xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision f9172fd4ac4c86f5f04220d7d748eace96fd1a95)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/StackMaps.h"
39 #include "llvm/CodeGen/WinEHFuncInfo.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Statepoint.h"
55 #include "llvm/MC/MCSymbol.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetFrameLowering.h"
62 #include "llvm/Target/TargetInstrInfo.h"
63 #include "llvm/Target/TargetIntrinsicInfo.h"
64 #include "llvm/Target/TargetLowering.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include "llvm/Target/TargetSubtargetInfo.h"
67 #include <algorithm>
68 #include <utility>
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "isel"
72 
73 /// LimitFloatPrecision - Generate low-precision inline sequences for
74 /// some float libcalls (6, 8 or 12 bits).
75 static unsigned LimitFloatPrecision;
76 
77 static cl::opt<unsigned, true>
78 LimitFPPrecision("limit-float-precision",
79                  cl::desc("Generate low-precision inline sequences "
80                           "for some float libcalls"),
81                  cl::location(LimitFloatPrecision),
82                  cl::init(0));
83 
84 static cl::opt<bool>
85 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
86                 cl::desc("Enable fast-math-flags for DAG nodes"));
87 
88 // Limit the width of DAG chains. This is important in general to prevent
89 // DAG-based analysis from blowing up. For example, alias analysis and
90 // load clustering may not complete in reasonable time. It is difficult to
91 // recognize and avoid this situation within each individual analysis, and
92 // future analyses are likely to have the same behavior. Limiting DAG width is
93 // the safe approach and will be especially important with global DAGs.
94 //
95 // MaxParallelChains default is arbitrarily high to avoid affecting
96 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
97 // sequence over this should have been converted to llvm.memcpy by the
98 // frontend. It easy to induce this behavior with .ll code such as:
99 // %buffer = alloca [4096 x i8]
100 // %data = load [4096 x i8]* %argPtr
101 // store [4096 x i8] %data, [4096 x i8]* %buffer
102 static const unsigned MaxParallelChains = 64;
103 
104 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
105                                       const SDValue *Parts, unsigned NumParts,
106                                       MVT PartVT, EVT ValueVT, const Value *V);
107 
108 /// getCopyFromParts - Create a value that contains the specified legal parts
109 /// combined into the value they represent.  If the parts combine to a type
110 /// larger then ValueVT then AssertOp can be used to specify whether the extra
111 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
112 /// (ISD::AssertSext).
113 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
114                                 const SDValue *Parts,
115                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
116                                 const Value *V,
117                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
118   if (ValueVT.isVector())
119     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
120                                   PartVT, ValueVT, V);
121 
122   assert(NumParts > 0 && "No parts to assemble!");
123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
124   SDValue Val = Parts[0];
125 
126   if (NumParts > 1) {
127     // Assemble the value from multiple parts.
128     if (ValueVT.isInteger()) {
129       unsigned PartBits = PartVT.getSizeInBits();
130       unsigned ValueBits = ValueVT.getSizeInBits();
131 
132       // Assemble the power of 2 part.
133       unsigned RoundParts = NumParts & (NumParts - 1) ?
134         1 << Log2_32(NumParts) : NumParts;
135       unsigned RoundBits = PartBits * RoundParts;
136       EVT RoundVT = RoundBits == ValueBits ?
137         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
138       SDValue Lo, Hi;
139 
140       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
141 
142       if (RoundParts > 2) {
143         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
144                               PartVT, HalfVT, V);
145         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
146                               RoundParts / 2, PartVT, HalfVT, V);
147       } else {
148         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
149         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
150       }
151 
152       if (DAG.getDataLayout().isBigEndian())
153         std::swap(Lo, Hi);
154 
155       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
156 
157       if (RoundParts < NumParts) {
158         // Assemble the trailing non-power-of-2 part.
159         unsigned OddParts = NumParts - RoundParts;
160         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
161         Hi = getCopyFromParts(DAG, DL,
162                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
163 
164         // Combine the round and odd parts.
165         Lo = Val;
166         if (DAG.getDataLayout().isBigEndian())
167           std::swap(Lo, Hi);
168         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
169         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
170         Hi =
171             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
172                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
173                                         TLI.getPointerTy(DAG.getDataLayout())));
174         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
175         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
176       }
177     } else if (PartVT.isFloatingPoint()) {
178       // FP split into multiple FP parts (for ppcf128)
179       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
180              "Unexpected split");
181       SDValue Lo, Hi;
182       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
183       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
184       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
185         std::swap(Lo, Hi);
186       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
187     } else {
188       // FP split into integer parts (soft fp)
189       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
190              !PartVT.isVector() && "Unexpected split");
191       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
192       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
193     }
194   }
195 
196   // There is now one part, held in Val.  Correct it to match ValueVT.
197   EVT PartEVT = Val.getValueType();
198 
199   if (PartEVT == ValueVT)
200     return Val;
201 
202   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
203       ValueVT.bitsLT(PartEVT)) {
204     // For an FP value in an integer part, we need to truncate to the right
205     // width first.
206     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
207     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
208   }
209 
210   if (PartEVT.isInteger() && ValueVT.isInteger()) {
211     if (ValueVT.bitsLT(PartEVT)) {
212       // For a truncate, see if we have any information to
213       // indicate whether the truncated bits will always be
214       // zero or sign-extension.
215       if (AssertOp != ISD::DELETED_NODE)
216         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
217                           DAG.getValueType(ValueVT));
218       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
219     }
220     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
221   }
222 
223   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
224     // FP_ROUND's are always exact here.
225     if (ValueVT.bitsLT(Val.getValueType()))
226       return DAG.getNode(
227           ISD::FP_ROUND, DL, ValueVT, Val,
228           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
229 
230     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
231   }
232 
233   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
234     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
235 
236   llvm_unreachable("Unknown mismatch!");
237 }
238 
239 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
240                                               const Twine &ErrMsg) {
241   const Instruction *I = dyn_cast_or_null<Instruction>(V);
242   if (!V)
243     return Ctx.emitError(ErrMsg);
244 
245   const char *AsmError = ", possible invalid constraint for vector type";
246   if (const CallInst *CI = dyn_cast<CallInst>(I))
247     if (isa<InlineAsm>(CI->getCalledValue()))
248       return Ctx.emitError(I, ErrMsg + AsmError);
249 
250   return Ctx.emitError(I, ErrMsg);
251 }
252 
253 /// getCopyFromPartsVector - Create a value that contains the specified legal
254 /// parts combined into the value they represent.  If the parts combine to a
255 /// type larger then ValueVT then AssertOp can be used to specify whether the
256 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
257 /// ValueVT (ISD::AssertSext).
258 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
259                                       const SDValue *Parts, unsigned NumParts,
260                                       MVT PartVT, EVT ValueVT, const Value *V) {
261   assert(ValueVT.isVector() && "Not a vector value");
262   assert(NumParts > 0 && "No parts to assemble!");
263   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
264   SDValue Val = Parts[0];
265 
266   // Handle a multi-element vector.
267   if (NumParts > 1) {
268     EVT IntermediateVT;
269     MVT RegisterVT;
270     unsigned NumIntermediates;
271     unsigned NumRegs =
272     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
273                                NumIntermediates, RegisterVT);
274     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
275     NumParts = NumRegs; // Silence a compiler warning.
276     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
277     assert(RegisterVT.getSizeInBits() ==
278            Parts[0].getSimpleValueType().getSizeInBits() &&
279            "Part type sizes don't match!");
280 
281     // Assemble the parts into intermediate operands.
282     SmallVector<SDValue, 8> Ops(NumIntermediates);
283     if (NumIntermediates == NumParts) {
284       // If the register was not expanded, truncate or copy the value,
285       // as appropriate.
286       for (unsigned i = 0; i != NumParts; ++i)
287         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
288                                   PartVT, IntermediateVT, V);
289     } else if (NumParts > 0) {
290       // If the intermediate type was expanded, build the intermediate
291       // operands from the parts.
292       assert(NumParts % NumIntermediates == 0 &&
293              "Must expand into a divisible number of parts!");
294       unsigned Factor = NumParts / NumIntermediates;
295       for (unsigned i = 0; i != NumIntermediates; ++i)
296         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
297                                   PartVT, IntermediateVT, V);
298     }
299 
300     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
301     // intermediate operands.
302     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
303                                                 : ISD::BUILD_VECTOR,
304                       DL, ValueVT, Ops);
305   }
306 
307   // There is now one part, held in Val.  Correct it to match ValueVT.
308   EVT PartEVT = Val.getValueType();
309 
310   if (PartEVT == ValueVT)
311     return Val;
312 
313   if (PartEVT.isVector()) {
314     // If the element type of the source/dest vectors are the same, but the
315     // parts vector has more elements than the value vector, then we have a
316     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
317     // elements we want.
318     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
319       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
320              "Cannot narrow, it would be a lossy transformation");
321       return DAG.getNode(
322           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
323           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
324     }
325 
326     // Vector/Vector bitcast.
327     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
328       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
329 
330     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
331       "Cannot handle this kind of promotion");
332     // Promoted vector extract
333     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
334 
335   }
336 
337   // Trivial bitcast if the types are the same size and the destination
338   // vector type is legal.
339   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
340       TLI.isTypeLegal(ValueVT))
341     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
342 
343   // Handle cases such as i8 -> <1 x i1>
344   if (ValueVT.getVectorNumElements() != 1) {
345     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
346                                       "non-trivial scalar-to-vector conversion");
347     return DAG.getUNDEF(ValueVT);
348   }
349 
350   if (ValueVT.getVectorNumElements() == 1 &&
351       ValueVT.getVectorElementType() != PartEVT)
352     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
353 
354   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
355 }
356 
357 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
358                                  SDValue Val, SDValue *Parts, unsigned NumParts,
359                                  MVT PartVT, const Value *V);
360 
361 /// getCopyToParts - Create a series of nodes that contain the specified value
362 /// split into legal parts.  If the parts contain more bits than Val, then, for
363 /// integers, ExtendKind can be used to specify how to generate the extra bits.
364 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
365                            SDValue Val, SDValue *Parts, unsigned NumParts,
366                            MVT PartVT, const Value *V,
367                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
368   EVT ValueVT = Val.getValueType();
369 
370   // Handle the vector case separately.
371   if (ValueVT.isVector())
372     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
373 
374   unsigned PartBits = PartVT.getSizeInBits();
375   unsigned OrigNumParts = NumParts;
376   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
377          "Copying to an illegal type!");
378 
379   if (NumParts == 0)
380     return;
381 
382   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
383   EVT PartEVT = PartVT;
384   if (PartEVT == ValueVT) {
385     assert(NumParts == 1 && "No-op copy with multiple parts!");
386     Parts[0] = Val;
387     return;
388   }
389 
390   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
391     // If the parts cover more bits than the value has, promote the value.
392     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
393       assert(NumParts == 1 && "Do not know what to promote to!");
394       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
395     } else {
396       if (ValueVT.isFloatingPoint()) {
397         // FP values need to be bitcast, then extended if they are being put
398         // into a larger container.
399         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
400         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401       }
402       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
403              ValueVT.isInteger() &&
404              "Unknown mismatch!");
405       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
406       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
407       if (PartVT == MVT::x86mmx)
408         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
409     }
410   } else if (PartBits == ValueVT.getSizeInBits()) {
411     // Different types of the same size.
412     assert(NumParts == 1 && PartEVT != ValueVT);
413     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
414   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
415     // If the parts cover less bits than value has, truncate the value.
416     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
417            ValueVT.isInteger() &&
418            "Unknown mismatch!");
419     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
420     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
421     if (PartVT == MVT::x86mmx)
422       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
423   }
424 
425   // The value may have changed - recompute ValueVT.
426   ValueVT = Val.getValueType();
427   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
428          "Failed to tile the value with PartVT!");
429 
430   if (NumParts == 1) {
431     if (PartEVT != ValueVT)
432       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
433                                         "scalar-to-vector conversion failed");
434 
435     Parts[0] = Val;
436     return;
437   }
438 
439   // Expand the value into multiple parts.
440   if (NumParts & (NumParts - 1)) {
441     // The number of parts is not a power of 2.  Split off and copy the tail.
442     assert(PartVT.isInteger() && ValueVT.isInteger() &&
443            "Do not know what to expand to!");
444     unsigned RoundParts = 1 << Log2_32(NumParts);
445     unsigned RoundBits = RoundParts * PartBits;
446     unsigned OddParts = NumParts - RoundParts;
447     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
448                                  DAG.getIntPtrConstant(RoundBits, DL));
449     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
450 
451     if (DAG.getDataLayout().isBigEndian())
452       // The odd parts were reversed by getCopyToParts - unreverse them.
453       std::reverse(Parts + RoundParts, Parts + NumParts);
454 
455     NumParts = RoundParts;
456     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
457     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
458   }
459 
460   // The number of parts is a power of 2.  Repeatedly bisect the value using
461   // EXTRACT_ELEMENT.
462   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
463                          EVT::getIntegerVT(*DAG.getContext(),
464                                            ValueVT.getSizeInBits()),
465                          Val);
466 
467   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
468     for (unsigned i = 0; i < NumParts; i += StepSize) {
469       unsigned ThisBits = StepSize * PartBits / 2;
470       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
471       SDValue &Part0 = Parts[i];
472       SDValue &Part1 = Parts[i+StepSize/2];
473 
474       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
475                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
476       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
477                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
478 
479       if (ThisBits == PartBits && ThisVT != PartVT) {
480         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
481         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
482       }
483     }
484   }
485 
486   if (DAG.getDataLayout().isBigEndian())
487     std::reverse(Parts, Parts + OrigNumParts);
488 }
489 
490 
491 /// getCopyToPartsVector - Create a series of nodes that contain the specified
492 /// value split into legal parts.
493 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
494                                  SDValue Val, SDValue *Parts, unsigned NumParts,
495                                  MVT PartVT, const Value *V) {
496   EVT ValueVT = Val.getValueType();
497   assert(ValueVT.isVector() && "Not a vector");
498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
499 
500   if (NumParts == 1) {
501     EVT PartEVT = PartVT;
502     if (PartEVT == ValueVT) {
503       // Nothing to do.
504     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
505       // Bitconvert vector->vector case.
506       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
507     } else if (PartVT.isVector() &&
508                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
509                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
510       EVT ElementVT = PartVT.getVectorElementType();
511       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
512       // undef elements.
513       SmallVector<SDValue, 16> Ops;
514       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
515         Ops.push_back(DAG.getNode(
516             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
517             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
518 
519       for (unsigned i = ValueVT.getVectorNumElements(),
520            e = PartVT.getVectorNumElements(); i != e; ++i)
521         Ops.push_back(DAG.getUNDEF(ElementVT));
522 
523       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
524 
525       // FIXME: Use CONCAT for 2x -> 4x.
526 
527       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
528       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
529     } else if (PartVT.isVector() &&
530                PartEVT.getVectorElementType().bitsGE(
531                  ValueVT.getVectorElementType()) &&
532                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
533 
534       // Promoted vector extract
535       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
536     } else{
537       // Vector -> scalar conversion.
538       assert(ValueVT.getVectorNumElements() == 1 &&
539              "Only trivial vector-to-scalar conversions should get here!");
540       Val = DAG.getNode(
541           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
542           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
543 
544       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
545     }
546 
547     Parts[0] = Val;
548     return;
549   }
550 
551   // Handle a multi-element vector.
552   EVT IntermediateVT;
553   MVT RegisterVT;
554   unsigned NumIntermediates;
555   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
556                                                 IntermediateVT,
557                                                 NumIntermediates, RegisterVT);
558   unsigned NumElements = ValueVT.getVectorNumElements();
559 
560   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
561   NumParts = NumRegs; // Silence a compiler warning.
562   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
563 
564   // Split the vector into intermediate operands.
565   SmallVector<SDValue, 8> Ops(NumIntermediates);
566   for (unsigned i = 0; i != NumIntermediates; ++i) {
567     if (IntermediateVT.isVector())
568       Ops[i] =
569           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
570                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
571                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
572     else
573       Ops[i] = DAG.getNode(
574           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
575           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
576   }
577 
578   // Split the intermediate operands into legal parts.
579   if (NumParts == NumIntermediates) {
580     // If the register was not expanded, promote or copy the value,
581     // as appropriate.
582     for (unsigned i = 0; i != NumParts; ++i)
583       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
584   } else if (NumParts > 0) {
585     // If the intermediate type was expanded, split each the value into
586     // legal parts.
587     assert(NumIntermediates != 0 && "division by zero");
588     assert(NumParts % NumIntermediates == 0 &&
589            "Must expand into a divisible number of parts!");
590     unsigned Factor = NumParts / NumIntermediates;
591     for (unsigned i = 0; i != NumIntermediates; ++i)
592       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
593   }
594 }
595 
596 RegsForValue::RegsForValue() {}
597 
598 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
599                            EVT valuevt)
600     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
601 
602 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
603                            const DataLayout &DL, unsigned Reg, Type *Ty) {
604   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
605 
606   for (EVT ValueVT : ValueVTs) {
607     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
608     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
609     for (unsigned i = 0; i != NumRegs; ++i)
610       Regs.push_back(Reg + i);
611     RegVTs.push_back(RegisterVT);
612     Reg += NumRegs;
613   }
614 }
615 
616 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
617 /// this value and returns the result as a ValueVT value.  This uses
618 /// Chain/Flag as the input and updates them for the output Chain/Flag.
619 /// If the Flag pointer is NULL, no flag is used.
620 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
621                                       FunctionLoweringInfo &FuncInfo,
622                                       SDLoc dl,
623                                       SDValue &Chain, SDValue *Flag,
624                                       const Value *V) const {
625   // A Value with type {} or [0 x %t] needs no registers.
626   if (ValueVTs.empty())
627     return SDValue();
628 
629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
630 
631   // Assemble the legal parts into the final values.
632   SmallVector<SDValue, 4> Values(ValueVTs.size());
633   SmallVector<SDValue, 8> Parts;
634   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
635     // Copy the legal parts from the registers.
636     EVT ValueVT = ValueVTs[Value];
637     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
638     MVT RegisterVT = RegVTs[Value];
639 
640     Parts.resize(NumRegs);
641     for (unsigned i = 0; i != NumRegs; ++i) {
642       SDValue P;
643       if (!Flag) {
644         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
645       } else {
646         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
647         *Flag = P.getValue(2);
648       }
649 
650       Chain = P.getValue(1);
651       Parts[i] = P;
652 
653       // If the source register was virtual and if we know something about it,
654       // add an assert node.
655       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
656           !RegisterVT.isInteger() || RegisterVT.isVector())
657         continue;
658 
659       const FunctionLoweringInfo::LiveOutInfo *LOI =
660         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
661       if (!LOI)
662         continue;
663 
664       unsigned RegSize = RegisterVT.getSizeInBits();
665       unsigned NumSignBits = LOI->NumSignBits;
666       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
667 
668       if (NumZeroBits == RegSize) {
669         // The current value is a zero.
670         // Explicitly express that as it would be easier for
671         // optimizations to kick in.
672         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
673         continue;
674       }
675 
676       // FIXME: We capture more information than the dag can represent.  For
677       // now, just use the tightest assertzext/assertsext possible.
678       bool isSExt = true;
679       EVT FromVT(MVT::Other);
680       if (NumSignBits == RegSize)
681         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
682       else if (NumZeroBits >= RegSize-1)
683         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
684       else if (NumSignBits > RegSize-8)
685         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
686       else if (NumZeroBits >= RegSize-8)
687         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
688       else if (NumSignBits > RegSize-16)
689         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
690       else if (NumZeroBits >= RegSize-16)
691         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
692       else if (NumSignBits > RegSize-32)
693         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
694       else if (NumZeroBits >= RegSize-32)
695         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
696       else
697         continue;
698 
699       // Add an assertion node.
700       assert(FromVT != MVT::Other);
701       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
702                              RegisterVT, P, DAG.getValueType(FromVT));
703     }
704 
705     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
706                                      NumRegs, RegisterVT, ValueVT, V);
707     Part += NumRegs;
708     Parts.clear();
709   }
710 
711   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
712 }
713 
714 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
715 /// specified value into the registers specified by this object.  This uses
716 /// Chain/Flag as the input and updates them for the output Chain/Flag.
717 /// If the Flag pointer is NULL, no flag is used.
718 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
719                                  SDValue &Chain, SDValue *Flag, const Value *V,
720                                  ISD::NodeType PreferredExtendType) const {
721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
722   ISD::NodeType ExtendKind = PreferredExtendType;
723 
724   // Get the list of the values's legal parts.
725   unsigned NumRegs = Regs.size();
726   SmallVector<SDValue, 8> Parts(NumRegs);
727   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
728     EVT ValueVT = ValueVTs[Value];
729     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
730     MVT RegisterVT = RegVTs[Value];
731 
732     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
733       ExtendKind = ISD::ZERO_EXTEND;
734 
735     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
736                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
737     Part += NumParts;
738   }
739 
740   // Copy the parts into the registers.
741   SmallVector<SDValue, 8> Chains(NumRegs);
742   for (unsigned i = 0; i != NumRegs; ++i) {
743     SDValue Part;
744     if (!Flag) {
745       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
746     } else {
747       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
748       *Flag = Part.getValue(1);
749     }
750 
751     Chains[i] = Part.getValue(0);
752   }
753 
754   if (NumRegs == 1 || Flag)
755     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
756     // flagged to it. That is the CopyToReg nodes and the user are considered
757     // a single scheduling unit. If we create a TokenFactor and return it as
758     // chain, then the TokenFactor is both a predecessor (operand) of the
759     // user as well as a successor (the TF operands are flagged to the user).
760     // c1, f1 = CopyToReg
761     // c2, f2 = CopyToReg
762     // c3     = TokenFactor c1, c2
763     // ...
764     //        = op c3, ..., f2
765     Chain = Chains[NumRegs-1];
766   else
767     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
768 }
769 
770 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
771 /// operand list.  This adds the code marker and includes the number of
772 /// values added into it.
773 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
774                                         unsigned MatchingIdx, SDLoc dl,
775                                         SelectionDAG &DAG,
776                                         std::vector<SDValue> &Ops) const {
777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
778 
779   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
780   if (HasMatching)
781     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
782   else if (!Regs.empty() &&
783            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
784     // Put the register class of the virtual registers in the flag word.  That
785     // way, later passes can recompute register class constraints for inline
786     // assembly as well as normal instructions.
787     // Don't do this for tied operands that can use the regclass information
788     // from the def.
789     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
790     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
791     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
792   }
793 
794   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
795   Ops.push_back(Res);
796 
797   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
798   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
799     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
800     MVT RegisterVT = RegVTs[Value];
801     for (unsigned i = 0; i != NumRegs; ++i) {
802       assert(Reg < Regs.size() && "Mismatch in # registers expected");
803       unsigned TheReg = Regs[Reg++];
804       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
805 
806       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
807         // If we clobbered the stack pointer, MFI should know about it.
808         assert(DAG.getMachineFunction().getFrameInfo()->
809             hasOpaqueSPAdjustment());
810       }
811     }
812   }
813 }
814 
815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
816                                const TargetLibraryInfo *li) {
817   AA = &aa;
818   GFI = gfi;
819   LibInfo = li;
820   DL = &DAG.getDataLayout();
821   Context = DAG.getContext();
822   LPadToCallSiteMap.clear();
823 }
824 
825 /// clear - Clear out the current SelectionDAG and the associated
826 /// state and prepare this SelectionDAGBuilder object to be used
827 /// for a new block. This doesn't clear out information about
828 /// additional blocks that are needed to complete switch lowering
829 /// or PHI node updating; that information is cleared out as it is
830 /// consumed.
831 void SelectionDAGBuilder::clear() {
832   NodeMap.clear();
833   UnusedArgNodeMap.clear();
834   PendingLoads.clear();
835   PendingExports.clear();
836   CurInst = nullptr;
837   HasTailCall = false;
838   SDNodeOrder = LowestSDNodeOrder;
839   StatepointLowering.clear();
840 }
841 
842 /// clearDanglingDebugInfo - Clear the dangling debug information
843 /// map. This function is separated from the clear so that debug
844 /// information that is dangling in a basic block can be properly
845 /// resolved in a different basic block. This allows the
846 /// SelectionDAG to resolve dangling debug information attached
847 /// to PHI nodes.
848 void SelectionDAGBuilder::clearDanglingDebugInfo() {
849   DanglingDebugInfoMap.clear();
850 }
851 
852 /// getRoot - Return the current virtual root of the Selection DAG,
853 /// flushing any PendingLoad items. This must be done before emitting
854 /// a store or any other node that may need to be ordered after any
855 /// prior load instructions.
856 ///
857 SDValue SelectionDAGBuilder::getRoot() {
858   if (PendingLoads.empty())
859     return DAG.getRoot();
860 
861   if (PendingLoads.size() == 1) {
862     SDValue Root = PendingLoads[0];
863     DAG.setRoot(Root);
864     PendingLoads.clear();
865     return Root;
866   }
867 
868   // Otherwise, we have to make a token factor node.
869   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
870                              PendingLoads);
871   PendingLoads.clear();
872   DAG.setRoot(Root);
873   return Root;
874 }
875 
876 /// getControlRoot - Similar to getRoot, but instead of flushing all the
877 /// PendingLoad items, flush all the PendingExports items. It is necessary
878 /// to do this before emitting a terminator instruction.
879 ///
880 SDValue SelectionDAGBuilder::getControlRoot() {
881   SDValue Root = DAG.getRoot();
882 
883   if (PendingExports.empty())
884     return Root;
885 
886   // Turn all of the CopyToReg chains into one factored node.
887   if (Root.getOpcode() != ISD::EntryToken) {
888     unsigned i = 0, e = PendingExports.size();
889     for (; i != e; ++i) {
890       assert(PendingExports[i].getNode()->getNumOperands() > 1);
891       if (PendingExports[i].getNode()->getOperand(0) == Root)
892         break;  // Don't add the root if we already indirectly depend on it.
893     }
894 
895     if (i == e)
896       PendingExports.push_back(Root);
897   }
898 
899   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
900                      PendingExports);
901   PendingExports.clear();
902   DAG.setRoot(Root);
903   return Root;
904 }
905 
906 void SelectionDAGBuilder::visit(const Instruction &I) {
907   // Set up outgoing PHI node register values before emitting the terminator.
908   if (isa<TerminatorInst>(&I))
909     HandlePHINodesInSuccessorBlocks(I.getParent());
910 
911   ++SDNodeOrder;
912 
913   CurInst = &I;
914 
915   visit(I.getOpcode(), I);
916 
917   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
918       !isStatepoint(&I)) // statepoints handle their exports internally
919     CopyToExportRegsIfNeeded(&I);
920 
921   CurInst = nullptr;
922 }
923 
924 void SelectionDAGBuilder::visitPHI(const PHINode &) {
925   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
926 }
927 
928 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
929   // Note: this doesn't use InstVisitor, because it has to work with
930   // ConstantExpr's in addition to instructions.
931   switch (Opcode) {
932   default: llvm_unreachable("Unknown instruction type encountered!");
933     // Build the switch statement using the Instruction.def file.
934 #define HANDLE_INST(NUM, OPCODE, CLASS) \
935     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
936 #include "llvm/IR/Instruction.def"
937   }
938 }
939 
940 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
941 // generate the debug data structures now that we've seen its definition.
942 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
943                                                    SDValue Val) {
944   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
945   if (DDI.getDI()) {
946     const DbgValueInst *DI = DDI.getDI();
947     DebugLoc dl = DDI.getdl();
948     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
949     DILocalVariable *Variable = DI->getVariable();
950     DIExpression *Expr = DI->getExpression();
951     assert(Variable->isValidLocationForIntrinsic(dl) &&
952            "Expected inlined-at fields to agree");
953     uint64_t Offset = DI->getOffset();
954     SDDbgValue *SDV;
955     if (Val.getNode()) {
956       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
957                                     Val)) {
958         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
959                               false, Offset, dl, DbgSDNodeOrder);
960         DAG.AddDbgValue(SDV, Val.getNode(), false);
961       }
962     } else
963       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
964     DanglingDebugInfoMap[V] = DanglingDebugInfo();
965   }
966 }
967 
968 /// getCopyFromRegs - If there was virtual register allocated for the value V
969 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
970 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
971   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
972   SDValue Result;
973 
974   if (It != FuncInfo.ValueMap.end()) {
975     unsigned InReg = It->second;
976     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
977                      DAG.getDataLayout(), InReg, Ty);
978     SDValue Chain = DAG.getEntryNode();
979     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
980     resolveDanglingDebugInfo(V, Result);
981   }
982 
983   return Result;
984 }
985 
986 /// getValue - Return an SDValue for the given Value.
987 SDValue SelectionDAGBuilder::getValue(const Value *V) {
988   // If we already have an SDValue for this value, use it. It's important
989   // to do this first, so that we don't create a CopyFromReg if we already
990   // have a regular SDValue.
991   SDValue &N = NodeMap[V];
992   if (N.getNode()) return N;
993 
994   // If there's a virtual register allocated and initialized for this
995   // value, use it.
996   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
997   if (copyFromReg.getNode()) {
998     return copyFromReg;
999   }
1000 
1001   // Otherwise create a new SDValue and remember it.
1002   SDValue Val = getValueImpl(V);
1003   NodeMap[V] = Val;
1004   resolveDanglingDebugInfo(V, Val);
1005   return Val;
1006 }
1007 
1008 // Return true if SDValue exists for the given Value
1009 bool SelectionDAGBuilder::findValue(const Value *V) const {
1010   return (NodeMap.find(V) != NodeMap.end()) ||
1011     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1012 }
1013 
1014 /// getNonRegisterValue - Return an SDValue for the given Value, but
1015 /// don't look in FuncInfo.ValueMap for a virtual register.
1016 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1017   // If we already have an SDValue for this value, use it.
1018   SDValue &N = NodeMap[V];
1019   if (N.getNode()) {
1020     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1021       // Remove the debug location from the node as the node is about to be used
1022       // in a location which may differ from the original debug location.  This
1023       // is relevant to Constant and ConstantFP nodes because they can appear
1024       // as constant expressions inside PHI nodes.
1025       N->setDebugLoc(DebugLoc());
1026     }
1027     return N;
1028   }
1029 
1030   // Otherwise create a new SDValue and remember it.
1031   SDValue Val = getValueImpl(V);
1032   NodeMap[V] = Val;
1033   resolveDanglingDebugInfo(V, Val);
1034   return Val;
1035 }
1036 
1037 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1038 /// Create an SDValue for the given value.
1039 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1040   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1041 
1042   if (const Constant *C = dyn_cast<Constant>(V)) {
1043     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1044 
1045     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1046       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1047 
1048     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1049       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1050 
1051     if (isa<ConstantPointerNull>(C)) {
1052       unsigned AS = V->getType()->getPointerAddressSpace();
1053       return DAG.getConstant(0, getCurSDLoc(),
1054                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1055     }
1056 
1057     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1058       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1059 
1060     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1061       return DAG.getUNDEF(VT);
1062 
1063     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1064       visit(CE->getOpcode(), *CE);
1065       SDValue N1 = NodeMap[V];
1066       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1067       return N1;
1068     }
1069 
1070     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1071       SmallVector<SDValue, 4> Constants;
1072       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1073            OI != OE; ++OI) {
1074         SDNode *Val = getValue(*OI).getNode();
1075         // If the operand is an empty aggregate, there are no values.
1076         if (!Val) continue;
1077         // Add each leaf value from the operand to the Constants list
1078         // to form a flattened list of all the values.
1079         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1080           Constants.push_back(SDValue(Val, i));
1081       }
1082 
1083       return DAG.getMergeValues(Constants, getCurSDLoc());
1084     }
1085 
1086     if (const ConstantDataSequential *CDS =
1087           dyn_cast<ConstantDataSequential>(C)) {
1088       SmallVector<SDValue, 4> Ops;
1089       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1090         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1091         // Add each leaf value from the operand to the Constants list
1092         // to form a flattened list of all the values.
1093         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1094           Ops.push_back(SDValue(Val, i));
1095       }
1096 
1097       if (isa<ArrayType>(CDS->getType()))
1098         return DAG.getMergeValues(Ops, getCurSDLoc());
1099       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1100                                       VT, Ops);
1101     }
1102 
1103     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1104       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1105              "Unknown struct or array constant!");
1106 
1107       SmallVector<EVT, 4> ValueVTs;
1108       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1109       unsigned NumElts = ValueVTs.size();
1110       if (NumElts == 0)
1111         return SDValue(); // empty struct
1112       SmallVector<SDValue, 4> Constants(NumElts);
1113       for (unsigned i = 0; i != NumElts; ++i) {
1114         EVT EltVT = ValueVTs[i];
1115         if (isa<UndefValue>(C))
1116           Constants[i] = DAG.getUNDEF(EltVT);
1117         else if (EltVT.isFloatingPoint())
1118           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1119         else
1120           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1121       }
1122 
1123       return DAG.getMergeValues(Constants, getCurSDLoc());
1124     }
1125 
1126     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1127       return DAG.getBlockAddress(BA, VT);
1128 
1129     VectorType *VecTy = cast<VectorType>(V->getType());
1130     unsigned NumElements = VecTy->getNumElements();
1131 
1132     // Now that we know the number and type of the elements, get that number of
1133     // elements into the Ops array based on what kind of constant it is.
1134     SmallVector<SDValue, 16> Ops;
1135     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1136       for (unsigned i = 0; i != NumElements; ++i)
1137         Ops.push_back(getValue(CV->getOperand(i)));
1138     } else {
1139       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1140       EVT EltVT =
1141           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1142 
1143       SDValue Op;
1144       if (EltVT.isFloatingPoint())
1145         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1146       else
1147         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1148       Ops.assign(NumElements, Op);
1149     }
1150 
1151     // Create a BUILD_VECTOR node.
1152     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1153   }
1154 
1155   // If this is a static alloca, generate it as the frameindex instead of
1156   // computation.
1157   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1158     DenseMap<const AllocaInst*, int>::iterator SI =
1159       FuncInfo.StaticAllocaMap.find(AI);
1160     if (SI != FuncInfo.StaticAllocaMap.end())
1161       return DAG.getFrameIndex(SI->second,
1162                                TLI.getPointerTy(DAG.getDataLayout()));
1163   }
1164 
1165   // If this is an instruction which fast-isel has deferred, select it now.
1166   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1167     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1168     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1169                      Inst->getType());
1170     SDValue Chain = DAG.getEntryNode();
1171     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1172   }
1173 
1174   llvm_unreachable("Can't get register for value!");
1175 }
1176 
1177 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1178   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1179   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1180   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1181   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1182   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1183   if (IsMSVCCXX || IsCoreCLR)
1184     CatchPadMBB->setIsEHFuncletEntry();
1185 
1186   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1187 }
1188 
1189 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1190   // Update machine-CFG edge.
1191   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1192   FuncInfo.MBB->addSuccessor(TargetMBB);
1193 
1194   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1195   bool IsSEH = isAsynchronousEHPersonality(Pers);
1196   if (IsSEH) {
1197     // If this is not a fall-through branch or optimizations are switched off,
1198     // emit the branch.
1199     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1200         TM.getOptLevel() == CodeGenOpt::None)
1201       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1202                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1203     return;
1204   }
1205 
1206   // Figure out the funclet membership for the catchret's successor.
1207   // This will be used by the FuncletLayout pass to determine how to order the
1208   // BB's.
1209   // A 'catchret' returns to the outer scope's color.
1210   Value *ParentPad = I.getCatchSwitchParentPad();
1211   const BasicBlock *SuccessorColor;
1212   if (isa<ConstantTokenNone>(ParentPad))
1213     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1214   else
1215     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1216   assert(SuccessorColor && "No parent funclet for catchret!");
1217   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1218   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1219 
1220   // Create the terminator node.
1221   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1222                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1223                             DAG.getBasicBlock(SuccessorColorMBB));
1224   DAG.setRoot(Ret);
1225 }
1226 
1227 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1228   // Don't emit any special code for the cleanuppad instruction. It just marks
1229   // the start of a funclet.
1230   FuncInfo.MBB->setIsEHFuncletEntry();
1231   FuncInfo.MBB->setIsCleanupFuncletEntry();
1232 }
1233 
1234 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1235 /// many places it could ultimately go. In the IR, we have a single unwind
1236 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1237 /// This function skips over imaginary basic blocks that hold catchswitch
1238 /// instructions, and finds all the "real" machine
1239 /// basic block destinations. As those destinations may not be successors of
1240 /// EHPadBB, here we also calculate the edge probability to those destinations.
1241 /// The passed-in Prob is the edge probability to EHPadBB.
1242 static void findUnwindDestinations(
1243     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1244     BranchProbability Prob,
1245     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1246         &UnwindDests) {
1247   EHPersonality Personality =
1248     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1249   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1250   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1251 
1252   while (EHPadBB) {
1253     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1254     BasicBlock *NewEHPadBB = nullptr;
1255     if (isa<LandingPadInst>(Pad)) {
1256       // Stop on landingpads. They are not funclets.
1257       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1258       break;
1259     } else if (isa<CleanupPadInst>(Pad)) {
1260       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1261       // personalities.
1262       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1263       UnwindDests.back().first->setIsEHFuncletEntry();
1264       break;
1265     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1266       // Add the catchpad handlers to the possible destinations.
1267       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1268         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1269         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1270         if (IsMSVCCXX || IsCoreCLR)
1271           UnwindDests.back().first->setIsEHFuncletEntry();
1272       }
1273       NewEHPadBB = CatchSwitch->getUnwindDest();
1274     } else {
1275       continue;
1276     }
1277 
1278     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1279     if (BPI && NewEHPadBB)
1280       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1281     EHPadBB = NewEHPadBB;
1282   }
1283 }
1284 
1285 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1286   // Update successor info.
1287   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1288   auto UnwindDest = I.getUnwindDest();
1289   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1290   BranchProbability UnwindDestProb =
1291       (BPI && UnwindDest)
1292           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1293           : BranchProbability::getZero();
1294   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1295   for (auto &UnwindDest : UnwindDests) {
1296     UnwindDest.first->setIsEHPad();
1297     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1298   }
1299   FuncInfo.MBB->normalizeSuccProbs();
1300 
1301   // Create the terminator node.
1302   SDValue Ret =
1303       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1304   DAG.setRoot(Ret);
1305 }
1306 
1307 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1308   report_fatal_error("visitCatchSwitch not yet implemented!");
1309 }
1310 
1311 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1312   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1313   auto &DL = DAG.getDataLayout();
1314   SDValue Chain = getControlRoot();
1315   SmallVector<ISD::OutputArg, 8> Outs;
1316   SmallVector<SDValue, 8> OutVals;
1317 
1318   if (!FuncInfo.CanLowerReturn) {
1319     unsigned DemoteReg = FuncInfo.DemoteRegister;
1320     const Function *F = I.getParent()->getParent();
1321 
1322     // Emit a store of the return value through the virtual register.
1323     // Leave Outs empty so that LowerReturn won't try to load return
1324     // registers the usual way.
1325     SmallVector<EVT, 1> PtrValueVTs;
1326     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1327                     PtrValueVTs);
1328 
1329     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1330                                         DemoteReg, PtrValueVTs[0]);
1331     SDValue RetOp = getValue(I.getOperand(0));
1332 
1333     SmallVector<EVT, 4> ValueVTs;
1334     SmallVector<uint64_t, 4> Offsets;
1335     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1336     unsigned NumValues = ValueVTs.size();
1337 
1338     // An aggregate return value cannot wrap around the address space, so
1339     // offsets to its parts don't wrap either.
1340     SDNodeFlags Flags;
1341     Flags.setNoUnsignedWrap(true);
1342 
1343     SmallVector<SDValue, 4> Chains(NumValues);
1344     for (unsigned i = 0; i != NumValues; ++i) {
1345       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1346                                 RetPtr.getValueType(), RetPtr,
1347                                 DAG.getIntPtrConstant(Offsets[i],
1348                                                       getCurSDLoc()),
1349                                 &Flags);
1350       Chains[i] =
1351         DAG.getStore(Chain, getCurSDLoc(),
1352                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1353                      // FIXME: better loc info would be nice.
1354                      Add, MachinePointerInfo(), false, false, 0);
1355     }
1356 
1357     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1358                         MVT::Other, Chains);
1359   } else if (I.getNumOperands() != 0) {
1360     SmallVector<EVT, 4> ValueVTs;
1361     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1362     unsigned NumValues = ValueVTs.size();
1363     if (NumValues) {
1364       SDValue RetOp = getValue(I.getOperand(0));
1365 
1366       const Function *F = I.getParent()->getParent();
1367 
1368       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1369       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1370                                           Attribute::SExt))
1371         ExtendKind = ISD::SIGN_EXTEND;
1372       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1373                                                Attribute::ZExt))
1374         ExtendKind = ISD::ZERO_EXTEND;
1375 
1376       LLVMContext &Context = F->getContext();
1377       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1378                                                       Attribute::InReg);
1379 
1380       for (unsigned j = 0; j != NumValues; ++j) {
1381         EVT VT = ValueVTs[j];
1382 
1383         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1384           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1385 
1386         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1387         MVT PartVT = TLI.getRegisterType(Context, VT);
1388         SmallVector<SDValue, 4> Parts(NumParts);
1389         getCopyToParts(DAG, getCurSDLoc(),
1390                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1391                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1392 
1393         // 'inreg' on function refers to return value
1394         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1395         if (RetInReg)
1396           Flags.setInReg();
1397 
1398         // Propagate extension type if any
1399         if (ExtendKind == ISD::SIGN_EXTEND)
1400           Flags.setSExt();
1401         else if (ExtendKind == ISD::ZERO_EXTEND)
1402           Flags.setZExt();
1403 
1404         for (unsigned i = 0; i < NumParts; ++i) {
1405           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1406                                         VT, /*isfixed=*/true, 0, 0));
1407           OutVals.push_back(Parts[i]);
1408         }
1409       }
1410     }
1411   }
1412 
1413   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1414   CallingConv::ID CallConv =
1415     DAG.getMachineFunction().getFunction()->getCallingConv();
1416   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1417       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1418 
1419   // Verify that the target's LowerReturn behaved as expected.
1420   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1421          "LowerReturn didn't return a valid chain!");
1422 
1423   // Update the DAG with the new chain value resulting from return lowering.
1424   DAG.setRoot(Chain);
1425 }
1426 
1427 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1428 /// created for it, emit nodes to copy the value into the virtual
1429 /// registers.
1430 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1431   // Skip empty types
1432   if (V->getType()->isEmptyTy())
1433     return;
1434 
1435   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1436   if (VMI != FuncInfo.ValueMap.end()) {
1437     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1438     CopyValueToVirtualRegister(V, VMI->second);
1439   }
1440 }
1441 
1442 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1443 /// the current basic block, add it to ValueMap now so that we'll get a
1444 /// CopyTo/FromReg.
1445 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1446   // No need to export constants.
1447   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1448 
1449   // Already exported?
1450   if (FuncInfo.isExportedInst(V)) return;
1451 
1452   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1453   CopyValueToVirtualRegister(V, Reg);
1454 }
1455 
1456 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1457                                                      const BasicBlock *FromBB) {
1458   // The operands of the setcc have to be in this block.  We don't know
1459   // how to export them from some other block.
1460   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1461     // Can export from current BB.
1462     if (VI->getParent() == FromBB)
1463       return true;
1464 
1465     // Is already exported, noop.
1466     return FuncInfo.isExportedInst(V);
1467   }
1468 
1469   // If this is an argument, we can export it if the BB is the entry block or
1470   // if it is already exported.
1471   if (isa<Argument>(V)) {
1472     if (FromBB == &FromBB->getParent()->getEntryBlock())
1473       return true;
1474 
1475     // Otherwise, can only export this if it is already exported.
1476     return FuncInfo.isExportedInst(V);
1477   }
1478 
1479   // Otherwise, constants can always be exported.
1480   return true;
1481 }
1482 
1483 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1484 BranchProbability
1485 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1486                                         const MachineBasicBlock *Dst) const {
1487   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1488   const BasicBlock *SrcBB = Src->getBasicBlock();
1489   const BasicBlock *DstBB = Dst->getBasicBlock();
1490   if (!BPI) {
1491     // If BPI is not available, set the default probability as 1 / N, where N is
1492     // the number of successors.
1493     auto SuccSize = std::max<uint32_t>(
1494         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1495     return BranchProbability(1, SuccSize);
1496   }
1497   return BPI->getEdgeProbability(SrcBB, DstBB);
1498 }
1499 
1500 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1501                                                MachineBasicBlock *Dst,
1502                                                BranchProbability Prob) {
1503   if (!FuncInfo.BPI)
1504     Src->addSuccessorWithoutProb(Dst);
1505   else {
1506     if (Prob.isUnknown())
1507       Prob = getEdgeProbability(Src, Dst);
1508     Src->addSuccessor(Dst, Prob);
1509   }
1510 }
1511 
1512 static bool InBlock(const Value *V, const BasicBlock *BB) {
1513   if (const Instruction *I = dyn_cast<Instruction>(V))
1514     return I->getParent() == BB;
1515   return true;
1516 }
1517 
1518 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1519 /// This function emits a branch and is used at the leaves of an OR or an
1520 /// AND operator tree.
1521 ///
1522 void
1523 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1524                                                   MachineBasicBlock *TBB,
1525                                                   MachineBasicBlock *FBB,
1526                                                   MachineBasicBlock *CurBB,
1527                                                   MachineBasicBlock *SwitchBB,
1528                                                   BranchProbability TProb,
1529                                                   BranchProbability FProb) {
1530   const BasicBlock *BB = CurBB->getBasicBlock();
1531 
1532   // If the leaf of the tree is a comparison, merge the condition into
1533   // the caseblock.
1534   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1535     // The operands of the cmp have to be in this block.  We don't know
1536     // how to export them from some other block.  If this is the first block
1537     // of the sequence, no exporting is needed.
1538     if (CurBB == SwitchBB ||
1539         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1540          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1541       ISD::CondCode Condition;
1542       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1543         Condition = getICmpCondCode(IC->getPredicate());
1544       } else {
1545         const FCmpInst *FC = cast<FCmpInst>(Cond);
1546         Condition = getFCmpCondCode(FC->getPredicate());
1547         if (TM.Options.NoNaNsFPMath)
1548           Condition = getFCmpCodeWithoutNaN(Condition);
1549       }
1550 
1551       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1552                    TBB, FBB, CurBB, TProb, FProb);
1553       SwitchCases.push_back(CB);
1554       return;
1555     }
1556   }
1557 
1558   // Create a CaseBlock record representing this branch.
1559   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1560                nullptr, TBB, FBB, CurBB, TProb, FProb);
1561   SwitchCases.push_back(CB);
1562 }
1563 
1564 /// FindMergedConditions - If Cond is an expression like
1565 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1566                                                MachineBasicBlock *TBB,
1567                                                MachineBasicBlock *FBB,
1568                                                MachineBasicBlock *CurBB,
1569                                                MachineBasicBlock *SwitchBB,
1570                                                Instruction::BinaryOps Opc,
1571                                                BranchProbability TProb,
1572                                                BranchProbability FProb) {
1573   // If this node is not part of the or/and tree, emit it as a branch.
1574   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1575   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1576       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1577       BOp->getParent() != CurBB->getBasicBlock() ||
1578       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1579       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1580     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1581                                  TProb, FProb);
1582     return;
1583   }
1584 
1585   //  Create TmpBB after CurBB.
1586   MachineFunction::iterator BBI(CurBB);
1587   MachineFunction &MF = DAG.getMachineFunction();
1588   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1589   CurBB->getParent()->insert(++BBI, TmpBB);
1590 
1591   if (Opc == Instruction::Or) {
1592     // Codegen X | Y as:
1593     // BB1:
1594     //   jmp_if_X TBB
1595     //   jmp TmpBB
1596     // TmpBB:
1597     //   jmp_if_Y TBB
1598     //   jmp FBB
1599     //
1600 
1601     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1602     // The requirement is that
1603     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1604     //     = TrueProb for original BB.
1605     // Assuming the original probabilities are A and B, one choice is to set
1606     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1607     // A/(1+B) and 2B/(1+B). This choice assumes that
1608     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1609     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1610     // TmpBB, but the math is more complicated.
1611 
1612     auto NewTrueProb = TProb / 2;
1613     auto NewFalseProb = TProb / 2 + FProb;
1614     // Emit the LHS condition.
1615     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1616                          NewTrueProb, NewFalseProb);
1617 
1618     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1619     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1620     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1621     // Emit the RHS condition into TmpBB.
1622     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1623                          Probs[0], Probs[1]);
1624   } else {
1625     assert(Opc == Instruction::And && "Unknown merge op!");
1626     // Codegen X & Y as:
1627     // BB1:
1628     //   jmp_if_X TmpBB
1629     //   jmp FBB
1630     // TmpBB:
1631     //   jmp_if_Y TBB
1632     //   jmp FBB
1633     //
1634     //  This requires creation of TmpBB after CurBB.
1635 
1636     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1637     // The requirement is that
1638     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1639     //     = FalseProb for original BB.
1640     // Assuming the original probabilities are A and B, one choice is to set
1641     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1642     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1643     // TrueProb for BB1 * FalseProb for TmpBB.
1644 
1645     auto NewTrueProb = TProb + FProb / 2;
1646     auto NewFalseProb = FProb / 2;
1647     // Emit the LHS condition.
1648     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1649                          NewTrueProb, NewFalseProb);
1650 
1651     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1652     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1653     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1654     // Emit the RHS condition into TmpBB.
1655     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1656                          Probs[0], Probs[1]);
1657   }
1658 }
1659 
1660 /// If the set of cases should be emitted as a series of branches, return true.
1661 /// If we should emit this as a bunch of and/or'd together conditions, return
1662 /// false.
1663 bool
1664 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1665   if (Cases.size() != 2) return true;
1666 
1667   // If this is two comparisons of the same values or'd or and'd together, they
1668   // will get folded into a single comparison, so don't emit two blocks.
1669   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1670        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1671       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1672        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1673     return false;
1674   }
1675 
1676   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1677   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1678   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1679       Cases[0].CC == Cases[1].CC &&
1680       isa<Constant>(Cases[0].CmpRHS) &&
1681       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1682     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1683       return false;
1684     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1685       return false;
1686   }
1687 
1688   return true;
1689 }
1690 
1691 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1692   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1693 
1694   // Update machine-CFG edges.
1695   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1696 
1697   if (I.isUnconditional()) {
1698     // Update machine-CFG edges.
1699     BrMBB->addSuccessor(Succ0MBB);
1700 
1701     // If this is not a fall-through branch or optimizations are switched off,
1702     // emit the branch.
1703     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1704       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1705                               MVT::Other, getControlRoot(),
1706                               DAG.getBasicBlock(Succ0MBB)));
1707 
1708     return;
1709   }
1710 
1711   // If this condition is one of the special cases we handle, do special stuff
1712   // now.
1713   const Value *CondVal = I.getCondition();
1714   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1715 
1716   // If this is a series of conditions that are or'd or and'd together, emit
1717   // this as a sequence of branches instead of setcc's with and/or operations.
1718   // As long as jumps are not expensive, this should improve performance.
1719   // For example, instead of something like:
1720   //     cmp A, B
1721   //     C = seteq
1722   //     cmp D, E
1723   //     F = setle
1724   //     or C, F
1725   //     jnz foo
1726   // Emit:
1727   //     cmp A, B
1728   //     je foo
1729   //     cmp D, E
1730   //     jle foo
1731   //
1732   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1733     Instruction::BinaryOps Opcode = BOp->getOpcode();
1734     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1735         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1736         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1737       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1738                            Opcode,
1739                            getEdgeProbability(BrMBB, Succ0MBB),
1740                            getEdgeProbability(BrMBB, Succ1MBB));
1741       // If the compares in later blocks need to use values not currently
1742       // exported from this block, export them now.  This block should always
1743       // be the first entry.
1744       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1745 
1746       // Allow some cases to be rejected.
1747       if (ShouldEmitAsBranches(SwitchCases)) {
1748         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1749           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1750           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1751         }
1752 
1753         // Emit the branch for this block.
1754         visitSwitchCase(SwitchCases[0], BrMBB);
1755         SwitchCases.erase(SwitchCases.begin());
1756         return;
1757       }
1758 
1759       // Okay, we decided not to do this, remove any inserted MBB's and clear
1760       // SwitchCases.
1761       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1762         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1763 
1764       SwitchCases.clear();
1765     }
1766   }
1767 
1768   // Create a CaseBlock record representing this branch.
1769   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1770                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1771 
1772   // Use visitSwitchCase to actually insert the fast branch sequence for this
1773   // cond branch.
1774   visitSwitchCase(CB, BrMBB);
1775 }
1776 
1777 /// visitSwitchCase - Emits the necessary code to represent a single node in
1778 /// the binary search tree resulting from lowering a switch instruction.
1779 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1780                                           MachineBasicBlock *SwitchBB) {
1781   SDValue Cond;
1782   SDValue CondLHS = getValue(CB.CmpLHS);
1783   SDLoc dl = getCurSDLoc();
1784 
1785   // Build the setcc now.
1786   if (!CB.CmpMHS) {
1787     // Fold "(X == true)" to X and "(X == false)" to !X to
1788     // handle common cases produced by branch lowering.
1789     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1790         CB.CC == ISD::SETEQ)
1791       Cond = CondLHS;
1792     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1793              CB.CC == ISD::SETEQ) {
1794       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1795       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1796     } else
1797       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1798   } else {
1799     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1800 
1801     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1802     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1803 
1804     SDValue CmpOp = getValue(CB.CmpMHS);
1805     EVT VT = CmpOp.getValueType();
1806 
1807     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1808       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1809                           ISD::SETLE);
1810     } else {
1811       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1812                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1813       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1814                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1815     }
1816   }
1817 
1818   // Update successor info
1819   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1820   // TrueBB and FalseBB are always different unless the incoming IR is
1821   // degenerate. This only happens when running llc on weird IR.
1822   if (CB.TrueBB != CB.FalseBB)
1823     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1824   SwitchBB->normalizeSuccProbs();
1825 
1826   // If the lhs block is the next block, invert the condition so that we can
1827   // fall through to the lhs instead of the rhs block.
1828   if (CB.TrueBB == NextBlock(SwitchBB)) {
1829     std::swap(CB.TrueBB, CB.FalseBB);
1830     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1831     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1832   }
1833 
1834   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1835                                MVT::Other, getControlRoot(), Cond,
1836                                DAG.getBasicBlock(CB.TrueBB));
1837 
1838   // Insert the false branch. Do this even if it's a fall through branch,
1839   // this makes it easier to do DAG optimizations which require inverting
1840   // the branch condition.
1841   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1842                        DAG.getBasicBlock(CB.FalseBB));
1843 
1844   DAG.setRoot(BrCond);
1845 }
1846 
1847 /// visitJumpTable - Emit JumpTable node in the current MBB
1848 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1849   // Emit the code for the jump table
1850   assert(JT.Reg != -1U && "Should lower JT Header first!");
1851   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1852   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1853                                      JT.Reg, PTy);
1854   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1855   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1856                                     MVT::Other, Index.getValue(1),
1857                                     Table, Index);
1858   DAG.setRoot(BrJumpTable);
1859 }
1860 
1861 /// visitJumpTableHeader - This function emits necessary code to produce index
1862 /// in the JumpTable from switch case.
1863 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1864                                                JumpTableHeader &JTH,
1865                                                MachineBasicBlock *SwitchBB) {
1866   SDLoc dl = getCurSDLoc();
1867 
1868   // Subtract the lowest switch case value from the value being switched on and
1869   // conditional branch to default mbb if the result is greater than the
1870   // difference between smallest and largest cases.
1871   SDValue SwitchOp = getValue(JTH.SValue);
1872   EVT VT = SwitchOp.getValueType();
1873   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1874                             DAG.getConstant(JTH.First, dl, VT));
1875 
1876   // The SDNode we just created, which holds the value being switched on minus
1877   // the smallest case value, needs to be copied to a virtual register so it
1878   // can be used as an index into the jump table in a subsequent basic block.
1879   // This value may be smaller or larger than the target's pointer type, and
1880   // therefore require extension or truncating.
1881   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1882   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1883 
1884   unsigned JumpTableReg =
1885       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1886   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1887                                     JumpTableReg, SwitchOp);
1888   JT.Reg = JumpTableReg;
1889 
1890   // Emit the range check for the jump table, and branch to the default block
1891   // for the switch statement if the value being switched on exceeds the largest
1892   // case in the switch.
1893   SDValue CMP = DAG.getSetCC(
1894       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1895                                  Sub.getValueType()),
1896       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1897 
1898   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1899                                MVT::Other, CopyTo, CMP,
1900                                DAG.getBasicBlock(JT.Default));
1901 
1902   // Avoid emitting unnecessary branches to the next block.
1903   if (JT.MBB != NextBlock(SwitchBB))
1904     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1905                          DAG.getBasicBlock(JT.MBB));
1906 
1907   DAG.setRoot(BrCond);
1908 }
1909 
1910 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1911 /// tail spliced into a stack protector check success bb.
1912 ///
1913 /// For a high level explanation of how this fits into the stack protector
1914 /// generation see the comment on the declaration of class
1915 /// StackProtectorDescriptor.
1916 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1917                                                   MachineBasicBlock *ParentBB) {
1918 
1919   // First create the loads to the guard/stack slot for the comparison.
1920   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1921   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1922 
1923   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1924   int FI = MFI->getStackProtectorIndex();
1925 
1926   const Value *IRGuard = SPD.getGuard();
1927   SDValue GuardPtr = getValue(IRGuard);
1928   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1929 
1930   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1931 
1932   SDValue Guard;
1933   SDLoc dl = getCurSDLoc();
1934 
1935   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1936   // guard value from the virtual register holding the value. Otherwise, emit a
1937   // volatile load to retrieve the stack guard value.
1938   unsigned GuardReg = SPD.getGuardReg();
1939 
1940   if (GuardReg && TLI.useLoadStackGuardNode())
1941     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1942                                PtrTy);
1943   else
1944     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1945                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1946                         true, false, false, Align);
1947 
1948   SDValue StackSlot = DAG.getLoad(
1949       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1950       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1951       false, false, Align);
1952 
1953   // Perform the comparison via a subtract/getsetcc.
1954   EVT VT = Guard.getValueType();
1955   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1956 
1957   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1958                                                         *DAG.getContext(),
1959                                                         Sub.getValueType()),
1960                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1961 
1962   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1963   // branch to failure MBB.
1964   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1965                                MVT::Other, StackSlot.getOperand(0),
1966                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1967   // Otherwise branch to success MBB.
1968   SDValue Br = DAG.getNode(ISD::BR, dl,
1969                            MVT::Other, BrCond,
1970                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1971 
1972   DAG.setRoot(Br);
1973 }
1974 
1975 /// Codegen the failure basic block for a stack protector check.
1976 ///
1977 /// A failure stack protector machine basic block consists simply of a call to
1978 /// __stack_chk_fail().
1979 ///
1980 /// For a high level explanation of how this fits into the stack protector
1981 /// generation see the comment on the declaration of class
1982 /// StackProtectorDescriptor.
1983 void
1984 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1986   SDValue Chain =
1987       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1988                       None, false, getCurSDLoc(), false, false).second;
1989   DAG.setRoot(Chain);
1990 }
1991 
1992 /// visitBitTestHeader - This function emits necessary code to produce value
1993 /// suitable for "bit tests"
1994 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1995                                              MachineBasicBlock *SwitchBB) {
1996   SDLoc dl = getCurSDLoc();
1997 
1998   // Subtract the minimum value
1999   SDValue SwitchOp = getValue(B.SValue);
2000   EVT VT = SwitchOp.getValueType();
2001   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2002                             DAG.getConstant(B.First, dl, VT));
2003 
2004   // Check range
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   SDValue RangeCmp = DAG.getSetCC(
2007       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2008                                  Sub.getValueType()),
2009       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2010 
2011   // Determine the type of the test operands.
2012   bool UsePtrType = false;
2013   if (!TLI.isTypeLegal(VT))
2014     UsePtrType = true;
2015   else {
2016     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2017       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2018         // Switch table case range are encoded into series of masks.
2019         // Just use pointer type, it's guaranteed to fit.
2020         UsePtrType = true;
2021         break;
2022       }
2023   }
2024   if (UsePtrType) {
2025     VT = TLI.getPointerTy(DAG.getDataLayout());
2026     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2027   }
2028 
2029   B.RegVT = VT.getSimpleVT();
2030   B.Reg = FuncInfo.CreateReg(B.RegVT);
2031   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2032 
2033   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2034 
2035   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2036   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2037   SwitchBB->normalizeSuccProbs();
2038 
2039   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2040                                 MVT::Other, CopyTo, RangeCmp,
2041                                 DAG.getBasicBlock(B.Default));
2042 
2043   // Avoid emitting unnecessary branches to the next block.
2044   if (MBB != NextBlock(SwitchBB))
2045     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2046                           DAG.getBasicBlock(MBB));
2047 
2048   DAG.setRoot(BrRange);
2049 }
2050 
2051 /// visitBitTestCase - this function produces one "bit test"
2052 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2053                                            MachineBasicBlock* NextMBB,
2054                                            BranchProbability BranchProbToNext,
2055                                            unsigned Reg,
2056                                            BitTestCase &B,
2057                                            MachineBasicBlock *SwitchBB) {
2058   SDLoc dl = getCurSDLoc();
2059   MVT VT = BB.RegVT;
2060   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2061   SDValue Cmp;
2062   unsigned PopCount = countPopulation(B.Mask);
2063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2064   if (PopCount == 1) {
2065     // Testing for a single bit; just compare the shift count with what it
2066     // would need to be to shift a 1 bit in that position.
2067     Cmp = DAG.getSetCC(
2068         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2069         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2070         ISD::SETEQ);
2071   } else if (PopCount == BB.Range) {
2072     // There is only one zero bit in the range, test for it directly.
2073     Cmp = DAG.getSetCC(
2074         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2075         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2076         ISD::SETNE);
2077   } else {
2078     // Make desired shift
2079     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2080                                     DAG.getConstant(1, dl, VT), ShiftOp);
2081 
2082     // Emit bit tests and jumps
2083     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2084                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2085     Cmp = DAG.getSetCC(
2086         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2087         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2088   }
2089 
2090   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2091   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2092   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2093   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2094   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2095   // one as they are relative probabilities (and thus work more like weights),
2096   // and hence we need to normalize them to let the sum of them become one.
2097   SwitchBB->normalizeSuccProbs();
2098 
2099   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2100                               MVT::Other, getControlRoot(),
2101                               Cmp, DAG.getBasicBlock(B.TargetBB));
2102 
2103   // Avoid emitting unnecessary branches to the next block.
2104   if (NextMBB != NextBlock(SwitchBB))
2105     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2106                         DAG.getBasicBlock(NextMBB));
2107 
2108   DAG.setRoot(BrAnd);
2109 }
2110 
2111 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2112   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2113 
2114   // Retrieve successors. Look through artificial IR level blocks like
2115   // catchswitch for successors.
2116   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2117   const BasicBlock *EHPadBB = I.getSuccessor(1);
2118 
2119   const Value *Callee(I.getCalledValue());
2120   const Function *Fn = dyn_cast<Function>(Callee);
2121   if (isa<InlineAsm>(Callee))
2122     visitInlineAsm(&I);
2123   else if (Fn && Fn->isIntrinsic()) {
2124     switch (Fn->getIntrinsicID()) {
2125     default:
2126       llvm_unreachable("Cannot invoke this intrinsic");
2127     case Intrinsic::donothing:
2128       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2129       break;
2130     case Intrinsic::experimental_patchpoint_void:
2131     case Intrinsic::experimental_patchpoint_i64:
2132       visitPatchpoint(&I, EHPadBB);
2133       break;
2134     case Intrinsic::experimental_gc_statepoint:
2135       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2136       break;
2137     }
2138   } else
2139     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2140 
2141   // If the value of the invoke is used outside of its defining block, make it
2142   // available as a virtual register.
2143   // We already took care of the exported value for the statepoint instruction
2144   // during call to the LowerStatepoint.
2145   if (!isStatepoint(I)) {
2146     CopyToExportRegsIfNeeded(&I);
2147   }
2148 
2149   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2150   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2151   BranchProbability EHPadBBProb =
2152       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2153           : BranchProbability::getZero();
2154   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2155 
2156   // Update successor info.
2157   addSuccessorWithProb(InvokeMBB, Return);
2158   for (auto &UnwindDest : UnwindDests) {
2159     UnwindDest.first->setIsEHPad();
2160     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2161   }
2162   InvokeMBB->normalizeSuccProbs();
2163 
2164   // Drop into normal successor.
2165   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2166                           MVT::Other, getControlRoot(),
2167                           DAG.getBasicBlock(Return)));
2168 }
2169 
2170 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2171   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2172 }
2173 
2174 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2175   assert(FuncInfo.MBB->isEHPad() &&
2176          "Call to landingpad not in landing pad!");
2177 
2178   MachineBasicBlock *MBB = FuncInfo.MBB;
2179   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2180   AddLandingPadInfo(LP, MMI, MBB);
2181 
2182   // If there aren't registers to copy the values into (e.g., during SjLj
2183   // exceptions), then don't bother to create these DAG nodes.
2184   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2185   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2186   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2187       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2188     return;
2189 
2190   // If landingpad's return type is token type, we don't create DAG nodes
2191   // for its exception pointer and selector value. The extraction of exception
2192   // pointer or selector value from token type landingpads is not currently
2193   // supported.
2194   if (LP.getType()->isTokenTy())
2195     return;
2196 
2197   SmallVector<EVT, 2> ValueVTs;
2198   SDLoc dl = getCurSDLoc();
2199   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2200   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2201 
2202   // Get the two live-in registers as SDValues. The physregs have already been
2203   // copied into virtual registers.
2204   SDValue Ops[2];
2205   if (FuncInfo.ExceptionPointerVirtReg) {
2206     Ops[0] = DAG.getZExtOrTrunc(
2207         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2208                            FuncInfo.ExceptionPointerVirtReg,
2209                            TLI.getPointerTy(DAG.getDataLayout())),
2210         dl, ValueVTs[0]);
2211   } else {
2212     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2213   }
2214   Ops[1] = DAG.getZExtOrTrunc(
2215       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2216                          FuncInfo.ExceptionSelectorVirtReg,
2217                          TLI.getPointerTy(DAG.getDataLayout())),
2218       dl, ValueVTs[1]);
2219 
2220   // Merge into one.
2221   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2222                             DAG.getVTList(ValueVTs), Ops);
2223   setValue(&LP, Res);
2224 }
2225 
2226 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2227 #ifndef NDEBUG
2228   for (const CaseCluster &CC : Clusters)
2229     assert(CC.Low == CC.High && "Input clusters must be single-case");
2230 #endif
2231 
2232   std::sort(Clusters.begin(), Clusters.end(),
2233             [](const CaseCluster &a, const CaseCluster &b) {
2234     return a.Low->getValue().slt(b.Low->getValue());
2235   });
2236 
2237   // Merge adjacent clusters with the same destination.
2238   const unsigned N = Clusters.size();
2239   unsigned DstIndex = 0;
2240   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2241     CaseCluster &CC = Clusters[SrcIndex];
2242     const ConstantInt *CaseVal = CC.Low;
2243     MachineBasicBlock *Succ = CC.MBB;
2244 
2245     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2246         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2247       // If this case has the same successor and is a neighbour, merge it into
2248       // the previous cluster.
2249       Clusters[DstIndex - 1].High = CaseVal;
2250       Clusters[DstIndex - 1].Prob += CC.Prob;
2251     } else {
2252       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2253                    sizeof(Clusters[SrcIndex]));
2254     }
2255   }
2256   Clusters.resize(DstIndex);
2257 }
2258 
2259 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2260                                            MachineBasicBlock *Last) {
2261   // Update JTCases.
2262   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2263     if (JTCases[i].first.HeaderBB == First)
2264       JTCases[i].first.HeaderBB = Last;
2265 
2266   // Update BitTestCases.
2267   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2268     if (BitTestCases[i].Parent == First)
2269       BitTestCases[i].Parent = Last;
2270 }
2271 
2272 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2273   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2274 
2275   // Update machine-CFG edges with unique successors.
2276   SmallSet<BasicBlock*, 32> Done;
2277   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2278     BasicBlock *BB = I.getSuccessor(i);
2279     bool Inserted = Done.insert(BB).second;
2280     if (!Inserted)
2281         continue;
2282 
2283     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2284     addSuccessorWithProb(IndirectBrMBB, Succ);
2285   }
2286   IndirectBrMBB->normalizeSuccProbs();
2287 
2288   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2289                           MVT::Other, getControlRoot(),
2290                           getValue(I.getAddress())));
2291 }
2292 
2293 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2294   if (DAG.getTarget().Options.TrapUnreachable)
2295     DAG.setRoot(
2296         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2297 }
2298 
2299 void SelectionDAGBuilder::visitFSub(const User &I) {
2300   // -0.0 - X --> fneg
2301   Type *Ty = I.getType();
2302   if (isa<Constant>(I.getOperand(0)) &&
2303       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2304     SDValue Op2 = getValue(I.getOperand(1));
2305     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2306                              Op2.getValueType(), Op2));
2307     return;
2308   }
2309 
2310   visitBinary(I, ISD::FSUB);
2311 }
2312 
2313 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2314   SDValue Op1 = getValue(I.getOperand(0));
2315   SDValue Op2 = getValue(I.getOperand(1));
2316 
2317   bool nuw = false;
2318   bool nsw = false;
2319   bool exact = false;
2320   FastMathFlags FMF;
2321 
2322   if (const OverflowingBinaryOperator *OFBinOp =
2323           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2324     nuw = OFBinOp->hasNoUnsignedWrap();
2325     nsw = OFBinOp->hasNoSignedWrap();
2326   }
2327   if (const PossiblyExactOperator *ExactOp =
2328           dyn_cast<const PossiblyExactOperator>(&I))
2329     exact = ExactOp->isExact();
2330   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2331     FMF = FPOp->getFastMathFlags();
2332 
2333   SDNodeFlags Flags;
2334   Flags.setExact(exact);
2335   Flags.setNoSignedWrap(nsw);
2336   Flags.setNoUnsignedWrap(nuw);
2337   if (EnableFMFInDAG) {
2338     Flags.setAllowReciprocal(FMF.allowReciprocal());
2339     Flags.setNoInfs(FMF.noInfs());
2340     Flags.setNoNaNs(FMF.noNaNs());
2341     Flags.setNoSignedZeros(FMF.noSignedZeros());
2342     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2343   }
2344   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2345                                      Op1, Op2, &Flags);
2346   setValue(&I, BinNodeValue);
2347 }
2348 
2349 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2350   SDValue Op1 = getValue(I.getOperand(0));
2351   SDValue Op2 = getValue(I.getOperand(1));
2352 
2353   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2354       Op2.getValueType(), DAG.getDataLayout());
2355 
2356   // Coerce the shift amount to the right type if we can.
2357   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2358     unsigned ShiftSize = ShiftTy.getSizeInBits();
2359     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2360     SDLoc DL = getCurSDLoc();
2361 
2362     // If the operand is smaller than the shift count type, promote it.
2363     if (ShiftSize > Op2Size)
2364       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2365 
2366     // If the operand is larger than the shift count type but the shift
2367     // count type has enough bits to represent any shift value, truncate
2368     // it now. This is a common case and it exposes the truncate to
2369     // optimization early.
2370     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2371       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2372     // Otherwise we'll need to temporarily settle for some other convenient
2373     // type.  Type legalization will make adjustments once the shiftee is split.
2374     else
2375       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2376   }
2377 
2378   bool nuw = false;
2379   bool nsw = false;
2380   bool exact = false;
2381 
2382   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2383 
2384     if (const OverflowingBinaryOperator *OFBinOp =
2385             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2386       nuw = OFBinOp->hasNoUnsignedWrap();
2387       nsw = OFBinOp->hasNoSignedWrap();
2388     }
2389     if (const PossiblyExactOperator *ExactOp =
2390             dyn_cast<const PossiblyExactOperator>(&I))
2391       exact = ExactOp->isExact();
2392   }
2393   SDNodeFlags Flags;
2394   Flags.setExact(exact);
2395   Flags.setNoSignedWrap(nsw);
2396   Flags.setNoUnsignedWrap(nuw);
2397   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2398                             &Flags);
2399   setValue(&I, Res);
2400 }
2401 
2402 void SelectionDAGBuilder::visitSDiv(const User &I) {
2403   SDValue Op1 = getValue(I.getOperand(0));
2404   SDValue Op2 = getValue(I.getOperand(1));
2405 
2406   SDNodeFlags Flags;
2407   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2408                  cast<PossiblyExactOperator>(&I)->isExact());
2409   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2410                            Op2, &Flags));
2411 }
2412 
2413 void SelectionDAGBuilder::visitICmp(const User &I) {
2414   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2415   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2416     predicate = IC->getPredicate();
2417   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2418     predicate = ICmpInst::Predicate(IC->getPredicate());
2419   SDValue Op1 = getValue(I.getOperand(0));
2420   SDValue Op2 = getValue(I.getOperand(1));
2421   ISD::CondCode Opcode = getICmpCondCode(predicate);
2422 
2423   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2424                                                         I.getType());
2425   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2426 }
2427 
2428 void SelectionDAGBuilder::visitFCmp(const User &I) {
2429   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2430   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2431     predicate = FC->getPredicate();
2432   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2433     predicate = FCmpInst::Predicate(FC->getPredicate());
2434   SDValue Op1 = getValue(I.getOperand(0));
2435   SDValue Op2 = getValue(I.getOperand(1));
2436   ISD::CondCode Condition = getFCmpCondCode(predicate);
2437 
2438   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2439   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2440   // further optimization, but currently FMF is only applicable to binary nodes.
2441   if (TM.Options.NoNaNsFPMath)
2442     Condition = getFCmpCodeWithoutNaN(Condition);
2443   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2444                                                         I.getType());
2445   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2446 }
2447 
2448 void SelectionDAGBuilder::visitSelect(const User &I) {
2449   SmallVector<EVT, 4> ValueVTs;
2450   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2451                   ValueVTs);
2452   unsigned NumValues = ValueVTs.size();
2453   if (NumValues == 0) return;
2454 
2455   SmallVector<SDValue, 4> Values(NumValues);
2456   SDValue Cond     = getValue(I.getOperand(0));
2457   SDValue LHSVal   = getValue(I.getOperand(1));
2458   SDValue RHSVal   = getValue(I.getOperand(2));
2459   auto BaseOps = {Cond};
2460   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2461     ISD::VSELECT : ISD::SELECT;
2462 
2463   // Min/max matching is only viable if all output VTs are the same.
2464   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2465     EVT VT = ValueVTs[0];
2466     LLVMContext &Ctx = *DAG.getContext();
2467     auto &TLI = DAG.getTargetLoweringInfo();
2468 
2469     // We care about the legality of the operation after it has been type
2470     // legalized.
2471     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2472            VT != TLI.getTypeToTransformTo(Ctx, VT))
2473       VT = TLI.getTypeToTransformTo(Ctx, VT);
2474 
2475     // If the vselect is legal, assume we want to leave this as a vector setcc +
2476     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2477     // min/max is legal on the scalar type.
2478     bool UseScalarMinMax = VT.isVector() &&
2479       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2480 
2481     Value *LHS, *RHS;
2482     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2483     ISD::NodeType Opc = ISD::DELETED_NODE;
2484     switch (SPR.Flavor) {
2485     case SPF_UMAX:    Opc = ISD::UMAX; break;
2486     case SPF_UMIN:    Opc = ISD::UMIN; break;
2487     case SPF_SMAX:    Opc = ISD::SMAX; break;
2488     case SPF_SMIN:    Opc = ISD::SMIN; break;
2489     case SPF_FMINNUM:
2490       switch (SPR.NaNBehavior) {
2491       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2492       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2493       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2494       case SPNB_RETURNS_ANY: {
2495         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2496           Opc = ISD::FMINNUM;
2497         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2498           Opc = ISD::FMINNAN;
2499         else if (UseScalarMinMax)
2500           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2501             ISD::FMINNUM : ISD::FMINNAN;
2502         break;
2503       }
2504       }
2505       break;
2506     case SPF_FMAXNUM:
2507       switch (SPR.NaNBehavior) {
2508       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2509       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2510       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2511       case SPNB_RETURNS_ANY:
2512 
2513         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2514           Opc = ISD::FMAXNUM;
2515         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2516           Opc = ISD::FMAXNAN;
2517         else if (UseScalarMinMax)
2518           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2519             ISD::FMAXNUM : ISD::FMAXNAN;
2520         break;
2521       }
2522       break;
2523     default: break;
2524     }
2525 
2526     if (Opc != ISD::DELETED_NODE &&
2527         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2528          (UseScalarMinMax &&
2529           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2530         // If the underlying comparison instruction is used by any other
2531         // instruction, the consumed instructions won't be destroyed, so it is
2532         // not profitable to convert to a min/max.
2533         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2534       OpCode = Opc;
2535       LHSVal = getValue(LHS);
2536       RHSVal = getValue(RHS);
2537       BaseOps = {};
2538     }
2539   }
2540 
2541   for (unsigned i = 0; i != NumValues; ++i) {
2542     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2543     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2544     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2545     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2546                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2547                             Ops);
2548   }
2549 
2550   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2551                            DAG.getVTList(ValueVTs), Values));
2552 }
2553 
2554 void SelectionDAGBuilder::visitTrunc(const User &I) {
2555   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2556   SDValue N = getValue(I.getOperand(0));
2557   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2558                                                         I.getType());
2559   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2560 }
2561 
2562 void SelectionDAGBuilder::visitZExt(const User &I) {
2563   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2564   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2565   SDValue N = getValue(I.getOperand(0));
2566   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2567                                                         I.getType());
2568   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2569 }
2570 
2571 void SelectionDAGBuilder::visitSExt(const User &I) {
2572   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2573   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2574   SDValue N = getValue(I.getOperand(0));
2575   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2576                                                         I.getType());
2577   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2578 }
2579 
2580 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2581   // FPTrunc is never a no-op cast, no need to check
2582   SDValue N = getValue(I.getOperand(0));
2583   SDLoc dl = getCurSDLoc();
2584   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2585   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2586   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2587                            DAG.getTargetConstant(
2588                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2589 }
2590 
2591 void SelectionDAGBuilder::visitFPExt(const User &I) {
2592   // FPExt is never a no-op cast, no need to check
2593   SDValue N = getValue(I.getOperand(0));
2594   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2595                                                         I.getType());
2596   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2597 }
2598 
2599 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2600   // FPToUI is never a no-op cast, no need to check
2601   SDValue N = getValue(I.getOperand(0));
2602   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2603                                                         I.getType());
2604   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2605 }
2606 
2607 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2608   // FPToSI is never a no-op cast, no need to check
2609   SDValue N = getValue(I.getOperand(0));
2610   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2611                                                         I.getType());
2612   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2613 }
2614 
2615 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2616   // UIToFP is never a no-op cast, no need to check
2617   SDValue N = getValue(I.getOperand(0));
2618   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2619                                                         I.getType());
2620   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2621 }
2622 
2623 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2624   // SIToFP is never a no-op cast, no need to check
2625   SDValue N = getValue(I.getOperand(0));
2626   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2627                                                         I.getType());
2628   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2629 }
2630 
2631 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2632   // What to do depends on the size of the integer and the size of the pointer.
2633   // We can either truncate, zero extend, or no-op, accordingly.
2634   SDValue N = getValue(I.getOperand(0));
2635   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2636                                                         I.getType());
2637   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2638 }
2639 
2640 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2641   // What to do depends on the size of the integer and the size of the pointer.
2642   // We can either truncate, zero extend, or no-op, accordingly.
2643   SDValue N = getValue(I.getOperand(0));
2644   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2645                                                         I.getType());
2646   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2647 }
2648 
2649 void SelectionDAGBuilder::visitBitCast(const User &I) {
2650   SDValue N = getValue(I.getOperand(0));
2651   SDLoc dl = getCurSDLoc();
2652   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2653                                                         I.getType());
2654 
2655   // BitCast assures us that source and destination are the same size so this is
2656   // either a BITCAST or a no-op.
2657   if (DestVT != N.getValueType())
2658     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2659                              DestVT, N)); // convert types.
2660   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2661   // might fold any kind of constant expression to an integer constant and that
2662   // is not what we are looking for. Only regcognize a bitcast of a genuine
2663   // constant integer as an opaque constant.
2664   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2665     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2666                                  /*isOpaque*/true));
2667   else
2668     setValue(&I, N);            // noop cast.
2669 }
2670 
2671 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2672   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2673   const Value *SV = I.getOperand(0);
2674   SDValue N = getValue(SV);
2675   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2676 
2677   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2678   unsigned DestAS = I.getType()->getPointerAddressSpace();
2679 
2680   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2681     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2682 
2683   setValue(&I, N);
2684 }
2685 
2686 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2687   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2688   SDValue InVec = getValue(I.getOperand(0));
2689   SDValue InVal = getValue(I.getOperand(1));
2690   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2691                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2692   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2693                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2694                            InVec, InVal, InIdx));
2695 }
2696 
2697 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2699   SDValue InVec = getValue(I.getOperand(0));
2700   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2701                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2702   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2703                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2704                            InVec, InIdx));
2705 }
2706 
2707 // Utility for visitShuffleVector - Return true if every element in Mask,
2708 // beginning from position Pos and ending in Pos+Size, falls within the
2709 // specified sequential range [L, L+Pos). or is undef.
2710 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2711                                 unsigned Pos, unsigned Size, int Low) {
2712   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2713     if (Mask[i] >= 0 && Mask[i] != Low)
2714       return false;
2715   return true;
2716 }
2717 
2718 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2719   SDValue Src1 = getValue(I.getOperand(0));
2720   SDValue Src2 = getValue(I.getOperand(1));
2721 
2722   SmallVector<int, 8> Mask;
2723   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2724   unsigned MaskNumElts = Mask.size();
2725 
2726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2727   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2728   EVT SrcVT = Src1.getValueType();
2729   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2730 
2731   if (SrcNumElts == MaskNumElts) {
2732     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2733                                       &Mask[0]));
2734     return;
2735   }
2736 
2737   // Normalize the shuffle vector since mask and vector length don't match.
2738   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2739     // Mask is longer than the source vectors and is a multiple of the source
2740     // vectors.  We can use concatenate vector to make the mask and vectors
2741     // lengths match.
2742     if (SrcNumElts*2 == MaskNumElts) {
2743       // First check for Src1 in low and Src2 in high
2744       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2745           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2746         // The shuffle is concatenating two vectors together.
2747         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2748                                  VT, Src1, Src2));
2749         return;
2750       }
2751       // Then check for Src2 in low and Src1 in high
2752       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2753           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2754         // The shuffle is concatenating two vectors together.
2755         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2756                                  VT, Src2, Src1));
2757         return;
2758       }
2759     }
2760 
2761     // Pad both vectors with undefs to make them the same length as the mask.
2762     unsigned NumConcat = MaskNumElts / SrcNumElts;
2763     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2764     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2765     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2766 
2767     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2768     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2769     MOps1[0] = Src1;
2770     MOps2[0] = Src2;
2771 
2772     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2773                                                   getCurSDLoc(), VT, MOps1);
2774     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2775                                                   getCurSDLoc(), VT, MOps2);
2776 
2777     // Readjust mask for new input vector length.
2778     SmallVector<int, 8> MappedOps;
2779     for (unsigned i = 0; i != MaskNumElts; ++i) {
2780       int Idx = Mask[i];
2781       if (Idx >= (int)SrcNumElts)
2782         Idx -= SrcNumElts - MaskNumElts;
2783       MappedOps.push_back(Idx);
2784     }
2785 
2786     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2787                                       &MappedOps[0]));
2788     return;
2789   }
2790 
2791   if (SrcNumElts > MaskNumElts) {
2792     // Analyze the access pattern of the vector to see if we can extract
2793     // two subvectors and do the shuffle. The analysis is done by calculating
2794     // the range of elements the mask access on both vectors.
2795     int MinRange[2] = { static_cast<int>(SrcNumElts),
2796                         static_cast<int>(SrcNumElts)};
2797     int MaxRange[2] = {-1, -1};
2798 
2799     for (unsigned i = 0; i != MaskNumElts; ++i) {
2800       int Idx = Mask[i];
2801       unsigned Input = 0;
2802       if (Idx < 0)
2803         continue;
2804 
2805       if (Idx >= (int)SrcNumElts) {
2806         Input = 1;
2807         Idx -= SrcNumElts;
2808       }
2809       if (Idx > MaxRange[Input])
2810         MaxRange[Input] = Idx;
2811       if (Idx < MinRange[Input])
2812         MinRange[Input] = Idx;
2813     }
2814 
2815     // Check if the access is smaller than the vector size and can we find
2816     // a reasonable extract index.
2817     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2818                                    // Extract.
2819     int StartIdx[2];  // StartIdx to extract from
2820     for (unsigned Input = 0; Input < 2; ++Input) {
2821       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2822         RangeUse[Input] = 0; // Unused
2823         StartIdx[Input] = 0;
2824         continue;
2825       }
2826 
2827       // Find a good start index that is a multiple of the mask length. Then
2828       // see if the rest of the elements are in range.
2829       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2830       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2831           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2832         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2833     }
2834 
2835     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2836       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2837       return;
2838     }
2839     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2840       // Extract appropriate subvector and generate a vector shuffle
2841       for (unsigned Input = 0; Input < 2; ++Input) {
2842         SDValue &Src = Input == 0 ? Src1 : Src2;
2843         if (RangeUse[Input] == 0)
2844           Src = DAG.getUNDEF(VT);
2845         else {
2846           SDLoc dl = getCurSDLoc();
2847           Src = DAG.getNode(
2848               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2849               DAG.getConstant(StartIdx[Input], dl,
2850                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2851         }
2852       }
2853 
2854       // Calculate new mask.
2855       SmallVector<int, 8> MappedOps;
2856       for (unsigned i = 0; i != MaskNumElts; ++i) {
2857         int Idx = Mask[i];
2858         if (Idx >= 0) {
2859           if (Idx < (int)SrcNumElts)
2860             Idx -= StartIdx[0];
2861           else
2862             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2863         }
2864         MappedOps.push_back(Idx);
2865       }
2866 
2867       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2868                                         &MappedOps[0]));
2869       return;
2870     }
2871   }
2872 
2873   // We can't use either concat vectors or extract subvectors so fall back to
2874   // replacing the shuffle with extract and build vector.
2875   // to insert and build vector.
2876   EVT EltVT = VT.getVectorElementType();
2877   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2878   SDLoc dl = getCurSDLoc();
2879   SmallVector<SDValue,8> Ops;
2880   for (unsigned i = 0; i != MaskNumElts; ++i) {
2881     int Idx = Mask[i];
2882     SDValue Res;
2883 
2884     if (Idx < 0) {
2885       Res = DAG.getUNDEF(EltVT);
2886     } else {
2887       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2888       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2889 
2890       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2891                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2892     }
2893 
2894     Ops.push_back(Res);
2895   }
2896 
2897   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2898 }
2899 
2900 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2901   const Value *Op0 = I.getOperand(0);
2902   const Value *Op1 = I.getOperand(1);
2903   Type *AggTy = I.getType();
2904   Type *ValTy = Op1->getType();
2905   bool IntoUndef = isa<UndefValue>(Op0);
2906   bool FromUndef = isa<UndefValue>(Op1);
2907 
2908   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2909 
2910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2911   SmallVector<EVT, 4> AggValueVTs;
2912   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2913   SmallVector<EVT, 4> ValValueVTs;
2914   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2915 
2916   unsigned NumAggValues = AggValueVTs.size();
2917   unsigned NumValValues = ValValueVTs.size();
2918   SmallVector<SDValue, 4> Values(NumAggValues);
2919 
2920   // Ignore an insertvalue that produces an empty object
2921   if (!NumAggValues) {
2922     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2923     return;
2924   }
2925 
2926   SDValue Agg = getValue(Op0);
2927   unsigned i = 0;
2928   // Copy the beginning value(s) from the original aggregate.
2929   for (; i != LinearIndex; ++i)
2930     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2931                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2932   // Copy values from the inserted value(s).
2933   if (NumValValues) {
2934     SDValue Val = getValue(Op1);
2935     for (; i != LinearIndex + NumValValues; ++i)
2936       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2937                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2938   }
2939   // Copy remaining value(s) from the original aggregate.
2940   for (; i != NumAggValues; ++i)
2941     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2942                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2943 
2944   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2945                            DAG.getVTList(AggValueVTs), Values));
2946 }
2947 
2948 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2949   const Value *Op0 = I.getOperand(0);
2950   Type *AggTy = Op0->getType();
2951   Type *ValTy = I.getType();
2952   bool OutOfUndef = isa<UndefValue>(Op0);
2953 
2954   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2955 
2956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2957   SmallVector<EVT, 4> ValValueVTs;
2958   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2959 
2960   unsigned NumValValues = ValValueVTs.size();
2961 
2962   // Ignore a extractvalue that produces an empty object
2963   if (!NumValValues) {
2964     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2965     return;
2966   }
2967 
2968   SmallVector<SDValue, 4> Values(NumValValues);
2969 
2970   SDValue Agg = getValue(Op0);
2971   // Copy out the selected value(s).
2972   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2973     Values[i - LinearIndex] =
2974       OutOfUndef ?
2975         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2976         SDValue(Agg.getNode(), Agg.getResNo() + i);
2977 
2978   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2979                            DAG.getVTList(ValValueVTs), Values));
2980 }
2981 
2982 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2983   Value *Op0 = I.getOperand(0);
2984   // Note that the pointer operand may be a vector of pointers. Take the scalar
2985   // element which holds a pointer.
2986   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
2987   SDValue N = getValue(Op0);
2988   SDLoc dl = getCurSDLoc();
2989 
2990   // Normalize Vector GEP - all scalar operands should be converted to the
2991   // splat vector.
2992   unsigned VectorWidth = I.getType()->isVectorTy() ?
2993     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2994 
2995   if (VectorWidth && !N.getValueType().isVector()) {
2996     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2997     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2998     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2999   }
3000   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3001        GTI != E; ++GTI) {
3002     const Value *Idx = GTI.getOperand();
3003     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3004       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3005       if (Field) {
3006         // N = N + Offset
3007         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3008 
3009         // In an inbouds GEP with an offset that is nonnegative even when
3010         // interpreted as signed, assume there is no unsigned overflow.
3011         SDNodeFlags Flags;
3012         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3013           Flags.setNoUnsignedWrap(true);
3014 
3015         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3016                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3017       }
3018     } else {
3019       MVT PtrTy =
3020           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3021       unsigned PtrSize = PtrTy.getSizeInBits();
3022       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3023 
3024       // If this is a scalar constant or a splat vector of constants,
3025       // handle it quickly.
3026       const auto *CI = dyn_cast<ConstantInt>(Idx);
3027       if (!CI && isa<ConstantDataVector>(Idx) &&
3028           cast<ConstantDataVector>(Idx)->getSplatValue())
3029         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3030 
3031       if (CI) {
3032         if (CI->isZero())
3033           continue;
3034         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3035         SDValue OffsVal = VectorWidth ?
3036           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3037           DAG.getConstant(Offs, dl, PtrTy);
3038 
3039         // In an inbouds GEP with an offset that is nonnegative even when
3040         // interpreted as signed, assume there is no unsigned overflow.
3041         SDNodeFlags Flags;
3042         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3043           Flags.setNoUnsignedWrap(true);
3044 
3045         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3046         continue;
3047       }
3048 
3049       // N = N + Idx * ElementSize;
3050       SDValue IdxN = getValue(Idx);
3051 
3052       if (!IdxN.getValueType().isVector() && VectorWidth) {
3053         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3054         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3055         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3056       }
3057       // If the index is smaller or larger than intptr_t, truncate or extend
3058       // it.
3059       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3060 
3061       // If this is a multiply by a power of two, turn it into a shl
3062       // immediately.  This is a very common case.
3063       if (ElementSize != 1) {
3064         if (ElementSize.isPowerOf2()) {
3065           unsigned Amt = ElementSize.logBase2();
3066           IdxN = DAG.getNode(ISD::SHL, dl,
3067                              N.getValueType(), IdxN,
3068                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3069         } else {
3070           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3071           IdxN = DAG.getNode(ISD::MUL, dl,
3072                              N.getValueType(), IdxN, Scale);
3073         }
3074       }
3075 
3076       N = DAG.getNode(ISD::ADD, dl,
3077                       N.getValueType(), N, IdxN);
3078     }
3079   }
3080 
3081   setValue(&I, N);
3082 }
3083 
3084 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3085   // If this is a fixed sized alloca in the entry block of the function,
3086   // allocate it statically on the stack.
3087   if (FuncInfo.StaticAllocaMap.count(&I))
3088     return;   // getValue will auto-populate this.
3089 
3090   SDLoc dl = getCurSDLoc();
3091   Type *Ty = I.getAllocatedType();
3092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3093   auto &DL = DAG.getDataLayout();
3094   uint64_t TySize = DL.getTypeAllocSize(Ty);
3095   unsigned Align =
3096       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3097 
3098   SDValue AllocSize = getValue(I.getArraySize());
3099 
3100   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3101   if (AllocSize.getValueType() != IntPtr)
3102     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3103 
3104   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3105                           AllocSize,
3106                           DAG.getConstant(TySize, dl, IntPtr));
3107 
3108   // Handle alignment.  If the requested alignment is less than or equal to
3109   // the stack alignment, ignore it.  If the size is greater than or equal to
3110   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3111   unsigned StackAlign =
3112       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3113   if (Align <= StackAlign)
3114     Align = 0;
3115 
3116   // Round the size of the allocation up to the stack alignment size
3117   // by add SA-1 to the size. This doesn't overflow because we're computing
3118   // an address inside an alloca.
3119   SDNodeFlags Flags;
3120   Flags.setNoUnsignedWrap(true);
3121   AllocSize = DAG.getNode(ISD::ADD, dl,
3122                           AllocSize.getValueType(), AllocSize,
3123                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3124 
3125   // Mask out the low bits for alignment purposes.
3126   AllocSize = DAG.getNode(ISD::AND, dl,
3127                           AllocSize.getValueType(), AllocSize,
3128                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3129                                                 dl));
3130 
3131   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3132   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3133   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3134   setValue(&I, DSA);
3135   DAG.setRoot(DSA.getValue(1));
3136 
3137   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3138 }
3139 
3140 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3141   if (I.isAtomic())
3142     return visitAtomicLoad(I);
3143 
3144   const Value *SV = I.getOperand(0);
3145   SDValue Ptr = getValue(SV);
3146 
3147   Type *Ty = I.getType();
3148 
3149   bool isVolatile = I.isVolatile();
3150   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3151 
3152   // The IR notion of invariant_load only guarantees that all *non-faulting*
3153   // invariant loads result in the same value.  The MI notion of invariant load
3154   // guarantees that the load can be legally moved to any location within its
3155   // containing function.  The MI notion of invariant_load is stronger than the
3156   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3157   // with a guarantee that the location being loaded from is dereferenceable
3158   // throughout the function's lifetime.
3159 
3160   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3161                      isDereferenceablePointer(SV, DAG.getDataLayout());
3162   unsigned Alignment = I.getAlignment();
3163 
3164   AAMDNodes AAInfo;
3165   I.getAAMetadata(AAInfo);
3166   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3167 
3168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3169   SmallVector<EVT, 4> ValueVTs;
3170   SmallVector<uint64_t, 4> Offsets;
3171   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3172   unsigned NumValues = ValueVTs.size();
3173   if (NumValues == 0)
3174     return;
3175 
3176   SDValue Root;
3177   bool ConstantMemory = false;
3178   if (isVolatile || NumValues > MaxParallelChains)
3179     // Serialize volatile loads with other side effects.
3180     Root = getRoot();
3181   else if (AA->pointsToConstantMemory(MemoryLocation(
3182                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3183     // Do not serialize (non-volatile) loads of constant memory with anything.
3184     Root = DAG.getEntryNode();
3185     ConstantMemory = true;
3186   } else {
3187     // Do not serialize non-volatile loads against each other.
3188     Root = DAG.getRoot();
3189   }
3190 
3191   SDLoc dl = getCurSDLoc();
3192 
3193   if (isVolatile)
3194     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3195 
3196   // An aggregate load cannot wrap around the address space, so offsets to its
3197   // parts don't wrap either.
3198   SDNodeFlags Flags;
3199   Flags.setNoUnsignedWrap(true);
3200 
3201   SmallVector<SDValue, 4> Values(NumValues);
3202   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3203   EVT PtrVT = Ptr.getValueType();
3204   unsigned ChainI = 0;
3205   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3206     // Serializing loads here may result in excessive register pressure, and
3207     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3208     // could recover a bit by hoisting nodes upward in the chain by recognizing
3209     // they are side-effect free or do not alias. The optimizer should really
3210     // avoid this case by converting large object/array copies to llvm.memcpy
3211     // (MaxParallelChains should always remain as failsafe).
3212     if (ChainI == MaxParallelChains) {
3213       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3214       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3215                                   makeArrayRef(Chains.data(), ChainI));
3216       Root = Chain;
3217       ChainI = 0;
3218     }
3219     SDValue A = DAG.getNode(ISD::ADD, dl,
3220                             PtrVT, Ptr,
3221                             DAG.getConstant(Offsets[i], dl, PtrVT),
3222                             &Flags);
3223     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3224                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3225                             isNonTemporal, isInvariant, Alignment, AAInfo,
3226                             Ranges);
3227 
3228     Values[i] = L;
3229     Chains[ChainI] = L.getValue(1);
3230   }
3231 
3232   if (!ConstantMemory) {
3233     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3234                                 makeArrayRef(Chains.data(), ChainI));
3235     if (isVolatile)
3236       DAG.setRoot(Chain);
3237     else
3238       PendingLoads.push_back(Chain);
3239   }
3240 
3241   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3242                            DAG.getVTList(ValueVTs), Values));
3243 }
3244 
3245 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3246   if (I.isAtomic())
3247     return visitAtomicStore(I);
3248 
3249   const Value *SrcV = I.getOperand(0);
3250   const Value *PtrV = I.getOperand(1);
3251 
3252   SmallVector<EVT, 4> ValueVTs;
3253   SmallVector<uint64_t, 4> Offsets;
3254   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3255                   SrcV->getType(), ValueVTs, &Offsets);
3256   unsigned NumValues = ValueVTs.size();
3257   if (NumValues == 0)
3258     return;
3259 
3260   // Get the lowered operands. Note that we do this after
3261   // checking if NumResults is zero, because with zero results
3262   // the operands won't have values in the map.
3263   SDValue Src = getValue(SrcV);
3264   SDValue Ptr = getValue(PtrV);
3265 
3266   SDValue Root = getRoot();
3267   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3268   EVT PtrVT = Ptr.getValueType();
3269   bool isVolatile = I.isVolatile();
3270   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3271   unsigned Alignment = I.getAlignment();
3272   SDLoc dl = getCurSDLoc();
3273 
3274   AAMDNodes AAInfo;
3275   I.getAAMetadata(AAInfo);
3276 
3277   // An aggregate load cannot wrap around the address space, so offsets to its
3278   // parts don't wrap either.
3279   SDNodeFlags Flags;
3280   Flags.setNoUnsignedWrap(true);
3281 
3282   unsigned ChainI = 0;
3283   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3284     // See visitLoad comments.
3285     if (ChainI == MaxParallelChains) {
3286       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3287                                   makeArrayRef(Chains.data(), ChainI));
3288       Root = Chain;
3289       ChainI = 0;
3290     }
3291     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3292                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3293     SDValue St = DAG.getStore(Root, dl,
3294                               SDValue(Src.getNode(), Src.getResNo() + i),
3295                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3296                               isVolatile, isNonTemporal, Alignment, AAInfo);
3297     Chains[ChainI] = St;
3298   }
3299 
3300   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3301                                   makeArrayRef(Chains.data(), ChainI));
3302   DAG.setRoot(StoreNode);
3303 }
3304 
3305 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3306   SDLoc sdl = getCurSDLoc();
3307 
3308   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3309   Value  *PtrOperand = I.getArgOperand(1);
3310   SDValue Ptr = getValue(PtrOperand);
3311   SDValue Src0 = getValue(I.getArgOperand(0));
3312   SDValue Mask = getValue(I.getArgOperand(3));
3313   EVT VT = Src0.getValueType();
3314   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3315   if (!Alignment)
3316     Alignment = DAG.getEVTAlignment(VT);
3317 
3318   AAMDNodes AAInfo;
3319   I.getAAMetadata(AAInfo);
3320 
3321   MachineMemOperand *MMO =
3322     DAG.getMachineFunction().
3323     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3324                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3325                           Alignment, AAInfo);
3326   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3327                                          MMO, false);
3328   DAG.setRoot(StoreNode);
3329   setValue(&I, StoreNode);
3330 }
3331 
3332 // Get a uniform base for the Gather/Scatter intrinsic.
3333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3334 // We try to represent it as a base pointer + vector of indices.
3335 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3336 // The first operand of the GEP may be a single pointer or a vector of pointers
3337 // Example:
3338 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3339 //  or
3340 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3342 //
3343 // When the first GEP operand is a single pointer - it is the uniform base we
3344 // are looking for. If first operand of the GEP is a splat vector - we
3345 // extract the spalt value and use it as a uniform base.
3346 // In all other cases the function returns 'false'.
3347 //
3348 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3349                            SelectionDAGBuilder* SDB) {
3350 
3351   SelectionDAG& DAG = SDB->DAG;
3352   LLVMContext &Context = *DAG.getContext();
3353 
3354   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3355   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3356   if (!GEP || GEP->getNumOperands() > 2)
3357     return false;
3358 
3359   const Value *GEPPtr = GEP->getPointerOperand();
3360   if (!GEPPtr->getType()->isVectorTy())
3361     Ptr = GEPPtr;
3362   else if (!(Ptr = getSplatValue(GEPPtr)))
3363     return false;
3364 
3365   Value *IndexVal = GEP->getOperand(1);
3366 
3367   // The operands of the GEP may be defined in another basic block.
3368   // In this case we'll not find nodes for the operands.
3369   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3370     return false;
3371 
3372   Base = SDB->getValue(Ptr);
3373   Index = SDB->getValue(IndexVal);
3374 
3375   // Suppress sign extension.
3376   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3377     if (SDB->findValue(Sext->getOperand(0))) {
3378       IndexVal = Sext->getOperand(0);
3379       Index = SDB->getValue(IndexVal);
3380     }
3381   }
3382   if (!Index.getValueType().isVector()) {
3383     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3384     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3385     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3386     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3387   }
3388   return true;
3389 }
3390 
3391 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3392   SDLoc sdl = getCurSDLoc();
3393 
3394   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3395   const Value *Ptr = I.getArgOperand(1);
3396   SDValue Src0 = getValue(I.getArgOperand(0));
3397   SDValue Mask = getValue(I.getArgOperand(3));
3398   EVT VT = Src0.getValueType();
3399   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3400   if (!Alignment)
3401     Alignment = DAG.getEVTAlignment(VT);
3402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403 
3404   AAMDNodes AAInfo;
3405   I.getAAMetadata(AAInfo);
3406 
3407   SDValue Base;
3408   SDValue Index;
3409   const Value *BasePtr = Ptr;
3410   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3411 
3412   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3413   MachineMemOperand *MMO = DAG.getMachineFunction().
3414     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3415                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3416                          Alignment, AAInfo);
3417   if (!UniformBase) {
3418     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3419     Index = getValue(Ptr);
3420   }
3421   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3422   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3423                                          Ops, MMO);
3424   DAG.setRoot(Scatter);
3425   setValue(&I, Scatter);
3426 }
3427 
3428 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3429   SDLoc sdl = getCurSDLoc();
3430 
3431   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3432   Value  *PtrOperand = I.getArgOperand(0);
3433   SDValue Ptr = getValue(PtrOperand);
3434   SDValue Src0 = getValue(I.getArgOperand(3));
3435   SDValue Mask = getValue(I.getArgOperand(2));
3436 
3437   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3438   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3439   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3440   if (!Alignment)
3441     Alignment = DAG.getEVTAlignment(VT);
3442 
3443   AAMDNodes AAInfo;
3444   I.getAAMetadata(AAInfo);
3445   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3446 
3447   SDValue InChain = DAG.getRoot();
3448   if (AA->pointsToConstantMemory(MemoryLocation(
3449           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3450           AAInfo))) {
3451     // Do not serialize (non-volatile) loads of constant memory with anything.
3452     InChain = DAG.getEntryNode();
3453   }
3454 
3455   MachineMemOperand *MMO =
3456     DAG.getMachineFunction().
3457     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3458                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3459                           Alignment, AAInfo, Ranges);
3460 
3461   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3462                                    ISD::NON_EXTLOAD);
3463   SDValue OutChain = Load.getValue(1);
3464   DAG.setRoot(OutChain);
3465   setValue(&I, Load);
3466 }
3467 
3468 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3469   SDLoc sdl = getCurSDLoc();
3470 
3471   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3472   const Value *Ptr = I.getArgOperand(0);
3473   SDValue Src0 = getValue(I.getArgOperand(3));
3474   SDValue Mask = getValue(I.getArgOperand(2));
3475 
3476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3477   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3478   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3479   if (!Alignment)
3480     Alignment = DAG.getEVTAlignment(VT);
3481 
3482   AAMDNodes AAInfo;
3483   I.getAAMetadata(AAInfo);
3484   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3485 
3486   SDValue Root = DAG.getRoot();
3487   SDValue Base;
3488   SDValue Index;
3489   const Value *BasePtr = Ptr;
3490   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3491   bool ConstantMemory = false;
3492   if (UniformBase &&
3493       AA->pointsToConstantMemory(MemoryLocation(
3494           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3495           AAInfo))) {
3496     // Do not serialize (non-volatile) loads of constant memory with anything.
3497     Root = DAG.getEntryNode();
3498     ConstantMemory = true;
3499   }
3500 
3501   MachineMemOperand *MMO =
3502     DAG.getMachineFunction().
3503     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3504                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3505                          Alignment, AAInfo, Ranges);
3506 
3507   if (!UniformBase) {
3508     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3509     Index = getValue(Ptr);
3510   }
3511   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3512   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3513                                        Ops, MMO);
3514 
3515   SDValue OutChain = Gather.getValue(1);
3516   if (!ConstantMemory)
3517     PendingLoads.push_back(OutChain);
3518   setValue(&I, Gather);
3519 }
3520 
3521 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3522   SDLoc dl = getCurSDLoc();
3523   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3524   AtomicOrdering FailureOrder = I.getFailureOrdering();
3525   SynchronizationScope Scope = I.getSynchScope();
3526 
3527   SDValue InChain = getRoot();
3528 
3529   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3530   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3531   SDValue L = DAG.getAtomicCmpSwap(
3532       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3533       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3534       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3535       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3536 
3537   SDValue OutChain = L.getValue(2);
3538 
3539   setValue(&I, L);
3540   DAG.setRoot(OutChain);
3541 }
3542 
3543 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3544   SDLoc dl = getCurSDLoc();
3545   ISD::NodeType NT;
3546   switch (I.getOperation()) {
3547   default: llvm_unreachable("Unknown atomicrmw operation");
3548   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3549   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3550   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3551   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3552   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3553   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3554   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3555   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3556   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3557   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3558   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3559   }
3560   AtomicOrdering Order = I.getOrdering();
3561   SynchronizationScope Scope = I.getSynchScope();
3562 
3563   SDValue InChain = getRoot();
3564 
3565   SDValue L =
3566     DAG.getAtomic(NT, dl,
3567                   getValue(I.getValOperand()).getSimpleValueType(),
3568                   InChain,
3569                   getValue(I.getPointerOperand()),
3570                   getValue(I.getValOperand()),
3571                   I.getPointerOperand(),
3572                   /* Alignment=*/ 0, Order, Scope);
3573 
3574   SDValue OutChain = L.getValue(1);
3575 
3576   setValue(&I, L);
3577   DAG.setRoot(OutChain);
3578 }
3579 
3580 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3581   SDLoc dl = getCurSDLoc();
3582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3583   SDValue Ops[3];
3584   Ops[0] = getRoot();
3585   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3586                            TLI.getPointerTy(DAG.getDataLayout()));
3587   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3588                            TLI.getPointerTy(DAG.getDataLayout()));
3589   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3590 }
3591 
3592 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3593   SDLoc dl = getCurSDLoc();
3594   AtomicOrdering Order = I.getOrdering();
3595   SynchronizationScope Scope = I.getSynchScope();
3596 
3597   SDValue InChain = getRoot();
3598 
3599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3600   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3601 
3602   if (I.getAlignment() < VT.getSizeInBits() / 8)
3603     report_fatal_error("Cannot generate unaligned atomic load");
3604 
3605   MachineMemOperand *MMO =
3606       DAG.getMachineFunction().
3607       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3608                            MachineMemOperand::MOVolatile |
3609                            MachineMemOperand::MOLoad,
3610                            VT.getStoreSize(),
3611                            I.getAlignment() ? I.getAlignment() :
3612                                               DAG.getEVTAlignment(VT));
3613 
3614   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3615   SDValue L =
3616       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3617                     getValue(I.getPointerOperand()), MMO,
3618                     Order, Scope);
3619 
3620   SDValue OutChain = L.getValue(1);
3621 
3622   setValue(&I, L);
3623   DAG.setRoot(OutChain);
3624 }
3625 
3626 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3627   SDLoc dl = getCurSDLoc();
3628 
3629   AtomicOrdering Order = I.getOrdering();
3630   SynchronizationScope Scope = I.getSynchScope();
3631 
3632   SDValue InChain = getRoot();
3633 
3634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3635   EVT VT =
3636       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3637 
3638   if (I.getAlignment() < VT.getSizeInBits() / 8)
3639     report_fatal_error("Cannot generate unaligned atomic store");
3640 
3641   SDValue OutChain =
3642     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3643                   InChain,
3644                   getValue(I.getPointerOperand()),
3645                   getValue(I.getValueOperand()),
3646                   I.getPointerOperand(), I.getAlignment(),
3647                   Order, Scope);
3648 
3649   DAG.setRoot(OutChain);
3650 }
3651 
3652 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3653 /// node.
3654 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3655                                                unsigned Intrinsic) {
3656   bool HasChain = !I.doesNotAccessMemory();
3657   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3658 
3659   // Build the operand list.
3660   SmallVector<SDValue, 8> Ops;
3661   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3662     if (OnlyLoad) {
3663       // We don't need to serialize loads against other loads.
3664       Ops.push_back(DAG.getRoot());
3665     } else {
3666       Ops.push_back(getRoot());
3667     }
3668   }
3669 
3670   // Info is set by getTgtMemInstrinsic
3671   TargetLowering::IntrinsicInfo Info;
3672   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3673   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3674 
3675   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3676   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3677       Info.opc == ISD::INTRINSIC_W_CHAIN)
3678     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3679                                         TLI.getPointerTy(DAG.getDataLayout())));
3680 
3681   // Add all operands of the call to the operand list.
3682   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3683     SDValue Op = getValue(I.getArgOperand(i));
3684     Ops.push_back(Op);
3685   }
3686 
3687   SmallVector<EVT, 4> ValueVTs;
3688   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3689 
3690   if (HasChain)
3691     ValueVTs.push_back(MVT::Other);
3692 
3693   SDVTList VTs = DAG.getVTList(ValueVTs);
3694 
3695   // Create the node.
3696   SDValue Result;
3697   if (IsTgtIntrinsic) {
3698     // This is target intrinsic that touches memory
3699     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3700                                      VTs, Ops, Info.memVT,
3701                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3702                                      Info.align, Info.vol,
3703                                      Info.readMem, Info.writeMem, Info.size);
3704   } else if (!HasChain) {
3705     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3706   } else if (!I.getType()->isVoidTy()) {
3707     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3708   } else {
3709     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3710   }
3711 
3712   if (HasChain) {
3713     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3714     if (OnlyLoad)
3715       PendingLoads.push_back(Chain);
3716     else
3717       DAG.setRoot(Chain);
3718   }
3719 
3720   if (!I.getType()->isVoidTy()) {
3721     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3722       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3723       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3724     }
3725 
3726     setValue(&I, Result);
3727   }
3728 }
3729 
3730 /// GetSignificand - Get the significand and build it into a floating-point
3731 /// number with exponent of 1:
3732 ///
3733 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3734 ///
3735 /// where Op is the hexadecimal representation of floating point value.
3736 static SDValue
3737 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3738   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3739                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3740   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3741                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3742   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3743 }
3744 
3745 /// GetExponent - Get the exponent:
3746 ///
3747 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3748 ///
3749 /// where Op is the hexadecimal representation of floating point value.
3750 static SDValue
3751 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3752             SDLoc dl) {
3753   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3754                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3755   SDValue t1 = DAG.getNode(
3756       ISD::SRL, dl, MVT::i32, t0,
3757       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3758   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3759                            DAG.getConstant(127, dl, MVT::i32));
3760   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3761 }
3762 
3763 /// getF32Constant - Get 32-bit floating point constant.
3764 static SDValue
3765 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3766   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3767                            MVT::f32);
3768 }
3769 
3770 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3771                                        SelectionDAG &DAG) {
3772   // TODO: What fast-math-flags should be set on the floating-point nodes?
3773 
3774   //   IntegerPartOfX = ((int32_t)(t0);
3775   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3776 
3777   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3778   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3779   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3780 
3781   //   IntegerPartOfX <<= 23;
3782   IntegerPartOfX = DAG.getNode(
3783       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3784       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3785                                   DAG.getDataLayout())));
3786 
3787   SDValue TwoToFractionalPartOfX;
3788   if (LimitFloatPrecision <= 6) {
3789     // For floating-point precision of 6:
3790     //
3791     //   TwoToFractionalPartOfX =
3792     //     0.997535578f +
3793     //       (0.735607626f + 0.252464424f * x) * x;
3794     //
3795     // error 0.0144103317, which is 6 bits
3796     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3797                              getF32Constant(DAG, 0x3e814304, dl));
3798     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3799                              getF32Constant(DAG, 0x3f3c50c8, dl));
3800     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3801     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3802                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3803   } else if (LimitFloatPrecision <= 12) {
3804     // For floating-point precision of 12:
3805     //
3806     //   TwoToFractionalPartOfX =
3807     //     0.999892986f +
3808     //       (0.696457318f +
3809     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3810     //
3811     // error 0.000107046256, which is 13 to 14 bits
3812     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3813                              getF32Constant(DAG, 0x3da235e3, dl));
3814     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3815                              getF32Constant(DAG, 0x3e65b8f3, dl));
3816     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3817     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3818                              getF32Constant(DAG, 0x3f324b07, dl));
3819     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3820     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3821                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3822   } else { // LimitFloatPrecision <= 18
3823     // For floating-point precision of 18:
3824     //
3825     //   TwoToFractionalPartOfX =
3826     //     0.999999982f +
3827     //       (0.693148872f +
3828     //         (0.240227044f +
3829     //           (0.554906021e-1f +
3830     //             (0.961591928e-2f +
3831     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3832     // error 2.47208000*10^(-7), which is better than 18 bits
3833     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3834                              getF32Constant(DAG, 0x3924b03e, dl));
3835     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3836                              getF32Constant(DAG, 0x3ab24b87, dl));
3837     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3838     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3839                              getF32Constant(DAG, 0x3c1d8c17, dl));
3840     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3841     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3842                              getF32Constant(DAG, 0x3d634a1d, dl));
3843     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3844     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3845                              getF32Constant(DAG, 0x3e75fe14, dl));
3846     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3847     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3848                               getF32Constant(DAG, 0x3f317234, dl));
3849     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3850     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3851                                          getF32Constant(DAG, 0x3f800000, dl));
3852   }
3853 
3854   // Add the exponent into the result in integer domain.
3855   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3856   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3857                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3858 }
3859 
3860 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3861 /// limited-precision mode.
3862 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3863                          const TargetLowering &TLI) {
3864   if (Op.getValueType() == MVT::f32 &&
3865       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3866 
3867     // Put the exponent in the right bit position for later addition to the
3868     // final result:
3869     //
3870     //   #define LOG2OFe 1.4426950f
3871     //   t0 = Op * LOG2OFe
3872 
3873     // TODO: What fast-math-flags should be set here?
3874     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3875                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3876     return getLimitedPrecisionExp2(t0, dl, DAG);
3877   }
3878 
3879   // No special expansion.
3880   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3881 }
3882 
3883 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3884 /// limited-precision mode.
3885 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3886                          const TargetLowering &TLI) {
3887 
3888   // TODO: What fast-math-flags should be set on the floating-point nodes?
3889 
3890   if (Op.getValueType() == MVT::f32 &&
3891       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3892     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3893 
3894     // Scale the exponent by log(2) [0.69314718f].
3895     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3896     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3897                                         getF32Constant(DAG, 0x3f317218, dl));
3898 
3899     // Get the significand and build it into a floating-point number with
3900     // exponent of 1.
3901     SDValue X = GetSignificand(DAG, Op1, dl);
3902 
3903     SDValue LogOfMantissa;
3904     if (LimitFloatPrecision <= 6) {
3905       // For floating-point precision of 6:
3906       //
3907       //   LogofMantissa =
3908       //     -1.1609546f +
3909       //       (1.4034025f - 0.23903021f * x) * x;
3910       //
3911       // error 0.0034276066, which is better than 8 bits
3912       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3913                                getF32Constant(DAG, 0xbe74c456, dl));
3914       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3915                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3916       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3917       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3918                                   getF32Constant(DAG, 0x3f949a29, dl));
3919     } else if (LimitFloatPrecision <= 12) {
3920       // For floating-point precision of 12:
3921       //
3922       //   LogOfMantissa =
3923       //     -1.7417939f +
3924       //       (2.8212026f +
3925       //         (-1.4699568f +
3926       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3927       //
3928       // error 0.000061011436, which is 14 bits
3929       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3930                                getF32Constant(DAG, 0xbd67b6d6, dl));
3931       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3932                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3933       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3934       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3935                                getF32Constant(DAG, 0x3fbc278b, dl));
3936       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3937       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3938                                getF32Constant(DAG, 0x40348e95, dl));
3939       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3940       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3941                                   getF32Constant(DAG, 0x3fdef31a, dl));
3942     } else { // LimitFloatPrecision <= 18
3943       // For floating-point precision of 18:
3944       //
3945       //   LogOfMantissa =
3946       //     -2.1072184f +
3947       //       (4.2372794f +
3948       //         (-3.7029485f +
3949       //           (2.2781945f +
3950       //             (-0.87823314f +
3951       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3952       //
3953       // error 0.0000023660568, which is better than 18 bits
3954       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3955                                getF32Constant(DAG, 0xbc91e5ac, dl));
3956       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3957                                getF32Constant(DAG, 0x3e4350aa, dl));
3958       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3959       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3960                                getF32Constant(DAG, 0x3f60d3e3, dl));
3961       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3962       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3963                                getF32Constant(DAG, 0x4011cdf0, dl));
3964       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3965       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3966                                getF32Constant(DAG, 0x406cfd1c, dl));
3967       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3968       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3969                                getF32Constant(DAG, 0x408797cb, dl));
3970       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3971       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3972                                   getF32Constant(DAG, 0x4006dcab, dl));
3973     }
3974 
3975     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3976   }
3977 
3978   // No special expansion.
3979   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3980 }
3981 
3982 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3983 /// limited-precision mode.
3984 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3985                           const TargetLowering &TLI) {
3986 
3987   // TODO: What fast-math-flags should be set on the floating-point nodes?
3988 
3989   if (Op.getValueType() == MVT::f32 &&
3990       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3991     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3992 
3993     // Get the exponent.
3994     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3995 
3996     // Get the significand and build it into a floating-point number with
3997     // exponent of 1.
3998     SDValue X = GetSignificand(DAG, Op1, dl);
3999 
4000     // Different possible minimax approximations of significand in
4001     // floating-point for various degrees of accuracy over [1,2].
4002     SDValue Log2ofMantissa;
4003     if (LimitFloatPrecision <= 6) {
4004       // For floating-point precision of 6:
4005       //
4006       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4007       //
4008       // error 0.0049451742, which is more than 7 bits
4009       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4010                                getF32Constant(DAG, 0xbeb08fe0, dl));
4011       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4012                                getF32Constant(DAG, 0x40019463, dl));
4013       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4014       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4015                                    getF32Constant(DAG, 0x3fd6633d, dl));
4016     } else if (LimitFloatPrecision <= 12) {
4017       // For floating-point precision of 12:
4018       //
4019       //   Log2ofMantissa =
4020       //     -2.51285454f +
4021       //       (4.07009056f +
4022       //         (-2.12067489f +
4023       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4024       //
4025       // error 0.0000876136000, which is better than 13 bits
4026       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4027                                getF32Constant(DAG, 0xbda7262e, dl));
4028       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4029                                getF32Constant(DAG, 0x3f25280b, dl));
4030       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4031       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4032                                getF32Constant(DAG, 0x4007b923, dl));
4033       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4034       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4035                                getF32Constant(DAG, 0x40823e2f, dl));
4036       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4037       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4038                                    getF32Constant(DAG, 0x4020d29c, dl));
4039     } else { // LimitFloatPrecision <= 18
4040       // For floating-point precision of 18:
4041       //
4042       //   Log2ofMantissa =
4043       //     -3.0400495f +
4044       //       (6.1129976f +
4045       //         (-5.3420409f +
4046       //           (3.2865683f +
4047       //             (-1.2669343f +
4048       //               (0.27515199f -
4049       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4050       //
4051       // error 0.0000018516, which is better than 18 bits
4052       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4053                                getF32Constant(DAG, 0xbcd2769e, dl));
4054       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4055                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4056       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4057       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4058                                getF32Constant(DAG, 0x3fa22ae7, dl));
4059       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4060       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4061                                getF32Constant(DAG, 0x40525723, dl));
4062       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4063       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4064                                getF32Constant(DAG, 0x40aaf200, dl));
4065       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4066       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4067                                getF32Constant(DAG, 0x40c39dad, dl));
4068       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4069       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4070                                    getF32Constant(DAG, 0x4042902c, dl));
4071     }
4072 
4073     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4074   }
4075 
4076   // No special expansion.
4077   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4078 }
4079 
4080 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4081 /// limited-precision mode.
4082 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4083                            const TargetLowering &TLI) {
4084 
4085   // TODO: What fast-math-flags should be set on the floating-point nodes?
4086 
4087   if (Op.getValueType() == MVT::f32 &&
4088       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4089     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4090 
4091     // Scale the exponent by log10(2) [0.30102999f].
4092     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4093     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4094                                         getF32Constant(DAG, 0x3e9a209a, dl));
4095 
4096     // Get the significand and build it into a floating-point number with
4097     // exponent of 1.
4098     SDValue X = GetSignificand(DAG, Op1, dl);
4099 
4100     SDValue Log10ofMantissa;
4101     if (LimitFloatPrecision <= 6) {
4102       // For floating-point precision of 6:
4103       //
4104       //   Log10ofMantissa =
4105       //     -0.50419619f +
4106       //       (0.60948995f - 0.10380950f * x) * x;
4107       //
4108       // error 0.0014886165, which is 6 bits
4109       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                                getF32Constant(DAG, 0xbdd49a13, dl));
4111       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4112                                getF32Constant(DAG, 0x3f1c0789, dl));
4113       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4114       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4115                                     getF32Constant(DAG, 0x3f011300, dl));
4116     } else if (LimitFloatPrecision <= 12) {
4117       // For floating-point precision of 12:
4118       //
4119       //   Log10ofMantissa =
4120       //     -0.64831180f +
4121       //       (0.91751397f +
4122       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4123       //
4124       // error 0.00019228036, which is better than 12 bits
4125       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4126                                getF32Constant(DAG, 0x3d431f31, dl));
4127       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4128                                getF32Constant(DAG, 0x3ea21fb2, dl));
4129       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4130       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4131                                getF32Constant(DAG, 0x3f6ae232, dl));
4132       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4133       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4134                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4135     } else { // LimitFloatPrecision <= 18
4136       // For floating-point precision of 18:
4137       //
4138       //   Log10ofMantissa =
4139       //     -0.84299375f +
4140       //       (1.5327582f +
4141       //         (-1.0688956f +
4142       //           (0.49102474f +
4143       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4144       //
4145       // error 0.0000037995730, which is better than 18 bits
4146       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4147                                getF32Constant(DAG, 0x3c5d51ce, dl));
4148       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4149                                getF32Constant(DAG, 0x3e00685a, dl));
4150       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4151       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4152                                getF32Constant(DAG, 0x3efb6798, dl));
4153       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4154       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4155                                getF32Constant(DAG, 0x3f88d192, dl));
4156       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4157       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4158                                getF32Constant(DAG, 0x3fc4316c, dl));
4159       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4160       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4161                                     getF32Constant(DAG, 0x3f57ce70, dl));
4162     }
4163 
4164     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4165   }
4166 
4167   // No special expansion.
4168   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4169 }
4170 
4171 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4172 /// limited-precision mode.
4173 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4174                           const TargetLowering &TLI) {
4175   if (Op.getValueType() == MVT::f32 &&
4176       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4177     return getLimitedPrecisionExp2(Op, dl, DAG);
4178 
4179   // No special expansion.
4180   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4181 }
4182 
4183 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4184 /// limited-precision mode with x == 10.0f.
4185 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4186                          SelectionDAG &DAG, const TargetLowering &TLI) {
4187   bool IsExp10 = false;
4188   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4189       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4190     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4191       APFloat Ten(10.0f);
4192       IsExp10 = LHSC->isExactlyValue(Ten);
4193     }
4194   }
4195 
4196   // TODO: What fast-math-flags should be set on the FMUL node?
4197   if (IsExp10) {
4198     // Put the exponent in the right bit position for later addition to the
4199     // final result:
4200     //
4201     //   #define LOG2OF10 3.3219281f
4202     //   t0 = Op * LOG2OF10;
4203     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4204                              getF32Constant(DAG, 0x40549a78, dl));
4205     return getLimitedPrecisionExp2(t0, dl, DAG);
4206   }
4207 
4208   // No special expansion.
4209   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4210 }
4211 
4212 
4213 /// ExpandPowI - Expand a llvm.powi intrinsic.
4214 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4215                           SelectionDAG &DAG) {
4216   // If RHS is a constant, we can expand this out to a multiplication tree,
4217   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4218   // optimizing for size, we only want to do this if the expansion would produce
4219   // a small number of multiplies, otherwise we do the full expansion.
4220   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4221     // Get the exponent as a positive value.
4222     unsigned Val = RHSC->getSExtValue();
4223     if ((int)Val < 0) Val = -Val;
4224 
4225     // powi(x, 0) -> 1.0
4226     if (Val == 0)
4227       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4228 
4229     const Function *F = DAG.getMachineFunction().getFunction();
4230     if (!F->optForSize() ||
4231         // If optimizing for size, don't insert too many multiplies.
4232         // This inserts up to 5 multiplies.
4233         countPopulation(Val) + Log2_32(Val) < 7) {
4234       // We use the simple binary decomposition method to generate the multiply
4235       // sequence.  There are more optimal ways to do this (for example,
4236       // powi(x,15) generates one more multiply than it should), but this has
4237       // the benefit of being both really simple and much better than a libcall.
4238       SDValue Res;  // Logically starts equal to 1.0
4239       SDValue CurSquare = LHS;
4240       // TODO: Intrinsics should have fast-math-flags that propagate to these
4241       // nodes.
4242       while (Val) {
4243         if (Val & 1) {
4244           if (Res.getNode())
4245             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4246           else
4247             Res = CurSquare;  // 1.0*CurSquare.
4248         }
4249 
4250         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4251                                 CurSquare, CurSquare);
4252         Val >>= 1;
4253       }
4254 
4255       // If the original was negative, invert the result, producing 1/(x*x*x).
4256       if (RHSC->getSExtValue() < 0)
4257         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4258                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4259       return Res;
4260     }
4261   }
4262 
4263   // Otherwise, expand to a libcall.
4264   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4265 }
4266 
4267 // getUnderlyingArgReg - Find underlying register used for a truncated or
4268 // bitcasted argument.
4269 static unsigned getUnderlyingArgReg(const SDValue &N) {
4270   switch (N.getOpcode()) {
4271   case ISD::CopyFromReg:
4272     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4273   case ISD::BITCAST:
4274   case ISD::AssertZext:
4275   case ISD::AssertSext:
4276   case ISD::TRUNCATE:
4277     return getUnderlyingArgReg(N.getOperand(0));
4278   default:
4279     return 0;
4280   }
4281 }
4282 
4283 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4284 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4285 /// At the end of instruction selection, they will be inserted to the entry BB.
4286 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4287     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4288     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4289   const Argument *Arg = dyn_cast<Argument>(V);
4290   if (!Arg)
4291     return false;
4292 
4293   MachineFunction &MF = DAG.getMachineFunction();
4294   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4295 
4296   // Ignore inlined function arguments here.
4297   //
4298   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4299   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4300     return false;
4301 
4302   Optional<MachineOperand> Op;
4303   // Some arguments' frame index is recorded during argument lowering.
4304   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4305     Op = MachineOperand::CreateFI(FI);
4306 
4307   if (!Op && N.getNode()) {
4308     unsigned Reg = getUnderlyingArgReg(N);
4309     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4310       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4311       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4312       if (PR)
4313         Reg = PR;
4314     }
4315     if (Reg)
4316       Op = MachineOperand::CreateReg(Reg, false);
4317   }
4318 
4319   if (!Op) {
4320     // Check if ValueMap has reg number.
4321     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4322     if (VMI != FuncInfo.ValueMap.end())
4323       Op = MachineOperand::CreateReg(VMI->second, false);
4324   }
4325 
4326   if (!Op && N.getNode())
4327     // Check if frame index is available.
4328     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4329       if (FrameIndexSDNode *FINode =
4330           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4331         Op = MachineOperand::CreateFI(FINode->getIndex());
4332 
4333   if (!Op)
4334     return false;
4335 
4336   assert(Variable->isValidLocationForIntrinsic(DL) &&
4337          "Expected inlined-at fields to agree");
4338   if (Op->isReg())
4339     FuncInfo.ArgDbgValues.push_back(
4340         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4341                 Op->getReg(), Offset, Variable, Expr));
4342   else
4343     FuncInfo.ArgDbgValues.push_back(
4344         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4345             .addOperand(*Op)
4346             .addImm(Offset)
4347             .addMetadata(Variable)
4348             .addMetadata(Expr));
4349 
4350   return true;
4351 }
4352 
4353 // VisualStudio defines setjmp as _setjmp
4354 #if defined(_MSC_VER) && defined(setjmp) && \
4355                          !defined(setjmp_undefined_for_msvc)
4356 #  pragma push_macro("setjmp")
4357 #  undef setjmp
4358 #  define setjmp_undefined_for_msvc
4359 #endif
4360 
4361 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4362 /// we want to emit this as a call to a named external function, return the name
4363 /// otherwise lower it and return null.
4364 const char *
4365 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4367   SDLoc sdl = getCurSDLoc();
4368   DebugLoc dl = getCurDebugLoc();
4369   SDValue Res;
4370 
4371   switch (Intrinsic) {
4372   default:
4373     // By default, turn this into a target intrinsic node.
4374     visitTargetIntrinsic(I, Intrinsic);
4375     return nullptr;
4376   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4377   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4378   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4379   case Intrinsic::returnaddress:
4380     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4381                              TLI.getPointerTy(DAG.getDataLayout()),
4382                              getValue(I.getArgOperand(0))));
4383     return nullptr;
4384   case Intrinsic::frameaddress:
4385     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4386                              TLI.getPointerTy(DAG.getDataLayout()),
4387                              getValue(I.getArgOperand(0))));
4388     return nullptr;
4389   case Intrinsic::read_register: {
4390     Value *Reg = I.getArgOperand(0);
4391     SDValue Chain = getRoot();
4392     SDValue RegName =
4393         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4394     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4395     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4396       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4397     setValue(&I, Res);
4398     DAG.setRoot(Res.getValue(1));
4399     return nullptr;
4400   }
4401   case Intrinsic::write_register: {
4402     Value *Reg = I.getArgOperand(0);
4403     Value *RegValue = I.getArgOperand(1);
4404     SDValue Chain = getRoot();
4405     SDValue RegName =
4406         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4407     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4408                             RegName, getValue(RegValue)));
4409     return nullptr;
4410   }
4411   case Intrinsic::setjmp:
4412     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4413   case Intrinsic::longjmp:
4414     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4415   case Intrinsic::memcpy: {
4416     SDValue Op1 = getValue(I.getArgOperand(0));
4417     SDValue Op2 = getValue(I.getArgOperand(1));
4418     SDValue Op3 = getValue(I.getArgOperand(2));
4419     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4420     if (!Align)
4421       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4422     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4423     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4424     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4425                                false, isTC,
4426                                MachinePointerInfo(I.getArgOperand(0)),
4427                                MachinePointerInfo(I.getArgOperand(1)));
4428     updateDAGForMaybeTailCall(MC);
4429     return nullptr;
4430   }
4431   case Intrinsic::memset: {
4432     SDValue Op1 = getValue(I.getArgOperand(0));
4433     SDValue Op2 = getValue(I.getArgOperand(1));
4434     SDValue Op3 = getValue(I.getArgOperand(2));
4435     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4436     if (!Align)
4437       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4438     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4439     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4440     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4441                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4442     updateDAGForMaybeTailCall(MS);
4443     return nullptr;
4444   }
4445   case Intrinsic::memmove: {
4446     SDValue Op1 = getValue(I.getArgOperand(0));
4447     SDValue Op2 = getValue(I.getArgOperand(1));
4448     SDValue Op3 = getValue(I.getArgOperand(2));
4449     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4450     if (!Align)
4451       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4452     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4453     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4454     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4455                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4456                                 MachinePointerInfo(I.getArgOperand(1)));
4457     updateDAGForMaybeTailCall(MM);
4458     return nullptr;
4459   }
4460   case Intrinsic::dbg_declare: {
4461     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4462     DILocalVariable *Variable = DI.getVariable();
4463     DIExpression *Expression = DI.getExpression();
4464     const Value *Address = DI.getAddress();
4465     assert(Variable && "Missing variable");
4466     if (!Address) {
4467       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4468       return nullptr;
4469     }
4470 
4471     // Check if address has undef value.
4472     if (isa<UndefValue>(Address) ||
4473         (Address->use_empty() && !isa<Argument>(Address))) {
4474       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4475       return nullptr;
4476     }
4477 
4478     SDValue &N = NodeMap[Address];
4479     if (!N.getNode() && isa<Argument>(Address))
4480       // Check unused arguments map.
4481       N = UnusedArgNodeMap[Address];
4482     SDDbgValue *SDV;
4483     if (N.getNode()) {
4484       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4485         Address = BCI->getOperand(0);
4486       // Parameters are handled specially.
4487       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4488       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4489       if (isParameter && FINode) {
4490         // Byval parameter. We have a frame index at this point.
4491         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4492                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4493       } else if (isa<Argument>(Address)) {
4494         // Address is an argument, so try to emit its dbg value using
4495         // virtual register info from the FuncInfo.ValueMap.
4496         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4497                                  N);
4498         return nullptr;
4499       } else {
4500         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4501                               true, 0, dl, SDNodeOrder);
4502       }
4503       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4504     } else {
4505       // If Address is an argument then try to emit its dbg value using
4506       // virtual register info from the FuncInfo.ValueMap.
4507       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4508                                     N)) {
4509         // If variable is pinned by a alloca in dominating bb then
4510         // use StaticAllocaMap.
4511         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4512           if (AI->getParent() != DI.getParent()) {
4513             DenseMap<const AllocaInst*, int>::iterator SI =
4514               FuncInfo.StaticAllocaMap.find(AI);
4515             if (SI != FuncInfo.StaticAllocaMap.end()) {
4516               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4517                                               0, dl, SDNodeOrder);
4518               DAG.AddDbgValue(SDV, nullptr, false);
4519               return nullptr;
4520             }
4521           }
4522         }
4523         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4524       }
4525     }
4526     return nullptr;
4527   }
4528   case Intrinsic::dbg_value: {
4529     const DbgValueInst &DI = cast<DbgValueInst>(I);
4530     assert(DI.getVariable() && "Missing variable");
4531 
4532     DILocalVariable *Variable = DI.getVariable();
4533     DIExpression *Expression = DI.getExpression();
4534     uint64_t Offset = DI.getOffset();
4535     const Value *V = DI.getValue();
4536     if (!V)
4537       return nullptr;
4538 
4539     SDDbgValue *SDV;
4540     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4541       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4542                                     SDNodeOrder);
4543       DAG.AddDbgValue(SDV, nullptr, false);
4544     } else {
4545       // Do not use getValue() in here; we don't want to generate code at
4546       // this point if it hasn't been done yet.
4547       SDValue N = NodeMap[V];
4548       if (!N.getNode() && isa<Argument>(V))
4549         // Check unused arguments map.
4550         N = UnusedArgNodeMap[V];
4551       if (N.getNode()) {
4552         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4553                                       false, N)) {
4554           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4555                                 false, Offset, dl, SDNodeOrder);
4556           DAG.AddDbgValue(SDV, N.getNode(), false);
4557         }
4558       } else if (!V->use_empty() ) {
4559         // Do not call getValue(V) yet, as we don't want to generate code.
4560         // Remember it for later.
4561         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4562         DanglingDebugInfoMap[V] = DDI;
4563       } else {
4564         // We may expand this to cover more cases.  One case where we have no
4565         // data available is an unreferenced parameter.
4566         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4567       }
4568     }
4569 
4570     // Build a debug info table entry.
4571     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4572       V = BCI->getOperand(0);
4573     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4574     // Don't handle byval struct arguments or VLAs, for example.
4575     if (!AI) {
4576       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4577       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4578       return nullptr;
4579     }
4580     DenseMap<const AllocaInst*, int>::iterator SI =
4581       FuncInfo.StaticAllocaMap.find(AI);
4582     if (SI == FuncInfo.StaticAllocaMap.end())
4583       return nullptr; // VLAs.
4584     return nullptr;
4585   }
4586 
4587   case Intrinsic::eh_typeid_for: {
4588     // Find the type id for the given typeinfo.
4589     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4590     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4591     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4592     setValue(&I, Res);
4593     return nullptr;
4594   }
4595 
4596   case Intrinsic::eh_return_i32:
4597   case Intrinsic::eh_return_i64:
4598     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4599     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4600                             MVT::Other,
4601                             getControlRoot(),
4602                             getValue(I.getArgOperand(0)),
4603                             getValue(I.getArgOperand(1))));
4604     return nullptr;
4605   case Intrinsic::eh_unwind_init:
4606     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4607     return nullptr;
4608   case Intrinsic::eh_dwarf_cfa: {
4609     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4610                                         TLI.getPointerTy(DAG.getDataLayout()));
4611     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4612                                  CfaArg.getValueType(),
4613                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4614                                              CfaArg.getValueType()),
4615                                  CfaArg);
4616     SDValue FA = DAG.getNode(
4617         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4618         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4619     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4620                              FA, Offset));
4621     return nullptr;
4622   }
4623   case Intrinsic::eh_sjlj_callsite: {
4624     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4625     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4626     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4627     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4628 
4629     MMI.setCurrentCallSite(CI->getZExtValue());
4630     return nullptr;
4631   }
4632   case Intrinsic::eh_sjlj_functioncontext: {
4633     // Get and store the index of the function context.
4634     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4635     AllocaInst *FnCtx =
4636       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4637     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4638     MFI->setFunctionContextIndex(FI);
4639     return nullptr;
4640   }
4641   case Intrinsic::eh_sjlj_setjmp: {
4642     SDValue Ops[2];
4643     Ops[0] = getRoot();
4644     Ops[1] = getValue(I.getArgOperand(0));
4645     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4646                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4647     setValue(&I, Op.getValue(0));
4648     DAG.setRoot(Op.getValue(1));
4649     return nullptr;
4650   }
4651   case Intrinsic::eh_sjlj_longjmp: {
4652     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4653                             getRoot(), getValue(I.getArgOperand(0))));
4654     return nullptr;
4655   }
4656   case Intrinsic::eh_sjlj_setup_dispatch: {
4657     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4658                             getRoot()));
4659     return nullptr;
4660   }
4661 
4662   case Intrinsic::masked_gather:
4663     visitMaskedGather(I);
4664     return nullptr;
4665   case Intrinsic::masked_load:
4666     visitMaskedLoad(I);
4667     return nullptr;
4668   case Intrinsic::masked_scatter:
4669     visitMaskedScatter(I);
4670     return nullptr;
4671   case Intrinsic::masked_store:
4672     visitMaskedStore(I);
4673     return nullptr;
4674   case Intrinsic::x86_mmx_pslli_w:
4675   case Intrinsic::x86_mmx_pslli_d:
4676   case Intrinsic::x86_mmx_pslli_q:
4677   case Intrinsic::x86_mmx_psrli_w:
4678   case Intrinsic::x86_mmx_psrli_d:
4679   case Intrinsic::x86_mmx_psrli_q:
4680   case Intrinsic::x86_mmx_psrai_w:
4681   case Intrinsic::x86_mmx_psrai_d: {
4682     SDValue ShAmt = getValue(I.getArgOperand(1));
4683     if (isa<ConstantSDNode>(ShAmt)) {
4684       visitTargetIntrinsic(I, Intrinsic);
4685       return nullptr;
4686     }
4687     unsigned NewIntrinsic = 0;
4688     EVT ShAmtVT = MVT::v2i32;
4689     switch (Intrinsic) {
4690     case Intrinsic::x86_mmx_pslli_w:
4691       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4692       break;
4693     case Intrinsic::x86_mmx_pslli_d:
4694       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4695       break;
4696     case Intrinsic::x86_mmx_pslli_q:
4697       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4698       break;
4699     case Intrinsic::x86_mmx_psrli_w:
4700       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4701       break;
4702     case Intrinsic::x86_mmx_psrli_d:
4703       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4704       break;
4705     case Intrinsic::x86_mmx_psrli_q:
4706       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4707       break;
4708     case Intrinsic::x86_mmx_psrai_w:
4709       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4710       break;
4711     case Intrinsic::x86_mmx_psrai_d:
4712       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4713       break;
4714     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4715     }
4716 
4717     // The vector shift intrinsics with scalars uses 32b shift amounts but
4718     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4719     // to be zero.
4720     // We must do this early because v2i32 is not a legal type.
4721     SDValue ShOps[2];
4722     ShOps[0] = ShAmt;
4723     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4724     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4725     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4726     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4727     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4728                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4729                        getValue(I.getArgOperand(0)), ShAmt);
4730     setValue(&I, Res);
4731     return nullptr;
4732   }
4733   case Intrinsic::convertff:
4734   case Intrinsic::convertfsi:
4735   case Intrinsic::convertfui:
4736   case Intrinsic::convertsif:
4737   case Intrinsic::convertuif:
4738   case Intrinsic::convertss:
4739   case Intrinsic::convertsu:
4740   case Intrinsic::convertus:
4741   case Intrinsic::convertuu: {
4742     ISD::CvtCode Code = ISD::CVT_INVALID;
4743     switch (Intrinsic) {
4744     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4745     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4746     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4747     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4748     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4749     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4750     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4751     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4752     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4753     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4754     }
4755     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4756     const Value *Op1 = I.getArgOperand(0);
4757     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4758                                DAG.getValueType(DestVT),
4759                                DAG.getValueType(getValue(Op1).getValueType()),
4760                                getValue(I.getArgOperand(1)),
4761                                getValue(I.getArgOperand(2)),
4762                                Code);
4763     setValue(&I, Res);
4764     return nullptr;
4765   }
4766   case Intrinsic::powi:
4767     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4768                             getValue(I.getArgOperand(1)), DAG));
4769     return nullptr;
4770   case Intrinsic::log:
4771     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4772     return nullptr;
4773   case Intrinsic::log2:
4774     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4775     return nullptr;
4776   case Intrinsic::log10:
4777     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4778     return nullptr;
4779   case Intrinsic::exp:
4780     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4781     return nullptr;
4782   case Intrinsic::exp2:
4783     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4784     return nullptr;
4785   case Intrinsic::pow:
4786     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4787                            getValue(I.getArgOperand(1)), DAG, TLI));
4788     return nullptr;
4789   case Intrinsic::sqrt:
4790   case Intrinsic::fabs:
4791   case Intrinsic::sin:
4792   case Intrinsic::cos:
4793   case Intrinsic::floor:
4794   case Intrinsic::ceil:
4795   case Intrinsic::trunc:
4796   case Intrinsic::rint:
4797   case Intrinsic::nearbyint:
4798   case Intrinsic::round: {
4799     unsigned Opcode;
4800     switch (Intrinsic) {
4801     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4802     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4803     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4804     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4805     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4806     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4807     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4808     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4809     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4810     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4811     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4812     }
4813 
4814     setValue(&I, DAG.getNode(Opcode, sdl,
4815                              getValue(I.getArgOperand(0)).getValueType(),
4816                              getValue(I.getArgOperand(0))));
4817     return nullptr;
4818   }
4819   case Intrinsic::minnum:
4820     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4821                              getValue(I.getArgOperand(0)).getValueType(),
4822                              getValue(I.getArgOperand(0)),
4823                              getValue(I.getArgOperand(1))));
4824     return nullptr;
4825   case Intrinsic::maxnum:
4826     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4827                              getValue(I.getArgOperand(0)).getValueType(),
4828                              getValue(I.getArgOperand(0)),
4829                              getValue(I.getArgOperand(1))));
4830     return nullptr;
4831   case Intrinsic::copysign:
4832     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4833                              getValue(I.getArgOperand(0)).getValueType(),
4834                              getValue(I.getArgOperand(0)),
4835                              getValue(I.getArgOperand(1))));
4836     return nullptr;
4837   case Intrinsic::fma:
4838     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4839                              getValue(I.getArgOperand(0)).getValueType(),
4840                              getValue(I.getArgOperand(0)),
4841                              getValue(I.getArgOperand(1)),
4842                              getValue(I.getArgOperand(2))));
4843     return nullptr;
4844   case Intrinsic::fmuladd: {
4845     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4846     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4847         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4848       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4849                                getValue(I.getArgOperand(0)).getValueType(),
4850                                getValue(I.getArgOperand(0)),
4851                                getValue(I.getArgOperand(1)),
4852                                getValue(I.getArgOperand(2))));
4853     } else {
4854       // TODO: Intrinsic calls should have fast-math-flags.
4855       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4856                                 getValue(I.getArgOperand(0)).getValueType(),
4857                                 getValue(I.getArgOperand(0)),
4858                                 getValue(I.getArgOperand(1)));
4859       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4860                                 getValue(I.getArgOperand(0)).getValueType(),
4861                                 Mul,
4862                                 getValue(I.getArgOperand(2)));
4863       setValue(&I, Add);
4864     }
4865     return nullptr;
4866   }
4867   case Intrinsic::convert_to_fp16:
4868     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4869                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4870                                          getValue(I.getArgOperand(0)),
4871                                          DAG.getTargetConstant(0, sdl,
4872                                                                MVT::i32))));
4873     return nullptr;
4874   case Intrinsic::convert_from_fp16:
4875     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4876                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4877                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4878                                          getValue(I.getArgOperand(0)))));
4879     return nullptr;
4880   case Intrinsic::pcmarker: {
4881     SDValue Tmp = getValue(I.getArgOperand(0));
4882     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4883     return nullptr;
4884   }
4885   case Intrinsic::readcyclecounter: {
4886     SDValue Op = getRoot();
4887     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4888                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4889     setValue(&I, Res);
4890     DAG.setRoot(Res.getValue(1));
4891     return nullptr;
4892   }
4893   case Intrinsic::bitreverse:
4894     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4895                              getValue(I.getArgOperand(0)).getValueType(),
4896                              getValue(I.getArgOperand(0))));
4897     return nullptr;
4898   case Intrinsic::bswap:
4899     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4900                              getValue(I.getArgOperand(0)).getValueType(),
4901                              getValue(I.getArgOperand(0))));
4902     return nullptr;
4903   case Intrinsic::cttz: {
4904     SDValue Arg = getValue(I.getArgOperand(0));
4905     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4906     EVT Ty = Arg.getValueType();
4907     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4908                              sdl, Ty, Arg));
4909     return nullptr;
4910   }
4911   case Intrinsic::ctlz: {
4912     SDValue Arg = getValue(I.getArgOperand(0));
4913     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4914     EVT Ty = Arg.getValueType();
4915     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4916                              sdl, Ty, Arg));
4917     return nullptr;
4918   }
4919   case Intrinsic::ctpop: {
4920     SDValue Arg = getValue(I.getArgOperand(0));
4921     EVT Ty = Arg.getValueType();
4922     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4923     return nullptr;
4924   }
4925   case Intrinsic::stacksave: {
4926     SDValue Op = getRoot();
4927     Res = DAG.getNode(
4928         ISD::STACKSAVE, sdl,
4929         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4930     setValue(&I, Res);
4931     DAG.setRoot(Res.getValue(1));
4932     return nullptr;
4933   }
4934   case Intrinsic::stackrestore: {
4935     Res = getValue(I.getArgOperand(0));
4936     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4937     return nullptr;
4938   }
4939   case Intrinsic::get_dynamic_area_offset: {
4940     SDValue Op = getRoot();
4941     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4942     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4943     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4944     // target.
4945     if (PtrTy != ResTy)
4946       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4947                          " intrinsic!");
4948     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4949                       Op);
4950     DAG.setRoot(Op);
4951     setValue(&I, Res);
4952     return nullptr;
4953   }
4954   case Intrinsic::stackprotector: {
4955     // Emit code into the DAG to store the stack guard onto the stack.
4956     MachineFunction &MF = DAG.getMachineFunction();
4957     MachineFrameInfo *MFI = MF.getFrameInfo();
4958     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4959     SDValue Src, Chain = getRoot();
4960     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4961     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4962 
4963     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4964     // global variable __stack_chk_guard.
4965     if (!GV)
4966       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4967         if (BC->getOpcode() == Instruction::BitCast)
4968           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4969 
4970     if (GV && TLI.useLoadStackGuardNode()) {
4971       // Emit a LOAD_STACK_GUARD node.
4972       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4973                                                sdl, PtrTy, Chain);
4974       MachinePointerInfo MPInfo(GV);
4975       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4976       unsigned Flags = MachineMemOperand::MOLoad |
4977                        MachineMemOperand::MOInvariant;
4978       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4979                                          PtrTy.getSizeInBits() / 8,
4980                                          DAG.getEVTAlignment(PtrTy));
4981       Node->setMemRefs(MemRefs, MemRefs + 1);
4982 
4983       // Copy the guard value to a virtual register so that it can be
4984       // retrieved in the epilogue.
4985       Src = SDValue(Node, 0);
4986       const TargetRegisterClass *RC =
4987           TLI.getRegClassFor(Src.getSimpleValueType());
4988       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4989 
4990       SPDescriptor.setGuardReg(Reg);
4991       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4992     } else {
4993       Src = getValue(I.getArgOperand(0));   // The guard's value.
4994     }
4995 
4996     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4997 
4998     int FI = FuncInfo.StaticAllocaMap[Slot];
4999     MFI->setStackProtectorIndex(FI);
5000 
5001     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5002 
5003     // Store the stack protector onto the stack.
5004     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5005                                                  DAG.getMachineFunction(), FI),
5006                        true, false, 0);
5007     setValue(&I, Res);
5008     DAG.setRoot(Res);
5009     return nullptr;
5010   }
5011   case Intrinsic::objectsize: {
5012     // If we don't know by now, we're never going to know.
5013     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5014 
5015     assert(CI && "Non-constant type in __builtin_object_size?");
5016 
5017     SDValue Arg = getValue(I.getCalledValue());
5018     EVT Ty = Arg.getValueType();
5019 
5020     if (CI->isZero())
5021       Res = DAG.getConstant(-1ULL, sdl, Ty);
5022     else
5023       Res = DAG.getConstant(0, sdl, Ty);
5024 
5025     setValue(&I, Res);
5026     return nullptr;
5027   }
5028   case Intrinsic::annotation:
5029   case Intrinsic::ptr_annotation:
5030     // Drop the intrinsic, but forward the value
5031     setValue(&I, getValue(I.getOperand(0)));
5032     return nullptr;
5033   case Intrinsic::assume:
5034   case Intrinsic::var_annotation:
5035     // Discard annotate attributes and assumptions
5036     return nullptr;
5037 
5038   case Intrinsic::init_trampoline: {
5039     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5040 
5041     SDValue Ops[6];
5042     Ops[0] = getRoot();
5043     Ops[1] = getValue(I.getArgOperand(0));
5044     Ops[2] = getValue(I.getArgOperand(1));
5045     Ops[3] = getValue(I.getArgOperand(2));
5046     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5047     Ops[5] = DAG.getSrcValue(F);
5048 
5049     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5050 
5051     DAG.setRoot(Res);
5052     return nullptr;
5053   }
5054   case Intrinsic::adjust_trampoline: {
5055     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5056                              TLI.getPointerTy(DAG.getDataLayout()),
5057                              getValue(I.getArgOperand(0))));
5058     return nullptr;
5059   }
5060   case Intrinsic::gcroot: {
5061     MachineFunction &MF = DAG.getMachineFunction();
5062     const Function *F = MF.getFunction();
5063     (void)F;
5064     assert(F->hasGC() &&
5065            "only valid in functions with gc specified, enforced by Verifier");
5066     assert(GFI && "implied by previous");
5067     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5068     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5069 
5070     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5071     GFI->addStackRoot(FI->getIndex(), TypeMap);
5072     return nullptr;
5073   }
5074   case Intrinsic::gcread:
5075   case Intrinsic::gcwrite:
5076     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5077   case Intrinsic::flt_rounds:
5078     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5079     return nullptr;
5080 
5081   case Intrinsic::expect: {
5082     // Just replace __builtin_expect(exp, c) with EXP.
5083     setValue(&I, getValue(I.getArgOperand(0)));
5084     return nullptr;
5085   }
5086 
5087   case Intrinsic::debugtrap:
5088   case Intrinsic::trap: {
5089     StringRef TrapFuncName =
5090         I.getAttributes()
5091             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5092             .getValueAsString();
5093     if (TrapFuncName.empty()) {
5094       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5095         ISD::TRAP : ISD::DEBUGTRAP;
5096       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5097       return nullptr;
5098     }
5099     TargetLowering::ArgListTy Args;
5100 
5101     TargetLowering::CallLoweringInfo CLI(DAG);
5102     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5103         CallingConv::C, I.getType(),
5104         DAG.getExternalSymbol(TrapFuncName.data(),
5105                               TLI.getPointerTy(DAG.getDataLayout())),
5106         std::move(Args), 0);
5107 
5108     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5109     DAG.setRoot(Result.second);
5110     return nullptr;
5111   }
5112 
5113   case Intrinsic::uadd_with_overflow:
5114   case Intrinsic::sadd_with_overflow:
5115   case Intrinsic::usub_with_overflow:
5116   case Intrinsic::ssub_with_overflow:
5117   case Intrinsic::umul_with_overflow:
5118   case Intrinsic::smul_with_overflow: {
5119     ISD::NodeType Op;
5120     switch (Intrinsic) {
5121     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5122     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5123     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5124     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5125     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5126     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5127     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5128     }
5129     SDValue Op1 = getValue(I.getArgOperand(0));
5130     SDValue Op2 = getValue(I.getArgOperand(1));
5131 
5132     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5133     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5134     return nullptr;
5135   }
5136   case Intrinsic::prefetch: {
5137     SDValue Ops[5];
5138     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5139     Ops[0] = getRoot();
5140     Ops[1] = getValue(I.getArgOperand(0));
5141     Ops[2] = getValue(I.getArgOperand(1));
5142     Ops[3] = getValue(I.getArgOperand(2));
5143     Ops[4] = getValue(I.getArgOperand(3));
5144     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5145                                         DAG.getVTList(MVT::Other), Ops,
5146                                         EVT::getIntegerVT(*Context, 8),
5147                                         MachinePointerInfo(I.getArgOperand(0)),
5148                                         0, /* align */
5149                                         false, /* volatile */
5150                                         rw==0, /* read */
5151                                         rw==1)); /* write */
5152     return nullptr;
5153   }
5154   case Intrinsic::lifetime_start:
5155   case Intrinsic::lifetime_end: {
5156     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5157     // Stack coloring is not enabled in O0, discard region information.
5158     if (TM.getOptLevel() == CodeGenOpt::None)
5159       return nullptr;
5160 
5161     SmallVector<Value *, 4> Allocas;
5162     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5163 
5164     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5165            E = Allocas.end(); Object != E; ++Object) {
5166       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5167 
5168       // Could not find an Alloca.
5169       if (!LifetimeObject)
5170         continue;
5171 
5172       // First check that the Alloca is static, otherwise it won't have a
5173       // valid frame index.
5174       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5175       if (SI == FuncInfo.StaticAllocaMap.end())
5176         return nullptr;
5177 
5178       int FI = SI->second;
5179 
5180       SDValue Ops[2];
5181       Ops[0] = getRoot();
5182       Ops[1] =
5183           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5184       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5185 
5186       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5187       DAG.setRoot(Res);
5188     }
5189     return nullptr;
5190   }
5191   case Intrinsic::invariant_start:
5192     // Discard region information.
5193     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5194     return nullptr;
5195   case Intrinsic::invariant_end:
5196     // Discard region information.
5197     return nullptr;
5198   case Intrinsic::stackprotectorcheck: {
5199     // Do not actually emit anything for this basic block. Instead we initialize
5200     // the stack protector descriptor and export the guard variable so we can
5201     // access it in FinishBasicBlock.
5202     const BasicBlock *BB = I.getParent();
5203     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5204     ExportFromCurrentBlock(SPDescriptor.getGuard());
5205 
5206     // Flush our exports since we are going to process a terminator.
5207     (void)getControlRoot();
5208     return nullptr;
5209   }
5210   case Intrinsic::clear_cache:
5211     return TLI.getClearCacheBuiltinName();
5212   case Intrinsic::donothing:
5213     // ignore
5214     return nullptr;
5215   case Intrinsic::experimental_stackmap: {
5216     visitStackmap(I);
5217     return nullptr;
5218   }
5219   case Intrinsic::experimental_patchpoint_void:
5220   case Intrinsic::experimental_patchpoint_i64: {
5221     visitPatchpoint(&I);
5222     return nullptr;
5223   }
5224   case Intrinsic::experimental_gc_statepoint: {
5225     visitStatepoint(I);
5226     return nullptr;
5227   }
5228   case Intrinsic::experimental_gc_result: {
5229     visitGCResult(I);
5230     return nullptr;
5231   }
5232   case Intrinsic::experimental_gc_relocate: {
5233     visitGCRelocate(cast<GCRelocateInst>(I));
5234     return nullptr;
5235   }
5236   case Intrinsic::instrprof_increment:
5237     llvm_unreachable("instrprof failed to lower an increment");
5238   case Intrinsic::instrprof_value_profile:
5239     llvm_unreachable("instrprof failed to lower a value profiling call");
5240   case Intrinsic::localescape: {
5241     MachineFunction &MF = DAG.getMachineFunction();
5242     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5243 
5244     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5245     // is the same on all targets.
5246     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5247       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5248       if (isa<ConstantPointerNull>(Arg))
5249         continue; // Skip null pointers. They represent a hole in index space.
5250       AllocaInst *Slot = cast<AllocaInst>(Arg);
5251       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5252              "can only escape static allocas");
5253       int FI = FuncInfo.StaticAllocaMap[Slot];
5254       MCSymbol *FrameAllocSym =
5255           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5256               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5257       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5258               TII->get(TargetOpcode::LOCAL_ESCAPE))
5259           .addSym(FrameAllocSym)
5260           .addFrameIndex(FI);
5261     }
5262 
5263     return nullptr;
5264   }
5265 
5266   case Intrinsic::localrecover: {
5267     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5268     MachineFunction &MF = DAG.getMachineFunction();
5269     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5270 
5271     // Get the symbol that defines the frame offset.
5272     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5273     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5274     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5275     MCSymbol *FrameAllocSym =
5276         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5277             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5278 
5279     // Create a MCSymbol for the label to avoid any target lowering
5280     // that would make this PC relative.
5281     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5282     SDValue OffsetVal =
5283         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5284 
5285     // Add the offset to the FP.
5286     Value *FP = I.getArgOperand(1);
5287     SDValue FPVal = getValue(FP);
5288     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5289     setValue(&I, Add);
5290 
5291     return nullptr;
5292   }
5293 
5294   case Intrinsic::eh_exceptionpointer:
5295   case Intrinsic::eh_exceptioncode: {
5296     // Get the exception pointer vreg, copy from it, and resize it to fit.
5297     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5298     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5299     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5300     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5301     SDValue N =
5302         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5303     if (Intrinsic == Intrinsic::eh_exceptioncode)
5304       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5305     setValue(&I, N);
5306     return nullptr;
5307   }
5308   }
5309 }
5310 
5311 std::pair<SDValue, SDValue>
5312 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5313                                     const BasicBlock *EHPadBB) {
5314   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5315   MCSymbol *BeginLabel = nullptr;
5316 
5317   if (EHPadBB) {
5318     // Insert a label before the invoke call to mark the try range.  This can be
5319     // used to detect deletion of the invoke via the MachineModuleInfo.
5320     BeginLabel = MMI.getContext().createTempSymbol();
5321 
5322     // For SjLj, keep track of which landing pads go with which invokes
5323     // so as to maintain the ordering of pads in the LSDA.
5324     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5325     if (CallSiteIndex) {
5326       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5327       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5328 
5329       // Now that the call site is handled, stop tracking it.
5330       MMI.setCurrentCallSite(0);
5331     }
5332 
5333     // Both PendingLoads and PendingExports must be flushed here;
5334     // this call might not return.
5335     (void)getRoot();
5336     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5337 
5338     CLI.setChain(getRoot());
5339   }
5340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5341   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5342 
5343   assert((CLI.IsTailCall || Result.second.getNode()) &&
5344          "Non-null chain expected with non-tail call!");
5345   assert((Result.second.getNode() || !Result.first.getNode()) &&
5346          "Null value expected with tail call!");
5347 
5348   if (!Result.second.getNode()) {
5349     // As a special case, a null chain means that a tail call has been emitted
5350     // and the DAG root is already updated.
5351     HasTailCall = true;
5352 
5353     // Since there's no actual continuation from this block, nothing can be
5354     // relying on us setting vregs for them.
5355     PendingExports.clear();
5356   } else {
5357     DAG.setRoot(Result.second);
5358   }
5359 
5360   if (EHPadBB) {
5361     // Insert a label at the end of the invoke call to mark the try range.  This
5362     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5363     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5364     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5365 
5366     // Inform MachineModuleInfo of range.
5367     if (MMI.hasEHFunclets()) {
5368       assert(CLI.CS);
5369       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5370       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5371                                 BeginLabel, EndLabel);
5372     } else {
5373       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5374     }
5375   }
5376 
5377   return Result;
5378 }
5379 
5380 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5381                                       bool isTailCall,
5382                                       const BasicBlock *EHPadBB) {
5383   FunctionType *FTy = CS.getFunctionType();
5384   Type *RetTy = CS.getType();
5385 
5386   TargetLowering::ArgListTy Args;
5387   TargetLowering::ArgListEntry Entry;
5388   Args.reserve(CS.arg_size());
5389 
5390   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5391        i != e; ++i) {
5392     const Value *V = *i;
5393 
5394     // Skip empty types
5395     if (V->getType()->isEmptyTy())
5396       continue;
5397 
5398     SDValue ArgNode = getValue(V);
5399     Entry.Node = ArgNode; Entry.Ty = V->getType();
5400 
5401     // Skip the first return-type Attribute to get to params.
5402     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5403     Args.push_back(Entry);
5404 
5405     // If we have an explicit sret argument that is an Instruction, (i.e., it
5406     // might point to function-local memory), we can't meaningfully tail-call.
5407     if (Entry.isSRet && isa<Instruction>(V))
5408       isTailCall = false;
5409   }
5410 
5411   // Check if target-independent constraints permit a tail call here.
5412   // Target-dependent constraints are checked within TLI->LowerCallTo.
5413   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5414     isTailCall = false;
5415 
5416   TargetLowering::CallLoweringInfo CLI(DAG);
5417   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5418     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5419     .setTailCall(isTailCall);
5420   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5421 
5422   if (Result.first.getNode())
5423     setValue(CS.getInstruction(), Result.first);
5424 }
5425 
5426 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5427 /// value is equal or not-equal to zero.
5428 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5429   for (const User *U : V->users()) {
5430     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5431       if (IC->isEquality())
5432         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5433           if (C->isNullValue())
5434             continue;
5435     // Unknown instruction.
5436     return false;
5437   }
5438   return true;
5439 }
5440 
5441 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5442                              Type *LoadTy,
5443                              SelectionDAGBuilder &Builder) {
5444 
5445   // Check to see if this load can be trivially constant folded, e.g. if the
5446   // input is from a string literal.
5447   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5448     // Cast pointer to the type we really want to load.
5449     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5450                                          PointerType::getUnqual(LoadTy));
5451 
5452     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5453             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5454       return Builder.getValue(LoadCst);
5455   }
5456 
5457   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5458   // still constant memory, the input chain can be the entry node.
5459   SDValue Root;
5460   bool ConstantMemory = false;
5461 
5462   // Do not serialize (non-volatile) loads of constant memory with anything.
5463   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5464     Root = Builder.DAG.getEntryNode();
5465     ConstantMemory = true;
5466   } else {
5467     // Do not serialize non-volatile loads against each other.
5468     Root = Builder.DAG.getRoot();
5469   }
5470 
5471   SDValue Ptr = Builder.getValue(PtrVal);
5472   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5473                                         Ptr, MachinePointerInfo(PtrVal),
5474                                         false /*volatile*/,
5475                                         false /*nontemporal*/,
5476                                         false /*isinvariant*/, 1 /* align=1 */);
5477 
5478   if (!ConstantMemory)
5479     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5480   return LoadVal;
5481 }
5482 
5483 /// processIntegerCallValue - Record the value for an instruction that
5484 /// produces an integer result, converting the type where necessary.
5485 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5486                                                   SDValue Value,
5487                                                   bool IsSigned) {
5488   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5489                                                     I.getType(), true);
5490   if (IsSigned)
5491     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5492   else
5493     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5494   setValue(&I, Value);
5495 }
5496 
5497 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5498 /// If so, return true and lower it, otherwise return false and it will be
5499 /// lowered like a normal call.
5500 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5501   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5502   if (I.getNumArgOperands() != 3)
5503     return false;
5504 
5505   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5506   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5507       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5508       !I.getType()->isIntegerTy())
5509     return false;
5510 
5511   const Value *Size = I.getArgOperand(2);
5512   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5513   if (CSize && CSize->getZExtValue() == 0) {
5514     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5515                                                           I.getType(), true);
5516     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5517     return true;
5518   }
5519 
5520   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5521   std::pair<SDValue, SDValue> Res =
5522     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5523                                 getValue(LHS), getValue(RHS), getValue(Size),
5524                                 MachinePointerInfo(LHS),
5525                                 MachinePointerInfo(RHS));
5526   if (Res.first.getNode()) {
5527     processIntegerCallValue(I, Res.first, true);
5528     PendingLoads.push_back(Res.second);
5529     return true;
5530   }
5531 
5532   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5533   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5534   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5535     bool ActuallyDoIt = true;
5536     MVT LoadVT;
5537     Type *LoadTy;
5538     switch (CSize->getZExtValue()) {
5539     default:
5540       LoadVT = MVT::Other;
5541       LoadTy = nullptr;
5542       ActuallyDoIt = false;
5543       break;
5544     case 2:
5545       LoadVT = MVT::i16;
5546       LoadTy = Type::getInt16Ty(CSize->getContext());
5547       break;
5548     case 4:
5549       LoadVT = MVT::i32;
5550       LoadTy = Type::getInt32Ty(CSize->getContext());
5551       break;
5552     case 8:
5553       LoadVT = MVT::i64;
5554       LoadTy = Type::getInt64Ty(CSize->getContext());
5555       break;
5556         /*
5557     case 16:
5558       LoadVT = MVT::v4i32;
5559       LoadTy = Type::getInt32Ty(CSize->getContext());
5560       LoadTy = VectorType::get(LoadTy, 4);
5561       break;
5562          */
5563     }
5564 
5565     // This turns into unaligned loads.  We only do this if the target natively
5566     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5567     // we'll only produce a small number of byte loads.
5568 
5569     // Require that we can find a legal MVT, and only do this if the target
5570     // supports unaligned loads of that type.  Expanding into byte loads would
5571     // bloat the code.
5572     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5573     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5574       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5575       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5576       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5577       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5578       // TODO: Check alignment of src and dest ptrs.
5579       if (!TLI.isTypeLegal(LoadVT) ||
5580           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5581           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5582         ActuallyDoIt = false;
5583     }
5584 
5585     if (ActuallyDoIt) {
5586       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5587       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5588 
5589       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5590                                  ISD::SETNE);
5591       processIntegerCallValue(I, Res, false);
5592       return true;
5593     }
5594   }
5595 
5596 
5597   return false;
5598 }
5599 
5600 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5601 /// form.  If so, return true and lower it, otherwise return false and it
5602 /// will be lowered like a normal call.
5603 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5604   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5605   if (I.getNumArgOperands() != 3)
5606     return false;
5607 
5608   const Value *Src = I.getArgOperand(0);
5609   const Value *Char = I.getArgOperand(1);
5610   const Value *Length = I.getArgOperand(2);
5611   if (!Src->getType()->isPointerTy() ||
5612       !Char->getType()->isIntegerTy() ||
5613       !Length->getType()->isIntegerTy() ||
5614       !I.getType()->isPointerTy())
5615     return false;
5616 
5617   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5618   std::pair<SDValue, SDValue> Res =
5619     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5620                                 getValue(Src), getValue(Char), getValue(Length),
5621                                 MachinePointerInfo(Src));
5622   if (Res.first.getNode()) {
5623     setValue(&I, Res.first);
5624     PendingLoads.push_back(Res.second);
5625     return true;
5626   }
5627 
5628   return false;
5629 }
5630 
5631 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5632 /// optimized form.  If so, return true and lower it, otherwise return false
5633 /// and it will be lowered like a normal call.
5634 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5635   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5636   if (I.getNumArgOperands() != 2)
5637     return false;
5638 
5639   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5640   if (!Arg0->getType()->isPointerTy() ||
5641       !Arg1->getType()->isPointerTy() ||
5642       !I.getType()->isPointerTy())
5643     return false;
5644 
5645   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5646   std::pair<SDValue, SDValue> Res =
5647     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5648                                 getValue(Arg0), getValue(Arg1),
5649                                 MachinePointerInfo(Arg0),
5650                                 MachinePointerInfo(Arg1), isStpcpy);
5651   if (Res.first.getNode()) {
5652     setValue(&I, Res.first);
5653     DAG.setRoot(Res.second);
5654     return true;
5655   }
5656 
5657   return false;
5658 }
5659 
5660 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5661 /// If so, return true and lower it, otherwise return false and it will be
5662 /// lowered like a normal call.
5663 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5664   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5665   if (I.getNumArgOperands() != 2)
5666     return false;
5667 
5668   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5669   if (!Arg0->getType()->isPointerTy() ||
5670       !Arg1->getType()->isPointerTy() ||
5671       !I.getType()->isIntegerTy())
5672     return false;
5673 
5674   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5675   std::pair<SDValue, SDValue> Res =
5676     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5677                                 getValue(Arg0), getValue(Arg1),
5678                                 MachinePointerInfo(Arg0),
5679                                 MachinePointerInfo(Arg1));
5680   if (Res.first.getNode()) {
5681     processIntegerCallValue(I, Res.first, true);
5682     PendingLoads.push_back(Res.second);
5683     return true;
5684   }
5685 
5686   return false;
5687 }
5688 
5689 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5690 /// form.  If so, return true and lower it, otherwise return false and it
5691 /// will be lowered like a normal call.
5692 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5693   // Verify that the prototype makes sense.  size_t strlen(char *)
5694   if (I.getNumArgOperands() != 1)
5695     return false;
5696 
5697   const Value *Arg0 = I.getArgOperand(0);
5698   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5699     return false;
5700 
5701   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5702   std::pair<SDValue, SDValue> Res =
5703     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5704                                 getValue(Arg0), MachinePointerInfo(Arg0));
5705   if (Res.first.getNode()) {
5706     processIntegerCallValue(I, Res.first, false);
5707     PendingLoads.push_back(Res.second);
5708     return true;
5709   }
5710 
5711   return false;
5712 }
5713 
5714 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5715 /// form.  If so, return true and lower it, otherwise return false and it
5716 /// will be lowered like a normal call.
5717 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5718   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5719   if (I.getNumArgOperands() != 2)
5720     return false;
5721 
5722   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5723   if (!Arg0->getType()->isPointerTy() ||
5724       !Arg1->getType()->isIntegerTy() ||
5725       !I.getType()->isIntegerTy())
5726     return false;
5727 
5728   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5729   std::pair<SDValue, SDValue> Res =
5730     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5731                                  getValue(Arg0), getValue(Arg1),
5732                                  MachinePointerInfo(Arg0));
5733   if (Res.first.getNode()) {
5734     processIntegerCallValue(I, Res.first, false);
5735     PendingLoads.push_back(Res.second);
5736     return true;
5737   }
5738 
5739   return false;
5740 }
5741 
5742 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5743 /// operation (as expected), translate it to an SDNode with the specified opcode
5744 /// and return true.
5745 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5746                                               unsigned Opcode) {
5747   // Sanity check that it really is a unary floating-point call.
5748   if (I.getNumArgOperands() != 1 ||
5749       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5750       I.getType() != I.getArgOperand(0)->getType() ||
5751       !I.onlyReadsMemory())
5752     return false;
5753 
5754   SDValue Tmp = getValue(I.getArgOperand(0));
5755   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5756   return true;
5757 }
5758 
5759 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5760 /// operation (as expected), translate it to an SDNode with the specified opcode
5761 /// and return true.
5762 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5763                                                unsigned Opcode) {
5764   // Sanity check that it really is a binary floating-point call.
5765   if (I.getNumArgOperands() != 2 ||
5766       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5767       I.getType() != I.getArgOperand(0)->getType() ||
5768       I.getType() != I.getArgOperand(1)->getType() ||
5769       !I.onlyReadsMemory())
5770     return false;
5771 
5772   SDValue Tmp0 = getValue(I.getArgOperand(0));
5773   SDValue Tmp1 = getValue(I.getArgOperand(1));
5774   EVT VT = Tmp0.getValueType();
5775   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5776   return true;
5777 }
5778 
5779 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5780   // Handle inline assembly differently.
5781   if (isa<InlineAsm>(I.getCalledValue())) {
5782     visitInlineAsm(&I);
5783     return;
5784   }
5785 
5786   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5787   ComputeUsesVAFloatArgument(I, &MMI);
5788 
5789   const char *RenameFn = nullptr;
5790   if (Function *F = I.getCalledFunction()) {
5791     if (F->isDeclaration()) {
5792       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5793         if (unsigned IID = II->getIntrinsicID(F)) {
5794           RenameFn = visitIntrinsicCall(I, IID);
5795           if (!RenameFn)
5796             return;
5797         }
5798       }
5799       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5800         RenameFn = visitIntrinsicCall(I, IID);
5801         if (!RenameFn)
5802           return;
5803       }
5804     }
5805 
5806     // Check for well-known libc/libm calls.  If the function is internal, it
5807     // can't be a library call.
5808     LibFunc::Func Func;
5809     if (!F->hasLocalLinkage() && F->hasName() &&
5810         LibInfo->getLibFunc(F->getName(), Func) &&
5811         LibInfo->hasOptimizedCodeGen(Func)) {
5812       switch (Func) {
5813       default: break;
5814       case LibFunc::copysign:
5815       case LibFunc::copysignf:
5816       case LibFunc::copysignl:
5817         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5818             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5819             I.getType() == I.getArgOperand(0)->getType() &&
5820             I.getType() == I.getArgOperand(1)->getType() &&
5821             I.onlyReadsMemory()) {
5822           SDValue LHS = getValue(I.getArgOperand(0));
5823           SDValue RHS = getValue(I.getArgOperand(1));
5824           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5825                                    LHS.getValueType(), LHS, RHS));
5826           return;
5827         }
5828         break;
5829       case LibFunc::fabs:
5830       case LibFunc::fabsf:
5831       case LibFunc::fabsl:
5832         if (visitUnaryFloatCall(I, ISD::FABS))
5833           return;
5834         break;
5835       case LibFunc::fmin:
5836       case LibFunc::fminf:
5837       case LibFunc::fminl:
5838         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5839           return;
5840         break;
5841       case LibFunc::fmax:
5842       case LibFunc::fmaxf:
5843       case LibFunc::fmaxl:
5844         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5845           return;
5846         break;
5847       case LibFunc::sin:
5848       case LibFunc::sinf:
5849       case LibFunc::sinl:
5850         if (visitUnaryFloatCall(I, ISD::FSIN))
5851           return;
5852         break;
5853       case LibFunc::cos:
5854       case LibFunc::cosf:
5855       case LibFunc::cosl:
5856         if (visitUnaryFloatCall(I, ISD::FCOS))
5857           return;
5858         break;
5859       case LibFunc::sqrt:
5860       case LibFunc::sqrtf:
5861       case LibFunc::sqrtl:
5862       case LibFunc::sqrt_finite:
5863       case LibFunc::sqrtf_finite:
5864       case LibFunc::sqrtl_finite:
5865         if (visitUnaryFloatCall(I, ISD::FSQRT))
5866           return;
5867         break;
5868       case LibFunc::floor:
5869       case LibFunc::floorf:
5870       case LibFunc::floorl:
5871         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5872           return;
5873         break;
5874       case LibFunc::nearbyint:
5875       case LibFunc::nearbyintf:
5876       case LibFunc::nearbyintl:
5877         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5878           return;
5879         break;
5880       case LibFunc::ceil:
5881       case LibFunc::ceilf:
5882       case LibFunc::ceill:
5883         if (visitUnaryFloatCall(I, ISD::FCEIL))
5884           return;
5885         break;
5886       case LibFunc::rint:
5887       case LibFunc::rintf:
5888       case LibFunc::rintl:
5889         if (visitUnaryFloatCall(I, ISD::FRINT))
5890           return;
5891         break;
5892       case LibFunc::round:
5893       case LibFunc::roundf:
5894       case LibFunc::roundl:
5895         if (visitUnaryFloatCall(I, ISD::FROUND))
5896           return;
5897         break;
5898       case LibFunc::trunc:
5899       case LibFunc::truncf:
5900       case LibFunc::truncl:
5901         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5902           return;
5903         break;
5904       case LibFunc::log2:
5905       case LibFunc::log2f:
5906       case LibFunc::log2l:
5907         if (visitUnaryFloatCall(I, ISD::FLOG2))
5908           return;
5909         break;
5910       case LibFunc::exp2:
5911       case LibFunc::exp2f:
5912       case LibFunc::exp2l:
5913         if (visitUnaryFloatCall(I, ISD::FEXP2))
5914           return;
5915         break;
5916       case LibFunc::memcmp:
5917         if (visitMemCmpCall(I))
5918           return;
5919         break;
5920       case LibFunc::memchr:
5921         if (visitMemChrCall(I))
5922           return;
5923         break;
5924       case LibFunc::strcpy:
5925         if (visitStrCpyCall(I, false))
5926           return;
5927         break;
5928       case LibFunc::stpcpy:
5929         if (visitStrCpyCall(I, true))
5930           return;
5931         break;
5932       case LibFunc::strcmp:
5933         if (visitStrCmpCall(I))
5934           return;
5935         break;
5936       case LibFunc::strlen:
5937         if (visitStrLenCall(I))
5938           return;
5939         break;
5940       case LibFunc::strnlen:
5941         if (visitStrNLenCall(I))
5942           return;
5943         break;
5944       }
5945     }
5946   }
5947 
5948   SDValue Callee;
5949   if (!RenameFn)
5950     Callee = getValue(I.getCalledValue());
5951   else
5952     Callee = DAG.getExternalSymbol(
5953         RenameFn,
5954         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5955 
5956   // Check if we can potentially perform a tail call. More detailed checking is
5957   // be done within LowerCallTo, after more information about the call is known.
5958   LowerCallTo(&I, Callee, I.isTailCall());
5959 }
5960 
5961 namespace {
5962 
5963 /// AsmOperandInfo - This contains information for each constraint that we are
5964 /// lowering.
5965 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5966 public:
5967   /// CallOperand - If this is the result output operand or a clobber
5968   /// this is null, otherwise it is the incoming operand to the CallInst.
5969   /// This gets modified as the asm is processed.
5970   SDValue CallOperand;
5971 
5972   /// AssignedRegs - If this is a register or register class operand, this
5973   /// contains the set of register corresponding to the operand.
5974   RegsForValue AssignedRegs;
5975 
5976   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5977     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5978   }
5979 
5980   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5981   /// corresponds to.  If there is no Value* for this operand, it returns
5982   /// MVT::Other.
5983   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5984                            const DataLayout &DL) const {
5985     if (!CallOperandVal) return MVT::Other;
5986 
5987     if (isa<BasicBlock>(CallOperandVal))
5988       return TLI.getPointerTy(DL);
5989 
5990     llvm::Type *OpTy = CallOperandVal->getType();
5991 
5992     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5993     // If this is an indirect operand, the operand is a pointer to the
5994     // accessed type.
5995     if (isIndirect) {
5996       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5997       if (!PtrTy)
5998         report_fatal_error("Indirect operand for inline asm not a pointer!");
5999       OpTy = PtrTy->getElementType();
6000     }
6001 
6002     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6003     if (StructType *STy = dyn_cast<StructType>(OpTy))
6004       if (STy->getNumElements() == 1)
6005         OpTy = STy->getElementType(0);
6006 
6007     // If OpTy is not a single value, it may be a struct/union that we
6008     // can tile with integers.
6009     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6010       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6011       switch (BitSize) {
6012       default: break;
6013       case 1:
6014       case 8:
6015       case 16:
6016       case 32:
6017       case 64:
6018       case 128:
6019         OpTy = IntegerType::get(Context, BitSize);
6020         break;
6021       }
6022     }
6023 
6024     return TLI.getValueType(DL, OpTy, true);
6025   }
6026 };
6027 
6028 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6029 
6030 } // end anonymous namespace
6031 
6032 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6033 /// specified operand.  We prefer to assign virtual registers, to allow the
6034 /// register allocator to handle the assignment process.  However, if the asm
6035 /// uses features that we can't model on machineinstrs, we have SDISel do the
6036 /// allocation.  This produces generally horrible, but correct, code.
6037 ///
6038 ///   OpInfo describes the operand.
6039 ///
6040 static void GetRegistersForValue(SelectionDAG &DAG,
6041                                  const TargetLowering &TLI,
6042                                  SDLoc DL,
6043                                  SDISelAsmOperandInfo &OpInfo) {
6044   LLVMContext &Context = *DAG.getContext();
6045 
6046   MachineFunction &MF = DAG.getMachineFunction();
6047   SmallVector<unsigned, 4> Regs;
6048 
6049   // If this is a constraint for a single physreg, or a constraint for a
6050   // register class, find it.
6051   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6052       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6053                                        OpInfo.ConstraintCode,
6054                                        OpInfo.ConstraintVT);
6055 
6056   unsigned NumRegs = 1;
6057   if (OpInfo.ConstraintVT != MVT::Other) {
6058     // If this is a FP input in an integer register (or visa versa) insert a bit
6059     // cast of the input value.  More generally, handle any case where the input
6060     // value disagrees with the register class we plan to stick this in.
6061     if (OpInfo.Type == InlineAsm::isInput &&
6062         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6063       // Try to convert to the first EVT that the reg class contains.  If the
6064       // types are identical size, use a bitcast to convert (e.g. two differing
6065       // vector types).
6066       MVT RegVT = *PhysReg.second->vt_begin();
6067       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6068         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6069                                          RegVT, OpInfo.CallOperand);
6070         OpInfo.ConstraintVT = RegVT;
6071       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6072         // If the input is a FP value and we want it in FP registers, do a
6073         // bitcast to the corresponding integer type.  This turns an f64 value
6074         // into i64, which can be passed with two i32 values on a 32-bit
6075         // machine.
6076         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6077         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6078                                          RegVT, OpInfo.CallOperand);
6079         OpInfo.ConstraintVT = RegVT;
6080       }
6081     }
6082 
6083     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6084   }
6085 
6086   MVT RegVT;
6087   EVT ValueVT = OpInfo.ConstraintVT;
6088 
6089   // If this is a constraint for a specific physical register, like {r17},
6090   // assign it now.
6091   if (unsigned AssignedReg = PhysReg.first) {
6092     const TargetRegisterClass *RC = PhysReg.second;
6093     if (OpInfo.ConstraintVT == MVT::Other)
6094       ValueVT = *RC->vt_begin();
6095 
6096     // Get the actual register value type.  This is important, because the user
6097     // may have asked for (e.g.) the AX register in i32 type.  We need to
6098     // remember that AX is actually i16 to get the right extension.
6099     RegVT = *RC->vt_begin();
6100 
6101     // This is a explicit reference to a physical register.
6102     Regs.push_back(AssignedReg);
6103 
6104     // If this is an expanded reference, add the rest of the regs to Regs.
6105     if (NumRegs != 1) {
6106       TargetRegisterClass::iterator I = RC->begin();
6107       for (; *I != AssignedReg; ++I)
6108         assert(I != RC->end() && "Didn't find reg!");
6109 
6110       // Already added the first reg.
6111       --NumRegs; ++I;
6112       for (; NumRegs; --NumRegs, ++I) {
6113         assert(I != RC->end() && "Ran out of registers to allocate!");
6114         Regs.push_back(*I);
6115       }
6116     }
6117 
6118     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6119     return;
6120   }
6121 
6122   // Otherwise, if this was a reference to an LLVM register class, create vregs
6123   // for this reference.
6124   if (const TargetRegisterClass *RC = PhysReg.second) {
6125     RegVT = *RC->vt_begin();
6126     if (OpInfo.ConstraintVT == MVT::Other)
6127       ValueVT = RegVT;
6128 
6129     // Create the appropriate number of virtual registers.
6130     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6131     for (; NumRegs; --NumRegs)
6132       Regs.push_back(RegInfo.createVirtualRegister(RC));
6133 
6134     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6135     return;
6136   }
6137 
6138   // Otherwise, we couldn't allocate enough registers for this.
6139 }
6140 
6141 /// visitInlineAsm - Handle a call to an InlineAsm object.
6142 ///
6143 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6144   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6145 
6146   /// ConstraintOperands - Information about all of the constraints.
6147   SDISelAsmOperandInfoVector ConstraintOperands;
6148 
6149   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6150   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6151       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6152 
6153   bool hasMemory = false;
6154 
6155   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6156   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6157   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6158     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6159     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6160 
6161     MVT OpVT = MVT::Other;
6162 
6163     // Compute the value type for each operand.
6164     switch (OpInfo.Type) {
6165     case InlineAsm::isOutput:
6166       // Indirect outputs just consume an argument.
6167       if (OpInfo.isIndirect) {
6168         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6169         break;
6170       }
6171 
6172       // The return value of the call is this value.  As such, there is no
6173       // corresponding argument.
6174       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6175       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6176         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6177                                       STy->getElementType(ResNo));
6178       } else {
6179         assert(ResNo == 0 && "Asm only has one result!");
6180         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6181       }
6182       ++ResNo;
6183       break;
6184     case InlineAsm::isInput:
6185       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6186       break;
6187     case InlineAsm::isClobber:
6188       // Nothing to do.
6189       break;
6190     }
6191 
6192     // If this is an input or an indirect output, process the call argument.
6193     // BasicBlocks are labels, currently appearing only in asm's.
6194     if (OpInfo.CallOperandVal) {
6195       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6196         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6197       } else {
6198         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6199       }
6200 
6201       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6202                                          DAG.getDataLayout()).getSimpleVT();
6203     }
6204 
6205     OpInfo.ConstraintVT = OpVT;
6206 
6207     // Indirect operand accesses access memory.
6208     if (OpInfo.isIndirect)
6209       hasMemory = true;
6210     else {
6211       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6212         TargetLowering::ConstraintType
6213           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6214         if (CType == TargetLowering::C_Memory) {
6215           hasMemory = true;
6216           break;
6217         }
6218       }
6219     }
6220   }
6221 
6222   SDValue Chain, Flag;
6223 
6224   // We won't need to flush pending loads if this asm doesn't touch
6225   // memory and is nonvolatile.
6226   if (hasMemory || IA->hasSideEffects())
6227     Chain = getRoot();
6228   else
6229     Chain = DAG.getRoot();
6230 
6231   // Second pass over the constraints: compute which constraint option to use
6232   // and assign registers to constraints that want a specific physreg.
6233   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6234     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6235 
6236     // If this is an output operand with a matching input operand, look up the
6237     // matching input. If their types mismatch, e.g. one is an integer, the
6238     // other is floating point, or their sizes are different, flag it as an
6239     // error.
6240     if (OpInfo.hasMatchingInput()) {
6241       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6242 
6243       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6244         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6245         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6246             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6247                                              OpInfo.ConstraintVT);
6248         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6249             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6250                                              Input.ConstraintVT);
6251         if ((OpInfo.ConstraintVT.isInteger() !=
6252              Input.ConstraintVT.isInteger()) ||
6253             (MatchRC.second != InputRC.second)) {
6254           report_fatal_error("Unsupported asm: input constraint"
6255                              " with a matching output constraint of"
6256                              " incompatible type!");
6257         }
6258         Input.ConstraintVT = OpInfo.ConstraintVT;
6259       }
6260     }
6261 
6262     // Compute the constraint code and ConstraintType to use.
6263     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6264 
6265     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6266         OpInfo.Type == InlineAsm::isClobber)
6267       continue;
6268 
6269     // If this is a memory input, and if the operand is not indirect, do what we
6270     // need to to provide an address for the memory input.
6271     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6272         !OpInfo.isIndirect) {
6273       assert((OpInfo.isMultipleAlternative ||
6274               (OpInfo.Type == InlineAsm::isInput)) &&
6275              "Can only indirectify direct input operands!");
6276 
6277       // Memory operands really want the address of the value.  If we don't have
6278       // an indirect input, put it in the constpool if we can, otherwise spill
6279       // it to a stack slot.
6280       // TODO: This isn't quite right. We need to handle these according to
6281       // the addressing mode that the constraint wants. Also, this may take
6282       // an additional register for the computation and we don't want that
6283       // either.
6284 
6285       // If the operand is a float, integer, or vector constant, spill to a
6286       // constant pool entry to get its address.
6287       const Value *OpVal = OpInfo.CallOperandVal;
6288       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6289           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6290         OpInfo.CallOperand = DAG.getConstantPool(
6291             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6292       } else {
6293         // Otherwise, create a stack slot and emit a store to it before the
6294         // asm.
6295         Type *Ty = OpVal->getType();
6296         auto &DL = DAG.getDataLayout();
6297         uint64_t TySize = DL.getTypeAllocSize(Ty);
6298         unsigned Align = DL.getPrefTypeAlignment(Ty);
6299         MachineFunction &MF = DAG.getMachineFunction();
6300         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6301         SDValue StackSlot =
6302             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6303         Chain = DAG.getStore(
6304             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6305             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6306             false, false, 0);
6307         OpInfo.CallOperand = StackSlot;
6308       }
6309 
6310       // There is no longer a Value* corresponding to this operand.
6311       OpInfo.CallOperandVal = nullptr;
6312 
6313       // It is now an indirect operand.
6314       OpInfo.isIndirect = true;
6315     }
6316 
6317     // If this constraint is for a specific register, allocate it before
6318     // anything else.
6319     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6320       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6321   }
6322 
6323   // Second pass - Loop over all of the operands, assigning virtual or physregs
6324   // to register class operands.
6325   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6326     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6327 
6328     // C_Register operands have already been allocated, Other/Memory don't need
6329     // to be.
6330     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6331       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6332   }
6333 
6334   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6335   std::vector<SDValue> AsmNodeOperands;
6336   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6337   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6338       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6339 
6340   // If we have a !srcloc metadata node associated with it, we want to attach
6341   // this to the ultimately generated inline asm machineinstr.  To do this, we
6342   // pass in the third operand as this (potentially null) inline asm MDNode.
6343   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6344   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6345 
6346   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6347   // bits as operand 3.
6348   unsigned ExtraInfo = 0;
6349   if (IA->hasSideEffects())
6350     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6351   if (IA->isAlignStack())
6352     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6353   // Set the asm dialect.
6354   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6355 
6356   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6357   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6358     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6359 
6360     // Compute the constraint code and ConstraintType to use.
6361     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6362 
6363     // Ideally, we would only check against memory constraints.  However, the
6364     // meaning of an other constraint can be target-specific and we can't easily
6365     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6366     // for other constriants as well.
6367     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6368         OpInfo.ConstraintType == TargetLowering::C_Other) {
6369       if (OpInfo.Type == InlineAsm::isInput)
6370         ExtraInfo |= InlineAsm::Extra_MayLoad;
6371       else if (OpInfo.Type == InlineAsm::isOutput)
6372         ExtraInfo |= InlineAsm::Extra_MayStore;
6373       else if (OpInfo.Type == InlineAsm::isClobber)
6374         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6375     }
6376   }
6377 
6378   AsmNodeOperands.push_back(DAG.getTargetConstant(
6379       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6380 
6381   // Loop over all of the inputs, copying the operand values into the
6382   // appropriate registers and processing the output regs.
6383   RegsForValue RetValRegs;
6384 
6385   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6386   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6387 
6388   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6389     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6390 
6391     switch (OpInfo.Type) {
6392     case InlineAsm::isOutput: {
6393       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6394           OpInfo.ConstraintType != TargetLowering::C_Register) {
6395         // Memory output, or 'other' output (e.g. 'X' constraint).
6396         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6397 
6398         unsigned ConstraintID =
6399             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6400         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6401                "Failed to convert memory constraint code to constraint id.");
6402 
6403         // Add information to the INLINEASM node to know about this output.
6404         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6405         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6406         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6407                                                         MVT::i32));
6408         AsmNodeOperands.push_back(OpInfo.CallOperand);
6409         break;
6410       }
6411 
6412       // Otherwise, this is a register or register class output.
6413 
6414       // Copy the output from the appropriate register.  Find a register that
6415       // we can use.
6416       if (OpInfo.AssignedRegs.Regs.empty()) {
6417         LLVMContext &Ctx = *DAG.getContext();
6418         Ctx.emitError(CS.getInstruction(),
6419                       "couldn't allocate output register for constraint '" +
6420                           Twine(OpInfo.ConstraintCode) + "'");
6421         return;
6422       }
6423 
6424       // If this is an indirect operand, store through the pointer after the
6425       // asm.
6426       if (OpInfo.isIndirect) {
6427         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6428                                                       OpInfo.CallOperandVal));
6429       } else {
6430         // This is the result value of the call.
6431         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6432         // Concatenate this output onto the outputs list.
6433         RetValRegs.append(OpInfo.AssignedRegs);
6434       }
6435 
6436       // Add information to the INLINEASM node to know that this register is
6437       // set.
6438       OpInfo.AssignedRegs
6439           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6440                                     ? InlineAsm::Kind_RegDefEarlyClobber
6441                                     : InlineAsm::Kind_RegDef,
6442                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6443       break;
6444     }
6445     case InlineAsm::isInput: {
6446       SDValue InOperandVal = OpInfo.CallOperand;
6447 
6448       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6449         // If this is required to match an output register we have already set,
6450         // just use its register.
6451         unsigned OperandNo = OpInfo.getMatchedOperand();
6452 
6453         // Scan until we find the definition we already emitted of this operand.
6454         // When we find it, create a RegsForValue operand.
6455         unsigned CurOp = InlineAsm::Op_FirstOperand;
6456         for (; OperandNo; --OperandNo) {
6457           // Advance to the next operand.
6458           unsigned OpFlag =
6459             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6460           assert((InlineAsm::isRegDefKind(OpFlag) ||
6461                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6462                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6463           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6464         }
6465 
6466         unsigned OpFlag =
6467           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6468         if (InlineAsm::isRegDefKind(OpFlag) ||
6469             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6470           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6471           if (OpInfo.isIndirect) {
6472             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6473             LLVMContext &Ctx = *DAG.getContext();
6474             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6475                                                " don't know how to handle tied "
6476                                                "indirect register inputs");
6477             return;
6478           }
6479 
6480           RegsForValue MatchedRegs;
6481           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6482           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6483           MatchedRegs.RegVTs.push_back(RegVT);
6484           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6485           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6486                i != e; ++i) {
6487             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6488               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6489             else {
6490               LLVMContext &Ctx = *DAG.getContext();
6491               Ctx.emitError(CS.getInstruction(),
6492                             "inline asm error: This value"
6493                             " type register class is not natively supported!");
6494               return;
6495             }
6496           }
6497           SDLoc dl = getCurSDLoc();
6498           // Use the produced MatchedRegs object to
6499           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6500                                     Chain, &Flag, CS.getInstruction());
6501           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6502                                            true, OpInfo.getMatchedOperand(), dl,
6503                                            DAG, AsmNodeOperands);
6504           break;
6505         }
6506 
6507         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6508         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6509                "Unexpected number of operands");
6510         // Add information to the INLINEASM node to know about this input.
6511         // See InlineAsm.h isUseOperandTiedToDef.
6512         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6513         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6514                                                     OpInfo.getMatchedOperand());
6515         AsmNodeOperands.push_back(DAG.getTargetConstant(
6516             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6517         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6518         break;
6519       }
6520 
6521       // Treat indirect 'X' constraint as memory.
6522       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6523           OpInfo.isIndirect)
6524         OpInfo.ConstraintType = TargetLowering::C_Memory;
6525 
6526       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6527         std::vector<SDValue> Ops;
6528         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6529                                           Ops, DAG);
6530         if (Ops.empty()) {
6531           LLVMContext &Ctx = *DAG.getContext();
6532           Ctx.emitError(CS.getInstruction(),
6533                         "invalid operand for inline asm constraint '" +
6534                             Twine(OpInfo.ConstraintCode) + "'");
6535           return;
6536         }
6537 
6538         // Add information to the INLINEASM node to know about this input.
6539         unsigned ResOpType =
6540           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6541         AsmNodeOperands.push_back(DAG.getTargetConstant(
6542             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6543         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6544         break;
6545       }
6546 
6547       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6548         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6549         assert(InOperandVal.getValueType() ==
6550                    TLI.getPointerTy(DAG.getDataLayout()) &&
6551                "Memory operands expect pointer values");
6552 
6553         unsigned ConstraintID =
6554             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6555         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6556                "Failed to convert memory constraint code to constraint id.");
6557 
6558         // Add information to the INLINEASM node to know about this input.
6559         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6560         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6561         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6562                                                         getCurSDLoc(),
6563                                                         MVT::i32));
6564         AsmNodeOperands.push_back(InOperandVal);
6565         break;
6566       }
6567 
6568       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6569               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6570              "Unknown constraint type!");
6571 
6572       // TODO: Support this.
6573       if (OpInfo.isIndirect) {
6574         LLVMContext &Ctx = *DAG.getContext();
6575         Ctx.emitError(CS.getInstruction(),
6576                       "Don't know how to handle indirect register inputs yet "
6577                       "for constraint '" +
6578                           Twine(OpInfo.ConstraintCode) + "'");
6579         return;
6580       }
6581 
6582       // Copy the input into the appropriate registers.
6583       if (OpInfo.AssignedRegs.Regs.empty()) {
6584         LLVMContext &Ctx = *DAG.getContext();
6585         Ctx.emitError(CS.getInstruction(),
6586                       "couldn't allocate input reg for constraint '" +
6587                           Twine(OpInfo.ConstraintCode) + "'");
6588         return;
6589       }
6590 
6591       SDLoc dl = getCurSDLoc();
6592 
6593       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6594                                         Chain, &Flag, CS.getInstruction());
6595 
6596       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6597                                                dl, DAG, AsmNodeOperands);
6598       break;
6599     }
6600     case InlineAsm::isClobber: {
6601       // Add the clobbered value to the operand list, so that the register
6602       // allocator is aware that the physreg got clobbered.
6603       if (!OpInfo.AssignedRegs.Regs.empty())
6604         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6605                                                  false, 0, getCurSDLoc(), DAG,
6606                                                  AsmNodeOperands);
6607       break;
6608     }
6609     }
6610   }
6611 
6612   // Finish up input operands.  Set the input chain and add the flag last.
6613   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6614   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6615 
6616   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6617                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6618   Flag = Chain.getValue(1);
6619 
6620   // If this asm returns a register value, copy the result from that register
6621   // and set it as the value of the call.
6622   if (!RetValRegs.Regs.empty()) {
6623     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6624                                              Chain, &Flag, CS.getInstruction());
6625 
6626     // FIXME: Why don't we do this for inline asms with MRVs?
6627     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6628       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6629 
6630       // If any of the results of the inline asm is a vector, it may have the
6631       // wrong width/num elts.  This can happen for register classes that can
6632       // contain multiple different value types.  The preg or vreg allocated may
6633       // not have the same VT as was expected.  Convert it to the right type
6634       // with bit_convert.
6635       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6636         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6637                           ResultType, Val);
6638 
6639       } else if (ResultType != Val.getValueType() &&
6640                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6641         // If a result value was tied to an input value, the computed result may
6642         // have a wider width than the expected result.  Extract the relevant
6643         // portion.
6644         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6645       }
6646 
6647       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6648     }
6649 
6650     setValue(CS.getInstruction(), Val);
6651     // Don't need to use this as a chain in this case.
6652     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6653       return;
6654   }
6655 
6656   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6657 
6658   // Process indirect outputs, first output all of the flagged copies out of
6659   // physregs.
6660   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6661     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6662     const Value *Ptr = IndirectStoresToEmit[i].second;
6663     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6664                                              Chain, &Flag, IA);
6665     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6666   }
6667 
6668   // Emit the non-flagged stores from the physregs.
6669   SmallVector<SDValue, 8> OutChains;
6670   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6671     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6672                                StoresToEmit[i].first,
6673                                getValue(StoresToEmit[i].second),
6674                                MachinePointerInfo(StoresToEmit[i].second),
6675                                false, false, 0);
6676     OutChains.push_back(Val);
6677   }
6678 
6679   if (!OutChains.empty())
6680     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6681 
6682   DAG.setRoot(Chain);
6683 }
6684 
6685 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6686   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6687                           MVT::Other, getRoot(),
6688                           getValue(I.getArgOperand(0)),
6689                           DAG.getSrcValue(I.getArgOperand(0))));
6690 }
6691 
6692 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6694   const DataLayout &DL = DAG.getDataLayout();
6695   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6696                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6697                            DAG.getSrcValue(I.getOperand(0)),
6698                            DL.getABITypeAlignment(I.getType()));
6699   setValue(&I, V);
6700   DAG.setRoot(V.getValue(1));
6701 }
6702 
6703 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6704   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6705                           MVT::Other, getRoot(),
6706                           getValue(I.getArgOperand(0)),
6707                           DAG.getSrcValue(I.getArgOperand(0))));
6708 }
6709 
6710 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6711   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6712                           MVT::Other, getRoot(),
6713                           getValue(I.getArgOperand(0)),
6714                           getValue(I.getArgOperand(1)),
6715                           DAG.getSrcValue(I.getArgOperand(0)),
6716                           DAG.getSrcValue(I.getArgOperand(1))));
6717 }
6718 
6719 /// \brief Lower an argument list according to the target calling convention.
6720 ///
6721 /// \return A tuple of <return-value, token-chain>
6722 ///
6723 /// This is a helper for lowering intrinsics that follow a target calling
6724 /// convention or require stack pointer adjustment. Only a subset of the
6725 /// intrinsic's operands need to participate in the calling convention.
6726 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6727     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6728     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6729   TargetLowering::ArgListTy Args;
6730   Args.reserve(NumArgs);
6731 
6732   // Populate the argument list.
6733   // Attributes for args start at offset 1, after the return attribute.
6734   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6735        ArgI != ArgE; ++ArgI) {
6736     const Value *V = CS->getOperand(ArgI);
6737 
6738     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6739 
6740     TargetLowering::ArgListEntry Entry;
6741     Entry.Node = getValue(V);
6742     Entry.Ty = V->getType();
6743     Entry.setAttributes(&CS, AttrI);
6744     Args.push_back(Entry);
6745   }
6746 
6747   TargetLowering::CallLoweringInfo CLI(DAG);
6748   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6749     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6750     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6751 
6752   return lowerInvokable(CLI, EHPadBB);
6753 }
6754 
6755 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6756 /// or patchpoint target node's operand list.
6757 ///
6758 /// Constants are converted to TargetConstants purely as an optimization to
6759 /// avoid constant materialization and register allocation.
6760 ///
6761 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6762 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6763 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6764 /// address materialization and register allocation, but may also be required
6765 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6766 /// alloca in the entry block, then the runtime may assume that the alloca's
6767 /// StackMap location can be read immediately after compilation and that the
6768 /// location is valid at any point during execution (this is similar to the
6769 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6770 /// only available in a register, then the runtime would need to trap when
6771 /// execution reaches the StackMap in order to read the alloca's location.
6772 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6773                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6774                                 SelectionDAGBuilder &Builder) {
6775   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6776     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6777     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6778       Ops.push_back(
6779         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6780       Ops.push_back(
6781         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6782     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6783       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6784       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6785           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6786     } else
6787       Ops.push_back(OpVal);
6788   }
6789 }
6790 
6791 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6792 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6793   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6794   //                                  [live variables...])
6795 
6796   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6797 
6798   SDValue Chain, InFlag, Callee, NullPtr;
6799   SmallVector<SDValue, 32> Ops;
6800 
6801   SDLoc DL = getCurSDLoc();
6802   Callee = getValue(CI.getCalledValue());
6803   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6804 
6805   // The stackmap intrinsic only records the live variables (the arguemnts
6806   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6807   // intrinsic, this won't be lowered to a function call. This means we don't
6808   // have to worry about calling conventions and target specific lowering code.
6809   // Instead we perform the call lowering right here.
6810   //
6811   // chain, flag = CALLSEQ_START(chain, 0)
6812   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6813   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6814   //
6815   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6816   InFlag = Chain.getValue(1);
6817 
6818   // Add the <id> and <numBytes> constants.
6819   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6820   Ops.push_back(DAG.getTargetConstant(
6821                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6822   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6823   Ops.push_back(DAG.getTargetConstant(
6824                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6825                   MVT::i32));
6826 
6827   // Push live variables for the stack map.
6828   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6829 
6830   // We are not pushing any register mask info here on the operands list,
6831   // because the stackmap doesn't clobber anything.
6832 
6833   // Push the chain and the glue flag.
6834   Ops.push_back(Chain);
6835   Ops.push_back(InFlag);
6836 
6837   // Create the STACKMAP node.
6838   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6839   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6840   Chain = SDValue(SM, 0);
6841   InFlag = Chain.getValue(1);
6842 
6843   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6844 
6845   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6846 
6847   // Set the root to the target-lowered call chain.
6848   DAG.setRoot(Chain);
6849 
6850   // Inform the Frame Information that we have a stackmap in this function.
6851   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6852 }
6853 
6854 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6855 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6856                                           const BasicBlock *EHPadBB) {
6857   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6858   //                                                 i32 <numBytes>,
6859   //                                                 i8* <target>,
6860   //                                                 i32 <numArgs>,
6861   //                                                 [Args...],
6862   //                                                 [live variables...])
6863 
6864   CallingConv::ID CC = CS.getCallingConv();
6865   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6866   bool HasDef = !CS->getType()->isVoidTy();
6867   SDLoc dl = getCurSDLoc();
6868   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6869 
6870   // Handle immediate and symbolic callees.
6871   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6872     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6873                                    /*isTarget=*/true);
6874   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6875     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6876                                          SDLoc(SymbolicCallee),
6877                                          SymbolicCallee->getValueType(0));
6878 
6879   // Get the real number of arguments participating in the call <numArgs>
6880   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6881   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6882 
6883   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6884   // Intrinsics include all meta-operands up to but not including CC.
6885   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6886   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6887          "Not enough arguments provided to the patchpoint intrinsic");
6888 
6889   // For AnyRegCC the arguments are lowered later on manually.
6890   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6891   Type *ReturnTy =
6892     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6893   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6894       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6895 
6896   SDNode *CallEnd = Result.second.getNode();
6897   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6898     CallEnd = CallEnd->getOperand(0).getNode();
6899 
6900   /// Get a call instruction from the call sequence chain.
6901   /// Tail calls are not allowed.
6902   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6903          "Expected a callseq node.");
6904   SDNode *Call = CallEnd->getOperand(0).getNode();
6905   bool HasGlue = Call->getGluedNode();
6906 
6907   // Replace the target specific call node with the patchable intrinsic.
6908   SmallVector<SDValue, 8> Ops;
6909 
6910   // Add the <id> and <numBytes> constants.
6911   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6912   Ops.push_back(DAG.getTargetConstant(
6913                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6914   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6915   Ops.push_back(DAG.getTargetConstant(
6916                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6917                   MVT::i32));
6918 
6919   // Add the callee.
6920   Ops.push_back(Callee);
6921 
6922   // Adjust <numArgs> to account for any arguments that have been passed on the
6923   // stack instead.
6924   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6925   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6926   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6927   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6928 
6929   // Add the calling convention
6930   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6931 
6932   // Add the arguments we omitted previously. The register allocator should
6933   // place these in any free register.
6934   if (IsAnyRegCC)
6935     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6936       Ops.push_back(getValue(CS.getArgument(i)));
6937 
6938   // Push the arguments from the call instruction up to the register mask.
6939   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6940   Ops.append(Call->op_begin() + 2, e);
6941 
6942   // Push live variables for the stack map.
6943   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6944 
6945   // Push the register mask info.
6946   if (HasGlue)
6947     Ops.push_back(*(Call->op_end()-2));
6948   else
6949     Ops.push_back(*(Call->op_end()-1));
6950 
6951   // Push the chain (this is originally the first operand of the call, but
6952   // becomes now the last or second to last operand).
6953   Ops.push_back(*(Call->op_begin()));
6954 
6955   // Push the glue flag (last operand).
6956   if (HasGlue)
6957     Ops.push_back(*(Call->op_end()-1));
6958 
6959   SDVTList NodeTys;
6960   if (IsAnyRegCC && HasDef) {
6961     // Create the return types based on the intrinsic definition
6962     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6963     SmallVector<EVT, 3> ValueVTs;
6964     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6965     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6966 
6967     // There is always a chain and a glue type at the end
6968     ValueVTs.push_back(MVT::Other);
6969     ValueVTs.push_back(MVT::Glue);
6970     NodeTys = DAG.getVTList(ValueVTs);
6971   } else
6972     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6973 
6974   // Replace the target specific call node with a PATCHPOINT node.
6975   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6976                                          dl, NodeTys, Ops);
6977 
6978   // Update the NodeMap.
6979   if (HasDef) {
6980     if (IsAnyRegCC)
6981       setValue(CS.getInstruction(), SDValue(MN, 0));
6982     else
6983       setValue(CS.getInstruction(), Result.first);
6984   }
6985 
6986   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6987   // call sequence. Furthermore the location of the chain and glue can change
6988   // when the AnyReg calling convention is used and the intrinsic returns a
6989   // value.
6990   if (IsAnyRegCC && HasDef) {
6991     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6992     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6993     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6994   } else
6995     DAG.ReplaceAllUsesWith(Call, MN);
6996   DAG.DeleteNode(Call);
6997 
6998   // Inform the Frame Information that we have a patchpoint in this function.
6999   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7000 }
7001 
7002 /// Returns an AttributeSet representing the attributes applied to the return
7003 /// value of the given call.
7004 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7005   SmallVector<Attribute::AttrKind, 2> Attrs;
7006   if (CLI.RetSExt)
7007     Attrs.push_back(Attribute::SExt);
7008   if (CLI.RetZExt)
7009     Attrs.push_back(Attribute::ZExt);
7010   if (CLI.IsInReg)
7011     Attrs.push_back(Attribute::InReg);
7012 
7013   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7014                            Attrs);
7015 }
7016 
7017 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7018 /// implementation, which just calls LowerCall.
7019 /// FIXME: When all targets are
7020 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7021 std::pair<SDValue, SDValue>
7022 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7023   // Handle the incoming return values from the call.
7024   CLI.Ins.clear();
7025   Type *OrigRetTy = CLI.RetTy;
7026   SmallVector<EVT, 4> RetTys;
7027   SmallVector<uint64_t, 4> Offsets;
7028   auto &DL = CLI.DAG.getDataLayout();
7029   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7030 
7031   SmallVector<ISD::OutputArg, 4> Outs;
7032   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7033 
7034   bool CanLowerReturn =
7035       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7036                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7037 
7038   SDValue DemoteStackSlot;
7039   int DemoteStackIdx = -100;
7040   if (!CanLowerReturn) {
7041     // FIXME: equivalent assert?
7042     // assert(!CS.hasInAllocaArgument() &&
7043     //        "sret demotion is incompatible with inalloca");
7044     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7045     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7046     MachineFunction &MF = CLI.DAG.getMachineFunction();
7047     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7048     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7049 
7050     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7051     ArgListEntry Entry;
7052     Entry.Node = DemoteStackSlot;
7053     Entry.Ty = StackSlotPtrType;
7054     Entry.isSExt = false;
7055     Entry.isZExt = false;
7056     Entry.isInReg = false;
7057     Entry.isSRet = true;
7058     Entry.isNest = false;
7059     Entry.isByVal = false;
7060     Entry.isReturned = false;
7061     Entry.Alignment = Align;
7062     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7063     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7064 
7065     // sret demotion isn't compatible with tail-calls, since the sret argument
7066     // points into the callers stack frame.
7067     CLI.IsTailCall = false;
7068   } else {
7069     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7070       EVT VT = RetTys[I];
7071       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7072       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7073       for (unsigned i = 0; i != NumRegs; ++i) {
7074         ISD::InputArg MyFlags;
7075         MyFlags.VT = RegisterVT;
7076         MyFlags.ArgVT = VT;
7077         MyFlags.Used = CLI.IsReturnValueUsed;
7078         if (CLI.RetSExt)
7079           MyFlags.Flags.setSExt();
7080         if (CLI.RetZExt)
7081           MyFlags.Flags.setZExt();
7082         if (CLI.IsInReg)
7083           MyFlags.Flags.setInReg();
7084         CLI.Ins.push_back(MyFlags);
7085       }
7086     }
7087   }
7088 
7089   // Handle all of the outgoing arguments.
7090   CLI.Outs.clear();
7091   CLI.OutVals.clear();
7092   ArgListTy &Args = CLI.getArgs();
7093   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7094     SmallVector<EVT, 4> ValueVTs;
7095     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7096     Type *FinalType = Args[i].Ty;
7097     if (Args[i].isByVal)
7098       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7099     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7100         FinalType, CLI.CallConv, CLI.IsVarArg);
7101     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7102          ++Value) {
7103       EVT VT = ValueVTs[Value];
7104       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7105       SDValue Op = SDValue(Args[i].Node.getNode(),
7106                            Args[i].Node.getResNo() + Value);
7107       ISD::ArgFlagsTy Flags;
7108       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7109 
7110       if (Args[i].isZExt)
7111         Flags.setZExt();
7112       if (Args[i].isSExt)
7113         Flags.setSExt();
7114       if (Args[i].isInReg)
7115         Flags.setInReg();
7116       if (Args[i].isSRet)
7117         Flags.setSRet();
7118       if (Args[i].isByVal)
7119         Flags.setByVal();
7120       if (Args[i].isInAlloca) {
7121         Flags.setInAlloca();
7122         // Set the byval flag for CCAssignFn callbacks that don't know about
7123         // inalloca.  This way we can know how many bytes we should've allocated
7124         // and how many bytes a callee cleanup function will pop.  If we port
7125         // inalloca to more targets, we'll have to add custom inalloca handling
7126         // in the various CC lowering callbacks.
7127         Flags.setByVal();
7128       }
7129       if (Args[i].isByVal || Args[i].isInAlloca) {
7130         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7131         Type *ElementTy = Ty->getElementType();
7132         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7133         // For ByVal, alignment should come from FE.  BE will guess if this
7134         // info is not there but there are cases it cannot get right.
7135         unsigned FrameAlign;
7136         if (Args[i].Alignment)
7137           FrameAlign = Args[i].Alignment;
7138         else
7139           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7140         Flags.setByValAlign(FrameAlign);
7141       }
7142       if (Args[i].isNest)
7143         Flags.setNest();
7144       if (NeedsRegBlock)
7145         Flags.setInConsecutiveRegs();
7146       Flags.setOrigAlign(OriginalAlignment);
7147 
7148       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7149       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7150       SmallVector<SDValue, 4> Parts(NumParts);
7151       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7152 
7153       if (Args[i].isSExt)
7154         ExtendKind = ISD::SIGN_EXTEND;
7155       else if (Args[i].isZExt)
7156         ExtendKind = ISD::ZERO_EXTEND;
7157 
7158       // Conservatively only handle 'returned' on non-vectors for now
7159       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7160         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7161                "unexpected use of 'returned'");
7162         // Before passing 'returned' to the target lowering code, ensure that
7163         // either the register MVT and the actual EVT are the same size or that
7164         // the return value and argument are extended in the same way; in these
7165         // cases it's safe to pass the argument register value unchanged as the
7166         // return register value (although it's at the target's option whether
7167         // to do so)
7168         // TODO: allow code generation to take advantage of partially preserved
7169         // registers rather than clobbering the entire register when the
7170         // parameter extension method is not compatible with the return
7171         // extension method
7172         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7173             (ExtendKind != ISD::ANY_EXTEND &&
7174              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7175         Flags.setReturned();
7176       }
7177 
7178       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7179                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7180 
7181       for (unsigned j = 0; j != NumParts; ++j) {
7182         // if it isn't first piece, alignment must be 1
7183         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7184                                i < CLI.NumFixedArgs,
7185                                i, j*Parts[j].getValueType().getStoreSize());
7186         if (NumParts > 1 && j == 0)
7187           MyFlags.Flags.setSplit();
7188         else if (j != 0) {
7189           MyFlags.Flags.setOrigAlign(1);
7190           if (j == NumParts - 1)
7191             MyFlags.Flags.setSplitEnd();
7192         }
7193 
7194         CLI.Outs.push_back(MyFlags);
7195         CLI.OutVals.push_back(Parts[j]);
7196       }
7197 
7198       if (NeedsRegBlock && Value == NumValues - 1)
7199         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7200     }
7201   }
7202 
7203   SmallVector<SDValue, 4> InVals;
7204   CLI.Chain = LowerCall(CLI, InVals);
7205 
7206   // Verify that the target's LowerCall behaved as expected.
7207   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7208          "LowerCall didn't return a valid chain!");
7209   assert((!CLI.IsTailCall || InVals.empty()) &&
7210          "LowerCall emitted a return value for a tail call!");
7211   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7212          "LowerCall didn't emit the correct number of values!");
7213 
7214   // For a tail call, the return value is merely live-out and there aren't
7215   // any nodes in the DAG representing it. Return a special value to
7216   // indicate that a tail call has been emitted and no more Instructions
7217   // should be processed in the current block.
7218   if (CLI.IsTailCall) {
7219     CLI.DAG.setRoot(CLI.Chain);
7220     return std::make_pair(SDValue(), SDValue());
7221   }
7222 
7223   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7224           assert(InVals[i].getNode() &&
7225                  "LowerCall emitted a null value!");
7226           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7227                  "LowerCall emitted a value with the wrong type!");
7228         });
7229 
7230   SmallVector<SDValue, 4> ReturnValues;
7231   if (!CanLowerReturn) {
7232     // The instruction result is the result of loading from the
7233     // hidden sret parameter.
7234     SmallVector<EVT, 1> PVTs;
7235     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7236 
7237     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7238     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7239     EVT PtrVT = PVTs[0];
7240 
7241     unsigned NumValues = RetTys.size();
7242     ReturnValues.resize(NumValues);
7243     SmallVector<SDValue, 4> Chains(NumValues);
7244 
7245     // An aggregate return value cannot wrap around the address space, so
7246     // offsets to its parts don't wrap either.
7247     SDNodeFlags Flags;
7248     Flags.setNoUnsignedWrap(true);
7249 
7250     for (unsigned i = 0; i < NumValues; ++i) {
7251       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7252                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7253                                                         PtrVT), &Flags);
7254       SDValue L = CLI.DAG.getLoad(
7255           RetTys[i], CLI.DL, CLI.Chain, Add,
7256           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7257                                             DemoteStackIdx, Offsets[i]),
7258           false, false, false, 1);
7259       ReturnValues[i] = L;
7260       Chains[i] = L.getValue(1);
7261     }
7262 
7263     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7264   } else {
7265     // Collect the legal value parts into potentially illegal values
7266     // that correspond to the original function's return values.
7267     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7268     if (CLI.RetSExt)
7269       AssertOp = ISD::AssertSext;
7270     else if (CLI.RetZExt)
7271       AssertOp = ISD::AssertZext;
7272     unsigned CurReg = 0;
7273     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7274       EVT VT = RetTys[I];
7275       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7276       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7277 
7278       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7279                                               NumRegs, RegisterVT, VT, nullptr,
7280                                               AssertOp));
7281       CurReg += NumRegs;
7282     }
7283 
7284     // For a function returning void, there is no return value. We can't create
7285     // such a node, so we just return a null return value in that case. In
7286     // that case, nothing will actually look at the value.
7287     if (ReturnValues.empty())
7288       return std::make_pair(SDValue(), CLI.Chain);
7289   }
7290 
7291   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7292                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7293   return std::make_pair(Res, CLI.Chain);
7294 }
7295 
7296 void TargetLowering::LowerOperationWrapper(SDNode *N,
7297                                            SmallVectorImpl<SDValue> &Results,
7298                                            SelectionDAG &DAG) const {
7299   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7300   if (Res.getNode())
7301     Results.push_back(Res);
7302 }
7303 
7304 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7305   llvm_unreachable("LowerOperation not implemented for this target!");
7306 }
7307 
7308 void
7309 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7310   SDValue Op = getNonRegisterValue(V);
7311   assert((Op.getOpcode() != ISD::CopyFromReg ||
7312           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7313          "Copy from a reg to the same reg!");
7314   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7315 
7316   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7317   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7318                    V->getType());
7319   SDValue Chain = DAG.getEntryNode();
7320 
7321   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7322                               FuncInfo.PreferredExtendType.end())
7323                                  ? ISD::ANY_EXTEND
7324                                  : FuncInfo.PreferredExtendType[V];
7325   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7326   PendingExports.push_back(Chain);
7327 }
7328 
7329 #include "llvm/CodeGen/SelectionDAGISel.h"
7330 
7331 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7332 /// entry block, return true.  This includes arguments used by switches, since
7333 /// the switch may expand into multiple basic blocks.
7334 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7335   // With FastISel active, we may be splitting blocks, so force creation
7336   // of virtual registers for all non-dead arguments.
7337   if (FastISel)
7338     return A->use_empty();
7339 
7340   const BasicBlock &Entry = A->getParent()->front();
7341   for (const User *U : A->users())
7342     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7343       return false;  // Use not in entry block.
7344 
7345   return true;
7346 }
7347 
7348 void SelectionDAGISel::LowerArguments(const Function &F) {
7349   SelectionDAG &DAG = SDB->DAG;
7350   SDLoc dl = SDB->getCurSDLoc();
7351   const DataLayout &DL = DAG.getDataLayout();
7352   SmallVector<ISD::InputArg, 16> Ins;
7353 
7354   if (!FuncInfo->CanLowerReturn) {
7355     // Put in an sret pointer parameter before all the other parameters.
7356     SmallVector<EVT, 1> ValueVTs;
7357     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7358                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7359 
7360     // NOTE: Assuming that a pointer will never break down to more than one VT
7361     // or one register.
7362     ISD::ArgFlagsTy Flags;
7363     Flags.setSRet();
7364     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7365     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7366                          ISD::InputArg::NoArgIndex, 0);
7367     Ins.push_back(RetArg);
7368   }
7369 
7370   // Set up the incoming argument description vector.
7371   unsigned Idx = 1;
7372   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7373        I != E; ++I, ++Idx) {
7374     SmallVector<EVT, 4> ValueVTs;
7375     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7376     bool isArgValueUsed = !I->use_empty();
7377     unsigned PartBase = 0;
7378     Type *FinalType = I->getType();
7379     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7380       FinalType = cast<PointerType>(FinalType)->getElementType();
7381     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7382         FinalType, F.getCallingConv(), F.isVarArg());
7383     for (unsigned Value = 0, NumValues = ValueVTs.size();
7384          Value != NumValues; ++Value) {
7385       EVT VT = ValueVTs[Value];
7386       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7387       ISD::ArgFlagsTy Flags;
7388       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7389 
7390       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7391         Flags.setZExt();
7392       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7393         Flags.setSExt();
7394       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7395         Flags.setInReg();
7396       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7397         Flags.setSRet();
7398       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7399         Flags.setByVal();
7400       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7401         Flags.setInAlloca();
7402         // Set the byval flag for CCAssignFn callbacks that don't know about
7403         // inalloca.  This way we can know how many bytes we should've allocated
7404         // and how many bytes a callee cleanup function will pop.  If we port
7405         // inalloca to more targets, we'll have to add custom inalloca handling
7406         // in the various CC lowering callbacks.
7407         Flags.setByVal();
7408       }
7409       if (F.getCallingConv() == CallingConv::X86_INTR) {
7410         // IA Interrupt passes frame (1st parameter) by value in the stack.
7411         if (Idx == 1)
7412           Flags.setByVal();
7413       }
7414       if (Flags.isByVal() || Flags.isInAlloca()) {
7415         PointerType *Ty = cast<PointerType>(I->getType());
7416         Type *ElementTy = Ty->getElementType();
7417         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7418         // For ByVal, alignment should be passed from FE.  BE will guess if
7419         // this info is not there but there are cases it cannot get right.
7420         unsigned FrameAlign;
7421         if (F.getParamAlignment(Idx))
7422           FrameAlign = F.getParamAlignment(Idx);
7423         else
7424           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7425         Flags.setByValAlign(FrameAlign);
7426       }
7427       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7428         Flags.setNest();
7429       if (NeedsRegBlock)
7430         Flags.setInConsecutiveRegs();
7431       Flags.setOrigAlign(OriginalAlignment);
7432 
7433       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7434       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7435       for (unsigned i = 0; i != NumRegs; ++i) {
7436         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7437                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7438         if (NumRegs > 1 && i == 0)
7439           MyFlags.Flags.setSplit();
7440         // if it isn't first piece, alignment must be 1
7441         else if (i > 0) {
7442           MyFlags.Flags.setOrigAlign(1);
7443           if (i == NumRegs - 1)
7444             MyFlags.Flags.setSplitEnd();
7445         }
7446         Ins.push_back(MyFlags);
7447       }
7448       if (NeedsRegBlock && Value == NumValues - 1)
7449         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7450       PartBase += VT.getStoreSize();
7451     }
7452   }
7453 
7454   // Call the target to set up the argument values.
7455   SmallVector<SDValue, 8> InVals;
7456   SDValue NewRoot = TLI->LowerFormalArguments(
7457       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7458 
7459   // Verify that the target's LowerFormalArguments behaved as expected.
7460   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7461          "LowerFormalArguments didn't return a valid chain!");
7462   assert(InVals.size() == Ins.size() &&
7463          "LowerFormalArguments didn't emit the correct number of values!");
7464   DEBUG({
7465       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7466         assert(InVals[i].getNode() &&
7467                "LowerFormalArguments emitted a null value!");
7468         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7469                "LowerFormalArguments emitted a value with the wrong type!");
7470       }
7471     });
7472 
7473   // Update the DAG with the new chain value resulting from argument lowering.
7474   DAG.setRoot(NewRoot);
7475 
7476   // Set up the argument values.
7477   unsigned i = 0;
7478   Idx = 1;
7479   if (!FuncInfo->CanLowerReturn) {
7480     // Create a virtual register for the sret pointer, and put in a copy
7481     // from the sret argument into it.
7482     SmallVector<EVT, 1> ValueVTs;
7483     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7484                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7485     MVT VT = ValueVTs[0].getSimpleVT();
7486     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7487     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7488     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7489                                         RegVT, VT, nullptr, AssertOp);
7490 
7491     MachineFunction& MF = SDB->DAG.getMachineFunction();
7492     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7493     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7494     FuncInfo->DemoteRegister = SRetReg;
7495     NewRoot =
7496         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7497     DAG.setRoot(NewRoot);
7498 
7499     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7500     // Idx indexes LLVM arguments.  Don't touch it.
7501     ++i;
7502   }
7503 
7504   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7505       ++I, ++Idx) {
7506     SmallVector<SDValue, 4> ArgValues;
7507     SmallVector<EVT, 4> ValueVTs;
7508     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7509     unsigned NumValues = ValueVTs.size();
7510 
7511     // If this argument is unused then remember its value. It is used to generate
7512     // debugging information.
7513     if (I->use_empty() && NumValues) {
7514       SDB->setUnusedArgValue(&*I, InVals[i]);
7515 
7516       // Also remember any frame index for use in FastISel.
7517       if (FrameIndexSDNode *FI =
7518           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7519         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7520     }
7521 
7522     for (unsigned Val = 0; Val != NumValues; ++Val) {
7523       EVT VT = ValueVTs[Val];
7524       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7525       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7526 
7527       if (!I->use_empty()) {
7528         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7529         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7530           AssertOp = ISD::AssertSext;
7531         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7532           AssertOp = ISD::AssertZext;
7533 
7534         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7535                                              NumParts, PartVT, VT,
7536                                              nullptr, AssertOp));
7537       }
7538 
7539       i += NumParts;
7540     }
7541 
7542     // We don't need to do anything else for unused arguments.
7543     if (ArgValues.empty())
7544       continue;
7545 
7546     // Note down frame index.
7547     if (FrameIndexSDNode *FI =
7548         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7549       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7550 
7551     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7552                                      SDB->getCurSDLoc());
7553 
7554     SDB->setValue(&*I, Res);
7555     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7556       if (LoadSDNode *LNode =
7557           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7558         if (FrameIndexSDNode *FI =
7559             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7560         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7561     }
7562 
7563     // If this argument is live outside of the entry block, insert a copy from
7564     // wherever we got it to the vreg that other BB's will reference it as.
7565     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7566       // If we can, though, try to skip creating an unnecessary vreg.
7567       // FIXME: This isn't very clean... it would be nice to make this more
7568       // general.  It's also subtly incompatible with the hacks FastISel
7569       // uses with vregs.
7570       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7571       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7572         FuncInfo->ValueMap[&*I] = Reg;
7573         continue;
7574       }
7575     }
7576     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7577       FuncInfo->InitializeRegForValue(&*I);
7578       SDB->CopyToExportRegsIfNeeded(&*I);
7579     }
7580   }
7581 
7582   assert(i == InVals.size() && "Argument register count mismatch!");
7583 
7584   // Finally, if the target has anything special to do, allow it to do so.
7585   EmitFunctionEntryCode();
7586 }
7587 
7588 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7589 /// ensure constants are generated when needed.  Remember the virtual registers
7590 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7591 /// directly add them, because expansion might result in multiple MBB's for one
7592 /// BB.  As such, the start of the BB might correspond to a different MBB than
7593 /// the end.
7594 ///
7595 void
7596 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7597   const TerminatorInst *TI = LLVMBB->getTerminator();
7598 
7599   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7600 
7601   // Check PHI nodes in successors that expect a value to be available from this
7602   // block.
7603   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7604     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7605     if (!isa<PHINode>(SuccBB->begin())) continue;
7606     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7607 
7608     // If this terminator has multiple identical successors (common for
7609     // switches), only handle each succ once.
7610     if (!SuccsHandled.insert(SuccMBB).second)
7611       continue;
7612 
7613     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7614 
7615     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7616     // nodes and Machine PHI nodes, but the incoming operands have not been
7617     // emitted yet.
7618     for (BasicBlock::const_iterator I = SuccBB->begin();
7619          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7620       // Ignore dead phi's.
7621       if (PN->use_empty()) continue;
7622 
7623       // Skip empty types
7624       if (PN->getType()->isEmptyTy())
7625         continue;
7626 
7627       unsigned Reg;
7628       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7629 
7630       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7631         unsigned &RegOut = ConstantsOut[C];
7632         if (RegOut == 0) {
7633           RegOut = FuncInfo.CreateRegs(C->getType());
7634           CopyValueToVirtualRegister(C, RegOut);
7635         }
7636         Reg = RegOut;
7637       } else {
7638         DenseMap<const Value *, unsigned>::iterator I =
7639           FuncInfo.ValueMap.find(PHIOp);
7640         if (I != FuncInfo.ValueMap.end())
7641           Reg = I->second;
7642         else {
7643           assert(isa<AllocaInst>(PHIOp) &&
7644                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7645                  "Didn't codegen value into a register!??");
7646           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7647           CopyValueToVirtualRegister(PHIOp, Reg);
7648         }
7649       }
7650 
7651       // Remember that this register needs to added to the machine PHI node as
7652       // the input for this MBB.
7653       SmallVector<EVT, 4> ValueVTs;
7654       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7655       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7656       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7657         EVT VT = ValueVTs[vti];
7658         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7659         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7660           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7661         Reg += NumRegisters;
7662       }
7663     }
7664   }
7665 
7666   ConstantsOut.clear();
7667 }
7668 
7669 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7670 /// is 0.
7671 MachineBasicBlock *
7672 SelectionDAGBuilder::StackProtectorDescriptor::
7673 AddSuccessorMBB(const BasicBlock *BB,
7674                 MachineBasicBlock *ParentMBB,
7675                 bool IsLikely,
7676                 MachineBasicBlock *SuccMBB) {
7677   // If SuccBB has not been created yet, create it.
7678   if (!SuccMBB) {
7679     MachineFunction *MF = ParentMBB->getParent();
7680     MachineFunction::iterator BBI(ParentMBB);
7681     SuccMBB = MF->CreateMachineBasicBlock(BB);
7682     MF->insert(++BBI, SuccMBB);
7683   }
7684   // Add it as a successor of ParentMBB.
7685   ParentMBB->addSuccessor(
7686       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7687   return SuccMBB;
7688 }
7689 
7690 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7691   MachineFunction::iterator I(MBB);
7692   if (++I == FuncInfo.MF->end())
7693     return nullptr;
7694   return &*I;
7695 }
7696 
7697 /// During lowering new call nodes can be created (such as memset, etc.).
7698 /// Those will become new roots of the current DAG, but complications arise
7699 /// when they are tail calls. In such cases, the call lowering will update
7700 /// the root, but the builder still needs to know that a tail call has been
7701 /// lowered in order to avoid generating an additional return.
7702 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7703   // If the node is null, we do have a tail call.
7704   if (MaybeTC.getNode() != nullptr)
7705     DAG.setRoot(MaybeTC);
7706   else
7707     HasTailCall = true;
7708 }
7709 
7710 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7711                                   unsigned *TotalCases, unsigned First,
7712                                   unsigned Last) {
7713   assert(Last >= First);
7714   assert(TotalCases[Last] >= TotalCases[First]);
7715 
7716   APInt LowCase = Clusters[First].Low->getValue();
7717   APInt HighCase = Clusters[Last].High->getValue();
7718   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7719 
7720   // FIXME: A range of consecutive cases has 100% density, but only requires one
7721   // comparison to lower. We should discriminate against such consecutive ranges
7722   // in jump tables.
7723 
7724   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7725   uint64_t Range = Diff + 1;
7726 
7727   uint64_t NumCases =
7728       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7729 
7730   assert(NumCases < UINT64_MAX / 100);
7731   assert(Range >= NumCases);
7732 
7733   return NumCases * 100 >= Range * MinJumpTableDensity;
7734 }
7735 
7736 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7737   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7738          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7739 }
7740 
7741 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7742                                          unsigned First, unsigned Last,
7743                                          const SwitchInst *SI,
7744                                          MachineBasicBlock *DefaultMBB,
7745                                          CaseCluster &JTCluster) {
7746   assert(First <= Last);
7747 
7748   auto Prob = BranchProbability::getZero();
7749   unsigned NumCmps = 0;
7750   std::vector<MachineBasicBlock*> Table;
7751   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7752 
7753   // Initialize probabilities in JTProbs.
7754   for (unsigned I = First; I <= Last; ++I)
7755     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7756 
7757   for (unsigned I = First; I <= Last; ++I) {
7758     assert(Clusters[I].Kind == CC_Range);
7759     Prob += Clusters[I].Prob;
7760     APInt Low = Clusters[I].Low->getValue();
7761     APInt High = Clusters[I].High->getValue();
7762     NumCmps += (Low == High) ? 1 : 2;
7763     if (I != First) {
7764       // Fill the gap between this and the previous cluster.
7765       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7766       assert(PreviousHigh.slt(Low));
7767       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7768       for (uint64_t J = 0; J < Gap; J++)
7769         Table.push_back(DefaultMBB);
7770     }
7771     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7772     for (uint64_t J = 0; J < ClusterSize; ++J)
7773       Table.push_back(Clusters[I].MBB);
7774     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7775   }
7776 
7777   unsigned NumDests = JTProbs.size();
7778   if (isSuitableForBitTests(NumDests, NumCmps,
7779                             Clusters[First].Low->getValue(),
7780                             Clusters[Last].High->getValue())) {
7781     // Clusters[First..Last] should be lowered as bit tests instead.
7782     return false;
7783   }
7784 
7785   // Create the MBB that will load from and jump through the table.
7786   // Note: We create it here, but it's not inserted into the function yet.
7787   MachineFunction *CurMF = FuncInfo.MF;
7788   MachineBasicBlock *JumpTableMBB =
7789       CurMF->CreateMachineBasicBlock(SI->getParent());
7790 
7791   // Add successors. Note: use table order for determinism.
7792   SmallPtrSet<MachineBasicBlock *, 8> Done;
7793   for (MachineBasicBlock *Succ : Table) {
7794     if (Done.count(Succ))
7795       continue;
7796     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7797     Done.insert(Succ);
7798   }
7799   JumpTableMBB->normalizeSuccProbs();
7800 
7801   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7802   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7803                      ->createJumpTableIndex(Table);
7804 
7805   // Set up the jump table info.
7806   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7807   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7808                       Clusters[Last].High->getValue(), SI->getCondition(),
7809                       nullptr, false);
7810   JTCases.emplace_back(std::move(JTH), std::move(JT));
7811 
7812   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7813                                      JTCases.size() - 1, Prob);
7814   return true;
7815 }
7816 
7817 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7818                                          const SwitchInst *SI,
7819                                          MachineBasicBlock *DefaultMBB) {
7820 #ifndef NDEBUG
7821   // Clusters must be non-empty, sorted, and only contain Range clusters.
7822   assert(!Clusters.empty());
7823   for (CaseCluster &C : Clusters)
7824     assert(C.Kind == CC_Range);
7825   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7826     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7827 #endif
7828 
7829   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7830   if (!areJTsAllowed(TLI))
7831     return;
7832 
7833   const int64_t N = Clusters.size();
7834   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7835 
7836   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7837   SmallVector<unsigned, 8> TotalCases(N);
7838 
7839   for (unsigned i = 0; i < N; ++i) {
7840     APInt Hi = Clusters[i].High->getValue();
7841     APInt Lo = Clusters[i].Low->getValue();
7842     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7843     if (i != 0)
7844       TotalCases[i] += TotalCases[i - 1];
7845   }
7846 
7847   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7848     // Cheap case: the whole range might be suitable for jump table.
7849     CaseCluster JTCluster;
7850     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7851       Clusters[0] = JTCluster;
7852       Clusters.resize(1);
7853       return;
7854     }
7855   }
7856 
7857   // The algorithm below is not suitable for -O0.
7858   if (TM.getOptLevel() == CodeGenOpt::None)
7859     return;
7860 
7861   // Split Clusters into minimum number of dense partitions. The algorithm uses
7862   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7863   // for the Case Statement'" (1994), but builds the MinPartitions array in
7864   // reverse order to make it easier to reconstruct the partitions in ascending
7865   // order. In the choice between two optimal partitionings, it picks the one
7866   // which yields more jump tables.
7867 
7868   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7869   SmallVector<unsigned, 8> MinPartitions(N);
7870   // LastElement[i] is the last element of the partition starting at i.
7871   SmallVector<unsigned, 8> LastElement(N);
7872   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7873   SmallVector<unsigned, 8> NumTables(N);
7874 
7875   // Base case: There is only one way to partition Clusters[N-1].
7876   MinPartitions[N - 1] = 1;
7877   LastElement[N - 1] = N - 1;
7878   assert(MinJumpTableSize > 1);
7879   NumTables[N - 1] = 0;
7880 
7881   // Note: loop indexes are signed to avoid underflow.
7882   for (int64_t i = N - 2; i >= 0; i--) {
7883     // Find optimal partitioning of Clusters[i..N-1].
7884     // Baseline: Put Clusters[i] into a partition on its own.
7885     MinPartitions[i] = MinPartitions[i + 1] + 1;
7886     LastElement[i] = i;
7887     NumTables[i] = NumTables[i + 1];
7888 
7889     // Search for a solution that results in fewer partitions.
7890     for (int64_t j = N - 1; j > i; j--) {
7891       // Try building a partition from Clusters[i..j].
7892       if (isDense(Clusters, &TotalCases[0], i, j)) {
7893         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7894         bool IsTable = j - i + 1 >= MinJumpTableSize;
7895         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7896 
7897         // If this j leads to fewer partitions, or same number of partitions
7898         // with more lookup tables, it is a better partitioning.
7899         if (NumPartitions < MinPartitions[i] ||
7900             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7901           MinPartitions[i] = NumPartitions;
7902           LastElement[i] = j;
7903           NumTables[i] = Tables;
7904         }
7905       }
7906     }
7907   }
7908 
7909   // Iterate over the partitions, replacing some with jump tables in-place.
7910   unsigned DstIndex = 0;
7911   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7912     Last = LastElement[First];
7913     assert(Last >= First);
7914     assert(DstIndex <= First);
7915     unsigned NumClusters = Last - First + 1;
7916 
7917     CaseCluster JTCluster;
7918     if (NumClusters >= MinJumpTableSize &&
7919         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7920       Clusters[DstIndex++] = JTCluster;
7921     } else {
7922       for (unsigned I = First; I <= Last; ++I)
7923         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7924     }
7925   }
7926   Clusters.resize(DstIndex);
7927 }
7928 
7929 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7930   // FIXME: Using the pointer type doesn't seem ideal.
7931   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7932   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7933   return Range <= BW;
7934 }
7935 
7936 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7937                                                 unsigned NumCmps,
7938                                                 const APInt &Low,
7939                                                 const APInt &High) {
7940   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7941   // range of cases both require only one branch to lower. Just looking at the
7942   // number of clusters and destinations should be enough to decide whether to
7943   // build bit tests.
7944 
7945   // To lower a range with bit tests, the range must fit the bitwidth of a
7946   // machine word.
7947   if (!rangeFitsInWord(Low, High))
7948     return false;
7949 
7950   // Decide whether it's profitable to lower this range with bit tests. Each
7951   // destination requires a bit test and branch, and there is an overall range
7952   // check branch. For a small number of clusters, separate comparisons might be
7953   // cheaper, and for many destinations, splitting the range might be better.
7954   return (NumDests == 1 && NumCmps >= 3) ||
7955          (NumDests == 2 && NumCmps >= 5) ||
7956          (NumDests == 3 && NumCmps >= 6);
7957 }
7958 
7959 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7960                                         unsigned First, unsigned Last,
7961                                         const SwitchInst *SI,
7962                                         CaseCluster &BTCluster) {
7963   assert(First <= Last);
7964   if (First == Last)
7965     return false;
7966 
7967   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7968   unsigned NumCmps = 0;
7969   for (int64_t I = First; I <= Last; ++I) {
7970     assert(Clusters[I].Kind == CC_Range);
7971     Dests.set(Clusters[I].MBB->getNumber());
7972     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7973   }
7974   unsigned NumDests = Dests.count();
7975 
7976   APInt Low = Clusters[First].Low->getValue();
7977   APInt High = Clusters[Last].High->getValue();
7978   assert(Low.slt(High));
7979 
7980   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7981     return false;
7982 
7983   APInt LowBound;
7984   APInt CmpRange;
7985 
7986   const int BitWidth = DAG.getTargetLoweringInfo()
7987                            .getPointerTy(DAG.getDataLayout())
7988                            .getSizeInBits();
7989   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7990 
7991   // Check if the clusters cover a contiguous range such that no value in the
7992   // range will jump to the default statement.
7993   bool ContiguousRange = true;
7994   for (int64_t I = First + 1; I <= Last; ++I) {
7995     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
7996       ContiguousRange = false;
7997       break;
7998     }
7999   }
8000 
8001   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8002     // Optimize the case where all the case values fit in a word without having
8003     // to subtract minValue. In this case, we can optimize away the subtraction.
8004     LowBound = APInt::getNullValue(Low.getBitWidth());
8005     CmpRange = High;
8006     ContiguousRange = false;
8007   } else {
8008     LowBound = Low;
8009     CmpRange = High - Low;
8010   }
8011 
8012   CaseBitsVector CBV;
8013   auto TotalProb = BranchProbability::getZero();
8014   for (unsigned i = First; i <= Last; ++i) {
8015     // Find the CaseBits for this destination.
8016     unsigned j;
8017     for (j = 0; j < CBV.size(); ++j)
8018       if (CBV[j].BB == Clusters[i].MBB)
8019         break;
8020     if (j == CBV.size())
8021       CBV.push_back(
8022           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8023     CaseBits *CB = &CBV[j];
8024 
8025     // Update Mask, Bits and ExtraProb.
8026     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8027     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8028     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8029     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8030     CB->Bits += Hi - Lo + 1;
8031     CB->ExtraProb += Clusters[i].Prob;
8032     TotalProb += Clusters[i].Prob;
8033   }
8034 
8035   BitTestInfo BTI;
8036   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8037     // Sort by probability first, number of bits second.
8038     if (a.ExtraProb != b.ExtraProb)
8039       return a.ExtraProb > b.ExtraProb;
8040     return a.Bits > b.Bits;
8041   });
8042 
8043   for (auto &CB : CBV) {
8044     MachineBasicBlock *BitTestBB =
8045         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8046     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8047   }
8048   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8049                             SI->getCondition(), -1U, MVT::Other, false,
8050                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8051                             TotalProb);
8052 
8053   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8054                                     BitTestCases.size() - 1, TotalProb);
8055   return true;
8056 }
8057 
8058 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8059                                               const SwitchInst *SI) {
8060 // Partition Clusters into as few subsets as possible, where each subset has a
8061 // range that fits in a machine word and has <= 3 unique destinations.
8062 
8063 #ifndef NDEBUG
8064   // Clusters must be sorted and contain Range or JumpTable clusters.
8065   assert(!Clusters.empty());
8066   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8067   for (const CaseCluster &C : Clusters)
8068     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8069   for (unsigned i = 1; i < Clusters.size(); ++i)
8070     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8071 #endif
8072 
8073   // The algorithm below is not suitable for -O0.
8074   if (TM.getOptLevel() == CodeGenOpt::None)
8075     return;
8076 
8077   // If target does not have legal shift left, do not emit bit tests at all.
8078   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8079   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8080   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8081     return;
8082 
8083   int BitWidth = PTy.getSizeInBits();
8084   const int64_t N = Clusters.size();
8085 
8086   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8087   SmallVector<unsigned, 8> MinPartitions(N);
8088   // LastElement[i] is the last element of the partition starting at i.
8089   SmallVector<unsigned, 8> LastElement(N);
8090 
8091   // FIXME: This might not be the best algorithm for finding bit test clusters.
8092 
8093   // Base case: There is only one way to partition Clusters[N-1].
8094   MinPartitions[N - 1] = 1;
8095   LastElement[N - 1] = N - 1;
8096 
8097   // Note: loop indexes are signed to avoid underflow.
8098   for (int64_t i = N - 2; i >= 0; --i) {
8099     // Find optimal partitioning of Clusters[i..N-1].
8100     // Baseline: Put Clusters[i] into a partition on its own.
8101     MinPartitions[i] = MinPartitions[i + 1] + 1;
8102     LastElement[i] = i;
8103 
8104     // Search for a solution that results in fewer partitions.
8105     // Note: the search is limited by BitWidth, reducing time complexity.
8106     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8107       // Try building a partition from Clusters[i..j].
8108 
8109       // Check the range.
8110       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8111                            Clusters[j].High->getValue()))
8112         continue;
8113 
8114       // Check nbr of destinations and cluster types.
8115       // FIXME: This works, but doesn't seem very efficient.
8116       bool RangesOnly = true;
8117       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8118       for (int64_t k = i; k <= j; k++) {
8119         if (Clusters[k].Kind != CC_Range) {
8120           RangesOnly = false;
8121           break;
8122         }
8123         Dests.set(Clusters[k].MBB->getNumber());
8124       }
8125       if (!RangesOnly || Dests.count() > 3)
8126         break;
8127 
8128       // Check if it's a better partition.
8129       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8130       if (NumPartitions < MinPartitions[i]) {
8131         // Found a better partition.
8132         MinPartitions[i] = NumPartitions;
8133         LastElement[i] = j;
8134       }
8135     }
8136   }
8137 
8138   // Iterate over the partitions, replacing with bit-test clusters in-place.
8139   unsigned DstIndex = 0;
8140   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8141     Last = LastElement[First];
8142     assert(First <= Last);
8143     assert(DstIndex <= First);
8144 
8145     CaseCluster BitTestCluster;
8146     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8147       Clusters[DstIndex++] = BitTestCluster;
8148     } else {
8149       size_t NumClusters = Last - First + 1;
8150       std::memmove(&Clusters[DstIndex], &Clusters[First],
8151                    sizeof(Clusters[0]) * NumClusters);
8152       DstIndex += NumClusters;
8153     }
8154   }
8155   Clusters.resize(DstIndex);
8156 }
8157 
8158 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8159                                         MachineBasicBlock *SwitchMBB,
8160                                         MachineBasicBlock *DefaultMBB) {
8161   MachineFunction *CurMF = FuncInfo.MF;
8162   MachineBasicBlock *NextMBB = nullptr;
8163   MachineFunction::iterator BBI(W.MBB);
8164   if (++BBI != FuncInfo.MF->end())
8165     NextMBB = &*BBI;
8166 
8167   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8168 
8169   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8170 
8171   if (Size == 2 && W.MBB == SwitchMBB) {
8172     // If any two of the cases has the same destination, and if one value
8173     // is the same as the other, but has one bit unset that the other has set,
8174     // use bit manipulation to do two compares at once.  For example:
8175     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8176     // TODO: This could be extended to merge any 2 cases in switches with 3
8177     // cases.
8178     // TODO: Handle cases where W.CaseBB != SwitchBB.
8179     CaseCluster &Small = *W.FirstCluster;
8180     CaseCluster &Big = *W.LastCluster;
8181 
8182     if (Small.Low == Small.High && Big.Low == Big.High &&
8183         Small.MBB == Big.MBB) {
8184       const APInt &SmallValue = Small.Low->getValue();
8185       const APInt &BigValue = Big.Low->getValue();
8186 
8187       // Check that there is only one bit different.
8188       APInt CommonBit = BigValue ^ SmallValue;
8189       if (CommonBit.isPowerOf2()) {
8190         SDValue CondLHS = getValue(Cond);
8191         EVT VT = CondLHS.getValueType();
8192         SDLoc DL = getCurSDLoc();
8193 
8194         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8195                                  DAG.getConstant(CommonBit, DL, VT));
8196         SDValue Cond = DAG.getSetCC(
8197             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8198             ISD::SETEQ);
8199 
8200         // Update successor info.
8201         // Both Small and Big will jump to Small.BB, so we sum up the
8202         // probabilities.
8203         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8204         if (BPI)
8205           addSuccessorWithProb(
8206               SwitchMBB, DefaultMBB,
8207               // The default destination is the first successor in IR.
8208               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8209         else
8210           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8211 
8212         // Insert the true branch.
8213         SDValue BrCond =
8214             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8215                         DAG.getBasicBlock(Small.MBB));
8216         // Insert the false branch.
8217         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8218                              DAG.getBasicBlock(DefaultMBB));
8219 
8220         DAG.setRoot(BrCond);
8221         return;
8222       }
8223     }
8224   }
8225 
8226   if (TM.getOptLevel() != CodeGenOpt::None) {
8227     // Order cases by probability so the most likely case will be checked first.
8228     std::sort(W.FirstCluster, W.LastCluster + 1,
8229               [](const CaseCluster &a, const CaseCluster &b) {
8230       return a.Prob > b.Prob;
8231     });
8232 
8233     // Rearrange the case blocks so that the last one falls through if possible
8234     // without without changing the order of probabilities.
8235     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8236       --I;
8237       if (I->Prob > W.LastCluster->Prob)
8238         break;
8239       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8240         std::swap(*I, *W.LastCluster);
8241         break;
8242       }
8243     }
8244   }
8245 
8246   // Compute total probability.
8247   BranchProbability DefaultProb = W.DefaultProb;
8248   BranchProbability UnhandledProbs = DefaultProb;
8249   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8250     UnhandledProbs += I->Prob;
8251 
8252   MachineBasicBlock *CurMBB = W.MBB;
8253   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8254     MachineBasicBlock *Fallthrough;
8255     if (I == W.LastCluster) {
8256       // For the last cluster, fall through to the default destination.
8257       Fallthrough = DefaultMBB;
8258     } else {
8259       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8260       CurMF->insert(BBI, Fallthrough);
8261       // Put Cond in a virtual register to make it available from the new blocks.
8262       ExportFromCurrentBlock(Cond);
8263     }
8264     UnhandledProbs -= I->Prob;
8265 
8266     switch (I->Kind) {
8267       case CC_JumpTable: {
8268         // FIXME: Optimize away range check based on pivot comparisons.
8269         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8270         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8271 
8272         // The jump block hasn't been inserted yet; insert it here.
8273         MachineBasicBlock *JumpMBB = JT->MBB;
8274         CurMF->insert(BBI, JumpMBB);
8275 
8276         auto JumpProb = I->Prob;
8277         auto FallthroughProb = UnhandledProbs;
8278 
8279         // If the default statement is a target of the jump table, we evenly
8280         // distribute the default probability to successors of CurMBB. Also
8281         // update the probability on the edge from JumpMBB to Fallthrough.
8282         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8283                                               SE = JumpMBB->succ_end();
8284              SI != SE; ++SI) {
8285           if (*SI == DefaultMBB) {
8286             JumpProb += DefaultProb / 2;
8287             FallthroughProb -= DefaultProb / 2;
8288             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8289             JumpMBB->normalizeSuccProbs();
8290             break;
8291           }
8292         }
8293 
8294         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8295         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8296         CurMBB->normalizeSuccProbs();
8297 
8298         // The jump table header will be inserted in our current block, do the
8299         // range check, and fall through to our fallthrough block.
8300         JTH->HeaderBB = CurMBB;
8301         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8302 
8303         // If we're in the right place, emit the jump table header right now.
8304         if (CurMBB == SwitchMBB) {
8305           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8306           JTH->Emitted = true;
8307         }
8308         break;
8309       }
8310       case CC_BitTests: {
8311         // FIXME: Optimize away range check based on pivot comparisons.
8312         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8313 
8314         // The bit test blocks haven't been inserted yet; insert them here.
8315         for (BitTestCase &BTC : BTB->Cases)
8316           CurMF->insert(BBI, BTC.ThisBB);
8317 
8318         // Fill in fields of the BitTestBlock.
8319         BTB->Parent = CurMBB;
8320         BTB->Default = Fallthrough;
8321 
8322         BTB->DefaultProb = UnhandledProbs;
8323         // If the cases in bit test don't form a contiguous range, we evenly
8324         // distribute the probability on the edge to Fallthrough to two
8325         // successors of CurMBB.
8326         if (!BTB->ContiguousRange) {
8327           BTB->Prob += DefaultProb / 2;
8328           BTB->DefaultProb -= DefaultProb / 2;
8329         }
8330 
8331         // If we're in the right place, emit the bit test header right now.
8332         if (CurMBB == SwitchMBB) {
8333           visitBitTestHeader(*BTB, SwitchMBB);
8334           BTB->Emitted = true;
8335         }
8336         break;
8337       }
8338       case CC_Range: {
8339         const Value *RHS, *LHS, *MHS;
8340         ISD::CondCode CC;
8341         if (I->Low == I->High) {
8342           // Check Cond == I->Low.
8343           CC = ISD::SETEQ;
8344           LHS = Cond;
8345           RHS=I->Low;
8346           MHS = nullptr;
8347         } else {
8348           // Check I->Low <= Cond <= I->High.
8349           CC = ISD::SETLE;
8350           LHS = I->Low;
8351           MHS = Cond;
8352           RHS = I->High;
8353         }
8354 
8355         // The false probability is the sum of all unhandled cases.
8356         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8357                      UnhandledProbs);
8358 
8359         if (CurMBB == SwitchMBB)
8360           visitSwitchCase(CB, SwitchMBB);
8361         else
8362           SwitchCases.push_back(CB);
8363 
8364         break;
8365       }
8366     }
8367     CurMBB = Fallthrough;
8368   }
8369 }
8370 
8371 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8372                                               CaseClusterIt First,
8373                                               CaseClusterIt Last) {
8374   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8375     if (X.Prob != CC.Prob)
8376       return X.Prob > CC.Prob;
8377 
8378     // Ties are broken by comparing the case value.
8379     return X.Low->getValue().slt(CC.Low->getValue());
8380   });
8381 }
8382 
8383 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8384                                         const SwitchWorkListItem &W,
8385                                         Value *Cond,
8386                                         MachineBasicBlock *SwitchMBB) {
8387   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8388          "Clusters not sorted?");
8389 
8390   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8391 
8392   // Balance the tree based on branch probabilities to create a near-optimal (in
8393   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8394   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8395   CaseClusterIt LastLeft = W.FirstCluster;
8396   CaseClusterIt FirstRight = W.LastCluster;
8397   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8398   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8399 
8400   // Move LastLeft and FirstRight towards each other from opposite directions to
8401   // find a partitioning of the clusters which balances the probability on both
8402   // sides. If LeftProb and RightProb are equal, alternate which side is
8403   // taken to ensure 0-probability nodes are distributed evenly.
8404   unsigned I = 0;
8405   while (LastLeft + 1 < FirstRight) {
8406     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8407       LeftProb += (++LastLeft)->Prob;
8408     else
8409       RightProb += (--FirstRight)->Prob;
8410     I++;
8411   }
8412 
8413   for (;;) {
8414     // Our binary search tree differs from a typical BST in that ours can have up
8415     // to three values in each leaf. The pivot selection above doesn't take that
8416     // into account, which means the tree might require more nodes and be less
8417     // efficient. We compensate for this here.
8418 
8419     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8420     unsigned NumRight = W.LastCluster - FirstRight + 1;
8421 
8422     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8423       // If one side has less than 3 clusters, and the other has more than 3,
8424       // consider taking a cluster from the other side.
8425 
8426       if (NumLeft < NumRight) {
8427         // Consider moving the first cluster on the right to the left side.
8428         CaseCluster &CC = *FirstRight;
8429         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8430         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8431         if (LeftSideRank <= RightSideRank) {
8432           // Moving the cluster to the left does not demote it.
8433           ++LastLeft;
8434           ++FirstRight;
8435           continue;
8436         }
8437       } else {
8438         assert(NumRight < NumLeft);
8439         // Consider moving the last element on the left to the right side.
8440         CaseCluster &CC = *LastLeft;
8441         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8442         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8443         if (RightSideRank <= LeftSideRank) {
8444           // Moving the cluster to the right does not demot it.
8445           --LastLeft;
8446           --FirstRight;
8447           continue;
8448         }
8449       }
8450     }
8451     break;
8452   }
8453 
8454   assert(LastLeft + 1 == FirstRight);
8455   assert(LastLeft >= W.FirstCluster);
8456   assert(FirstRight <= W.LastCluster);
8457 
8458   // Use the first element on the right as pivot since we will make less-than
8459   // comparisons against it.
8460   CaseClusterIt PivotCluster = FirstRight;
8461   assert(PivotCluster > W.FirstCluster);
8462   assert(PivotCluster <= W.LastCluster);
8463 
8464   CaseClusterIt FirstLeft = W.FirstCluster;
8465   CaseClusterIt LastRight = W.LastCluster;
8466 
8467   const ConstantInt *Pivot = PivotCluster->Low;
8468 
8469   // New blocks will be inserted immediately after the current one.
8470   MachineFunction::iterator BBI(W.MBB);
8471   ++BBI;
8472 
8473   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8474   // we can branch to its destination directly if it's squeezed exactly in
8475   // between the known lower bound and Pivot - 1.
8476   MachineBasicBlock *LeftMBB;
8477   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8478       FirstLeft->Low == W.GE &&
8479       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8480     LeftMBB = FirstLeft->MBB;
8481   } else {
8482     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8483     FuncInfo.MF->insert(BBI, LeftMBB);
8484     WorkList.push_back(
8485         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8486     // Put Cond in a virtual register to make it available from the new blocks.
8487     ExportFromCurrentBlock(Cond);
8488   }
8489 
8490   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8491   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8492   // directly if RHS.High equals the current upper bound.
8493   MachineBasicBlock *RightMBB;
8494   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8495       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8496     RightMBB = FirstRight->MBB;
8497   } else {
8498     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8499     FuncInfo.MF->insert(BBI, RightMBB);
8500     WorkList.push_back(
8501         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8502     // Put Cond in a virtual register to make it available from the new blocks.
8503     ExportFromCurrentBlock(Cond);
8504   }
8505 
8506   // Create the CaseBlock record that will be used to lower the branch.
8507   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8508                LeftProb, RightProb);
8509 
8510   if (W.MBB == SwitchMBB)
8511     visitSwitchCase(CB, SwitchMBB);
8512   else
8513     SwitchCases.push_back(CB);
8514 }
8515 
8516 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8517   // Extract cases from the switch.
8518   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8519   CaseClusterVector Clusters;
8520   Clusters.reserve(SI.getNumCases());
8521   for (auto I : SI.cases()) {
8522     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8523     const ConstantInt *CaseVal = I.getCaseValue();
8524     BranchProbability Prob =
8525         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8526             : BranchProbability(1, SI.getNumCases() + 1);
8527     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8528   }
8529 
8530   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8531 
8532   // Cluster adjacent cases with the same destination. We do this at all
8533   // optimization levels because it's cheap to do and will make codegen faster
8534   // if there are many clusters.
8535   sortAndRangeify(Clusters);
8536 
8537   if (TM.getOptLevel() != CodeGenOpt::None) {
8538     // Replace an unreachable default with the most popular destination.
8539     // FIXME: Exploit unreachable default more aggressively.
8540     bool UnreachableDefault =
8541         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8542     if (UnreachableDefault && !Clusters.empty()) {
8543       DenseMap<const BasicBlock *, unsigned> Popularity;
8544       unsigned MaxPop = 0;
8545       const BasicBlock *MaxBB = nullptr;
8546       for (auto I : SI.cases()) {
8547         const BasicBlock *BB = I.getCaseSuccessor();
8548         if (++Popularity[BB] > MaxPop) {
8549           MaxPop = Popularity[BB];
8550           MaxBB = BB;
8551         }
8552       }
8553       // Set new default.
8554       assert(MaxPop > 0 && MaxBB);
8555       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8556 
8557       // Remove cases that were pointing to the destination that is now the
8558       // default.
8559       CaseClusterVector New;
8560       New.reserve(Clusters.size());
8561       for (CaseCluster &CC : Clusters) {
8562         if (CC.MBB != DefaultMBB)
8563           New.push_back(CC);
8564       }
8565       Clusters = std::move(New);
8566     }
8567   }
8568 
8569   // If there is only the default destination, jump there directly.
8570   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8571   if (Clusters.empty()) {
8572     SwitchMBB->addSuccessor(DefaultMBB);
8573     if (DefaultMBB != NextBlock(SwitchMBB)) {
8574       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8575                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8576     }
8577     return;
8578   }
8579 
8580   findJumpTables(Clusters, &SI, DefaultMBB);
8581   findBitTestClusters(Clusters, &SI);
8582 
8583   DEBUG({
8584     dbgs() << "Case clusters: ";
8585     for (const CaseCluster &C : Clusters) {
8586       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8587       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8588 
8589       C.Low->getValue().print(dbgs(), true);
8590       if (C.Low != C.High) {
8591         dbgs() << '-';
8592         C.High->getValue().print(dbgs(), true);
8593       }
8594       dbgs() << ' ';
8595     }
8596     dbgs() << '\n';
8597   });
8598 
8599   assert(!Clusters.empty());
8600   SwitchWorkList WorkList;
8601   CaseClusterIt First = Clusters.begin();
8602   CaseClusterIt Last = Clusters.end() - 1;
8603   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8604   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8605 
8606   while (!WorkList.empty()) {
8607     SwitchWorkListItem W = WorkList.back();
8608     WorkList.pop_back();
8609     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8610 
8611     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8612       // For optimized builds, lower large range as a balanced binary tree.
8613       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8614       continue;
8615     }
8616 
8617     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8618   }
8619 }
8620