVT::f32 && 5222 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5223 return getLimitedPrecisionExp2(Op, dl, DAG); 5224 5225 // No special expansion. 5226 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5227 } 5228 5229 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5230 /// limited-precision mode with x == 10.0f. 5231 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5232 SelectionDAG &DAG, const TargetLowering &TLI) { 5233 bool IsExp10 = false; 5234 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5235 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5236 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5237 APFloat Ten(10.0f); 5238 IsExp10 = LHSC->isExactlyValue(Ten); 5239 } 5240 } 5241 5242 // TODO: What fast-math-flags should be set on the FMUL node? 5243 if (IsExp10) { 5244 // Put the exponent in the right bit position for later addition to the 5245 // final result: 5246 // 5247 // #define LOG2OF10 3.3219281f 5248 // t0 = Op * LOG2OF10; 5249 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5250 getF32Constant(DAG, 0x40549a78, dl)); 5251 return getLimitedPrecisionExp2(t0, dl, DAG); 5252 } 5253 5254 // No special expansion. 5255 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5256 } 5257 5258 /// ExpandPowI - Expand a llvm.powi intrinsic. 5259 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5260 SelectionDAG &DAG) { 5261 // If RHS is a constant, we can expand this out to a multiplication tree, 5262 // otherwise we end up lowering to a call to __powidf2 (for example). When 5263 // optimizing for size, we only want to do this if the expansion would produce 5264 // a small number of multiplies, otherwise we do the full expansion. 5265 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5266 // Get the exponent as a positive value. 5267 unsigned Val = RHSC->getSExtValue(); 5268 if ((int)Val < 0) Val = -Val; 5269 5270 // powi(x, 0) -> 1.0 5271 if (Val == 0) 5272 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5273 5274 const Function &F = DAG.getMachineFunction().getFunction(); 5275 if (!F.hasOptSize() || 5276 // If optimizing for size, don't insert too many multiplies. 5277 // This inserts up to 5 multiplies. 5278 countPopulation(Val) + Log2_32(Val) < 7) { 5279 // We use the simple binary decomposition method to generate the multiply 5280 // sequence. There are more optimal ways to do this (for example, 5281 // powi(x,15) generates one more multiply than it should), but this has 5282 // the benefit of being both really simple and much better than a libcall. 5283 SDValue Res; // Logically starts equal to 1.0 5284 SDValue CurSquare = LHS; 5285 // TODO: Intrinsics should have fast-math-flags that propagate to these 5286 // nodes. 5287 while (Val) { 5288 if (Val & 1) { 5289 if (Res.getNode()) 5290 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5291 else 5292 Res = CurSquare; // 1.0*CurSquare. 5293 } 5294 5295 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5296 CurSquare, CurSquare); 5297 Val >>= 1; 5298 } 5299 5300 // If the original was negative, invert the result, producing 1/(x*x*x). 5301 if (RHSC->getSExtValue() < 0) 5302 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5303 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5304 return Res; 5305 } 5306 } 5307 5308 // Otherwise, expand to a libcall. 5309 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5310 } 5311 5312 // getUnderlyingArgReg - Find underlying register used for a truncated or 5313 // bitcasted argument. 5314 static unsigned getUnderlyingArgReg(const SDValue &N) { 5315 switch (N.getOpcode()) { 5316 case ISD::CopyFromReg: 5317 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5318 case ISD::BITCAST: 5319 case ISD::AssertZext: 5320 case ISD::AssertSext: 5321 case ISD::TRUNCATE: 5322 return getUnderlyingArgReg(N.getOperand(0)); 5323 default: 5324 return 0; 5325 } 5326 } 5327 5328 /// If the DbgValueInst is a dbg_value of a function argument, create the 5329 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5330 /// instruction selection, they will be inserted to the entry BB. 5331 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5332 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5333 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5334 const Argument *Arg = dyn_cast<Argument>(V); 5335 if (!Arg) 5336 return false; 5337 5338 if (!IsDbgDeclare) { 5339 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5340 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5341 // the entry block. 5342 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5343 if (!IsInEntryBlock) 5344 return false; 5345 5346 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5347 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5348 // variable that also is a param. 5349 // 5350 // Although, if we are at the top of the entry block already, we can still 5351 // emit using ArgDbgValue. This might catch some situations when the 5352 // dbg.value refers to an argument that isn't used in the entry block, so 5353 // any CopyToReg node would be optimized out and the only way to express 5354 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5355 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5356 // we should only emit as ArgDbgValue if the Variable is an argument to the 5357 // current function, and the dbg.value intrinsic is found in the entry 5358 // block. 5359 bool VariableIsFunctionInputArg = Variable->isParameter() && 5360 !DL->getInlinedAt(); 5361 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5362 if (!IsInPrologue && !VariableIsFunctionInputArg) 5363 return false; 5364 5365 // Here we assume that a function argument on IR level only can be used to 5366 // describe one input parameter on source level. If we for example have 5367 // source code like this 5368 // 5369 // struct A { long x, y; }; 5370 // void foo(struct A a, long b) { 5371 // ... 5372 // b = a.x; 5373 // ... 5374 // } 5375 // 5376 // and IR like this 5377 // 5378 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5379 // entry: 5380 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5381 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5382 // call void @llvm.dbg.value(metadata i32 %b, "b", 5383 // ... 5384 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5385 // ... 5386 // 5387 // then the last dbg.value is describing a parameter "b" using a value that 5388 // is an argument. But since we already has used %a1 to describe a parameter 5389 // we should not handle that last dbg.value here (that would result in an 5390 // incorrect hoisting of the DBG_VALUE to the function entry). 5391 // Notice that we allow one dbg.value per IR level argument, to accomodate 5392 // for the situation with fragments above. 5393 if (VariableIsFunctionInputArg) { 5394 unsigned ArgNo = Arg->getArgNo(); 5395 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5396 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5397 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5398 return false; 5399 FuncInfo.DescribedArgs.set(ArgNo); 5400 } 5401 } 5402 5403 MachineFunction &MF = DAG.getMachineFunction(); 5404 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5405 5406 bool IsIndirect = false; 5407 Optional<MachineOperand> Op; 5408 // Some arguments' frame index is recorded during argument lowering. 5409 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5410 if (FI != std::numeric_limits<int>::max()) 5411 Op = MachineOperand::CreateFI(FI); 5412 5413 if (!Op && N.getNode()) { 5414 unsigned Reg = getUnderlyingArgReg(N); 5415 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5416 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5417 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5418 if (PR) 5419 Reg = PR; 5420 } 5421 if (Reg) { 5422 Op = MachineOperand::CreateReg(Reg, false); 5423 IsIndirect = IsDbgDeclare; 5424 } 5425 } 5426 5427 if (!Op && N.getNode()) { 5428 // Check if frame index is available. 5429 SDValue LCandidate = peekThroughBitcasts(N); 5430 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5431 if (FrameIndexSDNode *FINode = 5432 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5433 Op = MachineOperand::CreateFI(FINode->getIndex()); 5434 } 5435 5436 if (!Op) { 5437 // Check if ValueMap has reg number. 5438 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5439 if (VMI != FuncInfo.ValueMap.end()) { 5440 const auto &TLI = DAG.getTargetLoweringInfo(); 5441 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5442 V->getType(), getABIRegCopyCC(V)); 5443 if (RFV.occupiesMultipleRegs()) { 5444 unsigned Offset = 0; 5445 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5446 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5447 auto FragmentExpr = DIExpression::createFragmentExpression( 5448 Expr, Offset, RegAndSize.second); 5449 if (!FragmentExpr) 5450 continue; 5451 FuncInfo.ArgDbgValues.push_back( 5452 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5453 Op->getReg(), Variable, *FragmentExpr)); 5454 Offset += RegAndSize.second; 5455 } 5456 return true; 5457 } 5458 Op = MachineOperand::CreateReg(VMI->second, false); 5459 IsIndirect = IsDbgDeclare; 5460 } 5461 } 5462 5463 if (!Op) 5464 return false; 5465 5466 assert(Variable->isValidLocationForIntrinsic(DL) && 5467 "Expected inlined-at fields to agree"); 5468 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5469 FuncInfo.ArgDbgValues.push_back( 5470 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5471 *Op, Variable, Expr)); 5472 5473 return true; 5474 } 5475 5476 /// Return the appropriate SDDbgValue based on N. 5477 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5478 DILocalVariable *Variable, 5479 DIExpression *Expr, 5480 const DebugLoc &dl, 5481 unsigned DbgSDNodeOrder) { 5482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5484 // stack slot locations. 5485 // 5486 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5487 // debug values here after optimization: 5488 // 5489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5491 // 5492 // Both describe the direct values of their associated variables. 5493 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5494 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5495 } 5496 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5497 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5498 } 5499 5500 // VisualStudio defines setjmp as _setjmp 5501 #if defined(_MSC_VER) && defined(setjmp) && \ 5502 !defined(setjmp_undefined_for_msvc) 5503 # pragma push_macro("setjmp") 5504 # undef setjmp 5505 # define setjmp_undefined_for_msvc 5506 #endif 5507 5508 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5509 switch (Intrinsic) { 5510 case Intrinsic::smul_fix: 5511 return ISD::SMULFIX; 5512 case Intrinsic::umul_fix: 5513 return ISD::UMULFIX; 5514 default: 5515 llvm_unreachable("Unhandled fixed point intrinsic"); 5516 } 5517 } 5518 5519 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5520 const char *FunctionName) { 5521 assert(FunctionName && "FunctionName must not be nullptr"); 5522 SDValue Callee = DAG.getExternalSymbol( 5523 FunctionName, 5524 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5525 LowerCallTo(&I, Callee, I.isTailCall()); 5526 } 5527 5528 /// Lower the call to the specified intrinsic function. 5529 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5530 unsigned Intrinsic) { 5531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5532 SDLoc sdl = getCurSDLoc(); 5533 DebugLoc dl = getCurDebugLoc(); 5534 SDValue Res; 5535 5536 switch (Intrinsic) { 5537 default: 5538 // By default, turn this into a target intrinsic node. 5539 visitTargetIntrinsic(I, Intrinsic); 5540 return; 5541 case Intrinsic::vastart: visitVAStart(I); return; 5542 case Intrinsic::vaend: visitVAEnd(I); return; 5543 case Intrinsic::vacopy: visitVACopy(I); return; 5544 case Intrinsic::returnaddress: 5545 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5546 TLI.getPointerTy(DAG.getDataLayout()), 5547 getValue(I.getArgOperand(0)))); 5548 return; 5549 case Intrinsic::addressofreturnaddress: 5550 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5551 TLI.getPointerTy(DAG.getDataLayout()))); 5552 return; 5553 case Intrinsic::sponentry: 5554 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5555 TLI.getPointerTy(DAG.getDataLayout()))); 5556 return; 5557 case Intrinsic::frameaddress: 5558 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5559 TLI.getPointerTy(DAG.getDataLayout()), 5560 getValue(I.getArgOperand(0)))); 5561 return; 5562 case Intrinsic::read_register: { 5563 Value *Reg = I.getArgOperand(0); 5564 SDValue Chain = getRoot(); 5565 SDValue RegName = 5566 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5568 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5569 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5570 setValue(&I, Res); 5571 DAG.setRoot(Res.getValue(1)); 5572 return; 5573 } 5574 case Intrinsic::write_register: { 5575 Value *Reg = I.getArgOperand(0); 5576 Value *RegValue = I.getArgOperand(1); 5577 SDValue Chain = getRoot(); 5578 SDValue RegName = 5579 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5580 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5581 RegName, getValue(RegValue))); 5582 return; 5583 } 5584 case Intrinsic::setjmp: 5585 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5586 return; 5587 case Intrinsic::longjmp: 5588 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5589 return; 5590 case Intrinsic::memcpy: { 5591 const auto &MCI = cast<MemCpyInst>(I); 5592 SDValue Op1 = getValue(I.getArgOperand(0)); 5593 SDValue Op2 = getValue(I.getArgOperand(1)); 5594 SDValue Op3 = getValue(I.getArgOperand(2)); 5595 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5596 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5597 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5598 unsigned Align = MinAlign(DstAlign, SrcAlign); 5599 bool isVol = MCI.isVolatile(); 5600 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5601 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5602 // node. 5603 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5604 false, isTC, 5605 MachinePointerInfo(I.getArgOperand(0)), 5606 MachinePointerInfo(I.getArgOperand(1))); 5607 updateDAGForMaybeTailCall(MC); 5608 return; 5609 } 5610 case Intrinsic::memset: { 5611 const auto &MSI = cast<MemSetInst>(I); 5612 SDValue Op1 = getValue(I.getArgOperand(0)); 5613 SDValue Op2 = getValue(I.getArgOperand(1)); 5614 SDValue Op3 = getValue(I.getArgOperand(2)); 5615 // @llvm.memset defines 0 and 1 to both mean no alignment. 5616 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5617 bool isVol = MSI.isVolatile(); 5618 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5619 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5620 isTC, MachinePointerInfo(I.getArgOperand(0))); 5621 updateDAGForMaybeTailCall(MS); 5622 return; 5623 } 5624 case Intrinsic::memmove: { 5625 const auto &MMI = cast<MemMoveInst>(I); 5626 SDValue Op1 = getValue(I.getArgOperand(0)); 5627 SDValue Op2 = getValue(I.getArgOperand(1)); 5628 SDValue Op3 = getValue(I.getArgOperand(2)); 5629 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5630 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5631 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5632 unsigned Align = MinAlign(DstAlign, SrcAlign); 5633 bool isVol = MMI.isVolatile(); 5634 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5635 // FIXME: Support passing different dest/src alignments to the memmove DAG 5636 // node. 5637 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5638 isTC, MachinePointerInfo(I.getArgOperand(0)), 5639 MachinePointerInfo(I.getArgOperand(1))); 5640 updateDAGForMaybeTailCall(MM); 5641 return; 5642 } 5643 case Intrinsic::memcpy_element_unordered_atomic: { 5644 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5645 SDValue Dst = getValue(MI.getRawDest()); 5646 SDValue Src = getValue(MI.getRawSource()); 5647 SDValue Length = getValue(MI.getLength()); 5648 5649 unsigned DstAlign = MI.getDestAlignment(); 5650 unsigned SrcAlign = MI.getSourceAlignment(); 5651 Type *LengthTy = MI.getLength()->getType(); 5652 unsigned ElemSz = MI.getElementSizeInBytes(); 5653 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5654 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5655 SrcAlign, Length, LengthTy, ElemSz, isTC, 5656 MachinePointerInfo(MI.getRawDest()), 5657 MachinePointerInfo(MI.getRawSource())); 5658 updateDAGForMaybeTailCall(MC); 5659 return; 5660 } 5661 case Intrinsic::memmove_element_unordered_atomic: { 5662 auto &MI = cast<AtomicMemMoveInst>(I); 5663 SDValue Dst = getValue(MI.getRawDest()); 5664 SDValue Src = getValue(MI.getRawSource()); 5665 SDValue Length = getValue(MI.getLength()); 5666 5667 unsigned DstAlign = MI.getDestAlignment(); 5668 unsigned SrcAlign = MI.getSourceAlignment(); 5669 Type *LengthTy = MI.getLength()->getType(); 5670 unsigned ElemSz = MI.getElementSizeInBytes(); 5671 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5672 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5673 SrcAlign, Length, LengthTy, ElemSz, isTC, 5674 MachinePointerInfo(MI.getRawDest()), 5675 MachinePointerInfo(MI.getRawSource())); 5676 updateDAGForMaybeTailCall(MC); 5677 return; 5678 } 5679 case Intrinsic::memset_element_unordered_atomic: { 5680 auto &MI = cast<AtomicMemSetInst>(I); 5681 SDValue Dst = getValue(MI.getRawDest()); 5682 SDValue Val = getValue(MI.getValue()); 5683 SDValue Length = getValue(MI.getLength()); 5684 5685 unsigned DstAlign = MI.getDestAlignment(); 5686 Type *LengthTy = MI.getLength()->getType(); 5687 unsigned ElemSz = MI.getElementSizeInBytes(); 5688 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5689 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5690 LengthTy, ElemSz, isTC, 5691 MachinePointerInfo(MI.getRawDest())); 5692 updateDAGForMaybeTailCall(MC); 5693 return; 5694 } 5695 case Intrinsic::dbg_addr: 5696 case Intrinsic::dbg_declare: { 5697 const auto &DI = cast<DbgVariableIntrinsic>(I); 5698 DILocalVariable *Variable = DI.getVariable(); 5699 DIExpression *Expression = DI.getExpression(); 5700 dropDanglingDebugInfo(Variable, Expression); 5701 assert(Variable && "Missing variable"); 5702 5703 // Check if address has undef value. 5704 const Value *Address = DI.getVariableLocation(); 5705 if (!Address || isa<UndefValue>(Address) || 5706 (Address->use_empty() && !isa<Argument>(Address))) { 5707 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5708 return; 5709 } 5710 5711 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5712 5713 // Check if this variable can be described by a frame index, typically 5714 // either as a static alloca or a byval parameter. 5715 int FI = std::numeric_limits<int>::max(); 5716 if (const auto *AI = 5717 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5718 if (AI->isStaticAlloca()) { 5719 auto I = FuncInfo.StaticAllocaMap.find(AI); 5720 if (I != FuncInfo.StaticAllocaMap.end()) 5721 FI = I->second; 5722 } 5723 } else if (const auto *Arg = dyn_cast<Argument>( 5724 Address->stripInBoundsConstantOffsets())) { 5725 FI = FuncInfo.getArgumentFrameIndex(Arg); 5726 } 5727 5728 // llvm.dbg.addr is control dependent and always generates indirect 5729 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5730 // the MachineFunction variable table. 5731 if (FI != std::numeric_limits<int>::max()) { 5732 if (Intrinsic == Intrinsic::dbg_addr) { 5733 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5734 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5735 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5736 } 5737 return; 5738 } 5739 5740 SDValue &N = NodeMap[Address]; 5741 if (!N.getNode() && isa<Argument>(Address)) 5742 // Check unused arguments map. 5743 N = UnusedArgNodeMap[Address]; 5744 SDDbgValue *SDV; 5745 if (N.getNode()) { 5746 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5747 Address = BCI->getOperand(0); 5748 // Parameters are handled specially. 5749 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5750 if (isParameter && FINode) { 5751 // Byval parameter. We have a frame index at this point. 5752 SDV = 5753 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5754 /*IsIndirect*/ true, dl, SDNodeOrder); 5755 } else if (isa<Argument>(Address)) { 5756 // Address is an argument, so try to emit its dbg value using 5757 // virtual register info from the FuncInfo.ValueMap. 5758 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5759 return; 5760 } else { 5761 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5762 true, dl, SDNodeOrder); 5763 } 5764 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5765 } else { 5766 // If Address is an argument then try to emit its dbg value using 5767 // virtual register info from the FuncInfo.ValueMap. 5768 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5769 N)) { 5770 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5771 } 5772 } 5773 return; 5774 } 5775 case Intrinsic::dbg_label: { 5776 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5777 DILabel *Label = DI.getLabel(); 5778 assert(Label && "Missing label"); 5779 5780 SDDbgLabel *SDV; 5781 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5782 DAG.AddDbgLabel(SDV); 5783 return; 5784 } 5785 case Intrinsic::dbg_value: { 5786 const DbgValueInst &DI = cast<DbgValueInst>(I); 5787 assert(DI.getVariable() && "Missing variable"); 5788 5789 DILocalVariable *Variable = DI.getVariable(); 5790 DIExpression *Expression = DI.getExpression(); 5791 dropDanglingDebugInfo(Variable, Expression); 5792 const Value *V = DI.getValue(); 5793 if (!V) 5794 return; 5795 5796 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5797 SDNodeOrder)) 5798 return; 5799 5800 // TODO: Dangling debug info will eventually either be resolved or produce 5801 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5802 // between the original dbg.value location and its resolved DBG_VALUE, which 5803 // we should ideally fill with an extra Undef DBG_VALUE. 5804 5805 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5806 return; 5807 } 5808 5809 case Intrinsic::eh_typeid_for: { 5810 // Find the type id for the given typeinfo. 5811 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5812 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5813 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5814 setValue(&I, Res); 5815 return; 5816 } 5817 5818 case Intrinsic::eh_return_i32: 5819 case Intrinsic::eh_return_i64: 5820 DAG.getMachineFunction().setCallsEHReturn(true); 5821 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5822 MVT::Other, 5823 getControlRoot(), 5824 getValue(I.getArgOperand(0)), 5825 getValue(I.getArgOperand(1)))); 5826 return; 5827 case Intrinsic::eh_unwind_init: 5828 DAG.getMachineFunction().setCallsUnwindInit(true); 5829 return; 5830 case Intrinsic::eh_dwarf_cfa: 5831 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5832 TLI.getPointerTy(DAG.getDataLayout()), 5833 getValue(I.getArgOperand(0)))); 5834 return; 5835 case Intrinsic::eh_sjlj_callsite: { 5836 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5837 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5838 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5839 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5840 5841 MMI.setCurrentCallSite(CI->getZExtValue()); 5842 return; 5843 } 5844 case Intrinsic::eh_sjlj_functioncontext: { 5845 // Get and store the index of the function context. 5846 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5847 AllocaInst *FnCtx = 5848 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5849 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5850 MFI.setFunctionContextIndex(FI); 5851 return; 5852 } 5853 case Intrinsic::eh_sjlj_setjmp: { 5854 SDValue Ops[2]; 5855 Ops[0] = getRoot(); 5856 Ops[1] = getValue(I.getArgOperand(0)); 5857 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5858 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5859 setValue(&I, Op.getValue(0)); 5860 DAG.setRoot(Op.getValue(1)); 5861 return; 5862 } 5863 case Intrinsic::eh_sjlj_longjmp: 5864 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5865 getRoot(), getValue(I.getArgOperand(0)))); 5866 return; 5867 case Intrinsic::eh_sjlj_setup_dispatch: 5868 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5869 getRoot())); 5870 return; 5871 case Intrinsic::masked_gather: 5872 visitMaskedGather(I); 5873 return; 5874 case Intrinsic::masked_load: 5875 visitMaskedLoad(I); 5876 return; 5877 case Intrinsic::masked_scatter: 5878 visitMaskedScatter(I); 5879 return; 5880 case Intrinsic::masked_store: 5881 visitMaskedStore(I); 5882 return; 5883 case Intrinsic::masked_expandload: 5884 visitMaskedLoad(I, true /* IsExpanding */); 5885 return; 5886 case Intrinsic::masked_compressstore: 5887 visitMaskedStore(I, true /* IsCompressing */); 5888 return; 5889 case Intrinsic::x86_mmx_pslli_w: 5890 case Intrinsic::x86_mmx_pslli_d: 5891 case Intrinsic::x86_mmx_pslli_q: 5892 case Intrinsic::x86_mmx_psrli_w: 5893 case Intrinsic::x86_mmx_psrli_d: 5894 case Intrinsic::x86_mmx_psrli_q: 5895 case Intrinsic::x86_mmx_psrai_w: 5896 case Intrinsic::x86_mmx_psrai_d: { 5897 SDValue ShAmt = getValue(I.getArgOperand(1)); 5898 if (isa<ConstantSDNode>(ShAmt)) { 5899 visitTargetIntrinsic(I, Intrinsic); 5900 return; 5901 } 5902 unsigned NewIntrinsic = 0; 5903 EVT ShAmtVT = MVT::v2i32; 5904 switch (Intrinsic) { 5905 case Intrinsic::x86_mmx_pslli_w: 5906 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5907 break; 5908 case Intrinsic::x86_mmx_pslli_d: 5909 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5910 break; 5911 case Intrinsic::x86_mmx_pslli_q: 5912 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5913 break; 5914 case Intrinsic::x86_mmx_psrli_w: 5915 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5916 break; 5917 case Intrinsic::x86_mmx_psrli_d: 5918 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5919 break; 5920 case Intrinsic::x86_mmx_psrli_q: 5921 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5922 break; 5923 case Intrinsic::x86_mmx_psrai_w: 5924 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5925 break; 5926 case Intrinsic::x86_mmx_psrai_d: 5927 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5928 break; 5929 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5930 } 5931 5932 // The vector shift intrinsics with scalars uses 32b shift amounts but 5933 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5934 // to be zero. 5935 // We must do this early because v2i32 is not a legal type. 5936 SDValue ShOps[2]; 5937 ShOps[0] = ShAmt; 5938 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5939 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5940 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5941 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5942 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5943 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5944 getValue(I.getArgOperand(0)), ShAmt); 5945 setValue(&I, Res); 5946 return; 5947 } 5948 case Intrinsic::powi: 5949 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5950 getValue(I.getArgOperand(1)), DAG)); 5951 return; 5952 case Intrinsic::log: 5953 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5954 return; 5955 case Intrinsic::log2: 5956 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5957 return; 5958 case Intrinsic::log10: 5959 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5960 return; 5961 case Intrinsic::exp: 5962 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5963 return; 5964 case Intrinsic::exp2: 5965 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5966 return; 5967 case Intrinsic::pow: 5968 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5969 getValue(I.getArgOperand(1)), DAG, TLI)); 5970 return; 5971 case Intrinsic::sqrt: 5972 case Intrinsic::fabs: 5973 case Intrinsic::sin: 5974 case Intrinsic::cos: 5975 case Intrinsic::floor: 5976 case Intrinsic::ceil: 5977 case Intrinsic::trunc: 5978 case Intrinsic::rint: 5979 case Intrinsic::nearbyint: 5980 case Intrinsic::round: 5981 case Intrinsic::canonicalize: { 5982 unsigned Opcode; 5983 switch (Intrinsic) { 5984 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5985 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5986 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5987 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5988 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5989 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5990 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5991 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5992 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5993 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5994 case Intrinsic::round: Opcode = ISD::FROUND; break; 5995 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5996 } 5997 5998 setValue(&I, DAG.getNode(Opcode, sdl, 5999 getValue(I.getArgOperand(0)).getValueType(), 6000 getValue(I.getArgOperand(0)))); 6001 return; 6002 } 6003 case Intrinsic::lround: 6004 case Intrinsic::llround: 6005 case Intrinsic::lrint: 6006 case Intrinsic::llrint: { 6007 unsigned Opcode; 6008 switch (Intrinsic) { 6009 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6010 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6011 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6012 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6013 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6014 } 6015 6016 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6017 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6018 getValue(I.getArgOperand(0)))); 6019 return; 6020 } 6021 case Intrinsic::minnum: 6022 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6023 getValue(I.getArgOperand(0)).getValueType(), 6024 getValue(I.getArgOperand(0)), 6025 getValue(I.getArgOperand(1)))); 6026 return; 6027 case Intrinsic::maxnum: 6028 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6029 getValue(I.getArgOperand(0)).getValueType(), 6030 getValue(I.getArgOperand(0)), 6031 getValue(I.getArgOperand(1)))); 6032 return; 6033 case Intrinsic::minimum: 6034 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6035 getValue(I.getArgOperand(0)).getValueType(), 6036 getValue(I.getArgOperand(0)), 6037 getValue(I.getArgOperand(1)))); 6038 return; 6039 case Intrinsic::maximum: 6040 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6041 getValue(I.getArgOperand(0)).getValueType(), 6042 getValue(I.getArgOperand(0)), 6043 getValue(I.getArgOperand(1)))); 6044 return; 6045 case Intrinsic::copysign: 6046 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6047 getValue(I.getArgOperand(0)).getValueType(), 6048 getValue(I.getArgOperand(0)), 6049 getValue(I.getArgOperand(1)))); 6050 return; 6051 case Intrinsic::fma: 6052 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6053 getValue(I.getArgOperand(0)).getValueType(), 6054 getValue(I.getArgOperand(0)), 6055 getValue(I.getArgOperand(1)), 6056 getValue(I.getArgOperand(2)))); 6057 return; 6058 case Intrinsic::experimental_constrained_fadd: 6059 case Intrinsic::experimental_constrained_fsub: 6060 case Intrinsic::experimental_constrained_fmul: 6061 case Intrinsic::experimental_constrained_fdiv: 6062 case Intrinsic::experimental_constrained_frem: 6063 case Intrinsic::experimental_constrained_fma: 6064 case Intrinsic::experimental_constrained_fptrunc: 6065 case Intrinsic::experimental_constrained_fpext: 6066 case Intrinsic::experimental_constrained_sqrt: 6067 case Intrinsic::experimental_constrained_pow: 6068 case Intrinsic::experimental_constrained_powi: 6069 case Intrinsic::experimental_constrained_sin: 6070 case Intrinsic::experimental_constrained_cos: 6071 case Intrinsic::experimental_constrained_exp: 6072 case Intrinsic::experimental_constrained_exp2: 6073 case Intrinsic::experimental_constrained_log: 6074 case Intrinsic::experimental_constrained_log10: 6075 case Intrinsic::experimental_constrained_log2: 6076 case Intrinsic::experimental_constrained_rint: 6077 case Intrinsic::experimental_constrained_nearbyint: 6078 case Intrinsic::experimental_constrained_maxnum: 6079 case Intrinsic::experimental_constrained_minnum: 6080 case Intrinsic::experimental_constrained_ceil: 6081 case Intrinsic::experimental_constrained_floor: 6082 case Intrinsic::experimental_constrained_round: 6083 case Intrinsic::experimental_constrained_trunc: 6084 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6085 return; 6086 case Intrinsic::fmuladd: { 6087 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6088 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6089 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6090 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6091 getValue(I.getArgOperand(0)).getValueType(), 6092 getValue(I.getArgOperand(0)), 6093 getValue(I.getArgOperand(1)), 6094 getValue(I.getArgOperand(2)))); 6095 } else { 6096 // TODO: Intrinsic calls should have fast-math-flags. 6097 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6098 getValue(I.getArgOperand(0)).getValueType(), 6099 getValue(I.getArgOperand(0)), 6100 getValue(I.getArgOperand(1))); 6101 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6102 getValue(I.getArgOperand(0)).getValueType(), 6103 Mul, 6104 getValue(I.getArgOperand(2))); 6105 setValue(&I, Add); 6106 } 6107 return; 6108 } 6109 case Intrinsic::convert_to_fp16: 6110 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6111 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6112 getValue(I.getArgOperand(0)), 6113 DAG.getTargetConstant(0, sdl, 6114 MVT::i32)))); 6115 return; 6116 case Intrinsic::convert_from_fp16: 6117 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6118 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6119 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6120 getValue(I.getArgOperand(0))))); 6121 return; 6122 case Intrinsic::pcmarker: { 6123 SDValue Tmp = getValue(I.getArgOperand(0)); 6124 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6125 return; 6126 } 6127 case Intrinsic::readcyclecounter: { 6128 SDValue Op = getRoot(); 6129 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6130 DAG.getVTList(MVT::i64, MVT::Other), Op); 6131 setValue(&I, Res); 6132 DAG.setRoot(Res.getValue(1)); 6133 return; 6134 } 6135 case Intrinsic::bitreverse: 6136 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6137 getValue(I.getArgOperand(0)).getValueType(), 6138 getValue(I.getArgOperand(0)))); 6139 return; 6140 case Intrinsic::bswap: 6141 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6142 getValue(I.getArgOperand(0)).getValueType(), 6143 getValue(I.getArgOperand(0)))); 6144 return; 6145 case Intrinsic::cttz: { 6146 SDValue Arg = getValue(I.getArgOperand(0)); 6147 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6148 EVT Ty = Arg.getValueType(); 6149 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6150 sdl, Ty, Arg)); 6151 return; 6152 } 6153 case Intrinsic::ctlz: { 6154 SDValue Arg = getValue(I.getArgOperand(0)); 6155 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6156 EVT Ty = Arg.getValueType(); 6157 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6158 sdl, Ty, Arg)); 6159 return; 6160 } 6161 case Intrinsic::ctpop: { 6162 SDValue Arg = getValue(I.getArgOperand(0)); 6163 EVT Ty = Arg.getValueType(); 6164 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6165 return; 6166 } 6167 case Intrinsic::fshl: 6168 case Intrinsic::fshr: { 6169 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6170 SDValue X = getValue(I.getArgOperand(0)); 6171 SDValue Y = getValue(I.getArgOperand(1)); 6172 SDValue Z = getValue(I.getArgOperand(2)); 6173 EVT VT = X.getValueType(); 6174 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6175 SDValue Zero = DAG.getConstant(0, sdl, VT); 6176 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6177 6178 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6179 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6180 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6181 return; 6182 } 6183 6184 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6185 // avoid the select that is necessary in the general case to filter out 6186 // the 0-shift possibility that leads to UB. 6187 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6188 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6189 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6190 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6191 return; 6192 } 6193 6194 // Some targets only rotate one way. Try the opposite direction. 6195 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6196 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6197 // Negate the shift amount because it is safe to ignore the high bits. 6198 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6199 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6200 return; 6201 } 6202 6203 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6204 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6205 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6206 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6207 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6208 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6209 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6210 return; 6211 } 6212 6213 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6214 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6215 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6216 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6217 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6218 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6219 6220 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6221 // and that is undefined. We must compare and select to avoid UB. 6222 EVT CCVT = MVT::i1; 6223 if (VT.isVector()) 6224 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6225 6226 // For fshl, 0-shift returns the 1st arg (X). 6227 // For fshr, 0-shift returns the 2nd arg (Y). 6228 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6229 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6230 return; 6231 } 6232 case Intrinsic::sadd_sat: { 6233 SDValue Op1 = getValue(I.getArgOperand(0)); 6234 SDValue Op2 = getValue(I.getArgOperand(1)); 6235 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6236 return; 6237 } 6238 case Intrinsic::uadd_sat: { 6239 SDValue Op1 = getValue(I.getArgOperand(0)); 6240 SDValue Op2 = getValue(I.getArgOperand(1)); 6241 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6242 return; 6243 } 6244 case Intrinsic::ssub_sat: { 6245 SDValue Op1 = getValue(I.getArgOperand(0)); 6246 SDValue Op2 = getValue(I.getArgOperand(1)); 6247 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6248 return; 6249 } 6250 case Intrinsic::usub_sat: { 6251 SDValue Op1 = getValue(I.getArgOperand(0)); 6252 SDValue Op2 = getValue(I.getArgOperand(1)); 6253 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6254 return; 6255 } 6256 case Intrinsic::smul_fix: 6257 case Intrinsic::umul_fix: { 6258 SDValue Op1 = getValue(I.getArgOperand(0)); 6259 SDValue Op2 = getValue(I.getArgOperand(1)); 6260 SDValue Op3 = getValue(I.getArgOperand(2)); 6261 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6262 Op1.getValueType(), Op1, Op2, Op3)); 6263 return; 6264 } 6265 case Intrinsic::smul_fix_sat: { 6266 SDValue Op1 = getValue(I.getArgOperand(0)); 6267 SDValue Op2 = getValue(I.getArgOperand(1)); 6268 SDValue Op3 = getValue(I.getArgOperand(2)); 6269 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6270 Op3)); 6271 return; 6272 } 6273 case Intrinsic::stacksave: { 6274 SDValue Op = getRoot(); 6275 Res = DAG.getNode( 6276 ISD::STACKSAVE, sdl, 6277 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6278 setValue(&I, Res); 6279 DAG.setRoot(Res.getValue(1)); 6280 return; 6281 } 6282 case Intrinsic::stackrestore: 6283 Res = getValue(I.getArgOperand(0)); 6284 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6285 return; 6286 case Intrinsic::get_dynamic_area_offset: { 6287 SDValue Op = getRoot(); 6288 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6289 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6290 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6291 // target. 6292 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6293 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6294 " intrinsic!"); 6295 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6296 Op); 6297 DAG.setRoot(Op); 6298 setValue(&I, Res); 6299 return; 6300 } 6301 case Intrinsic::stackguard: { 6302 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6303 MachineFunction &MF = DAG.getMachineFunction(); 6304 const Module &M = *MF.getFunction().getParent(); 6305 SDValue Chain = getRoot(); 6306 if (TLI.useLoadStackGuardNode()) { 6307 Res = getLoadStackGuard(DAG, sdl, Chain); 6308 } else { 6309 const Value *Global = TLI.getSDagStackGuard(M); 6310 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6311 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6312 MachinePointerInfo(Global, 0), Align, 6313 MachineMemOperand::MOVolatile); 6314 } 6315 if (TLI.useStackGuardXorFP()) 6316 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6317 DAG.setRoot(Chain); 6318 setValue(&I, Res); 6319 return; 6320 } 6321 case Intrinsic::stackprotector: { 6322 // Emit code into the DAG to store the stack guard onto the stack. 6323 MachineFunction &MF = DAG.getMachineFunction(); 6324 MachineFrameInfo &MFI = MF.getFrameInfo(); 6325 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6326 SDValue Src, Chain = getRoot(); 6327 6328 if (TLI.useLoadStackGuardNode()) 6329 Src = getLoadStackGuard(DAG, sdl, Chain); 6330 else 6331 Src = getValue(I.getArgOperand(0)); // The guard's value. 6332 6333 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6334 6335 int FI = FuncInfo.StaticAllocaMap[Slot]; 6336 MFI.setStackProtectorIndex(FI); 6337 6338 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6339 6340 // Store the stack protector onto the stack. 6341 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6342 DAG.getMachineFunction(), FI), 6343 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6344 setValue(&I, Res); 6345 DAG.setRoot(Res); 6346 return; 6347 } 6348 case Intrinsic::objectsize: { 6349 // If we don't know by now, we're never going to know. 6350 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6351 6352 assert(CI && "Non-constant type in __builtin_object_size?"); 6353 6354 SDValue Arg = getValue(I.getCalledValue()); 6355 EVT Ty = Arg.getValueType(); 6356 6357 if (CI->isZero()) 6358 Res = DAG.getConstant(-1ULL, sdl, Ty); 6359 else 6360 Res = DAG.getConstant(0, sdl, Ty); 6361 6362 setValue(&I, Res); 6363 return; 6364 } 6365 6366 case Intrinsic::is_constant: 6367 // If this wasn't constant-folded away by now, then it's not a 6368 // constant. 6369 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6370 return; 6371 6372 case Intrinsic::annotation: 6373 case Intrinsic::ptr_annotation: 6374 case Intrinsic::launder_invariant_group: 6375 case Intrinsic::strip_invariant_group: 6376 // Drop the intrinsic, but forward the value 6377 setValue(&I, getValue(I.getOperand(0))); 6378 return; 6379 case Intrinsic::assume: 6380 case Intrinsic::var_annotation: 6381 case Intrinsic::sideeffect: 6382 // Discard annotate attributes, assumptions, and artificial side-effects. 6383 return; 6384 6385 case Intrinsic::codeview_annotation: { 6386 // Emit a label associated with this metadata. 6387 MachineFunction &MF = DAG.getMachineFunction(); 6388 MCSymbol *Label = 6389 MF.getMMI().getContext().createTempSymbol("annotation", true); 6390 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6391 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6392 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6393 DAG.setRoot(Res); 6394 return; 6395 } 6396 6397 case Intrinsic::init_trampoline: { 6398 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6399 6400 SDValue Ops[6]; 6401 Ops[0] = getRoot(); 6402 Ops[1] = getValue(I.getArgOperand(0)); 6403 Ops[2] = getValue(I.getArgOperand(1)); 6404 Ops[3] = getValue(I.getArgOperand(2)); 6405 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6406 Ops[5] = DAG.getSrcValue(F); 6407 6408 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6409 6410 DAG.setRoot(Res); 6411 return; 6412 } 6413 case Intrinsic::adjust_trampoline: 6414 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6415 TLI.getPointerTy(DAG.getDataLayout()), 6416 getValue(I.getArgOperand(0)))); 6417 return; 6418 case Intrinsic::gcroot: { 6419 assert(DAG.getMachineFunction().getFunction().hasGC() && 6420 "only valid in functions with gc specified, enforced by Verifier"); 6421 assert(GFI && "implied by previous"); 6422 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6423 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6424 6425 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6426 GFI->addStackRoot(FI->getIndex(), TypeMap); 6427 return; 6428 } 6429 case Intrinsic::gcread: 6430 case Intrinsic::gcwrite: 6431 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6432 case Intrinsic::flt_rounds: 6433 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6434 return; 6435 6436 case Intrinsic::expect: 6437 // Just replace __builtin_expect(exp, c) with EXP. 6438 setValue(&I, getValue(I.getArgOperand(0))); 6439 return; 6440 6441 case Intrinsic::debugtrap: 6442 case Intrinsic::trap: { 6443 StringRef TrapFuncName = 6444 I.getAttributes() 6445 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6446 .getValueAsString(); 6447 if (TrapFuncName.empty()) { 6448 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6449 ISD::TRAP : ISD::DEBUGTRAP; 6450 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6451 return; 6452 } 6453 TargetLowering::ArgListTy Args; 6454 6455 TargetLowering::CallLoweringInfo CLI(DAG); 6456 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6457 CallingConv::C, I.getType(), 6458 DAG.getExternalSymbol(TrapFuncName.data(), 6459 TLI.getPointerTy(DAG.getDataLayout())), 6460 std::move(Args)); 6461 6462 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6463 DAG.setRoot(Result.second); 6464 return; 6465 } 6466 6467 case Intrinsic::uadd_with_overflow: 6468 case Intrinsic::sadd_with_overflow: 6469 case Intrinsic::usub_with_overflow: 6470 case Intrinsic::ssub_with_overflow: 6471 case Intrinsic::umul_with_overflow: 6472 case Intrinsic::smul_with_overflow: { 6473 ISD::NodeType Op; 6474 switch (Intrinsic) { 6475 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6476 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6477 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6478 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6479 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6480 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6481 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6482 } 6483 SDValue Op1 = getValue(I.getArgOperand(0)); 6484 SDValue Op2 = getValue(I.getArgOperand(1)); 6485 6486 EVT ResultVT = Op1.getValueType(); 6487 EVT OverflowVT = MVT::i1; 6488 if (ResultVT.isVector()) 6489 OverflowVT = EVT::getVectorVT( 6490 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6491 6492 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6493 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6494 return; 6495 } 6496 case Intrinsic::prefetch: { 6497 SDValue Ops[5]; 6498 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6499 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6500 Ops[0] = DAG.getRoot(); 6501 Ops[1] = getValue(I.getArgOperand(0)); 6502 Ops[2] = getValue(I.getArgOperand(1)); 6503 Ops[3] = getValue(I.getArgOperand(2)); 6504 Ops[4] = getValue(I.getArgOperand(3)); 6505 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6506 DAG.getVTList(MVT::Other), Ops, 6507 EVT::getIntegerVT(*Context, 8), 6508 MachinePointerInfo(I.getArgOperand(0)), 6509 0, /* align */ 6510 Flags); 6511 6512 // Chain the prefetch in parallell with any pending loads, to stay out of 6513 // the way of later optimizations. 6514 PendingLoads.push_back(Result); 6515 Result = getRoot(); 6516 DAG.setRoot(Result); 6517 return; 6518 } 6519 case Intrinsic::lifetime_start: 6520 case Intrinsic::lifetime_end: { 6521 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6522 // Stack coloring is not enabled in O0, discard region information. 6523 if (TM.getOptLevel() == CodeGenOpt::None) 6524 return; 6525 6526 const int64_t ObjectSize = 6527 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6528 Value *const ObjectPtr = I.getArgOperand(1); 6529 SmallVector<const Value *, 4> Allocas; 6530 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6531 6532 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6533 E = Allocas.end(); Object != E; ++Object) { 6534 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6535 6536 // Could not find an Alloca. 6537 if (!LifetimeObject) 6538 continue; 6539 6540 // First check that the Alloca is static, otherwise it won't have a 6541 // valid frame index. 6542 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6543 if (SI == FuncInfo.StaticAllocaMap.end()) 6544 return; 6545 6546 const int FrameIndex = SI->second; 6547 int64_t Offset; 6548 if (GetPointerBaseWithConstantOffset( 6549 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6550 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6551 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6552 Offset); 6553 DAG.setRoot(Res); 6554 } 6555 return; 6556 } 6557 case Intrinsic::invariant_start: 6558 // Discard region information. 6559 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6560 return; 6561 case Intrinsic::invariant_end: 6562 // Discard region information. 6563 return; 6564 case Intrinsic::clear_cache: 6565 /// FunctionName may be null. 6566 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6567 lowerCallToExternalSymbol(I, FunctionName); 6568 return; 6569 case Intrinsic::donothing: 6570 // ignore 6571 return; 6572 case Intrinsic::experimental_stackmap: 6573 visitStackmap(I); 6574 return; 6575 case Intrinsic::experimental_patchpoint_void: 6576 case Intrinsic::experimental_patchpoint_i64: 6577 visitPatchpoint(&I); 6578 return; 6579 case Intrinsic::experimental_gc_statepoint: 6580 LowerStatepoint(ImmutableStatepoint(&I)); 6581 return; 6582 case Intrinsic::experimental_gc_result: 6583 visitGCResult(cast<GCResultInst>(I)); 6584 return; 6585 case Intrinsic::experimental_gc_relocate: 6586 visitGCRelocate(cast<GCRelocateInst>(I)); 6587 return; 6588 case Intrinsic::instrprof_increment: 6589 llvm_unreachable("instrprof failed to lower an increment"); 6590 case Intrinsic::instrprof_value_profile: 6591 llvm_unreachable("instrprof failed to lower a value profiling call"); 6592 case Intrinsic::localescape: { 6593 MachineFunction &MF = DAG.getMachineFunction(); 6594 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6595 6596 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6597 // is the same on all targets. 6598 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6599 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6600 if (isa<ConstantPointerNull>(Arg)) 6601 continue; // Skip null pointers. They represent a hole in index space. 6602 AllocaInst *Slot = cast<AllocaInst>(Arg); 6603 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6604 "can only escape static allocas"); 6605 int FI = FuncInfo.StaticAllocaMap[Slot]; 6606 MCSymbol *FrameAllocSym = 6607 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6608 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6610 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6611 .addSym(FrameAllocSym) 6612 .addFrameIndex(FI); 6613 } 6614 6615 return; 6616 } 6617 6618 case Intrinsic::localrecover: { 6619 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6620 MachineFunction &MF = DAG.getMachineFunction(); 6621 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6622 6623 // Get the symbol that defines the frame offset. 6624 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6625 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6626 unsigned IdxVal = 6627 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6628 MCSymbol *FrameAllocSym = 6629 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6630 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6631 6632 // Create a MCSymbol for the label to avoid any target lowering 6633 // that would make this PC relative. 6634 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6635 SDValue OffsetVal = 6636 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6637 6638 // Add the offset to the FP. 6639 Value *FP = I.getArgOperand(1); 6640 SDValue FPVal = getValue(FP); 6641 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6642 setValue(&I, Add); 6643 6644 return; 6645 } 6646 6647 case Intrinsic::eh_exceptionpointer: 6648 case Intrinsic::eh_exceptioncode: { 6649 // Get the exception pointer vreg, copy from it, and resize it to fit. 6650 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6651 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6652 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6653 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6654 SDValue N = 6655 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6656 if (Intrinsic == Intrinsic::eh_exceptioncode) 6657 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6658 setValue(&I, N); 6659 return; 6660 } 6661 case Intrinsic::xray_customevent: { 6662 // Here we want to make sure that the intrinsic behaves as if it has a 6663 // specific calling convention, and only for x86_64. 6664 // FIXME: Support other platforms later. 6665 const auto &Triple = DAG.getTarget().getTargetTriple(); 6666 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6667 return; 6668 6669 SDLoc DL = getCurSDLoc(); 6670 SmallVector<SDValue, 8> Ops; 6671 6672 // We want to say that we always want the arguments in registers. 6673 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6674 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6675 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6676 SDValue Chain = getRoot(); 6677 Ops.push_back(LogEntryVal); 6678 Ops.push_back(StrSizeVal); 6679 Ops.push_back(Chain); 6680 6681 // We need to enforce the calling convention for the callsite, so that 6682 // argument ordering is enforced correctly, and that register allocation can 6683 // see that some registers may be assumed clobbered and have to preserve 6684 // them across calls to the intrinsic. 6685 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6686 DL, NodeTys, Ops); 6687 SDValue patchableNode = SDValue(MN, 0); 6688 DAG.setRoot(patchableNode); 6689 setValue(&I, patchableNode); 6690 return; 6691 } 6692 case Intrinsic::xray_typedevent: { 6693 // Here we want to make sure that the intrinsic behaves as if it has a 6694 // specific calling convention, and only for x86_64. 6695 // FIXME: Support other platforms later. 6696 const auto &Triple = DAG.getTarget().getTargetTriple(); 6697 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6698 return; 6699 6700 SDLoc DL = getCurSDLoc(); 6701 SmallVector<SDValue, 8> Ops; 6702 6703 // We want to say that we always want the arguments in registers. 6704 // It's unclear to me how manipulating the selection DAG here forces callers 6705 // to provide arguments in registers instead of on the stack. 6706 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6707 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6708 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6709 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6710 SDValue Chain = getRoot(); 6711 Ops.push_back(LogTypeId); 6712 Ops.push_back(LogEntryVal); 6713 Ops.push_back(StrSizeVal); 6714 Ops.push_back(Chain); 6715 6716 // We need to enforce the calling convention for the callsite, so that 6717 // argument ordering is enforced correctly, and that register allocation can 6718 // see that some registers may be assumed clobbered and have to preserve 6719 // them across calls to the intrinsic. 6720 MachineSDNode *MN = DAG.getMachineNode( 6721 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6722 SDValue patchableNode = SDValue(MN, 0); 6723 DAG.setRoot(patchableNode); 6724 setValue(&I, patchableNode); 6725 return; 6726 } 6727 case Intrinsic::experimental_deoptimize: 6728 LowerDeoptimizeCall(&I); 6729 return; 6730 6731 case Intrinsic::experimental_vector_reduce_v2_fadd: 6732 case Intrinsic::experimental_vector_reduce_v2_fmul: 6733 case Intrinsic::experimental_vector_reduce_add: 6734 case Intrinsic::experimental_vector_reduce_mul: 6735 case Intrinsic::experimental_vector_reduce_and: 6736 case Intrinsic::experimental_vector_reduce_or: 6737 case Intrinsic::experimental_vector_reduce_xor: 6738 case Intrinsic::experimental_vector_reduce_smax: 6739 case Intrinsic::experimental_vector_reduce_smin: 6740 case Intrinsic::experimental_vector_reduce_umax: 6741 case Intrinsic::experimental_vector_reduce_umin: 6742 case Intrinsic::experimental_vector_reduce_fmax: 6743 case Intrinsic::experimental_vector_reduce_fmin: 6744 visitVectorReduce(I, Intrinsic); 6745 return; 6746 6747 case Intrinsic::icall_branch_funnel: { 6748 SmallVector<SDValue, 16> Ops; 6749 Ops.push_back(DAG.getRoot()); 6750 Ops.push_back(getValue(I.getArgOperand(0))); 6751 6752 int64_t Offset; 6753 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6754 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6755 if (!Base) 6756 report_fatal_error( 6757 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6758 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6759 6760 struct BranchFunnelTarget { 6761 int64_t Offset; 6762 SDValue Target; 6763 }; 6764 SmallVector<BranchFunnelTarget, 8> Targets; 6765 6766 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6767 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6768 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6769 if (ElemBase != Base) 6770 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6771 "to the same GlobalValue"); 6772 6773 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6774 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6775 if (!GA) 6776 report_fatal_error( 6777 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6778 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6779 GA->getGlobal(), getCurSDLoc(), 6780 Val.getValueType(), GA->getOffset())}); 6781 } 6782 llvm::sort(Targets, 6783 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6784 return T1.Offset < T2.Offset; 6785 }); 6786 6787 for (auto &T : Targets) { 6788 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6789 Ops.push_back(T.Target); 6790 } 6791 6792 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6793 getCurSDLoc(), MVT::Other, Ops), 6794 0); 6795 DAG.setRoot(N); 6796 setValue(&I, N); 6797 HasTailCall = true; 6798 return; 6799 } 6800 6801 case Intrinsic::wasm_landingpad_index: 6802 // Information this intrinsic contained has been transferred to 6803 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6804 // delete it now. 6805 return; 6806 } 6807 } 6808 6809 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6810 const ConstrainedFPIntrinsic &FPI) { 6811 SDLoc sdl = getCurSDLoc(); 6812 unsigned Opcode; 6813 switch (FPI.getIntrinsicID()) { 6814 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6815 case Intrinsic::experimental_constrained_fadd: 6816 Opcode = ISD::STRICT_FADD; 6817 break; 6818 case Intrinsic::experimental_constrained_fsub: 6819 Opcode = ISD::STRICT_FSUB; 6820 break; 6821 case Intrinsic::experimental_constrained_fmul: 6822 Opcode = ISD::STRICT_FMUL; 6823 break; 6824 case Intrinsic::experimental_constrained_fdiv: 6825 Opcode = ISD::STRICT_FDIV; 6826 break; 6827 case Intrinsic::experimental_constrained_frem: 6828 Opcode = ISD::STRICT_FREM; 6829 break; 6830 case Intrinsic::experimental_constrained_fma: 6831 Opcode = ISD::STRICT_FMA; 6832 break; 6833 case Intrinsic::experimental_constrained_fptrunc: 6834 Opcode = ISD::STRICT_FP_ROUND; 6835 break; 6836 case Intrinsic::experimental_constrained_fpext: 6837 Opcode = ISD::STRICT_FP_EXTEND; 6838 break; 6839 case Intrinsic::experimental_constrained_sqrt: 6840 Opcode = ISD::STRICT_FSQRT; 6841 break; 6842 case Intrinsic::experimental_constrained_pow: 6843 Opcode = ISD::STRICT_FPOW; 6844 break; 6845 case Intrinsic::experimental_constrained_powi: 6846 Opcode = ISD::STRICT_FPOWI; 6847 break; 6848 case Intrinsic::experimental_constrained_sin: 6849 Opcode = ISD::STRICT_FSIN; 6850 break; 6851 case Intrinsic::experimental_constrained_cos: 6852 Opcode = ISD::STRICT_FCOS; 6853 break; 6854 case Intrinsic::experimental_constrained_exp: 6855 Opcode = ISD::STRICT_FEXP; 6856 break; 6857 case Intrinsic::experimental_constrained_exp2: 6858 Opcode = ISD::STRICT_FEXP2; 6859 break; 6860 case Intrinsic::experimental_constrained_log: 6861 Opcode = ISD::STRICT_FLOG; 6862 break; 6863 case Intrinsic::experimental_constrained_log10: 6864 Opcode = ISD::STRICT_FLOG10; 6865 break; 6866 case Intrinsic::experimental_constrained_log2: 6867 Opcode = ISD::STRICT_FLOG2; 6868 break; 6869 case Intrinsic::experimental_constrained_rint: 6870 Opcode = ISD::STRICT_FRINT; 6871 break; 6872 case Intrinsic::experimental_constrained_nearbyint: 6873 Opcode = ISD::STRICT_FNEARBYINT; 6874 break; 6875 case Intrinsic::experimental_constrained_maxnum: 6876 Opcode = ISD::STRICT_FMAXNUM; 6877 break; 6878 case Intrinsic::experimental_constrained_minnum: 6879 Opcode = ISD::STRICT_FMINNUM; 6880 break; 6881 case Intrinsic::experimental_constrained_ceil: 6882 Opcode = ISD::STRICT_FCEIL; 6883 break; 6884 case Intrinsic::experimental_constrained_floor: 6885 Opcode = ISD::STRICT_FFLOOR; 6886 break; 6887 case Intrinsic::experimental_constrained_round: 6888 Opcode = ISD::STRICT_FROUND; 6889 break; 6890 case Intrinsic::experimental_constrained_trunc: 6891 Opcode = ISD::STRICT_FTRUNC; 6892 break; 6893 } 6894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6895 SDValue Chain = getRoot(); 6896 SmallVector<EVT, 4> ValueVTs; 6897 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6898 ValueVTs.push_back(MVT::Other); // Out chain 6899 6900 SDVTList VTs = DAG.getVTList(ValueVTs); 6901 SDValue Result; 6902 if (Opcode == ISD::STRICT_FP_ROUND) 6903 Result = DAG.getNode(Opcode, sdl, VTs, 6904 { Chain, getValue(FPI.getArgOperand(0)), 6905 DAG.getTargetConstant(0, sdl, 6906 TLI.getPointerTy(DAG.getDataLayout())) }); 6907 else if (FPI.isUnaryOp()) 6908 Result = DAG.getNode(Opcode, sdl, VTs, 6909 { Chain, getValue(FPI.getArgOperand(0)) }); 6910 else if (FPI.isTernaryOp()) 6911 Result = DAG.getNode(Opcode, sdl, VTs, 6912 { Chain, getValue(FPI.getArgOperand(0)), 6913 getValue(FPI.getArgOperand(1)), 6914 getValue(FPI.getArgOperand(2)) }); 6915 else 6916 Result = DAG.getNode(Opcode, sdl, VTs, 6917 { Chain, getValue(FPI.getArgOperand(0)), 6918 getValue(FPI.getArgOperand(1)) }); 6919 6920 if (FPI.getExceptionBehavior() != 6921 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 6922 SDNodeFlags Flags; 6923 Flags.setFPExcept(true); 6924 Result->setFlags(Flags); 6925 } 6926 6927 assert(Result.getNode()->getNumValues() == 2); 6928 SDValue OutChain = Result.getValue(1); 6929 DAG.setRoot(OutChain); 6930 SDValue FPResult = Result.getValue(0); 6931 setValue(&FPI, FPResult); 6932 } 6933 6934 std::pair<SDValue, SDValue> 6935 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6936 const BasicBlock *EHPadBB) { 6937 MachineFunction &MF = DAG.getMachineFunction(); 6938 MachineModuleInfo &MMI = MF.getMMI(); 6939 MCSymbol *BeginLabel = nullptr; 6940 6941 if (EHPadBB) { 6942 // Insert a label before the invoke call to mark the try range. This can be 6943 // used to detect deletion of the invoke via the MachineModuleInfo. 6944 BeginLabel = MMI.getContext().createTempSymbol(); 6945 6946 // For SjLj, keep track of which landing pads go with which invokes 6947 // so as to maintain the ordering of pads in the LSDA. 6948 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6949 if (CallSiteIndex) { 6950 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6951 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6952 6953 // Now that the call site is handled, stop tracking it. 6954 MMI.setCurrentCallSite(0); 6955 } 6956 6957 // Both PendingLoads and PendingExports must be flushed here; 6958 // this call might not return. 6959 (void)getRoot(); 6960 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6961 6962 CLI.setChain(getRoot()); 6963 } 6964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6965 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6966 6967 assert((CLI.IsTailCall || Result.second.getNode()) && 6968 "Non-null chain expected with non-tail call!"); 6969 assert((Result.second.getNode() || !Result.first.getNode()) && 6970 "Null value expected with tail call!"); 6971 6972 if (!Result.second.getNode()) { 6973 // As a special case, a null chain means that a tail call has been emitted 6974 // and the DAG root is already updated. 6975 HasTailCall = true; 6976 6977 // Since there's no actual continuation from this block, nothing can be 6978 // relying on us setting vregs for them. 6979 PendingExports.clear(); 6980 } else { 6981 DAG.setRoot(Result.second); 6982 } 6983 6984 if (EHPadBB) { 6985 // Insert a label at the end of the invoke call to mark the try range. This 6986 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6987 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6988 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6989 6990 // Inform MachineModuleInfo of range. 6991 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6992 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6993 // actually use outlined funclets and their LSDA info style. 6994 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6995 assert(CLI.CS); 6996 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6997 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6998 BeginLabel, EndLabel); 6999 } else if (!isScopedEHPersonality(Pers)) { 7000 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7001 } 7002 } 7003 7004 return Result; 7005 } 7006 7007 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7008 bool isTailCall, 7009 const BasicBlock *EHPadBB) { 7010 auto &DL = DAG.getDataLayout(); 7011 FunctionType *FTy = CS.getFunctionType(); 7012 Type *RetTy = CS.getType(); 7013 7014 TargetLowering::ArgListTy Args; 7015 Args.reserve(CS.arg_size()); 7016 7017 const Value *SwiftErrorVal = nullptr; 7018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7019 7020 // We can't tail call inside a function with a swifterror argument. Lowering 7021 // does not support this yet. It would have to move into the swifterror 7022 // register before the call. 7023 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7024 if (TLI.supportSwiftError() && 7025 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7026 isTailCall = false; 7027 7028 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7029 i != e; ++i) { 7030 TargetLowering::ArgListEntry Entry; 7031 const Value *V = *i; 7032 7033 // Skip empty types 7034 if (V->getType()->isEmptyTy()) 7035 continue; 7036 7037 SDValue ArgNode = getValue(V); 7038 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7039 7040 Entry.setAttributes(&CS, i - CS.arg_begin()); 7041 7042 // Use swifterror virtual register as input to the call. 7043 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7044 SwiftErrorVal = V; 7045 // We find the virtual register for the actual swifterror argument. 7046 // Instead of using the Value, we use the virtual register instead. 7047 Entry.Node = DAG.getRegister( 7048 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7049 EVT(TLI.getPointerTy(DL))); 7050 } 7051 7052 Args.push_back(Entry); 7053 7054 // If we have an explicit sret argument that is an Instruction, (i.e., it 7055 // might point to function-local memory), we can't meaningfully tail-call. 7056 if (Entry.IsSRet && isa<Instruction>(V)) 7057 isTailCall = false; 7058 } 7059 7060 // Check if target-independent constraints permit a tail call here. 7061 // Target-dependent constraints are checked within TLI->LowerCallTo. 7062 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7063 isTailCall = false; 7064 7065 // Disable tail calls if there is an swifterror argument. Targets have not 7066 // been updated to support tail calls. 7067 if (TLI.supportSwiftError() && SwiftErrorVal) 7068 isTailCall = false; 7069 7070 TargetLowering::CallLoweringInfo CLI(DAG); 7071 CLI.setDebugLoc(getCurSDLoc()) 7072 .setChain(getRoot()) 7073 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7074 .setTailCall(isTailCall) 7075 .setConvergent(CS.isConvergent()); 7076 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7077 7078 if (Result.first.getNode()) { 7079 const Instruction *Inst = CS.getInstruction(); 7080 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7081 setValue(Inst, Result.first); 7082 } 7083 7084 // The last element of CLI.InVals has the SDValue for swifterror return. 7085 // Here we copy it to a virtual register and update SwiftErrorMap for 7086 // book-keeping. 7087 if (SwiftErrorVal && TLI.supportSwiftError()) { 7088 // Get the last element of InVals. 7089 SDValue Src = CLI.InVals.back(); 7090 unsigned VReg = SwiftError.getOrCreateVRegDefAt( 7091 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7092 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7093 DAG.setRoot(CopyNode); 7094 } 7095 } 7096 7097 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7098 SelectionDAGBuilder &Builder) { 7099 // Check to see if this load can be trivially constant folded, e.g. if the 7100 // input is from a string literal. 7101 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7102 // Cast pointer to the type we really want to load. 7103 Type *LoadTy = 7104 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7105 if (LoadVT.isVector()) 7106 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7107 7108 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7109 PointerType::getUnqual(LoadTy)); 7110 7111 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7112 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7113 return Builder.getValue(LoadCst); 7114 } 7115 7116 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7117 // still constant memory, the input chain can be the entry node. 7118 SDValue Root; 7119 bool ConstantMemory = false; 7120 7121 // Do not serialize (non-volatile) loads of constant memory with anything. 7122 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7123 Root = Builder.DAG.getEntryNode(); 7124 ConstantMemory = true; 7125 } else { 7126 // Do not serialize non-volatile loads against each other. 7127 Root = Builder.DAG.getRoot(); 7128 } 7129 7130 SDValue Ptr = Builder.getValue(PtrVal); 7131 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7132 Ptr, MachinePointerInfo(PtrVal), 7133 /* Alignment = */ 1); 7134 7135 if (!ConstantMemory) 7136 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7137 return LoadVal; 7138 } 7139 7140 /// Record the value for an instruction that produces an integer result, 7141 /// converting the type where necessary. 7142 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7143 SDValue Value, 7144 bool IsSigned) { 7145 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7146 I.getType(), true); 7147 if (IsSigned) 7148 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7149 else 7150 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7151 setValue(&I, Value); 7152 } 7153 7154 /// See if we can lower a memcmp call into an optimized form. If so, return 7155 /// true and lower it. Otherwise return false, and it will be lowered like a 7156 /// normal call. 7157 /// The caller already checked that \p I calls the appropriate LibFunc with a 7158 /// correct prototype. 7159 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7160 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7161 const Value *Size = I.getArgOperand(2); 7162 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7163 if (CSize && CSize->getZExtValue() == 0) { 7164 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7165 I.getType(), true); 7166 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7167 return true; 7168 } 7169 7170 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7171 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7172 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7173 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7174 if (Res.first.getNode()) { 7175 processIntegerCallValue(I, Res.first, true); 7176 PendingLoads.push_back(Res.second); 7177 return true; 7178 } 7179 7180 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7181 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7182 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7183 return false; 7184 7185 // If the target has a fast compare for the given size, it will return a 7186 // preferred load type for that size. Require that the load VT is legal and 7187 // that the target supports unaligned loads of that type. Otherwise, return 7188 // INVALID. 7189 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7191 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7192 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7193 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7194 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7195 // TODO: Check alignment of src and dest ptrs. 7196 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7197 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7198 if (!TLI.isTypeLegal(LVT) || 7199 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7200 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7201 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7202 } 7203 7204 return LVT; 7205 }; 7206 7207 // This turns into unaligned loads. We only do this if the target natively 7208 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7209 // we'll only produce a small number of byte loads. 7210 MVT LoadVT; 7211 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7212 switch (NumBitsToCompare) { 7213 default: 7214 return false; 7215 case 16: 7216 LoadVT = MVT::i16; 7217 break; 7218 case 32: 7219 LoadVT = MVT::i32; 7220 break; 7221 case 64: 7222 case 128: 7223 case 256: 7224 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7225 break; 7226 } 7227 7228 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7229 return false; 7230 7231 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7232 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7233 7234 // Bitcast to a wide integer type if the loads are vectors. 7235 if (LoadVT.isVector()) { 7236 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7237 LoadL = DAG.getBitcast(CmpVT, LoadL); 7238 LoadR = DAG.getBitcast(CmpVT, LoadR); 7239 } 7240 7241 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7242 processIntegerCallValue(I, Cmp, false); 7243 return true; 7244 } 7245 7246 /// See if we can lower a memchr call into an optimized form. If so, return 7247 /// true and lower it. Otherwise return false, and it will be lowered like a 7248 /// normal call. 7249 /// The caller already checked that \p I calls the appropriate LibFunc with a 7250 /// correct prototype. 7251 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7252 const Value *Src = I.getArgOperand(0); 7253 const Value *Char = I.getArgOperand(1); 7254 const Value *Length = I.getArgOperand(2); 7255 7256 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7257 std::pair<SDValue, SDValue> Res = 7258 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7259 getValue(Src), getValue(Char), getValue(Length), 7260 MachinePointerInfo(Src)); 7261 if (Res.first.getNode()) { 7262 setValue(&I, Res.first); 7263 PendingLoads.push_back(Res.second); 7264 return true; 7265 } 7266 7267 return false; 7268 } 7269 7270 /// See if we can lower a mempcpy call into an optimized form. If so, return 7271 /// true and lower it. Otherwise return false, and it will be lowered like a 7272 /// normal call. 7273 /// The caller already checked that \p I calls the appropriate LibFunc with a 7274 /// correct prototype. 7275 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7276 SDValue Dst = getValue(I.getArgOperand(0)); 7277 SDValue Src = getValue(I.getArgOperand(1)); 7278 SDValue Size = getValue(I.getArgOperand(2)); 7279 7280 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7281 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7282 unsigned Align = std::min(DstAlign, SrcAlign); 7283 if (Align == 0) // Alignment of one or both could not be inferred. 7284 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7285 7286 bool isVol = false; 7287 SDLoc sdl = getCurSDLoc(); 7288 7289 // In the mempcpy context we need to pass in a false value for isTailCall 7290 // because the return pointer needs to be adjusted by the size of 7291 // the copied memory. 7292 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7293 false, /*isTailCall=*/false, 7294 MachinePointerInfo(I.getArgOperand(0)), 7295 MachinePointerInfo(I.getArgOperand(1))); 7296 assert(MC.getNode() != nullptr && 7297 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7298 DAG.setRoot(MC); 7299 7300 // Check if Size needs to be truncated or extended. 7301 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7302 7303 // Adjust return pointer to point just past the last dst byte. 7304 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7305 Dst, Size); 7306 setValue(&I, DstPlusSize); 7307 return true; 7308 } 7309 7310 /// See if we can lower a strcpy call into an optimized form. If so, return 7311 /// true and lower it, otherwise return false and it will be lowered like a 7312 /// normal call. 7313 /// The caller already checked that \p I calls the appropriate LibFunc with a 7314 /// correct prototype. 7315 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7316 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7317 7318 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7319 std::pair<SDValue, SDValue> Res = 7320 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7321 getValue(Arg0), getValue(Arg1), 7322 MachinePointerInfo(Arg0), 7323 MachinePointerInfo(Arg1), isStpcpy); 7324 if (Res.first.getNode()) { 7325 setValue(&I, Res.first); 7326 DAG.setRoot(Res.second); 7327 return true; 7328 } 7329 7330 return false; 7331 } 7332 7333 /// See if we can lower a strcmp call into an optimized form. If so, return 7334 /// true and lower it, otherwise return false and it will be lowered like a 7335 /// normal call. 7336 /// The caller already checked that \p I calls the appropriate LibFunc with a 7337 /// correct prototype. 7338 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7339 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7340 7341 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7342 std::pair<SDValue, SDValue> Res = 7343 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7344 getValue(Arg0), getValue(Arg1), 7345 MachinePointerInfo(Arg0), 7346 MachinePointerInfo(Arg1)); 7347 if (Res.first.getNode()) { 7348 processIntegerCallValue(I, Res.first, true); 7349 PendingLoads.push_back(Res.second); 7350 return true; 7351 } 7352 7353 return false; 7354 } 7355 7356 /// See if we can lower a strlen call into an optimized form. If so, return 7357 /// true and lower it, otherwise return false and it will be lowered like a 7358 /// normal call. 7359 /// The caller already checked that \p I calls the appropriate LibFunc with a 7360 /// correct prototype. 7361 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7362 const Value *Arg0 = I.getArgOperand(0); 7363 7364 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7365 std::pair<SDValue, SDValue> Res = 7366 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7367 getValue(Arg0), MachinePointerInfo(Arg0)); 7368 if (Res.first.getNode()) { 7369 processIntegerCallValue(I, Res.first, false); 7370 PendingLoads.push_back(Res.second); 7371 return true; 7372 } 7373 7374 return false; 7375 } 7376 7377 /// See if we can lower a strnlen call into an optimized form. If so, return 7378 /// true and lower it, otherwise return false and it will be lowered like a 7379 /// normal call. 7380 /// The caller already checked that \p I calls the appropriate LibFunc with a 7381 /// correct prototype. 7382 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7383 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7384 7385 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7386 std::pair<SDValue, SDValue> Res = 7387 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7388 getValue(Arg0), getValue(Arg1), 7389 MachinePointerInfo(Arg0)); 7390 if (Res.first.getNode()) { 7391 processIntegerCallValue(I, Res.first, false); 7392 PendingLoads.push_back(Res.second); 7393 return true; 7394 } 7395 7396 return false; 7397 } 7398 7399 /// See if we can lower a unary floating-point operation into an SDNode with 7400 /// the specified Opcode. If so, return true and lower it, otherwise return 7401 /// false and it will be lowered like a normal call. 7402 /// The caller already checked that \p I calls the appropriate LibFunc with a 7403 /// correct prototype. 7404 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7405 unsigned Opcode) { 7406 // We already checked this call's prototype; verify it doesn't modify errno. 7407 if (!I.onlyReadsMemory()) 7408 return false; 7409 7410 SDValue Tmp = getValue(I.getArgOperand(0)); 7411 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7412 return true; 7413 } 7414 7415 /// See if we can lower a binary floating-point operation into an SDNode with 7416 /// the specified Opcode. If so, return true and lower it. Otherwise return 7417 /// false, and it will be lowered like a normal call. 7418 /// The caller already checked that \p I calls the appropriate LibFunc with a 7419 /// correct prototype. 7420 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7421 unsigned Opcode) { 7422 // We already checked this call's prototype; verify it doesn't modify errno. 7423 if (!I.onlyReadsMemory()) 7424 return false; 7425 7426 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7427 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7428 EVT VT = Tmp0.getValueType(); 7429 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7430 return true; 7431 } 7432 7433 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7434 // Handle inline assembly differently. 7435 if (isa<InlineAsm>(I.getCalledValue())) { 7436 visitInlineAsm(&I); 7437 return; 7438 } 7439 7440 if (Function *F = I.getCalledFunction()) { 7441 if (F->isDeclaration()) { 7442 // Is this an LLVM intrinsic or a target-specific intrinsic? 7443 unsigned IID = F->getIntrinsicID(); 7444 if (!IID) 7445 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7446 IID = II->getIntrinsicID(F); 7447 7448 if (IID) { 7449 visitIntrinsicCall(I, IID); 7450 return; 7451 } 7452 } 7453 7454 // Check for well-known libc/libm calls. If the function is internal, it 7455 // can't be a library call. Don't do the check if marked as nobuiltin for 7456 // some reason or the call site requires strict floating point semantics. 7457 LibFunc Func; 7458 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7459 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7460 LibInfo->hasOptimizedCodeGen(Func)) { 7461 switch (Func) { 7462 default: break; 7463 case LibFunc_copysign: 7464 case LibFunc_copysignf: 7465 case LibFunc_copysignl: 7466 // We already checked this call's prototype; verify it doesn't modify 7467 // errno. 7468 if (I.onlyReadsMemory()) { 7469 SDValue LHS = getValue(I.getArgOperand(0)); 7470 SDValue RHS = getValue(I.getArgOperand(1)); 7471 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7472 LHS.getValueType(), LHS, RHS)); 7473 return; 7474 } 7475 break; 7476 case LibFunc_fabs: 7477 case LibFunc_fabsf: 7478 case LibFunc_fabsl: 7479 if (visitUnaryFloatCall(I, ISD::FABS)) 7480 return; 7481 break; 7482 case LibFunc_fmin: 7483 case LibFunc_fminf: 7484 case LibFunc_fminl: 7485 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7486 return; 7487 break; 7488 case LibFunc_fmax: 7489 case LibFunc_fmaxf: 7490 case LibFunc_fmaxl: 7491 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7492 return; 7493 break; 7494 case LibFunc_sin: 7495 case LibFunc_sinf: 7496 case LibFunc_sinl: 7497 if (visitUnaryFloatCall(I, ISD::FSIN)) 7498 return; 7499 break; 7500 case LibFunc_cos: 7501 case LibFunc_cosf: 7502 case LibFunc_cosl: 7503 if (visitUnaryFloatCall(I, ISD::FCOS)) 7504 return; 7505 break; 7506 case LibFunc_sqrt: 7507 case LibFunc_sqrtf: 7508 case LibFunc_sqrtl: 7509 case LibFunc_sqrt_finite: 7510 case LibFunc_sqrtf_finite: 7511 case LibFunc_sqrtl_finite: 7512 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7513 return; 7514 break; 7515 case LibFunc_floor: 7516 case LibFunc_floorf: 7517 case LibFunc_floorl: 7518 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7519 return; 7520 break; 7521 case LibFunc_nearbyint: 7522 case LibFunc_nearbyintf: 7523 case LibFunc_nearbyintl: 7524 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7525 return; 7526 break; 7527 case LibFunc_ceil: 7528 case LibFunc_ceilf: 7529 case LibFunc_ceill: 7530 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7531 return; 7532 break; 7533 case LibFunc_rint: 7534 case LibFunc_rintf: 7535 case LibFunc_rintl: 7536 if (visitUnaryFloatCall(I, ISD::FRINT)) 7537 return; 7538 break; 7539 case LibFunc_round: 7540 case LibFunc_roundf: 7541 case LibFunc_roundl: 7542 if (visitUnaryFloatCall(I, ISD::FROUND)) 7543 return; 7544 break; 7545 case LibFunc_trunc: 7546 case LibFunc_truncf: 7547 case LibFunc_truncl: 7548 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7549 return; 7550 break; 7551 case LibFunc_log2: 7552 case LibFunc_log2f: 7553 case LibFunc_log2l: 7554 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7555 return; 7556 break; 7557 case LibFunc_exp2: 7558 case LibFunc_exp2f: 7559 case LibFunc_exp2l: 7560 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7561 return; 7562 break; 7563 case LibFunc_memcmp: 7564 if (visitMemCmpCall(I)) 7565 return; 7566 break; 7567 case LibFunc_mempcpy: 7568 if (visitMemPCpyCall(I)) 7569 return; 7570 break; 7571 case LibFunc_memchr: 7572 if (visitMemChrCall(I)) 7573 return; 7574 break; 7575 case LibFunc_strcpy: 7576 if (visitStrCpyCall(I, false)) 7577 return; 7578 break; 7579 case LibFunc_stpcpy: 7580 if (visitStrCpyCall(I, true)) 7581 return; 7582 break; 7583 case LibFunc_strcmp: 7584 if (visitStrCmpCall(I)) 7585 return; 7586 break; 7587 case LibFunc_strlen: 7588 if (visitStrLenCall(I)) 7589 return; 7590 break; 7591 case LibFunc_strnlen: 7592 if (visitStrNLenCall(I)) 7593 return; 7594 break; 7595 } 7596 } 7597 } 7598 7599 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7600 // have to do anything here to lower funclet bundles. 7601 assert(!I.hasOperandBundlesOtherThan( 7602 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7603 "Cannot lower calls with arbitrary operand bundles!"); 7604 7605 SDValue Callee = getValue(I.getCalledValue()); 7606 7607 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7608 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7609 else 7610 // Check if we can potentially perform a tail call. More detailed checking 7611 // is be done within LowerCallTo, after more information about the call is 7612 // known. 7613 LowerCallTo(&I, Callee, I.isTailCall()); 7614 } 7615 7616 namespace { 7617 7618 /// AsmOperandInfo - This contains information for each constraint that we are 7619 /// lowering. 7620 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7621 public: 7622 /// CallOperand - If this is the result output operand or a clobber 7623 /// this is null, otherwise it is the incoming operand to the CallInst. 7624 /// This gets modified as the asm is processed. 7625 SDValue CallOperand; 7626 7627 /// AssignedRegs - If this is a register or register class operand, this 7628 /// contains the set of register corresponding to the operand. 7629 RegsForValue AssignedRegs; 7630 7631 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7632 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7633 } 7634 7635 /// Whether or not this operand accesses memory 7636 bool hasMemory(const TargetLowering &TLI) const { 7637 // Indirect operand accesses access memory. 7638 if (isIndirect) 7639 return true; 7640 7641 for (const auto &Code : Codes) 7642 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7643 return true; 7644 7645 return false; 7646 } 7647 7648 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7649 /// corresponds to. If there is no Value* for this operand, it returns 7650 /// MVT::Other. 7651 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7652 const DataLayout &DL) const { 7653 if (!CallOperandVal) return MVT::Other; 7654 7655 if (isa<BasicBlock>(CallOperandVal)) 7656 return TLI.getPointerTy(DL); 7657 7658 llvm::Type *OpTy = CallOperandVal->getType(); 7659 7660 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7661 // If this is an indirect operand, the operand is a pointer to the 7662 // accessed type. 7663 if (isIndirect) { 7664 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7665 if (!PtrTy) 7666 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7667 OpTy = PtrTy->getElementType(); 7668 } 7669 7670 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7671 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7672 if (STy->getNumElements() == 1) 7673 OpTy = STy->getElementType(0); 7674 7675 // If OpTy is not a single value, it may be a struct/union that we 7676 // can tile with integers. 7677 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7678 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7679 switch (BitSize) { 7680 default: break; 7681 case 1: 7682 case 8: 7683 case 16: 7684 case 32: 7685 case 64: 7686 case 128: 7687 OpTy = IntegerType::get(Context, BitSize); 7688 break; 7689 } 7690 } 7691 7692 return TLI.getValueType(DL, OpTy, true); 7693 } 7694 }; 7695 7696 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7697 7698 } // end anonymous namespace 7699 7700 /// Make sure that the output operand \p OpInfo and its corresponding input 7701 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7702 /// out). 7703 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7704 SDISelAsmOperandInfo &MatchingOpInfo, 7705 SelectionDAG &DAG) { 7706 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7707 return; 7708 7709 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7710 const auto &TLI = DAG.getTargetLoweringInfo(); 7711 7712 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7713 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7714 OpInfo.ConstraintVT); 7715 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7716 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7717 MatchingOpInfo.ConstraintVT); 7718 if ((OpInfo.ConstraintVT.isInteger() != 7719 MatchingOpInfo.ConstraintVT.isInteger()) || 7720 (MatchRC.second != InputRC.second)) { 7721 // FIXME: error out in a more elegant fashion 7722 report_fatal_error("Unsupported asm: input constraint" 7723 " with a matching output constraint of" 7724 " incompatible type!"); 7725 } 7726 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7727 } 7728 7729 /// Get a direct memory input to behave well as an indirect operand. 7730 /// This may introduce stores, hence the need for a \p Chain. 7731 /// \return The (possibly updated) chain. 7732 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7733 SDISelAsmOperandInfo &OpInfo, 7734 SelectionDAG &DAG) { 7735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7736 7737 // If we don't have an indirect input, put it in the constpool if we can, 7738 // otherwise spill it to a stack slot. 7739 // TODO: This isn't quite right. We need to handle these according to 7740 // the addressing mode that the constraint wants. Also, this may take 7741 // an additional register for the computation and we don't want that 7742 // either. 7743 7744 // If the operand is a float, integer, or vector constant, spill to a 7745 // constant pool entry to get its address. 7746 const Value *OpVal = OpInfo.CallOperandVal; 7747 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7748 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7749 OpInfo.CallOperand = DAG.getConstantPool( 7750 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7751 return Chain; 7752 } 7753 7754 // Otherwise, create a stack slot and emit a store to it before the asm. 7755 Type *Ty = OpVal->getType(); 7756 auto &DL = DAG.getDataLayout(); 7757 uint64_t TySize = DL.getTypeAllocSize(Ty); 7758 unsigned Align = DL.getPrefTypeAlignment(Ty); 7759 MachineFunction &MF = DAG.getMachineFunction(); 7760 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7761 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7762 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7763 MachinePointerInfo::getFixedStack(MF, SSFI), 7764 TLI.getMemValueType(DL, Ty)); 7765 OpInfo.CallOperand = StackSlot; 7766 7767 return Chain; 7768 } 7769 7770 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7771 /// specified operand. We prefer to assign virtual registers, to allow the 7772 /// register allocator to handle the assignment process. However, if the asm 7773 /// uses features that we can't model on machineinstrs, we have SDISel do the 7774 /// allocation. This produces generally horrible, but correct, code. 7775 /// 7776 /// OpInfo describes the operand 7777 /// RefOpInfo describes the matching operand if any, the operand otherwise 7778 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7779 SDISelAsmOperandInfo &OpInfo, 7780 SDISelAsmOperandInfo &RefOpInfo) { 7781 LLVMContext &Context = *DAG.getContext(); 7782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7783 7784 MachineFunction &MF = DAG.getMachineFunction(); 7785 SmallVector<unsigned, 4> Regs; 7786 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7787 7788 // No work to do for memory operations. 7789 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7790 return; 7791 7792 // If this is a constraint for a single physreg, or a constraint for a 7793 // register class, find it. 7794 unsigned AssignedReg; 7795 const TargetRegisterClass *RC; 7796 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7797 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7798 // RC is unset only on failure. Return immediately. 7799 if (!RC) 7800 return; 7801 7802 // Get the actual register value type. This is important, because the user 7803 // may have asked for (e.g.) the AX register in i32 type. We need to 7804 // remember that AX is actually i16 to get the right extension. 7805 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7806 7807 if (OpInfo.ConstraintVT != MVT::Other) { 7808 // If this is an FP operand in an integer register (or visa versa), or more 7809 // generally if the operand value disagrees with the register class we plan 7810 // to stick it in, fix the operand type. 7811 // 7812 // If this is an input value, the bitcast to the new type is done now. 7813 // Bitcast for output value is done at the end of visitInlineAsm(). 7814 if ((OpInfo.Type == InlineAsm::isOutput || 7815 OpInfo.Type == InlineAsm::isInput) && 7816 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7817 // Try to convert to the first EVT that the reg class contains. If the 7818 // types are identical size, use a bitcast to convert (e.g. two differing 7819 // vector types). Note: output bitcast is done at the end of 7820 // visitInlineAsm(). 7821 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7822 // Exclude indirect inputs while they are unsupported because the code 7823 // to perform the load is missing and thus OpInfo.CallOperand still 7824 // refers to the input address rather than the pointed-to value. 7825 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7826 OpInfo.CallOperand = 7827 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7828 OpInfo.ConstraintVT = RegVT; 7829 // If the operand is an FP value and we want it in integer registers, 7830 // use the corresponding integer type. This turns an f64 value into 7831 // i64, which can be passed with two i32 values on a 32-bit machine. 7832 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7833 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7834 if (OpInfo.Type == InlineAsm::isInput) 7835 OpInfo.CallOperand = 7836 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7837 OpInfo.ConstraintVT = VT; 7838 } 7839 } 7840 } 7841 7842 // No need to allocate a matching input constraint since the constraint it's 7843 // matching to has already been allocated. 7844 if (OpInfo.isMatchingInputConstraint()) 7845 return; 7846 7847 EVT ValueVT = OpInfo.ConstraintVT; 7848 if (OpInfo.ConstraintVT == MVT::Other) 7849 ValueVT = RegVT; 7850 7851 // Initialize NumRegs. 7852 unsigned NumRegs = 1; 7853 if (OpInfo.ConstraintVT != MVT::Other) 7854 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7855 7856 // If this is a constraint for a specific physical register, like {r17}, 7857 // assign it now. 7858 7859 // If this associated to a specific register, initialize iterator to correct 7860 // place. If virtual, make sure we have enough registers 7861 7862 // Initialize iterator if necessary 7863 TargetRegisterClass::iterator I = RC->begin(); 7864 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7865 7866 // Do not check for single registers. 7867 if (AssignedReg) { 7868 for (; *I != AssignedReg; ++I) 7869 assert(I != RC->end() && "AssignedReg should be member of RC"); 7870 } 7871 7872 for (; NumRegs; --NumRegs, ++I) { 7873 assert(I != RC->end() && "Ran out of registers to allocate!"); 7874 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7875 Regs.push_back(R); 7876 } 7877 7878 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7879 } 7880 7881 static unsigned 7882 findMatchingInlineAsmOperand(unsigned OperandNo, 7883 const std::vector<SDValue> &AsmNodeOperands) { 7884 // Scan until we find the definition we already emitted of this operand. 7885 unsigned CurOp = InlineAsm::Op_FirstOperand; 7886 for (; OperandNo; --OperandNo) { 7887 // Advance to the next operand. 7888 unsigned OpFlag = 7889 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7890 assert((InlineAsm::isRegDefKind(OpFlag) || 7891 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7892 InlineAsm::isMemKind(OpFlag)) && 7893 "Skipped past definitions?"); 7894 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7895 } 7896 return CurOp; 7897 } 7898 7899 namespace { 7900 7901 class ExtraFlags { 7902 unsigned Flags = 0; 7903 7904 public: 7905 explicit ExtraFlags(ImmutableCallSite CS) { 7906 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7907 if (IA->hasSideEffects()) 7908 Flags |= InlineAsm::Extra_HasSideEffects; 7909 if (IA->isAlignStack()) 7910 Flags |= InlineAsm::Extra_IsAlignStack; 7911 if (CS.isConvergent()) 7912 Flags |= InlineAsm::Extra_IsConvergent; 7913 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7914 } 7915 7916 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7917 // Ideally, we would only check against memory constraints. However, the 7918 // meaning of an Other constraint can be target-specific and we can't easily 7919 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7920 // for Other constraints as well. 7921 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7922 OpInfo.ConstraintType == TargetLowering::C_Other) { 7923 if (OpInfo.Type == InlineAsm::isInput) 7924 Flags |= InlineAsm::Extra_MayLoad; 7925 else if (OpInfo.Type == InlineAsm::isOutput) 7926 Flags |= InlineAsm::Extra_MayStore; 7927 else if (OpInfo.Type == InlineAsm::isClobber) 7928 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7929 } 7930 } 7931 7932 unsigned get() const { return Flags; } 7933 }; 7934 7935 } // end anonymous namespace 7936 7937 /// visitInlineAsm - Handle a call to an InlineAsm object. 7938 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7939 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7940 7941 /// ConstraintOperands - Information about all of the constraints. 7942 SDISelAsmOperandInfoVector ConstraintOperands; 7943 7944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7945 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7946 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7947 7948 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7949 // AsmDialect, MayLoad, MayStore). 7950 bool HasSideEffect = IA->hasSideEffects(); 7951 ExtraFlags ExtraInfo(CS); 7952 7953 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7954 unsigned ResNo = 0; // ResNo - The result number of the next output. 7955 for (auto &T : TargetConstraints) { 7956 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7957 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7958 7959 // Compute the value type for each operand. 7960 if (OpInfo.Type == InlineAsm::isInput || 7961 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7962 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7963 7964 // Process the call argument. BasicBlocks are labels, currently appearing 7965 // only in asm's. 7966 const Instruction *I = CS.getInstruction(); 7967 if (isa<CallBrInst>(I) && 7968 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7969 cast<CallBrInst>(I)->getNumIndirectDests())) { 7970 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7971 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7972 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7973 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7974 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7975 } else { 7976 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7977 } 7978 7979 OpInfo.ConstraintVT = 7980 OpInfo 7981 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7982 .getSimpleVT(); 7983 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7984 // The return value of the call is this value. As such, there is no 7985 // corresponding argument. 7986 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7987 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7988 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7989 DAG.getDataLayout(), STy->getElementType(ResNo)); 7990 } else { 7991 assert(ResNo == 0 && "Asm only has one result!"); 7992 OpInfo.ConstraintVT = 7993 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7994 } 7995 ++ResNo; 7996 } else { 7997 OpInfo.ConstraintVT = MVT::Other; 7998 } 7999 8000 if (!HasSideEffect) 8001 HasSideEffect = OpInfo.hasMemory(TLI); 8002 8003 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8004 // FIXME: Could we compute this on OpInfo rather than T? 8005 8006 // Compute the constraint code and ConstraintType to use. 8007 TLI.ComputeConstraintToUse(T, SDValue()); 8008 8009 ExtraInfo.update(T); 8010 } 8011 8012 8013 // We won't need to flush pending loads if this asm doesn't touch 8014 // memory and is nonvolatile. 8015 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8016 8017 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8018 if (IsCallBr) { 8019 // If this is a callbr we need to flush pending exports since inlineasm_br 8020 // is a terminator. We need to do this before nodes are glued to 8021 // the inlineasm_br node. 8022 Chain = getControlRoot(); 8023 } 8024 8025 // Second pass over the constraints: compute which constraint option to use. 8026 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8027 // If this is an output operand with a matching input operand, look up the 8028 // matching input. If their types mismatch, e.g. one is an integer, the 8029 // other is floating point, or their sizes are different, flag it as an 8030 // error. 8031 if (OpInfo.hasMatchingInput()) { 8032 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8033 patchMatchingInput(OpInfo, Input, DAG); 8034 } 8035 8036 // Compute the constraint code and ConstraintType to use. 8037 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8038 8039 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8040 OpInfo.Type == InlineAsm::isClobber) 8041 continue; 8042 8043 // If this is a memory input, and if the operand is not indirect, do what we 8044 // need to provide an address for the memory input. 8045 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8046 !OpInfo.isIndirect) { 8047 assert((OpInfo.isMultipleAlternative || 8048 (OpInfo.Type == InlineAsm::isInput)) && 8049 "Can only indirectify direct input operands!"); 8050 8051 // Memory operands really want the address of the value. 8052 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8053 8054 // There is no longer a Value* corresponding to this operand. 8055 OpInfo.CallOperandVal = nullptr; 8056 8057 // It is now an indirect operand. 8058 OpInfo.isIndirect = true; 8059 } 8060 8061 } 8062 8063 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8064 std::vector<SDValue> AsmNodeOperands; 8065 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8066 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8067 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8068 8069 // If we have a !srcloc metadata node associated with it, we want to attach 8070 // this to the ultimately generated inline asm machineinstr. To do this, we 8071 // pass in the third operand as this (potentially null) inline asm MDNode. 8072 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8073 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8074 8075 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8076 // bits as operand 3. 8077 AsmNodeOperands.push_back(DAG.getTargetConstant( 8078 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8079 8080 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8081 // this, assign virtual and physical registers for inputs and otput. 8082 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8083 // Assign Registers. 8084 SDISelAsmOperandInfo &RefOpInfo = 8085 OpInfo.isMatchingInputConstraint() 8086 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8087 : OpInfo; 8088 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8089 8090 switch (OpInfo.Type) { 8091 case InlineAsm::isOutput: 8092 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8093 (OpInfo.ConstraintType == TargetLowering::C_Other && 8094 OpInfo.isIndirect)) { 8095 unsigned ConstraintID = 8096 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8097 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8098 "Failed to convert memory constraint code to constraint id."); 8099 8100 // Add information to the INLINEASM node to know about this output. 8101 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8102 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8103 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8104 MVT::i32)); 8105 AsmNodeOperands.push_back(OpInfo.CallOperand); 8106 break; 8107 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8108 !OpInfo.isIndirect) || 8109 OpInfo.ConstraintType == TargetLowering::C_Register || 8110 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8111 // Otherwise, this outputs to a register (directly for C_Register / 8112 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8113 // register that we can use. 8114 if (OpInfo.AssignedRegs.Regs.empty()) { 8115 emitInlineAsmError( 8116 CS, "couldn't allocate output register for constraint '" + 8117 Twine(OpInfo.ConstraintCode) + "'"); 8118 return; 8119 } 8120 8121 // Add information to the INLINEASM node to know that this register is 8122 // set. 8123 OpInfo.AssignedRegs.AddInlineAsmOperands( 8124 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8125 : InlineAsm::Kind_RegDef, 8126 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8127 } 8128 break; 8129 8130 case InlineAsm::isInput: { 8131 SDValue InOperandVal = OpInfo.CallOperand; 8132 8133 if (OpInfo.isMatchingInputConstraint()) { 8134 // If this is required to match an output register we have already set, 8135 // just use its register. 8136 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8137 AsmNodeOperands); 8138 unsigned OpFlag = 8139 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8140 if (InlineAsm::isRegDefKind(OpFlag) || 8141 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8142 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8143 if (OpInfo.isIndirect) { 8144 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8145 emitInlineAsmError(CS, "inline asm not supported yet:" 8146 " don't know how to handle tied " 8147 "indirect register inputs"); 8148 return; 8149 } 8150 8151 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8152 SmallVector<unsigned, 4> Regs; 8153 8154 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8155 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8156 MachineRegisterInfo &RegInfo = 8157 DAG.getMachineFunction().getRegInfo(); 8158 for (unsigned i = 0; i != NumRegs; ++i) 8159 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8160 } else { 8161 emitInlineAsmError(CS, "inline asm error: This value type register " 8162 "class is not natively supported!"); 8163 return; 8164 } 8165 8166 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8167 8168 SDLoc dl = getCurSDLoc(); 8169 // Use the produced MatchedRegs object to 8170 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8171 CS.getInstruction()); 8172 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8173 true, OpInfo.getMatchedOperand(), dl, 8174 DAG, AsmNodeOperands); 8175 break; 8176 } 8177 8178 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8179 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8180 "Unexpected number of operands"); 8181 // Add information to the INLINEASM node to know about this input. 8182 // See InlineAsm.h isUseOperandTiedToDef. 8183 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8184 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8185 OpInfo.getMatchedOperand()); 8186 AsmNodeOperands.push_back(DAG.getTargetConstant( 8187 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8188 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8189 break; 8190 } 8191 8192 // Treat indirect 'X' constraint as memory. 8193 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8194 OpInfo.isIndirect) 8195 OpInfo.ConstraintType = TargetLowering::C_Memory; 8196 8197 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8198 std::vector<SDValue> Ops; 8199 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8200 Ops, DAG); 8201 if (Ops.empty()) { 8202 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8203 Twine(OpInfo.ConstraintCode) + "'"); 8204 return; 8205 } 8206 8207 // Add information to the INLINEASM node to know about this input. 8208 unsigned ResOpType = 8209 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8210 AsmNodeOperands.push_back(DAG.getTargetConstant( 8211 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8212 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8213 break; 8214 } 8215 8216 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8217 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8218 assert(InOperandVal.getValueType() == 8219 TLI.getPointerTy(DAG.getDataLayout()) && 8220 "Memory operands expect pointer values"); 8221 8222 unsigned ConstraintID = 8223 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8224 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8225 "Failed to convert memory constraint code to constraint id."); 8226 8227 // Add information to the INLINEASM node to know about this input. 8228 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8229 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8230 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8231 getCurSDLoc(), 8232 MVT::i32)); 8233 AsmNodeOperands.push_back(InOperandVal); 8234 break; 8235 } 8236 8237 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8238 OpInfo.ConstraintType == TargetLowering::C_Register) && 8239 "Unknown constraint type!"); 8240 8241 // TODO: Support this. 8242 if (OpInfo.isIndirect) { 8243 emitInlineAsmError( 8244 CS, "Don't know how to handle indirect register inputs yet " 8245 "for constraint '" + 8246 Twine(OpInfo.ConstraintCode) + "'"); 8247 return; 8248 } 8249 8250 // Copy the input into the appropriate registers. 8251 if (OpInfo.AssignedRegs.Regs.empty()) { 8252 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8253 Twine(OpInfo.ConstraintCode) + "'"); 8254 return; 8255 } 8256 8257 SDLoc dl = getCurSDLoc(); 8258 8259 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8260 Chain, &Flag, CS.getInstruction()); 8261 8262 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8263 dl, DAG, AsmNodeOperands); 8264 break; 8265 } 8266 case InlineAsm::isClobber: 8267 // Add the clobbered value to the operand list, so that the register 8268 // allocator is aware that the physreg got clobbered. 8269 if (!OpInfo.AssignedRegs.Regs.empty()) 8270 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8271 false, 0, getCurSDLoc(), DAG, 8272 AsmNodeOperands); 8273 break; 8274 } 8275 } 8276 8277 // Finish up input operands. Set the input chain and add the flag last. 8278 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8279 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8280 8281 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8282 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8283 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8284 Flag = Chain.getValue(1); 8285 8286 // Do additional work to generate outputs. 8287 8288 SmallVector<EVT, 1> ResultVTs; 8289 SmallVector<SDValue, 1> ResultValues; 8290 SmallVector<SDValue, 8> OutChains; 8291 8292 llvm::Type *CSResultType = CS.getType(); 8293 ArrayRef<Type *> ResultTypes; 8294 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8295 ResultTypes = StructResult->elements(); 8296 else if (!CSResultType->isVoidTy()) 8297 ResultTypes = makeArrayRef(CSResultType); 8298 8299 auto CurResultType = ResultTypes.begin(); 8300 auto handleRegAssign = [&](SDValue V) { 8301 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8302 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8303 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8304 ++CurResultType; 8305 // If the type of the inline asm call site return value is different but has 8306 // same size as the type of the asm output bitcast it. One example of this 8307 // is for vectors with different width / number of elements. This can 8308 // happen for register classes that can contain multiple different value 8309 // types. The preg or vreg allocated may not have the same VT as was 8310 // expected. 8311 // 8312 // This can also happen for a return value that disagrees with the register 8313 // class it is put in, eg. a double in a general-purpose register on a 8314 // 32-bit machine. 8315 if (ResultVT != V.getValueType() && 8316 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8317 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8318 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8319 V.getValueType().isInteger()) { 8320 // If a result value was tied to an input value, the computed result 8321 // may have a wider width than the expected result. Extract the 8322 // relevant portion. 8323 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8324 } 8325 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8326 ResultVTs.push_back(ResultVT); 8327 ResultValues.push_back(V); 8328 }; 8329 8330 // Deal with output operands. 8331 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8332 if (OpInfo.Type == InlineAsm::isOutput) { 8333 SDValue Val; 8334 // Skip trivial output operands. 8335 if (OpInfo.AssignedRegs.Regs.empty()) 8336 continue; 8337 8338 switch (OpInfo.ConstraintType) { 8339 case TargetLowering::C_Register: 8340 case TargetLowering::C_RegisterClass: 8341 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8342 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8343 break; 8344 case TargetLowering::C_Other: 8345 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8346 OpInfo, DAG); 8347 break; 8348 case TargetLowering::C_Memory: 8349 break; // Already handled. 8350 case TargetLowering::C_Unknown: 8351 assert(false && "Unexpected unknown constraint"); 8352 } 8353 8354 // Indirect output manifest as stores. Record output chains. 8355 if (OpInfo.isIndirect) { 8356 const Value *Ptr = OpInfo.CallOperandVal; 8357 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8358 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8359 MachinePointerInfo(Ptr)); 8360 OutChains.push_back(Store); 8361 } else { 8362 // generate CopyFromRegs to associated registers. 8363 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8364 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8365 for (const SDValue &V : Val->op_values()) 8366 handleRegAssign(V); 8367 } else 8368 handleRegAssign(Val); 8369 } 8370 } 8371 } 8372 8373 // Set results. 8374 if (!ResultValues.empty()) { 8375 assert(CurResultType == ResultTypes.end() && 8376 "Mismatch in number of ResultTypes"); 8377 assert(ResultValues.size() == ResultTypes.size() && 8378 "Mismatch in number of output operands in asm result"); 8379 8380 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8381 DAG.getVTList(ResultVTs), ResultValues); 8382 setValue(CS.getInstruction(), V); 8383 } 8384 8385 // Collect store chains. 8386 if (!OutChains.empty()) 8387 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8388 8389 // Only Update Root if inline assembly has a memory effect. 8390 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8391 DAG.setRoot(Chain); 8392 } 8393 8394 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8395 const Twine &Message) { 8396 LLVMContext &Ctx = *DAG.getContext(); 8397 Ctx.emitError(CS.getInstruction(), Message); 8398 8399 // Make sure we leave the DAG in a valid state 8400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8401 SmallVector<EVT, 1> ValueVTs; 8402 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8403 8404 if (ValueVTs.empty()) 8405 return; 8406 8407 SmallVector<SDValue, 1> Ops; 8408 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8409 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8410 8411 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8412 } 8413 8414 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8415 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8416 MVT::Other, getRoot(), 8417 getValue(I.getArgOperand(0)), 8418 DAG.getSrcValue(I.getArgOperand(0)))); 8419 } 8420 8421 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8423 const DataLayout &DL = DAG.getDataLayout(); 8424 SDValue V = DAG.getVAArg( 8425 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8426 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8427 DL.getABITypeAlignment(I.getType())); 8428 DAG.setRoot(V.getValue(1)); 8429 8430 if (I.getType()->isPointerTy()) 8431 V = DAG.getPtrExtOrTrunc( 8432 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8433 setValue(&I, V); 8434 } 8435 8436 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8437 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8438 MVT::Other, getRoot(), 8439 getValue(I.getArgOperand(0)), 8440 DAG.getSrcValue(I.getArgOperand(0)))); 8441 } 8442 8443 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8444 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8445 MVT::Other, getRoot(), 8446 getValue(I.getArgOperand(0)), 8447 getValue(I.getArgOperand(1)), 8448 DAG.getSrcValue(I.getArgOperand(0)), 8449 DAG.getSrcValue(I.getArgOperand(1)))); 8450 } 8451 8452 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8453 const Instruction &I, 8454 SDValue Op) { 8455 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8456 if (!Range) 8457 return Op; 8458 8459 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8460 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8461 return Op; 8462 8463 APInt Lo = CR.getUnsignedMin(); 8464 if (!Lo.isMinValue()) 8465 return Op; 8466 8467 APInt Hi = CR.getUnsignedMax(); 8468 unsigned Bits = std::max(Hi.getActiveBits(), 8469 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8470 8471 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8472 8473 SDLoc SL = getCurSDLoc(); 8474 8475 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8476 DAG.getValueType(SmallVT)); 8477 unsigned NumVals = Op.getNode()->getNumValues(); 8478 if (NumVals == 1) 8479 return ZExt; 8480 8481 SmallVector<SDValue, 4> Ops; 8482 8483 Ops.push_back(ZExt); 8484 for (unsigned I = 1; I != NumVals; ++I) 8485 Ops.push_back(Op.getValue(I)); 8486 8487 return DAG.getMergeValues(Ops, SL); 8488 } 8489 8490 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8491 /// the call being lowered. 8492 /// 8493 /// This is a helper for lowering intrinsics that follow a target calling 8494 /// convention or require stack pointer adjustment. Only a subset of the 8495 /// intrinsic's operands need to participate in the calling convention. 8496 void SelectionDAGBuilder::populateCallLoweringInfo( 8497 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8498 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8499 bool IsPatchPoint) { 8500 TargetLowering::ArgListTy Args; 8501 Args.reserve(NumArgs); 8502 8503 // Populate the argument list. 8504 // Attributes for args start at offset 1, after the return attribute. 8505 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8506 ArgI != ArgE; ++ArgI) { 8507 const Value *V = Call->getOperand(ArgI); 8508 8509 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8510 8511 TargetLowering::ArgListEntry Entry; 8512 Entry.Node = getValue(V); 8513 Entry.Ty = V->getType(); 8514 Entry.setAttributes(Call, ArgI); 8515 Args.push_back(Entry); 8516 } 8517 8518 CLI.setDebugLoc(getCurSDLoc()) 8519 .setChain(getRoot()) 8520 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8521 .setDiscardResult(Call->use_empty()) 8522 .setIsPatchPoint(IsPatchPoint); 8523 } 8524 8525 /// Add a stack map intrinsic call's live variable operands to a stackmap 8526 /// or patchpoint target node's operand list. 8527 /// 8528 /// Constants are converted to TargetConstants purely as an optimization to 8529 /// avoid constant materialization and register allocation. 8530 /// 8531 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8532 /// generate addess computation nodes, and so FinalizeISel can convert the 8533 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8534 /// address materialization and register allocation, but may also be required 8535 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8536 /// alloca in the entry block, then the runtime may assume that the alloca's 8537 /// StackMap location can be read immediately after compilation and that the 8538 /// location is valid at any point during execution (this is similar to the 8539 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8540 /// only available in a register, then the runtime would need to trap when 8541 /// execution reaches the StackMap in order to read the alloca's location. 8542 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8543 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8544 SelectionDAGBuilder &Builder) { 8545 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8546 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8547 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8548 Ops.push_back( 8549 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8550 Ops.push_back( 8551 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8552 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8553 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8554 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8555 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8556 } else 8557 Ops.push_back(OpVal); 8558 } 8559 } 8560 8561 /// Lower llvm.experimental.stackmap directly to its target opcode. 8562 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8563 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8564 // [live variables...]) 8565 8566 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8567 8568 SDValue Chain, InFlag, Callee, NullPtr; 8569 SmallVector<SDValue, 32> Ops; 8570 8571 SDLoc DL = getCurSDLoc(); 8572 Callee = getValue(CI.getCalledValue()); 8573 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8574 8575 // The stackmap intrinsic only records the live variables (the arguemnts 8576 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8577 // intrinsic, this won't be lowered to a function call. This means we don't 8578 // have to worry about calling conventions and target specific lowering code. 8579 // Instead we perform the call lowering right here. 8580 // 8581 // chain, flag = CALLSEQ_START(chain, 0, 0) 8582 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8583 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8584 // 8585 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8586 InFlag = Chain.getValue(1); 8587 8588 // Add the <id> and <numBytes> constants. 8589 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8590 Ops.push_back(DAG.getTargetConstant( 8591 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8592 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8593 Ops.push_back(DAG.getTargetConstant( 8594 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8595 MVT::i32)); 8596 8597 // Push live variables for the stack map. 8598 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8599 8600 // We are not pushing any register mask info here on the operands list, 8601 // because the stackmap doesn't clobber anything. 8602 8603 // Push the chain and the glue flag. 8604 Ops.push_back(Chain); 8605 Ops.push_back(InFlag); 8606 8607 // Create the STACKMAP node. 8608 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8609 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8610 Chain = SDValue(SM, 0); 8611 InFlag = Chain.getValue(1); 8612 8613 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8614 8615 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8616 8617 // Set the root to the target-lowered call chain. 8618 DAG.setRoot(Chain); 8619 8620 // Inform the Frame Information that we have a stackmap in this function. 8621 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8622 } 8623 8624 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8625 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8626 const BasicBlock *EHPadBB) { 8627 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8628 // i32 <numBytes>, 8629 // i8* <target>, 8630 // i32 <numArgs>, 8631 // [Args...], 8632 // [live variables...]) 8633 8634 CallingConv::ID CC = CS.getCallingConv(); 8635 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8636 bool HasDef = !CS->getType()->isVoidTy(); 8637 SDLoc dl = getCurSDLoc(); 8638 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8639 8640 // Handle immediate and symbolic callees. 8641 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8642 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8643 /*isTarget=*/true); 8644 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8645 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8646 SDLoc(SymbolicCallee), 8647 SymbolicCallee->getValueType(0)); 8648 8649 // Get the real number of arguments participating in the call <numArgs> 8650 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8651 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8652 8653 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8654 // Intrinsics include all meta-operands up to but not including CC. 8655 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8656 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8657 "Not enough arguments provided to the patchpoint intrinsic"); 8658 8659 // For AnyRegCC the arguments are lowered later on manually. 8660 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8661 Type *ReturnTy = 8662 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8663 8664 TargetLowering::CallLoweringInfo CLI(DAG); 8665 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8666 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8667 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8668 8669 SDNode *CallEnd = Result.second.getNode(); 8670 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8671 CallEnd = CallEnd->getOperand(0).getNode(); 8672 8673 /// Get a call instruction from the call sequence chain. 8674 /// Tail calls are not allowed. 8675 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8676 "Expected a callseq node."); 8677 SDNode *Call = CallEnd->getOperand(0).getNode(); 8678 bool HasGlue = Call->getGluedNode(); 8679 8680 // Replace the target specific call node with the patchable intrinsic. 8681 SmallVector<SDValue, 8> Ops; 8682 8683 // Add the <id> and <numBytes> constants. 8684 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8685 Ops.push_back(DAG.getTargetConstant( 8686 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8687 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8688 Ops.push_back(DAG.getTargetConstant( 8689 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8690 MVT::i32)); 8691 8692 // Add the callee. 8693 Ops.push_back(Callee); 8694 8695 // Adjust <numArgs> to account for any arguments that have been passed on the 8696 // stack instead. 8697 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8698 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8699 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8700 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8701 8702 // Add the calling convention 8703 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8704 8705 // Add the arguments we omitted previously. The register allocator should 8706 // place these in any free register. 8707 if (IsAnyRegCC) 8708 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8709 Ops.push_back(getValue(CS.getArgument(i))); 8710 8711 // Push the arguments from the call instruction up to the register mask. 8712 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8713 Ops.append(Call->op_begin() + 2, e); 8714 8715 // Push live variables for the stack map. 8716 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8717 8718 // Push the register mask info. 8719 if (HasGlue) 8720 Ops.push_back(*(Call->op_end()-2)); 8721 else 8722 Ops.push_back(*(Call->op_end()-1)); 8723 8724 // Push the chain (this is originally the first operand of the call, but 8725 // becomes now the last or second to last operand). 8726 Ops.push_back(*(Call->op_begin())); 8727 8728 // Push the glue flag (last operand). 8729 if (HasGlue) 8730 Ops.push_back(*(Call->op_end()-1)); 8731 8732 SDVTList NodeTys; 8733 if (IsAnyRegCC && HasDef) { 8734 // Create the return types based on the intrinsic definition 8735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8736 SmallVector<EVT, 3> ValueVTs; 8737 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8738 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8739 8740 // There is always a chain and a glue type at the end 8741 ValueVTs.push_back(MVT::Other); 8742 ValueVTs.push_back(MVT::Glue); 8743 NodeTys = DAG.getVTList(ValueVTs); 8744 } else 8745 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8746 8747 // Replace the target specific call node with a PATCHPOINT node. 8748 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8749 dl, NodeTys, Ops); 8750 8751 // Update the NodeMap. 8752 if (HasDef) { 8753 if (IsAnyRegCC) 8754 setValue(CS.getInstruction(), SDValue(MN, 0)); 8755 else 8756 setValue(CS.getInstruction(), Result.first); 8757 } 8758 8759 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8760 // call sequence. Furthermore the location of the chain and glue can change 8761 // when the AnyReg calling convention is used and the intrinsic returns a 8762 // value. 8763 if (IsAnyRegCC && HasDef) { 8764 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8765 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8766 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8767 } else 8768 DAG.ReplaceAllUsesWith(Call, MN); 8769 DAG.DeleteNode(Call); 8770 8771 // Inform the Frame Information that we have a patchpoint in this function. 8772 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8773 } 8774 8775 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8776 unsigned Intrinsic) { 8777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8778 SDValue Op1 = getValue(I.getArgOperand(0)); 8779 SDValue Op2; 8780 if (I.getNumArgOperands() > 1) 8781 Op2 = getValue(I.getArgOperand(1)); 8782 SDLoc dl = getCurSDLoc(); 8783 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8784 SDValue Res; 8785 FastMathFlags FMF; 8786 if (isa<FPMathOperator>(I)) 8787 FMF = I.getFastMathFlags(); 8788 8789 switch (Intrinsic) { 8790 case Intrinsic::experimental_vector_reduce_v2_fadd: 8791 if (FMF.allowReassoc()) 8792 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8793 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8794 else 8795 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8796 break; 8797 case Intrinsic::experimental_vector_reduce_v2_fmul: 8798 if (FMF.allowReassoc()) 8799 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8800 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8801 else 8802 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8803 break; 8804 case Intrinsic::experimental_vector_reduce_add: 8805 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8806 break; 8807 case Intrinsic::experimental_vector_reduce_mul: 8808 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8809 break; 8810 case Intrinsic::experimental_vector_reduce_and: 8811 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8812 break; 8813 case Intrinsic::experimental_vector_reduce_or: 8814 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8815 break; 8816 case Intrinsic::experimental_vector_reduce_xor: 8817 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8818 break; 8819 case Intrinsic::experimental_vector_reduce_smax: 8820 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8821 break; 8822 case Intrinsic::experimental_vector_reduce_smin: 8823 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8824 break; 8825 case Intrinsic::experimental_vector_reduce_umax: 8826 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8827 break; 8828 case Intrinsic::experimental_vector_reduce_umin: 8829 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8830 break; 8831 case Intrinsic::experimental_vector_reduce_fmax: 8832 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8833 break; 8834 case Intrinsic::experimental_vector_reduce_fmin: 8835 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8836 break; 8837 default: 8838 llvm_unreachable("Unhandled vector reduce intrinsic"); 8839 } 8840 setValue(&I, Res); 8841 } 8842 8843 /// Returns an AttributeList representing the attributes applied to the return 8844 /// value of the given call. 8845 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8846 SmallVector<Attribute::AttrKind, 2> Attrs; 8847 if (CLI.RetSExt) 8848 Attrs.push_back(Attribute::SExt); 8849 if (CLI.RetZExt) 8850 Attrs.push_back(Attribute::ZExt); 8851 if (CLI.IsInReg) 8852 Attrs.push_back(Attribute::InReg); 8853 8854 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8855 Attrs); 8856 } 8857 8858 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8859 /// implementation, which just calls LowerCall. 8860 /// FIXME: When all targets are 8861 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8862 std::pair<SDValue, SDValue> 8863 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8864 // Handle the incoming return values from the call. 8865 CLI.Ins.clear(); 8866 Type *OrigRetTy = CLI.RetTy; 8867 SmallVector<EVT, 4> RetTys; 8868 SmallVector<uint64_t, 4> Offsets; 8869 auto &DL = CLI.DAG.getDataLayout(); 8870 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8871 8872 if (CLI.IsPostTypeLegalization) { 8873 // If we are lowering a libcall after legalization, split the return type. 8874 SmallVector<EVT, 4> OldRetTys; 8875 SmallVector<uint64_t, 4> OldOffsets; 8876 RetTys.swap(OldRetTys); 8877 Offsets.swap(OldOffsets); 8878 8879 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8880 EVT RetVT = OldRetTys[i]; 8881 uint64_t Offset = OldOffsets[i]; 8882 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8883 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8884 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8885 RetTys.append(NumRegs, RegisterVT); 8886 for (unsigned j = 0; j != NumRegs; ++j) 8887 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8888 } 8889 } 8890 8891 SmallVector<ISD::OutputArg, 4> Outs; 8892 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8893 8894 bool CanLowerReturn = 8895 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8896 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8897 8898 SDValue DemoteStackSlot; 8899 int DemoteStackIdx = -100; 8900 if (!CanLowerReturn) { 8901 // FIXME: equivalent assert? 8902 // assert(!CS.hasInAllocaArgument() && 8903 // "sret demotion is incompatible with inalloca"); 8904 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8905 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8906 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8907 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8908 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8909 DL.getAllocaAddrSpace()); 8910 8911 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8912 ArgListEntry Entry; 8913 Entry.Node = DemoteStackSlot; 8914 Entry.Ty = StackSlotPtrType; 8915 Entry.IsSExt = false; 8916 Entry.IsZExt = false; 8917 Entry.IsInReg = false; 8918 Entry.IsSRet = true; 8919 Entry.IsNest = false; 8920 Entry.IsByVal = false; 8921 Entry.IsReturned = false; 8922 Entry.IsSwiftSelf = false; 8923 Entry.IsSwiftError = false; 8924 Entry.Alignment = Align; 8925 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8926 CLI.NumFixedArgs += 1; 8927 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8928 8929 // sret demotion isn't compatible with tail-calls, since the sret argument 8930 // points into the callers stack frame. 8931 CLI.IsTailCall = false; 8932 } else { 8933 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8934 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8935 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8936 ISD::ArgFlagsTy Flags; 8937 if (NeedsRegBlock) { 8938 Flags.setInConsecutiveRegs(); 8939 if (I == RetTys.size() - 1) 8940 Flags.setInConsecutiveRegsLast(); 8941 } 8942 EVT VT = RetTys[I]; 8943 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8944 CLI.CallConv, VT); 8945 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8946 CLI.CallConv, VT); 8947 for (unsigned i = 0; i != NumRegs; ++i) { 8948 ISD::InputArg MyFlags; 8949 MyFlags.Flags = Flags; 8950 MyFlags.VT = RegisterVT; 8951 MyFlags.ArgVT = VT; 8952 MyFlags.Used = CLI.IsReturnValueUsed; 8953 if (CLI.RetTy->isPointerTy()) { 8954 MyFlags.Flags.setPointer(); 8955 MyFlags.Flags.setPointerAddrSpace( 8956 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 8957 } 8958 if (CLI.RetSExt) 8959 MyFlags.Flags.setSExt(); 8960 if (CLI.RetZExt) 8961 MyFlags.Flags.setZExt(); 8962 if (CLI.IsInReg) 8963 MyFlags.Flags.setInReg(); 8964 CLI.Ins.push_back(MyFlags); 8965 } 8966 } 8967 } 8968 8969 // We push in swifterror return as the last element of CLI.Ins. 8970 ArgListTy &Args = CLI.getArgs(); 8971 if (supportSwiftError()) { 8972 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8973 if (Args[i].IsSwiftError) { 8974 ISD::InputArg MyFlags; 8975 MyFlags.VT = getPointerTy(DL); 8976 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8977 MyFlags.Flags.setSwiftError(); 8978 CLI.Ins.push_back(MyFlags); 8979 } 8980 } 8981 } 8982 8983 // Handle all of the outgoing arguments. 8984 CLI.Outs.clear(); 8985 CLI.OutVals.clear(); 8986 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8987 SmallVector<EVT, 4> ValueVTs; 8988 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8989 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8990 Type *FinalType = Args[i].Ty; 8991 if (Args[i].IsByVal) 8992 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8993 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8994 FinalType, CLI.CallConv, CLI.IsVarArg); 8995 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8996 ++Value) { 8997 EVT VT = ValueVTs[Value]; 8998 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8999 SDValue Op = SDValue(Args[i].Node.getNode(), 9000 Args[i].Node.getResNo() + Value); 9001 ISD::ArgFlagsTy Flags; 9002 9003 // Certain targets (such as MIPS), may have a different ABI alignment 9004 // for a type depending on the context. Give the target a chance to 9005 // specify the alignment it wants. 9006 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9007 9008 if (Args[i].Ty->isPointerTy()) { 9009 Flags.setPointer(); 9010 Flags.setPointerAddrSpace( 9011 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9012 } 9013 if (Args[i].IsZExt) 9014 Flags.setZExt(); 9015 if (Args[i].IsSExt) 9016 Flags.setSExt(); 9017 if (Args[i].IsInReg) { 9018 // If we are using vectorcall calling convention, a structure that is 9019 // passed InReg - is surely an HVA 9020 if (CLI.CallConv == CallingConv::X86_VectorCall && 9021 isa<StructType>(FinalType)) { 9022 // The first value of a structure is marked 9023 if (0 == Value) 9024 Flags.setHvaStart(); 9025 Flags.setHva(); 9026 } 9027 // Set InReg Flag 9028 Flags.setInReg(); 9029 } 9030 if (Args[i].IsSRet) 9031 Flags.setSRet(); 9032 if (Args[i].IsSwiftSelf) 9033 Flags.setSwiftSelf(); 9034 if (Args[i].IsSwiftError) 9035 Flags.setSwiftError(); 9036 if (Args[i].IsByVal) 9037 Flags.setByVal(); 9038 if (Args[i].IsInAlloca) { 9039 Flags.setInAlloca(); 9040 // Set the byval flag for CCAssignFn callbacks that don't know about 9041 // inalloca. This way we can know how many bytes we should've allocated 9042 // and how many bytes a callee cleanup function will pop. If we port 9043 // inalloca to more targets, we'll have to add custom inalloca handling 9044 // in the various CC lowering callbacks. 9045 Flags.setByVal(); 9046 } 9047 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9048 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9049 Type *ElementTy = Ty->getElementType(); 9050 9051 unsigned FrameSize = DL.getTypeAllocSize( 9052 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9053 Flags.setByValSize(FrameSize); 9054 9055 // info is not there but there are cases it cannot get right. 9056 unsigned FrameAlign; 9057 if (Args[i].Alignment) 9058 FrameAlign = Args[i].Alignment; 9059 else 9060 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9061 Flags.setByValAlign(FrameAlign); 9062 } 9063 if (Args[i].IsNest) 9064 Flags.setNest(); 9065 if (NeedsRegBlock) 9066 Flags.setInConsecutiveRegs(); 9067 Flags.setOrigAlign(OriginalAlignment); 9068 9069 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9070 CLI.CallConv, VT); 9071 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9072 CLI.CallConv, VT); 9073 SmallVector<SDValue, 4> Parts(NumParts); 9074 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9075 9076 if (Args[i].IsSExt) 9077 ExtendKind = ISD::SIGN_EXTEND; 9078 else if (Args[i].IsZExt) 9079 ExtendKind = ISD::ZERO_EXTEND; 9080 9081 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9082 // for now. 9083 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9084 CanLowerReturn) { 9085 assert((CLI.RetTy == Args[i].Ty || 9086 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9087 CLI.RetTy->getPointerAddressSpace() == 9088 Args[i].Ty->getPointerAddressSpace())) && 9089 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9090 // Before passing 'returned' to the target lowering code, ensure that 9091 // either the register MVT and the actual EVT are the same size or that 9092 // the return value and argument are extended in the same way; in these 9093 // cases it's safe to pass the argument register value unchanged as the 9094 // return register value (although it's at the target's option whether 9095 // to do so) 9096 // TODO: allow code generation to take advantage of partially preserved 9097 // registers rather than clobbering the entire register when the 9098 // parameter extension method is not compatible with the return 9099 // extension method 9100 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9101 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9102 CLI.RetZExt == Args[i].IsZExt)) 9103 Flags.setReturned(); 9104 } 9105 9106 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9107 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9108 9109 for (unsigned j = 0; j != NumParts; ++j) { 9110 // if it isn't first piece, alignment must be 1 9111 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9112 i < CLI.NumFixedArgs, 9113 i, j*Parts[j].getValueType().getStoreSize()); 9114 if (NumParts > 1 && j == 0) 9115 MyFlags.Flags.setSplit(); 9116 else if (j != 0) { 9117 MyFlags.Flags.setOrigAlign(1); 9118 if (j == NumParts - 1) 9119 MyFlags.Flags.setSplitEnd(); 9120 } 9121 9122 CLI.Outs.push_back(MyFlags); 9123 CLI.OutVals.push_back(Parts[j]); 9124 } 9125 9126 if (NeedsRegBlock && Value == NumValues - 1) 9127 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9128 } 9129 } 9130 9131 SmallVector<SDValue, 4> InVals; 9132 CLI.Chain = LowerCall(CLI, InVals); 9133 9134 // Update CLI.InVals to use outside of this function. 9135 CLI.InVals = InVals; 9136 9137 // Verify that the target's LowerCall behaved as expected. 9138 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9139 "LowerCall didn't return a valid chain!"); 9140 assert((!CLI.IsTailCall || InVals.empty()) && 9141 "LowerCall emitted a return value for a tail call!"); 9142 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9143 "LowerCall didn't emit the correct number of values!"); 9144 9145 // For a tail call, the return value is merely live-out and there aren't 9146 // any nodes in the DAG representing it. Return a special value to 9147 // indicate that a tail call has been emitted and no more Instructions 9148 // should be processed in the current block. 9149 if (CLI.IsTailCall) { 9150 CLI.DAG.setRoot(CLI.Chain); 9151 return std::make_pair(SDValue(), SDValue()); 9152 } 9153 9154 #ifndef NDEBUG 9155 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9156 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9157 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9158 "LowerCall emitted a value with the wrong type!"); 9159 } 9160 #endif 9161 9162 SmallVector<SDValue, 4> ReturnValues; 9163 if (!CanLowerReturn) { 9164 // The instruction result is the result of loading from the 9165 // hidden sret parameter. 9166 SmallVector<EVT, 1> PVTs; 9167 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9168 9169 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9170 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9171 EVT PtrVT = PVTs[0]; 9172 9173 unsigned NumValues = RetTys.size(); 9174 ReturnValues.resize(NumValues); 9175 SmallVector<SDValue, 4> Chains(NumValues); 9176 9177 // An aggregate return value cannot wrap around the address space, so 9178 // offsets to its parts don't wrap either. 9179 SDNodeFlags Flags; 9180 Flags.setNoUnsignedWrap(true); 9181 9182 for (unsigned i = 0; i < NumValues; ++i) { 9183 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9184 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9185 PtrVT), Flags); 9186 SDValue L = CLI.DAG.getLoad( 9187 RetTys[i], CLI.DL, CLI.Chain, Add, 9188 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9189 DemoteStackIdx, Offsets[i]), 9190 /* Alignment = */ 1); 9191 ReturnValues[i] = L; 9192 Chains[i] = L.getValue(1); 9193 } 9194 9195 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9196 } else { 9197 // Collect the legal value parts into potentially illegal values 9198 // that correspond to the original function's return values. 9199 Optional<ISD::NodeType> AssertOp; 9200 if (CLI.RetSExt) 9201 AssertOp = ISD::AssertSext; 9202 else if (CLI.RetZExt) 9203 AssertOp = ISD::AssertZext; 9204 unsigned CurReg = 0; 9205 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9206 EVT VT = RetTys[I]; 9207 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9208 CLI.CallConv, VT); 9209 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9210 CLI.CallConv, VT); 9211 9212 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9213 NumRegs, RegisterVT, VT, nullptr, 9214 CLI.CallConv, AssertOp)); 9215 CurReg += NumRegs; 9216 } 9217 9218 // For a function returning void, there is no return value. We can't create 9219 // such a node, so we just return a null return value in that case. In 9220 // that case, nothing will actually look at the value. 9221 if (ReturnValues.empty()) 9222 return std::make_pair(SDValue(), CLI.Chain); 9223 } 9224 9225 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9226 CLI.DAG.getVTList(RetTys), ReturnValues); 9227 return std::make_pair(Res, CLI.Chain); 9228 } 9229 9230 void TargetLowering::LowerOperationWrapper(SDNode *N, 9231 SmallVectorImpl<SDValue> &Results, 9232 SelectionDAG &DAG) const { 9233 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9234 Results.push_back(Res); 9235 } 9236 9237 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9238 llvm_unreachable("LowerOperation not implemented for this target!"); 9239 } 9240 9241 void 9242 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9243 SDValue Op = getNonRegisterValue(V); 9244 assert((Op.getOpcode() != ISD::CopyFromReg || 9245 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9246 "Copy from a reg to the same reg!"); 9247 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9248 9249 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9250 // If this is an InlineAsm we have to match the registers required, not the 9251 // notional registers required by the type. 9252 9253 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9254 None); // This is not an ABI copy. 9255 SDValue Chain = DAG.getEntryNode(); 9256 9257 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9258 FuncInfo.PreferredExtendType.end()) 9259 ? ISD::ANY_EXTEND 9260 : FuncInfo.PreferredExtendType[V]; 9261 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9262 PendingExports.push_back(Chain); 9263 } 9264 9265 #include "llvm/CodeGen/SelectionDAGISel.h" 9266 9267 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9268 /// entry block, return true. This includes arguments used by switches, since 9269 /// the switch may expand into multiple basic blocks. 9270 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9271 // With FastISel active, we may be splitting blocks, so force creation 9272 // of virtual registers for all non-dead arguments. 9273 if (FastISel) 9274 return A->use_empty(); 9275 9276 const BasicBlock &Entry = A->getParent()->front(); 9277 for (const User *U : A->users()) 9278 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9279 return false; // Use not in entry block. 9280 9281 return true; 9282 } 9283 9284 using ArgCopyElisionMapTy = 9285 DenseMap<const Argument *, 9286 std::pair<const AllocaInst *, const StoreInst *>>; 9287 9288 /// Scan the entry block of the function in FuncInfo for arguments that look 9289 /// like copies into a local alloca. Record any copied arguments in 9290 /// ArgCopyElisionCandidates. 9291 static void 9292 findArgumentCopyElisionCandidates(const DataLayout &DL, 9293 FunctionLoweringInfo *FuncInfo, 9294 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9295 // Record the state of every static alloca used in the entry block. Argument 9296 // allocas are all used in the entry block, so we need approximately as many 9297 // entries as we have arguments. 9298 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9299 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9300 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9301 StaticAllocas.reserve(NumArgs * 2); 9302 9303 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9304 if (!V) 9305 return nullptr; 9306 V = V->stripPointerCasts(); 9307 const auto *AI = dyn_cast<AllocaInst>(V); 9308 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9309 return nullptr; 9310 auto Iter = StaticAllocas.insert({AI, Unknown}); 9311 return &Iter.first->second; 9312 }; 9313 9314 // Look for stores of arguments to static allocas. Look through bitcasts and 9315 // GEPs to handle type coercions, as long as the alloca is fully initialized 9316 // by the store. Any non-store use of an alloca escapes it and any subsequent 9317 // unanalyzed store might write it. 9318 // FIXME: Handle structs initialized with multiple stores. 9319 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9320 // Look for stores, and handle non-store uses conservatively. 9321 const auto *SI = dyn_cast<StoreInst>(&I); 9322 if (!SI) { 9323 // We will look through cast uses, so ignore them completely. 9324 if (I.isCast()) 9325 continue; 9326 // Ignore debug info intrinsics, they don't escape or store to allocas. 9327 if (isa<DbgInfoIntrinsic>(I)) 9328 continue; 9329 // This is an unknown instruction. Assume it escapes or writes to all 9330 // static alloca operands. 9331 for (const Use &U : I.operands()) { 9332 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9333 *Info = StaticAllocaInfo::Clobbered; 9334 } 9335 continue; 9336 } 9337 9338 // If the stored value is a static alloca, mark it as escaped. 9339 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9340 *Info = StaticAllocaInfo::Clobbered; 9341 9342 // Check if the destination is a static alloca. 9343 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9344 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9345 if (!Info) 9346 continue; 9347 const AllocaInst *AI = cast<AllocaInst>(Dst); 9348 9349 // Skip allocas that have been initialized or clobbered. 9350 if (*Info != StaticAllocaInfo::Unknown) 9351 continue; 9352 9353 // Check if the stored value is an argument, and that this store fully 9354 // initializes the alloca. Don't elide copies from the same argument twice. 9355 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9356 const auto *Arg = dyn_cast<Argument>(Val); 9357 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9358 Arg->getType()->isEmptyTy() || 9359 DL.getTypeStoreSize(Arg->getType()) != 9360 DL.getTypeAllocSize(AI->getAllocatedType()) || 9361 ArgCopyElisionCandidates.count(Arg)) { 9362 *Info = StaticAllocaInfo::Clobbered; 9363 continue; 9364 } 9365 9366 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9367 << '\n'); 9368 9369 // Mark this alloca and store for argument copy elision. 9370 *Info = StaticAllocaInfo::Elidable; 9371 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9372 9373 // Stop scanning if we've seen all arguments. This will happen early in -O0 9374 // builds, which is useful, because -O0 builds have large entry blocks and 9375 // many allocas. 9376 if (ArgCopyElisionCandidates.size() == NumArgs) 9377 break; 9378 } 9379 } 9380 9381 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9382 /// ArgVal is a load from a suitable fixed stack object. 9383 static void tryToElideArgumentCopy( 9384 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9385 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9386 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9387 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9388 SDValue ArgVal, bool &ArgHasUses) { 9389 // Check if this is a load from a fixed stack object. 9390 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9391 if (!LNode) 9392 return; 9393 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9394 if (!FINode) 9395 return; 9396 9397 // Check that the fixed stack object is the right size and alignment. 9398 // Look at the alignment that the user wrote on the alloca instead of looking 9399 // at the stack object. 9400 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9401 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9402 const AllocaInst *AI = ArgCopyIter->second.first; 9403 int FixedIndex = FINode->getIndex(); 9404 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9405 int OldIndex = AllocaIndex; 9406 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9407 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9408 LLVM_DEBUG( 9409 dbgs() << " argument copy elision failed due to bad fixed stack " 9410 "object size\n"); 9411 return; 9412 } 9413 unsigned RequiredAlignment = AI->getAlignment(); 9414 if (!RequiredAlignment) { 9415 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9416 AI->getAllocatedType()); 9417 } 9418 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9419 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9420 "greater than stack argument alignment (" 9421 << RequiredAlignment << " vs " 9422 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9423 return; 9424 } 9425 9426 // Perform the elision. Delete the old stack object and replace its only use 9427 // in the variable info map. Mark the stack object as mutable. 9428 LLVM_DEBUG({ 9429 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9430 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9431 << '\n'; 9432 }); 9433 MFI.RemoveStackObject(OldIndex); 9434 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9435 AllocaIndex = FixedIndex; 9436 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9437 Chains.push_back(ArgVal.getValue(1)); 9438 9439 // Avoid emitting code for the store implementing the copy. 9440 const StoreInst *SI = ArgCopyIter->second.second; 9441 ElidedArgCopyInstrs.insert(SI); 9442 9443 // Check for uses of the argument again so that we can avoid exporting ArgVal 9444 // if it is't used by anything other than the store. 9445 for (const Value *U : Arg.users()) { 9446 if (U != SI) { 9447 ArgHasUses = true; 9448 break; 9449 } 9450 } 9451 } 9452 9453 void SelectionDAGISel::LowerArguments(const Function &F) { 9454 SelectionDAG &DAG = SDB->DAG; 9455 SDLoc dl = SDB->getCurSDLoc(); 9456 const DataLayout &DL = DAG.getDataLayout(); 9457 SmallVector<ISD::InputArg, 16> Ins; 9458 9459 if (!FuncInfo->CanLowerReturn) { 9460 // Put in an sret pointer parameter before all the other parameters. 9461 SmallVector<EVT, 1> ValueVTs; 9462 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9463 F.getReturnType()->getPointerTo( 9464 DAG.getDataLayout().getAllocaAddrSpace()), 9465 ValueVTs); 9466 9467 // NOTE: Assuming that a pointer will never break down to more than one VT 9468 // or one register. 9469 ISD::ArgFlagsTy Flags; 9470 Flags.setSRet(); 9471 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9472 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9473 ISD::InputArg::NoArgIndex, 0); 9474 Ins.push_back(RetArg); 9475 } 9476 9477 // Look for stores of arguments to static allocas. Mark such arguments with a 9478 // flag to ask the target to give us the memory location of that argument if 9479 // available. 9480 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9481 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9482 9483 // Set up the incoming argument description vector. 9484 for (const Argument &Arg : F.args()) { 9485 unsigned ArgNo = Arg.getArgNo(); 9486 SmallVector<EVT, 4> ValueVTs; 9487 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9488 bool isArgValueUsed = !Arg.use_empty(); 9489 unsigned PartBase = 0; 9490 Type *FinalType = Arg.getType(); 9491 if (Arg.hasAttribute(Attribute::ByVal)) 9492 FinalType = cast<PointerType>(FinalType)->getElementType(); 9493 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9494 FinalType, F.getCallingConv(), F.isVarArg()); 9495 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9496 Value != NumValues; ++Value) { 9497 EVT VT = ValueVTs[Value]; 9498 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9499 ISD::ArgFlagsTy Flags; 9500 9501 // Certain targets (such as MIPS), may have a different ABI alignment 9502 // for a type depending on the context. Give the target a chance to 9503 // specify the alignment it wants. 9504 unsigned OriginalAlignment = 9505 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9506 9507 if (Arg.getType()->isPointerTy()) { 9508 Flags.setPointer(); 9509 Flags.setPointerAddrSpace( 9510 cast<PointerType>(Arg.getType())->getAddressSpace()); 9511 } 9512 if (Arg.hasAttribute(Attribute::ZExt)) 9513 Flags.setZExt(); 9514 if (Arg.hasAttribute(Attribute::SExt)) 9515 Flags.setSExt(); 9516 if (Arg.hasAttribute(Attribute::InReg)) { 9517 // If we are using vectorcall calling convention, a structure that is 9518 // passed InReg - is surely an HVA 9519 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9520 isa<StructType>(Arg.getType())) { 9521 // The first value of a structure is marked 9522 if (0 == Value) 9523 Flags.setHvaStart(); 9524 Flags.setHva(); 9525 } 9526 // Set InReg Flag 9527 Flags.setInReg(); 9528 } 9529 if (Arg.hasAttribute(Attribute::StructRet)) 9530 Flags.setSRet(); 9531 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9532 Flags.setSwiftSelf(); 9533 if (Arg.hasAttribute(Attribute::SwiftError)) 9534 Flags.setSwiftError(); 9535 if (Arg.hasAttribute(Attribute::ByVal)) 9536 Flags.setByVal(); 9537 if (Arg.hasAttribute(Attribute::InAlloca)) { 9538 Flags.setInAlloca(); 9539 // Set the byval flag for CCAssignFn callbacks that don't know about 9540 // inalloca. This way we can know how many bytes we should've allocated 9541 // and how many bytes a callee cleanup function will pop. If we port 9542 // inalloca to more targets, we'll have to add custom inalloca handling 9543 // in the various CC lowering callbacks. 9544 Flags.setByVal(); 9545 } 9546 if (F.getCallingConv() == CallingConv::X86_INTR) { 9547 // IA Interrupt passes frame (1st parameter) by value in the stack. 9548 if (ArgNo == 0) 9549 Flags.setByVal(); 9550 } 9551 if (Flags.isByVal() || Flags.isInAlloca()) { 9552 PointerType *Ty = cast<PointerType>(Arg.getType()); 9553 Type *ElementTy = Ty->getElementType(); 9554 9555 // For ByVal, size and alignment should be passed from FE. BE will 9556 // guess if this info is not there but there are cases it cannot get 9557 // right. 9558 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9559 Flags.setByValSize(FrameSize); 9560 9561 unsigned FrameAlign; 9562 if (Arg.getParamAlignment()) 9563 FrameAlign = Arg.getParamAlignment(); 9564 else 9565 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9566 Flags.setByValAlign(FrameAlign); 9567 } 9568 if (Arg.hasAttribute(Attribute::Nest)) 9569 Flags.setNest(); 9570 if (NeedsRegBlock) 9571 Flags.setInConsecutiveRegs(); 9572 Flags.setOrigAlign(OriginalAlignment); 9573 if (ArgCopyElisionCandidates.count(&Arg)) 9574 Flags.setCopyElisionCandidate(); 9575 9576 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9577 *CurDAG->getContext(), F.getCallingConv(), VT); 9578 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9579 *CurDAG->getContext(), F.getCallingConv(), VT); 9580 for (unsigned i = 0; i != NumRegs; ++i) { 9581 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9582 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9583 if (NumRegs > 1 && i == 0) 9584 MyFlags.Flags.setSplit(); 9585 // if it isn't first piece, alignment must be 1 9586 else if (i > 0) { 9587 MyFlags.Flags.setOrigAlign(1); 9588 if (i == NumRegs - 1) 9589 MyFlags.Flags.setSplitEnd(); 9590 } 9591 Ins.push_back(MyFlags); 9592 } 9593 if (NeedsRegBlock && Value == NumValues - 1) 9594 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9595 PartBase += VT.getStoreSize(); 9596 } 9597 } 9598 9599 // Call the target to set up the argument values. 9600 SmallVector<SDValue, 8> InVals; 9601 SDValue NewRoot = TLI->LowerFormalArguments( 9602 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9603 9604 // Verify that the target's LowerFormalArguments behaved as expected. 9605 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9606 "LowerFormalArguments didn't return a valid chain!"); 9607 assert(InVals.size() == Ins.size() && 9608 "LowerFormalArguments didn't emit the correct number of values!"); 9609 LLVM_DEBUG({ 9610 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9611 assert(InVals[i].getNode() && 9612 "LowerFormalArguments emitted a null value!"); 9613 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9614 "LowerFormalArguments emitted a value with the wrong type!"); 9615 } 9616 }); 9617 9618 // Update the DAG with the new chain value resulting from argument lowering. 9619 DAG.setRoot(NewRoot); 9620 9621 // Set up the argument values. 9622 unsigned i = 0; 9623 if (!FuncInfo->CanLowerReturn) { 9624 // Create a virtual register for the sret pointer, and put in a copy 9625 // from the sret argument into it. 9626 SmallVector<EVT, 1> ValueVTs; 9627 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9628 F.getReturnType()->getPointerTo( 9629 DAG.getDataLayout().getAllocaAddrSpace()), 9630 ValueVTs); 9631 MVT VT = ValueVTs[0].getSimpleVT(); 9632 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9633 Optional<ISD::NodeType> AssertOp = None; 9634 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9635 nullptr, F.getCallingConv(), AssertOp); 9636 9637 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9638 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9639 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9640 FuncInfo->DemoteRegister = SRetReg; 9641 NewRoot = 9642 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9643 DAG.setRoot(NewRoot); 9644 9645 // i indexes lowered arguments. Bump it past the hidden sret argument. 9646 ++i; 9647 } 9648 9649 SmallVector<SDValue, 4> Chains; 9650 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9651 for (const Argument &Arg : F.args()) { 9652 SmallVector<SDValue, 4> ArgValues; 9653 SmallVector<EVT, 4> ValueVTs; 9654 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9655 unsigned NumValues = ValueVTs.size(); 9656 if (NumValues == 0) 9657 continue; 9658 9659 bool ArgHasUses = !Arg.use_empty(); 9660 9661 // Elide the copying store if the target loaded this argument from a 9662 // suitable fixed stack object. 9663 if (Ins[i].Flags.isCopyElisionCandidate()) { 9664 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9665 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9666 InVals[i], ArgHasUses); 9667 } 9668 9669 // If this argument is unused then remember its value. It is used to generate 9670 // debugging information. 9671 bool isSwiftErrorArg = 9672 TLI->supportSwiftError() && 9673 Arg.hasAttribute(Attribute::SwiftError); 9674 if (!ArgHasUses && !isSwiftErrorArg) { 9675 SDB->setUnusedArgValue(&Arg, InVals[i]); 9676 9677 // Also remember any frame index for use in FastISel. 9678 if (FrameIndexSDNode *FI = 9679 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9680 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9681 } 9682 9683 for (unsigned Val = 0; Val != NumValues; ++Val) { 9684 EVT VT = ValueVTs[Val]; 9685 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9686 F.getCallingConv(), VT); 9687 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9688 *CurDAG->getContext(), F.getCallingConv(), VT); 9689 9690 // Even an apparant 'unused' swifterror argument needs to be returned. So 9691 // we do generate a copy for it that can be used on return from the 9692 // function. 9693 if (ArgHasUses || isSwiftErrorArg) { 9694 Optional<ISD::NodeType> AssertOp; 9695 if (Arg.hasAttribute(Attribute::SExt)) 9696 AssertOp = ISD::AssertSext; 9697 else if (Arg.hasAttribute(Attribute::ZExt)) 9698 AssertOp = ISD::AssertZext; 9699 9700 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9701 PartVT, VT, nullptr, 9702 F.getCallingConv(), AssertOp)); 9703 } 9704 9705 i += NumParts; 9706 } 9707 9708 // We don't need to do anything else for unused arguments. 9709 if (ArgValues.empty()) 9710 continue; 9711 9712 // Note down frame index. 9713 if (FrameIndexSDNode *FI = 9714 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9715 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9716 9717 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9718 SDB->getCurSDLoc()); 9719 9720 SDB->setValue(&Arg, Res); 9721 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9722 // We want to associate the argument with the frame index, among 9723 // involved operands, that correspond to the lowest address. The 9724 // getCopyFromParts function, called earlier, is swapping the order of 9725 // the operands to BUILD_PAIR depending on endianness. The result of 9726 // that swapping is that the least significant bits of the argument will 9727 // be in the first operand of the BUILD_PAIR node, and the most 9728 // significant bits will be in the second operand. 9729 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9730 if (LoadSDNode *LNode = 9731 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9732 if (FrameIndexSDNode *FI = 9733 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9734 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9735 } 9736 9737 // Update the SwiftErrorVRegDefMap. 9738 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9739 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9740 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9741 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9742 Reg); 9743 } 9744 9745 // If this argument is live outside of the entry block, insert a copy from 9746 // wherever we got it to the vreg that other BB's will reference it as. 9747 if (Res.getOpcode() == ISD::CopyFromReg) { 9748 // If we can, though, try to skip creating an unnecessary vreg. 9749 // FIXME: This isn't very clean... it would be nice to make this more 9750 // general. 9751 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9752 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9753 FuncInfo->ValueMap[&Arg] = Reg; 9754 continue; 9755 } 9756 } 9757 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9758 FuncInfo->InitializeRegForValue(&Arg); 9759 SDB->CopyToExportRegsIfNeeded(&Arg); 9760 } 9761 } 9762 9763 if (!Chains.empty()) { 9764 Chains.push_back(NewRoot); 9765 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9766 } 9767 9768 DAG.setRoot(NewRoot); 9769 9770 assert(i == InVals.size() && "Argument register count mismatch!"); 9771 9772 // If any argument copy elisions occurred and we have debug info, update the 9773 // stale frame indices used in the dbg.declare variable info table. 9774 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9775 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9776 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9777 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9778 if (I != ArgCopyElisionFrameIndexMap.end()) 9779 VI.Slot = I->second; 9780 } 9781 } 9782 9783 // Finally, if the target has anything special to do, allow it to do so. 9784 EmitFunctionEntryCode(); 9785 } 9786 9787 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9788 /// ensure constants are generated when needed. Remember the virtual registers 9789 /// that need to be added to the Machine PHI nodes as input. We cannot just 9790 /// directly add them, because expansion might result in multiple MBB's for one 9791 /// BB. As such, the start of the BB might correspond to a different MBB than 9792 /// the end. 9793 void 9794 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9795 const Instruction *TI = LLVMBB->getTerminator(); 9796 9797 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9798 9799 // Check PHI nodes in successors that expect a value to be available from this 9800 // block. 9801 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9802 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9803 if (!isa<PHINode>(SuccBB->begin())) continue; 9804 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9805 9806 // If this terminator has multiple identical successors (common for 9807 // switches), only handle each succ once. 9808 if (!SuccsHandled.insert(SuccMBB).second) 9809 continue; 9810 9811 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9812 9813 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9814 // nodes and Machine PHI nodes, but the incoming operands have not been 9815 // emitted yet. 9816 for (const PHINode &PN : SuccBB->phis()) { 9817 // Ignore dead phi's. 9818 if (PN.use_empty()) 9819 continue; 9820 9821 // Skip empty types 9822 if (PN.getType()->isEmptyTy()) 9823 continue; 9824 9825 unsigned Reg; 9826 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9827 9828 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9829 unsigned &RegOut = ConstantsOut[C]; 9830 if (RegOut == 0) { 9831 RegOut = FuncInfo.CreateRegs(C); 9832 CopyValueToVirtualRegister(C, RegOut); 9833 } 9834 Reg = RegOut; 9835 } else { 9836 DenseMap<const Value *, unsigned>::iterator I = 9837 FuncInfo.ValueMap.find(PHIOp); 9838 if (I != FuncInfo.ValueMap.end()) 9839 Reg = I->second; 9840 else { 9841 assert(isa<AllocaInst>(PHIOp) && 9842 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9843 "Didn't codegen value into a register!??"); 9844 Reg = FuncInfo.CreateRegs(PHIOp); 9845 CopyValueToVirtualRegister(PHIOp, Reg); 9846 } 9847 } 9848 9849 // Remember that this register needs to added to the machine PHI node as 9850 // the input for this MBB. 9851 SmallVector<EVT, 4> ValueVTs; 9852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9853 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9854 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9855 EVT VT = ValueVTs[vti]; 9856 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9857 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9858 FuncInfo.PHINodesToUpdate.push_back( 9859 std::make_pair(&*MBBI++, Reg + i)); 9860 Reg += NumRegisters; 9861 } 9862 } 9863 } 9864 9865 ConstantsOut.clear(); 9866 } 9867 9868 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9869 /// is 0. 9870 MachineBasicBlock * 9871 SelectionDAGBuilder::StackProtectorDescriptor:: 9872 AddSuccessorMBB(const BasicBlock *BB, 9873 MachineBasicBlock *ParentMBB, 9874 bool IsLikely, 9875 MachineBasicBlock *SuccMBB) { 9876 // If SuccBB has not been created yet, create it. 9877 if (!SuccMBB) { 9878 MachineFunction *MF = ParentMBB->getParent(); 9879 MachineFunction::iterator BBI(ParentMBB); 9880 SuccMBB = MF->CreateMachineBasicBlock(BB); 9881 MF->insert(++BBI, SuccMBB); 9882 } 9883 // Add it as a successor of ParentMBB. 9884 ParentMBB->addSuccessor( 9885 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9886 return SuccMBB; 9887 } 9888 9889 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9890 MachineFunction::iterator I(MBB); 9891 if (++I == FuncInfo.MF->end()) 9892 return nullptr; 9893 return &*I; 9894 } 9895 9896 /// During lowering new call nodes can be created (such as memset, etc.). 9897 /// Those will become new roots of the current DAG, but complications arise 9898 /// when they are tail calls. In such cases, the call lowering will update 9899 /// the root, but the builder still needs to know that a tail call has been 9900 /// lowered in order to avoid generating an additional return. 9901 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9902 // If the node is null, we do have a tail call. 9903 if (MaybeTC.getNode() != nullptr) 9904 DAG.setRoot(MaybeTC); 9905 else 9906 HasTailCall = true; 9907 } 9908 9909 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9910 MachineBasicBlock *SwitchMBB, 9911 MachineBasicBlock *DefaultMBB) { 9912 MachineFunction *CurMF = FuncInfo.MF; 9913 MachineBasicBlock *NextMBB = nullptr; 9914 MachineFunction::iterator BBI(W.MBB); 9915 if (++BBI != FuncInfo.MF->end()) 9916 NextMBB = &*BBI; 9917 9918 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9919 9920 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9921 9922 if (Size == 2 && W.MBB == SwitchMBB) { 9923 // If any two of the cases has the same destination, and if one value 9924 // is the same as the other, but has one bit unset that the other has set, 9925 // use bit manipulation to do two compares at once. For example: 9926 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9927 // TODO: This could be extended to merge any 2 cases in switches with 3 9928 // cases. 9929 // TODO: Handle cases where W.CaseBB != SwitchBB. 9930 CaseCluster &Small = *W.FirstCluster; 9931 CaseCluster &Big = *W.LastCluster; 9932 9933 if (Small.Low == Small.High && Big.Low == Big.High && 9934 Small.MBB == Big.MBB) { 9935 const APInt &SmallValue = Small.Low->getValue(); 9936 const APInt &BigValue = Big.Low->getValue(); 9937 9938 // Check that there is only one bit different. 9939 APInt CommonBit = BigValue ^ SmallValue; 9940 if (CommonBit.isPowerOf2()) { 9941 SDValue CondLHS = getValue(Cond); 9942 EVT VT = CondLHS.getValueType(); 9943 SDLoc DL = getCurSDLoc(); 9944 9945 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9946 DAG.getConstant(CommonBit, DL, VT)); 9947 SDValue Cond = DAG.getSetCC( 9948 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9949 ISD::SETEQ); 9950 9951 // Update successor info. 9952 // Both Small and Big will jump to Small.BB, so we sum up the 9953 // probabilities. 9954 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9955 if (BPI) 9956 addSuccessorWithProb( 9957 SwitchMBB, DefaultMBB, 9958 // The default destination is the first successor in IR. 9959 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9960 else 9961 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9962 9963 // Insert the true branch. 9964 SDValue BrCond = 9965 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9966 DAG.getBasicBlock(Small.MBB)); 9967 // Insert the false branch. 9968 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9969 DAG.getBasicBlock(DefaultMBB)); 9970 9971 DAG.setRoot(BrCond); 9972 return; 9973 } 9974 } 9975 } 9976 9977 if (TM.getOptLevel() != CodeGenOpt::None) { 9978 // Here, we order cases by probability so the most likely case will be 9979 // checked first. However, two clusters can have the same probability in 9980 // which case their relative ordering is non-deterministic. So we use Low 9981 // as a tie-breaker as clusters are guaranteed to never overlap. 9982 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9983 [](const CaseCluster &a, const CaseCluster &b) { 9984 return a.Prob != b.Prob ? 9985 a.Prob > b.Prob : 9986 a.Low->getValue().slt(b.Low->getValue()); 9987 }); 9988 9989 // Rearrange the case blocks so that the last one falls through if possible 9990 // without changing the order of probabilities. 9991 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9992 --I; 9993 if (I->Prob > W.LastCluster->Prob) 9994 break; 9995 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9996 std::swap(*I, *W.LastCluster); 9997 break; 9998 } 9999 } 10000 } 10001 10002 // Compute total probability. 10003 BranchProbability DefaultProb = W.DefaultProb; 10004 BranchProbability UnhandledProbs = DefaultProb; 10005 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10006 UnhandledProbs += I->Prob; 10007 10008 MachineBasicBlock *CurMBB = W.MBB; 10009 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10010 bool FallthroughUnreachable = false; 10011 MachineBasicBlock *Fallthrough; 10012 if (I == W.LastCluster) { 10013 // For the last cluster, fall through to the default destination. 10014 Fallthrough = DefaultMBB; 10015 FallthroughUnreachable = isa<UnreachableInst>( 10016 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10017 } else { 10018 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10019 CurMF->insert(BBI, Fallthrough); 10020 // Put Cond in a virtual register to make it available from the new blocks. 10021 ExportFromCurrentBlock(Cond); 10022 } 10023 UnhandledProbs -= I->Prob; 10024 10025 switch (I->Kind) { 10026 case CC_JumpTable: { 10027 // FIXME: Optimize away range check based on pivot comparisons. 10028 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10029 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10030 10031 // The jump block hasn't been inserted yet; insert it here. 10032 MachineBasicBlock *JumpMBB = JT->MBB; 10033 CurMF->insert(BBI, JumpMBB); 10034 10035 auto JumpProb = I->Prob; 10036 auto FallthroughProb = UnhandledProbs; 10037 10038 // If the default statement is a target of the jump table, we evenly 10039 // distribute the default probability to successors of CurMBB. Also 10040 // update the probability on the edge from JumpMBB to Fallthrough. 10041 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10042 SE = JumpMBB->succ_end(); 10043 SI != SE; ++SI) { 10044 if (*SI == DefaultMBB) { 10045 JumpProb += DefaultProb / 2; 10046 FallthroughProb -= DefaultProb / 2; 10047 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10048 JumpMBB->normalizeSuccProbs(); 10049 break; 10050 } 10051 } 10052 10053 if (FallthroughUnreachable) { 10054 // Skip the range check if the fallthrough block is unreachable. 10055 JTH->OmitRangeCheck = true; 10056 } 10057 10058 if (!JTH->OmitRangeCheck) 10059 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10060 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10061 CurMBB->normalizeSuccProbs(); 10062 10063 // The jump table header will be inserted in our current block, do the 10064 // range check, and fall through to our fallthrough block. 10065 JTH->HeaderBB = CurMBB; 10066 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10067 10068 // If we're in the right place, emit the jump table header right now. 10069 if (CurMBB == SwitchMBB) { 10070 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10071 JTH->Emitted = true; 10072 } 10073 break; 10074 } 10075 case CC_BitTests: { 10076 // FIXME: If Fallthrough is unreachable, skip the range check. 10077 10078 // FIXME: Optimize away range check based on pivot comparisons. 10079 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10080 10081 // The bit test blocks haven't been inserted yet; insert them here. 10082 for (BitTestCase &BTC : BTB->Cases) 10083 CurMF->insert(BBI, BTC.ThisBB); 10084 10085 // Fill in fields of the BitTestBlock. 10086 BTB->Parent = CurMBB; 10087 BTB->Default = Fallthrough; 10088 10089 BTB->DefaultProb = UnhandledProbs; 10090 // If the cases in bit test don't form a contiguous range, we evenly 10091 // distribute the probability on the edge to Fallthrough to two 10092 // successors of CurMBB. 10093 if (!BTB->ContiguousRange) { 10094 BTB->Prob += DefaultProb / 2; 10095 BTB->DefaultProb -= DefaultProb / 2; 10096 } 10097 10098 // If we're in the right place, emit the bit test header right now. 10099 if (CurMBB == SwitchMBB) { 10100 visitBitTestHeader(*BTB, SwitchMBB); 10101 BTB->Emitted = true; 10102 } 10103 break; 10104 } 10105 case CC_Range: { 10106 const Value *RHS, *LHS, *MHS; 10107 ISD::CondCode CC; 10108 if (I->Low == I->High) { 10109 // Check Cond == I->Low. 10110 CC = ISD::SETEQ; 10111 LHS = Cond; 10112 RHS=I->Low; 10113 MHS = nullptr; 10114 } else { 10115 // Check I->Low <= Cond <= I->High. 10116 CC = ISD::SETLE; 10117 LHS = I->Low; 10118 MHS = Cond; 10119 RHS = I->High; 10120 } 10121 10122 // If Fallthrough is unreachable, fold away the comparison. 10123 if (FallthroughUnreachable) 10124 CC = ISD::SETTRUE; 10125 10126 // The false probability is the sum of all unhandled cases. 10127 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10128 getCurSDLoc(), I->Prob, UnhandledProbs); 10129 10130 if (CurMBB == SwitchMBB) 10131 visitSwitchCase(CB, SwitchMBB); 10132 else 10133 SL->SwitchCases.push_back(CB); 10134 10135 break; 10136 } 10137 } 10138 CurMBB = Fallthrough; 10139 } 10140 } 10141 10142 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10143 CaseClusterIt First, 10144 CaseClusterIt Last) { 10145 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10146 if (X.Prob != CC.Prob) 10147 return X.Prob > CC.Prob; 10148 10149 // Ties are broken by comparing the case value. 10150 return X.Low->getValue().slt(CC.Low->getValue()); 10151 }); 10152 } 10153 10154 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10155 const SwitchWorkListItem &W, 10156 Value *Cond, 10157 MachineBasicBlock *SwitchMBB) { 10158 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10159 "Clusters not sorted?"); 10160 10161 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10162 10163 // Balance the tree based on branch probabilities to create a near-optimal (in 10164 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10165 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10166 CaseClusterIt LastLeft = W.FirstCluster; 10167 CaseClusterIt FirstRight = W.LastCluster; 10168 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10169 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10170 10171 // Move LastLeft and FirstRight towards each other from opposite directions to 10172 // find a partitioning of the clusters which balances the probability on both 10173 // sides. If LeftProb and RightProb are equal, alternate which side is 10174 // taken to ensure 0-probability nodes are distributed evenly. 10175 unsigned I = 0; 10176 while (LastLeft + 1 < FirstRight) { 10177 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10178 LeftProb += (++LastLeft)->Prob; 10179 else 10180 RightProb += (--FirstRight)->Prob; 10181 I++; 10182 } 10183 10184 while (true) { 10185 // Our binary search tree differs from a typical BST in that ours can have up 10186 // to three values in each leaf. The pivot selection above doesn't take that 10187 // into account, which means the tree might require more nodes and be less 10188 // efficient. We compensate for this here. 10189 10190 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10191 unsigned NumRight = W.LastCluster - FirstRight + 1; 10192 10193 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10194 // If one side has less than 3 clusters, and the other has more than 3, 10195 // consider taking a cluster from the other side. 10196 10197 if (NumLeft < NumRight) { 10198 // Consider moving the first cluster on the right to the left side. 10199 CaseCluster &CC = *FirstRight; 10200 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10201 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10202 if (LeftSideRank <= RightSideRank) { 10203 // Moving the cluster to the left does not demote it. 10204 ++LastLeft; 10205 ++FirstRight; 10206 continue; 10207 } 10208 } else { 10209 assert(NumRight < NumLeft); 10210 // Consider moving the last element on the left to the right side. 10211 CaseCluster &CC = *LastLeft; 10212 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10213 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10214 if (RightSideRank <= LeftSideRank) { 10215 // Moving the cluster to the right does not demot it. 10216 --LastLeft; 10217 --FirstRight; 10218 continue; 10219 } 10220 } 10221 } 10222 break; 10223 } 10224 10225 assert(LastLeft + 1 == FirstRight); 10226 assert(LastLeft >= W.FirstCluster); 10227 assert(FirstRight <= W.LastCluster); 10228 10229 // Use the first element on the right as pivot since we will make less-than 10230 // comparisons against it. 10231 CaseClusterIt PivotCluster = FirstRight; 10232 assert(PivotCluster > W.FirstCluster); 10233 assert(PivotCluster <= W.LastCluster); 10234 10235 CaseClusterIt FirstLeft = W.FirstCluster; 10236 CaseClusterIt LastRight = W.LastCluster; 10237 10238 const ConstantInt *Pivot = PivotCluster->Low; 10239 10240 // New blocks will be inserted immediately after the current one. 10241 MachineFunction::iterator BBI(W.MBB); 10242 ++BBI; 10243 10244 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10245 // we can branch to its destination directly if it's squeezed exactly in 10246 // between the known lower bound and Pivot - 1. 10247 MachineBasicBlock *LeftMBB; 10248 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10249 FirstLeft->Low == W.GE && 10250 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10251 LeftMBB = FirstLeft->MBB; 10252 } else { 10253 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10254 FuncInfo.MF->insert(BBI, LeftMBB); 10255 WorkList.push_back( 10256 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10257 // Put Cond in a virtual register to make it available from the new blocks. 10258 ExportFromCurrentBlock(Cond); 10259 } 10260 10261 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10262 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10263 // directly if RHS.High equals the current upper bound. 10264 MachineBasicBlock *RightMBB; 10265 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10266 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10267 RightMBB = FirstRight->MBB; 10268 } else { 10269 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10270 FuncInfo.MF->insert(BBI, RightMBB); 10271 WorkList.push_back( 10272 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10273 // Put Cond in a virtual register to make it available from the new blocks. 10274 ExportFromCurrentBlock(Cond); 10275 } 10276 10277 // Create the CaseBlock record that will be used to lower the branch. 10278 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10279 getCurSDLoc(), LeftProb, RightProb); 10280 10281 if (W.MBB == SwitchMBB) 10282 visitSwitchCase(CB, SwitchMBB); 10283 else 10284 SL->SwitchCases.push_back(CB); 10285 } 10286 10287 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10288 // from the swith statement. 10289 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10290 BranchProbability PeeledCaseProb) { 10291 if (PeeledCaseProb == BranchProbability::getOne()) 10292 return BranchProbability::getZero(); 10293 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10294 10295 uint32_t Numerator = CaseProb.getNumerator(); 10296 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10297 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10298 } 10299 10300 // Try to peel the top probability case if it exceeds the threshold. 10301 // Return current MachineBasicBlock for the switch statement if the peeling 10302 // does not occur. 10303 // If the peeling is performed, return the newly created MachineBasicBlock 10304 // for the peeled switch statement. Also update Clusters to remove the peeled 10305 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10306 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10307 const SwitchInst &SI, CaseClusterVector &Clusters, 10308 BranchProbability &PeeledCaseProb) { 10309 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10310 // Don't perform if there is only one cluster or optimizing for size. 10311 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10312 TM.getOptLevel() == CodeGenOpt::None || 10313 SwitchMBB->getParent()->getFunction().hasMinSize()) 10314 return SwitchMBB; 10315 10316 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10317 unsigned PeeledCaseIndex = 0; 10318 bool SwitchPeeled = false; 10319 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10320 CaseCluster &CC = Clusters[Index]; 10321 if (CC.Prob < TopCaseProb) 10322 continue; 10323 TopCaseProb = CC.Prob; 10324 PeeledCaseIndex = Index; 10325 SwitchPeeled = true; 10326 } 10327 if (!SwitchPeeled) 10328 return SwitchMBB; 10329 10330 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10331 << TopCaseProb << "\n"); 10332 10333 // Record the MBB for the peeled switch statement. 10334 MachineFunction::iterator BBI(SwitchMBB); 10335 ++BBI; 10336 MachineBasicBlock *PeeledSwitchMBB = 10337 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10338 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10339 10340 ExportFromCurrentBlock(SI.getCondition()); 10341 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10342 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10343 nullptr, nullptr, TopCaseProb.getCompl()}; 10344 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10345 10346 Clusters.erase(PeeledCaseIt); 10347 for (CaseCluster &CC : Clusters) { 10348 LLVM_DEBUG( 10349 dbgs() << "Scale the probablity for one cluster, before scaling: " 10350 << CC.Prob << "\n"); 10351 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10352 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10353 } 10354 PeeledCaseProb = TopCaseProb; 10355 return PeeledSwitchMBB; 10356 } 10357 10358 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10359 // Extract cases from the switch. 10360 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10361 CaseClusterVector Clusters; 10362 Clusters.reserve(SI.getNumCases()); 10363 for (auto I : SI.cases()) { 10364 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10365 const ConstantInt *CaseVal = I.getCaseValue(); 10366 BranchProbability Prob = 10367 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10368 : BranchProbability(1, SI.getNumCases() + 1); 10369 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10370 } 10371 10372 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10373 10374 // Cluster adjacent cases with the same destination. We do this at all 10375 // optimization levels because it's cheap to do and will make codegen faster 10376 // if there are many clusters. 10377 sortAndRangeify(Clusters); 10378 10379 // The branch probablity of the peeled case. 10380 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10381 MachineBasicBlock *PeeledSwitchMBB = 10382 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10383 10384 // If there is only the default destination, jump there directly. 10385 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10386 if (Clusters.empty()) { 10387 assert(PeeledSwitchMBB == SwitchMBB); 10388 SwitchMBB->addSuccessor(DefaultMBB); 10389 if (DefaultMBB != NextBlock(SwitchMBB)) { 10390 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10391 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10392 } 10393 return; 10394 } 10395 10396 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10397 SL->findBitTestClusters(Clusters, &SI); 10398 10399 LLVM_DEBUG({ 10400 dbgs() << "Case clusters: "; 10401 for (const CaseCluster &C : Clusters) { 10402 if (C.Kind == CC_JumpTable) 10403 dbgs() << "JT:"; 10404 if (C.Kind == CC_BitTests) 10405 dbgs() << "BT:"; 10406 10407 C.Low->getValue().print(dbgs(), true); 10408 if (C.Low != C.High) { 10409 dbgs() << '-'; 10410 C.High->getValue().print(dbgs(), true); 10411 } 10412 dbgs() << ' '; 10413 } 10414 dbgs() << '\n'; 10415 }); 10416 10417 assert(!Clusters.empty()); 10418 SwitchWorkList WorkList; 10419 CaseClusterIt First = Clusters.begin(); 10420 CaseClusterIt Last = Clusters.end() - 1; 10421 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10422 // Scale the branchprobability for DefaultMBB if the peel occurs and 10423 // DefaultMBB is not replaced. 10424 if (PeeledCaseProb != BranchProbability::getZero() && 10425 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10426 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10427 WorkList.push_back( 10428 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10429 10430 while (!WorkList.empty()) { 10431 SwitchWorkListItem W = WorkList.back(); 10432 WorkList.pop_back(); 10433 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10434 10435 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10436 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10437 // For optimized builds, lower large range as a balanced binary tree. 10438 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10439 continue; 10440 } 10441 10442 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10443 } 10444 } 10445