1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfo.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/Statepoint.h" 57 #include "llvm/MC/MCSymbol.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetFrameLowering.h" 64 #include "llvm/Target/TargetInstrInfo.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetLowering.h" 67 #include "llvm/Target/TargetOptions.h" 68 #include "llvm/Target/TargetSubtargetInfo.h" 69 #include <algorithm> 70 #include <utility> 71 using namespace llvm; 72 73 #define DEBUG_TYPE "isel" 74 75 /// LimitFloatPrecision - Generate low-precision inline sequences for 76 /// some float libcalls (6, 8 or 12 bits). 77 static unsigned LimitFloatPrecision; 78 79 static cl::opt<unsigned, true> 80 LimitFPPrecision("limit-float-precision", 81 cl::desc("Generate low-precision inline sequences " 82 "for some float libcalls"), 83 cl::location(LimitFloatPrecision), 84 cl::init(0)); 85 86 static cl::opt<bool> 87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 88 cl::desc("Enable fast-math-flags for DAG nodes")); 89 90 /// Minimum jump table density for normal functions. 91 static cl::opt<unsigned> 92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 93 cl::desc("Minimum density for building a jump table in " 94 "a normal function")); 95 96 /// Minimum jump table density for -Os or -Oz functions. 97 static cl::opt<unsigned> 98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 99 cl::desc("Minimum density for building a jump table in " 100 "an optsize function")); 101 102 103 // Limit the width of DAG chains. This is important in general to prevent 104 // DAG-based analysis from blowing up. For example, alias analysis and 105 // load clustering may not complete in reasonable time. It is difficult to 106 // recognize and avoid this situation within each individual analysis, and 107 // future analyses are likely to have the same behavior. Limiting DAG width is 108 // the safe approach and will be especially important with global DAGs. 109 // 110 // MaxParallelChains default is arbitrarily high to avoid affecting 111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 112 // sequence over this should have been converted to llvm.memcpy by the 113 // frontend. It is easy to induce this behavior with .ll code such as: 114 // %buffer = alloca [4096 x i8] 115 // %data = load [4096 x i8]* %argPtr 116 // store [4096 x i8] %data, [4096 x i8]* %buffer 117 static const unsigned MaxParallelChains = 64; 118 119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 120 const SDValue *Parts, unsigned NumParts, 121 MVT PartVT, EVT ValueVT, const Value *V); 122 123 /// getCopyFromParts - Create a value that contains the specified legal parts 124 /// combined into the value they represent. If the parts combine to a type 125 /// larger than ValueVT then AssertOp can be used to specify whether the extra 126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 127 /// (ISD::AssertSext). 128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 129 const SDValue *Parts, unsigned NumParts, 130 MVT PartVT, EVT ValueVT, const Value *V, 131 Optional<ISD::NodeType> AssertOp = None) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp.hasValue()) 237 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger than ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 383 SDValue *Parts, unsigned NumParts, MVT PartVT, 384 const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) { 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 453 } 454 455 Parts[0] = Val; 456 return; 457 } 458 459 // Expand the value into multiple parts. 460 if (NumParts & (NumParts - 1)) { 461 // The number of parts is not a power of 2. Split off and copy the tail. 462 assert(PartVT.isInteger() && ValueVT.isInteger() && 463 "Do not know what to expand to!"); 464 unsigned RoundParts = 1 << Log2_32(NumParts); 465 unsigned RoundBits = RoundParts * PartBits; 466 unsigned OddParts = NumParts - RoundParts; 467 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 468 DAG.getIntPtrConstant(RoundBits, DL)); 469 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 470 471 if (DAG.getDataLayout().isBigEndian()) 472 // The odd parts were reversed by getCopyToParts - unreverse them. 473 std::reverse(Parts + RoundParts, Parts + NumParts); 474 475 NumParts = RoundParts; 476 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 477 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 478 } 479 480 // The number of parts is a power of 2. Repeatedly bisect the value using 481 // EXTRACT_ELEMENT. 482 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 483 EVT::getIntegerVT(*DAG.getContext(), 484 ValueVT.getSizeInBits()), 485 Val); 486 487 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 488 for (unsigned i = 0; i < NumParts; i += StepSize) { 489 unsigned ThisBits = StepSize * PartBits / 2; 490 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 491 SDValue &Part0 = Parts[i]; 492 SDValue &Part1 = Parts[i+StepSize/2]; 493 494 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 496 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 497 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 498 499 if (ThisBits == PartBits && ThisVT != PartVT) { 500 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 501 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 502 } 503 } 504 } 505 506 if (DAG.getDataLayout().isBigEndian()) 507 std::reverse(Parts, Parts + OrigNumParts); 508 } 509 510 511 /// getCopyToPartsVector - Create a series of nodes that contain the specified 512 /// value split into legal parts. 513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 514 SDValue Val, SDValue *Parts, unsigned NumParts, 515 MVT PartVT, const Value *V) { 516 EVT ValueVT = Val.getValueType(); 517 assert(ValueVT.isVector() && "Not a vector"); 518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 519 520 if (NumParts == 1) { 521 EVT PartEVT = PartVT; 522 if (PartEVT == ValueVT) { 523 // Nothing to do. 524 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 525 // Bitconvert vector->vector case. 526 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 527 } else if (PartVT.isVector() && 528 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 529 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 530 EVT ElementVT = PartVT.getVectorElementType(); 531 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 532 // undef elements. 533 SmallVector<SDValue, 16> Ops; 534 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 535 Ops.push_back(DAG.getNode( 536 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 537 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 538 539 for (unsigned i = ValueVT.getVectorNumElements(), 540 e = PartVT.getVectorNumElements(); i != e; ++i) 541 Ops.push_back(DAG.getUNDEF(ElementVT)); 542 543 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 544 545 // FIXME: Use CONCAT for 2x -> 4x. 546 547 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 548 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 549 } else if (PartVT.isVector() && 550 PartEVT.getVectorElementType().bitsGE( 551 ValueVT.getVectorElementType()) && 552 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 553 554 // Promoted vector extract 555 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 556 } else{ 557 // Vector -> scalar conversion. 558 assert(ValueVT.getVectorNumElements() == 1 && 559 "Only trivial vector-to-scalar conversions should get here!"); 560 Val = DAG.getNode( 561 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 562 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 563 564 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Handle a multi-element vector. 572 EVT IntermediateVT; 573 MVT RegisterVT; 574 unsigned NumIntermediates; 575 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 576 IntermediateVT, 577 NumIntermediates, RegisterVT); 578 unsigned NumElements = ValueVT.getVectorNumElements(); 579 580 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 581 NumParts = NumRegs; // Silence a compiler warning. 582 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 583 584 // Split the vector into intermediate operands. 585 SmallVector<SDValue, 8> Ops(NumIntermediates); 586 for (unsigned i = 0; i != NumIntermediates; ++i) { 587 if (IntermediateVT.isVector()) 588 Ops[i] = 589 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 590 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 591 TLI.getVectorIdxTy(DAG.getDataLayout()))); 592 else 593 Ops[i] = DAG.getNode( 594 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 595 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 596 } 597 598 // Split the intermediate operands into legal parts. 599 if (NumParts == NumIntermediates) { 600 // If the register was not expanded, promote or copy the value, 601 // as appropriate. 602 for (unsigned i = 0; i != NumParts; ++i) 603 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 604 } else if (NumParts > 0) { 605 // If the intermediate type was expanded, split each the value into 606 // legal parts. 607 assert(NumIntermediates != 0 && "division by zero"); 608 assert(NumParts % NumIntermediates == 0 && 609 "Must expand into a divisible number of parts!"); 610 unsigned Factor = NumParts / NumIntermediates; 611 for (unsigned i = 0; i != NumIntermediates; ++i) 612 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 613 } 614 } 615 616 RegsForValue::RegsForValue() {} 617 618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 619 EVT valuevt) 620 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 621 622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 623 const DataLayout &DL, unsigned Reg, Type *Ty) { 624 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 625 626 for (EVT ValueVT : ValueVTs) { 627 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 628 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 629 for (unsigned i = 0; i != NumRegs; ++i) 630 Regs.push_back(Reg + i); 631 RegVTs.push_back(RegisterVT); 632 Reg += NumRegs; 633 } 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVT value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 641 FunctionLoweringInfo &FuncInfo, 642 const SDLoc &dl, SDValue &Chain, 643 SDValue *Flag, const Value *V) const { 644 // A Value with type {} or [0 x %t] needs no registers. 645 if (ValueVTs.empty()) 646 return SDValue(); 647 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 650 // Assemble the legal parts into the final values. 651 SmallVector<SDValue, 4> Values(ValueVTs.size()); 652 SmallVector<SDValue, 8> Parts; 653 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 654 // Copy the legal parts from the registers. 655 EVT ValueVT = ValueVTs[Value]; 656 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 657 MVT RegisterVT = RegVTs[Value]; 658 659 Parts.resize(NumRegs); 660 for (unsigned i = 0; i != NumRegs; ++i) { 661 SDValue P; 662 if (!Flag) { 663 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 664 } else { 665 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 666 *Flag = P.getValue(2); 667 } 668 669 Chain = P.getValue(1); 670 Parts[i] = P; 671 672 // If the source register was virtual and if we know something about it, 673 // add an assert node. 674 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 675 !RegisterVT.isInteger() || RegisterVT.isVector()) 676 continue; 677 678 const FunctionLoweringInfo::LiveOutInfo *LOI = 679 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 680 if (!LOI) 681 continue; 682 683 unsigned RegSize = RegisterVT.getSizeInBits(); 684 unsigned NumSignBits = LOI->NumSignBits; 685 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 686 687 if (NumZeroBits == RegSize) { 688 // The current value is a zero. 689 // Explicitly express that as it would be easier for 690 // optimizations to kick in. 691 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 692 continue; 693 } 694 695 // FIXME: We capture more information than the dag can represent. For 696 // now, just use the tightest assertzext/assertsext possible. 697 bool isSExt = true; 698 EVT FromVT(MVT::Other); 699 if (NumSignBits == RegSize) { 700 isSExt = true; // ASSERT SEXT 1 701 FromVT = MVT::i1; 702 } else if (NumZeroBits >= RegSize - 1) { 703 isSExt = false; // ASSERT ZEXT 1 704 FromVT = MVT::i1; 705 } else if (NumSignBits > RegSize - 8) { 706 isSExt = true; // ASSERT SEXT 8 707 FromVT = MVT::i8; 708 } else if (NumZeroBits >= RegSize - 8) { 709 isSExt = false; // ASSERT ZEXT 8 710 FromVT = MVT::i8; 711 } else if (NumSignBits > RegSize - 16) { 712 isSExt = true; // ASSERT SEXT 16 713 FromVT = MVT::i16; 714 } else if (NumZeroBits >= RegSize - 16) { 715 isSExt = false; // ASSERT ZEXT 16 716 FromVT = MVT::i16; 717 } else if (NumSignBits > RegSize - 32) { 718 isSExt = true; // ASSERT SEXT 32 719 FromVT = MVT::i32; 720 } else if (NumZeroBits >= RegSize - 32) { 721 isSExt = false; // ASSERT ZEXT 32 722 FromVT = MVT::i32; 723 } else { 724 continue; 725 } 726 // Add an assertion node. 727 assert(FromVT != MVT::Other); 728 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 729 RegisterVT, P, DAG.getValueType(FromVT)); 730 } 731 732 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 733 NumRegs, RegisterVT, ValueVT, V); 734 Part += NumRegs; 735 Parts.clear(); 736 } 737 738 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 739 } 740 741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 742 /// specified value into the registers specified by this object. This uses 743 /// Chain/Flag as the input and updates them for the output Chain/Flag. 744 /// If the Flag pointer is NULL, no flag is used. 745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 746 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 747 const Value *V, 748 ISD::NodeType PreferredExtendType) const { 749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 750 ISD::NodeType ExtendKind = PreferredExtendType; 751 752 // Get the list of the values's legal parts. 753 unsigned NumRegs = Regs.size(); 754 SmallVector<SDValue, 8> Parts(NumRegs); 755 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 756 EVT ValueVT = ValueVTs[Value]; 757 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 758 MVT RegisterVT = RegVTs[Value]; 759 760 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 761 ExtendKind = ISD::ZERO_EXTEND; 762 763 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 764 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 765 Part += NumParts; 766 } 767 768 // Copy the parts into the registers. 769 SmallVector<SDValue, 8> Chains(NumRegs); 770 for (unsigned i = 0; i != NumRegs; ++i) { 771 SDValue Part; 772 if (!Flag) { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 774 } else { 775 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 776 *Flag = Part.getValue(1); 777 } 778 779 Chains[i] = Part.getValue(0); 780 } 781 782 if (NumRegs == 1 || Flag) 783 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 784 // flagged to it. That is the CopyToReg nodes and the user are considered 785 // a single scheduling unit. If we create a TokenFactor and return it as 786 // chain, then the TokenFactor is both a predecessor (operand) of the 787 // user as well as a successor (the TF operands are flagged to the user). 788 // c1, f1 = CopyToReg 789 // c2, f2 = CopyToReg 790 // c3 = TokenFactor c1, c2 791 // ... 792 // = op c3, ..., f2 793 Chain = Chains[NumRegs-1]; 794 else 795 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 796 } 797 798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 799 /// operand list. This adds the code marker and includes the number of 800 /// values added into it. 801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 802 unsigned MatchingIdx, const SDLoc &dl, 803 SelectionDAG &DAG, 804 std::vector<SDValue> &Ops) const { 805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 806 807 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 808 if (HasMatching) 809 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 810 else if (!Regs.empty() && 811 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 812 // Put the register class of the virtual registers in the flag word. That 813 // way, later passes can recompute register class constraints for inline 814 // assembly as well as normal instructions. 815 // Don't do this for tied operands that can use the regclass information 816 // from the def. 817 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 818 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 819 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 820 } 821 822 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 823 Ops.push_back(Res); 824 825 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 826 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 827 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 828 MVT RegisterVT = RegVTs[Value]; 829 for (unsigned i = 0; i != NumRegs; ++i) { 830 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 831 unsigned TheReg = Regs[Reg++]; 832 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 833 834 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 835 // If we clobbered the stack pointer, MFI should know about it. 836 assert(DAG.getMachineFunction().getFrameInfo()-> 837 hasOpaqueSPAdjustment()); 838 } 839 } 840 } 841 } 842 843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 844 const TargetLibraryInfo *li) { 845 AA = &aa; 846 GFI = gfi; 847 LibInfo = li; 848 DL = &DAG.getDataLayout(); 849 Context = DAG.getContext(); 850 LPadToCallSiteMap.clear(); 851 } 852 853 /// clear - Clear out the current SelectionDAG and the associated 854 /// state and prepare this SelectionDAGBuilder object to be used 855 /// for a new block. This doesn't clear out information about 856 /// additional blocks that are needed to complete switch lowering 857 /// or PHI node updating; that information is cleared out as it is 858 /// consumed. 859 void SelectionDAGBuilder::clear() { 860 NodeMap.clear(); 861 UnusedArgNodeMap.clear(); 862 PendingLoads.clear(); 863 PendingExports.clear(); 864 CurInst = nullptr; 865 HasTailCall = false; 866 SDNodeOrder = LowestSDNodeOrder; 867 StatepointLowering.clear(); 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 898 PendingLoads); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 928 PendingExports); 929 PendingExports.clear(); 930 DAG.setRoot(Root); 931 return Root; 932 } 933 934 /// Copy swift error to the final virtual register at end of a basic block, as 935 /// specified by SwiftErrorWorklist, if necessary. 936 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 937 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 938 if (!TLI.supportSwiftError()) 939 return; 940 941 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 942 return; 943 944 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 945 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 946 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 947 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 948 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 949 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 950 unsigned WorkReg = WorklistEntry[I]; 951 952 // Find the swifterror virtual register for the value in SwiftErrorMap. 953 unsigned MapReg = MapEntry[I]; 954 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 955 "Entries in SwiftErrorMap should be virtual registers"); 956 957 if (WorkReg == MapReg) 958 continue; 959 960 // Create copy from SwiftErrorMap to SwiftWorklist. 961 auto &DL = SDB.DAG.getDataLayout(); 962 SDValue CopyNode = SDB.DAG.getCopyToReg( 963 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 964 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 965 MapEntry[I] = WorkReg; 966 SDB.DAG.setRoot(CopyNode); 967 } 968 } 969 970 void SelectionDAGBuilder::visit(const Instruction &I) { 971 // Set up outgoing PHI node register values before emitting the terminator. 972 if (isa<TerminatorInst>(&I)) { 973 copySwiftErrorsToFinalVRegs(*this); 974 HandlePHINodesInSuccessorBlocks(I.getParent()); 975 } 976 977 ++SDNodeOrder; 978 979 CurInst = &I; 980 981 visit(I.getOpcode(), I); 982 983 if (!isa<TerminatorInst>(&I) && !HasTailCall && 984 !isStatepoint(&I)) // statepoints handle their exports internally 985 CopyToExportRegsIfNeeded(&I); 986 987 CurInst = nullptr; 988 } 989 990 void SelectionDAGBuilder::visitPHI(const PHINode &) { 991 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 992 } 993 994 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 995 // Note: this doesn't use InstVisitor, because it has to work with 996 // ConstantExpr's in addition to instructions. 997 switch (Opcode) { 998 default: llvm_unreachable("Unknown instruction type encountered!"); 999 // Build the switch statement using the Instruction.def file. 1000 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1001 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1002 #include "llvm/IR/Instruction.def" 1003 } 1004 } 1005 1006 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1007 // generate the debug data structures now that we've seen its definition. 1008 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1009 SDValue Val) { 1010 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1011 if (DDI.getDI()) { 1012 const DbgValueInst *DI = DDI.getDI(); 1013 DebugLoc dl = DDI.getdl(); 1014 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1015 DILocalVariable *Variable = DI->getVariable(); 1016 DIExpression *Expr = DI->getExpression(); 1017 assert(Variable->isValidLocationForIntrinsic(dl) && 1018 "Expected inlined-at fields to agree"); 1019 uint64_t Offset = DI->getOffset(); 1020 SDDbgValue *SDV; 1021 if (Val.getNode()) { 1022 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1023 Val)) { 1024 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1025 false, Offset, dl, DbgSDNodeOrder); 1026 DAG.AddDbgValue(SDV, Val.getNode(), false); 1027 } 1028 } else 1029 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1030 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1031 } 1032 } 1033 1034 /// getCopyFromRegs - If there was virtual register allocated for the value V 1035 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1036 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1037 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1038 SDValue Result; 1039 1040 if (It != FuncInfo.ValueMap.end()) { 1041 unsigned InReg = It->second; 1042 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1043 DAG.getDataLayout(), InReg, Ty); 1044 SDValue Chain = DAG.getEntryNode(); 1045 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1046 resolveDanglingDebugInfo(V, Result); 1047 } 1048 1049 return Result; 1050 } 1051 1052 /// getValue - Return an SDValue for the given Value. 1053 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1054 // If we already have an SDValue for this value, use it. It's important 1055 // to do this first, so that we don't create a CopyFromReg if we already 1056 // have a regular SDValue. 1057 SDValue &N = NodeMap[V]; 1058 if (N.getNode()) return N; 1059 1060 // If there's a virtual register allocated and initialized for this 1061 // value, use it. 1062 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1063 return copyFromReg; 1064 1065 // Otherwise create a new SDValue and remember it. 1066 SDValue Val = getValueImpl(V); 1067 NodeMap[V] = Val; 1068 resolveDanglingDebugInfo(V, Val); 1069 return Val; 1070 } 1071 1072 // Return true if SDValue exists for the given Value 1073 bool SelectionDAGBuilder::findValue(const Value *V) const { 1074 return (NodeMap.find(V) != NodeMap.end()) || 1075 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1076 } 1077 1078 /// getNonRegisterValue - Return an SDValue for the given Value, but 1079 /// don't look in FuncInfo.ValueMap for a virtual register. 1080 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1081 // If we already have an SDValue for this value, use it. 1082 SDValue &N = NodeMap[V]; 1083 if (N.getNode()) { 1084 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1085 // Remove the debug location from the node as the node is about to be used 1086 // in a location which may differ from the original debug location. This 1087 // is relevant to Constant and ConstantFP nodes because they can appear 1088 // as constant expressions inside PHI nodes. 1089 N->setDebugLoc(DebugLoc()); 1090 } 1091 return N; 1092 } 1093 1094 // Otherwise create a new SDValue and remember it. 1095 SDValue Val = getValueImpl(V); 1096 NodeMap[V] = Val; 1097 resolveDanglingDebugInfo(V, Val); 1098 return Val; 1099 } 1100 1101 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1102 /// Create an SDValue for the given value. 1103 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1105 1106 if (const Constant *C = dyn_cast<Constant>(V)) { 1107 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1108 1109 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1110 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1111 1112 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1113 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1114 1115 if (isa<ConstantPointerNull>(C)) { 1116 unsigned AS = V->getType()->getPointerAddressSpace(); 1117 return DAG.getConstant(0, getCurSDLoc(), 1118 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1119 } 1120 1121 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1122 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1123 1124 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1125 return DAG.getUNDEF(VT); 1126 1127 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1128 visit(CE->getOpcode(), *CE); 1129 SDValue N1 = NodeMap[V]; 1130 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1131 return N1; 1132 } 1133 1134 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1135 SmallVector<SDValue, 4> Constants; 1136 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1137 OI != OE; ++OI) { 1138 SDNode *Val = getValue(*OI).getNode(); 1139 // If the operand is an empty aggregate, there are no values. 1140 if (!Val) continue; 1141 // Add each leaf value from the operand to the Constants list 1142 // to form a flattened list of all the values. 1143 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1144 Constants.push_back(SDValue(Val, i)); 1145 } 1146 1147 return DAG.getMergeValues(Constants, getCurSDLoc()); 1148 } 1149 1150 if (const ConstantDataSequential *CDS = 1151 dyn_cast<ConstantDataSequential>(C)) { 1152 SmallVector<SDValue, 4> Ops; 1153 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1154 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1155 // Add each leaf value from the operand to the Constants list 1156 // to form a flattened list of all the values. 1157 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1158 Ops.push_back(SDValue(Val, i)); 1159 } 1160 1161 if (isa<ArrayType>(CDS->getType())) 1162 return DAG.getMergeValues(Ops, getCurSDLoc()); 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1164 VT, Ops); 1165 } 1166 1167 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1168 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1169 "Unknown struct or array constant!"); 1170 1171 SmallVector<EVT, 4> ValueVTs; 1172 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1173 unsigned NumElts = ValueVTs.size(); 1174 if (NumElts == 0) 1175 return SDValue(); // empty struct 1176 SmallVector<SDValue, 4> Constants(NumElts); 1177 for (unsigned i = 0; i != NumElts; ++i) { 1178 EVT EltVT = ValueVTs[i]; 1179 if (isa<UndefValue>(C)) 1180 Constants[i] = DAG.getUNDEF(EltVT); 1181 else if (EltVT.isFloatingPoint()) 1182 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1183 else 1184 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1185 } 1186 1187 return DAG.getMergeValues(Constants, getCurSDLoc()); 1188 } 1189 1190 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1191 return DAG.getBlockAddress(BA, VT); 1192 1193 VectorType *VecTy = cast<VectorType>(V->getType()); 1194 unsigned NumElements = VecTy->getNumElements(); 1195 1196 // Now that we know the number and type of the elements, get that number of 1197 // elements into the Ops array based on what kind of constant it is. 1198 SmallVector<SDValue, 16> Ops; 1199 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1200 for (unsigned i = 0; i != NumElements; ++i) 1201 Ops.push_back(getValue(CV->getOperand(i))); 1202 } else { 1203 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1204 EVT EltVT = 1205 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1206 1207 SDValue Op; 1208 if (EltVT.isFloatingPoint()) 1209 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1210 else 1211 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1212 Ops.assign(NumElements, Op); 1213 } 1214 1215 // Create a BUILD_VECTOR node. 1216 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1217 } 1218 1219 // If this is a static alloca, generate it as the frameindex instead of 1220 // computation. 1221 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1222 DenseMap<const AllocaInst*, int>::iterator SI = 1223 FuncInfo.StaticAllocaMap.find(AI); 1224 if (SI != FuncInfo.StaticAllocaMap.end()) 1225 return DAG.getFrameIndex(SI->second, 1226 TLI.getPointerTy(DAG.getDataLayout())); 1227 } 1228 1229 // If this is an instruction which fast-isel has deferred, select it now. 1230 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1231 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1232 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1233 Inst->getType()); 1234 SDValue Chain = DAG.getEntryNode(); 1235 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1236 } 1237 1238 llvm_unreachable("Can't get register for value!"); 1239 } 1240 1241 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1242 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1243 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1244 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1245 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1246 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1247 if (IsMSVCCXX || IsCoreCLR) 1248 CatchPadMBB->setIsEHFuncletEntry(); 1249 1250 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1251 } 1252 1253 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1254 // Update machine-CFG edge. 1255 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1256 FuncInfo.MBB->addSuccessor(TargetMBB); 1257 1258 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1259 bool IsSEH = isAsynchronousEHPersonality(Pers); 1260 if (IsSEH) { 1261 // If this is not a fall-through branch or optimizations are switched off, 1262 // emit the branch. 1263 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1264 TM.getOptLevel() == CodeGenOpt::None) 1265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1266 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1267 return; 1268 } 1269 1270 // Figure out the funclet membership for the catchret's successor. 1271 // This will be used by the FuncletLayout pass to determine how to order the 1272 // BB's. 1273 // A 'catchret' returns to the outer scope's color. 1274 Value *ParentPad = I.getCatchSwitchParentPad(); 1275 const BasicBlock *SuccessorColor; 1276 if (isa<ConstantTokenNone>(ParentPad)) 1277 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1278 else 1279 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1280 assert(SuccessorColor && "No parent funclet for catchret!"); 1281 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1282 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1283 1284 // Create the terminator node. 1285 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1286 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1287 DAG.getBasicBlock(SuccessorColorMBB)); 1288 DAG.setRoot(Ret); 1289 } 1290 1291 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1292 // Don't emit any special code for the cleanuppad instruction. It just marks 1293 // the start of a funclet. 1294 FuncInfo.MBB->setIsEHFuncletEntry(); 1295 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1296 } 1297 1298 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1299 /// many places it could ultimately go. In the IR, we have a single unwind 1300 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1301 /// This function skips over imaginary basic blocks that hold catchswitch 1302 /// instructions, and finds all the "real" machine 1303 /// basic block destinations. As those destinations may not be successors of 1304 /// EHPadBB, here we also calculate the edge probability to those destinations. 1305 /// The passed-in Prob is the edge probability to EHPadBB. 1306 static void findUnwindDestinations( 1307 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1308 BranchProbability Prob, 1309 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1310 &UnwindDests) { 1311 EHPersonality Personality = 1312 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1313 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1314 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1315 1316 while (EHPadBB) { 1317 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1318 BasicBlock *NewEHPadBB = nullptr; 1319 if (isa<LandingPadInst>(Pad)) { 1320 // Stop on landingpads. They are not funclets. 1321 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1322 break; 1323 } else if (isa<CleanupPadInst>(Pad)) { 1324 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1325 // personalities. 1326 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1327 UnwindDests.back().first->setIsEHFuncletEntry(); 1328 break; 1329 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1330 // Add the catchpad handlers to the possible destinations. 1331 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1332 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1333 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1334 if (IsMSVCCXX || IsCoreCLR) 1335 UnwindDests.back().first->setIsEHFuncletEntry(); 1336 } 1337 NewEHPadBB = CatchSwitch->getUnwindDest(); 1338 } else { 1339 continue; 1340 } 1341 1342 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1343 if (BPI && NewEHPadBB) 1344 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1345 EHPadBB = NewEHPadBB; 1346 } 1347 } 1348 1349 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1350 // Update successor info. 1351 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1352 auto UnwindDest = I.getUnwindDest(); 1353 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1354 BranchProbability UnwindDestProb = 1355 (BPI && UnwindDest) 1356 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1357 : BranchProbability::getZero(); 1358 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1359 for (auto &UnwindDest : UnwindDests) { 1360 UnwindDest.first->setIsEHPad(); 1361 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1362 } 1363 FuncInfo.MBB->normalizeSuccProbs(); 1364 1365 // Create the terminator node. 1366 SDValue Ret = 1367 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1368 DAG.setRoot(Ret); 1369 } 1370 1371 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1372 report_fatal_error("visitCatchSwitch not yet implemented!"); 1373 } 1374 1375 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1377 auto &DL = DAG.getDataLayout(); 1378 SDValue Chain = getControlRoot(); 1379 SmallVector<ISD::OutputArg, 8> Outs; 1380 SmallVector<SDValue, 8> OutVals; 1381 1382 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1383 // lower 1384 // 1385 // %val = call <ty> @llvm.experimental.deoptimize() 1386 // ret <ty> %val 1387 // 1388 // differently. 1389 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1390 LowerDeoptimizingReturn(); 1391 return; 1392 } 1393 1394 if (!FuncInfo.CanLowerReturn) { 1395 unsigned DemoteReg = FuncInfo.DemoteRegister; 1396 const Function *F = I.getParent()->getParent(); 1397 1398 // Emit a store of the return value through the virtual register. 1399 // Leave Outs empty so that LowerReturn won't try to load return 1400 // registers the usual way. 1401 SmallVector<EVT, 1> PtrValueVTs; 1402 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1403 PtrValueVTs); 1404 1405 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1406 DemoteReg, PtrValueVTs[0]); 1407 SDValue RetOp = getValue(I.getOperand(0)); 1408 1409 SmallVector<EVT, 4> ValueVTs; 1410 SmallVector<uint64_t, 4> Offsets; 1411 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1412 unsigned NumValues = ValueVTs.size(); 1413 1414 // An aggregate return value cannot wrap around the address space, so 1415 // offsets to its parts don't wrap either. 1416 SDNodeFlags Flags; 1417 Flags.setNoUnsignedWrap(true); 1418 1419 SmallVector<SDValue, 4> Chains(NumValues); 1420 for (unsigned i = 0; i != NumValues; ++i) { 1421 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1422 RetPtr.getValueType(), RetPtr, 1423 DAG.getIntPtrConstant(Offsets[i], 1424 getCurSDLoc()), 1425 &Flags); 1426 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1427 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1428 // FIXME: better loc info would be nice. 1429 Add, MachinePointerInfo()); 1430 } 1431 1432 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1433 MVT::Other, Chains); 1434 } else if (I.getNumOperands() != 0) { 1435 SmallVector<EVT, 4> ValueVTs; 1436 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1437 unsigned NumValues = ValueVTs.size(); 1438 if (NumValues) { 1439 SDValue RetOp = getValue(I.getOperand(0)); 1440 1441 const Function *F = I.getParent()->getParent(); 1442 1443 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1444 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1445 Attribute::SExt)) 1446 ExtendKind = ISD::SIGN_EXTEND; 1447 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1448 Attribute::ZExt)) 1449 ExtendKind = ISD::ZERO_EXTEND; 1450 1451 LLVMContext &Context = F->getContext(); 1452 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1453 Attribute::InReg); 1454 1455 for (unsigned j = 0; j != NumValues; ++j) { 1456 EVT VT = ValueVTs[j]; 1457 1458 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1459 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1460 1461 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1462 MVT PartVT = TLI.getRegisterType(Context, VT); 1463 SmallVector<SDValue, 4> Parts(NumParts); 1464 getCopyToParts(DAG, getCurSDLoc(), 1465 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1466 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1467 1468 // 'inreg' on function refers to return value 1469 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1470 if (RetInReg) 1471 Flags.setInReg(); 1472 1473 // Propagate extension type if any 1474 if (ExtendKind == ISD::SIGN_EXTEND) 1475 Flags.setSExt(); 1476 else if (ExtendKind == ISD::ZERO_EXTEND) 1477 Flags.setZExt(); 1478 1479 for (unsigned i = 0; i < NumParts; ++i) { 1480 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1481 VT, /*isfixed=*/true, 0, 0)); 1482 OutVals.push_back(Parts[i]); 1483 } 1484 } 1485 } 1486 } 1487 1488 // Push in swifterror virtual register as the last element of Outs. This makes 1489 // sure swifterror virtual register will be returned in the swifterror 1490 // physical register. 1491 const Function *F = I.getParent()->getParent(); 1492 if (TLI.supportSwiftError() && 1493 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1494 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1495 Flags.setSwiftError(); 1496 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1497 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1498 true /*isfixed*/, 1 /*origidx*/, 1499 0 /*partOffs*/)); 1500 // Create SDNode for the swifterror virtual register. 1501 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1502 EVT(TLI.getPointerTy(DL)))); 1503 } 1504 1505 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1506 CallingConv::ID CallConv = 1507 DAG.getMachineFunction().getFunction()->getCallingConv(); 1508 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1509 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1510 1511 // Verify that the target's LowerReturn behaved as expected. 1512 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1513 "LowerReturn didn't return a valid chain!"); 1514 1515 // Update the DAG with the new chain value resulting from return lowering. 1516 DAG.setRoot(Chain); 1517 } 1518 1519 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1520 /// created for it, emit nodes to copy the value into the virtual 1521 /// registers. 1522 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1523 // Skip empty types 1524 if (V->getType()->isEmptyTy()) 1525 return; 1526 1527 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1528 if (VMI != FuncInfo.ValueMap.end()) { 1529 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1530 CopyValueToVirtualRegister(V, VMI->second); 1531 } 1532 } 1533 1534 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1535 /// the current basic block, add it to ValueMap now so that we'll get a 1536 /// CopyTo/FromReg. 1537 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1538 // No need to export constants. 1539 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1540 1541 // Already exported? 1542 if (FuncInfo.isExportedInst(V)) return; 1543 1544 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1545 CopyValueToVirtualRegister(V, Reg); 1546 } 1547 1548 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1549 const BasicBlock *FromBB) { 1550 // The operands of the setcc have to be in this block. We don't know 1551 // how to export them from some other block. 1552 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1553 // Can export from current BB. 1554 if (VI->getParent() == FromBB) 1555 return true; 1556 1557 // Is already exported, noop. 1558 return FuncInfo.isExportedInst(V); 1559 } 1560 1561 // If this is an argument, we can export it if the BB is the entry block or 1562 // if it is already exported. 1563 if (isa<Argument>(V)) { 1564 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1565 return true; 1566 1567 // Otherwise, can only export this if it is already exported. 1568 return FuncInfo.isExportedInst(V); 1569 } 1570 1571 // Otherwise, constants can always be exported. 1572 return true; 1573 } 1574 1575 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1576 BranchProbability 1577 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1578 const MachineBasicBlock *Dst) const { 1579 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1580 const BasicBlock *SrcBB = Src->getBasicBlock(); 1581 const BasicBlock *DstBB = Dst->getBasicBlock(); 1582 if (!BPI) { 1583 // If BPI is not available, set the default probability as 1 / N, where N is 1584 // the number of successors. 1585 auto SuccSize = std::max<uint32_t>( 1586 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1587 return BranchProbability(1, SuccSize); 1588 } 1589 return BPI->getEdgeProbability(SrcBB, DstBB); 1590 } 1591 1592 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1593 MachineBasicBlock *Dst, 1594 BranchProbability Prob) { 1595 if (!FuncInfo.BPI) 1596 Src->addSuccessorWithoutProb(Dst); 1597 else { 1598 if (Prob.isUnknown()) 1599 Prob = getEdgeProbability(Src, Dst); 1600 Src->addSuccessor(Dst, Prob); 1601 } 1602 } 1603 1604 static bool InBlock(const Value *V, const BasicBlock *BB) { 1605 if (const Instruction *I = dyn_cast<Instruction>(V)) 1606 return I->getParent() == BB; 1607 return true; 1608 } 1609 1610 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1611 /// This function emits a branch and is used at the leaves of an OR or an 1612 /// AND operator tree. 1613 /// 1614 void 1615 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1616 MachineBasicBlock *TBB, 1617 MachineBasicBlock *FBB, 1618 MachineBasicBlock *CurBB, 1619 MachineBasicBlock *SwitchBB, 1620 BranchProbability TProb, 1621 BranchProbability FProb) { 1622 const BasicBlock *BB = CurBB->getBasicBlock(); 1623 1624 // If the leaf of the tree is a comparison, merge the condition into 1625 // the caseblock. 1626 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1627 // The operands of the cmp have to be in this block. We don't know 1628 // how to export them from some other block. If this is the first block 1629 // of the sequence, no exporting is needed. 1630 if (CurBB == SwitchBB || 1631 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1632 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1633 ISD::CondCode Condition; 1634 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1635 Condition = getICmpCondCode(IC->getPredicate()); 1636 } else { 1637 const FCmpInst *FC = cast<FCmpInst>(Cond); 1638 Condition = getFCmpCondCode(FC->getPredicate()); 1639 if (TM.Options.NoNaNsFPMath) 1640 Condition = getFCmpCodeWithoutNaN(Condition); 1641 } 1642 1643 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1644 TBB, FBB, CurBB, TProb, FProb); 1645 SwitchCases.push_back(CB); 1646 return; 1647 } 1648 } 1649 1650 // Create a CaseBlock record representing this branch. 1651 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1652 nullptr, TBB, FBB, CurBB, TProb, FProb); 1653 SwitchCases.push_back(CB); 1654 } 1655 1656 /// FindMergedConditions - If Cond is an expression like 1657 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1658 MachineBasicBlock *TBB, 1659 MachineBasicBlock *FBB, 1660 MachineBasicBlock *CurBB, 1661 MachineBasicBlock *SwitchBB, 1662 Instruction::BinaryOps Opc, 1663 BranchProbability TProb, 1664 BranchProbability FProb) { 1665 // If this node is not part of the or/and tree, emit it as a branch. 1666 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1667 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1668 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1669 BOp->getParent() != CurBB->getBasicBlock() || 1670 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1671 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1672 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1673 TProb, FProb); 1674 return; 1675 } 1676 1677 // Create TmpBB after CurBB. 1678 MachineFunction::iterator BBI(CurBB); 1679 MachineFunction &MF = DAG.getMachineFunction(); 1680 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1681 CurBB->getParent()->insert(++BBI, TmpBB); 1682 1683 if (Opc == Instruction::Or) { 1684 // Codegen X | Y as: 1685 // BB1: 1686 // jmp_if_X TBB 1687 // jmp TmpBB 1688 // TmpBB: 1689 // jmp_if_Y TBB 1690 // jmp FBB 1691 // 1692 1693 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1694 // The requirement is that 1695 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1696 // = TrueProb for original BB. 1697 // Assuming the original probabilities are A and B, one choice is to set 1698 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1699 // A/(1+B) and 2B/(1+B). This choice assumes that 1700 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1701 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1702 // TmpBB, but the math is more complicated. 1703 1704 auto NewTrueProb = TProb / 2; 1705 auto NewFalseProb = TProb / 2 + FProb; 1706 // Emit the LHS condition. 1707 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1708 NewTrueProb, NewFalseProb); 1709 1710 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1711 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1712 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1713 // Emit the RHS condition into TmpBB. 1714 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1715 Probs[0], Probs[1]); 1716 } else { 1717 assert(Opc == Instruction::And && "Unknown merge op!"); 1718 // Codegen X & Y as: 1719 // BB1: 1720 // jmp_if_X TmpBB 1721 // jmp FBB 1722 // TmpBB: 1723 // jmp_if_Y TBB 1724 // jmp FBB 1725 // 1726 // This requires creation of TmpBB after CurBB. 1727 1728 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1729 // The requirement is that 1730 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1731 // = FalseProb for original BB. 1732 // Assuming the original probabilities are A and B, one choice is to set 1733 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1734 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1735 // TrueProb for BB1 * FalseProb for TmpBB. 1736 1737 auto NewTrueProb = TProb + FProb / 2; 1738 auto NewFalseProb = FProb / 2; 1739 // Emit the LHS condition. 1740 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1741 NewTrueProb, NewFalseProb); 1742 1743 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1744 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1745 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1746 // Emit the RHS condition into TmpBB. 1747 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1748 Probs[0], Probs[1]); 1749 } 1750 } 1751 1752 /// If the set of cases should be emitted as a series of branches, return true. 1753 /// If we should emit this as a bunch of and/or'd together conditions, return 1754 /// false. 1755 bool 1756 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1757 if (Cases.size() != 2) return true; 1758 1759 // If this is two comparisons of the same values or'd or and'd together, they 1760 // will get folded into a single comparison, so don't emit two blocks. 1761 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1762 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1763 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1764 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1765 return false; 1766 } 1767 1768 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1769 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1770 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1771 Cases[0].CC == Cases[1].CC && 1772 isa<Constant>(Cases[0].CmpRHS) && 1773 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1774 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1775 return false; 1776 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1777 return false; 1778 } 1779 1780 return true; 1781 } 1782 1783 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1784 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1785 1786 // Update machine-CFG edges. 1787 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1788 1789 if (I.isUnconditional()) { 1790 // Update machine-CFG edges. 1791 BrMBB->addSuccessor(Succ0MBB); 1792 1793 // If this is not a fall-through branch or optimizations are switched off, 1794 // emit the branch. 1795 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1796 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1797 MVT::Other, getControlRoot(), 1798 DAG.getBasicBlock(Succ0MBB))); 1799 1800 return; 1801 } 1802 1803 // If this condition is one of the special cases we handle, do special stuff 1804 // now. 1805 const Value *CondVal = I.getCondition(); 1806 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1807 1808 // If this is a series of conditions that are or'd or and'd together, emit 1809 // this as a sequence of branches instead of setcc's with and/or operations. 1810 // As long as jumps are not expensive, this should improve performance. 1811 // For example, instead of something like: 1812 // cmp A, B 1813 // C = seteq 1814 // cmp D, E 1815 // F = setle 1816 // or C, F 1817 // jnz foo 1818 // Emit: 1819 // cmp A, B 1820 // je foo 1821 // cmp D, E 1822 // jle foo 1823 // 1824 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1825 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1827 !I.getMetadata(LLVMContext::MD_unpredictable) && 1828 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1829 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1830 Opcode, 1831 getEdgeProbability(BrMBB, Succ0MBB), 1832 getEdgeProbability(BrMBB, Succ1MBB)); 1833 // If the compares in later blocks need to use values not currently 1834 // exported from this block, export them now. This block should always 1835 // be the first entry. 1836 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1837 1838 // Allow some cases to be rejected. 1839 if (ShouldEmitAsBranches(SwitchCases)) { 1840 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1841 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1842 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1843 } 1844 1845 // Emit the branch for this block. 1846 visitSwitchCase(SwitchCases[0], BrMBB); 1847 SwitchCases.erase(SwitchCases.begin()); 1848 return; 1849 } 1850 1851 // Okay, we decided not to do this, remove any inserted MBB's and clear 1852 // SwitchCases. 1853 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1854 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1855 1856 SwitchCases.clear(); 1857 } 1858 } 1859 1860 // Create a CaseBlock record representing this branch. 1861 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1862 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1863 1864 // Use visitSwitchCase to actually insert the fast branch sequence for this 1865 // cond branch. 1866 visitSwitchCase(CB, BrMBB); 1867 } 1868 1869 /// visitSwitchCase - Emits the necessary code to represent a single node in 1870 /// the binary search tree resulting from lowering a switch instruction. 1871 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1872 MachineBasicBlock *SwitchBB) { 1873 SDValue Cond; 1874 SDValue CondLHS = getValue(CB.CmpLHS); 1875 SDLoc dl = getCurSDLoc(); 1876 1877 // Build the setcc now. 1878 if (!CB.CmpMHS) { 1879 // Fold "(X == true)" to X and "(X == false)" to !X to 1880 // handle common cases produced by branch lowering. 1881 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1882 CB.CC == ISD::SETEQ) 1883 Cond = CondLHS; 1884 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1885 CB.CC == ISD::SETEQ) { 1886 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1887 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1888 } else 1889 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1890 } else { 1891 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1892 1893 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1894 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1895 1896 SDValue CmpOp = getValue(CB.CmpMHS); 1897 EVT VT = CmpOp.getValueType(); 1898 1899 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1900 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1901 ISD::SETLE); 1902 } else { 1903 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1904 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1905 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1906 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1907 } 1908 } 1909 1910 // Update successor info 1911 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1912 // TrueBB and FalseBB are always different unless the incoming IR is 1913 // degenerate. This only happens when running llc on weird IR. 1914 if (CB.TrueBB != CB.FalseBB) 1915 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1916 SwitchBB->normalizeSuccProbs(); 1917 1918 // If the lhs block is the next block, invert the condition so that we can 1919 // fall through to the lhs instead of the rhs block. 1920 if (CB.TrueBB == NextBlock(SwitchBB)) { 1921 std::swap(CB.TrueBB, CB.FalseBB); 1922 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1923 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1924 } 1925 1926 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1927 MVT::Other, getControlRoot(), Cond, 1928 DAG.getBasicBlock(CB.TrueBB)); 1929 1930 // Insert the false branch. Do this even if it's a fall through branch, 1931 // this makes it easier to do DAG optimizations which require inverting 1932 // the branch condition. 1933 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1934 DAG.getBasicBlock(CB.FalseBB)); 1935 1936 DAG.setRoot(BrCond); 1937 } 1938 1939 /// visitJumpTable - Emit JumpTable node in the current MBB 1940 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1941 // Emit the code for the jump table 1942 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1943 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1944 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1945 JT.Reg, PTy); 1946 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1947 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1948 MVT::Other, Index.getValue(1), 1949 Table, Index); 1950 DAG.setRoot(BrJumpTable); 1951 } 1952 1953 /// visitJumpTableHeader - This function emits necessary code to produce index 1954 /// in the JumpTable from switch case. 1955 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1956 JumpTableHeader &JTH, 1957 MachineBasicBlock *SwitchBB) { 1958 SDLoc dl = getCurSDLoc(); 1959 1960 // Subtract the lowest switch case value from the value being switched on and 1961 // conditional branch to default mbb if the result is greater than the 1962 // difference between smallest and largest cases. 1963 SDValue SwitchOp = getValue(JTH.SValue); 1964 EVT VT = SwitchOp.getValueType(); 1965 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1966 DAG.getConstant(JTH.First, dl, VT)); 1967 1968 // The SDNode we just created, which holds the value being switched on minus 1969 // the smallest case value, needs to be copied to a virtual register so it 1970 // can be used as an index into the jump table in a subsequent basic block. 1971 // This value may be smaller or larger than the target's pointer type, and 1972 // therefore require extension or truncating. 1973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1974 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1975 1976 unsigned JumpTableReg = 1977 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1978 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1979 JumpTableReg, SwitchOp); 1980 JT.Reg = JumpTableReg; 1981 1982 // Emit the range check for the jump table, and branch to the default block 1983 // for the switch statement if the value being switched on exceeds the largest 1984 // case in the switch. 1985 SDValue CMP = DAG.getSetCC( 1986 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1987 Sub.getValueType()), 1988 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1989 1990 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1991 MVT::Other, CopyTo, CMP, 1992 DAG.getBasicBlock(JT.Default)); 1993 1994 // Avoid emitting unnecessary branches to the next block. 1995 if (JT.MBB != NextBlock(SwitchBB)) 1996 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1997 DAG.getBasicBlock(JT.MBB)); 1998 1999 DAG.setRoot(BrCond); 2000 } 2001 2002 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2003 /// variable if there exists one. 2004 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2005 SDValue &Chain) { 2006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2007 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2008 MachineFunction &MF = DAG.getMachineFunction(); 2009 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2010 MachineSDNode *Node = 2011 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2012 if (Global) { 2013 MachinePointerInfo MPInfo(Global); 2014 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2015 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 2016 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2017 DAG.getEVTAlignment(PtrTy)); 2018 Node->setMemRefs(MemRefs, MemRefs + 1); 2019 } 2020 return SDValue(Node, 0); 2021 } 2022 2023 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2024 /// tail spliced into a stack protector check success bb. 2025 /// 2026 /// For a high level explanation of how this fits into the stack protector 2027 /// generation see the comment on the declaration of class 2028 /// StackProtectorDescriptor. 2029 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2030 MachineBasicBlock *ParentBB) { 2031 2032 // First create the loads to the guard/stack slot for the comparison. 2033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2034 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2035 2036 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2037 int FI = MFI->getStackProtectorIndex(); 2038 2039 SDValue Guard; 2040 SDLoc dl = getCurSDLoc(); 2041 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2042 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2043 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2044 2045 // Generate code to load the content of the guard slot. 2046 SDValue StackSlot = DAG.getLoad( 2047 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2048 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2049 MachineMemOperand::MOVolatile); 2050 2051 // Retrieve guard check function, nullptr if instrumentation is inlined. 2052 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2053 // The target provides a guard check function to validate the guard value. 2054 // Generate a call to that function with the content of the guard slot as 2055 // argument. 2056 auto *Fn = cast<Function>(GuardCheck); 2057 FunctionType *FnTy = Fn->getFunctionType(); 2058 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2059 2060 TargetLowering::ArgListTy Args; 2061 TargetLowering::ArgListEntry Entry; 2062 Entry.Node = StackSlot; 2063 Entry.Ty = FnTy->getParamType(0); 2064 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2065 Entry.isInReg = true; 2066 Args.push_back(Entry); 2067 2068 TargetLowering::CallLoweringInfo CLI(DAG); 2069 CLI.setDebugLoc(getCurSDLoc()) 2070 .setChain(DAG.getEntryNode()) 2071 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2072 getValue(GuardCheck), std::move(Args)); 2073 2074 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2075 DAG.setRoot(Result.second); 2076 return; 2077 } 2078 2079 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2080 // Otherwise, emit a volatile load to retrieve the stack guard value. 2081 SDValue Chain = DAG.getEntryNode(); 2082 if (TLI.useLoadStackGuardNode()) { 2083 Guard = getLoadStackGuard(DAG, dl, Chain); 2084 } else { 2085 const Value *IRGuard = TLI.getSDagStackGuard(M); 2086 SDValue GuardPtr = getValue(IRGuard); 2087 2088 Guard = 2089 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2090 Align, MachineMemOperand::MOVolatile); 2091 } 2092 2093 // Perform the comparison via a subtract/getsetcc. 2094 EVT VT = Guard.getValueType(); 2095 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2096 2097 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2098 *DAG.getContext(), 2099 Sub.getValueType()), 2100 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2101 2102 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2103 // branch to failure MBB. 2104 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2105 MVT::Other, StackSlot.getOperand(0), 2106 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2107 // Otherwise branch to success MBB. 2108 SDValue Br = DAG.getNode(ISD::BR, dl, 2109 MVT::Other, BrCond, 2110 DAG.getBasicBlock(SPD.getSuccessMBB())); 2111 2112 DAG.setRoot(Br); 2113 } 2114 2115 /// Codegen the failure basic block for a stack protector check. 2116 /// 2117 /// A failure stack protector machine basic block consists simply of a call to 2118 /// __stack_chk_fail(). 2119 /// 2120 /// For a high level explanation of how this fits into the stack protector 2121 /// generation see the comment on the declaration of class 2122 /// StackProtectorDescriptor. 2123 void 2124 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2126 SDValue Chain = 2127 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2128 None, false, getCurSDLoc(), false, false).second; 2129 DAG.setRoot(Chain); 2130 } 2131 2132 /// visitBitTestHeader - This function emits necessary code to produce value 2133 /// suitable for "bit tests" 2134 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2135 MachineBasicBlock *SwitchBB) { 2136 SDLoc dl = getCurSDLoc(); 2137 2138 // Subtract the minimum value 2139 SDValue SwitchOp = getValue(B.SValue); 2140 EVT VT = SwitchOp.getValueType(); 2141 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2142 DAG.getConstant(B.First, dl, VT)); 2143 2144 // Check range 2145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2146 SDValue RangeCmp = DAG.getSetCC( 2147 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2148 Sub.getValueType()), 2149 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2150 2151 // Determine the type of the test operands. 2152 bool UsePtrType = false; 2153 if (!TLI.isTypeLegal(VT)) 2154 UsePtrType = true; 2155 else { 2156 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2157 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2158 // Switch table case range are encoded into series of masks. 2159 // Just use pointer type, it's guaranteed to fit. 2160 UsePtrType = true; 2161 break; 2162 } 2163 } 2164 if (UsePtrType) { 2165 VT = TLI.getPointerTy(DAG.getDataLayout()); 2166 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2167 } 2168 2169 B.RegVT = VT.getSimpleVT(); 2170 B.Reg = FuncInfo.CreateReg(B.RegVT); 2171 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2172 2173 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2174 2175 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2176 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2177 SwitchBB->normalizeSuccProbs(); 2178 2179 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2180 MVT::Other, CopyTo, RangeCmp, 2181 DAG.getBasicBlock(B.Default)); 2182 2183 // Avoid emitting unnecessary branches to the next block. 2184 if (MBB != NextBlock(SwitchBB)) 2185 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2186 DAG.getBasicBlock(MBB)); 2187 2188 DAG.setRoot(BrRange); 2189 } 2190 2191 /// visitBitTestCase - this function produces one "bit test" 2192 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2193 MachineBasicBlock* NextMBB, 2194 BranchProbability BranchProbToNext, 2195 unsigned Reg, 2196 BitTestCase &B, 2197 MachineBasicBlock *SwitchBB) { 2198 SDLoc dl = getCurSDLoc(); 2199 MVT VT = BB.RegVT; 2200 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2201 SDValue Cmp; 2202 unsigned PopCount = countPopulation(B.Mask); 2203 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2204 if (PopCount == 1) { 2205 // Testing for a single bit; just compare the shift count with what it 2206 // would need to be to shift a 1 bit in that position. 2207 Cmp = DAG.getSetCC( 2208 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2209 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2210 ISD::SETEQ); 2211 } else if (PopCount == BB.Range) { 2212 // There is only one zero bit in the range, test for it directly. 2213 Cmp = DAG.getSetCC( 2214 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2215 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2216 ISD::SETNE); 2217 } else { 2218 // Make desired shift 2219 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2220 DAG.getConstant(1, dl, VT), ShiftOp); 2221 2222 // Emit bit tests and jumps 2223 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2224 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2225 Cmp = DAG.getSetCC( 2226 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2227 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2228 } 2229 2230 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2231 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2232 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2233 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2234 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2235 // one as they are relative probabilities (and thus work more like weights), 2236 // and hence we need to normalize them to let the sum of them become one. 2237 SwitchBB->normalizeSuccProbs(); 2238 2239 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2240 MVT::Other, getControlRoot(), 2241 Cmp, DAG.getBasicBlock(B.TargetBB)); 2242 2243 // Avoid emitting unnecessary branches to the next block. 2244 if (NextMBB != NextBlock(SwitchBB)) 2245 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2246 DAG.getBasicBlock(NextMBB)); 2247 2248 DAG.setRoot(BrAnd); 2249 } 2250 2251 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2252 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2253 2254 // Retrieve successors. Look through artificial IR level blocks like 2255 // catchswitch for successors. 2256 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 const BasicBlock *EHPadBB = I.getSuccessor(1); 2258 2259 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2260 // have to do anything here to lower funclet bundles. 2261 assert(!I.hasOperandBundlesOtherThan( 2262 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2263 "Cannot lower invokes with arbitrary operand bundles yet!"); 2264 2265 const Value *Callee(I.getCalledValue()); 2266 const Function *Fn = dyn_cast<Function>(Callee); 2267 if (isa<InlineAsm>(Callee)) 2268 visitInlineAsm(&I); 2269 else if (Fn && Fn->isIntrinsic()) { 2270 switch (Fn->getIntrinsicID()) { 2271 default: 2272 llvm_unreachable("Cannot invoke this intrinsic"); 2273 case Intrinsic::donothing: 2274 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2275 break; 2276 case Intrinsic::experimental_patchpoint_void: 2277 case Intrinsic::experimental_patchpoint_i64: 2278 visitPatchpoint(&I, EHPadBB); 2279 break; 2280 case Intrinsic::experimental_gc_statepoint: 2281 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2282 break; 2283 } 2284 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2285 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2286 // Eventually we will support lowering the @llvm.experimental.deoptimize 2287 // intrinsic, and right now there are no plans to support other intrinsics 2288 // with deopt state. 2289 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2290 } else { 2291 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2292 } 2293 2294 // If the value of the invoke is used outside of its defining block, make it 2295 // available as a virtual register. 2296 // We already took care of the exported value for the statepoint instruction 2297 // during call to the LowerStatepoint. 2298 if (!isStatepoint(I)) { 2299 CopyToExportRegsIfNeeded(&I); 2300 } 2301 2302 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2303 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2304 BranchProbability EHPadBBProb = 2305 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2306 : BranchProbability::getZero(); 2307 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2308 2309 // Update successor info. 2310 addSuccessorWithProb(InvokeMBB, Return); 2311 for (auto &UnwindDest : UnwindDests) { 2312 UnwindDest.first->setIsEHPad(); 2313 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2314 } 2315 InvokeMBB->normalizeSuccProbs(); 2316 2317 // Drop into normal successor. 2318 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2319 MVT::Other, getControlRoot(), 2320 DAG.getBasicBlock(Return))); 2321 } 2322 2323 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2324 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2325 } 2326 2327 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2328 assert(FuncInfo.MBB->isEHPad() && 2329 "Call to landingpad not in landing pad!"); 2330 2331 MachineBasicBlock *MBB = FuncInfo.MBB; 2332 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2333 AddLandingPadInfo(LP, MMI, MBB); 2334 2335 // If there aren't registers to copy the values into (e.g., during SjLj 2336 // exceptions), then don't bother to create these DAG nodes. 2337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2338 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2339 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2340 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2341 return; 2342 2343 // If landingpad's return type is token type, we don't create DAG nodes 2344 // for its exception pointer and selector value. The extraction of exception 2345 // pointer or selector value from token type landingpads is not currently 2346 // supported. 2347 if (LP.getType()->isTokenTy()) 2348 return; 2349 2350 SmallVector<EVT, 2> ValueVTs; 2351 SDLoc dl = getCurSDLoc(); 2352 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2353 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2354 2355 // Get the two live-in registers as SDValues. The physregs have already been 2356 // copied into virtual registers. 2357 SDValue Ops[2]; 2358 if (FuncInfo.ExceptionPointerVirtReg) { 2359 Ops[0] = DAG.getZExtOrTrunc( 2360 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2361 FuncInfo.ExceptionPointerVirtReg, 2362 TLI.getPointerTy(DAG.getDataLayout())), 2363 dl, ValueVTs[0]); 2364 } else { 2365 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2366 } 2367 Ops[1] = DAG.getZExtOrTrunc( 2368 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2369 FuncInfo.ExceptionSelectorVirtReg, 2370 TLI.getPointerTy(DAG.getDataLayout())), 2371 dl, ValueVTs[1]); 2372 2373 // Merge into one. 2374 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2375 DAG.getVTList(ValueVTs), Ops); 2376 setValue(&LP, Res); 2377 } 2378 2379 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2380 #ifndef NDEBUG 2381 for (const CaseCluster &CC : Clusters) 2382 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2383 #endif 2384 2385 std::sort(Clusters.begin(), Clusters.end(), 2386 [](const CaseCluster &a, const CaseCluster &b) { 2387 return a.Low->getValue().slt(b.Low->getValue()); 2388 }); 2389 2390 // Merge adjacent clusters with the same destination. 2391 const unsigned N = Clusters.size(); 2392 unsigned DstIndex = 0; 2393 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2394 CaseCluster &CC = Clusters[SrcIndex]; 2395 const ConstantInt *CaseVal = CC.Low; 2396 MachineBasicBlock *Succ = CC.MBB; 2397 2398 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2399 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2400 // If this case has the same successor and is a neighbour, merge it into 2401 // the previous cluster. 2402 Clusters[DstIndex - 1].High = CaseVal; 2403 Clusters[DstIndex - 1].Prob += CC.Prob; 2404 } else { 2405 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2406 sizeof(Clusters[SrcIndex])); 2407 } 2408 } 2409 Clusters.resize(DstIndex); 2410 } 2411 2412 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2413 MachineBasicBlock *Last) { 2414 // Update JTCases. 2415 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2416 if (JTCases[i].first.HeaderBB == First) 2417 JTCases[i].first.HeaderBB = Last; 2418 2419 // Update BitTestCases. 2420 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2421 if (BitTestCases[i].Parent == First) 2422 BitTestCases[i].Parent = Last; 2423 } 2424 2425 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2426 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2427 2428 // Update machine-CFG edges with unique successors. 2429 SmallSet<BasicBlock*, 32> Done; 2430 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2431 BasicBlock *BB = I.getSuccessor(i); 2432 bool Inserted = Done.insert(BB).second; 2433 if (!Inserted) 2434 continue; 2435 2436 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2437 addSuccessorWithProb(IndirectBrMBB, Succ); 2438 } 2439 IndirectBrMBB->normalizeSuccProbs(); 2440 2441 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2442 MVT::Other, getControlRoot(), 2443 getValue(I.getAddress()))); 2444 } 2445 2446 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2447 if (DAG.getTarget().Options.TrapUnreachable) 2448 DAG.setRoot( 2449 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2450 } 2451 2452 void SelectionDAGBuilder::visitFSub(const User &I) { 2453 // -0.0 - X --> fneg 2454 Type *Ty = I.getType(); 2455 if (isa<Constant>(I.getOperand(0)) && 2456 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2457 SDValue Op2 = getValue(I.getOperand(1)); 2458 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2459 Op2.getValueType(), Op2)); 2460 return; 2461 } 2462 2463 visitBinary(I, ISD::FSUB); 2464 } 2465 2466 /// Checks if the given instruction performs a vector reduction, in which case 2467 /// we have the freedom to alter the elements in the result as long as the 2468 /// reduction of them stays unchanged. 2469 static bool isVectorReductionOp(const User *I) { 2470 const Instruction *Inst = dyn_cast<Instruction>(I); 2471 if (!Inst || !Inst->getType()->isVectorTy()) 2472 return false; 2473 2474 auto OpCode = Inst->getOpcode(); 2475 switch (OpCode) { 2476 case Instruction::Add: 2477 case Instruction::Mul: 2478 case Instruction::And: 2479 case Instruction::Or: 2480 case Instruction::Xor: 2481 break; 2482 case Instruction::FAdd: 2483 case Instruction::FMul: 2484 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2485 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2486 break; 2487 // Fall through. 2488 default: 2489 return false; 2490 } 2491 2492 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2493 unsigned ElemNumToReduce = ElemNum; 2494 2495 // Do DFS search on the def-use chain from the given instruction. We only 2496 // allow four kinds of operations during the search until we reach the 2497 // instruction that extracts the first element from the vector: 2498 // 2499 // 1. The reduction operation of the same opcode as the given instruction. 2500 // 2501 // 2. PHI node. 2502 // 2503 // 3. ShuffleVector instruction together with a reduction operation that 2504 // does a partial reduction. 2505 // 2506 // 4. ExtractElement that extracts the first element from the vector, and we 2507 // stop searching the def-use chain here. 2508 // 2509 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2510 // from 1-3 to the stack to continue the DFS. The given instruction is not 2511 // a reduction operation if we meet any other instructions other than those 2512 // listed above. 2513 2514 SmallVector<const User *, 16> UsersToVisit{Inst}; 2515 SmallPtrSet<const User *, 16> Visited; 2516 bool ReduxExtracted = false; 2517 2518 while (!UsersToVisit.empty()) { 2519 auto User = UsersToVisit.back(); 2520 UsersToVisit.pop_back(); 2521 if (!Visited.insert(User).second) 2522 continue; 2523 2524 for (const auto &U : User->users()) { 2525 auto Inst = dyn_cast<Instruction>(U); 2526 if (!Inst) 2527 return false; 2528 2529 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2530 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2531 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2532 return false; 2533 UsersToVisit.push_back(U); 2534 } else if (const ShuffleVectorInst *ShufInst = 2535 dyn_cast<ShuffleVectorInst>(U)) { 2536 // Detect the following pattern: A ShuffleVector instruction together 2537 // with a reduction that do partial reduction on the first and second 2538 // ElemNumToReduce / 2 elements, and store the result in 2539 // ElemNumToReduce / 2 elements in another vector. 2540 2541 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2542 if (ResultElements < ElemNum) 2543 return false; 2544 2545 if (ElemNumToReduce == 1) 2546 return false; 2547 if (!isa<UndefValue>(U->getOperand(1))) 2548 return false; 2549 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2550 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2551 return false; 2552 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2553 if (ShufInst->getMaskValue(i) != -1) 2554 return false; 2555 2556 // There is only one user of this ShuffleVector instruction, which 2557 // must be a reduction operation. 2558 if (!U->hasOneUse()) 2559 return false; 2560 2561 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2562 if (!U2 || U2->getOpcode() != OpCode) 2563 return false; 2564 2565 // Check operands of the reduction operation. 2566 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2567 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2568 UsersToVisit.push_back(U2); 2569 ElemNumToReduce /= 2; 2570 } else 2571 return false; 2572 } else if (isa<ExtractElementInst>(U)) { 2573 // At this moment we should have reduced all elements in the vector. 2574 if (ElemNumToReduce != 1) 2575 return false; 2576 2577 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2578 if (!Val || Val->getZExtValue() != 0) 2579 return false; 2580 2581 ReduxExtracted = true; 2582 } else 2583 return false; 2584 } 2585 } 2586 return ReduxExtracted; 2587 } 2588 2589 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2590 SDValue Op1 = getValue(I.getOperand(0)); 2591 SDValue Op2 = getValue(I.getOperand(1)); 2592 2593 bool nuw = false; 2594 bool nsw = false; 2595 bool exact = false; 2596 bool vec_redux = false; 2597 FastMathFlags FMF; 2598 2599 if (const OverflowingBinaryOperator *OFBinOp = 2600 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2601 nuw = OFBinOp->hasNoUnsignedWrap(); 2602 nsw = OFBinOp->hasNoSignedWrap(); 2603 } 2604 if (const PossiblyExactOperator *ExactOp = 2605 dyn_cast<const PossiblyExactOperator>(&I)) 2606 exact = ExactOp->isExact(); 2607 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2608 FMF = FPOp->getFastMathFlags(); 2609 2610 if (isVectorReductionOp(&I)) { 2611 vec_redux = true; 2612 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2613 } 2614 2615 SDNodeFlags Flags; 2616 Flags.setExact(exact); 2617 Flags.setNoSignedWrap(nsw); 2618 Flags.setNoUnsignedWrap(nuw); 2619 Flags.setVectorReduction(vec_redux); 2620 if (EnableFMFInDAG) { 2621 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2622 Flags.setNoInfs(FMF.noInfs()); 2623 Flags.setNoNaNs(FMF.noNaNs()); 2624 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2625 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2626 } 2627 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2628 Op1, Op2, &Flags); 2629 setValue(&I, BinNodeValue); 2630 } 2631 2632 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2633 SDValue Op1 = getValue(I.getOperand(0)); 2634 SDValue Op2 = getValue(I.getOperand(1)); 2635 2636 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2637 Op2.getValueType(), DAG.getDataLayout()); 2638 2639 // Coerce the shift amount to the right type if we can. 2640 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2641 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2642 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2643 SDLoc DL = getCurSDLoc(); 2644 2645 // If the operand is smaller than the shift count type, promote it. 2646 if (ShiftSize > Op2Size) 2647 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2648 2649 // If the operand is larger than the shift count type but the shift 2650 // count type has enough bits to represent any shift value, truncate 2651 // it now. This is a common case and it exposes the truncate to 2652 // optimization early. 2653 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2654 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2655 // Otherwise we'll need to temporarily settle for some other convenient 2656 // type. Type legalization will make adjustments once the shiftee is split. 2657 else 2658 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2659 } 2660 2661 bool nuw = false; 2662 bool nsw = false; 2663 bool exact = false; 2664 2665 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2666 2667 if (const OverflowingBinaryOperator *OFBinOp = 2668 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2669 nuw = OFBinOp->hasNoUnsignedWrap(); 2670 nsw = OFBinOp->hasNoSignedWrap(); 2671 } 2672 if (const PossiblyExactOperator *ExactOp = 2673 dyn_cast<const PossiblyExactOperator>(&I)) 2674 exact = ExactOp->isExact(); 2675 } 2676 SDNodeFlags Flags; 2677 Flags.setExact(exact); 2678 Flags.setNoSignedWrap(nsw); 2679 Flags.setNoUnsignedWrap(nuw); 2680 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2681 &Flags); 2682 setValue(&I, Res); 2683 } 2684 2685 void SelectionDAGBuilder::visitSDiv(const User &I) { 2686 SDValue Op1 = getValue(I.getOperand(0)); 2687 SDValue Op2 = getValue(I.getOperand(1)); 2688 2689 SDNodeFlags Flags; 2690 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2691 cast<PossiblyExactOperator>(&I)->isExact()); 2692 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2693 Op2, &Flags)); 2694 } 2695 2696 void SelectionDAGBuilder::visitICmp(const User &I) { 2697 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2698 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2699 predicate = IC->getPredicate(); 2700 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2701 predicate = ICmpInst::Predicate(IC->getPredicate()); 2702 SDValue Op1 = getValue(I.getOperand(0)); 2703 SDValue Op2 = getValue(I.getOperand(1)); 2704 ISD::CondCode Opcode = getICmpCondCode(predicate); 2705 2706 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2707 I.getType()); 2708 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2709 } 2710 2711 void SelectionDAGBuilder::visitFCmp(const User &I) { 2712 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2713 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2714 predicate = FC->getPredicate(); 2715 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2716 predicate = FCmpInst::Predicate(FC->getPredicate()); 2717 SDValue Op1 = getValue(I.getOperand(0)); 2718 SDValue Op2 = getValue(I.getOperand(1)); 2719 ISD::CondCode Condition = getFCmpCondCode(predicate); 2720 2721 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2722 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2723 // further optimization, but currently FMF is only applicable to binary nodes. 2724 if (TM.Options.NoNaNsFPMath) 2725 Condition = getFCmpCodeWithoutNaN(Condition); 2726 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2727 I.getType()); 2728 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2729 } 2730 2731 // Check if the condition of the select has one use or two users that are both 2732 // selects with the same condition. 2733 static bool hasOnlySelectUsers(const Value *Cond) { 2734 return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) { 2735 return isa<SelectInst>(V); 2736 }); 2737 } 2738 2739 void SelectionDAGBuilder::visitSelect(const User &I) { 2740 SmallVector<EVT, 4> ValueVTs; 2741 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2742 ValueVTs); 2743 unsigned NumValues = ValueVTs.size(); 2744 if (NumValues == 0) return; 2745 2746 SmallVector<SDValue, 4> Values(NumValues); 2747 SDValue Cond = getValue(I.getOperand(0)); 2748 SDValue LHSVal = getValue(I.getOperand(1)); 2749 SDValue RHSVal = getValue(I.getOperand(2)); 2750 auto BaseOps = {Cond}; 2751 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2752 ISD::VSELECT : ISD::SELECT; 2753 2754 // Min/max matching is only viable if all output VTs are the same. 2755 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2756 EVT VT = ValueVTs[0]; 2757 LLVMContext &Ctx = *DAG.getContext(); 2758 auto &TLI = DAG.getTargetLoweringInfo(); 2759 2760 // We care about the legality of the operation after it has been type 2761 // legalized. 2762 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2763 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2764 VT = TLI.getTypeToTransformTo(Ctx, VT); 2765 2766 // If the vselect is legal, assume we want to leave this as a vector setcc + 2767 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2768 // min/max is legal on the scalar type. 2769 bool UseScalarMinMax = VT.isVector() && 2770 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2771 2772 Value *LHS, *RHS; 2773 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2774 ISD::NodeType Opc = ISD::DELETED_NODE; 2775 switch (SPR.Flavor) { 2776 case SPF_UMAX: Opc = ISD::UMAX; break; 2777 case SPF_UMIN: Opc = ISD::UMIN; break; 2778 case SPF_SMAX: Opc = ISD::SMAX; break; 2779 case SPF_SMIN: Opc = ISD::SMIN; break; 2780 case SPF_FMINNUM: 2781 switch (SPR.NaNBehavior) { 2782 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2783 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2784 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2785 case SPNB_RETURNS_ANY: { 2786 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2787 Opc = ISD::FMINNUM; 2788 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2789 Opc = ISD::FMINNAN; 2790 else if (UseScalarMinMax) 2791 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2792 ISD::FMINNUM : ISD::FMINNAN; 2793 break; 2794 } 2795 } 2796 break; 2797 case SPF_FMAXNUM: 2798 switch (SPR.NaNBehavior) { 2799 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2800 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2801 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2802 case SPNB_RETURNS_ANY: 2803 2804 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2805 Opc = ISD::FMAXNUM; 2806 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2807 Opc = ISD::FMAXNAN; 2808 else if (UseScalarMinMax) 2809 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2810 ISD::FMAXNUM : ISD::FMAXNAN; 2811 break; 2812 } 2813 break; 2814 default: break; 2815 } 2816 2817 if (Opc != ISD::DELETED_NODE && 2818 (TLI.isOperationLegalOrCustom(Opc, VT) || 2819 (UseScalarMinMax && 2820 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2821 // If the underlying comparison instruction is used by any other 2822 // instruction, the consumed instructions won't be destroyed, so it is 2823 // not profitable to convert to a min/max. 2824 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2825 OpCode = Opc; 2826 LHSVal = getValue(LHS); 2827 RHSVal = getValue(RHS); 2828 BaseOps = {}; 2829 } 2830 } 2831 2832 for (unsigned i = 0; i != NumValues; ++i) { 2833 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2834 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2835 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2836 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2837 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2838 Ops); 2839 } 2840 2841 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2842 DAG.getVTList(ValueVTs), Values)); 2843 } 2844 2845 void SelectionDAGBuilder::visitTrunc(const User &I) { 2846 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2847 SDValue N = getValue(I.getOperand(0)); 2848 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2849 I.getType()); 2850 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2851 } 2852 2853 void SelectionDAGBuilder::visitZExt(const User &I) { 2854 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2855 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2856 SDValue N = getValue(I.getOperand(0)); 2857 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2858 I.getType()); 2859 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2860 } 2861 2862 void SelectionDAGBuilder::visitSExt(const User &I) { 2863 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2864 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2865 SDValue N = getValue(I.getOperand(0)); 2866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2867 I.getType()); 2868 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2869 } 2870 2871 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2872 // FPTrunc is never a no-op cast, no need to check 2873 SDValue N = getValue(I.getOperand(0)); 2874 SDLoc dl = getCurSDLoc(); 2875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2876 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2877 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2878 DAG.getTargetConstant( 2879 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2880 } 2881 2882 void SelectionDAGBuilder::visitFPExt(const User &I) { 2883 // FPExt is never a no-op cast, no need to check 2884 SDValue N = getValue(I.getOperand(0)); 2885 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2886 I.getType()); 2887 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2888 } 2889 2890 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2891 // FPToUI is never a no-op cast, no need to check 2892 SDValue N = getValue(I.getOperand(0)); 2893 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2894 I.getType()); 2895 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2896 } 2897 2898 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2899 // FPToSI is never a no-op cast, no need to check 2900 SDValue N = getValue(I.getOperand(0)); 2901 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2902 I.getType()); 2903 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2904 } 2905 2906 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2907 // UIToFP is never a no-op cast, no need to check 2908 SDValue N = getValue(I.getOperand(0)); 2909 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2910 I.getType()); 2911 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2912 } 2913 2914 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2915 // SIToFP is never a no-op cast, no need to check 2916 SDValue N = getValue(I.getOperand(0)); 2917 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2918 I.getType()); 2919 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2920 } 2921 2922 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2923 // What to do depends on the size of the integer and the size of the pointer. 2924 // We can either truncate, zero extend, or no-op, accordingly. 2925 SDValue N = getValue(I.getOperand(0)); 2926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2927 I.getType()); 2928 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2929 } 2930 2931 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2932 // What to do depends on the size of the integer and the size of the pointer. 2933 // We can either truncate, zero extend, or no-op, accordingly. 2934 SDValue N = getValue(I.getOperand(0)); 2935 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2936 I.getType()); 2937 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2938 } 2939 2940 void SelectionDAGBuilder::visitBitCast(const User &I) { 2941 SDValue N = getValue(I.getOperand(0)); 2942 SDLoc dl = getCurSDLoc(); 2943 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2944 I.getType()); 2945 2946 // BitCast assures us that source and destination are the same size so this is 2947 // either a BITCAST or a no-op. 2948 if (DestVT != N.getValueType()) 2949 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2950 DestVT, N)); // convert types. 2951 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2952 // might fold any kind of constant expression to an integer constant and that 2953 // is not what we are looking for. Only regcognize a bitcast of a genuine 2954 // constant integer as an opaque constant. 2955 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2956 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2957 /*isOpaque*/true)); 2958 else 2959 setValue(&I, N); // noop cast. 2960 } 2961 2962 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2964 const Value *SV = I.getOperand(0); 2965 SDValue N = getValue(SV); 2966 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2967 2968 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2969 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2970 2971 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2972 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2973 2974 setValue(&I, N); 2975 } 2976 2977 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 SDValue InVec = getValue(I.getOperand(0)); 2980 SDValue InVal = getValue(I.getOperand(1)); 2981 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2982 TLI.getVectorIdxTy(DAG.getDataLayout())); 2983 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2984 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2985 InVec, InVal, InIdx)); 2986 } 2987 2988 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2990 SDValue InVec = getValue(I.getOperand(0)); 2991 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2992 TLI.getVectorIdxTy(DAG.getDataLayout())); 2993 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2994 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2995 InVec, InIdx)); 2996 } 2997 2998 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2999 SDValue Src1 = getValue(I.getOperand(0)); 3000 SDValue Src2 = getValue(I.getOperand(1)); 3001 3002 SmallVector<int, 8> Mask; 3003 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3004 unsigned MaskNumElts = Mask.size(); 3005 3006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3007 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3008 EVT SrcVT = Src1.getValueType(); 3009 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3010 3011 if (SrcNumElts == MaskNumElts) { 3012 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, Mask)); 3013 return; 3014 } 3015 3016 // Normalize the shuffle vector since mask and vector length don't match. 3017 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3018 // Mask is longer than the source vectors and is a multiple of the source 3019 // vectors. We can use concatenate vector to make the mask and vectors 3020 // lengths match. 3021 3022 unsigned NumConcat = MaskNumElts / SrcNumElts; 3023 3024 // Check if the shuffle is some kind of concatenation of the input vectors. 3025 bool IsConcat = true; 3026 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3027 for (unsigned i = 0; i != MaskNumElts; ++i) { 3028 int Idx = Mask[i]; 3029 if (Idx < 0) 3030 continue; 3031 // Ensure the indices in each SrcVT sized piece are sequential and that 3032 // the same source is used for the whole piece. 3033 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3034 (ConcatSrcs[i / SrcNumElts] >= 0 && 3035 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3036 IsConcat = false; 3037 break; 3038 } 3039 // Remember which source this index came from. 3040 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3041 } 3042 3043 // The shuffle is concatenating multiple vectors together. Just emit 3044 // a CONCAT_VECTORS operation. 3045 if (IsConcat) { 3046 SmallVector<SDValue, 8> ConcatOps; 3047 for (auto Src : ConcatSrcs) { 3048 if (Src < 0) 3049 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3050 else if (Src == 0) 3051 ConcatOps.push_back(Src1); 3052 else 3053 ConcatOps.push_back(Src2); 3054 } 3055 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3056 VT, ConcatOps)); 3057 return; 3058 } 3059 3060 // Pad both vectors with undefs to make them the same length as the mask. 3061 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3062 3063 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3064 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3065 MOps1[0] = Src1; 3066 MOps2[0] = Src2; 3067 3068 Src1 = Src1.isUndef() ? DAG.getUNDEF(VT) 3069 : DAG.getNode(ISD::CONCAT_VECTORS, 3070 getCurSDLoc(), VT, MOps1); 3071 Src2 = Src2.isUndef() ? DAG.getUNDEF(VT) 3072 : DAG.getNode(ISD::CONCAT_VECTORS, 3073 getCurSDLoc(), VT, MOps2); 3074 3075 // Readjust mask for new input vector length. 3076 SmallVector<int, 8> MappedOps; 3077 for (unsigned i = 0; i != MaskNumElts; ++i) { 3078 int Idx = Mask[i]; 3079 if (Idx >= (int)SrcNumElts) 3080 Idx -= SrcNumElts - MaskNumElts; 3081 MappedOps.push_back(Idx); 3082 } 3083 3084 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3085 MappedOps)); 3086 return; 3087 } 3088 3089 if (SrcNumElts > MaskNumElts) { 3090 // Analyze the access pattern of the vector to see if we can extract 3091 // two subvectors and do the shuffle. The analysis is done by calculating 3092 // the range of elements the mask access on both vectors. 3093 int MinRange[2] = { static_cast<int>(SrcNumElts), 3094 static_cast<int>(SrcNumElts)}; 3095 int MaxRange[2] = {-1, -1}; 3096 3097 for (unsigned i = 0; i != MaskNumElts; ++i) { 3098 int Idx = Mask[i]; 3099 unsigned Input = 0; 3100 if (Idx < 0) 3101 continue; 3102 3103 if (Idx >= (int)SrcNumElts) { 3104 Input = 1; 3105 Idx -= SrcNumElts; 3106 } 3107 if (Idx > MaxRange[Input]) 3108 MaxRange[Input] = Idx; 3109 if (Idx < MinRange[Input]) 3110 MinRange[Input] = Idx; 3111 } 3112 3113 // Check if the access is smaller than the vector size and can we find 3114 // a reasonable extract index. 3115 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3116 // Extract. 3117 int StartIdx[2]; // StartIdx to extract from 3118 for (unsigned Input = 0; Input < 2; ++Input) { 3119 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3120 RangeUse[Input] = 0; // Unused 3121 StartIdx[Input] = 0; 3122 continue; 3123 } 3124 3125 // Find a good start index that is a multiple of the mask length. Then 3126 // see if the rest of the elements are in range. 3127 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3128 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3129 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3130 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3131 } 3132 3133 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3134 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3135 return; 3136 } 3137 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3138 // Extract appropriate subvector and generate a vector shuffle 3139 for (unsigned Input = 0; Input < 2; ++Input) { 3140 SDValue &Src = Input == 0 ? Src1 : Src2; 3141 if (RangeUse[Input] == 0) 3142 Src = DAG.getUNDEF(VT); 3143 else { 3144 SDLoc dl = getCurSDLoc(); 3145 Src = DAG.getNode( 3146 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3147 DAG.getConstant(StartIdx[Input], dl, 3148 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3149 } 3150 } 3151 3152 // Calculate new mask. 3153 SmallVector<int, 8> MappedOps; 3154 for (unsigned i = 0; i != MaskNumElts; ++i) { 3155 int Idx = Mask[i]; 3156 if (Idx >= 0) { 3157 if (Idx < (int)SrcNumElts) 3158 Idx -= StartIdx[0]; 3159 else 3160 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3161 } 3162 MappedOps.push_back(Idx); 3163 } 3164 3165 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3166 MappedOps)); 3167 return; 3168 } 3169 } 3170 3171 // We can't use either concat vectors or extract subvectors so fall back to 3172 // replacing the shuffle with extract and build vector. 3173 // to insert and build vector. 3174 EVT EltVT = VT.getVectorElementType(); 3175 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3176 SDLoc dl = getCurSDLoc(); 3177 SmallVector<SDValue,8> Ops; 3178 for (unsigned i = 0; i != MaskNumElts; ++i) { 3179 int Idx = Mask[i]; 3180 SDValue Res; 3181 3182 if (Idx < 0) { 3183 Res = DAG.getUNDEF(EltVT); 3184 } else { 3185 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3186 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3187 3188 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3189 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3190 } 3191 3192 Ops.push_back(Res); 3193 } 3194 3195 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3196 } 3197 3198 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3199 const Value *Op0 = I.getOperand(0); 3200 const Value *Op1 = I.getOperand(1); 3201 Type *AggTy = I.getType(); 3202 Type *ValTy = Op1->getType(); 3203 bool IntoUndef = isa<UndefValue>(Op0); 3204 bool FromUndef = isa<UndefValue>(Op1); 3205 3206 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3207 3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3209 SmallVector<EVT, 4> AggValueVTs; 3210 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3211 SmallVector<EVT, 4> ValValueVTs; 3212 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3213 3214 unsigned NumAggValues = AggValueVTs.size(); 3215 unsigned NumValValues = ValValueVTs.size(); 3216 SmallVector<SDValue, 4> Values(NumAggValues); 3217 3218 // Ignore an insertvalue that produces an empty object 3219 if (!NumAggValues) { 3220 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3221 return; 3222 } 3223 3224 SDValue Agg = getValue(Op0); 3225 unsigned i = 0; 3226 // Copy the beginning value(s) from the original aggregate. 3227 for (; i != LinearIndex; ++i) 3228 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3229 SDValue(Agg.getNode(), Agg.getResNo() + i); 3230 // Copy values from the inserted value(s). 3231 if (NumValValues) { 3232 SDValue Val = getValue(Op1); 3233 for (; i != LinearIndex + NumValValues; ++i) 3234 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3235 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3236 } 3237 // Copy remaining value(s) from the original aggregate. 3238 for (; i != NumAggValues; ++i) 3239 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3240 SDValue(Agg.getNode(), Agg.getResNo() + i); 3241 3242 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3243 DAG.getVTList(AggValueVTs), Values)); 3244 } 3245 3246 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3247 const Value *Op0 = I.getOperand(0); 3248 Type *AggTy = Op0->getType(); 3249 Type *ValTy = I.getType(); 3250 bool OutOfUndef = isa<UndefValue>(Op0); 3251 3252 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3253 3254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3255 SmallVector<EVT, 4> ValValueVTs; 3256 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3257 3258 unsigned NumValValues = ValValueVTs.size(); 3259 3260 // Ignore a extractvalue that produces an empty object 3261 if (!NumValValues) { 3262 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3263 return; 3264 } 3265 3266 SmallVector<SDValue, 4> Values(NumValValues); 3267 3268 SDValue Agg = getValue(Op0); 3269 // Copy out the selected value(s). 3270 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3271 Values[i - LinearIndex] = 3272 OutOfUndef ? 3273 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3274 SDValue(Agg.getNode(), Agg.getResNo() + i); 3275 3276 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3277 DAG.getVTList(ValValueVTs), Values)); 3278 } 3279 3280 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3281 Value *Op0 = I.getOperand(0); 3282 // Note that the pointer operand may be a vector of pointers. Take the scalar 3283 // element which holds a pointer. 3284 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3285 SDValue N = getValue(Op0); 3286 SDLoc dl = getCurSDLoc(); 3287 3288 // Normalize Vector GEP - all scalar operands should be converted to the 3289 // splat vector. 3290 unsigned VectorWidth = I.getType()->isVectorTy() ? 3291 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3292 3293 if (VectorWidth && !N.getValueType().isVector()) { 3294 LLVMContext &Context = *DAG.getContext(); 3295 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3296 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3297 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3298 } 3299 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3300 GTI != E; ++GTI) { 3301 const Value *Idx = GTI.getOperand(); 3302 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3303 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3304 if (Field) { 3305 // N = N + Offset 3306 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3307 3308 // In an inbouds GEP with an offset that is nonnegative even when 3309 // interpreted as signed, assume there is no unsigned overflow. 3310 SDNodeFlags Flags; 3311 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3312 Flags.setNoUnsignedWrap(true); 3313 3314 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3315 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3316 } 3317 } else { 3318 MVT PtrTy = 3319 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3320 unsigned PtrSize = PtrTy.getSizeInBits(); 3321 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3322 3323 // If this is a scalar constant or a splat vector of constants, 3324 // handle it quickly. 3325 const auto *CI = dyn_cast<ConstantInt>(Idx); 3326 if (!CI && isa<ConstantDataVector>(Idx) && 3327 cast<ConstantDataVector>(Idx)->getSplatValue()) 3328 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3329 3330 if (CI) { 3331 if (CI->isZero()) 3332 continue; 3333 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3334 SDValue OffsVal = VectorWidth ? 3335 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3336 DAG.getConstant(Offs, dl, PtrTy); 3337 3338 // In an inbouds GEP with an offset that is nonnegative even when 3339 // interpreted as signed, assume there is no unsigned overflow. 3340 SDNodeFlags Flags; 3341 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3342 Flags.setNoUnsignedWrap(true); 3343 3344 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3345 continue; 3346 } 3347 3348 // N = N + Idx * ElementSize; 3349 SDValue IdxN = getValue(Idx); 3350 3351 if (!IdxN.getValueType().isVector() && VectorWidth) { 3352 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3353 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3354 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3355 } 3356 // If the index is smaller or larger than intptr_t, truncate or extend 3357 // it. 3358 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3359 3360 // If this is a multiply by a power of two, turn it into a shl 3361 // immediately. This is a very common case. 3362 if (ElementSize != 1) { 3363 if (ElementSize.isPowerOf2()) { 3364 unsigned Amt = ElementSize.logBase2(); 3365 IdxN = DAG.getNode(ISD::SHL, dl, 3366 N.getValueType(), IdxN, 3367 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3368 } else { 3369 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3370 IdxN = DAG.getNode(ISD::MUL, dl, 3371 N.getValueType(), IdxN, Scale); 3372 } 3373 } 3374 3375 N = DAG.getNode(ISD::ADD, dl, 3376 N.getValueType(), N, IdxN); 3377 } 3378 } 3379 3380 setValue(&I, N); 3381 } 3382 3383 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3384 // If this is a fixed sized alloca in the entry block of the function, 3385 // allocate it statically on the stack. 3386 if (FuncInfo.StaticAllocaMap.count(&I)) 3387 return; // getValue will auto-populate this. 3388 3389 SDLoc dl = getCurSDLoc(); 3390 Type *Ty = I.getAllocatedType(); 3391 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3392 auto &DL = DAG.getDataLayout(); 3393 uint64_t TySize = DL.getTypeAllocSize(Ty); 3394 unsigned Align = 3395 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3396 3397 SDValue AllocSize = getValue(I.getArraySize()); 3398 3399 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3400 if (AllocSize.getValueType() != IntPtr) 3401 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3402 3403 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3404 AllocSize, 3405 DAG.getConstant(TySize, dl, IntPtr)); 3406 3407 // Handle alignment. If the requested alignment is less than or equal to 3408 // the stack alignment, ignore it. If the size is greater than or equal to 3409 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3410 unsigned StackAlign = 3411 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3412 if (Align <= StackAlign) 3413 Align = 0; 3414 3415 // Round the size of the allocation up to the stack alignment size 3416 // by add SA-1 to the size. This doesn't overflow because we're computing 3417 // an address inside an alloca. 3418 SDNodeFlags Flags; 3419 Flags.setNoUnsignedWrap(true); 3420 AllocSize = DAG.getNode(ISD::ADD, dl, 3421 AllocSize.getValueType(), AllocSize, 3422 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3423 3424 // Mask out the low bits for alignment purposes. 3425 AllocSize = DAG.getNode(ISD::AND, dl, 3426 AllocSize.getValueType(), AllocSize, 3427 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3428 dl)); 3429 3430 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3431 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3432 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3433 setValue(&I, DSA); 3434 DAG.setRoot(DSA.getValue(1)); 3435 3436 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3437 } 3438 3439 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3440 if (I.isAtomic()) 3441 return visitAtomicLoad(I); 3442 3443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3444 const Value *SV = I.getOperand(0); 3445 if (TLI.supportSwiftError()) { 3446 // Swifterror values can come from either a function parameter with 3447 // swifterror attribute or an alloca with swifterror attribute. 3448 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3449 if (Arg->hasSwiftErrorAttr()) 3450 return visitLoadFromSwiftError(I); 3451 } 3452 3453 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3454 if (Alloca->isSwiftError()) 3455 return visitLoadFromSwiftError(I); 3456 } 3457 } 3458 3459 SDValue Ptr = getValue(SV); 3460 3461 Type *Ty = I.getType(); 3462 3463 bool isVolatile = I.isVolatile(); 3464 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3465 3466 // The IR notion of invariant_load only guarantees that all *non-faulting* 3467 // invariant loads result in the same value. The MI notion of invariant load 3468 // guarantees that the load can be legally moved to any location within its 3469 // containing function. The MI notion of invariant_load is stronger than the 3470 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3471 // with a guarantee that the location being loaded from is dereferenceable 3472 // throughout the function's lifetime. 3473 3474 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3475 isDereferenceablePointer(SV, DAG.getDataLayout()); 3476 unsigned Alignment = I.getAlignment(); 3477 3478 AAMDNodes AAInfo; 3479 I.getAAMetadata(AAInfo); 3480 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3481 3482 SmallVector<EVT, 4> ValueVTs; 3483 SmallVector<uint64_t, 4> Offsets; 3484 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3485 unsigned NumValues = ValueVTs.size(); 3486 if (NumValues == 0) 3487 return; 3488 3489 SDValue Root; 3490 bool ConstantMemory = false; 3491 if (isVolatile || NumValues > MaxParallelChains) 3492 // Serialize volatile loads with other side effects. 3493 Root = getRoot(); 3494 else if (AA->pointsToConstantMemory(MemoryLocation( 3495 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3496 // Do not serialize (non-volatile) loads of constant memory with anything. 3497 Root = DAG.getEntryNode(); 3498 ConstantMemory = true; 3499 } else { 3500 // Do not serialize non-volatile loads against each other. 3501 Root = DAG.getRoot(); 3502 } 3503 3504 SDLoc dl = getCurSDLoc(); 3505 3506 if (isVolatile) 3507 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3508 3509 // An aggregate load cannot wrap around the address space, so offsets to its 3510 // parts don't wrap either. 3511 SDNodeFlags Flags; 3512 Flags.setNoUnsignedWrap(true); 3513 3514 SmallVector<SDValue, 4> Values(NumValues); 3515 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3516 EVT PtrVT = Ptr.getValueType(); 3517 unsigned ChainI = 0; 3518 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3519 // Serializing loads here may result in excessive register pressure, and 3520 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3521 // could recover a bit by hoisting nodes upward in the chain by recognizing 3522 // they are side-effect free or do not alias. The optimizer should really 3523 // avoid this case by converting large object/array copies to llvm.memcpy 3524 // (MaxParallelChains should always remain as failsafe). 3525 if (ChainI == MaxParallelChains) { 3526 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3527 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3528 makeArrayRef(Chains.data(), ChainI)); 3529 Root = Chain; 3530 ChainI = 0; 3531 } 3532 SDValue A = DAG.getNode(ISD::ADD, dl, 3533 PtrVT, Ptr, 3534 DAG.getConstant(Offsets[i], dl, PtrVT), 3535 &Flags); 3536 auto MMOFlags = MachineMemOperand::MONone; 3537 if (isVolatile) 3538 MMOFlags |= MachineMemOperand::MOVolatile; 3539 if (isNonTemporal) 3540 MMOFlags |= MachineMemOperand::MONonTemporal; 3541 if (isInvariant) 3542 MMOFlags |= MachineMemOperand::MOInvariant; 3543 3544 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3545 MachinePointerInfo(SV, Offsets[i]), Alignment, 3546 MMOFlags, AAInfo, Ranges); 3547 3548 Values[i] = L; 3549 Chains[ChainI] = L.getValue(1); 3550 } 3551 3552 if (!ConstantMemory) { 3553 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3554 makeArrayRef(Chains.data(), ChainI)); 3555 if (isVolatile) 3556 DAG.setRoot(Chain); 3557 else 3558 PendingLoads.push_back(Chain); 3559 } 3560 3561 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3562 DAG.getVTList(ValueVTs), Values)); 3563 } 3564 3565 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3567 assert(TLI.supportSwiftError() && 3568 "call visitStoreToSwiftError when backend supports swifterror"); 3569 3570 SmallVector<EVT, 4> ValueVTs; 3571 SmallVector<uint64_t, 4> Offsets; 3572 const Value *SrcV = I.getOperand(0); 3573 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3574 SrcV->getType(), ValueVTs, &Offsets); 3575 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3576 "expect a single EVT for swifterror"); 3577 3578 SDValue Src = getValue(SrcV); 3579 // Create a virtual register, then update the virtual register. 3580 auto &DL = DAG.getDataLayout(); 3581 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3582 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3583 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3584 // Chain can be getRoot or getControlRoot. 3585 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3586 SDValue(Src.getNode(), Src.getResNo())); 3587 DAG.setRoot(CopyNode); 3588 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3589 } 3590 3591 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3592 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3593 "call visitLoadFromSwiftError when backend supports swifterror"); 3594 3595 assert(!I.isVolatile() && 3596 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3597 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3598 "Support volatile, non temporal, invariant for load_from_swift_error"); 3599 3600 const Value *SV = I.getOperand(0); 3601 Type *Ty = I.getType(); 3602 AAMDNodes AAInfo; 3603 I.getAAMetadata(AAInfo); 3604 assert(!AA->pointsToConstantMemory(MemoryLocation( 3605 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3606 "load_from_swift_error should not be constant memory"); 3607 3608 SmallVector<EVT, 4> ValueVTs; 3609 SmallVector<uint64_t, 4> Offsets; 3610 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3611 ValueVTs, &Offsets); 3612 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3613 "expect a single EVT for swifterror"); 3614 3615 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3616 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3617 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3618 ValueVTs[0]); 3619 3620 setValue(&I, L); 3621 } 3622 3623 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3624 if (I.isAtomic()) 3625 return visitAtomicStore(I); 3626 3627 const Value *SrcV = I.getOperand(0); 3628 const Value *PtrV = I.getOperand(1); 3629 3630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3631 if (TLI.supportSwiftError()) { 3632 // Swifterror values can come from either a function parameter with 3633 // swifterror attribute or an alloca with swifterror attribute. 3634 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3635 if (Arg->hasSwiftErrorAttr()) 3636 return visitStoreToSwiftError(I); 3637 } 3638 3639 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3640 if (Alloca->isSwiftError()) 3641 return visitStoreToSwiftError(I); 3642 } 3643 } 3644 3645 SmallVector<EVT, 4> ValueVTs; 3646 SmallVector<uint64_t, 4> Offsets; 3647 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3648 SrcV->getType(), ValueVTs, &Offsets); 3649 unsigned NumValues = ValueVTs.size(); 3650 if (NumValues == 0) 3651 return; 3652 3653 // Get the lowered operands. Note that we do this after 3654 // checking if NumResults is zero, because with zero results 3655 // the operands won't have values in the map. 3656 SDValue Src = getValue(SrcV); 3657 SDValue Ptr = getValue(PtrV); 3658 3659 SDValue Root = getRoot(); 3660 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3661 SDLoc dl = getCurSDLoc(); 3662 EVT PtrVT = Ptr.getValueType(); 3663 unsigned Alignment = I.getAlignment(); 3664 AAMDNodes AAInfo; 3665 I.getAAMetadata(AAInfo); 3666 3667 auto MMOFlags = MachineMemOperand::MONone; 3668 if (I.isVolatile()) 3669 MMOFlags |= MachineMemOperand::MOVolatile; 3670 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3671 MMOFlags |= MachineMemOperand::MONonTemporal; 3672 3673 // An aggregate load cannot wrap around the address space, so offsets to its 3674 // parts don't wrap either. 3675 SDNodeFlags Flags; 3676 Flags.setNoUnsignedWrap(true); 3677 3678 unsigned ChainI = 0; 3679 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3680 // See visitLoad comments. 3681 if (ChainI == MaxParallelChains) { 3682 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3683 makeArrayRef(Chains.data(), ChainI)); 3684 Root = Chain; 3685 ChainI = 0; 3686 } 3687 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3688 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3689 SDValue St = DAG.getStore( 3690 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3691 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3692 Chains[ChainI] = St; 3693 } 3694 3695 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3696 makeArrayRef(Chains.data(), ChainI)); 3697 DAG.setRoot(StoreNode); 3698 } 3699 3700 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3701 SDLoc sdl = getCurSDLoc(); 3702 3703 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3704 Value *PtrOperand = I.getArgOperand(1); 3705 SDValue Ptr = getValue(PtrOperand); 3706 SDValue Src0 = getValue(I.getArgOperand(0)); 3707 SDValue Mask = getValue(I.getArgOperand(3)); 3708 EVT VT = Src0.getValueType(); 3709 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3710 if (!Alignment) 3711 Alignment = DAG.getEVTAlignment(VT); 3712 3713 AAMDNodes AAInfo; 3714 I.getAAMetadata(AAInfo); 3715 3716 MachineMemOperand *MMO = 3717 DAG.getMachineFunction(). 3718 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3719 MachineMemOperand::MOStore, VT.getStoreSize(), 3720 Alignment, AAInfo); 3721 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3722 MMO, false); 3723 DAG.setRoot(StoreNode); 3724 setValue(&I, StoreNode); 3725 } 3726 3727 // Get a uniform base for the Gather/Scatter intrinsic. 3728 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3729 // We try to represent it as a base pointer + vector of indices. 3730 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3731 // The first operand of the GEP may be a single pointer or a vector of pointers 3732 // Example: 3733 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3734 // or 3735 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3736 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3737 // 3738 // When the first GEP operand is a single pointer - it is the uniform base we 3739 // are looking for. If first operand of the GEP is a splat vector - we 3740 // extract the spalt value and use it as a uniform base. 3741 // In all other cases the function returns 'false'. 3742 // 3743 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3744 SelectionDAGBuilder* SDB) { 3745 3746 SelectionDAG& DAG = SDB->DAG; 3747 LLVMContext &Context = *DAG.getContext(); 3748 3749 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3750 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3751 if (!GEP || GEP->getNumOperands() > 2) 3752 return false; 3753 3754 const Value *GEPPtr = GEP->getPointerOperand(); 3755 if (!GEPPtr->getType()->isVectorTy()) 3756 Ptr = GEPPtr; 3757 else if (!(Ptr = getSplatValue(GEPPtr))) 3758 return false; 3759 3760 Value *IndexVal = GEP->getOperand(1); 3761 3762 // The operands of the GEP may be defined in another basic block. 3763 // In this case we'll not find nodes for the operands. 3764 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3765 return false; 3766 3767 Base = SDB->getValue(Ptr); 3768 Index = SDB->getValue(IndexVal); 3769 3770 // Suppress sign extension. 3771 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3772 if (SDB->findValue(Sext->getOperand(0))) { 3773 IndexVal = Sext->getOperand(0); 3774 Index = SDB->getValue(IndexVal); 3775 } 3776 } 3777 if (!Index.getValueType().isVector()) { 3778 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3779 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3780 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3781 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3782 } 3783 return true; 3784 } 3785 3786 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3787 SDLoc sdl = getCurSDLoc(); 3788 3789 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3790 const Value *Ptr = I.getArgOperand(1); 3791 SDValue Src0 = getValue(I.getArgOperand(0)); 3792 SDValue Mask = getValue(I.getArgOperand(3)); 3793 EVT VT = Src0.getValueType(); 3794 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3795 if (!Alignment) 3796 Alignment = DAG.getEVTAlignment(VT); 3797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3798 3799 AAMDNodes AAInfo; 3800 I.getAAMetadata(AAInfo); 3801 3802 SDValue Base; 3803 SDValue Index; 3804 const Value *BasePtr = Ptr; 3805 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3806 3807 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3808 MachineMemOperand *MMO = DAG.getMachineFunction(). 3809 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3810 MachineMemOperand::MOStore, VT.getStoreSize(), 3811 Alignment, AAInfo); 3812 if (!UniformBase) { 3813 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3814 Index = getValue(Ptr); 3815 } 3816 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3817 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3818 Ops, MMO); 3819 DAG.setRoot(Scatter); 3820 setValue(&I, Scatter); 3821 } 3822 3823 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3824 SDLoc sdl = getCurSDLoc(); 3825 3826 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3827 Value *PtrOperand = I.getArgOperand(0); 3828 SDValue Ptr = getValue(PtrOperand); 3829 SDValue Src0 = getValue(I.getArgOperand(3)); 3830 SDValue Mask = getValue(I.getArgOperand(2)); 3831 3832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3833 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3834 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3835 if (!Alignment) 3836 Alignment = DAG.getEVTAlignment(VT); 3837 3838 AAMDNodes AAInfo; 3839 I.getAAMetadata(AAInfo); 3840 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3841 3842 // Do not serialize masked loads of constant memory with anything. 3843 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3844 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3845 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3846 3847 MachineMemOperand *MMO = 3848 DAG.getMachineFunction(). 3849 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3850 MachineMemOperand::MOLoad, VT.getStoreSize(), 3851 Alignment, AAInfo, Ranges); 3852 3853 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3854 ISD::NON_EXTLOAD); 3855 if (AddToChain) { 3856 SDValue OutChain = Load.getValue(1); 3857 DAG.setRoot(OutChain); 3858 } 3859 setValue(&I, Load); 3860 } 3861 3862 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3863 SDLoc sdl = getCurSDLoc(); 3864 3865 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3866 const Value *Ptr = I.getArgOperand(0); 3867 SDValue Src0 = getValue(I.getArgOperand(3)); 3868 SDValue Mask = getValue(I.getArgOperand(2)); 3869 3870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3871 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3872 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3873 if (!Alignment) 3874 Alignment = DAG.getEVTAlignment(VT); 3875 3876 AAMDNodes AAInfo; 3877 I.getAAMetadata(AAInfo); 3878 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3879 3880 SDValue Root = DAG.getRoot(); 3881 SDValue Base; 3882 SDValue Index; 3883 const Value *BasePtr = Ptr; 3884 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3885 bool ConstantMemory = false; 3886 if (UniformBase && 3887 AA->pointsToConstantMemory(MemoryLocation( 3888 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3889 AAInfo))) { 3890 // Do not serialize (non-volatile) loads of constant memory with anything. 3891 Root = DAG.getEntryNode(); 3892 ConstantMemory = true; 3893 } 3894 3895 MachineMemOperand *MMO = 3896 DAG.getMachineFunction(). 3897 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3898 MachineMemOperand::MOLoad, VT.getStoreSize(), 3899 Alignment, AAInfo, Ranges); 3900 3901 if (!UniformBase) { 3902 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3903 Index = getValue(Ptr); 3904 } 3905 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3906 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3907 Ops, MMO); 3908 3909 SDValue OutChain = Gather.getValue(1); 3910 if (!ConstantMemory) 3911 PendingLoads.push_back(OutChain); 3912 setValue(&I, Gather); 3913 } 3914 3915 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3916 SDLoc dl = getCurSDLoc(); 3917 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3918 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3919 SynchronizationScope Scope = I.getSynchScope(); 3920 3921 SDValue InChain = getRoot(); 3922 3923 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3924 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3925 SDValue L = DAG.getAtomicCmpSwap( 3926 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3927 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3928 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3929 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3930 3931 SDValue OutChain = L.getValue(2); 3932 3933 setValue(&I, L); 3934 DAG.setRoot(OutChain); 3935 } 3936 3937 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3938 SDLoc dl = getCurSDLoc(); 3939 ISD::NodeType NT; 3940 switch (I.getOperation()) { 3941 default: llvm_unreachable("Unknown atomicrmw operation"); 3942 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3943 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3944 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3945 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3946 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3947 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3948 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3949 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3950 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3951 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3952 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3953 } 3954 AtomicOrdering Order = I.getOrdering(); 3955 SynchronizationScope Scope = I.getSynchScope(); 3956 3957 SDValue InChain = getRoot(); 3958 3959 SDValue L = 3960 DAG.getAtomic(NT, dl, 3961 getValue(I.getValOperand()).getSimpleValueType(), 3962 InChain, 3963 getValue(I.getPointerOperand()), 3964 getValue(I.getValOperand()), 3965 I.getPointerOperand(), 3966 /* Alignment=*/ 0, Order, Scope); 3967 3968 SDValue OutChain = L.getValue(1); 3969 3970 setValue(&I, L); 3971 DAG.setRoot(OutChain); 3972 } 3973 3974 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3975 SDLoc dl = getCurSDLoc(); 3976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3977 SDValue Ops[3]; 3978 Ops[0] = getRoot(); 3979 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3980 TLI.getPointerTy(DAG.getDataLayout())); 3981 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3982 TLI.getPointerTy(DAG.getDataLayout())); 3983 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3984 } 3985 3986 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3987 SDLoc dl = getCurSDLoc(); 3988 AtomicOrdering Order = I.getOrdering(); 3989 SynchronizationScope Scope = I.getSynchScope(); 3990 3991 SDValue InChain = getRoot(); 3992 3993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3994 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3995 3996 if (I.getAlignment() < VT.getSizeInBits() / 8) 3997 report_fatal_error("Cannot generate unaligned atomic load"); 3998 3999 MachineMemOperand *MMO = 4000 DAG.getMachineFunction(). 4001 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4002 MachineMemOperand::MOVolatile | 4003 MachineMemOperand::MOLoad, 4004 VT.getStoreSize(), 4005 I.getAlignment() ? I.getAlignment() : 4006 DAG.getEVTAlignment(VT)); 4007 4008 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4009 SDValue L = 4010 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4011 getValue(I.getPointerOperand()), MMO, 4012 Order, Scope); 4013 4014 SDValue OutChain = L.getValue(1); 4015 4016 setValue(&I, L); 4017 DAG.setRoot(OutChain); 4018 } 4019 4020 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4021 SDLoc dl = getCurSDLoc(); 4022 4023 AtomicOrdering Order = I.getOrdering(); 4024 SynchronizationScope Scope = I.getSynchScope(); 4025 4026 SDValue InChain = getRoot(); 4027 4028 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4029 EVT VT = 4030 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4031 4032 if (I.getAlignment() < VT.getSizeInBits() / 8) 4033 report_fatal_error("Cannot generate unaligned atomic store"); 4034 4035 SDValue OutChain = 4036 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4037 InChain, 4038 getValue(I.getPointerOperand()), 4039 getValue(I.getValueOperand()), 4040 I.getPointerOperand(), I.getAlignment(), 4041 Order, Scope); 4042 4043 DAG.setRoot(OutChain); 4044 } 4045 4046 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4047 /// node. 4048 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4049 unsigned Intrinsic) { 4050 bool HasChain = !I.doesNotAccessMemory(); 4051 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 4052 4053 // Build the operand list. 4054 SmallVector<SDValue, 8> Ops; 4055 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4056 if (OnlyLoad) { 4057 // We don't need to serialize loads against other loads. 4058 Ops.push_back(DAG.getRoot()); 4059 } else { 4060 Ops.push_back(getRoot()); 4061 } 4062 } 4063 4064 // Info is set by getTgtMemInstrinsic 4065 TargetLowering::IntrinsicInfo Info; 4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4067 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4068 4069 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4070 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4071 Info.opc == ISD::INTRINSIC_W_CHAIN) 4072 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4073 TLI.getPointerTy(DAG.getDataLayout()))); 4074 4075 // Add all operands of the call to the operand list. 4076 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4077 SDValue Op = getValue(I.getArgOperand(i)); 4078 Ops.push_back(Op); 4079 } 4080 4081 SmallVector<EVT, 4> ValueVTs; 4082 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4083 4084 if (HasChain) 4085 ValueVTs.push_back(MVT::Other); 4086 4087 SDVTList VTs = DAG.getVTList(ValueVTs); 4088 4089 // Create the node. 4090 SDValue Result; 4091 if (IsTgtIntrinsic) { 4092 // This is target intrinsic that touches memory 4093 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4094 VTs, Ops, Info.memVT, 4095 MachinePointerInfo(Info.ptrVal, Info.offset), 4096 Info.align, Info.vol, 4097 Info.readMem, Info.writeMem, Info.size); 4098 } else if (!HasChain) { 4099 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4100 } else if (!I.getType()->isVoidTy()) { 4101 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4102 } else { 4103 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4104 } 4105 4106 if (HasChain) { 4107 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4108 if (OnlyLoad) 4109 PendingLoads.push_back(Chain); 4110 else 4111 DAG.setRoot(Chain); 4112 } 4113 4114 if (!I.getType()->isVoidTy()) { 4115 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4116 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4117 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4118 } else 4119 Result = lowerRangeToAssertZExt(DAG, I, Result); 4120 4121 setValue(&I, Result); 4122 } 4123 } 4124 4125 /// GetSignificand - Get the significand and build it into a floating-point 4126 /// number with exponent of 1: 4127 /// 4128 /// Op = (Op & 0x007fffff) | 0x3f800000; 4129 /// 4130 /// where Op is the hexadecimal representation of floating point value. 4131 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4132 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4133 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4134 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4135 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4136 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4137 } 4138 4139 /// GetExponent - Get the exponent: 4140 /// 4141 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4142 /// 4143 /// where Op is the hexadecimal representation of floating point value. 4144 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4145 const TargetLowering &TLI, const SDLoc &dl) { 4146 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4147 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4148 SDValue t1 = DAG.getNode( 4149 ISD::SRL, dl, MVT::i32, t0, 4150 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4151 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4152 DAG.getConstant(127, dl, MVT::i32)); 4153 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4154 } 4155 4156 /// getF32Constant - Get 32-bit floating point constant. 4157 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4158 const SDLoc &dl) { 4159 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4160 MVT::f32); 4161 } 4162 4163 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4164 SelectionDAG &DAG) { 4165 // TODO: What fast-math-flags should be set on the floating-point nodes? 4166 4167 // IntegerPartOfX = ((int32_t)(t0); 4168 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4169 4170 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4171 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4172 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4173 4174 // IntegerPartOfX <<= 23; 4175 IntegerPartOfX = DAG.getNode( 4176 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4177 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4178 DAG.getDataLayout()))); 4179 4180 SDValue TwoToFractionalPartOfX; 4181 if (LimitFloatPrecision <= 6) { 4182 // For floating-point precision of 6: 4183 // 4184 // TwoToFractionalPartOfX = 4185 // 0.997535578f + 4186 // (0.735607626f + 0.252464424f * x) * x; 4187 // 4188 // error 0.0144103317, which is 6 bits 4189 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4190 getF32Constant(DAG, 0x3e814304, dl)); 4191 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4192 getF32Constant(DAG, 0x3f3c50c8, dl)); 4193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4194 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4195 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4196 } else if (LimitFloatPrecision <= 12) { 4197 // For floating-point precision of 12: 4198 // 4199 // TwoToFractionalPartOfX = 4200 // 0.999892986f + 4201 // (0.696457318f + 4202 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4203 // 4204 // error 0.000107046256, which is 13 to 14 bits 4205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4206 getF32Constant(DAG, 0x3da235e3, dl)); 4207 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4208 getF32Constant(DAG, 0x3e65b8f3, dl)); 4209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4211 getF32Constant(DAG, 0x3f324b07, dl)); 4212 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4213 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4214 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4215 } else { // LimitFloatPrecision <= 18 4216 // For floating-point precision of 18: 4217 // 4218 // TwoToFractionalPartOfX = 4219 // 0.999999982f + 4220 // (0.693148872f + 4221 // (0.240227044f + 4222 // (0.554906021e-1f + 4223 // (0.961591928e-2f + 4224 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4225 // error 2.47208000*10^(-7), which is better than 18 bits 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4227 getF32Constant(DAG, 0x3924b03e, dl)); 4228 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4229 getF32Constant(DAG, 0x3ab24b87, dl)); 4230 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4231 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4232 getF32Constant(DAG, 0x3c1d8c17, dl)); 4233 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4234 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4235 getF32Constant(DAG, 0x3d634a1d, dl)); 4236 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4237 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4238 getF32Constant(DAG, 0x3e75fe14, dl)); 4239 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4240 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4241 getF32Constant(DAG, 0x3f317234, dl)); 4242 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4243 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4244 getF32Constant(DAG, 0x3f800000, dl)); 4245 } 4246 4247 // Add the exponent into the result in integer domain. 4248 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4249 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4250 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4251 } 4252 4253 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4254 /// limited-precision mode. 4255 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4256 const TargetLowering &TLI) { 4257 if (Op.getValueType() == MVT::f32 && 4258 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4259 4260 // Put the exponent in the right bit position for later addition to the 4261 // final result: 4262 // 4263 // #define LOG2OFe 1.4426950f 4264 // t0 = Op * LOG2OFe 4265 4266 // TODO: What fast-math-flags should be set here? 4267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4268 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4269 return getLimitedPrecisionExp2(t0, dl, DAG); 4270 } 4271 4272 // No special expansion. 4273 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4274 } 4275 4276 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4277 /// limited-precision mode. 4278 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4279 const TargetLowering &TLI) { 4280 4281 // TODO: What fast-math-flags should be set on the floating-point nodes? 4282 4283 if (Op.getValueType() == MVT::f32 && 4284 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4285 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4286 4287 // Scale the exponent by log(2) [0.69314718f]. 4288 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4289 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4290 getF32Constant(DAG, 0x3f317218, dl)); 4291 4292 // Get the significand and build it into a floating-point number with 4293 // exponent of 1. 4294 SDValue X = GetSignificand(DAG, Op1, dl); 4295 4296 SDValue LogOfMantissa; 4297 if (LimitFloatPrecision <= 6) { 4298 // For floating-point precision of 6: 4299 // 4300 // LogofMantissa = 4301 // -1.1609546f + 4302 // (1.4034025f - 0.23903021f * x) * x; 4303 // 4304 // error 0.0034276066, which is better than 8 bits 4305 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4306 getF32Constant(DAG, 0xbe74c456, dl)); 4307 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4308 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4310 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4311 getF32Constant(DAG, 0x3f949a29, dl)); 4312 } else if (LimitFloatPrecision <= 12) { 4313 // For floating-point precision of 12: 4314 // 4315 // LogOfMantissa = 4316 // -1.7417939f + 4317 // (2.8212026f + 4318 // (-1.4699568f + 4319 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4320 // 4321 // error 0.000061011436, which is 14 bits 4322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4323 getF32Constant(DAG, 0xbd67b6d6, dl)); 4324 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4325 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4326 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4327 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3fbc278b, dl)); 4329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4331 getF32Constant(DAG, 0x40348e95, dl)); 4332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4333 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4334 getF32Constant(DAG, 0x3fdef31a, dl)); 4335 } else { // LimitFloatPrecision <= 18 4336 // For floating-point precision of 18: 4337 // 4338 // LogOfMantissa = 4339 // -2.1072184f + 4340 // (4.2372794f + 4341 // (-3.7029485f + 4342 // (2.2781945f + 4343 // (-0.87823314f + 4344 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4345 // 4346 // error 0.0000023660568, which is better than 18 bits 4347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4348 getF32Constant(DAG, 0xbc91e5ac, dl)); 4349 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4350 getF32Constant(DAG, 0x3e4350aa, dl)); 4351 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4352 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4353 getF32Constant(DAG, 0x3f60d3e3, dl)); 4354 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4355 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4356 getF32Constant(DAG, 0x4011cdf0, dl)); 4357 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4358 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4359 getF32Constant(DAG, 0x406cfd1c, dl)); 4360 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4361 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4362 getF32Constant(DAG, 0x408797cb, dl)); 4363 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4364 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4365 getF32Constant(DAG, 0x4006dcab, dl)); 4366 } 4367 4368 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4369 } 4370 4371 // No special expansion. 4372 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4373 } 4374 4375 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4376 /// limited-precision mode. 4377 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4378 const TargetLowering &TLI) { 4379 4380 // TODO: What fast-math-flags should be set on the floating-point nodes? 4381 4382 if (Op.getValueType() == MVT::f32 && 4383 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4384 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4385 4386 // Get the exponent. 4387 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4388 4389 // Get the significand and build it into a floating-point number with 4390 // exponent of 1. 4391 SDValue X = GetSignificand(DAG, Op1, dl); 4392 4393 // Different possible minimax approximations of significand in 4394 // floating-point for various degrees of accuracy over [1,2]. 4395 SDValue Log2ofMantissa; 4396 if (LimitFloatPrecision <= 6) { 4397 // For floating-point precision of 6: 4398 // 4399 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4400 // 4401 // error 0.0049451742, which is more than 7 bits 4402 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4403 getF32Constant(DAG, 0xbeb08fe0, dl)); 4404 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4405 getF32Constant(DAG, 0x40019463, dl)); 4406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4407 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3fd6633d, dl)); 4409 } else if (LimitFloatPrecision <= 12) { 4410 // For floating-point precision of 12: 4411 // 4412 // Log2ofMantissa = 4413 // -2.51285454f + 4414 // (4.07009056f + 4415 // (-2.12067489f + 4416 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4417 // 4418 // error 0.0000876136000, which is better than 13 bits 4419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0xbda7262e, dl)); 4421 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4422 getF32Constant(DAG, 0x3f25280b, dl)); 4423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4424 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4425 getF32Constant(DAG, 0x4007b923, dl)); 4426 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4427 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4428 getF32Constant(DAG, 0x40823e2f, dl)); 4429 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4430 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4431 getF32Constant(DAG, 0x4020d29c, dl)); 4432 } else { // LimitFloatPrecision <= 18 4433 // For floating-point precision of 18: 4434 // 4435 // Log2ofMantissa = 4436 // -3.0400495f + 4437 // (6.1129976f + 4438 // (-5.3420409f + 4439 // (3.2865683f + 4440 // (-1.2669343f + 4441 // (0.27515199f - 4442 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4443 // 4444 // error 0.0000018516, which is better than 18 bits 4445 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4446 getF32Constant(DAG, 0xbcd2769e, dl)); 4447 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4448 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4449 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4450 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4451 getF32Constant(DAG, 0x3fa22ae7, dl)); 4452 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4453 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4454 getF32Constant(DAG, 0x40525723, dl)); 4455 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4456 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4457 getF32Constant(DAG, 0x40aaf200, dl)); 4458 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4459 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4460 getF32Constant(DAG, 0x40c39dad, dl)); 4461 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4462 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4463 getF32Constant(DAG, 0x4042902c, dl)); 4464 } 4465 4466 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4467 } 4468 4469 // No special expansion. 4470 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4471 } 4472 4473 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4474 /// limited-precision mode. 4475 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4476 const TargetLowering &TLI) { 4477 4478 // TODO: What fast-math-flags should be set on the floating-point nodes? 4479 4480 if (Op.getValueType() == MVT::f32 && 4481 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4482 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4483 4484 // Scale the exponent by log10(2) [0.30102999f]. 4485 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4486 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4487 getF32Constant(DAG, 0x3e9a209a, dl)); 4488 4489 // Get the significand and build it into a floating-point number with 4490 // exponent of 1. 4491 SDValue X = GetSignificand(DAG, Op1, dl); 4492 4493 SDValue Log10ofMantissa; 4494 if (LimitFloatPrecision <= 6) { 4495 // For floating-point precision of 6: 4496 // 4497 // Log10ofMantissa = 4498 // -0.50419619f + 4499 // (0.60948995f - 0.10380950f * x) * x; 4500 // 4501 // error 0.0014886165, which is 6 bits 4502 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4503 getF32Constant(DAG, 0xbdd49a13, dl)); 4504 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4505 getF32Constant(DAG, 0x3f1c0789, dl)); 4506 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4507 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4508 getF32Constant(DAG, 0x3f011300, dl)); 4509 } else if (LimitFloatPrecision <= 12) { 4510 // For floating-point precision of 12: 4511 // 4512 // Log10ofMantissa = 4513 // -0.64831180f + 4514 // (0.91751397f + 4515 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4516 // 4517 // error 0.00019228036, which is better than 12 bits 4518 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4519 getF32Constant(DAG, 0x3d431f31, dl)); 4520 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4521 getF32Constant(DAG, 0x3ea21fb2, dl)); 4522 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4523 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4524 getF32Constant(DAG, 0x3f6ae232, dl)); 4525 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4526 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4527 getF32Constant(DAG, 0x3f25f7c3, dl)); 4528 } else { // LimitFloatPrecision <= 18 4529 // For floating-point precision of 18: 4530 // 4531 // Log10ofMantissa = 4532 // -0.84299375f + 4533 // (1.5327582f + 4534 // (-1.0688956f + 4535 // (0.49102474f + 4536 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4537 // 4538 // error 0.0000037995730, which is better than 18 bits 4539 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4540 getF32Constant(DAG, 0x3c5d51ce, dl)); 4541 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4542 getF32Constant(DAG, 0x3e00685a, dl)); 4543 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4544 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4545 getF32Constant(DAG, 0x3efb6798, dl)); 4546 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4547 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4548 getF32Constant(DAG, 0x3f88d192, dl)); 4549 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4550 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4551 getF32Constant(DAG, 0x3fc4316c, dl)); 4552 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4553 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4554 getF32Constant(DAG, 0x3f57ce70, dl)); 4555 } 4556 4557 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4558 } 4559 4560 // No special expansion. 4561 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4562 } 4563 4564 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4565 /// limited-precision mode. 4566 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4567 const TargetLowering &TLI) { 4568 if (Op.getValueType() == MVT::f32 && 4569 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4570 return getLimitedPrecisionExp2(Op, dl, DAG); 4571 4572 // No special expansion. 4573 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4574 } 4575 4576 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4577 /// limited-precision mode with x == 10.0f. 4578 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4579 SelectionDAG &DAG, const TargetLowering &TLI) { 4580 bool IsExp10 = false; 4581 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4582 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4583 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4584 APFloat Ten(10.0f); 4585 IsExp10 = LHSC->isExactlyValue(Ten); 4586 } 4587 } 4588 4589 // TODO: What fast-math-flags should be set on the FMUL node? 4590 if (IsExp10) { 4591 // Put the exponent in the right bit position for later addition to the 4592 // final result: 4593 // 4594 // #define LOG2OF10 3.3219281f 4595 // t0 = Op * LOG2OF10; 4596 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4597 getF32Constant(DAG, 0x40549a78, dl)); 4598 return getLimitedPrecisionExp2(t0, dl, DAG); 4599 } 4600 4601 // No special expansion. 4602 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4603 } 4604 4605 4606 /// ExpandPowI - Expand a llvm.powi intrinsic. 4607 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4608 SelectionDAG &DAG) { 4609 // If RHS is a constant, we can expand this out to a multiplication tree, 4610 // otherwise we end up lowering to a call to __powidf2 (for example). When 4611 // optimizing for size, we only want to do this if the expansion would produce 4612 // a small number of multiplies, otherwise we do the full expansion. 4613 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4614 // Get the exponent as a positive value. 4615 unsigned Val = RHSC->getSExtValue(); 4616 if ((int)Val < 0) Val = -Val; 4617 4618 // powi(x, 0) -> 1.0 4619 if (Val == 0) 4620 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4621 4622 const Function *F = DAG.getMachineFunction().getFunction(); 4623 if (!F->optForSize() || 4624 // If optimizing for size, don't insert too many multiplies. 4625 // This inserts up to 5 multiplies. 4626 countPopulation(Val) + Log2_32(Val) < 7) { 4627 // We use the simple binary decomposition method to generate the multiply 4628 // sequence. There are more optimal ways to do this (for example, 4629 // powi(x,15) generates one more multiply than it should), but this has 4630 // the benefit of being both really simple and much better than a libcall. 4631 SDValue Res; // Logically starts equal to 1.0 4632 SDValue CurSquare = LHS; 4633 // TODO: Intrinsics should have fast-math-flags that propagate to these 4634 // nodes. 4635 while (Val) { 4636 if (Val & 1) { 4637 if (Res.getNode()) 4638 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4639 else 4640 Res = CurSquare; // 1.0*CurSquare. 4641 } 4642 4643 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4644 CurSquare, CurSquare); 4645 Val >>= 1; 4646 } 4647 4648 // If the original was negative, invert the result, producing 1/(x*x*x). 4649 if (RHSC->getSExtValue() < 0) 4650 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4651 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4652 return Res; 4653 } 4654 } 4655 4656 // Otherwise, expand to a libcall. 4657 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4658 } 4659 4660 // getUnderlyingArgReg - Find underlying register used for a truncated or 4661 // bitcasted argument. 4662 static unsigned getUnderlyingArgReg(const SDValue &N) { 4663 switch (N.getOpcode()) { 4664 case ISD::CopyFromReg: 4665 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4666 case ISD::BITCAST: 4667 case ISD::AssertZext: 4668 case ISD::AssertSext: 4669 case ISD::TRUNCATE: 4670 return getUnderlyingArgReg(N.getOperand(0)); 4671 default: 4672 return 0; 4673 } 4674 } 4675 4676 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4677 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4678 /// At the end of instruction selection, they will be inserted to the entry BB. 4679 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4680 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4681 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4682 const Argument *Arg = dyn_cast<Argument>(V); 4683 if (!Arg) 4684 return false; 4685 4686 MachineFunction &MF = DAG.getMachineFunction(); 4687 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4688 4689 // Ignore inlined function arguments here. 4690 // 4691 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4692 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4693 return false; 4694 4695 Optional<MachineOperand> Op; 4696 // Some arguments' frame index is recorded during argument lowering. 4697 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4698 Op = MachineOperand::CreateFI(FI); 4699 4700 if (!Op && N.getNode()) { 4701 unsigned Reg = getUnderlyingArgReg(N); 4702 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4703 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4704 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4705 if (PR) 4706 Reg = PR; 4707 } 4708 if (Reg) 4709 Op = MachineOperand::CreateReg(Reg, false); 4710 } 4711 4712 if (!Op) { 4713 // Check if ValueMap has reg number. 4714 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4715 if (VMI != FuncInfo.ValueMap.end()) 4716 Op = MachineOperand::CreateReg(VMI->second, false); 4717 } 4718 4719 if (!Op && N.getNode()) 4720 // Check if frame index is available. 4721 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4722 if (FrameIndexSDNode *FINode = 4723 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4724 Op = MachineOperand::CreateFI(FINode->getIndex()); 4725 4726 if (!Op) 4727 return false; 4728 4729 assert(Variable->isValidLocationForIntrinsic(DL) && 4730 "Expected inlined-at fields to agree"); 4731 if (Op->isReg()) 4732 FuncInfo.ArgDbgValues.push_back( 4733 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4734 Op->getReg(), Offset, Variable, Expr)); 4735 else 4736 FuncInfo.ArgDbgValues.push_back( 4737 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4738 .addOperand(*Op) 4739 .addImm(Offset) 4740 .addMetadata(Variable) 4741 .addMetadata(Expr)); 4742 4743 return true; 4744 } 4745 4746 // VisualStudio defines setjmp as _setjmp 4747 #if defined(_MSC_VER) && defined(setjmp) && \ 4748 !defined(setjmp_undefined_for_msvc) 4749 # pragma push_macro("setjmp") 4750 # undef setjmp 4751 # define setjmp_undefined_for_msvc 4752 #endif 4753 4754 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4755 /// we want to emit this as a call to a named external function, return the name 4756 /// otherwise lower it and return null. 4757 const char * 4758 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4760 SDLoc sdl = getCurSDLoc(); 4761 DebugLoc dl = getCurDebugLoc(); 4762 SDValue Res; 4763 4764 switch (Intrinsic) { 4765 default: 4766 // By default, turn this into a target intrinsic node. 4767 visitTargetIntrinsic(I, Intrinsic); 4768 return nullptr; 4769 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4770 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4771 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4772 case Intrinsic::returnaddress: 4773 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4774 TLI.getPointerTy(DAG.getDataLayout()), 4775 getValue(I.getArgOperand(0)))); 4776 return nullptr; 4777 case Intrinsic::frameaddress: 4778 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4779 TLI.getPointerTy(DAG.getDataLayout()), 4780 getValue(I.getArgOperand(0)))); 4781 return nullptr; 4782 case Intrinsic::read_register: { 4783 Value *Reg = I.getArgOperand(0); 4784 SDValue Chain = getRoot(); 4785 SDValue RegName = 4786 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4787 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4788 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4789 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4790 setValue(&I, Res); 4791 DAG.setRoot(Res.getValue(1)); 4792 return nullptr; 4793 } 4794 case Intrinsic::write_register: { 4795 Value *Reg = I.getArgOperand(0); 4796 Value *RegValue = I.getArgOperand(1); 4797 SDValue Chain = getRoot(); 4798 SDValue RegName = 4799 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4800 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4801 RegName, getValue(RegValue))); 4802 return nullptr; 4803 } 4804 case Intrinsic::setjmp: 4805 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4806 case Intrinsic::longjmp: 4807 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4808 case Intrinsic::memcpy: { 4809 SDValue Op1 = getValue(I.getArgOperand(0)); 4810 SDValue Op2 = getValue(I.getArgOperand(1)); 4811 SDValue Op3 = getValue(I.getArgOperand(2)); 4812 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4813 if (!Align) 4814 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4815 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4816 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4817 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4818 false, isTC, 4819 MachinePointerInfo(I.getArgOperand(0)), 4820 MachinePointerInfo(I.getArgOperand(1))); 4821 updateDAGForMaybeTailCall(MC); 4822 return nullptr; 4823 } 4824 case Intrinsic::memset: { 4825 SDValue Op1 = getValue(I.getArgOperand(0)); 4826 SDValue Op2 = getValue(I.getArgOperand(1)); 4827 SDValue Op3 = getValue(I.getArgOperand(2)); 4828 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4829 if (!Align) 4830 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4831 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4832 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4833 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4834 isTC, MachinePointerInfo(I.getArgOperand(0))); 4835 updateDAGForMaybeTailCall(MS); 4836 return nullptr; 4837 } 4838 case Intrinsic::memmove: { 4839 SDValue Op1 = getValue(I.getArgOperand(0)); 4840 SDValue Op2 = getValue(I.getArgOperand(1)); 4841 SDValue Op3 = getValue(I.getArgOperand(2)); 4842 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4843 if (!Align) 4844 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4845 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4846 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4847 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4848 isTC, MachinePointerInfo(I.getArgOperand(0)), 4849 MachinePointerInfo(I.getArgOperand(1))); 4850 updateDAGForMaybeTailCall(MM); 4851 return nullptr; 4852 } 4853 case Intrinsic::dbg_declare: { 4854 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4855 DILocalVariable *Variable = DI.getVariable(); 4856 DIExpression *Expression = DI.getExpression(); 4857 const Value *Address = DI.getAddress(); 4858 assert(Variable && "Missing variable"); 4859 if (!Address) { 4860 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4861 return nullptr; 4862 } 4863 4864 // Check if address has undef value. 4865 if (isa<UndefValue>(Address) || 4866 (Address->use_empty() && !isa<Argument>(Address))) { 4867 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4868 return nullptr; 4869 } 4870 4871 SDValue &N = NodeMap[Address]; 4872 if (!N.getNode() && isa<Argument>(Address)) 4873 // Check unused arguments map. 4874 N = UnusedArgNodeMap[Address]; 4875 SDDbgValue *SDV; 4876 if (N.getNode()) { 4877 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4878 Address = BCI->getOperand(0); 4879 // Parameters are handled specially. 4880 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4881 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4882 if (isParameter && FINode) { 4883 // Byval parameter. We have a frame index at this point. 4884 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4885 FINode->getIndex(), 0, dl, SDNodeOrder); 4886 } else if (isa<Argument>(Address)) { 4887 // Address is an argument, so try to emit its dbg value using 4888 // virtual register info from the FuncInfo.ValueMap. 4889 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4890 N); 4891 return nullptr; 4892 } else { 4893 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4894 true, 0, dl, SDNodeOrder); 4895 } 4896 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4897 } else { 4898 // If Address is an argument then try to emit its dbg value using 4899 // virtual register info from the FuncInfo.ValueMap. 4900 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4901 N)) { 4902 // If variable is pinned by a alloca in dominating bb then 4903 // use StaticAllocaMap. 4904 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4905 if (AI->getParent() != DI.getParent()) { 4906 DenseMap<const AllocaInst*, int>::iterator SI = 4907 FuncInfo.StaticAllocaMap.find(AI); 4908 if (SI != FuncInfo.StaticAllocaMap.end()) { 4909 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4910 0, dl, SDNodeOrder); 4911 DAG.AddDbgValue(SDV, nullptr, false); 4912 return nullptr; 4913 } 4914 } 4915 } 4916 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4917 } 4918 } 4919 return nullptr; 4920 } 4921 case Intrinsic::dbg_value: { 4922 const DbgValueInst &DI = cast<DbgValueInst>(I); 4923 assert(DI.getVariable() && "Missing variable"); 4924 4925 DILocalVariable *Variable = DI.getVariable(); 4926 DIExpression *Expression = DI.getExpression(); 4927 uint64_t Offset = DI.getOffset(); 4928 const Value *V = DI.getValue(); 4929 if (!V) 4930 return nullptr; 4931 4932 SDDbgValue *SDV; 4933 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4934 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4935 SDNodeOrder); 4936 DAG.AddDbgValue(SDV, nullptr, false); 4937 } else { 4938 // Do not use getValue() in here; we don't want to generate code at 4939 // this point if it hasn't been done yet. 4940 SDValue N = NodeMap[V]; 4941 if (!N.getNode() && isa<Argument>(V)) 4942 // Check unused arguments map. 4943 N = UnusedArgNodeMap[V]; 4944 if (N.getNode()) { 4945 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4946 false, N)) { 4947 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4948 false, Offset, dl, SDNodeOrder); 4949 DAG.AddDbgValue(SDV, N.getNode(), false); 4950 } 4951 } else if (!V->use_empty() ) { 4952 // Do not call getValue(V) yet, as we don't want to generate code. 4953 // Remember it for later. 4954 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4955 DanglingDebugInfoMap[V] = DDI; 4956 } else { 4957 // We may expand this to cover more cases. One case where we have no 4958 // data available is an unreferenced parameter. 4959 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4960 } 4961 } 4962 4963 // Build a debug info table entry. 4964 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4965 V = BCI->getOperand(0); 4966 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4967 // Don't handle byval struct arguments or VLAs, for example. 4968 if (!AI) { 4969 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4970 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4971 return nullptr; 4972 } 4973 DenseMap<const AllocaInst*, int>::iterator SI = 4974 FuncInfo.StaticAllocaMap.find(AI); 4975 if (SI == FuncInfo.StaticAllocaMap.end()) 4976 return nullptr; // VLAs. 4977 return nullptr; 4978 } 4979 4980 case Intrinsic::eh_typeid_for: { 4981 // Find the type id for the given typeinfo. 4982 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4983 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4984 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4985 setValue(&I, Res); 4986 return nullptr; 4987 } 4988 4989 case Intrinsic::eh_return_i32: 4990 case Intrinsic::eh_return_i64: 4991 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4992 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4993 MVT::Other, 4994 getControlRoot(), 4995 getValue(I.getArgOperand(0)), 4996 getValue(I.getArgOperand(1)))); 4997 return nullptr; 4998 case Intrinsic::eh_unwind_init: 4999 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 5000 return nullptr; 5001 case Intrinsic::eh_dwarf_cfa: { 5002 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 5003 TLI.getPointerTy(DAG.getDataLayout())); 5004 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 5005 CfaArg.getValueType(), 5006 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 5007 CfaArg.getValueType()), 5008 CfaArg); 5009 SDValue FA = DAG.getNode( 5010 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 5011 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 5012 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 5013 FA, Offset)); 5014 return nullptr; 5015 } 5016 case Intrinsic::eh_sjlj_callsite: { 5017 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5018 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5019 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5020 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5021 5022 MMI.setCurrentCallSite(CI->getZExtValue()); 5023 return nullptr; 5024 } 5025 case Intrinsic::eh_sjlj_functioncontext: { 5026 // Get and store the index of the function context. 5027 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 5028 AllocaInst *FnCtx = 5029 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5030 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5031 MFI->setFunctionContextIndex(FI); 5032 return nullptr; 5033 } 5034 case Intrinsic::eh_sjlj_setjmp: { 5035 SDValue Ops[2]; 5036 Ops[0] = getRoot(); 5037 Ops[1] = getValue(I.getArgOperand(0)); 5038 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5039 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5040 setValue(&I, Op.getValue(0)); 5041 DAG.setRoot(Op.getValue(1)); 5042 return nullptr; 5043 } 5044 case Intrinsic::eh_sjlj_longjmp: { 5045 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5046 getRoot(), getValue(I.getArgOperand(0)))); 5047 return nullptr; 5048 } 5049 case Intrinsic::eh_sjlj_setup_dispatch: { 5050 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5051 getRoot())); 5052 return nullptr; 5053 } 5054 5055 case Intrinsic::masked_gather: 5056 visitMaskedGather(I); 5057 return nullptr; 5058 case Intrinsic::masked_load: 5059 visitMaskedLoad(I); 5060 return nullptr; 5061 case Intrinsic::masked_scatter: 5062 visitMaskedScatter(I); 5063 return nullptr; 5064 case Intrinsic::masked_store: 5065 visitMaskedStore(I); 5066 return nullptr; 5067 case Intrinsic::x86_mmx_pslli_w: 5068 case Intrinsic::x86_mmx_pslli_d: 5069 case Intrinsic::x86_mmx_pslli_q: 5070 case Intrinsic::x86_mmx_psrli_w: 5071 case Intrinsic::x86_mmx_psrli_d: 5072 case Intrinsic::x86_mmx_psrli_q: 5073 case Intrinsic::x86_mmx_psrai_w: 5074 case Intrinsic::x86_mmx_psrai_d: { 5075 SDValue ShAmt = getValue(I.getArgOperand(1)); 5076 if (isa<ConstantSDNode>(ShAmt)) { 5077 visitTargetIntrinsic(I, Intrinsic); 5078 return nullptr; 5079 } 5080 unsigned NewIntrinsic = 0; 5081 EVT ShAmtVT = MVT::v2i32; 5082 switch (Intrinsic) { 5083 case Intrinsic::x86_mmx_pslli_w: 5084 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5085 break; 5086 case Intrinsic::x86_mmx_pslli_d: 5087 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5088 break; 5089 case Intrinsic::x86_mmx_pslli_q: 5090 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5091 break; 5092 case Intrinsic::x86_mmx_psrli_w: 5093 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5094 break; 5095 case Intrinsic::x86_mmx_psrli_d: 5096 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5097 break; 5098 case Intrinsic::x86_mmx_psrli_q: 5099 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5100 break; 5101 case Intrinsic::x86_mmx_psrai_w: 5102 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5103 break; 5104 case Intrinsic::x86_mmx_psrai_d: 5105 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5106 break; 5107 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5108 } 5109 5110 // The vector shift intrinsics with scalars uses 32b shift amounts but 5111 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5112 // to be zero. 5113 // We must do this early because v2i32 is not a legal type. 5114 SDValue ShOps[2]; 5115 ShOps[0] = ShAmt; 5116 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5117 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5118 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5119 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5120 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5121 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5122 getValue(I.getArgOperand(0)), ShAmt); 5123 setValue(&I, Res); 5124 return nullptr; 5125 } 5126 case Intrinsic::convertff: 5127 case Intrinsic::convertfsi: 5128 case Intrinsic::convertfui: 5129 case Intrinsic::convertsif: 5130 case Intrinsic::convertuif: 5131 case Intrinsic::convertss: 5132 case Intrinsic::convertsu: 5133 case Intrinsic::convertus: 5134 case Intrinsic::convertuu: { 5135 ISD::CvtCode Code = ISD::CVT_INVALID; 5136 switch (Intrinsic) { 5137 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5138 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5139 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5140 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5141 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5142 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5143 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5144 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5145 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5146 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5147 } 5148 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5149 const Value *Op1 = I.getArgOperand(0); 5150 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5151 DAG.getValueType(DestVT), 5152 DAG.getValueType(getValue(Op1).getValueType()), 5153 getValue(I.getArgOperand(1)), 5154 getValue(I.getArgOperand(2)), 5155 Code); 5156 setValue(&I, Res); 5157 return nullptr; 5158 } 5159 case Intrinsic::powi: 5160 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5161 getValue(I.getArgOperand(1)), DAG)); 5162 return nullptr; 5163 case Intrinsic::log: 5164 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5165 return nullptr; 5166 case Intrinsic::log2: 5167 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5168 return nullptr; 5169 case Intrinsic::log10: 5170 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5171 return nullptr; 5172 case Intrinsic::exp: 5173 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5174 return nullptr; 5175 case Intrinsic::exp2: 5176 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5177 return nullptr; 5178 case Intrinsic::pow: 5179 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5180 getValue(I.getArgOperand(1)), DAG, TLI)); 5181 return nullptr; 5182 case Intrinsic::sqrt: 5183 case Intrinsic::fabs: 5184 case Intrinsic::sin: 5185 case Intrinsic::cos: 5186 case Intrinsic::floor: 5187 case Intrinsic::ceil: 5188 case Intrinsic::trunc: 5189 case Intrinsic::rint: 5190 case Intrinsic::nearbyint: 5191 case Intrinsic::round: 5192 case Intrinsic::canonicalize: { 5193 unsigned Opcode; 5194 switch (Intrinsic) { 5195 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5196 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5197 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5198 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5199 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5200 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5201 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5202 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5203 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5204 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5205 case Intrinsic::round: Opcode = ISD::FROUND; break; 5206 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5207 } 5208 5209 setValue(&I, DAG.getNode(Opcode, sdl, 5210 getValue(I.getArgOperand(0)).getValueType(), 5211 getValue(I.getArgOperand(0)))); 5212 return nullptr; 5213 } 5214 case Intrinsic::minnum: { 5215 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5216 unsigned Opc = 5217 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5218 ? ISD::FMINNAN 5219 : ISD::FMINNUM; 5220 setValue(&I, DAG.getNode(Opc, sdl, VT, 5221 getValue(I.getArgOperand(0)), 5222 getValue(I.getArgOperand(1)))); 5223 return nullptr; 5224 } 5225 case Intrinsic::maxnum: { 5226 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5227 unsigned Opc = 5228 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5229 ? ISD::FMAXNAN 5230 : ISD::FMAXNUM; 5231 setValue(&I, DAG.getNode(Opc, sdl, VT, 5232 getValue(I.getArgOperand(0)), 5233 getValue(I.getArgOperand(1)))); 5234 return nullptr; 5235 } 5236 case Intrinsic::copysign: 5237 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5238 getValue(I.getArgOperand(0)).getValueType(), 5239 getValue(I.getArgOperand(0)), 5240 getValue(I.getArgOperand(1)))); 5241 return nullptr; 5242 case Intrinsic::fma: 5243 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5244 getValue(I.getArgOperand(0)).getValueType(), 5245 getValue(I.getArgOperand(0)), 5246 getValue(I.getArgOperand(1)), 5247 getValue(I.getArgOperand(2)))); 5248 return nullptr; 5249 case Intrinsic::fmuladd: { 5250 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5251 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5252 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5253 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5254 getValue(I.getArgOperand(0)).getValueType(), 5255 getValue(I.getArgOperand(0)), 5256 getValue(I.getArgOperand(1)), 5257 getValue(I.getArgOperand(2)))); 5258 } else { 5259 // TODO: Intrinsic calls should have fast-math-flags. 5260 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5261 getValue(I.getArgOperand(0)).getValueType(), 5262 getValue(I.getArgOperand(0)), 5263 getValue(I.getArgOperand(1))); 5264 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5265 getValue(I.getArgOperand(0)).getValueType(), 5266 Mul, 5267 getValue(I.getArgOperand(2))); 5268 setValue(&I, Add); 5269 } 5270 return nullptr; 5271 } 5272 case Intrinsic::convert_to_fp16: 5273 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5274 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5275 getValue(I.getArgOperand(0)), 5276 DAG.getTargetConstant(0, sdl, 5277 MVT::i32)))); 5278 return nullptr; 5279 case Intrinsic::convert_from_fp16: 5280 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5281 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5282 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5283 getValue(I.getArgOperand(0))))); 5284 return nullptr; 5285 case Intrinsic::pcmarker: { 5286 SDValue Tmp = getValue(I.getArgOperand(0)); 5287 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5288 return nullptr; 5289 } 5290 case Intrinsic::readcyclecounter: { 5291 SDValue Op = getRoot(); 5292 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5293 DAG.getVTList(MVT::i64, MVT::Other), Op); 5294 setValue(&I, Res); 5295 DAG.setRoot(Res.getValue(1)); 5296 return nullptr; 5297 } 5298 case Intrinsic::bitreverse: 5299 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5300 getValue(I.getArgOperand(0)).getValueType(), 5301 getValue(I.getArgOperand(0)))); 5302 return nullptr; 5303 case Intrinsic::bswap: 5304 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5305 getValue(I.getArgOperand(0)).getValueType(), 5306 getValue(I.getArgOperand(0)))); 5307 return nullptr; 5308 case Intrinsic::cttz: { 5309 SDValue Arg = getValue(I.getArgOperand(0)); 5310 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5311 EVT Ty = Arg.getValueType(); 5312 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5313 sdl, Ty, Arg)); 5314 return nullptr; 5315 } 5316 case Intrinsic::ctlz: { 5317 SDValue Arg = getValue(I.getArgOperand(0)); 5318 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5319 EVT Ty = Arg.getValueType(); 5320 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5321 sdl, Ty, Arg)); 5322 return nullptr; 5323 } 5324 case Intrinsic::ctpop: { 5325 SDValue Arg = getValue(I.getArgOperand(0)); 5326 EVT Ty = Arg.getValueType(); 5327 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5328 return nullptr; 5329 } 5330 case Intrinsic::stacksave: { 5331 SDValue Op = getRoot(); 5332 Res = DAG.getNode( 5333 ISD::STACKSAVE, sdl, 5334 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5335 setValue(&I, Res); 5336 DAG.setRoot(Res.getValue(1)); 5337 return nullptr; 5338 } 5339 case Intrinsic::stackrestore: { 5340 Res = getValue(I.getArgOperand(0)); 5341 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5342 return nullptr; 5343 } 5344 case Intrinsic::get_dynamic_area_offset: { 5345 SDValue Op = getRoot(); 5346 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5347 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5348 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5349 // target. 5350 if (PtrTy != ResTy) 5351 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5352 " intrinsic!"); 5353 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5354 Op); 5355 DAG.setRoot(Op); 5356 setValue(&I, Res); 5357 return nullptr; 5358 } 5359 case Intrinsic::stackguard: { 5360 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5361 MachineFunction &MF = DAG.getMachineFunction(); 5362 const Module &M = *MF.getFunction()->getParent(); 5363 SDValue Chain = getRoot(); 5364 if (TLI.useLoadStackGuardNode()) { 5365 Res = getLoadStackGuard(DAG, sdl, Chain); 5366 } else { 5367 const Value *Global = TLI.getSDagStackGuard(M); 5368 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5369 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5370 MachinePointerInfo(Global, 0), Align, 5371 MachineMemOperand::MOVolatile); 5372 } 5373 DAG.setRoot(Chain); 5374 setValue(&I, Res); 5375 return nullptr; 5376 } 5377 case Intrinsic::stackprotector: { 5378 // Emit code into the DAG to store the stack guard onto the stack. 5379 MachineFunction &MF = DAG.getMachineFunction(); 5380 MachineFrameInfo *MFI = MF.getFrameInfo(); 5381 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5382 SDValue Src, Chain = getRoot(); 5383 5384 if (TLI.useLoadStackGuardNode()) 5385 Src = getLoadStackGuard(DAG, sdl, Chain); 5386 else 5387 Src = getValue(I.getArgOperand(0)); // The guard's value. 5388 5389 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5390 5391 int FI = FuncInfo.StaticAllocaMap[Slot]; 5392 MFI->setStackProtectorIndex(FI); 5393 5394 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5395 5396 // Store the stack protector onto the stack. 5397 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5398 DAG.getMachineFunction(), FI), 5399 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5400 setValue(&I, Res); 5401 DAG.setRoot(Res); 5402 return nullptr; 5403 } 5404 case Intrinsic::objectsize: { 5405 // If we don't know by now, we're never going to know. 5406 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5407 5408 assert(CI && "Non-constant type in __builtin_object_size?"); 5409 5410 SDValue Arg = getValue(I.getCalledValue()); 5411 EVT Ty = Arg.getValueType(); 5412 5413 if (CI->isZero()) 5414 Res = DAG.getConstant(-1ULL, sdl, Ty); 5415 else 5416 Res = DAG.getConstant(0, sdl, Ty); 5417 5418 setValue(&I, Res); 5419 return nullptr; 5420 } 5421 case Intrinsic::annotation: 5422 case Intrinsic::ptr_annotation: 5423 // Drop the intrinsic, but forward the value 5424 setValue(&I, getValue(I.getOperand(0))); 5425 return nullptr; 5426 case Intrinsic::assume: 5427 case Intrinsic::var_annotation: 5428 // Discard annotate attributes and assumptions 5429 return nullptr; 5430 5431 case Intrinsic::init_trampoline: { 5432 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5433 5434 SDValue Ops[6]; 5435 Ops[0] = getRoot(); 5436 Ops[1] = getValue(I.getArgOperand(0)); 5437 Ops[2] = getValue(I.getArgOperand(1)); 5438 Ops[3] = getValue(I.getArgOperand(2)); 5439 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5440 Ops[5] = DAG.getSrcValue(F); 5441 5442 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5443 5444 DAG.setRoot(Res); 5445 return nullptr; 5446 } 5447 case Intrinsic::adjust_trampoline: { 5448 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5449 TLI.getPointerTy(DAG.getDataLayout()), 5450 getValue(I.getArgOperand(0)))); 5451 return nullptr; 5452 } 5453 case Intrinsic::gcroot: { 5454 MachineFunction &MF = DAG.getMachineFunction(); 5455 const Function *F = MF.getFunction(); 5456 (void)F; 5457 assert(F->hasGC() && 5458 "only valid in functions with gc specified, enforced by Verifier"); 5459 assert(GFI && "implied by previous"); 5460 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5461 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5462 5463 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5464 GFI->addStackRoot(FI->getIndex(), TypeMap); 5465 return nullptr; 5466 } 5467 case Intrinsic::gcread: 5468 case Intrinsic::gcwrite: 5469 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5470 case Intrinsic::flt_rounds: 5471 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5472 return nullptr; 5473 5474 case Intrinsic::expect: { 5475 // Just replace __builtin_expect(exp, c) with EXP. 5476 setValue(&I, getValue(I.getArgOperand(0))); 5477 return nullptr; 5478 } 5479 5480 case Intrinsic::debugtrap: 5481 case Intrinsic::trap: { 5482 StringRef TrapFuncName = 5483 I.getAttributes() 5484 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5485 .getValueAsString(); 5486 if (TrapFuncName.empty()) { 5487 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5488 ISD::TRAP : ISD::DEBUGTRAP; 5489 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5490 return nullptr; 5491 } 5492 TargetLowering::ArgListTy Args; 5493 5494 TargetLowering::CallLoweringInfo CLI(DAG); 5495 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5496 CallingConv::C, I.getType(), 5497 DAG.getExternalSymbol(TrapFuncName.data(), 5498 TLI.getPointerTy(DAG.getDataLayout())), 5499 std::move(Args)); 5500 5501 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5502 DAG.setRoot(Result.second); 5503 return nullptr; 5504 } 5505 5506 case Intrinsic::uadd_with_overflow: 5507 case Intrinsic::sadd_with_overflow: 5508 case Intrinsic::usub_with_overflow: 5509 case Intrinsic::ssub_with_overflow: 5510 case Intrinsic::umul_with_overflow: 5511 case Intrinsic::smul_with_overflow: { 5512 ISD::NodeType Op; 5513 switch (Intrinsic) { 5514 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5515 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5516 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5517 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5518 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5519 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5520 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5521 } 5522 SDValue Op1 = getValue(I.getArgOperand(0)); 5523 SDValue Op2 = getValue(I.getArgOperand(1)); 5524 5525 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5526 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5527 return nullptr; 5528 } 5529 case Intrinsic::prefetch: { 5530 SDValue Ops[5]; 5531 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5532 Ops[0] = getRoot(); 5533 Ops[1] = getValue(I.getArgOperand(0)); 5534 Ops[2] = getValue(I.getArgOperand(1)); 5535 Ops[3] = getValue(I.getArgOperand(2)); 5536 Ops[4] = getValue(I.getArgOperand(3)); 5537 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5538 DAG.getVTList(MVT::Other), Ops, 5539 EVT::getIntegerVT(*Context, 8), 5540 MachinePointerInfo(I.getArgOperand(0)), 5541 0, /* align */ 5542 false, /* volatile */ 5543 rw==0, /* read */ 5544 rw==1)); /* write */ 5545 return nullptr; 5546 } 5547 case Intrinsic::lifetime_start: 5548 case Intrinsic::lifetime_end: { 5549 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5550 // Stack coloring is not enabled in O0, discard region information. 5551 if (TM.getOptLevel() == CodeGenOpt::None) 5552 return nullptr; 5553 5554 SmallVector<Value *, 4> Allocas; 5555 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5556 5557 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5558 E = Allocas.end(); Object != E; ++Object) { 5559 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5560 5561 // Could not find an Alloca. 5562 if (!LifetimeObject) 5563 continue; 5564 5565 // First check that the Alloca is static, otherwise it won't have a 5566 // valid frame index. 5567 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5568 if (SI == FuncInfo.StaticAllocaMap.end()) 5569 return nullptr; 5570 5571 int FI = SI->second; 5572 5573 SDValue Ops[2]; 5574 Ops[0] = getRoot(); 5575 Ops[1] = 5576 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5577 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5578 5579 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5580 DAG.setRoot(Res); 5581 } 5582 return nullptr; 5583 } 5584 case Intrinsic::invariant_start: 5585 // Discard region information. 5586 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5587 return nullptr; 5588 case Intrinsic::invariant_end: 5589 // Discard region information. 5590 return nullptr; 5591 case Intrinsic::clear_cache: 5592 return TLI.getClearCacheBuiltinName(); 5593 case Intrinsic::donothing: 5594 // ignore 5595 return nullptr; 5596 case Intrinsic::experimental_stackmap: { 5597 visitStackmap(I); 5598 return nullptr; 5599 } 5600 case Intrinsic::experimental_patchpoint_void: 5601 case Intrinsic::experimental_patchpoint_i64: { 5602 visitPatchpoint(&I); 5603 return nullptr; 5604 } 5605 case Intrinsic::experimental_gc_statepoint: { 5606 LowerStatepoint(ImmutableStatepoint(&I)); 5607 return nullptr; 5608 } 5609 case Intrinsic::experimental_gc_result: { 5610 visitGCResult(cast<GCResultInst>(I)); 5611 return nullptr; 5612 } 5613 case Intrinsic::experimental_gc_relocate: { 5614 visitGCRelocate(cast<GCRelocateInst>(I)); 5615 return nullptr; 5616 } 5617 case Intrinsic::instrprof_increment: 5618 llvm_unreachable("instrprof failed to lower an increment"); 5619 case Intrinsic::instrprof_value_profile: 5620 llvm_unreachable("instrprof failed to lower a value profiling call"); 5621 case Intrinsic::localescape: { 5622 MachineFunction &MF = DAG.getMachineFunction(); 5623 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5624 5625 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5626 // is the same on all targets. 5627 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5628 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5629 if (isa<ConstantPointerNull>(Arg)) 5630 continue; // Skip null pointers. They represent a hole in index space. 5631 AllocaInst *Slot = cast<AllocaInst>(Arg); 5632 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5633 "can only escape static allocas"); 5634 int FI = FuncInfo.StaticAllocaMap[Slot]; 5635 MCSymbol *FrameAllocSym = 5636 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5637 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5638 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5639 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5640 .addSym(FrameAllocSym) 5641 .addFrameIndex(FI); 5642 } 5643 5644 return nullptr; 5645 } 5646 5647 case Intrinsic::localrecover: { 5648 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5649 MachineFunction &MF = DAG.getMachineFunction(); 5650 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5651 5652 // Get the symbol that defines the frame offset. 5653 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5654 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5655 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5656 MCSymbol *FrameAllocSym = 5657 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5658 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5659 5660 // Create a MCSymbol for the label to avoid any target lowering 5661 // that would make this PC relative. 5662 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5663 SDValue OffsetVal = 5664 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5665 5666 // Add the offset to the FP. 5667 Value *FP = I.getArgOperand(1); 5668 SDValue FPVal = getValue(FP); 5669 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5670 setValue(&I, Add); 5671 5672 return nullptr; 5673 } 5674 5675 case Intrinsic::eh_exceptionpointer: 5676 case Intrinsic::eh_exceptioncode: { 5677 // Get the exception pointer vreg, copy from it, and resize it to fit. 5678 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5679 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5680 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5681 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5682 SDValue N = 5683 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5684 if (Intrinsic == Intrinsic::eh_exceptioncode) 5685 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5686 setValue(&I, N); 5687 return nullptr; 5688 } 5689 5690 case Intrinsic::experimental_deoptimize: 5691 LowerDeoptimizeCall(&I); 5692 return nullptr; 5693 } 5694 } 5695 5696 std::pair<SDValue, SDValue> 5697 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5698 const BasicBlock *EHPadBB) { 5699 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5700 MCSymbol *BeginLabel = nullptr; 5701 5702 if (EHPadBB) { 5703 // Insert a label before the invoke call to mark the try range. This can be 5704 // used to detect deletion of the invoke via the MachineModuleInfo. 5705 BeginLabel = MMI.getContext().createTempSymbol(); 5706 5707 // For SjLj, keep track of which landing pads go with which invokes 5708 // so as to maintain the ordering of pads in the LSDA. 5709 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5710 if (CallSiteIndex) { 5711 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5712 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5713 5714 // Now that the call site is handled, stop tracking it. 5715 MMI.setCurrentCallSite(0); 5716 } 5717 5718 // Both PendingLoads and PendingExports must be flushed here; 5719 // this call might not return. 5720 (void)getRoot(); 5721 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5722 5723 CLI.setChain(getRoot()); 5724 } 5725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5726 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5727 5728 assert((CLI.IsTailCall || Result.second.getNode()) && 5729 "Non-null chain expected with non-tail call!"); 5730 assert((Result.second.getNode() || !Result.first.getNode()) && 5731 "Null value expected with tail call!"); 5732 5733 if (!Result.second.getNode()) { 5734 // As a special case, a null chain means that a tail call has been emitted 5735 // and the DAG root is already updated. 5736 HasTailCall = true; 5737 5738 // Since there's no actual continuation from this block, nothing can be 5739 // relying on us setting vregs for them. 5740 PendingExports.clear(); 5741 } else { 5742 DAG.setRoot(Result.second); 5743 } 5744 5745 if (EHPadBB) { 5746 // Insert a label at the end of the invoke call to mark the try range. This 5747 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5748 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5749 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5750 5751 // Inform MachineModuleInfo of range. 5752 if (MMI.hasEHFunclets()) { 5753 assert(CLI.CS); 5754 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5755 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5756 BeginLabel, EndLabel); 5757 } else { 5758 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5759 } 5760 } 5761 5762 return Result; 5763 } 5764 5765 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5766 bool isTailCall, 5767 const BasicBlock *EHPadBB) { 5768 auto &DL = DAG.getDataLayout(); 5769 FunctionType *FTy = CS.getFunctionType(); 5770 Type *RetTy = CS.getType(); 5771 5772 TargetLowering::ArgListTy Args; 5773 TargetLowering::ArgListEntry Entry; 5774 Args.reserve(CS.arg_size()); 5775 5776 const Value *SwiftErrorVal = nullptr; 5777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5778 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5779 i != e; ++i) { 5780 const Value *V = *i; 5781 5782 // Skip empty types 5783 if (V->getType()->isEmptyTy()) 5784 continue; 5785 5786 SDValue ArgNode = getValue(V); 5787 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5788 5789 // Skip the first return-type Attribute to get to params. 5790 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5791 5792 // Use swifterror virtual register as input to the call. 5793 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5794 SwiftErrorVal = V; 5795 // We find the virtual register for the actual swifterror argument. 5796 // Instead of using the Value, we use the virtual register instead. 5797 Entry.Node = DAG.getRegister( 5798 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5799 EVT(TLI.getPointerTy(DL))); 5800 } 5801 5802 Args.push_back(Entry); 5803 5804 // If we have an explicit sret argument that is an Instruction, (i.e., it 5805 // might point to function-local memory), we can't meaningfully tail-call. 5806 if (Entry.isSRet && isa<Instruction>(V)) 5807 isTailCall = false; 5808 } 5809 5810 // Check if target-independent constraints permit a tail call here. 5811 // Target-dependent constraints are checked within TLI->LowerCallTo. 5812 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5813 isTailCall = false; 5814 5815 TargetLowering::CallLoweringInfo CLI(DAG); 5816 CLI.setDebugLoc(getCurSDLoc()) 5817 .setChain(getRoot()) 5818 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5819 .setTailCall(isTailCall) 5820 .setConvergent(CS.isConvergent()); 5821 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5822 5823 if (Result.first.getNode()) { 5824 const Instruction *Inst = CS.getInstruction(); 5825 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5826 setValue(Inst, Result.first); 5827 } 5828 5829 // The last element of CLI.InVals has the SDValue for swifterror return. 5830 // Here we copy it to a virtual register and update SwiftErrorMap for 5831 // book-keeping. 5832 if (SwiftErrorVal && TLI.supportSwiftError()) { 5833 // Get the last element of InVals. 5834 SDValue Src = CLI.InVals.back(); 5835 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5836 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5837 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5838 // We update the virtual register for the actual swifterror argument. 5839 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5840 DAG.setRoot(CopyNode); 5841 } 5842 } 5843 5844 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5845 /// value is equal or not-equal to zero. 5846 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5847 for (const User *U : V->users()) { 5848 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5849 if (IC->isEquality()) 5850 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5851 if (C->isNullValue()) 5852 continue; 5853 // Unknown instruction. 5854 return false; 5855 } 5856 return true; 5857 } 5858 5859 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5860 Type *LoadTy, 5861 SelectionDAGBuilder &Builder) { 5862 5863 // Check to see if this load can be trivially constant folded, e.g. if the 5864 // input is from a string literal. 5865 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5866 // Cast pointer to the type we really want to load. 5867 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5868 PointerType::getUnqual(LoadTy)); 5869 5870 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5871 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5872 return Builder.getValue(LoadCst); 5873 } 5874 5875 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5876 // still constant memory, the input chain can be the entry node. 5877 SDValue Root; 5878 bool ConstantMemory = false; 5879 5880 // Do not serialize (non-volatile) loads of constant memory with anything. 5881 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5882 Root = Builder.DAG.getEntryNode(); 5883 ConstantMemory = true; 5884 } else { 5885 // Do not serialize non-volatile loads against each other. 5886 Root = Builder.DAG.getRoot(); 5887 } 5888 5889 SDValue Ptr = Builder.getValue(PtrVal); 5890 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5891 Ptr, MachinePointerInfo(PtrVal), 5892 /* Alignment = */ 1); 5893 5894 if (!ConstantMemory) 5895 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5896 return LoadVal; 5897 } 5898 5899 /// processIntegerCallValue - Record the value for an instruction that 5900 /// produces an integer result, converting the type where necessary. 5901 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5902 SDValue Value, 5903 bool IsSigned) { 5904 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5905 I.getType(), true); 5906 if (IsSigned) 5907 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5908 else 5909 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5910 setValue(&I, Value); 5911 } 5912 5913 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5914 /// If so, return true and lower it, otherwise return false and it will be 5915 /// lowered like a normal call. 5916 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5917 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5918 if (I.getNumArgOperands() != 3) 5919 return false; 5920 5921 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5922 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5923 !I.getArgOperand(2)->getType()->isIntegerTy() || 5924 !I.getType()->isIntegerTy()) 5925 return false; 5926 5927 const Value *Size = I.getArgOperand(2); 5928 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5929 if (CSize && CSize->getZExtValue() == 0) { 5930 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5931 I.getType(), true); 5932 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5933 return true; 5934 } 5935 5936 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5937 std::pair<SDValue, SDValue> Res = 5938 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5939 getValue(LHS), getValue(RHS), getValue(Size), 5940 MachinePointerInfo(LHS), 5941 MachinePointerInfo(RHS)); 5942 if (Res.first.getNode()) { 5943 processIntegerCallValue(I, Res.first, true); 5944 PendingLoads.push_back(Res.second); 5945 return true; 5946 } 5947 5948 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5949 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5950 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5951 bool ActuallyDoIt = true; 5952 MVT LoadVT; 5953 Type *LoadTy; 5954 switch (CSize->getZExtValue()) { 5955 default: 5956 LoadVT = MVT::Other; 5957 LoadTy = nullptr; 5958 ActuallyDoIt = false; 5959 break; 5960 case 2: 5961 LoadVT = MVT::i16; 5962 LoadTy = Type::getInt16Ty(CSize->getContext()); 5963 break; 5964 case 4: 5965 LoadVT = MVT::i32; 5966 LoadTy = Type::getInt32Ty(CSize->getContext()); 5967 break; 5968 case 8: 5969 LoadVT = MVT::i64; 5970 LoadTy = Type::getInt64Ty(CSize->getContext()); 5971 break; 5972 /* 5973 case 16: 5974 LoadVT = MVT::v4i32; 5975 LoadTy = Type::getInt32Ty(CSize->getContext()); 5976 LoadTy = VectorType::get(LoadTy, 4); 5977 break; 5978 */ 5979 } 5980 5981 // This turns into unaligned loads. We only do this if the target natively 5982 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5983 // we'll only produce a small number of byte loads. 5984 5985 // Require that we can find a legal MVT, and only do this if the target 5986 // supports unaligned loads of that type. Expanding into byte loads would 5987 // bloat the code. 5988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5989 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5990 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5991 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5992 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5993 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5994 // TODO: Check alignment of src and dest ptrs. 5995 if (!TLI.isTypeLegal(LoadVT) || 5996 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5997 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5998 ActuallyDoIt = false; 5999 } 6000 6001 if (ActuallyDoIt) { 6002 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 6003 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 6004 6005 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 6006 ISD::SETNE); 6007 processIntegerCallValue(I, Res, false); 6008 return true; 6009 } 6010 } 6011 6012 6013 return false; 6014 } 6015 6016 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 6017 /// form. If so, return true and lower it, otherwise return false and it 6018 /// will be lowered like a normal call. 6019 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6020 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 6021 if (I.getNumArgOperands() != 3) 6022 return false; 6023 6024 const Value *Src = I.getArgOperand(0); 6025 const Value *Char = I.getArgOperand(1); 6026 const Value *Length = I.getArgOperand(2); 6027 if (!Src->getType()->isPointerTy() || 6028 !Char->getType()->isIntegerTy() || 6029 !Length->getType()->isIntegerTy() || 6030 !I.getType()->isPointerTy()) 6031 return false; 6032 6033 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6034 std::pair<SDValue, SDValue> Res = 6035 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6036 getValue(Src), getValue(Char), getValue(Length), 6037 MachinePointerInfo(Src)); 6038 if (Res.first.getNode()) { 6039 setValue(&I, Res.first); 6040 PendingLoads.push_back(Res.second); 6041 return true; 6042 } 6043 6044 return false; 6045 } 6046 6047 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 6048 /// optimized form. If so, return true and lower it, otherwise return false 6049 /// and it will be lowered like a normal call. 6050 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6051 // Verify that the prototype makes sense. char *strcpy(char *, char *) 6052 if (I.getNumArgOperands() != 2) 6053 return false; 6054 6055 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6056 if (!Arg0->getType()->isPointerTy() || 6057 !Arg1->getType()->isPointerTy() || 6058 !I.getType()->isPointerTy()) 6059 return false; 6060 6061 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6062 std::pair<SDValue, SDValue> Res = 6063 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6064 getValue(Arg0), getValue(Arg1), 6065 MachinePointerInfo(Arg0), 6066 MachinePointerInfo(Arg1), isStpcpy); 6067 if (Res.first.getNode()) { 6068 setValue(&I, Res.first); 6069 DAG.setRoot(Res.second); 6070 return true; 6071 } 6072 6073 return false; 6074 } 6075 6076 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6077 /// If so, return true and lower it, otherwise return false and it will be 6078 /// lowered like a normal call. 6079 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6080 // Verify that the prototype makes sense. int strcmp(void*,void*) 6081 if (I.getNumArgOperands() != 2) 6082 return false; 6083 6084 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6085 if (!Arg0->getType()->isPointerTy() || 6086 !Arg1->getType()->isPointerTy() || 6087 !I.getType()->isIntegerTy()) 6088 return false; 6089 6090 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6091 std::pair<SDValue, SDValue> Res = 6092 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6093 getValue(Arg0), getValue(Arg1), 6094 MachinePointerInfo(Arg0), 6095 MachinePointerInfo(Arg1)); 6096 if (Res.first.getNode()) { 6097 processIntegerCallValue(I, Res.first, true); 6098 PendingLoads.push_back(Res.second); 6099 return true; 6100 } 6101 6102 return false; 6103 } 6104 6105 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6106 /// form. If so, return true and lower it, otherwise return false and it 6107 /// will be lowered like a normal call. 6108 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6109 // Verify that the prototype makes sense. size_t strlen(char *) 6110 if (I.getNumArgOperands() != 1) 6111 return false; 6112 6113 const Value *Arg0 = I.getArgOperand(0); 6114 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6115 return false; 6116 6117 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6118 std::pair<SDValue, SDValue> Res = 6119 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6120 getValue(Arg0), MachinePointerInfo(Arg0)); 6121 if (Res.first.getNode()) { 6122 processIntegerCallValue(I, Res.first, false); 6123 PendingLoads.push_back(Res.second); 6124 return true; 6125 } 6126 6127 return false; 6128 } 6129 6130 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6131 /// form. If so, return true and lower it, otherwise return false and it 6132 /// will be lowered like a normal call. 6133 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6134 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6135 if (I.getNumArgOperands() != 2) 6136 return false; 6137 6138 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6139 if (!Arg0->getType()->isPointerTy() || 6140 !Arg1->getType()->isIntegerTy() || 6141 !I.getType()->isIntegerTy()) 6142 return false; 6143 6144 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6145 std::pair<SDValue, SDValue> Res = 6146 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6147 getValue(Arg0), getValue(Arg1), 6148 MachinePointerInfo(Arg0)); 6149 if (Res.first.getNode()) { 6150 processIntegerCallValue(I, Res.first, false); 6151 PendingLoads.push_back(Res.second); 6152 return true; 6153 } 6154 6155 return false; 6156 } 6157 6158 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6159 /// operation (as expected), translate it to an SDNode with the specified opcode 6160 /// and return true. 6161 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6162 unsigned Opcode) { 6163 // Sanity check that it really is a unary floating-point call. 6164 if (I.getNumArgOperands() != 1 || 6165 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6166 I.getType() != I.getArgOperand(0)->getType() || 6167 !I.onlyReadsMemory()) 6168 return false; 6169 6170 SDValue Tmp = getValue(I.getArgOperand(0)); 6171 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6172 return true; 6173 } 6174 6175 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6176 /// operation (as expected), translate it to an SDNode with the specified opcode 6177 /// and return true. 6178 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6179 unsigned Opcode) { 6180 // Sanity check that it really is a binary floating-point call. 6181 if (I.getNumArgOperands() != 2 || 6182 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6183 I.getType() != I.getArgOperand(0)->getType() || 6184 I.getType() != I.getArgOperand(1)->getType() || 6185 !I.onlyReadsMemory()) 6186 return false; 6187 6188 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6189 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6190 EVT VT = Tmp0.getValueType(); 6191 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6192 return true; 6193 } 6194 6195 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6196 // Handle inline assembly differently. 6197 if (isa<InlineAsm>(I.getCalledValue())) { 6198 visitInlineAsm(&I); 6199 return; 6200 } 6201 6202 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6203 ComputeUsesVAFloatArgument(I, &MMI); 6204 6205 const char *RenameFn = nullptr; 6206 if (Function *F = I.getCalledFunction()) { 6207 if (F->isDeclaration()) { 6208 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6209 if (unsigned IID = II->getIntrinsicID(F)) { 6210 RenameFn = visitIntrinsicCall(I, IID); 6211 if (!RenameFn) 6212 return; 6213 } 6214 } 6215 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6216 RenameFn = visitIntrinsicCall(I, IID); 6217 if (!RenameFn) 6218 return; 6219 } 6220 } 6221 6222 // Check for well-known libc/libm calls. If the function is internal, it 6223 // can't be a library call. Don't do the check if marked as nobuiltin for 6224 // some reason. 6225 LibFunc::Func Func; 6226 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6227 LibInfo->getLibFunc(F->getName(), Func) && 6228 LibInfo->hasOptimizedCodeGen(Func)) { 6229 switch (Func) { 6230 default: break; 6231 case LibFunc::copysign: 6232 case LibFunc::copysignf: 6233 case LibFunc::copysignl: 6234 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6235 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6236 I.getType() == I.getArgOperand(0)->getType() && 6237 I.getType() == I.getArgOperand(1)->getType() && 6238 I.onlyReadsMemory()) { 6239 SDValue LHS = getValue(I.getArgOperand(0)); 6240 SDValue RHS = getValue(I.getArgOperand(1)); 6241 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6242 LHS.getValueType(), LHS, RHS)); 6243 return; 6244 } 6245 break; 6246 case LibFunc::fabs: 6247 case LibFunc::fabsf: 6248 case LibFunc::fabsl: 6249 if (visitUnaryFloatCall(I, ISD::FABS)) 6250 return; 6251 break; 6252 case LibFunc::fmin: 6253 case LibFunc::fminf: 6254 case LibFunc::fminl: 6255 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6256 return; 6257 break; 6258 case LibFunc::fmax: 6259 case LibFunc::fmaxf: 6260 case LibFunc::fmaxl: 6261 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6262 return; 6263 break; 6264 case LibFunc::sin: 6265 case LibFunc::sinf: 6266 case LibFunc::sinl: 6267 if (visitUnaryFloatCall(I, ISD::FSIN)) 6268 return; 6269 break; 6270 case LibFunc::cos: 6271 case LibFunc::cosf: 6272 case LibFunc::cosl: 6273 if (visitUnaryFloatCall(I, ISD::FCOS)) 6274 return; 6275 break; 6276 case LibFunc::sqrt: 6277 case LibFunc::sqrtf: 6278 case LibFunc::sqrtl: 6279 case LibFunc::sqrt_finite: 6280 case LibFunc::sqrtf_finite: 6281 case LibFunc::sqrtl_finite: 6282 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6283 return; 6284 break; 6285 case LibFunc::floor: 6286 case LibFunc::floorf: 6287 case LibFunc::floorl: 6288 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6289 return; 6290 break; 6291 case LibFunc::nearbyint: 6292 case LibFunc::nearbyintf: 6293 case LibFunc::nearbyintl: 6294 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6295 return; 6296 break; 6297 case LibFunc::ceil: 6298 case LibFunc::ceilf: 6299 case LibFunc::ceill: 6300 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6301 return; 6302 break; 6303 case LibFunc::rint: 6304 case LibFunc::rintf: 6305 case LibFunc::rintl: 6306 if (visitUnaryFloatCall(I, ISD::FRINT)) 6307 return; 6308 break; 6309 case LibFunc::round: 6310 case LibFunc::roundf: 6311 case LibFunc::roundl: 6312 if (visitUnaryFloatCall(I, ISD::FROUND)) 6313 return; 6314 break; 6315 case LibFunc::trunc: 6316 case LibFunc::truncf: 6317 case LibFunc::truncl: 6318 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6319 return; 6320 break; 6321 case LibFunc::log2: 6322 case LibFunc::log2f: 6323 case LibFunc::log2l: 6324 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6325 return; 6326 break; 6327 case LibFunc::exp2: 6328 case LibFunc::exp2f: 6329 case LibFunc::exp2l: 6330 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6331 return; 6332 break; 6333 case LibFunc::memcmp: 6334 if (visitMemCmpCall(I)) 6335 return; 6336 break; 6337 case LibFunc::memchr: 6338 if (visitMemChrCall(I)) 6339 return; 6340 break; 6341 case LibFunc::strcpy: 6342 if (visitStrCpyCall(I, false)) 6343 return; 6344 break; 6345 case LibFunc::stpcpy: 6346 if (visitStrCpyCall(I, true)) 6347 return; 6348 break; 6349 case LibFunc::strcmp: 6350 if (visitStrCmpCall(I)) 6351 return; 6352 break; 6353 case LibFunc::strlen: 6354 if (visitStrLenCall(I)) 6355 return; 6356 break; 6357 case LibFunc::strnlen: 6358 if (visitStrNLenCall(I)) 6359 return; 6360 break; 6361 } 6362 } 6363 } 6364 6365 SDValue Callee; 6366 if (!RenameFn) 6367 Callee = getValue(I.getCalledValue()); 6368 else 6369 Callee = DAG.getExternalSymbol( 6370 RenameFn, 6371 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6372 6373 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6374 // have to do anything here to lower funclet bundles. 6375 assert(!I.hasOperandBundlesOtherThan( 6376 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6377 "Cannot lower calls with arbitrary operand bundles!"); 6378 6379 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6380 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6381 else 6382 // Check if we can potentially perform a tail call. More detailed checking 6383 // is be done within LowerCallTo, after more information about the call is 6384 // known. 6385 LowerCallTo(&I, Callee, I.isTailCall()); 6386 } 6387 6388 namespace { 6389 6390 /// AsmOperandInfo - This contains information for each constraint that we are 6391 /// lowering. 6392 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6393 public: 6394 /// CallOperand - If this is the result output operand or a clobber 6395 /// this is null, otherwise it is the incoming operand to the CallInst. 6396 /// This gets modified as the asm is processed. 6397 SDValue CallOperand; 6398 6399 /// AssignedRegs - If this is a register or register class operand, this 6400 /// contains the set of register corresponding to the operand. 6401 RegsForValue AssignedRegs; 6402 6403 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6404 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6405 } 6406 6407 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6408 /// corresponds to. If there is no Value* for this operand, it returns 6409 /// MVT::Other. 6410 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6411 const DataLayout &DL) const { 6412 if (!CallOperandVal) return MVT::Other; 6413 6414 if (isa<BasicBlock>(CallOperandVal)) 6415 return TLI.getPointerTy(DL); 6416 6417 llvm::Type *OpTy = CallOperandVal->getType(); 6418 6419 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6420 // If this is an indirect operand, the operand is a pointer to the 6421 // accessed type. 6422 if (isIndirect) { 6423 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6424 if (!PtrTy) 6425 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6426 OpTy = PtrTy->getElementType(); 6427 } 6428 6429 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6430 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6431 if (STy->getNumElements() == 1) 6432 OpTy = STy->getElementType(0); 6433 6434 // If OpTy is not a single value, it may be a struct/union that we 6435 // can tile with integers. 6436 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6437 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6438 switch (BitSize) { 6439 default: break; 6440 case 1: 6441 case 8: 6442 case 16: 6443 case 32: 6444 case 64: 6445 case 128: 6446 OpTy = IntegerType::get(Context, BitSize); 6447 break; 6448 } 6449 } 6450 6451 return TLI.getValueType(DL, OpTy, true); 6452 } 6453 }; 6454 6455 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6456 6457 } // end anonymous namespace 6458 6459 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6460 /// specified operand. We prefer to assign virtual registers, to allow the 6461 /// register allocator to handle the assignment process. However, if the asm 6462 /// uses features that we can't model on machineinstrs, we have SDISel do the 6463 /// allocation. This produces generally horrible, but correct, code. 6464 /// 6465 /// OpInfo describes the operand. 6466 /// 6467 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6468 const SDLoc &DL, 6469 SDISelAsmOperandInfo &OpInfo) { 6470 LLVMContext &Context = *DAG.getContext(); 6471 6472 MachineFunction &MF = DAG.getMachineFunction(); 6473 SmallVector<unsigned, 4> Regs; 6474 6475 // If this is a constraint for a single physreg, or a constraint for a 6476 // register class, find it. 6477 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6478 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6479 OpInfo.ConstraintCode, 6480 OpInfo.ConstraintVT); 6481 6482 unsigned NumRegs = 1; 6483 if (OpInfo.ConstraintVT != MVT::Other) { 6484 // If this is a FP input in an integer register (or visa versa) insert a bit 6485 // cast of the input value. More generally, handle any case where the input 6486 // value disagrees with the register class we plan to stick this in. 6487 if (OpInfo.Type == InlineAsm::isInput && 6488 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6489 // Try to convert to the first EVT that the reg class contains. If the 6490 // types are identical size, use a bitcast to convert (e.g. two differing 6491 // vector types). 6492 MVT RegVT = *PhysReg.second->vt_begin(); 6493 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6494 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6495 RegVT, OpInfo.CallOperand); 6496 OpInfo.ConstraintVT = RegVT; 6497 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6498 // If the input is a FP value and we want it in FP registers, do a 6499 // bitcast to the corresponding integer type. This turns an f64 value 6500 // into i64, which can be passed with two i32 values on a 32-bit 6501 // machine. 6502 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6503 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6504 RegVT, OpInfo.CallOperand); 6505 OpInfo.ConstraintVT = RegVT; 6506 } 6507 } 6508 6509 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6510 } 6511 6512 MVT RegVT; 6513 EVT ValueVT = OpInfo.ConstraintVT; 6514 6515 // If this is a constraint for a specific physical register, like {r17}, 6516 // assign it now. 6517 if (unsigned AssignedReg = PhysReg.first) { 6518 const TargetRegisterClass *RC = PhysReg.second; 6519 if (OpInfo.ConstraintVT == MVT::Other) 6520 ValueVT = *RC->vt_begin(); 6521 6522 // Get the actual register value type. This is important, because the user 6523 // may have asked for (e.g.) the AX register in i32 type. We need to 6524 // remember that AX is actually i16 to get the right extension. 6525 RegVT = *RC->vt_begin(); 6526 6527 // This is a explicit reference to a physical register. 6528 Regs.push_back(AssignedReg); 6529 6530 // If this is an expanded reference, add the rest of the regs to Regs. 6531 if (NumRegs != 1) { 6532 TargetRegisterClass::iterator I = RC->begin(); 6533 for (; *I != AssignedReg; ++I) 6534 assert(I != RC->end() && "Didn't find reg!"); 6535 6536 // Already added the first reg. 6537 --NumRegs; ++I; 6538 for (; NumRegs; --NumRegs, ++I) { 6539 assert(I != RC->end() && "Ran out of registers to allocate!"); 6540 Regs.push_back(*I); 6541 } 6542 } 6543 6544 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6545 return; 6546 } 6547 6548 // Otherwise, if this was a reference to an LLVM register class, create vregs 6549 // for this reference. 6550 if (const TargetRegisterClass *RC = PhysReg.second) { 6551 RegVT = *RC->vt_begin(); 6552 if (OpInfo.ConstraintVT == MVT::Other) 6553 ValueVT = RegVT; 6554 6555 // Create the appropriate number of virtual registers. 6556 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6557 for (; NumRegs; --NumRegs) 6558 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6559 6560 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6561 return; 6562 } 6563 6564 // Otherwise, we couldn't allocate enough registers for this. 6565 } 6566 6567 /// visitInlineAsm - Handle a call to an InlineAsm object. 6568 /// 6569 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6570 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6571 6572 /// ConstraintOperands - Information about all of the constraints. 6573 SDISelAsmOperandInfoVector ConstraintOperands; 6574 6575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6576 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6577 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6578 6579 bool hasMemory = false; 6580 6581 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6582 unsigned ResNo = 0; // ResNo - The result number of the next output. 6583 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6584 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6585 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6586 6587 MVT OpVT = MVT::Other; 6588 6589 // Compute the value type for each operand. 6590 switch (OpInfo.Type) { 6591 case InlineAsm::isOutput: 6592 // Indirect outputs just consume an argument. 6593 if (OpInfo.isIndirect) { 6594 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6595 break; 6596 } 6597 6598 // The return value of the call is this value. As such, there is no 6599 // corresponding argument. 6600 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6601 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6602 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6603 STy->getElementType(ResNo)); 6604 } else { 6605 assert(ResNo == 0 && "Asm only has one result!"); 6606 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6607 } 6608 ++ResNo; 6609 break; 6610 case InlineAsm::isInput: 6611 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6612 break; 6613 case InlineAsm::isClobber: 6614 // Nothing to do. 6615 break; 6616 } 6617 6618 // If this is an input or an indirect output, process the call argument. 6619 // BasicBlocks are labels, currently appearing only in asm's. 6620 if (OpInfo.CallOperandVal) { 6621 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6622 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6623 } else { 6624 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6625 } 6626 6627 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6628 DAG.getDataLayout()).getSimpleVT(); 6629 } 6630 6631 OpInfo.ConstraintVT = OpVT; 6632 6633 // Indirect operand accesses access memory. 6634 if (OpInfo.isIndirect) 6635 hasMemory = true; 6636 else { 6637 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6638 TargetLowering::ConstraintType 6639 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6640 if (CType == TargetLowering::C_Memory) { 6641 hasMemory = true; 6642 break; 6643 } 6644 } 6645 } 6646 } 6647 6648 SDValue Chain, Flag; 6649 6650 // We won't need to flush pending loads if this asm doesn't touch 6651 // memory and is nonvolatile. 6652 if (hasMemory || IA->hasSideEffects()) 6653 Chain = getRoot(); 6654 else 6655 Chain = DAG.getRoot(); 6656 6657 // Second pass over the constraints: compute which constraint option to use 6658 // and assign registers to constraints that want a specific physreg. 6659 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6660 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6661 6662 // If this is an output operand with a matching input operand, look up the 6663 // matching input. If their types mismatch, e.g. one is an integer, the 6664 // other is floating point, or their sizes are different, flag it as an 6665 // error. 6666 if (OpInfo.hasMatchingInput()) { 6667 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6668 6669 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6670 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6671 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6672 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6673 OpInfo.ConstraintVT); 6674 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6675 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6676 Input.ConstraintVT); 6677 if ((OpInfo.ConstraintVT.isInteger() != 6678 Input.ConstraintVT.isInteger()) || 6679 (MatchRC.second != InputRC.second)) { 6680 report_fatal_error("Unsupported asm: input constraint" 6681 " with a matching output constraint of" 6682 " incompatible type!"); 6683 } 6684 Input.ConstraintVT = OpInfo.ConstraintVT; 6685 } 6686 } 6687 6688 // Compute the constraint code and ConstraintType to use. 6689 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6690 6691 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6692 OpInfo.Type == InlineAsm::isClobber) 6693 continue; 6694 6695 // If this is a memory input, and if the operand is not indirect, do what we 6696 // need to to provide an address for the memory input. 6697 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6698 !OpInfo.isIndirect) { 6699 assert((OpInfo.isMultipleAlternative || 6700 (OpInfo.Type == InlineAsm::isInput)) && 6701 "Can only indirectify direct input operands!"); 6702 6703 // Memory operands really want the address of the value. If we don't have 6704 // an indirect input, put it in the constpool if we can, otherwise spill 6705 // it to a stack slot. 6706 // TODO: This isn't quite right. We need to handle these according to 6707 // the addressing mode that the constraint wants. Also, this may take 6708 // an additional register for the computation and we don't want that 6709 // either. 6710 6711 // If the operand is a float, integer, or vector constant, spill to a 6712 // constant pool entry to get its address. 6713 const Value *OpVal = OpInfo.CallOperandVal; 6714 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6715 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6716 OpInfo.CallOperand = DAG.getConstantPool( 6717 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6718 } else { 6719 // Otherwise, create a stack slot and emit a store to it before the 6720 // asm. 6721 Type *Ty = OpVal->getType(); 6722 auto &DL = DAG.getDataLayout(); 6723 uint64_t TySize = DL.getTypeAllocSize(Ty); 6724 unsigned Align = DL.getPrefTypeAlignment(Ty); 6725 MachineFunction &MF = DAG.getMachineFunction(); 6726 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6727 SDValue StackSlot = 6728 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6729 Chain = DAG.getStore( 6730 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6731 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI)); 6732 OpInfo.CallOperand = StackSlot; 6733 } 6734 6735 // There is no longer a Value* corresponding to this operand. 6736 OpInfo.CallOperandVal = nullptr; 6737 6738 // It is now an indirect operand. 6739 OpInfo.isIndirect = true; 6740 } 6741 6742 // If this constraint is for a specific register, allocate it before 6743 // anything else. 6744 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6745 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6746 } 6747 6748 // Second pass - Loop over all of the operands, assigning virtual or physregs 6749 // to register class operands. 6750 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6751 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6752 6753 // C_Register operands have already been allocated, Other/Memory don't need 6754 // to be. 6755 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6756 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6757 } 6758 6759 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6760 std::vector<SDValue> AsmNodeOperands; 6761 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6762 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6763 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6764 6765 // If we have a !srcloc metadata node associated with it, we want to attach 6766 // this to the ultimately generated inline asm machineinstr. To do this, we 6767 // pass in the third operand as this (potentially null) inline asm MDNode. 6768 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6769 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6770 6771 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6772 // bits as operand 3. 6773 unsigned ExtraInfo = 0; 6774 if (IA->hasSideEffects()) 6775 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6776 if (IA->isAlignStack()) 6777 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6778 if (CS.isConvergent()) 6779 ExtraInfo |= InlineAsm::Extra_IsConvergent; 6780 // Set the asm dialect. 6781 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6782 6783 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6784 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6785 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6786 6787 // Compute the constraint code and ConstraintType to use. 6788 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6789 6790 // Ideally, we would only check against memory constraints. However, the 6791 // meaning of an other constraint can be target-specific and we can't easily 6792 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6793 // for other constriants as well. 6794 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6795 OpInfo.ConstraintType == TargetLowering::C_Other) { 6796 if (OpInfo.Type == InlineAsm::isInput) 6797 ExtraInfo |= InlineAsm::Extra_MayLoad; 6798 else if (OpInfo.Type == InlineAsm::isOutput) 6799 ExtraInfo |= InlineAsm::Extra_MayStore; 6800 else if (OpInfo.Type == InlineAsm::isClobber) 6801 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6802 } 6803 } 6804 6805 AsmNodeOperands.push_back(DAG.getTargetConstant( 6806 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6807 6808 // Loop over all of the inputs, copying the operand values into the 6809 // appropriate registers and processing the output regs. 6810 RegsForValue RetValRegs; 6811 6812 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6813 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6814 6815 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6816 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6817 6818 switch (OpInfo.Type) { 6819 case InlineAsm::isOutput: { 6820 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6821 OpInfo.ConstraintType != TargetLowering::C_Register) { 6822 // Memory output, or 'other' output (e.g. 'X' constraint). 6823 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6824 6825 unsigned ConstraintID = 6826 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6827 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6828 "Failed to convert memory constraint code to constraint id."); 6829 6830 // Add information to the INLINEASM node to know about this output. 6831 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6832 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6833 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6834 MVT::i32)); 6835 AsmNodeOperands.push_back(OpInfo.CallOperand); 6836 break; 6837 } 6838 6839 // Otherwise, this is a register or register class output. 6840 6841 // Copy the output from the appropriate register. Find a register that 6842 // we can use. 6843 if (OpInfo.AssignedRegs.Regs.empty()) { 6844 emitInlineAsmError( 6845 CS, "couldn't allocate output register for constraint '" + 6846 Twine(OpInfo.ConstraintCode) + "'"); 6847 return; 6848 } 6849 6850 // If this is an indirect operand, store through the pointer after the 6851 // asm. 6852 if (OpInfo.isIndirect) { 6853 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6854 OpInfo.CallOperandVal)); 6855 } else { 6856 // This is the result value of the call. 6857 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6858 // Concatenate this output onto the outputs list. 6859 RetValRegs.append(OpInfo.AssignedRegs); 6860 } 6861 6862 // Add information to the INLINEASM node to know that this register is 6863 // set. 6864 OpInfo.AssignedRegs 6865 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6866 ? InlineAsm::Kind_RegDefEarlyClobber 6867 : InlineAsm::Kind_RegDef, 6868 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6869 break; 6870 } 6871 case InlineAsm::isInput: { 6872 SDValue InOperandVal = OpInfo.CallOperand; 6873 6874 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6875 // If this is required to match an output register we have already set, 6876 // just use its register. 6877 unsigned OperandNo = OpInfo.getMatchedOperand(); 6878 6879 // Scan until we find the definition we already emitted of this operand. 6880 // When we find it, create a RegsForValue operand. 6881 unsigned CurOp = InlineAsm::Op_FirstOperand; 6882 for (; OperandNo; --OperandNo) { 6883 // Advance to the next operand. 6884 unsigned OpFlag = 6885 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6886 assert((InlineAsm::isRegDefKind(OpFlag) || 6887 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6888 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6889 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6890 } 6891 6892 unsigned OpFlag = 6893 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6894 if (InlineAsm::isRegDefKind(OpFlag) || 6895 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6896 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6897 if (OpInfo.isIndirect) { 6898 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6899 emitInlineAsmError(CS, "inline asm not supported yet:" 6900 " don't know how to handle tied " 6901 "indirect register inputs"); 6902 return; 6903 } 6904 6905 RegsForValue MatchedRegs; 6906 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6907 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6908 MatchedRegs.RegVTs.push_back(RegVT); 6909 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6910 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6911 i != e; ++i) { 6912 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6913 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6914 else { 6915 emitInlineAsmError( 6916 CS, "inline asm error: This value" 6917 " type register class is not natively supported!"); 6918 return; 6919 } 6920 } 6921 SDLoc dl = getCurSDLoc(); 6922 // Use the produced MatchedRegs object to 6923 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6924 Chain, &Flag, CS.getInstruction()); 6925 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6926 true, OpInfo.getMatchedOperand(), dl, 6927 DAG, AsmNodeOperands); 6928 break; 6929 } 6930 6931 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6932 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6933 "Unexpected number of operands"); 6934 // Add information to the INLINEASM node to know about this input. 6935 // See InlineAsm.h isUseOperandTiedToDef. 6936 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6937 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6938 OpInfo.getMatchedOperand()); 6939 AsmNodeOperands.push_back(DAG.getTargetConstant( 6940 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6941 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6942 break; 6943 } 6944 6945 // Treat indirect 'X' constraint as memory. 6946 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6947 OpInfo.isIndirect) 6948 OpInfo.ConstraintType = TargetLowering::C_Memory; 6949 6950 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6951 std::vector<SDValue> Ops; 6952 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6953 Ops, DAG); 6954 if (Ops.empty()) { 6955 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 6956 Twine(OpInfo.ConstraintCode) + "'"); 6957 return; 6958 } 6959 6960 // Add information to the INLINEASM node to know about this input. 6961 unsigned ResOpType = 6962 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6963 AsmNodeOperands.push_back(DAG.getTargetConstant( 6964 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6965 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6966 break; 6967 } 6968 6969 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6970 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6971 assert(InOperandVal.getValueType() == 6972 TLI.getPointerTy(DAG.getDataLayout()) && 6973 "Memory operands expect pointer values"); 6974 6975 unsigned ConstraintID = 6976 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6977 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6978 "Failed to convert memory constraint code to constraint id."); 6979 6980 // Add information to the INLINEASM node to know about this input. 6981 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6982 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6983 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6984 getCurSDLoc(), 6985 MVT::i32)); 6986 AsmNodeOperands.push_back(InOperandVal); 6987 break; 6988 } 6989 6990 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6991 OpInfo.ConstraintType == TargetLowering::C_Register) && 6992 "Unknown constraint type!"); 6993 6994 // TODO: Support this. 6995 if (OpInfo.isIndirect) { 6996 emitInlineAsmError( 6997 CS, "Don't know how to handle indirect register inputs yet " 6998 "for constraint '" + 6999 Twine(OpInfo.ConstraintCode) + "'"); 7000 return; 7001 } 7002 7003 // Copy the input into the appropriate registers. 7004 if (OpInfo.AssignedRegs.Regs.empty()) { 7005 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7006 Twine(OpInfo.ConstraintCode) + "'"); 7007 return; 7008 } 7009 7010 SDLoc dl = getCurSDLoc(); 7011 7012 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7013 Chain, &Flag, CS.getInstruction()); 7014 7015 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7016 dl, DAG, AsmNodeOperands); 7017 break; 7018 } 7019 case InlineAsm::isClobber: { 7020 // Add the clobbered value to the operand list, so that the register 7021 // allocator is aware that the physreg got clobbered. 7022 if (!OpInfo.AssignedRegs.Regs.empty()) 7023 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7024 false, 0, getCurSDLoc(), DAG, 7025 AsmNodeOperands); 7026 break; 7027 } 7028 } 7029 } 7030 7031 // Finish up input operands. Set the input chain and add the flag last. 7032 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7033 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7034 7035 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7036 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7037 Flag = Chain.getValue(1); 7038 7039 // If this asm returns a register value, copy the result from that register 7040 // and set it as the value of the call. 7041 if (!RetValRegs.Regs.empty()) { 7042 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7043 Chain, &Flag, CS.getInstruction()); 7044 7045 // FIXME: Why don't we do this for inline asms with MRVs? 7046 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7047 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7048 7049 // If any of the results of the inline asm is a vector, it may have the 7050 // wrong width/num elts. This can happen for register classes that can 7051 // contain multiple different value types. The preg or vreg allocated may 7052 // not have the same VT as was expected. Convert it to the right type 7053 // with bit_convert. 7054 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7055 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7056 ResultType, Val); 7057 7058 } else if (ResultType != Val.getValueType() && 7059 ResultType.isInteger() && Val.getValueType().isInteger()) { 7060 // If a result value was tied to an input value, the computed result may 7061 // have a wider width than the expected result. Extract the relevant 7062 // portion. 7063 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7064 } 7065 7066 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7067 } 7068 7069 setValue(CS.getInstruction(), Val); 7070 // Don't need to use this as a chain in this case. 7071 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7072 return; 7073 } 7074 7075 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7076 7077 // Process indirect outputs, first output all of the flagged copies out of 7078 // physregs. 7079 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7080 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7081 const Value *Ptr = IndirectStoresToEmit[i].second; 7082 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7083 Chain, &Flag, IA); 7084 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7085 } 7086 7087 // Emit the non-flagged stores from the physregs. 7088 SmallVector<SDValue, 8> OutChains; 7089 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7090 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7091 getValue(StoresToEmit[i].second), 7092 MachinePointerInfo(StoresToEmit[i].second)); 7093 OutChains.push_back(Val); 7094 } 7095 7096 if (!OutChains.empty()) 7097 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7098 7099 DAG.setRoot(Chain); 7100 } 7101 7102 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7103 const Twine &Message) { 7104 LLVMContext &Ctx = *DAG.getContext(); 7105 Ctx.emitError(CS.getInstruction(), Message); 7106 7107 // Make sure we leave the DAG in a valid state 7108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7109 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7110 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7111 } 7112 7113 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7114 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7115 MVT::Other, getRoot(), 7116 getValue(I.getArgOperand(0)), 7117 DAG.getSrcValue(I.getArgOperand(0)))); 7118 } 7119 7120 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7122 const DataLayout &DL = DAG.getDataLayout(); 7123 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7124 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7125 DAG.getSrcValue(I.getOperand(0)), 7126 DL.getABITypeAlignment(I.getType())); 7127 setValue(&I, V); 7128 DAG.setRoot(V.getValue(1)); 7129 } 7130 7131 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7132 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7133 MVT::Other, getRoot(), 7134 getValue(I.getArgOperand(0)), 7135 DAG.getSrcValue(I.getArgOperand(0)))); 7136 } 7137 7138 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7139 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7140 MVT::Other, getRoot(), 7141 getValue(I.getArgOperand(0)), 7142 getValue(I.getArgOperand(1)), 7143 DAG.getSrcValue(I.getArgOperand(0)), 7144 DAG.getSrcValue(I.getArgOperand(1)))); 7145 } 7146 7147 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7148 const Instruction &I, 7149 SDValue Op) { 7150 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7151 if (!Range) 7152 return Op; 7153 7154 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7155 if (!Lo->isNullValue()) 7156 return Op; 7157 7158 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7159 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7160 7161 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7162 7163 SDLoc SL = getCurSDLoc(); 7164 7165 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7166 Op, DAG.getValueType(SmallVT)); 7167 unsigned NumVals = Op.getNode()->getNumValues(); 7168 if (NumVals == 1) 7169 return ZExt; 7170 7171 SmallVector<SDValue, 4> Ops; 7172 7173 Ops.push_back(ZExt); 7174 for (unsigned I = 1; I != NumVals; ++I) 7175 Ops.push_back(Op.getValue(I)); 7176 7177 return DAG.getMergeValues(Ops, SL); 7178 } 7179 7180 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7181 /// the call being lowered. 7182 /// 7183 /// This is a helper for lowering intrinsics that follow a target calling 7184 /// convention or require stack pointer adjustment. Only a subset of the 7185 /// intrinsic's operands need to participate in the calling convention. 7186 void SelectionDAGBuilder::populateCallLoweringInfo( 7187 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7188 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7189 bool IsPatchPoint) { 7190 TargetLowering::ArgListTy Args; 7191 Args.reserve(NumArgs); 7192 7193 // Populate the argument list. 7194 // Attributes for args start at offset 1, after the return attribute. 7195 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7196 ArgI != ArgE; ++ArgI) { 7197 const Value *V = CS->getOperand(ArgI); 7198 7199 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7200 7201 TargetLowering::ArgListEntry Entry; 7202 Entry.Node = getValue(V); 7203 Entry.Ty = V->getType(); 7204 Entry.setAttributes(&CS, AttrI); 7205 Args.push_back(Entry); 7206 } 7207 7208 CLI.setDebugLoc(getCurSDLoc()) 7209 .setChain(getRoot()) 7210 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7211 .setDiscardResult(CS->use_empty()) 7212 .setIsPatchPoint(IsPatchPoint); 7213 } 7214 7215 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7216 /// or patchpoint target node's operand list. 7217 /// 7218 /// Constants are converted to TargetConstants purely as an optimization to 7219 /// avoid constant materialization and register allocation. 7220 /// 7221 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7222 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7223 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7224 /// address materialization and register allocation, but may also be required 7225 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7226 /// alloca in the entry block, then the runtime may assume that the alloca's 7227 /// StackMap location can be read immediately after compilation and that the 7228 /// location is valid at any point during execution (this is similar to the 7229 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7230 /// only available in a register, then the runtime would need to trap when 7231 /// execution reaches the StackMap in order to read the alloca's location. 7232 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7233 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7234 SelectionDAGBuilder &Builder) { 7235 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7236 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7237 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7238 Ops.push_back( 7239 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7240 Ops.push_back( 7241 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7242 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7243 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7244 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7245 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7246 } else 7247 Ops.push_back(OpVal); 7248 } 7249 } 7250 7251 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7252 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7253 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7254 // [live variables...]) 7255 7256 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7257 7258 SDValue Chain, InFlag, Callee, NullPtr; 7259 SmallVector<SDValue, 32> Ops; 7260 7261 SDLoc DL = getCurSDLoc(); 7262 Callee = getValue(CI.getCalledValue()); 7263 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7264 7265 // The stackmap intrinsic only records the live variables (the arguemnts 7266 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7267 // intrinsic, this won't be lowered to a function call. This means we don't 7268 // have to worry about calling conventions and target specific lowering code. 7269 // Instead we perform the call lowering right here. 7270 // 7271 // chain, flag = CALLSEQ_START(chain, 0) 7272 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7273 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7274 // 7275 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7276 InFlag = Chain.getValue(1); 7277 7278 // Add the <id> and <numBytes> constants. 7279 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7280 Ops.push_back(DAG.getTargetConstant( 7281 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7282 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7283 Ops.push_back(DAG.getTargetConstant( 7284 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7285 MVT::i32)); 7286 7287 // Push live variables for the stack map. 7288 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7289 7290 // We are not pushing any register mask info here on the operands list, 7291 // because the stackmap doesn't clobber anything. 7292 7293 // Push the chain and the glue flag. 7294 Ops.push_back(Chain); 7295 Ops.push_back(InFlag); 7296 7297 // Create the STACKMAP node. 7298 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7299 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7300 Chain = SDValue(SM, 0); 7301 InFlag = Chain.getValue(1); 7302 7303 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7304 7305 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7306 7307 // Set the root to the target-lowered call chain. 7308 DAG.setRoot(Chain); 7309 7310 // Inform the Frame Information that we have a stackmap in this function. 7311 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7312 } 7313 7314 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7315 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7316 const BasicBlock *EHPadBB) { 7317 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7318 // i32 <numBytes>, 7319 // i8* <target>, 7320 // i32 <numArgs>, 7321 // [Args...], 7322 // [live variables...]) 7323 7324 CallingConv::ID CC = CS.getCallingConv(); 7325 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7326 bool HasDef = !CS->getType()->isVoidTy(); 7327 SDLoc dl = getCurSDLoc(); 7328 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7329 7330 // Handle immediate and symbolic callees. 7331 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7332 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7333 /*isTarget=*/true); 7334 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7335 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7336 SDLoc(SymbolicCallee), 7337 SymbolicCallee->getValueType(0)); 7338 7339 // Get the real number of arguments participating in the call <numArgs> 7340 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7341 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7342 7343 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7344 // Intrinsics include all meta-operands up to but not including CC. 7345 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7346 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7347 "Not enough arguments provided to the patchpoint intrinsic"); 7348 7349 // For AnyRegCC the arguments are lowered later on manually. 7350 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7351 Type *ReturnTy = 7352 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7353 7354 TargetLowering::CallLoweringInfo CLI(DAG); 7355 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7356 true); 7357 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7358 7359 SDNode *CallEnd = Result.second.getNode(); 7360 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7361 CallEnd = CallEnd->getOperand(0).getNode(); 7362 7363 /// Get a call instruction from the call sequence chain. 7364 /// Tail calls are not allowed. 7365 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7366 "Expected a callseq node."); 7367 SDNode *Call = CallEnd->getOperand(0).getNode(); 7368 bool HasGlue = Call->getGluedNode(); 7369 7370 // Replace the target specific call node with the patchable intrinsic. 7371 SmallVector<SDValue, 8> Ops; 7372 7373 // Add the <id> and <numBytes> constants. 7374 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7375 Ops.push_back(DAG.getTargetConstant( 7376 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7377 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7378 Ops.push_back(DAG.getTargetConstant( 7379 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7380 MVT::i32)); 7381 7382 // Add the callee. 7383 Ops.push_back(Callee); 7384 7385 // Adjust <numArgs> to account for any arguments that have been passed on the 7386 // stack instead. 7387 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7388 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7389 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7390 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7391 7392 // Add the calling convention 7393 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7394 7395 // Add the arguments we omitted previously. The register allocator should 7396 // place these in any free register. 7397 if (IsAnyRegCC) 7398 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7399 Ops.push_back(getValue(CS.getArgument(i))); 7400 7401 // Push the arguments from the call instruction up to the register mask. 7402 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7403 Ops.append(Call->op_begin() + 2, e); 7404 7405 // Push live variables for the stack map. 7406 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7407 7408 // Push the register mask info. 7409 if (HasGlue) 7410 Ops.push_back(*(Call->op_end()-2)); 7411 else 7412 Ops.push_back(*(Call->op_end()-1)); 7413 7414 // Push the chain (this is originally the first operand of the call, but 7415 // becomes now the last or second to last operand). 7416 Ops.push_back(*(Call->op_begin())); 7417 7418 // Push the glue flag (last operand). 7419 if (HasGlue) 7420 Ops.push_back(*(Call->op_end()-1)); 7421 7422 SDVTList NodeTys; 7423 if (IsAnyRegCC && HasDef) { 7424 // Create the return types based on the intrinsic definition 7425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7426 SmallVector<EVT, 3> ValueVTs; 7427 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7428 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7429 7430 // There is always a chain and a glue type at the end 7431 ValueVTs.push_back(MVT::Other); 7432 ValueVTs.push_back(MVT::Glue); 7433 NodeTys = DAG.getVTList(ValueVTs); 7434 } else 7435 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7436 7437 // Replace the target specific call node with a PATCHPOINT node. 7438 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7439 dl, NodeTys, Ops); 7440 7441 // Update the NodeMap. 7442 if (HasDef) { 7443 if (IsAnyRegCC) 7444 setValue(CS.getInstruction(), SDValue(MN, 0)); 7445 else 7446 setValue(CS.getInstruction(), Result.first); 7447 } 7448 7449 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7450 // call sequence. Furthermore the location of the chain and glue can change 7451 // when the AnyReg calling convention is used and the intrinsic returns a 7452 // value. 7453 if (IsAnyRegCC && HasDef) { 7454 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7455 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7456 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7457 } else 7458 DAG.ReplaceAllUsesWith(Call, MN); 7459 DAG.DeleteNode(Call); 7460 7461 // Inform the Frame Information that we have a patchpoint in this function. 7462 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7463 } 7464 7465 /// Returns an AttributeSet representing the attributes applied to the return 7466 /// value of the given call. 7467 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7468 SmallVector<Attribute::AttrKind, 2> Attrs; 7469 if (CLI.RetSExt) 7470 Attrs.push_back(Attribute::SExt); 7471 if (CLI.RetZExt) 7472 Attrs.push_back(Attribute::ZExt); 7473 if (CLI.IsInReg) 7474 Attrs.push_back(Attribute::InReg); 7475 7476 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7477 Attrs); 7478 } 7479 7480 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7481 /// implementation, which just calls LowerCall. 7482 /// FIXME: When all targets are 7483 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7484 std::pair<SDValue, SDValue> 7485 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7486 // Handle the incoming return values from the call. 7487 CLI.Ins.clear(); 7488 Type *OrigRetTy = CLI.RetTy; 7489 SmallVector<EVT, 4> RetTys; 7490 SmallVector<uint64_t, 4> Offsets; 7491 auto &DL = CLI.DAG.getDataLayout(); 7492 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7493 7494 SmallVector<ISD::OutputArg, 4> Outs; 7495 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7496 7497 bool CanLowerReturn = 7498 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7499 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7500 7501 SDValue DemoteStackSlot; 7502 int DemoteStackIdx = -100; 7503 if (!CanLowerReturn) { 7504 // FIXME: equivalent assert? 7505 // assert(!CS.hasInAllocaArgument() && 7506 // "sret demotion is incompatible with inalloca"); 7507 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7508 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7509 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7510 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7511 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7512 7513 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7514 ArgListEntry Entry; 7515 Entry.Node = DemoteStackSlot; 7516 Entry.Ty = StackSlotPtrType; 7517 Entry.isSExt = false; 7518 Entry.isZExt = false; 7519 Entry.isInReg = false; 7520 Entry.isSRet = true; 7521 Entry.isNest = false; 7522 Entry.isByVal = false; 7523 Entry.isReturned = false; 7524 Entry.isSwiftSelf = false; 7525 Entry.isSwiftError = false; 7526 Entry.Alignment = Align; 7527 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7528 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7529 7530 // sret demotion isn't compatible with tail-calls, since the sret argument 7531 // points into the callers stack frame. 7532 CLI.IsTailCall = false; 7533 } else { 7534 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7535 EVT VT = RetTys[I]; 7536 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7537 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7538 for (unsigned i = 0; i != NumRegs; ++i) { 7539 ISD::InputArg MyFlags; 7540 MyFlags.VT = RegisterVT; 7541 MyFlags.ArgVT = VT; 7542 MyFlags.Used = CLI.IsReturnValueUsed; 7543 if (CLI.RetSExt) 7544 MyFlags.Flags.setSExt(); 7545 if (CLI.RetZExt) 7546 MyFlags.Flags.setZExt(); 7547 if (CLI.IsInReg) 7548 MyFlags.Flags.setInReg(); 7549 CLI.Ins.push_back(MyFlags); 7550 } 7551 } 7552 } 7553 7554 // We push in swifterror return as the last element of CLI.Ins. 7555 ArgListTy &Args = CLI.getArgs(); 7556 if (supportSwiftError()) { 7557 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7558 if (Args[i].isSwiftError) { 7559 ISD::InputArg MyFlags; 7560 MyFlags.VT = getPointerTy(DL); 7561 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7562 MyFlags.Flags.setSwiftError(); 7563 CLI.Ins.push_back(MyFlags); 7564 } 7565 } 7566 } 7567 7568 // Handle all of the outgoing arguments. 7569 CLI.Outs.clear(); 7570 CLI.OutVals.clear(); 7571 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7572 SmallVector<EVT, 4> ValueVTs; 7573 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7574 Type *FinalType = Args[i].Ty; 7575 if (Args[i].isByVal) 7576 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7577 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7578 FinalType, CLI.CallConv, CLI.IsVarArg); 7579 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7580 ++Value) { 7581 EVT VT = ValueVTs[Value]; 7582 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7583 SDValue Op = SDValue(Args[i].Node.getNode(), 7584 Args[i].Node.getResNo() + Value); 7585 ISD::ArgFlagsTy Flags; 7586 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7587 7588 if (Args[i].isZExt) 7589 Flags.setZExt(); 7590 if (Args[i].isSExt) 7591 Flags.setSExt(); 7592 if (Args[i].isInReg) 7593 Flags.setInReg(); 7594 if (Args[i].isSRet) 7595 Flags.setSRet(); 7596 if (Args[i].isSwiftSelf) 7597 Flags.setSwiftSelf(); 7598 if (Args[i].isSwiftError) 7599 Flags.setSwiftError(); 7600 if (Args[i].isByVal) 7601 Flags.setByVal(); 7602 if (Args[i].isInAlloca) { 7603 Flags.setInAlloca(); 7604 // Set the byval flag for CCAssignFn callbacks that don't know about 7605 // inalloca. This way we can know how many bytes we should've allocated 7606 // and how many bytes a callee cleanup function will pop. If we port 7607 // inalloca to more targets, we'll have to add custom inalloca handling 7608 // in the various CC lowering callbacks. 7609 Flags.setByVal(); 7610 } 7611 if (Args[i].isByVal || Args[i].isInAlloca) { 7612 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7613 Type *ElementTy = Ty->getElementType(); 7614 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7615 // For ByVal, alignment should come from FE. BE will guess if this 7616 // info is not there but there are cases it cannot get right. 7617 unsigned FrameAlign; 7618 if (Args[i].Alignment) 7619 FrameAlign = Args[i].Alignment; 7620 else 7621 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7622 Flags.setByValAlign(FrameAlign); 7623 } 7624 if (Args[i].isNest) 7625 Flags.setNest(); 7626 if (NeedsRegBlock) 7627 Flags.setInConsecutiveRegs(); 7628 Flags.setOrigAlign(OriginalAlignment); 7629 7630 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7631 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7632 SmallVector<SDValue, 4> Parts(NumParts); 7633 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7634 7635 if (Args[i].isSExt) 7636 ExtendKind = ISD::SIGN_EXTEND; 7637 else if (Args[i].isZExt) 7638 ExtendKind = ISD::ZERO_EXTEND; 7639 7640 // Conservatively only handle 'returned' on non-vectors for now 7641 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7642 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7643 "unexpected use of 'returned'"); 7644 // Before passing 'returned' to the target lowering code, ensure that 7645 // either the register MVT and the actual EVT are the same size or that 7646 // the return value and argument are extended in the same way; in these 7647 // cases it's safe to pass the argument register value unchanged as the 7648 // return register value (although it's at the target's option whether 7649 // to do so) 7650 // TODO: allow code generation to take advantage of partially preserved 7651 // registers rather than clobbering the entire register when the 7652 // parameter extension method is not compatible with the return 7653 // extension method 7654 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7655 (ExtendKind != ISD::ANY_EXTEND && 7656 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7657 Flags.setReturned(); 7658 } 7659 7660 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7661 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7662 7663 for (unsigned j = 0; j != NumParts; ++j) { 7664 // if it isn't first piece, alignment must be 1 7665 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7666 i < CLI.NumFixedArgs, 7667 i, j*Parts[j].getValueType().getStoreSize()); 7668 if (NumParts > 1 && j == 0) 7669 MyFlags.Flags.setSplit(); 7670 else if (j != 0) { 7671 MyFlags.Flags.setOrigAlign(1); 7672 if (j == NumParts - 1) 7673 MyFlags.Flags.setSplitEnd(); 7674 } 7675 7676 CLI.Outs.push_back(MyFlags); 7677 CLI.OutVals.push_back(Parts[j]); 7678 } 7679 7680 if (NeedsRegBlock && Value == NumValues - 1) 7681 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7682 } 7683 } 7684 7685 SmallVector<SDValue, 4> InVals; 7686 CLI.Chain = LowerCall(CLI, InVals); 7687 7688 // Update CLI.InVals to use outside of this function. 7689 CLI.InVals = InVals; 7690 7691 // Verify that the target's LowerCall behaved as expected. 7692 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7693 "LowerCall didn't return a valid chain!"); 7694 assert((!CLI.IsTailCall || InVals.empty()) && 7695 "LowerCall emitted a return value for a tail call!"); 7696 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7697 "LowerCall didn't emit the correct number of values!"); 7698 7699 // For a tail call, the return value is merely live-out and there aren't 7700 // any nodes in the DAG representing it. Return a special value to 7701 // indicate that a tail call has been emitted and no more Instructions 7702 // should be processed in the current block. 7703 if (CLI.IsTailCall) { 7704 CLI.DAG.setRoot(CLI.Chain); 7705 return std::make_pair(SDValue(), SDValue()); 7706 } 7707 7708 #ifndef NDEBUG 7709 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7710 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7711 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7712 "LowerCall emitted a value with the wrong type!"); 7713 } 7714 #endif 7715 7716 SmallVector<SDValue, 4> ReturnValues; 7717 if (!CanLowerReturn) { 7718 // The instruction result is the result of loading from the 7719 // hidden sret parameter. 7720 SmallVector<EVT, 1> PVTs; 7721 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7722 7723 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7724 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7725 EVT PtrVT = PVTs[0]; 7726 7727 unsigned NumValues = RetTys.size(); 7728 ReturnValues.resize(NumValues); 7729 SmallVector<SDValue, 4> Chains(NumValues); 7730 7731 // An aggregate return value cannot wrap around the address space, so 7732 // offsets to its parts don't wrap either. 7733 SDNodeFlags Flags; 7734 Flags.setNoUnsignedWrap(true); 7735 7736 for (unsigned i = 0; i < NumValues; ++i) { 7737 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7738 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7739 PtrVT), &Flags); 7740 SDValue L = CLI.DAG.getLoad( 7741 RetTys[i], CLI.DL, CLI.Chain, Add, 7742 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7743 DemoteStackIdx, Offsets[i]), 7744 /* Alignment = */ 1); 7745 ReturnValues[i] = L; 7746 Chains[i] = L.getValue(1); 7747 } 7748 7749 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7750 } else { 7751 // Collect the legal value parts into potentially illegal values 7752 // that correspond to the original function's return values. 7753 Optional<ISD::NodeType> AssertOp; 7754 if (CLI.RetSExt) 7755 AssertOp = ISD::AssertSext; 7756 else if (CLI.RetZExt) 7757 AssertOp = ISD::AssertZext; 7758 unsigned CurReg = 0; 7759 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7760 EVT VT = RetTys[I]; 7761 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7762 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7763 7764 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7765 NumRegs, RegisterVT, VT, nullptr, 7766 AssertOp)); 7767 CurReg += NumRegs; 7768 } 7769 7770 // For a function returning void, there is no return value. We can't create 7771 // such a node, so we just return a null return value in that case. In 7772 // that case, nothing will actually look at the value. 7773 if (ReturnValues.empty()) 7774 return std::make_pair(SDValue(), CLI.Chain); 7775 } 7776 7777 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7778 CLI.DAG.getVTList(RetTys), ReturnValues); 7779 return std::make_pair(Res, CLI.Chain); 7780 } 7781 7782 void TargetLowering::LowerOperationWrapper(SDNode *N, 7783 SmallVectorImpl<SDValue> &Results, 7784 SelectionDAG &DAG) const { 7785 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7786 Results.push_back(Res); 7787 } 7788 7789 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7790 llvm_unreachable("LowerOperation not implemented for this target!"); 7791 } 7792 7793 void 7794 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7795 SDValue Op = getNonRegisterValue(V); 7796 assert((Op.getOpcode() != ISD::CopyFromReg || 7797 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7798 "Copy from a reg to the same reg!"); 7799 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7800 7801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7802 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7803 V->getType()); 7804 SDValue Chain = DAG.getEntryNode(); 7805 7806 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7807 FuncInfo.PreferredExtendType.end()) 7808 ? ISD::ANY_EXTEND 7809 : FuncInfo.PreferredExtendType[V]; 7810 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7811 PendingExports.push_back(Chain); 7812 } 7813 7814 #include "llvm/CodeGen/SelectionDAGISel.h" 7815 7816 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7817 /// entry block, return true. This includes arguments used by switches, since 7818 /// the switch may expand into multiple basic blocks. 7819 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7820 // With FastISel active, we may be splitting blocks, so force creation 7821 // of virtual registers for all non-dead arguments. 7822 if (FastISel) 7823 return A->use_empty(); 7824 7825 const BasicBlock &Entry = A->getParent()->front(); 7826 for (const User *U : A->users()) 7827 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7828 return false; // Use not in entry block. 7829 7830 return true; 7831 } 7832 7833 void SelectionDAGISel::LowerArguments(const Function &F) { 7834 SelectionDAG &DAG = SDB->DAG; 7835 SDLoc dl = SDB->getCurSDLoc(); 7836 const DataLayout &DL = DAG.getDataLayout(); 7837 SmallVector<ISD::InputArg, 16> Ins; 7838 7839 if (!FuncInfo->CanLowerReturn) { 7840 // Put in an sret pointer parameter before all the other parameters. 7841 SmallVector<EVT, 1> ValueVTs; 7842 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7843 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7844 7845 // NOTE: Assuming that a pointer will never break down to more than one VT 7846 // or one register. 7847 ISD::ArgFlagsTy Flags; 7848 Flags.setSRet(); 7849 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7850 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7851 ISD::InputArg::NoArgIndex, 0); 7852 Ins.push_back(RetArg); 7853 } 7854 7855 // Set up the incoming argument description vector. 7856 unsigned Idx = 1; 7857 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7858 I != E; ++I, ++Idx) { 7859 SmallVector<EVT, 4> ValueVTs; 7860 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7861 bool isArgValueUsed = !I->use_empty(); 7862 unsigned PartBase = 0; 7863 Type *FinalType = I->getType(); 7864 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7865 FinalType = cast<PointerType>(FinalType)->getElementType(); 7866 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7867 FinalType, F.getCallingConv(), F.isVarArg()); 7868 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7869 Value != NumValues; ++Value) { 7870 EVT VT = ValueVTs[Value]; 7871 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7872 ISD::ArgFlagsTy Flags; 7873 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7874 7875 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7876 Flags.setZExt(); 7877 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7878 Flags.setSExt(); 7879 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7880 Flags.setInReg(); 7881 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7882 Flags.setSRet(); 7883 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7884 Flags.setSwiftSelf(); 7885 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7886 Flags.setSwiftError(); 7887 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7888 Flags.setByVal(); 7889 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7890 Flags.setInAlloca(); 7891 // Set the byval flag for CCAssignFn callbacks that don't know about 7892 // inalloca. This way we can know how many bytes we should've allocated 7893 // and how many bytes a callee cleanup function will pop. If we port 7894 // inalloca to more targets, we'll have to add custom inalloca handling 7895 // in the various CC lowering callbacks. 7896 Flags.setByVal(); 7897 } 7898 if (F.getCallingConv() == CallingConv::X86_INTR) { 7899 // IA Interrupt passes frame (1st parameter) by value in the stack. 7900 if (Idx == 1) 7901 Flags.setByVal(); 7902 } 7903 if (Flags.isByVal() || Flags.isInAlloca()) { 7904 PointerType *Ty = cast<PointerType>(I->getType()); 7905 Type *ElementTy = Ty->getElementType(); 7906 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7907 // For ByVal, alignment should be passed from FE. BE will guess if 7908 // this info is not there but there are cases it cannot get right. 7909 unsigned FrameAlign; 7910 if (F.getParamAlignment(Idx)) 7911 FrameAlign = F.getParamAlignment(Idx); 7912 else 7913 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7914 Flags.setByValAlign(FrameAlign); 7915 } 7916 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7917 Flags.setNest(); 7918 if (NeedsRegBlock) 7919 Flags.setInConsecutiveRegs(); 7920 Flags.setOrigAlign(OriginalAlignment); 7921 7922 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7923 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7924 for (unsigned i = 0; i != NumRegs; ++i) { 7925 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7926 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7927 if (NumRegs > 1 && i == 0) 7928 MyFlags.Flags.setSplit(); 7929 // if it isn't first piece, alignment must be 1 7930 else if (i > 0) { 7931 MyFlags.Flags.setOrigAlign(1); 7932 if (i == NumRegs - 1) 7933 MyFlags.Flags.setSplitEnd(); 7934 } 7935 Ins.push_back(MyFlags); 7936 } 7937 if (NeedsRegBlock && Value == NumValues - 1) 7938 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7939 PartBase += VT.getStoreSize(); 7940 } 7941 } 7942 7943 // Call the target to set up the argument values. 7944 SmallVector<SDValue, 8> InVals; 7945 SDValue NewRoot = TLI->LowerFormalArguments( 7946 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7947 7948 // Verify that the target's LowerFormalArguments behaved as expected. 7949 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7950 "LowerFormalArguments didn't return a valid chain!"); 7951 assert(InVals.size() == Ins.size() && 7952 "LowerFormalArguments didn't emit the correct number of values!"); 7953 DEBUG({ 7954 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7955 assert(InVals[i].getNode() && 7956 "LowerFormalArguments emitted a null value!"); 7957 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7958 "LowerFormalArguments emitted a value with the wrong type!"); 7959 } 7960 }); 7961 7962 // Update the DAG with the new chain value resulting from argument lowering. 7963 DAG.setRoot(NewRoot); 7964 7965 // Set up the argument values. 7966 unsigned i = 0; 7967 Idx = 1; 7968 if (!FuncInfo->CanLowerReturn) { 7969 // Create a virtual register for the sret pointer, and put in a copy 7970 // from the sret argument into it. 7971 SmallVector<EVT, 1> ValueVTs; 7972 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7973 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7974 MVT VT = ValueVTs[0].getSimpleVT(); 7975 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7976 Optional<ISD::NodeType> AssertOp = None; 7977 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7978 RegVT, VT, nullptr, AssertOp); 7979 7980 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7981 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7982 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7983 FuncInfo->DemoteRegister = SRetReg; 7984 NewRoot = 7985 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7986 DAG.setRoot(NewRoot); 7987 7988 // i indexes lowered arguments. Bump it past the hidden sret argument. 7989 // Idx indexes LLVM arguments. Don't touch it. 7990 ++i; 7991 } 7992 7993 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7994 ++I, ++Idx) { 7995 SmallVector<SDValue, 4> ArgValues; 7996 SmallVector<EVT, 4> ValueVTs; 7997 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7998 unsigned NumValues = ValueVTs.size(); 7999 8000 // If this argument is unused then remember its value. It is used to generate 8001 // debugging information. 8002 if (I->use_empty() && NumValues) { 8003 SDB->setUnusedArgValue(&*I, InVals[i]); 8004 8005 // Also remember any frame index for use in FastISel. 8006 if (FrameIndexSDNode *FI = 8007 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8008 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8009 } 8010 8011 for (unsigned Val = 0; Val != NumValues; ++Val) { 8012 EVT VT = ValueVTs[Val]; 8013 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8014 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8015 8016 if (!I->use_empty()) { 8017 Optional<ISD::NodeType> AssertOp; 8018 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8019 AssertOp = ISD::AssertSext; 8020 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8021 AssertOp = ISD::AssertZext; 8022 8023 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 8024 NumParts, PartVT, VT, 8025 nullptr, AssertOp)); 8026 } 8027 8028 i += NumParts; 8029 } 8030 8031 // We don't need to do anything else for unused arguments. 8032 if (ArgValues.empty()) 8033 continue; 8034 8035 // Note down frame index. 8036 if (FrameIndexSDNode *FI = 8037 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8038 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8039 8040 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8041 SDB->getCurSDLoc()); 8042 8043 SDB->setValue(&*I, Res); 8044 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8045 if (LoadSDNode *LNode = 8046 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8047 if (FrameIndexSDNode *FI = 8048 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8049 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 8050 } 8051 8052 // Update SwiftErrorMap. 8053 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 8054 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 8055 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8056 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8057 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 8058 } 8059 8060 // If this argument is live outside of the entry block, insert a copy from 8061 // wherever we got it to the vreg that other BB's will reference it as. 8062 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8063 // If we can, though, try to skip creating an unnecessary vreg. 8064 // FIXME: This isn't very clean... it would be nice to make this more 8065 // general. It's also subtly incompatible with the hacks FastISel 8066 // uses with vregs. 8067 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8068 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8069 FuncInfo->ValueMap[&*I] = Reg; 8070 continue; 8071 } 8072 } 8073 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8074 FuncInfo->InitializeRegForValue(&*I); 8075 SDB->CopyToExportRegsIfNeeded(&*I); 8076 } 8077 } 8078 8079 assert(i == InVals.size() && "Argument register count mismatch!"); 8080 8081 // Finally, if the target has anything special to do, allow it to do so. 8082 EmitFunctionEntryCode(); 8083 } 8084 8085 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8086 /// ensure constants are generated when needed. Remember the virtual registers 8087 /// that need to be added to the Machine PHI nodes as input. We cannot just 8088 /// directly add them, because expansion might result in multiple MBB's for one 8089 /// BB. As such, the start of the BB might correspond to a different MBB than 8090 /// the end. 8091 /// 8092 void 8093 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8094 const TerminatorInst *TI = LLVMBB->getTerminator(); 8095 8096 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8097 8098 // Check PHI nodes in successors that expect a value to be available from this 8099 // block. 8100 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8101 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8102 if (!isa<PHINode>(SuccBB->begin())) continue; 8103 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8104 8105 // If this terminator has multiple identical successors (common for 8106 // switches), only handle each succ once. 8107 if (!SuccsHandled.insert(SuccMBB).second) 8108 continue; 8109 8110 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8111 8112 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8113 // nodes and Machine PHI nodes, but the incoming operands have not been 8114 // emitted yet. 8115 for (BasicBlock::const_iterator I = SuccBB->begin(); 8116 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8117 // Ignore dead phi's. 8118 if (PN->use_empty()) continue; 8119 8120 // Skip empty types 8121 if (PN->getType()->isEmptyTy()) 8122 continue; 8123 8124 unsigned Reg; 8125 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8126 8127 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8128 unsigned &RegOut = ConstantsOut[C]; 8129 if (RegOut == 0) { 8130 RegOut = FuncInfo.CreateRegs(C->getType()); 8131 CopyValueToVirtualRegister(C, RegOut); 8132 } 8133 Reg = RegOut; 8134 } else { 8135 DenseMap<const Value *, unsigned>::iterator I = 8136 FuncInfo.ValueMap.find(PHIOp); 8137 if (I != FuncInfo.ValueMap.end()) 8138 Reg = I->second; 8139 else { 8140 assert(isa<AllocaInst>(PHIOp) && 8141 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8142 "Didn't codegen value into a register!??"); 8143 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8144 CopyValueToVirtualRegister(PHIOp, Reg); 8145 } 8146 } 8147 8148 // Remember that this register needs to added to the machine PHI node as 8149 // the input for this MBB. 8150 SmallVector<EVT, 4> ValueVTs; 8151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8152 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8153 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8154 EVT VT = ValueVTs[vti]; 8155 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8156 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8157 FuncInfo.PHINodesToUpdate.push_back( 8158 std::make_pair(&*MBBI++, Reg + i)); 8159 Reg += NumRegisters; 8160 } 8161 } 8162 } 8163 8164 ConstantsOut.clear(); 8165 } 8166 8167 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8168 /// is 0. 8169 MachineBasicBlock * 8170 SelectionDAGBuilder::StackProtectorDescriptor:: 8171 AddSuccessorMBB(const BasicBlock *BB, 8172 MachineBasicBlock *ParentMBB, 8173 bool IsLikely, 8174 MachineBasicBlock *SuccMBB) { 8175 // If SuccBB has not been created yet, create it. 8176 if (!SuccMBB) { 8177 MachineFunction *MF = ParentMBB->getParent(); 8178 MachineFunction::iterator BBI(ParentMBB); 8179 SuccMBB = MF->CreateMachineBasicBlock(BB); 8180 MF->insert(++BBI, SuccMBB); 8181 } 8182 // Add it as a successor of ParentMBB. 8183 ParentMBB->addSuccessor( 8184 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8185 return SuccMBB; 8186 } 8187 8188 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8189 MachineFunction::iterator I(MBB); 8190 if (++I == FuncInfo.MF->end()) 8191 return nullptr; 8192 return &*I; 8193 } 8194 8195 /// During lowering new call nodes can be created (such as memset, etc.). 8196 /// Those will become new roots of the current DAG, but complications arise 8197 /// when they are tail calls. In such cases, the call lowering will update 8198 /// the root, but the builder still needs to know that a tail call has been 8199 /// lowered in order to avoid generating an additional return. 8200 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8201 // If the node is null, we do have a tail call. 8202 if (MaybeTC.getNode() != nullptr) 8203 DAG.setRoot(MaybeTC); 8204 else 8205 HasTailCall = true; 8206 } 8207 8208 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8209 unsigned *TotalCases, unsigned First, 8210 unsigned Last, 8211 unsigned Density) { 8212 assert(Last >= First); 8213 assert(TotalCases[Last] >= TotalCases[First]); 8214 8215 APInt LowCase = Clusters[First].Low->getValue(); 8216 APInt HighCase = Clusters[Last].High->getValue(); 8217 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8218 8219 // FIXME: A range of consecutive cases has 100% density, but only requires one 8220 // comparison to lower. We should discriminate against such consecutive ranges 8221 // in jump tables. 8222 8223 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8224 uint64_t Range = Diff + 1; 8225 8226 uint64_t NumCases = 8227 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8228 8229 assert(NumCases < UINT64_MAX / 100); 8230 assert(Range >= NumCases); 8231 8232 return NumCases * 100 >= Range * Density; 8233 } 8234 8235 static inline bool areJTsAllowed(const TargetLowering &TLI, 8236 const SwitchInst *SI) { 8237 const Function *Fn = SI->getParent()->getParent(); 8238 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8239 return false; 8240 8241 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8242 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8243 } 8244 8245 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8246 unsigned First, unsigned Last, 8247 const SwitchInst *SI, 8248 MachineBasicBlock *DefaultMBB, 8249 CaseCluster &JTCluster) { 8250 assert(First <= Last); 8251 8252 auto Prob = BranchProbability::getZero(); 8253 unsigned NumCmps = 0; 8254 std::vector<MachineBasicBlock*> Table; 8255 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8256 8257 // Initialize probabilities in JTProbs. 8258 for (unsigned I = First; I <= Last; ++I) 8259 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8260 8261 for (unsigned I = First; I <= Last; ++I) { 8262 assert(Clusters[I].Kind == CC_Range); 8263 Prob += Clusters[I].Prob; 8264 APInt Low = Clusters[I].Low->getValue(); 8265 APInt High = Clusters[I].High->getValue(); 8266 NumCmps += (Low == High) ? 1 : 2; 8267 if (I != First) { 8268 // Fill the gap between this and the previous cluster. 8269 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8270 assert(PreviousHigh.slt(Low)); 8271 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8272 for (uint64_t J = 0; J < Gap; J++) 8273 Table.push_back(DefaultMBB); 8274 } 8275 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8276 for (uint64_t J = 0; J < ClusterSize; ++J) 8277 Table.push_back(Clusters[I].MBB); 8278 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8279 } 8280 8281 unsigned NumDests = JTProbs.size(); 8282 if (isSuitableForBitTests(NumDests, NumCmps, 8283 Clusters[First].Low->getValue(), 8284 Clusters[Last].High->getValue())) { 8285 // Clusters[First..Last] should be lowered as bit tests instead. 8286 return false; 8287 } 8288 8289 // Create the MBB that will load from and jump through the table. 8290 // Note: We create it here, but it's not inserted into the function yet. 8291 MachineFunction *CurMF = FuncInfo.MF; 8292 MachineBasicBlock *JumpTableMBB = 8293 CurMF->CreateMachineBasicBlock(SI->getParent()); 8294 8295 // Add successors. Note: use table order for determinism. 8296 SmallPtrSet<MachineBasicBlock *, 8> Done; 8297 for (MachineBasicBlock *Succ : Table) { 8298 if (Done.count(Succ)) 8299 continue; 8300 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8301 Done.insert(Succ); 8302 } 8303 JumpTableMBB->normalizeSuccProbs(); 8304 8305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8306 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8307 ->createJumpTableIndex(Table); 8308 8309 // Set up the jump table info. 8310 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8311 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8312 Clusters[Last].High->getValue(), SI->getCondition(), 8313 nullptr, false); 8314 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8315 8316 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8317 JTCases.size() - 1, Prob); 8318 return true; 8319 } 8320 8321 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8322 const SwitchInst *SI, 8323 MachineBasicBlock *DefaultMBB) { 8324 #ifndef NDEBUG 8325 // Clusters must be non-empty, sorted, and only contain Range clusters. 8326 assert(!Clusters.empty()); 8327 for (CaseCluster &C : Clusters) 8328 assert(C.Kind == CC_Range); 8329 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8330 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8331 #endif 8332 8333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8334 if (!areJTsAllowed(TLI, SI)) 8335 return; 8336 8337 const int64_t N = Clusters.size(); 8338 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8339 8340 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8341 SmallVector<unsigned, 8> TotalCases(N); 8342 8343 for (unsigned i = 0; i < N; ++i) { 8344 APInt Hi = Clusters[i].High->getValue(); 8345 APInt Lo = Clusters[i].Low->getValue(); 8346 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8347 if (i != 0) 8348 TotalCases[i] += TotalCases[i - 1]; 8349 } 8350 8351 unsigned MinDensity = JumpTableDensity; 8352 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8353 MinDensity = OptsizeJumpTableDensity; 8354 if (N >= MinJumpTableSize 8355 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8356 // Cheap case: the whole range might be suitable for jump table. 8357 CaseCluster JTCluster; 8358 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8359 Clusters[0] = JTCluster; 8360 Clusters.resize(1); 8361 return; 8362 } 8363 } 8364 8365 // The algorithm below is not suitable for -O0. 8366 if (TM.getOptLevel() == CodeGenOpt::None) 8367 return; 8368 8369 // Split Clusters into minimum number of dense partitions. The algorithm uses 8370 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8371 // for the Case Statement'" (1994), but builds the MinPartitions array in 8372 // reverse order to make it easier to reconstruct the partitions in ascending 8373 // order. In the choice between two optimal partitionings, it picks the one 8374 // which yields more jump tables. 8375 8376 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8377 SmallVector<unsigned, 8> MinPartitions(N); 8378 // LastElement[i] is the last element of the partition starting at i. 8379 SmallVector<unsigned, 8> LastElement(N); 8380 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8381 SmallVector<unsigned, 8> NumTables(N); 8382 8383 // Base case: There is only one way to partition Clusters[N-1]. 8384 MinPartitions[N - 1] = 1; 8385 LastElement[N - 1] = N - 1; 8386 assert(MinJumpTableSize > 1); 8387 NumTables[N - 1] = 0; 8388 8389 // Note: loop indexes are signed to avoid underflow. 8390 for (int64_t i = N - 2; i >= 0; i--) { 8391 // Find optimal partitioning of Clusters[i..N-1]. 8392 // Baseline: Put Clusters[i] into a partition on its own. 8393 MinPartitions[i] = MinPartitions[i + 1] + 1; 8394 LastElement[i] = i; 8395 NumTables[i] = NumTables[i + 1]; 8396 8397 // Search for a solution that results in fewer partitions. 8398 for (int64_t j = N - 1; j > i; j--) { 8399 // Try building a partition from Clusters[i..j]. 8400 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8401 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8402 bool IsTable = j - i + 1 >= MinJumpTableSize; 8403 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8404 8405 // If this j leads to fewer partitions, or same number of partitions 8406 // with more lookup tables, it is a better partitioning. 8407 if (NumPartitions < MinPartitions[i] || 8408 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8409 MinPartitions[i] = NumPartitions; 8410 LastElement[i] = j; 8411 NumTables[i] = Tables; 8412 } 8413 } 8414 } 8415 } 8416 8417 // Iterate over the partitions, replacing some with jump tables in-place. 8418 unsigned DstIndex = 0; 8419 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8420 Last = LastElement[First]; 8421 assert(Last >= First); 8422 assert(DstIndex <= First); 8423 unsigned NumClusters = Last - First + 1; 8424 8425 CaseCluster JTCluster; 8426 if (NumClusters >= MinJumpTableSize && 8427 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8428 Clusters[DstIndex++] = JTCluster; 8429 } else { 8430 for (unsigned I = First; I <= Last; ++I) 8431 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8432 } 8433 } 8434 Clusters.resize(DstIndex); 8435 } 8436 8437 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8438 // FIXME: Using the pointer type doesn't seem ideal. 8439 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8440 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8441 return Range <= BW; 8442 } 8443 8444 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8445 unsigned NumCmps, 8446 const APInt &Low, 8447 const APInt &High) { 8448 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8449 // range of cases both require only one branch to lower. Just looking at the 8450 // number of clusters and destinations should be enough to decide whether to 8451 // build bit tests. 8452 8453 // To lower a range with bit tests, the range must fit the bitwidth of a 8454 // machine word. 8455 if (!rangeFitsInWord(Low, High)) 8456 return false; 8457 8458 // Decide whether it's profitable to lower this range with bit tests. Each 8459 // destination requires a bit test and branch, and there is an overall range 8460 // check branch. For a small number of clusters, separate comparisons might be 8461 // cheaper, and for many destinations, splitting the range might be better. 8462 return (NumDests == 1 && NumCmps >= 3) || 8463 (NumDests == 2 && NumCmps >= 5) || 8464 (NumDests == 3 && NumCmps >= 6); 8465 } 8466 8467 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8468 unsigned First, unsigned Last, 8469 const SwitchInst *SI, 8470 CaseCluster &BTCluster) { 8471 assert(First <= Last); 8472 if (First == Last) 8473 return false; 8474 8475 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8476 unsigned NumCmps = 0; 8477 for (int64_t I = First; I <= Last; ++I) { 8478 assert(Clusters[I].Kind == CC_Range); 8479 Dests.set(Clusters[I].MBB->getNumber()); 8480 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8481 } 8482 unsigned NumDests = Dests.count(); 8483 8484 APInt Low = Clusters[First].Low->getValue(); 8485 APInt High = Clusters[Last].High->getValue(); 8486 assert(Low.slt(High)); 8487 8488 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8489 return false; 8490 8491 APInt LowBound; 8492 APInt CmpRange; 8493 8494 const int BitWidth = DAG.getTargetLoweringInfo() 8495 .getPointerTy(DAG.getDataLayout()) 8496 .getSizeInBits(); 8497 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8498 8499 // Check if the clusters cover a contiguous range such that no value in the 8500 // range will jump to the default statement. 8501 bool ContiguousRange = true; 8502 for (int64_t I = First + 1; I <= Last; ++I) { 8503 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8504 ContiguousRange = false; 8505 break; 8506 } 8507 } 8508 8509 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8510 // Optimize the case where all the case values fit in a word without having 8511 // to subtract minValue. In this case, we can optimize away the subtraction. 8512 LowBound = APInt::getNullValue(Low.getBitWidth()); 8513 CmpRange = High; 8514 ContiguousRange = false; 8515 } else { 8516 LowBound = Low; 8517 CmpRange = High - Low; 8518 } 8519 8520 CaseBitsVector CBV; 8521 auto TotalProb = BranchProbability::getZero(); 8522 for (unsigned i = First; i <= Last; ++i) { 8523 // Find the CaseBits for this destination. 8524 unsigned j; 8525 for (j = 0; j < CBV.size(); ++j) 8526 if (CBV[j].BB == Clusters[i].MBB) 8527 break; 8528 if (j == CBV.size()) 8529 CBV.push_back( 8530 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8531 CaseBits *CB = &CBV[j]; 8532 8533 // Update Mask, Bits and ExtraProb. 8534 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8535 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8536 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8537 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8538 CB->Bits += Hi - Lo + 1; 8539 CB->ExtraProb += Clusters[i].Prob; 8540 TotalProb += Clusters[i].Prob; 8541 } 8542 8543 BitTestInfo BTI; 8544 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8545 // Sort by probability first, number of bits second. 8546 if (a.ExtraProb != b.ExtraProb) 8547 return a.ExtraProb > b.ExtraProb; 8548 return a.Bits > b.Bits; 8549 }); 8550 8551 for (auto &CB : CBV) { 8552 MachineBasicBlock *BitTestBB = 8553 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8554 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8555 } 8556 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8557 SI->getCondition(), -1U, MVT::Other, false, 8558 ContiguousRange, nullptr, nullptr, std::move(BTI), 8559 TotalProb); 8560 8561 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8562 BitTestCases.size() - 1, TotalProb); 8563 return true; 8564 } 8565 8566 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8567 const SwitchInst *SI) { 8568 // Partition Clusters into as few subsets as possible, where each subset has a 8569 // range that fits in a machine word and has <= 3 unique destinations. 8570 8571 #ifndef NDEBUG 8572 // Clusters must be sorted and contain Range or JumpTable clusters. 8573 assert(!Clusters.empty()); 8574 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8575 for (const CaseCluster &C : Clusters) 8576 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8577 for (unsigned i = 1; i < Clusters.size(); ++i) 8578 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8579 #endif 8580 8581 // The algorithm below is not suitable for -O0. 8582 if (TM.getOptLevel() == CodeGenOpt::None) 8583 return; 8584 8585 // If target does not have legal shift left, do not emit bit tests at all. 8586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8587 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8588 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8589 return; 8590 8591 int BitWidth = PTy.getSizeInBits(); 8592 const int64_t N = Clusters.size(); 8593 8594 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8595 SmallVector<unsigned, 8> MinPartitions(N); 8596 // LastElement[i] is the last element of the partition starting at i. 8597 SmallVector<unsigned, 8> LastElement(N); 8598 8599 // FIXME: This might not be the best algorithm for finding bit test clusters. 8600 8601 // Base case: There is only one way to partition Clusters[N-1]. 8602 MinPartitions[N - 1] = 1; 8603 LastElement[N - 1] = N - 1; 8604 8605 // Note: loop indexes are signed to avoid underflow. 8606 for (int64_t i = N - 2; i >= 0; --i) { 8607 // Find optimal partitioning of Clusters[i..N-1]. 8608 // Baseline: Put Clusters[i] into a partition on its own. 8609 MinPartitions[i] = MinPartitions[i + 1] + 1; 8610 LastElement[i] = i; 8611 8612 // Search for a solution that results in fewer partitions. 8613 // Note: the search is limited by BitWidth, reducing time complexity. 8614 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8615 // Try building a partition from Clusters[i..j]. 8616 8617 // Check the range. 8618 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8619 Clusters[j].High->getValue())) 8620 continue; 8621 8622 // Check nbr of destinations and cluster types. 8623 // FIXME: This works, but doesn't seem very efficient. 8624 bool RangesOnly = true; 8625 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8626 for (int64_t k = i; k <= j; k++) { 8627 if (Clusters[k].Kind != CC_Range) { 8628 RangesOnly = false; 8629 break; 8630 } 8631 Dests.set(Clusters[k].MBB->getNumber()); 8632 } 8633 if (!RangesOnly || Dests.count() > 3) 8634 break; 8635 8636 // Check if it's a better partition. 8637 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8638 if (NumPartitions < MinPartitions[i]) { 8639 // Found a better partition. 8640 MinPartitions[i] = NumPartitions; 8641 LastElement[i] = j; 8642 } 8643 } 8644 } 8645 8646 // Iterate over the partitions, replacing with bit-test clusters in-place. 8647 unsigned DstIndex = 0; 8648 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8649 Last = LastElement[First]; 8650 assert(First <= Last); 8651 assert(DstIndex <= First); 8652 8653 CaseCluster BitTestCluster; 8654 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8655 Clusters[DstIndex++] = BitTestCluster; 8656 } else { 8657 size_t NumClusters = Last - First + 1; 8658 std::memmove(&Clusters[DstIndex], &Clusters[First], 8659 sizeof(Clusters[0]) * NumClusters); 8660 DstIndex += NumClusters; 8661 } 8662 } 8663 Clusters.resize(DstIndex); 8664 } 8665 8666 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8667 MachineBasicBlock *SwitchMBB, 8668 MachineBasicBlock *DefaultMBB) { 8669 MachineFunction *CurMF = FuncInfo.MF; 8670 MachineBasicBlock *NextMBB = nullptr; 8671 MachineFunction::iterator BBI(W.MBB); 8672 if (++BBI != FuncInfo.MF->end()) 8673 NextMBB = &*BBI; 8674 8675 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8676 8677 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8678 8679 if (Size == 2 && W.MBB == SwitchMBB) { 8680 // If any two of the cases has the same destination, and if one value 8681 // is the same as the other, but has one bit unset that the other has set, 8682 // use bit manipulation to do two compares at once. For example: 8683 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8684 // TODO: This could be extended to merge any 2 cases in switches with 3 8685 // cases. 8686 // TODO: Handle cases where W.CaseBB != SwitchBB. 8687 CaseCluster &Small = *W.FirstCluster; 8688 CaseCluster &Big = *W.LastCluster; 8689 8690 if (Small.Low == Small.High && Big.Low == Big.High && 8691 Small.MBB == Big.MBB) { 8692 const APInt &SmallValue = Small.Low->getValue(); 8693 const APInt &BigValue = Big.Low->getValue(); 8694 8695 // Check that there is only one bit different. 8696 APInt CommonBit = BigValue ^ SmallValue; 8697 if (CommonBit.isPowerOf2()) { 8698 SDValue CondLHS = getValue(Cond); 8699 EVT VT = CondLHS.getValueType(); 8700 SDLoc DL = getCurSDLoc(); 8701 8702 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8703 DAG.getConstant(CommonBit, DL, VT)); 8704 SDValue Cond = DAG.getSetCC( 8705 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8706 ISD::SETEQ); 8707 8708 // Update successor info. 8709 // Both Small and Big will jump to Small.BB, so we sum up the 8710 // probabilities. 8711 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8712 if (BPI) 8713 addSuccessorWithProb( 8714 SwitchMBB, DefaultMBB, 8715 // The default destination is the first successor in IR. 8716 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8717 else 8718 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8719 8720 // Insert the true branch. 8721 SDValue BrCond = 8722 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8723 DAG.getBasicBlock(Small.MBB)); 8724 // Insert the false branch. 8725 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8726 DAG.getBasicBlock(DefaultMBB)); 8727 8728 DAG.setRoot(BrCond); 8729 return; 8730 } 8731 } 8732 } 8733 8734 if (TM.getOptLevel() != CodeGenOpt::None) { 8735 // Order cases by probability so the most likely case will be checked first. 8736 std::sort(W.FirstCluster, W.LastCluster + 1, 8737 [](const CaseCluster &a, const CaseCluster &b) { 8738 return a.Prob > b.Prob; 8739 }); 8740 8741 // Rearrange the case blocks so that the last one falls through if possible 8742 // without without changing the order of probabilities. 8743 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8744 --I; 8745 if (I->Prob > W.LastCluster->Prob) 8746 break; 8747 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8748 std::swap(*I, *W.LastCluster); 8749 break; 8750 } 8751 } 8752 } 8753 8754 // Compute total probability. 8755 BranchProbability DefaultProb = W.DefaultProb; 8756 BranchProbability UnhandledProbs = DefaultProb; 8757 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8758 UnhandledProbs += I->Prob; 8759 8760 MachineBasicBlock *CurMBB = W.MBB; 8761 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8762 MachineBasicBlock *Fallthrough; 8763 if (I == W.LastCluster) { 8764 // For the last cluster, fall through to the default destination. 8765 Fallthrough = DefaultMBB; 8766 } else { 8767 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8768 CurMF->insert(BBI, Fallthrough); 8769 // Put Cond in a virtual register to make it available from the new blocks. 8770 ExportFromCurrentBlock(Cond); 8771 } 8772 UnhandledProbs -= I->Prob; 8773 8774 switch (I->Kind) { 8775 case CC_JumpTable: { 8776 // FIXME: Optimize away range check based on pivot comparisons. 8777 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8778 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8779 8780 // The jump block hasn't been inserted yet; insert it here. 8781 MachineBasicBlock *JumpMBB = JT->MBB; 8782 CurMF->insert(BBI, JumpMBB); 8783 8784 auto JumpProb = I->Prob; 8785 auto FallthroughProb = UnhandledProbs; 8786 8787 // If the default statement is a target of the jump table, we evenly 8788 // distribute the default probability to successors of CurMBB. Also 8789 // update the probability on the edge from JumpMBB to Fallthrough. 8790 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8791 SE = JumpMBB->succ_end(); 8792 SI != SE; ++SI) { 8793 if (*SI == DefaultMBB) { 8794 JumpProb += DefaultProb / 2; 8795 FallthroughProb -= DefaultProb / 2; 8796 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8797 JumpMBB->normalizeSuccProbs(); 8798 break; 8799 } 8800 } 8801 8802 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8803 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8804 CurMBB->normalizeSuccProbs(); 8805 8806 // The jump table header will be inserted in our current block, do the 8807 // range check, and fall through to our fallthrough block. 8808 JTH->HeaderBB = CurMBB; 8809 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8810 8811 // If we're in the right place, emit the jump table header right now. 8812 if (CurMBB == SwitchMBB) { 8813 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8814 JTH->Emitted = true; 8815 } 8816 break; 8817 } 8818 case CC_BitTests: { 8819 // FIXME: Optimize away range check based on pivot comparisons. 8820 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8821 8822 // The bit test blocks haven't been inserted yet; insert them here. 8823 for (BitTestCase &BTC : BTB->Cases) 8824 CurMF->insert(BBI, BTC.ThisBB); 8825 8826 // Fill in fields of the BitTestBlock. 8827 BTB->Parent = CurMBB; 8828 BTB->Default = Fallthrough; 8829 8830 BTB->DefaultProb = UnhandledProbs; 8831 // If the cases in bit test don't form a contiguous range, we evenly 8832 // distribute the probability on the edge to Fallthrough to two 8833 // successors of CurMBB. 8834 if (!BTB->ContiguousRange) { 8835 BTB->Prob += DefaultProb / 2; 8836 BTB->DefaultProb -= DefaultProb / 2; 8837 } 8838 8839 // If we're in the right place, emit the bit test header right now. 8840 if (CurMBB == SwitchMBB) { 8841 visitBitTestHeader(*BTB, SwitchMBB); 8842 BTB->Emitted = true; 8843 } 8844 break; 8845 } 8846 case CC_Range: { 8847 const Value *RHS, *LHS, *MHS; 8848 ISD::CondCode CC; 8849 if (I->Low == I->High) { 8850 // Check Cond == I->Low. 8851 CC = ISD::SETEQ; 8852 LHS = Cond; 8853 RHS=I->Low; 8854 MHS = nullptr; 8855 } else { 8856 // Check I->Low <= Cond <= I->High. 8857 CC = ISD::SETLE; 8858 LHS = I->Low; 8859 MHS = Cond; 8860 RHS = I->High; 8861 } 8862 8863 // The false probability is the sum of all unhandled cases. 8864 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8865 UnhandledProbs); 8866 8867 if (CurMBB == SwitchMBB) 8868 visitSwitchCase(CB, SwitchMBB); 8869 else 8870 SwitchCases.push_back(CB); 8871 8872 break; 8873 } 8874 } 8875 CurMBB = Fallthrough; 8876 } 8877 } 8878 8879 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8880 CaseClusterIt First, 8881 CaseClusterIt Last) { 8882 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8883 if (X.Prob != CC.Prob) 8884 return X.Prob > CC.Prob; 8885 8886 // Ties are broken by comparing the case value. 8887 return X.Low->getValue().slt(CC.Low->getValue()); 8888 }); 8889 } 8890 8891 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8892 const SwitchWorkListItem &W, 8893 Value *Cond, 8894 MachineBasicBlock *SwitchMBB) { 8895 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8896 "Clusters not sorted?"); 8897 8898 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8899 8900 // Balance the tree based on branch probabilities to create a near-optimal (in 8901 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8902 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8903 CaseClusterIt LastLeft = W.FirstCluster; 8904 CaseClusterIt FirstRight = W.LastCluster; 8905 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8906 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8907 8908 // Move LastLeft and FirstRight towards each other from opposite directions to 8909 // find a partitioning of the clusters which balances the probability on both 8910 // sides. If LeftProb and RightProb are equal, alternate which side is 8911 // taken to ensure 0-probability nodes are distributed evenly. 8912 unsigned I = 0; 8913 while (LastLeft + 1 < FirstRight) { 8914 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8915 LeftProb += (++LastLeft)->Prob; 8916 else 8917 RightProb += (--FirstRight)->Prob; 8918 I++; 8919 } 8920 8921 for (;;) { 8922 // Our binary search tree differs from a typical BST in that ours can have up 8923 // to three values in each leaf. The pivot selection above doesn't take that 8924 // into account, which means the tree might require more nodes and be less 8925 // efficient. We compensate for this here. 8926 8927 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8928 unsigned NumRight = W.LastCluster - FirstRight + 1; 8929 8930 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8931 // If one side has less than 3 clusters, and the other has more than 3, 8932 // consider taking a cluster from the other side. 8933 8934 if (NumLeft < NumRight) { 8935 // Consider moving the first cluster on the right to the left side. 8936 CaseCluster &CC = *FirstRight; 8937 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8938 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8939 if (LeftSideRank <= RightSideRank) { 8940 // Moving the cluster to the left does not demote it. 8941 ++LastLeft; 8942 ++FirstRight; 8943 continue; 8944 } 8945 } else { 8946 assert(NumRight < NumLeft); 8947 // Consider moving the last element on the left to the right side. 8948 CaseCluster &CC = *LastLeft; 8949 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8950 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8951 if (RightSideRank <= LeftSideRank) { 8952 // Moving the cluster to the right does not demot it. 8953 --LastLeft; 8954 --FirstRight; 8955 continue; 8956 } 8957 } 8958 } 8959 break; 8960 } 8961 8962 assert(LastLeft + 1 == FirstRight); 8963 assert(LastLeft >= W.FirstCluster); 8964 assert(FirstRight <= W.LastCluster); 8965 8966 // Use the first element on the right as pivot since we will make less-than 8967 // comparisons against it. 8968 CaseClusterIt PivotCluster = FirstRight; 8969 assert(PivotCluster > W.FirstCluster); 8970 assert(PivotCluster <= W.LastCluster); 8971 8972 CaseClusterIt FirstLeft = W.FirstCluster; 8973 CaseClusterIt LastRight = W.LastCluster; 8974 8975 const ConstantInt *Pivot = PivotCluster->Low; 8976 8977 // New blocks will be inserted immediately after the current one. 8978 MachineFunction::iterator BBI(W.MBB); 8979 ++BBI; 8980 8981 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8982 // we can branch to its destination directly if it's squeezed exactly in 8983 // between the known lower bound and Pivot - 1. 8984 MachineBasicBlock *LeftMBB; 8985 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8986 FirstLeft->Low == W.GE && 8987 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8988 LeftMBB = FirstLeft->MBB; 8989 } else { 8990 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8991 FuncInfo.MF->insert(BBI, LeftMBB); 8992 WorkList.push_back( 8993 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8994 // Put Cond in a virtual register to make it available from the new blocks. 8995 ExportFromCurrentBlock(Cond); 8996 } 8997 8998 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8999 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9000 // directly if RHS.High equals the current upper bound. 9001 MachineBasicBlock *RightMBB; 9002 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9003 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9004 RightMBB = FirstRight->MBB; 9005 } else { 9006 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9007 FuncInfo.MF->insert(BBI, RightMBB); 9008 WorkList.push_back( 9009 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9010 // Put Cond in a virtual register to make it available from the new blocks. 9011 ExportFromCurrentBlock(Cond); 9012 } 9013 9014 // Create the CaseBlock record that will be used to lower the branch. 9015 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9016 LeftProb, RightProb); 9017 9018 if (W.MBB == SwitchMBB) 9019 visitSwitchCase(CB, SwitchMBB); 9020 else 9021 SwitchCases.push_back(CB); 9022 } 9023 9024 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9025 // Extract cases from the switch. 9026 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9027 CaseClusterVector Clusters; 9028 Clusters.reserve(SI.getNumCases()); 9029 for (auto I : SI.cases()) { 9030 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9031 const ConstantInt *CaseVal = I.getCaseValue(); 9032 BranchProbability Prob = 9033 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9034 : BranchProbability(1, SI.getNumCases() + 1); 9035 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9036 } 9037 9038 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9039 9040 // Cluster adjacent cases with the same destination. We do this at all 9041 // optimization levels because it's cheap to do and will make codegen faster 9042 // if there are many clusters. 9043 sortAndRangeify(Clusters); 9044 9045 if (TM.getOptLevel() != CodeGenOpt::None) { 9046 // Replace an unreachable default with the most popular destination. 9047 // FIXME: Exploit unreachable default more aggressively. 9048 bool UnreachableDefault = 9049 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9050 if (UnreachableDefault && !Clusters.empty()) { 9051 DenseMap<const BasicBlock *, unsigned> Popularity; 9052 unsigned MaxPop = 0; 9053 const BasicBlock *MaxBB = nullptr; 9054 for (auto I : SI.cases()) { 9055 const BasicBlock *BB = I.getCaseSuccessor(); 9056 if (++Popularity[BB] > MaxPop) { 9057 MaxPop = Popularity[BB]; 9058 MaxBB = BB; 9059 } 9060 } 9061 // Set new default. 9062 assert(MaxPop > 0 && MaxBB); 9063 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9064 9065 // Remove cases that were pointing to the destination that is now the 9066 // default. 9067 CaseClusterVector New; 9068 New.reserve(Clusters.size()); 9069 for (CaseCluster &CC : Clusters) { 9070 if (CC.MBB != DefaultMBB) 9071 New.push_back(CC); 9072 } 9073 Clusters = std::move(New); 9074 } 9075 } 9076 9077 // If there is only the default destination, jump there directly. 9078 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9079 if (Clusters.empty()) { 9080 SwitchMBB->addSuccessor(DefaultMBB); 9081 if (DefaultMBB != NextBlock(SwitchMBB)) { 9082 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9083 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9084 } 9085 return; 9086 } 9087 9088 findJumpTables(Clusters, &SI, DefaultMBB); 9089 findBitTestClusters(Clusters, &SI); 9090 9091 DEBUG({ 9092 dbgs() << "Case clusters: "; 9093 for (const CaseCluster &C : Clusters) { 9094 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9095 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9096 9097 C.Low->getValue().print(dbgs(), true); 9098 if (C.Low != C.High) { 9099 dbgs() << '-'; 9100 C.High->getValue().print(dbgs(), true); 9101 } 9102 dbgs() << ' '; 9103 } 9104 dbgs() << '\n'; 9105 }); 9106 9107 assert(!Clusters.empty()); 9108 SwitchWorkList WorkList; 9109 CaseClusterIt First = Clusters.begin(); 9110 CaseClusterIt Last = Clusters.end() - 1; 9111 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9112 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9113 9114 while (!WorkList.empty()) { 9115 SwitchWorkListItem W = WorkList.back(); 9116 WorkList.pop_back(); 9117 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9118 9119 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9120 // For optimized builds, lower large range as a balanced binary tree. 9121 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9122 continue; 9123 } 9124 9125 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9126 } 9127 } 9128